WorldWideScience

Sample records for embedded smart control

  1. Simulation and Embedded Smart Control

    DEFF Research Database (Denmark)

    Conrad, Finn; Fan, Zhun; Sørensen, Torben

    2006-01-01

    for a hydraulic robot was implemented. The controllers apply digital signal processors (DSPs), and Field Programmable Gate Array, short named as FPGA, respectively. The DSP controller utilizes the dSPACE System that is suitable for real-time experimentation, evaluation and validation of control laws...

  2. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    Science.gov (United States)

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  3. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    Directory of Open Access Journals (Sweden)

    Eduardo Magdaleno

    2013-12-01

    Full Text Available This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI. The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A. Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  4. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  5. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François

    2014-01-01

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  6. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform......This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  7. Secure smart embedded devices, platforms and applications

    CERN Document Server

    Markantonakis, Konstantinos

    2013-01-01

    New generations of IT users are increasingly abstracted from the underlying devices and platforms that provide and safeguard their services. As a result they may have little awareness that they are critically dependent on the embedded security devices that are becoming pervasive in daily modern life. Secure Smart Embedded Devices, Platforms and Applications provides a broad overview of the many security and practical issues of embedded devices, tokens, and their operation systems, platforms and main applications. It also addresses a diverse range of industry/government initiatives and consider

  8. SMART OBJECTS EMBEDDED PRODUCTION AND QUALITY MANAGEMENT FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Goran D. Putnik

    2015-03-01

    Full Text Available In this paper, smart objects embedded production and quality management functions are proposed, to promote accurately support decision-making processes, from the shop floor level up to higher decision-making levels. The proposed functions contribute for different kind of problems solving in production and quality management, such as production planning and control, scheduling, factory supervision, real-time data acquisition and processing, and real-time decision making. The web access at different middleware devices and tools, at different decision levels, along with the use of integrated algorithms and tools, embedded in smart objects, promotes conditions for better decision-making for optimized use of knowledge and resources in production systems. The relevance of the proposed smart objects embedded production and quality management functions has been validated positively in a manufacturing company.

  9. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities

  10. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  11. Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities.

    Science.gov (United States)

    Štular, Danaja; Jerman, Ivan; Naglič, Iztok; Simončič, Barbara; Tomšič, Brigita

    2017-03-01

    Silver nanoparticles were embedded into a temperature- and pH-responsive microgel based on poly-(N-isopropylacrylamide) and chitosan (PNCS) before or after its application to cotton fabric to create a smart stimuli-responsive textile with simultaneous moisture management and controlled antimicrobial activities. Two different methods of silver embedment into the PNCS microgel using two different forms of silver nanoparticles were studied, i.e., in-situ synthesis of AgCl nanocrystals into PNCS microgel particles that had previously been applied to cotton fabric, as well as the direct incorporation of colloidal silver into the microgel suspension prior to its deposition on cellulose fibres. SEM and FT-IR analysis were employed to determine the morphological and chemical changes of the modified cotton fibres, while EDS and ICP MS analysis were used to confirm the presence of the silver nanoparticles. The influence of silver embedment on the swelling/deswelling activity of the PNCS microgel was studied using the temperature- and pH-responsiveness, as determined by the moisture content, water vapour transmission rate and water uptake. The antimicrobial activity against the bacteria Staphylococcus aureus and Escherichia coli was assessed. Regardless of the embedment technique, the presence of silver nanoparticles resulted in impaired moisture management activity of the studied microgel. The PNCS microgel proved to be a suitable carrier of antimicrobial agents, assuring the effective controlled release of silver triggered by changes in the temperature and pH of the surroundings, which granted the cotton fabric excellent antimicrobial activity against Gram-negative E. coli (>99%) and Gram-positive S. aureus (>85%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Securing Embedded Smart Cameras with Trusted Computing

    Directory of Open Access Journals (Sweden)

    Winkler Thomas

    2011-01-01

    Full Text Available Camera systems are used in many applications including video surveillance for crime prevention and investigation, traffic monitoring on highways or building monitoring and automation. With the shift from analog towards digital systems, the capabilities of cameras are constantly increasing. Today's smart camera systems come with considerable computing power, large memory, and wired or wireless communication interfaces. With onboard image processing and analysis capabilities, cameras not only open new possibilities but also raise new challenges. Often overlooked are potential security issues of the camera system. The increasing amount of software running on the cameras turns them into attractive targets for attackers. Therefore, the protection of camera devices and delivered data is of critical importance. In this work we present an embedded camera prototype that uses Trusted Computing to provide security guarantees for streamed videos. With a hardware-based security solution, we ensure integrity, authenticity, and confidentiality of videos. Furthermore, we incorporate image timestamping, detection of platform reboots, and reporting of the system status. This work is not limited to theoretical considerations but also describes the implementation of a prototype system. Extensive evaluation results illustrate the practical feasibility of the approach.

  13. Fieldbook: Udvikling af embedded systemer & smarte produkter i praksis

    DEFF Research Database (Denmark)

    Jensen, Henrik Valentin; Agesen, Mads Kronborg; Nyman, Ulrik Mathias

    DEN HELT KORTE VERSIONI denne fieldbook kan du læse om, hvad der skal gøres, når du vil gå fra industrielt til smart produkt. Fieldbooken giver dig grundlag for at tegne dit eget roadmap for din virksomheds udvikling af smarte produkter og embedded systemer. Det handler om jeres:¤ Udfordring med ...

  14. Fieldbook: Developing embedded systems & smart products in practice

    DEFF Research Database (Denmark)

    Jensen, Henrik Valentin; Agesen, Mads Kronborg; Nyman, Ulrik Mathias

    DEN HELT KORTE VERSIONI denne fieldbook kan du læse om, hvad der skal gøres, når du vil gå fra industrielt til smart produkt. Fieldbooken giver dig grundlag for at tegne dit eget roadmap for din virksomheds udvikling af smarte produkter og embedded systemer. Det handler om jeres:¤ Udfordring med ...

  15. Smart Sensors Enable Smart Air Conditioning Control

    OpenAIRE

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be contr...

  16. Distributed embedded smart cameras architectures, design and applications

    CERN Document Server

    Velipasalar, Senem

    2014-01-01

    This publication addresses distributed embedded smart cameras –cameras that perform onboard analysis and collaborate with other cameras. This book provides the material required to better understand the architectural design challenges of embedded smart camera systems, the hardware/software ecosystem, the design approach for, and applications of distributed smart cameras together with the state-of-the-art algorithms. The authors concentrate on the architecture, hardware/software design, realization of smart camera networks from applications to architectures, in particular in the embedded and mobile domains. •                    Examines energy issues related to wireless communication such as decreasing energy consumption to increase battery-life •                    Discusses processing large volumes of video data on an embedded environment in real-time •                    Covers design of realistic applications of distributed and embedded smart...

  17. Controlling smart grid adaptivity

    NARCIS (Netherlands)

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption

  18. Strain characterization of embedded aerospace smart materials using shearography

    Science.gov (United States)

    Anisimov, Andrei G.; Müller, Bernhard; Sinke, Jos; Groves, Roger M.

    2015-04-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities are used. In case of leading edges made of fibre metal laminates heater elements can be embedded between composite layers. However this local heating causes strains and stresses in the structure due to the different thermal expansion coefficients of the different laminated materials. In order to characterize the structural behaviour during thermal loading full-field strain and shape measurement can be used. In this research, a shearography instrument with three spatially-distributed shearing cameras is used to measure surface displacement gradients which give a quantitative estimation of the in- and out-of-plane surface strain components. For the experimental part, two GLARE (Glass Laminate Aluminum Reinforced Epoxy) specimens with six different embedded copper heater elements were manufactured: two copper mesh shapes (straight and S-shape), three connection techniques (soldered, spot welded and overlapped) and one straight heater element with delaminations. The surface strain behaviour of the specimens due to thermal loading was measured and analysed. The comparison of the connection techniques of heater element parts showed that the overlapped connection has the smallest effect on the surface strain distribution. Furthermore, the possibility of defect detection and defect depth characterisation close to the heater elements was also investigated.

  19. Optical table with embedded active vibration dampers (smart table)

    Science.gov (United States)

    Ryaboy, Vyacheslav M.; Kasturi, Prakash S.; Nastase, Adrian S.; Rigney, Thomas K.

    2005-05-01

    This paper describes the actively damped optical table developed and introduced as a standard product, ST series SmartTable(TM), by Newport Corporation. The active damping system is self-adjusting and robust with respect to changes in payload and vibration environment. It outperforms not only the broadband damped optical tables, but also the top-of-the-line tables equipped with tuned passive vibration absorbers. The maximum resonance vibration amplitudes are reduced about ten times. Additionally, the user has the benefit of being able to monitor and analyze vibration of the table by the conditioned low-noise signals from the embedded vibration sensors. Theoretical background, analysis, design rationale and experimental verification of the system are presented, with emphasis on sensor-actuator pairs architecture, signal processing and adaptive controls.

  20. Smart sensors enable smart air conditioning control.

    Science.gov (United States)

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  1. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  2. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  3. Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor

    Directory of Open Access Journals (Sweden)

    Jose-Luis JIMÉNEZ-GARCÍA

    2014-10-01

    Full Text Available Embedded control systems usually are characterized by its limitations in terms of computational power and memory. Although this systems must deal with perpection and actuation signal adaptation and calculate control actions ensuring its reliability and providing a certain degree of fault tolerance. The allocation of these tasks between some different embedded nodes conforming a distributed control system allows to solve many of these issues. For that reason is proposed the application of smart devices aims to perform the data processing tasks related with the perception and actuation and offer a simple interface to be configured by other nodes in order to share processed information and raise QoS based alarms. In this work is introduced the procedure of implementing a smart device as a sensor as an embedded node in a distributed control system. In order to analyze its benefits an application based on a RGBD sensor implemented as an smart device is proposed.

  4. Smart Grid Control and Communication

    DEFF Research Database (Denmark)

    Ciontea, Catalin-Iosif; Pedersen, Rasmus; Kristensen, Thomas le Fevre

    2015-01-01

    ) and the quality of the power may become costly. In this light, Smart Grids may provide an answer towards a more active and efficient electrical network. The EU project SmartC2Net aims to enable smart grid operations over imperfect, heterogeneous general purpose networks, which poses a significant challenge...... to the reliability due to the stochastic behavior found in such networks. Therefore, key concepts are presented in this paper targeting the support of proper smart grid control in these network environments and its Real-Time Hardware-In-the Loop (HIL) verification. An overview on the required Information......The expected growth in distributed generation will significantly affect the operation and control of today's distribution grids. Being confronted with fast fluctuating power from distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...

  5. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed [GE Global Research Center, Niskayuna, NY (United States)

    2015-10-27

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiring and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.

  6. Automated Home Appliances Control Using Embedded Web Server

    OpenAIRE

    Ahad, Abdul; Y.Mahesh; Sukanya, G; Harika, N; Uma Sri, A

    2014-01-01

    In modern construction in industrialized nations, most homes have been wired for TV, lights and fans etc... Many household tasks were automated by the development of specialized automated appliances. In this project we are going to create the embedded web server so that we can control the electrical devices through online by using either computer or by using smart phone. The purpose of this project is to design a control system that able to control a system device remotely from distance and ...

  7. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yirong [Univ. of Texas, El Paso, TX (United States)

    2017-12-10

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall material property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.

  8. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Fleck Sven

    2007-01-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  9. Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model

    Directory of Open Access Journals (Sweden)

    Sven Fleck

    2006-12-01

    Full Text Available Tracking applications based on distributed and embedded sensor networks are emerging today, both in the fields of surveillance and industrial vision. Traditional centralized approaches have several drawbacks, due to limited communication bandwidth, computational requirements, and thus limited spatial camera resolution and frame rate. In this article, we present network-enabled smart cameras for probabilistic tracking. They are capable of tracking objects adaptively in real time and offer a very bandwidthconservative approach, as the whole computation is performed embedded in each smart camera and only the tracking results are transmitted, which are on a higher level of abstraction. Based on this, we present a distributed surveillance system. The smart cameras' tracking results are embedded in an integrated 3D environment as live textures and can be viewed from arbitrary perspectives. Also a georeferenced live visualization embedded in Google Earth is presented.

  10. Reliability analysis for the smart grid : from cyber control and communication to physical manifestations of failure.

    Science.gov (United States)

    2010-01-01

    The Smart Grid is a cyber-physical system comprised of physical components, such as transmission lines and generators, and a : network of embedded systems deployed for their cyber control. Our objective is to qualitatively and quantitatively analyze ...

  11. Damage detection algorithm-embedded smart sensor node system for bridge structural health monitoring

    Science.gov (United States)

    Park, Jae-Hyung; Ho, Duc-Duy; Kim, Jeong-Tae; Ryu, Yeon-Sun; Yun, Chung-Bang

    2009-03-01

    In this study, a system using autonomous smart sensor nodes is developed for bridge structural health monitoring (SHM). In order to achieve the research goal, the following tasks are implemented. Firstly, acceleration-based and impedancebased smart sensor nodes are designed. Secondly, an autonomous operation system using smart sensor nodes is designed for hybrid health monitoring using global and local health monitoring methods. Finally, the feasibility and applicability of the proposed system are experimentally evaluated in a lab-scaled prestressed concrete (PSC) girder for which a set of damage scenarios are experimentally monitored by wireless sensor nodes and embedded software.

  12. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  13. Hierarchical Control for Smart Grids

    DEFF Research Database (Denmark)

    Trangbæk, K; Bendtsen, Jan Dimon; Stoustrup, Jakob

    2011-01-01

    of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The objective is to accommodate the load variation on the grid, arising...... on one hand from varying consumption, and on the other hand by natural variations in power production e.g. from wind turbines. The high-level MPC problem is solved using quadratic optimisation, while the aggregator level can either involve quadratic optimisation or simple sorting-based min-max solutions...

  14. PLCs used in smart home control

    Science.gov (United States)

    Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.

    2016-02-01

    This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.

  15. Real-time quality control on a smart camera

    Science.gov (United States)

    Xiao, Chuanwei; Zhou, Huaide; Li, Guangze; Hao, Zhihang

    2006-01-01

    A smart camera is composed of a video sensing, high-level video processing, communication and other affiliations within a single device. Such cameras are very important devices in quality control systems. This paper presents a prototyping development of a smart camera for quality control. The smart camera is divided to four parts: a CMOS sensor, a digital signal processor (DSP), a CPLD and a display device. In order to improving the processing speed, low-level and high-level video processing algorithms are discussed to the embedded DSP-based platforms. The algorithms can quickly and automatic detect productions' quality defaults. All algorithms are tested under a Matlab-based prototyping implementation and migrated to the smart camera. The smart camera prototype automatic processes the video data and streams the results of the video data to the display devices and control devices. Control signals are send to produce-line to adjust the producing state within the required real-time constrains.

  16. Smart Diabetic Socks: Embedded device for diabetic foot prevention

    CERN Document Server

    Perrier, Antoine; Luboz, Vincent; Bucki, Marek; Cannard, Francis; Diot, Bruno; Colin, Denis; Rin, Delphine; Bourg, Jean-Philippe; Payan, Yohan

    2014-01-01

    1) Objectives Most foot ulcers are the consequence of a trauma (repetitive high stress, ill-fitting footwear, or an object inside the shoe) associated to diabetes. They are often followed by amputation and shorten life expectancy. This paper describes the prototype of the Smart Diabetic Socks that has been developed in the context of the French ANR TecSan project. The objective is to prevent pressure foot ulcers for diabetic persons. 2) Material and methods A fully wireless, customizable and washable "smart sock" has been designed. It is made of a textile which fibers are knitted in a way they provide measurements of the pressure exerted under and all around the foot in real-life conditions. This device is coupled with a subject-specific Finite Element foot model that simulates the internal strains within the soft tissues of the foot. 3) Results A number of derived stress indicators can be computed based on that analysis, such as the accumulated stress dose, high internal strains or peak pressures near bony p...

  17. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  18. A chip embedding solution based on low-cost plastic materials as enabling technology for smart labels

    NARCIS (Netherlands)

    Cauwe, M.; Vandecasteele, B.; Baets, J. de; Brand, J. van den; Kusters, R.H.L.; Sridhar, A.

    2012-01-01

    Expanding the current smart packaging solutions to individual products requires improvement for several of the following properties: cost, thickness, weight, flexibility, conformability, transparency, and even stretchability. This paper focusses on an embedding technology that targets the first four

  19. Design and Implementation of an Embedded Smart Intruder Surveillance System

    Directory of Open Access Journals (Sweden)

    Sabri Naseer

    2018-01-01

    Full Text Available Remote and scattered valuable and sensitive locations such as labs and offices inside university campus need efficient monitoring and warning system. As well as scattered area and belonging. This research presents a Real-Time intruder Surveillance System based on a single board computer (SBC. Thus the design and development of a cost effective surveillance management system based SBC that can be deployed efficiently in remote and scattered locations such as universities belonging. The fusion of embedded Python codes with SBC that attached to cameras, Long distance sensors, alerting circuitry and wireless module presents a novel integration based effective cost solution and enhances SBC of much flexibility of improvement and development for pervasive remote locations. The system proves the high integrity of smooth working with web application, it’s cost effective and thus can be deployed as many of units to seize and concisely covered remote and scattered area as well as university belonging and departments. The system can be administrated by a remote user sparsely or geographically away from any networked workstation. The proposed solution offers efficient stand alone, flexibility to upgrade and cheap development and installation as well as cost effective ubiquitous surveillance solution. In conclusion, the system acceptable boundaries of successful intruder recognition and warning alert are computed between 1m and 3m distance of intruder from system camera. Recognition rate of 95% and 83% are achieved and the successful warning alert were in the range of 86-97%.

  20. Mobile monitoring and embedded control system for factory environment.

    Science.gov (United States)

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  1. Mobile Monitoring and Embedded Control System for Factory Environment

    Directory of Open Access Journals (Sweden)

    Kuang-Yow Lian

    2013-12-01

    Full Text Available This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC technology is used to carry out the actual electricity load experiments using smart phones.

  2. Homework Assignments in Hybrid and Embedded Control

    OpenAIRE

    Mattsson, Niklas

    2006-01-01

    In this thesis we discuss the development of three homeworks for the course Hybrid and Embedded Control Systems given at the institution S3 (Signals, Sensors and Systems) at the Royal Institute of Technology (KTH) in Stockholm. The main objective of the course is to present tools for modeling, analyze and design embedded control system. The course, first given in spring 2003, is interdisciplinary since its program cover arguments strictly related to system theory and computer science. As part...

  3. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    Directory of Open Access Journals (Sweden)

    James Millar

    2006-10-01

    Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.

  4. A Laboratory Testbed for Embedded Fuzzy Control

    Science.gov (United States)

    Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.

    2011-01-01

    This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses…

  5. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  6. Exact Power Constraints in Smart Grid Control

    DEFF Research Database (Denmark)

    Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon

    2011-01-01

    This paper deals with hierarchical model predictive control (MPC) of smart grid systems. The objective is to accommodate load variations on the grid, arising from varying consumption and natural variations in the power production e.g. from wind turbines. This balancing between supply and demand...

  7. Control Structures for Smart Grid Balancing

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Totu, Luminita Cristiana; Shafiei, Seyed Ehsan

    2013-01-01

    This work addresses the problem of maintaining the balance between consumption and production in the electricity grid when volatile resources, such as wind and sun, account for a large percentage of the power generation. We present control structures for Smart Grid balancing services on three...

  8. Smart city power system control

    OpenAIRE

    Rosales Santos, Andreé; Gálvez Alhuay, Edwin; Salcedo García, Alejandro

    2015-01-01

    El proyecto se basa en el estudio de 3 ámbitos de una Smart City. Por un lado encontramos energético y solución energética, por otro lado el estudio lumínico de la ciudad con una propuesta de iluminación inteligente y finalmente una propuesta de parking público reservable. Por la parte del estudio energético se realizó un estudio sobre la carga eléctrica y térmica de toda la ciudad. Una vez sabido la carga de potencia tanto eléctrica como térmica se realizó la solución energética. Nuestra ...

  9. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    Science.gov (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  10. Electron gun control of smart materials

    Science.gov (United States)

    Main, John A.; Nelson, George C.; Martin, Jeffrey W.

    1998-07-01

    Smart material patches are currently an impractical choice in applications requiring fine spatial resolution or control of complex areas. The static nature of electrodes, the conventional choice for control signal application to many smart materials, makes them unsuitable in these instances. To address this issue the use of electron guns as charge sources for smart material control is investigated in this paper. In the electron gun control method the need for separate electrodes and wire leads is eliminated by depositing the control charges directly on the surface of the piezoelectric material. Since piezoelectric materials are dielectrics the charges remain where deposited by the electron gun. The spatial resolution of this control method is as small as the spot size of the electron beam, which in a focused beam can be as small as tens of microns. Large areas can be covered by a single electron gun simply by scanning the beam using deflection plates. Some practical aspects of electron gun control are presented in this paper. A description of an experimental test bed assembled to evaluate electron gun control of PZT-5H is presented, as are results and conceptual models of the system behavior.

  11. Smart earphone: Controlling tasks by earphone in smart phone by ...

    African Journals Online (AJOL)

    DR OKE

    International Journal of Engineering, Science and Technology. Vol. 7, No. 3, 2015 ... Earphones, computers, smart phone have become common in our life in various forms with ubiquitous and wearable technology ..... He is Professional member of IEEE and PES (Power and Energy Society) & SGS (Smart Grid Society), Life.

  12. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    Science.gov (United States)

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  13. An Embedded System in Smart Inverters for Power Quality and Safety Functionality

    Directory of Open Access Journals (Sweden)

    Rafael Real-Calvo

    2016-03-01

    Full Text Available The electricity sector is undergoing an evolution that demands the development of a network model with a high level of intelligence, known as a Smart Grid. One of the factors accelerating these changes is the development and implementation of renewable energy. In particular, increased photovoltaic generation can affect the network’s stability. One line of action is to provide inverters with a management capacity that enables them to act upon the grid in order to compensate for these problems. This paper describes the design and development of a prototype embedded system able to integrate with a photovoltaic inverter and provide it with multifunctional ability in order to analyze power quality and operate with protection. The most important subsystems of this prototype are described, indicating their operating fundamentals. This prototype has been tested with class A protocols according to IEC 61000-4-30 and IEC 62586-2. Tests have also been carried out to validate the response time in generating orders and alarm signals for protections. The highlights of these experimental results are discussed. Some descriptive aspects of the integration of the prototype in an experimental smart inverter are also commented upon.

  14. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    Directory of Open Access Journals (Sweden)

    Caroline Loss

    2016-06-01

    Full Text Available The Internet of Things (IoT scenario is strongly related with the advance of the development of wireless sensor networks (WSN and radio frequency identification (RFID systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM 900 and digital cellular system (DCS 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  15. Designing, manufacturing, and testing of embedded EFPI strain sensor for damage detection of smart composite beams

    Science.gov (United States)

    Sim, Lay M.; Zhou, Gang

    2005-04-01

    Designing a fiber optic sensor in the development of a real-time damage detection and evaluation system is important for providing reliable results. This paper describes the manufacturing and implementation of an Extrinsic Fabry-Perot Interferometer (EFPI) strain sensor for the non-destructive quantitative evaluation of carbon fiber reinforced composites. The EPFI strain sensors were examined for their integrity and performance. The integrity of the sensors was assessed experimentally by determining the bending strength of the glass tube, which was used in the fabrication of the sensor. Further validations on the survival of the sensors when embedded were also carried out with the application of the modified classical lamination theory (CLT). The sensor performance was examined extensively by either bonded on the surface or embedded in the tensile region of simple quasi-isotropic (QI) composite beams. These smart beams were loaded quasi-statically in three-point bend and cantilever loading The EFPI strain sensors have shown to surface a maximum tensile strain of up to 0.8%, which was adequate and reliable for strain measurements in the current system. The understanding of the EFPI strain sensors behaviour have paved way for the success in achieving a fiber optic strain sensor based damage detection and evaluation system (FODDAS).

  16. Smart concrete slabs with embedded tubular PZT transducers for damage detection

    Science.gov (United States)

    Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing

    2018-02-01

    The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.

  17. Embedded controller FORTH for the 8051 family

    CERN Document Server

    Payne, William H

    1990-01-01

    The purpose of this book is to present the technology requied to develop hardware and software for embedded controller systems at a fraction of the cost of traditional methods. Included in the book are hardware schematics of 8051 family development systems (single board and bussed 8051 microcontroller). Source code for both the 8086 and 805 family FORTH operating systems is published in the book. Binary images of the opeating systems can be generated from teh source code using the metacompiler also contained in the book. The book can be seen as a ""toolbox"" includingg all the necessary hardwa

  18. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian

    2012-01-01

    bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic......The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... flap and pitch allows to reduce the action (and hence the wear) on the pitch actuators, and still to achieve considerable load alleviation....

  19. Electron gun controlled smart structure

    Science.gov (United States)

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  20. The embedding convergence of smart cities and tourism internet of things in China: An advance perspective

    OpenAIRE

    Guo, Yang; Liu, Hongbo; Chai, Yi

    2014-01-01

    The smart city strategy is an inevitable trend in the future development of Chinese cities. The smart tourism city is an important part and a practical attempt of the smart city strategy. The China National Tourism Administration has officially announced "Beautiful China: 2014 Year of Smart Travel" as tourism theme. Thus, huge development opportunities are in store for the future of smart tourism. This strategy attempts to combine the Internet of Things (IoT) technology with the dev...

  1. Controllable Load Management Approaches in Smart Grids

    Directory of Open Access Journals (Sweden)

    Jingshuang Shen

    2015-10-01

    Full Text Available With rapid smart grid technology development, the customer can actively participate in demand-side management (DSM with the mutual information communication between the distributor operation company and the smart devices in real-time. Controllable load management not only has the advantage of peak shaving, load balance, frequency regulation, and voltage stability, but is also effective at providing fast balancing services to the renewable energy grid in the distributed power system. The load management faces an enormous challenge as the customer has a large number of both small residential loads and dispersed renewable sources. In this paper, various controllable load management approaches are discussed. The traditional controllable load approaches such as the end users’ controllable appliances, storage battery, Vehicle-to-Grid (V2G, and heat storage are reviewed. The “broad controllable loads” management, such as the microgrid, Virtual Power Plant (VPP, and the load aggregator are also presented. Furthermore, the load characteristics, control strategies, and control effectiveness are analyzed.

  2. Smart earphone: Controlling tasks by earphone in smart phone by ...

    African Journals Online (AJOL)

    ... earphone in the ears, on plugging out the speaker of the earphone in the ears. Using this technique Authors have implemented that a smart earphone system can be used to make the earphone from task oriented to multitasking by different gestures of the user. Keywords: Android app, ATMEGA 8, Capacitive touch Sensor, ...

  3. Smart earphone: Controlling tasks by earphone in smart phone by ...

    African Journals Online (AJOL)

    DR OKE

    1,2,3 Department of Electrical and Electronic Engineering, Galgotias College of Engineering and Technology, Greater Noida , INDIA ... android app can be made for android smart phone. Many apps are also ... If we use the two capacitive sensor earphone then user wants to pause ..... He is a student in the Department of.

  4. Modular control system for embedded applications

    Directory of Open Access Journals (Sweden)

    Dostálek Petr

    2016-01-01

    Full Text Available This paper deals with hardware design of a modular control system intended for embedded applications demanding high computational power while maintaining low cost. The control system central unit is based on 32bit microcontroller MK60DN512 with ARM Cortex-M4 core manufactured by NXP Semiconductor. Module provides all the necessary signals on the two 2-row 40 pin headers and Ethernet communication interface in the form of a small daughter board. It is connected to the mainboard which must always contain 5 V stabilized power supply; other circuits are application specific. In our application the mainboard is equipped with SD card slot, RS232 and RS485 interface which is used for high speed interconnection with up to 15 expansion peripheral modules. This concept enables high flexibility to specific application demands without necessity of redesigning the control system. Controller is freely programmable in C language using any compatible integrated development environment – NXP Kinetis Design Studio, for example. Software development and debugging is simplified by our support program libraries including necessary routines for control and monitoring tasks.

  5. Control of Complex Components with Smart Flexible Phased Arrays

    Science.gov (United States)

    Casula, O.; Poidevin, C.; Cattiaux, G.; Dumas, Ph.

    2006-03-01

    The inspection of piping in nuclear plants is mainly performed in contact with ultrasonic wedge transducers. During the scanning, the fixed shape of wedges cannot fit the irregular surfaces and complex geometries of components (butt weld, nozzle, elbow). The variable thickness of the coupling layer, between the wedge and the local surface, leads to beam distortions and losses of sensitivity. Previous studies have shown that these two phenomena contribute to reduce the inspection performances leading to shadow area, split beam. To improve such controls, a new concept of contact "Smart Flexible Phased Array" has been developed with the support of the French "Institut de Radioprotection et de Sûreté Nucléaire". The phased array is flexible to fit the complex profile and to minimize the thickness of the coupling layer. The independent piezoelectric elements composing the radiating surface are mechanically assembled in order to build an articulated structure. A profilometer, embedded in the transducer, measures the local surface distortion allowing to compute in real-time the optimized delay laws and compensating the distortions of 2D or 3D profiles. Those delay laws are transferred to the real-time UT acquisition system, which applies them to the piezoelectric elements. This self-adaptive process preserves, during the scanning, the features of the focused beam (orientation and focal depth) in the specimen. To validate the concept of the Smart Flexible Phased Array Transducer, two prototypes have been integrated to detect flaws machined in mock-ups with realistic irregular 2D and 3D shapes. Inspections have been carried out on samples showing the enhancement performances of the "Smart Flexible Phased Array" and validating the mechanical and acoustical behaviours of these probes.

  6. Embedded Based DC Motor Speed Control System

    Directory of Open Access Journals (Sweden)

    Chandrasekhar T.

    2010-10-01

    Full Text Available An embedded based DC motor speed control system using cygnal microcontroller (C8051F020 has been designed and developed. It is based on frequency domain technique. The principle is opto-coupler senses the speed of the motor in the form of TTL pulses, which is given to F/V (frequency to voltage converter. The output of the F/V converter voltage is fed to an inbuilt 12-bit ADC of cygnal microcontroller. The converted digital value applied in Liner equitation for converting back to frequency and speed is displayed on two lines LCD in RPM. Microcontroller is applied for PID control action to correct error in the form of voltage to the motor through built-in 12-bit D/A converter, PWM circuit, and actuator. The present study discusses the design, development, fabrication, and analysis of cygnal microcontroller based PID logic controller for DC motor speed control systems. Software is developed in ‘C’ language using Si-Lab IDE C-cross compiler. The paper deals with the hardware and software details.

  7. Microstructured optical fiber sensors embedded in a laminate composite for smart material applications.

    Science.gov (United States)

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures.

  8. Java simulations of embedded control systems.

    Science.gov (United States)

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  9. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms...... 2 provides linear dynamical models of Smart Grid units: Electric Vehicles, buildings with heat pumps, refrigeration systems, solar collectors, heat storage tanks, power plants, and wind farms. The models can be realized as discrete time state space models that fit into a predictive control system...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...

  10. Smart turbine control with remote wind sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, E.A. [Catch the Wind Inc., Manassas, VA (United States)

    2009-07-01

    Turbine controls use anemometers and wind vanes located behind the turbine blades on the nacelle. Anemometer/wind vane limitations include calibration and the fact that they are affected by disturbed flow and do not represent inflow to the turbine. This presentation discussed smart turbine control with remote wind sensing in an effort to address the industry's needs. The presentation provided a hypothesis that forward looking LIDAR enables improved pointing accuracy which can lead to improved aerodynamic efficiency; reduced asymmetrical loading on turbine components; and more power production. A test equipment vindicator and laser wind sensor was illustrated as a potential technology. A test site, installation, and turbine control logic were also presented along with preliminary results. It was concluded that LIDAR data can keep the turbine aligned with the wind. tabs., figs.

  11. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture...

  12. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.

    Science.gov (United States)

    Wang, Kevin I-Kai; Salcic, Zoran; Yeh, Johnny; Akagi, Jin; Zhu, Feng; Hall, Chris J; Crosier, Kathryn E; Crosier, Philip S; Wlodkowic, Donald

    2013-10-15

    Lab-on-a-Chip (LOC) biomicrofluidic technologies are rapidly emerging bioanalytical tools that can miniaturize and revolutionize in situ research on embryos of small vertebrate model organisms such as zebrafish (Danio rerio) and clawed African frog (Xenopus laevis). Despite considerable progress being made in fabrication techniques of chip-based devices, they usually still require excessive and manual actuation and data acquisition that significantly reduce throughput and introduce operator-related analytical bias. This work describes the development of a proof-of-concept embedded platform that integrates an innovative LOC zebrafish embryo array technology with an electronic interface to provide higher levels of laboratory automation for in situ biotests. The integrated platform was designed to perform automatic immobilization, culture and treatment of developing zebrafish embryos during fish embryo toxicity (FET) biotests. The system was equipped with a stepper motor driven stage, solenoid-actuated pinch valves, miniaturized peristaltic pumps as well as Peltier heating module. Furthermore, a Field Programmable Gate Array (FPGA) was used to implement an embedded hardware/software solution and interface to enable real-time control over embryo loading and immobilization; accurate microfluidic flow control; temperature stabilization and also automatic time-resolved image acquisition of developing zebrafish embryos. This work presents evidence that integration of embedded electronic interfaces with microfluidic chip-based technologies can bring the Lab-on-a-Chip a step closer to fully automated analytical systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Application of magnetostrictive smart materials in rotor servoflap control

    Science.gov (United States)

    Ghorayeb, Solomon R.; Hansen, Toby T.; Straub, Friedrich K.

    1995-05-01

    The main theme of this research project has been to analytically develop a proof-of-concept design to demonstrate the effectiveness of a smart material actuator employing ETREMA TERFENOL-DTM for helicopter rotor servoflap control. This design enables the control of the rotor blade flap with an actuator embedded in the blade itself. By moving the control to the rotor blades, the swashplate system could be eliminated. Requirements such as applied load and motions were the key issues that needed to be accounted for in order to achieve a successful design employing the `giant' magnetostrictive material. A series of loading conditions characterized by an additive process of Steady-State. Cyclic, and Active control functions were considered for Sustained flight. Optimization of the overall system gave rise to a system gain of 3.7 for Sustained motion. At this same optimal gain value, and using an ETREMA TERFENOL-DTM rod length of at least 22.7 inches, a net peak-to-peak displacement of as high as 42 mils (1.07 mm) was obtained.

  14. Smart energy control systems for sustainable buildings

    CERN Document Server

    Spataru, Catalina; Howlett, Robert; Jain, Lakhmi

    2017-01-01

    There is widespread interest in the way that smart energy control systems, such as assessment and monitoring techniques for low carbon, nearly-zero energy and net positive buildings can contribute to a Sustainable future, for current and future generations. There is a turning point on the horizon for the supply of energy from finite resources such as natural gas and oil become less reliable in economic terms and extraction become more challenging, and more unacceptable socially, such as adverse public reaction to ‘fracking’. Thus, in 2016 these challenges are having a major influence on the design, optimisation, performance measurements, operation and preservation of: buildings, neighbourhoods, cities, regions, countries and continents. The source and nature of energy, the security of supply and the equity of distribution, the environmental impact of its supply and utilization, are all crucial matters to be addressed by suppliers, consumers, governments, industry, academia, and financial institutions. Thi...

  15. Smart Automatic Newspaper Vending Machine Controller IC

    OpenAIRE

    Pandey Sumit; Pal Amrindra; Sharma Sandeep

    2017-01-01

    A machine,  used for  dispensing  items  like  snacks, beverages, lottery tickets,  etc  to customers automatically  meaning without manual intervention is referred to as a  Vending Machine.  Vending Machines  are  part of life in most of the major cities  in India and  across  the globe. The objective of this paper is design a  Smart  Automatic News Paper Vending Machine Controller IC.  The input to this machine is  currency  in Indian rupees and it delivers the product to  the costumer. Thi...

  16. Towards Efficient Fluid-Structure-Control Interaction for Smart Rotors

    NARCIS (Netherlands)

    Gillebaart, T.

    2016-01-01

    One of the solutions to speed up the energy transition is the smart rotor concept: wind turbine blades with actively controlled Trailing Edge Flaps. In the past decade feasibility studies (both numerical and experimental) have been performed to assess the applicability of smart rotors in future

  17. Control of Smart Building Using Advanced SCADA

    Science.gov (United States)

    Samuel, Vivin Thomas

    For complete control of the building, a proper SCADA implementation and the optimization strategy has to be build. For better communication and efficiency a proper channel between the Communication protocol and SCADA has to be designed. This paper concentrate mainly between the communication protocol, and the SCADA implementation, for a better optimization and energy savings is derived to large scale industrial buildings. The communication channel used in order to completely control the building remotely from a distant place. For an efficient result we consider the temperature values and the power ratings of the equipment so that while controlling the equipment, we are setting a threshold values for FDD technique implementation. Building management system became a vital source for any building to maintain it and for safety purpose. Smart buildings, refers to various distinct features, where the complete automation system, office building controls, data center controls. ELC's are used to communicate the load values of the building to the remote server from a far location with the help of an Ethernet communication channel. Based on the demand fluctuation and the peak voltage, the loads operate differently increasing the consumption rate thus results in the increase in the annual consumption bill. In modern days, saving energy and reducing the consumption bill is most essential for any building for a better and long operation. The equipment - monitored regularly and optimization strategy is implemented for cost reduction automation system. Thus results in the reduction of annual cost reduction and load lifetime increase.

  18. How should grid operators govern smart grid innovation projects? An embedded case study approach

    NARCIS (Netherlands)

    de Reuver, G.A.; van der Lei, T.E.; Lukszo, Z.

    2016-01-01

    Grid operators increasingly have to collaborate with other actors in order to realize smart grid innovations. For routine maintenance, grid operators typically acquire technologies in one-off transactions, but the innovative nature of smart grid projects may require more collaborate

  19. Modeling and Deployment of Model-Based Decentralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function

    Directory of Open Access Journals (Sweden)

    Othman Nasri

    2012-01-01

    Full Text Available The deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK system with a decentralized architecture is presented. The SDK system is an advanced Adaptive Cruise Control (ACC system implemented in a Renault-Volvo Trucks vehicle to increase safety by overcoming some ACC limitations. One of the main differences between this new system and the classical ACC is the choice of the safe distance. This latter is the distance between the vehicle equipped with the ACC or the SDK system and the obstacle-in-front (which may be another vehicle. It is supposed fixed in the case of the ACC, while variable in the case of the SDK. The variation of this distance depends essentially on the relative velocity between the vehicle and the obstacle-in-front. The main goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize, and to identify some faults that may occur. Our main contribution is the proposition of a decentralized approach permitting to carry out an on-line diagnosis without computing the global model and to achieve most of the work locally avoiding huge extra diagnostic information traffic between components. After a detailed description of the SDK system, this paper explains the model-based decentralized solution and its application to the embedded diagnosis of the SDK system inside Renault-Volvo Truck with five control units connected via a CAN-bus using “Hardware in the Loop” (HIL technique. We also discuss the constraints that must be fulfilled.

  20. A novel intelligent control of HVAC system in smart microgrid

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Hakimi

    2017-09-01

    Full Text Available Heating systems have played an important role in building energy and comfort management. This paper set forth a novel intelligent residential heating system controller that has smart grid functionality. In smart grid, demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on an availability of renewable energy and welfare of customers. In this paper one possible implementation of an active controller will be examined. An active controller operates by responding to a combination of internal set points and external signal from local control entity. The optimization objective of the heating systems management was to minimize the cost of smart microgrid, minimize the size of smart microgrid units, minimize import energy from distribution grid and maximize reliability of smart microgrid. This means that, smart heating system and renewable energy can work well together and their individual benefits can be added together when used in combination. Simulation studies are used to demonstrate the capability on the proposed heating system controller on the planning of a smart microgrid system.

  1. Mobile monitoring and embedded control system for factory environment

    National Research Council Canada - National Science Library

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    .... The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller...

  2. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  3. Smart Grid Research: Control Systems - IEEE Vision for Smart Grid Controls

    DEFF Research Database (Denmark)

    Aho, Jacob; Arnold, George; Buckspan, Andrew

    are encapsulated in several loci of control including: new methodologies for transmission, distribution, and renewable energy, and storage; new roles in emerging topics such as electricity markets, demand-response, microgrids, and virtual power plants; and new solutions for efficiency, heating and cooling...... implication on grid architectures have been articulated in various papers, a comprehensive discourse on the evolution of Smart Grid and the opportunities and challenges that it presents for control, ranging from generators to consumers, from planning to real-time operation, from current practice to scenarios...

  4. Design Support and Tooling for Dependable Embedded Control Systems

    NARCIS (Netherlands)

    Broenink, Johannes F.; Larsen, P.G; Verhoef, M.; Kleijn, C.; Kleijn, C.; Jovanovic, D.S.; Pierce, K.; Wouters, F.; Fitzgerald, J.S.

    2010-01-01

    The efficient design of resilient embedded systems is hampered by the separation of engineering disciplines in current development approaches. We describe a new project entitled “Design Support and Tooling for Embedded Control Software‿ (DESTECS), which aims to develop a methodology and open tools

  5. Security Challenges in Smart-Grid Metering and Control Systems

    Directory of Open Access Journals (Sweden)

    Xinxin Fan

    2013-07-01

    Full Text Available The smart grid is a next-generation power system that is increasingly attracting the attention of government, industry, and academia. It is an upgraded electricity network that depends on two-way digital communications between supplier and consumer that in turn give support to intelligent metering and monitoring systems. Considering that energy utilities play an increasingly important role in our daily life, smart-grid technology introduces new security challenges that must be addressed. Deploying a smart grid without adequate security might result in serious consequences such as grid instability, utility fraud, and loss of user information and energy-consumption data. Due to the heterogeneous communication architecture of smart grids, it is quite a challenge to design sophisticated and robust security mechanisms that can be easily deployed to protect communications among different layers of the smart grid-infrastructure. In this article, we focus on the communication-security aspect of a smart-grid metering and control system from the perspective of cryptographic techniques, and we discuss different mechanisms to enhance cybersecurity of the emerging smart grid. We aim to provide a comprehensive vulnerability analysis as well as novel insights on the cybersecurity of a smart grid.

  6. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  7. Smart Home: Controlling and Monitoring Households Appliances Using Gsm Network

    National Research Council Canada - National Science Library

    Budi Rahmadya; Fahrul Ghazi; Derisma

    2016-01-01

    This study discussed about using the smart home automation systems for household appliances such as lights and fans, by utilizing the GSM network as a communication medium to control and monitor the household appliances...

  8. Overload Control in Smart Transformer-Fed Grid

    Directory of Open Access Journals (Sweden)

    Giovanni De Carne

    2017-02-01

    Full Text Available Renewable energy resources and new loads—such as electric vehicles—challenge grid management. Among several scenarios, the smart transformer represents a solution for simultaneously managing low- and medium-voltage grids, providing ancillary services to the distribution grid. However, unlike conventional transformers, the smart transformer has a very limited overload capability, because the junction temperature—which must always be below its maximum limit—is characterized by a short time constant. In this work, an overload control for smart transformer by means of voltage and frequency variations has been proposed and verified by means of simulations and experiments.

  9. Feasibility of BCI Control in a Realistic Smart Home Environment

    Directory of Open Access Journals (Sweden)

    Nataliya Kosmyna

    2016-08-01

    Full Text Available Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI and apply it in the Domus smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time, usability and feasibility (USE questionnaire on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%.

  10. Feasibility of BCI Control in a Realistic Smart Home Environment

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the “Domus”1 smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%). PMID:27616986

  11. Feasibility of BCI Control in a Realistic Smart Home Environment.

    Science.gov (United States)

    Kosmyna, Nataliya; Tarpin-Bernard, Franck; Bonnefond, Nicolas; Rivet, Bertrand

    2016-01-01

    Smart homes have been an active area of research, however despite considerable investment, they are not yet a reality for end-users. Moreover, there are still accessibility challenges for the elderly or the disabled, two of the main potential targets for home automation. In this exploratory study we design a control mechanism for smart homes based on Brain Computer Interfaces (BCI) and apply it in the "Domus" smart home platform in order to evaluate the potential interest of users about BCIs at home. We enable users to control lighting, a TV set, a coffee machine and the shutters of the smart home. We evaluate the performance (accuracy, interaction time), usability and feasibility (USE questionnaire) on 12 healthy subjects and 2 disabled subjects. We find that healthy subjects achieve 77% task accuracy. However, disabled subjects achieved a better accuracy (81% compared to 77%).

  12. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So...... regarding their power/energy consumptions in the future smart grids. Moreover, the developed model is validated by real data collected from a supermarket in Denmark. The utilization of the produced model is also illustrated by a simple simulation example....

  13. Hospital automation system RFID-based: technology embedded in smart devices (cards, tags and bracelets).

    Science.gov (United States)

    Florentino, Gustavo H P; Paz de Araujo, Carlos A; Bezerra, Heitor U; Junior, Helio B A; Xavier, Marcelo Araujo; de Souza, Vinicius S V; de M Valentim, Ricardo A A; Morais, Antonio H F; Guerreiro, Ana M G; Brandao, Glaucio B

    2008-01-01

    RFID is a technology being adopted in many business fields, especially in the medical field. This work has the objective to present a system for automation of a hospital clinical analysis laboratory. This system initially uses contactless smart cards to store patient's data and for authentication of hospital employees in the system. The proposed system also uses RFID tags stuck to containers containing patient's collected samples for the correct identification of the patient who gave away the samples. This work depicts a hospital laboratory workflow, presents the system modeling and deals with security matters related to information stored in the smart cards.

  14. Piezoelectric actuators control applications of smart materials

    CERN Document Server

    Choi, Seung-Bok

    2010-01-01

    Newer classes of smart materials are beginning to display the capacity for self-repair, self-diagnosis, self-multiplication, and self-degradation. While there are other candidates, piezoelectric actuators and sensors are proving to be the best choice. This title details the authors' research and development in this area.

  15. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  16. Hierarchical Control Architecture for Demand Response in Smart Grid Scenario

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    , a number of issues, including DR enabling technologies, control strategy, and control architecture, are still under discussion. This paper outlines novel control requirements based on the categorization of existing DR techniques. More specifically, the roles and responsibilities of smart grid actors...... effective tool for optimum asset utilization and to avoid or delay the need for new infrastructure investment. Furthermore, most of the power networks are under the process of reconfiguration to realize the concept of smart grid and are at the transforming stage to support various forms of DR. However...

  17. Embedded Fuzzy Controller for Industrial Applications

    OpenAIRE

    Ferenc Farkas; Sándor Halász

    2006-01-01

    The concept of the fuzzy logic makes feasible the creation of fuzzy controllerswith low cost 16 bit microcontroller having the same performance as of controllers realizedwith more expensive Digital Signal Processor (DSP). In this article the implementation ofsuch a fuzzy controller is proposed for 16 bit microcontroller with fast fuzzyficationinference-defuzzyfication algorithm. Because the microcontroller receives information fromthe process via Analog-Digital Converter(s) and controls the p...

  18. MICROPROCESSOR CONTROLLED FOR SMART DISTRI ESSOR ...

    African Journals Online (AJOL)

    eobe

    in the vision of a Smart Grid. energy has become so important that insufficient power available for .... of resistor R1 and Rv1. For a full wave bridge rectifier, average value o voltage is. Vdc = 0.636 (Vm – 2VD) [9] ... bits inbuilt analog to digital converter (ADC) [12] signal from the voltage monitor is applied to the input of the ...

  19. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  20. Temperature controlling system using embedded equipment

    Science.gov (United States)

    Rob, R.; Tirian, G. O.; Panoiu, C.

    2017-01-01

    Present paper describes the functionality of a temperature controlling system using PIC 18F45K22 microcontroller. The ambient temperature is acquired with LM35 analogue sensor. The microcontroller program is realized with MikroC compiler and it is able to control the speed of a cooling fan with dc motor. The speed can be increased in functioning with the increasing of the ambient temperature.

  1. Economic Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    Model Predictive Control (MPC) can be used to control the energy distribution in a Smart Grid with a high share of stochastic energy production from renewable energy sources like wind. Heat pumps for heating residential buildings can exploit the slow heat dynamics of a building to store heat...

  2. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...

  3. Smart — STATCOM control strategy implementation in wind power plants

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Christian; Cantarellas, Antoni Mir; Miranda, H.

    2012-01-01

    converters is increasing. This paper deals with an advanced control strategy design of a three-level converter performing STATCOM and Active Filter functionalities. The proposed system is called Smart-STATCOM since it has the capability of self-controlling reactive power and harmonic voltages at the same...

  4. Endoluminal dilatation for embedded hemodialysis catheters: A case-control study of factors associated with embedding and clinical outcomes.

    Directory of Open Access Journals (Sweden)

    Hari Talreja

    Full Text Available With the increasing frequency of tunneled hemodialysis catheter use there is a parallel increase in the need for removal and/or exchange. A small but significant minority of catheters become embedded or 'stuck' and cannot be removed by traditional means. Management of embedded catheters involves cutting the catheter, burying the retained fragment with a subsequent increased risk of infections and thrombosis. Endoluminal dilatation may provide a potential safe and effective technique for removing embedded catheters, however, to date, there is a paucity of data.1 To determine factors associated with catheters becoming embedded and 2 to determine outcomes associated with endoluminal dilatation.All patients with endoluminal dilatation for embedded catheters at our institution since Jan. 2010 were included. Patients who had an embedded catheter were matched 1:3 with patients with uncomplicated catheter removal. Baseline patient and catheter characteristics were compared. Outcomes included procedural success and procedure-related infection. Logistic regression models were used to determine factors associated with embedded catheters.We matched 15 cases of embedded tunneled catheters with 45 controls. Among patients with embedded catheters, there were no complications with endoluminal dilatation. Factors independently associated with embedded catheters included catheter dwell time (> 2 years and history of central venous stenosis.Embedded catheters can be successfully managed by endoluminal dilatation with minimal complications and factors associated with embedding include dwell times > 2 years and/or with a history of central venous stenosis.

  5. Instrumentation control using the Rabbit 2000 embedded microcontroller

    Science.gov (United States)

    Schofield, Ian S.; Naylor, David A.

    2004-09-01

    Embedded microcontroller modules offer many advantages over the standard PC such as low cost, small size, low power consumption, direct access to hardware, and if available, access to an efficient preemptive real-time multitasking kernel. Typical difficulties associated with an embedded solution include long development times, limited memory resources, and restricted memory management capabilities. This paper presents a case study on the successes and challenges in developing a control system for a remotely controlled, Alt-Az steerable, water vapour detector using the Rabbit 2000 family of 8-bit microcontroller modules in conjunction with the MicroC/OS-II multitasking real-time kernel.

  6. Embedding human annoyance rate models in wireless smart sensors for assessing the influence of subway train-induced ambient vibration

    Science.gov (United States)

    Sun, Ke; Zhang, Wei; Ding, Huaping; Kim, Robin E.; Spencer, Billie F., Jr.

    2016-10-01

    The operation of subway trains induces ambient vibrations, which may cause annoyance and other adverse effects on humans, eventually leading to physical, physiological, and psychological problems. In this paper, the human annoyance rate (HAR) models, used to assess the human comfort under the subway train-induced ambient vibrations, were deduced and the calibration curves for 5 typical use circumstances were addressed. An autonomous measurement system, based on the Imote2, wireless smart sensor (WSS) platform, plus the SHM-H, high-sensitivity accelerometer board, was developed for the HAR assessment. The calibration curves were digitized and embedded in the computational core of the WSS unit. Experimental validation was conducted, using the developed system on a large underground reinforced concrete frame structure adjoining the subway station. The ambient acceleration of both basement floors was measured; the embedded computation was implemented and the HAR assessment results were wirelessly transmitted to the central server, all by the WSS unit. The HAR distributions of the testing areas were identified, and the extent to which both basements will be influenced by the close-up subway-train’s operation, in term of the 5 typical use circumstances, were quantitatively assessed. The potential of the WSS-based autonomous system for the fast environment impact assessment of the subway train-induced ambient vibration was well demonstrated.

  7. Component-based analysis of embedded control applications

    DEFF Research Database (Denmark)

    Angelov, Christo K.; Guan, Wei; Marian, Nicolae

    2011-01-01

    instances of reusable, executable components—function blocks (FBs). System actors operate in accordance with a timed multitasking model of computation, whereby I/O signals are exchanged with the controlled plant at precisely specified time instants, resulting in the elimination of I/O jitter. The paper......The widespread use of embedded systems requires the creation of industrial software technology that will make it possible to engineer systems being correct by construction. That can be achieved through the use of validated (trusted) components, verification of design models, and automatic...... configuration of applications from validated design models and trusted components. This design philosophy has been instrumental for developing COMDES—a component-based framework for distributed embedded control systems. A COMDES application is conceived as a network of embedded actors that are configured from...

  8. Power Admission Control with Predictive Thermal Management in Smart Buildings

    DEFF Research Database (Denmark)

    Yao, Jianguo; Costanzo, Giuseppe Tommaso; Zhu, Guchuan

    2015-01-01

    This paper presents a control scheme for thermal management in smart buildings based on predictive power admission control. This approach combines model predictive control with budget-schedulability analysis in order to reduce peak power consumption as well as ensure thermal comfort. First...... appliances. The performance of the proposed control scheme is assessed by simulation based on the thermal dynamics of a real eight-room office building located at Danish Technical University....

  9. Google Home: smart speaker as environmental control unit.

    Science.gov (United States)

    Noda, Kenichiro

    2017-08-23

    Environmental Control Units (ECU) are devices or a system that allows a person to control appliances in their home or work environment. Such system can be utilized by clients with physical and/or functional disability to enhance their ability to control their environment, to promote independence and improve their quality of life. Over the last several years, there have been an emergence of several inexpensive, commercially-available, voice activated smart speakers into the market such as Google Home and Amazon Echo. These smart speakers are equipped with far field microphone that supports voice recognition, and allows for complete hand-free operation for various purposes, including for playing music, for information retrieval, and most importantly, for environmental control. Clients with disability could utilize these features to turn the unit into a simple ECU that is completely voice activated and wirelessly connected to appliances. Smart speakers, with their ease of setup, low cost and versatility, may be a more affordable and accessible alternative to the traditional ECU. Implications for Rehabilitation Environmental Control Units (ECU) enable independence for physically and functionally disabled clients, and reduce burden and frequency of demands on carers. Traditional ECU can be costly and may require clients to learn specialized skills to use. Smart speakers have the potential to be used as a new-age ECU by overcoming these barriers, and can be used by a wider range of clients.

  10. Control and Optimization Methods for Electric Smart Grids

    CERN Document Server

    Ilić, Marija

    2012-01-01

    Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...

  11. Smart synthetic material arresting cable based on embedded distributed fiber optic sensors

    Science.gov (United States)

    Mendoza, Edgar; Prohaska, John; Kempen, Cornelia; Bentley, Douglas; Murdock, Chad; Piatkowski, David; White, Lonnie

    2007-07-01

    Redondo Optics Inc. in collaboration with the Cortland Cable Company and the US. Navy under a Navy sponsored SBIR program is in the process of developing an embedded distributed fiber optic sensor (EDIFOS TM) system for the real-time, structural health monitoring, damage assessment, and lifetime prediction of full scale synthetic material arresting gear cables. The EDIFOS TM system uses a distributed array of fiber Bragg grating sensors, sensitive to stress/strain, impact damage, kinking and bending, and temperature, embedded within the strands of a synthetic material arresting cable structure. Fiber Bragg grating sensors are a mature technology typically used for the in-situ structural health monitoring of advanced structures. The periodic grating produces an optical, wavelength-encoded signal whose properties are dependent on the structural, and mechanical environment of the sensor fiber. The FBG sensor interrogation system monitors the status of each of the individual FBG sensors distributed along the embedded sensor fibers and transforms this information in real-time in to a graphical display of the stress/strain and temperature state of the entire arresting gear cable. An alarm system triggers to pinpoint those locations of potential damage.

  12. Smart building temperature control using occupant feedback

    Science.gov (United States)

    Gupta, Santosh K.

    This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as

  13. Detection of Component Failures for Smart Structure Control Systems

    Science.gov (United States)

    Okubo, Hiroshi

    Uncertainties in the dynamics model of a smart structure are often of significance due to model errors caused by parameter identification errors and reduced-order modeling of the system. Design of a model-based Failure Detection and Isolation (FDI) system for smart structures, therefore, needs careful consideration regarding robustness with respect to such model uncertainties. In this paper, we proposes a new method of robust fault detection that is insensitive to the disturbances caused by unknown modeling errors while it is highly sensitive to the component failures. The capability of the robust detection algorithm is examined for the sensor failure of a flexible smart beam control system. It is shown by numerical simulations that the proposed method suppresses the disturbances due to model errors and markedly improves the detection performance.

  14. Communication, control and security challenges for the smart grid

    CERN Document Server

    Muyeen, SM

    2017-01-01

    The Smart Grid is a modern electricity grid allowing for distributed, renewable intermittent generation, partly owned by consumers. This requires advanced control and communication technologies in order to provide high quality power supply and secure generation, transmission and distribution. This book outlines these emerging technologies.

  15. Acoustic Echo Cancellation Embedded in Smart Transcoding Algorithm between 3GPP AMR-NB Modes

    Directory of Open Access Journals (Sweden)

    Emmanuel Rossignol Thepie Fapi

    2010-01-01

    Full Text Available Acoustic Echo Cancellation (AEC is a necessary feature for mobile devices when the acoustic coupling between the microphone and the loudspeaker affects the communication quality and intelligibility. When implemented inside the network, decoding is required to access the corrupted signal. The AEC performance is strongly degraded by nonlinearity introduced by speech codecs. The Echo Return Loss Enhancement (ERLE can be less than 10 dB for low bit rate speech codecs. We propose in this paper a coded domain AEC integrated in a smart transcoding strategy which directly modifies the Code Excited Linear Prediction (CELP parameters. The proposed system addresses simultaneously problems due to network interoperability and network voice quality enhancement. The ERLE performance of this new approach during transcoding between Adaptive Multirate-NarrowBand (AMR-NB modes is above 45 dB as required in Global System for Mobile Communications (GSM specifications.

  16. Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2013-01-01

    Full Text Available The application of (smart cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR and the red channel optical frequency band. Two aligned charge coupled device (CCD chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.

  17. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems.

    Science.gov (United States)

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-24

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.

  18. Predictive Smart Grid Control with Exact Aggregated Power Constraints

    DEFF Research Database (Denmark)

    Trangbæk, K; Petersen, Mette Højgaard; Bendtsen, Jan Dimon

    2012-01-01

    This chapter deals with hierarchical model predictive control (MPC) of smart grid systems. The design consists of a high-level MPC controller, a second level of so-called aggregators,which reduces the computational and communication related load on the high-level control, and a lower level...... of autonomous consumers. The control system is tasked with balancing electric power production and consumption within the smart grid, and makes active use of the flexibility of a large number of power producing and/or power consuming units. The load variations on the grid arise on one hand from varying...... constraints on the optimisation taking place at the higher levels of the control system. This chapter presents a novel method for computing the aggregated constraints without approximation, yielding better utilisation of the units when the load variations are large. The method is demonstrated through...

  19. REALIZATION OF A CUSTOM DESIGNED FPGA BASED EMBEDDED CONTROLLER.

    Energy Technology Data Exchange (ETDEWEB)

    SEVERINO,F.; HARVEY, M.; HAYES, T.; HOFF, L.; ODDO, P.; SMITH, K.S.

    2007-10-15

    As part of the Low Level RF (LLRF) upgrade project at Brookhaven National Laboratory's Collider-Accelerator Department (BNL C-AD), we have recently developed and tested a prototype high performance embedded controller. This controller is a custom designed PMC module employing a Xilinx V4FX60 FPGA with a PowerPC405 embedded processor, and a wide variety of on board peripherals (DDR2 SDRAM, FLASH, Ethernet, PCI, multi-gigabit serial transceivers, etc.). The controller is capable of running either an embedded version of LINUX or VxWorks, the standard operating system for RHIC front end computers (FECs). We have successfully demonstrated functionality of this controller as a standard RHIC FEC and tested all on board peripherals. We now have the ability to develop complex, custom digital controllers within the framework of the standard RHIC control system infrastructure. This paper will describe various aspects of this development effort, including the basic hardware, functional capabilities, the development environment, kernel and system integration, and plans for further development.

  20. Remote Voltage Control Using the Holomorphic Embedding Load Flow Method

    DEFF Research Database (Denmark)

    Liu, Chengxi; Qin, Nan; Sun, Kai

    2018-01-01

    This paper proposes a new remote voltage control approach based on the non-iterative holomorphic embedding load flow method (HELM). A participation factor matrix is applied together with the HELM to distribute reactive power injections among multiple remote reactive power resources such that the ......This paper proposes a new remote voltage control approach based on the non-iterative holomorphic embedding load flow method (HELM). A participation factor matrix is applied together with the HELM to distribute reactive power injections among multiple remote reactive power resources...... such that the approach can remotely control the voltage magnitudes of desired buses. The proposed approach is compared with a conventional Newton-Raphson approach by study cases on the IEEE New England 39-bus system. The results show that the proposed approach achieves a larger convergence region....

  1. Smart structures: modeling, analysis, and control with different strategies

    Science.gov (United States)

    Ghareeb, Nader; Gaith, Mohamed; Soleimani, Sayed

    2017-04-01

    Weight optimization of structures can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, different linear controllers are implemented and its ability to attenuate the vibration due to the first Eigen frequency is demonstrated.

  2. Fuzzy Modal Control Applied to Smart Composite Structure

    Science.gov (United States)

    Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.

    2015-07-01

    This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.

  3. Embedded Processor Based Automatic Temperature Control of VLSI Chips

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2009-01-01

    Full Text Available This paper presents embedded processor based automatic temperature control of VLSI chips, using temperature sensor LM35 and ARM processor LPC2378. Due to the very high packing density, VLSI chips get heated very soon and if not cooled properly, the performance is very much affected. In the present work, the sensor which is kept very near proximity to the IC will sense the temperature and the speed of the fan arranged near to the IC is controlled based on the PWM signal generated by the ARM processor. A buzzer is also provided with the hardware, to indicate either the failure of the fan or overheating of the IC. The entire process is achieved by developing a suitable embedded C program.

  4. External Verification of SCADA System Embedded Controller Firmware

    Science.gov (United States)

    2012-03-01

    implementing different firmware. Because PLCs are in effect a microprocessor device, an analysis of the current research on embedded devices is important...Controllers. Newnes, Woburn, MA, 2nd edition, 2000. [12] John Crisp. Introduction to microprocessors and microcontrollers . Amsterdam; Elsevier/Newnes, 2004. [13...prevention and response is unavailing as the operating parameters associated with SCADA systems are different from information technology systems. The unique

  5. Task-role-based Access Control Model in Smart Health-care System

    OpenAIRE

    Wang Peng; Jiang Lingyun

    2015-01-01

    As the development of computer science and smart health-care technology, there is a trend for patients to enjoy medical care at home. Taking enormous users in the Smart Health-care System into consideration, access control is an important issue. Traditional access control models, discretionary access control, mandatory access control, and role-based access control, do not properly reflect the characteristics of Smart Health-care System. This paper proposes an advanced access control model for...

  6. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  7. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Science.gov (United States)

    Farajpour, A.; Rastgoo, A.; Mohammadi, M.

    2017-03-01

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  8. Embedded model control GNC for the Next Generation Gravity Mission

    Science.gov (United States)

    Colangelo, Luigi; Massotti, Luca; Canuto, Enrico; Novara, Carlo

    2017-11-01

    A Next Generation Gravity Mission (NGGM) concept for measuring the Earth's variable gravity field has been recently proposed by ESA. The mission objective consists in measuring the temporal variations of the Earth gravity field over a long-time span, with very high spatial and temporal resolutions. This paper focuses on the guidance, navigation and control (GNC) design for the science phase of the NGGM mission. NGGM will consist of a two-satellite long-distance formation like GRACE, where each satellite will be controlled to be drag-free like GOCE. Satellite-to-satellite distance variations, encoding gravity anomalies, will be measured by laser interferometry. The formation satellites, distant up to 200 km, will fly in a quasi-polar orbit at an Earth altitude between 300 and 450 km. Orbit and formation control counteract bias and drift of the residual drag-free accelerations, in order to reach orbit/formation long-term stability. Drag-free control allows the formation to fly counteracting the atmospheric drag, ideally subject only to gravity. Orbit and formation control, designed through the innovative Integrated Formation Control (IFC), have been integrated into a unique control system, aiming at stabilizing the formation triangle consisting of satellites and Earth Center of Masses. In addition, both spacecraft must align their control axis to the satellite-to-satellite line (SSL) with micro-radian accuracy. This is made possible by specific optical sensors and the inter-satellite laser interferometer, capable of materializing the SSL. Such sensors allow each satellite to pursue an autonomous alignment after a suitable acquisition procedure. Pointing control is severely constrained by the angular drag-free control, which must ideally zero the angular acceleration vector, in the science frequency band. The control unit has been designed according to the Embedded Model Control methodology and is organized in a hierarchical way, where the drag-free control plays the

  9. Smart indoor climate control in precision livestock farming

    DEFF Research Database (Denmark)

    Zhang, Guoqiang; Bjerg, Bjarne Schmidt; Wang, Xiaoshuai

    2016-01-01

    One of the major objectives of precision livestock farming (PLF) is to provide an optimal thermal climate control in the animal occupant zones for promoting animal production and wellbeing. To achieve this goal, smart climate models that reflect the needs of different animal species and ages...... or feasible sensor techniques that can measure animal felt thermal environment are essential. Ideally, such a model should be able to integrate the effects of air temperature, humidity, air speed (including turbulence) and thermal radiation on animal thermal comfort/wellbeing, and consequently, animal...... condition in AOZ. In addition, the paper presents a fundamental principle of development of an integrated indoor climate sensor to reflect animal thermal wellbeing and techniques that could be used for a smart system design and control are discussed....

  10. Topology optimization of embedded piezoelectric actuators considering control spillover effects

    Science.gov (United States)

    Gonçalves, Juliano F.; De Leon, Daniel M.; Perondi, Eduardo A.

    2017-02-01

    This article addresses the problem of active structural vibration control by means of embedded piezoelectric actuators. The topology optimization method using the solid isotropic material with penalization (SIMP) approach is employed in this work to find the optimum design of actuators taken into account the control spillover effects. A coupled finite element model of the structure is derived assuming a two-phase material and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The undesirable effects of the feedback control on the residual modes are limited by including a spillover constraint term containing the residual controllability Gramian eigenvalues. The optimization of the shape and placement of the conventionally embedded piezoelectric actuators are performed using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the additional constraint.

  11. Optimal design of distributed control and embedded systems

    CERN Document Server

    Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian

    2014-01-01

    Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated  communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render  this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...

  12. Distributed Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vandenberghe, Lieven; Poulsen, Niels Kjølstad

    2016-01-01

    Integration of a large number of flexible consumers in a smart grid requires a scalable power balancing strategy. We formulate the control problem as an optimization problem to be solved repeatedly by the aggregator in a model predictive control framework. To solve the large-scale control problem....... The total power consumption is controlled through a negotiation procedure between all cooperating units and an aggregator that coordinates the overall objective. For large-scale systems, this method is faster than solving the original problem and can be distributed to include an arbitrary number of units...

  13. Smart Rehabilitation Devices: Part I – Force Tracking Control

    Science.gov (United States)

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle. PMID:18504509

  14. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    OpenAIRE

    Shafiei, Seyed Ehsan; Rasmussen, Henrik,; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So, this approach is extendable to different configurations with different modules. The focus of the work is on estimating the power consumption of the system while estimating the display case temperatures as ...

  15. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser

    2011-04-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  16. Embedded Control System Design A Model Based Approach

    CERN Document Server

    Forrai, Alexandru

    2013-01-01

    Control system design is a challenging task for practicing engineers. It requires knowledge of different engineering fields, a good understanding of technical specifications and good communication skills. The current book introduces the reader into practical control system design, bridging  the gap between theory and practice.  The control design techniques presented in the book are all model based., considering the needs and possibilities of practicing engineers. Classical control design techniques are reviewed and methods are presented how to verify the robustness of the design. It is how the designed control algorithm can be implemented in real-time and tested, fulfilling different safety requirements. Good design practices and the systematic software development process are emphasized in the book according to the generic standard IEC61508. The book is mainly addressed to practicing control and embedded software engineers - working in research and development – as well as graduate students who are face...

  17. Model predictive control of smart microgrids

    DEFF Research Database (Denmark)

    Hu, Jiefeng; Zhu, Jianguo; Guerrero, Josep M.

    2014-01-01

    required to realise high-performance of distributed generations and will realise innovative control techniques utilising model predictive control (MPC) to assist in coordinating the plethora of generation and load combinations, thus enable the effective exploitation of the clean renewable energy sources...

  18. Adaptive Proactive Inhibitory Control for Embedded Real-time Applications

    Directory of Open Access Journals (Sweden)

    Shufan eYang

    2012-06-01

    Full Text Available Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real time while achieving behavioural performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control.

  19. Ubiquitous Wireless Smart Sensing and Control

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  20. The Design and Control of Smart Structures

    National Research Council Canada - National Science Library

    Brockett, Roger

    2004-01-01

    ... optical switch based on the control of a fluid interface. More than 60 students at undergraduate, graduate and postdoctoral levels were supported under this project and over 160 papers have appeared acknowledging support from the grant.

  1. Siemens: Smart Technologies for Large Control Systems

    CERN Multimedia

    CERN. Geneva; BAKANY, Elisabeth

    2015-01-01

    The CERN Large Hadron Collider (LHC) is known to be one of the most complex scientific machines ever built by mankind. Its correct functioning relies on the integration of a multitude of interdependent industrial control systems, which provide different and essential services to run and protect the accelerators and experiments. These systems have to deal with several millions of data points (e.g. sensors, actuators, configuration parameters, etc…) which need to be acquired, processed, archived and analysed. Since more than 20 years, CERN and Siemens have developed a strong collaboration to deal with the challenges for these large systems. The presentation will cover the current work on the SCADA (Supervisory Control and Data Acquisition) systems and Data Analytics Frameworks.

  2. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  3. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  4. Efficient Smart CMOS Camera Based on FPGAs Oriented to Embedded Image Processing

    Directory of Open Access Journals (Sweden)

    Ignacio Bravo

    2011-02-01

    Full Text Available This article describes an image processing system based on an intelligent ad-hoc camera, whose two principle elements are a high speed 1.2 megapixel Complementary Metal Oxide Semiconductor (CMOS sensor and a Field Programmable Gate Array (FPGA. The latter is used to control the various sensor parameter configurations and, where desired, to receive and process the images captured by the CMOS sensor. The flexibility and versatility offered by the new FPGA families makes it possible to incorporate microprocessors into these reconfigurable devices, and these are normally used for highly sequential tasks unsuitable for parallelization in hardware. For the present study, we used a Xilinx XC4VFX12 FPGA, which contains an internal Power PC (PPC microprocessor. In turn, this contains a standalone system which manages the FPGA image processing hardware and endows the system with multiple software options for processing the images captured by the CMOS sensor. The system also incorporates an Ethernet channel for sending processed and unprocessed images from the FPGA to a remote node. Consequently, it is possible to visualize and configure system operation and captured and/or processed images remotely.

  5. EEG Mind Controlled Smart Prosthetic Arm – A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Taha Beyrouthy

    2017-06-01

    Full Text Available Recently, the field of prosthetics has seen many accomplishments especially with the integration of technological advancements. In this paper, different arm types (robotic, surgical, bionic, prosthetic and static are analyzed in terms of resistance, usage, flexibility, cost and potential. Most of these techniques have some problems; they are extremely expensive, hard to install and maintain and may require surgery. Therefore, our work introduces the initial design of an EEG mind controlled smart prosthetic arm. The arm is controlled by the brain commands, obtained from an electroencephalography (EEG headset, and equipped with a network of smart sensors and actuators that give the patient intelligent feedback about the surrounding environment and the object in contact. This network provides the arm with normal hand functionality, smart reflexes and smooth movements. Various types of sensors are used including temperature, pressure, ultrasonic proximity sensors, accelerometers, potentiometers, strain gauges and gyroscopes. The arm is completely 3D printed built from various lightweight and high strength materials that can handle high impacts and fragile elements as well. Our project requires the use of nine servomotors installed at different places in the arm. Therefore, the static and dynamic modes of servomotors are analyzed. The total cost of the project is estimated to be relatively cheap compared to other previously built arms. Many scenarios are analyzed corresponding to the actions that the prosthetic arm can perform, and an algorithm is created to match these scenarios. Experimental results show that the proposed EEG Mind-controlled Arm is a promising alternative for current solutions that require invasive and expensive surgical procedures.

  6. Perturb and Observe Control for an Embedded Point Pivoted Absorber

    Directory of Open Access Journals (Sweden)

    Gianluca Brando

    2016-11-01

    Full Text Available Marine energy sources represent an attractive and inexhaustible reservoir able to contribute to the fulfillment of the world energy demand in accordance with climate/energy regulatory frameworks. Wave energy converter (WEC integration into the main grid requires both the maximization of the harvested energy and the proper management of the generation variability. The present paper focuses on both these mentioned issues. More specifically, it presents an embedded point pivoted absorber (PPA and its related control strategy aimed at maximizing the harvested energy. Experimental and numerical investigations have been carried out in a wave/towing tank facility in order to derive the design characteristics of the full-scale model and demonstrate the validity and effectiveness of the proposed control strategy.

  7. Dynamic and structural control utilizing smart materials and structures

    Science.gov (United States)

    Rogers, C. A.; Robertshaw, H. H.

    1989-01-01

    An account is given of several novel 'smart material' structural control concepts that are currently under development. The thrust of these investigations is the evolution of intelligent materials and structures superceding the recently defined variable-geometry trusses and shape memory alloy-reinforced composites; the substances envisioned will be able to autonomously evaluate emergent environmental conditions and adapt to them, and even change their operational objectives. While until now the primary objective of the developmental efforts presently discussed has been materials that mimic biological functions, entirely novel concepts may be formulated in due course.

  8. Dynamic Access Control Model for Security Client Services in Smart Grid

    OpenAIRE

    Sang-Soo Yeo; Si-Jung Kim; Do-Eun Cho

    2014-01-01

    In the next-generation intelligent power grid, known as the smart grid, various objects can access systems in several network environments, and, accordingly, access control security becomes critical. Thus, to provide users with secure services in the smart grid, a new access control security model is needed. This paper proposes a dynamic access model for secure user services in the smart grid environment. The proposed model analyzes the user's various access contexts and chooses an appropriat...

  9. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  10. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    Directory of Open Access Journals (Sweden)

    Song Zheng

    2017-09-01

    Full Text Available In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  11. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    Science.gov (United States)

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  12. Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

    Directory of Open Access Journals (Sweden)

    Bhagya Nathali Silva

    2017-01-01

    Full Text Available The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1 data generation and acquisition level collecting heterogeneous data related to city operations, (2 data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3 application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.

  13. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  14. Modeling Smart Energy Systems for Model Predictive Control

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    as it is produced requires a very exible and controllable power consumption. Examples of controllable electric loads are heat pumps in buildings and Electric Vehicles (EVs) that are expected to play a large role in the future danish energy system. These units in a smart energy system can potentially oer exibility...... on a time scale ranging from seconds to several days by moving power consumption, exploiting thermal inertia or battery storage capacity, respectively. Using advanced control algorithms these systems are able to reduce their own electricity costs by planning ahead and moving consumption to periods...... with green and cheap electricity. This situation occurs when there is a lot of excess wind power in the system which is re ected in the electricity price and in turn creates an incentive to absorb the energy. In this paper a decentralized control strategy is investigated where prices indirectly in uence...

  15. Smart panel with active damping units. Implementation of decentralized control.

    Science.gov (United States)

    Díaz, Cristóbal González; Paulitsch, Christoph; Gardonio, Paolo

    2008-08-01

    This paper contains the second part of a study on a smart panel with five decentralized velocity feedback control units using proof mass electrodynamic actuators [Gonzalez Diaz et al., J. Acoust. Soc. Am. 124, 886 (2008)]. The implementation of five decentralized control loops is analyzed, both theoretically and experimentally. The stability properties of the five decentralized control units have been assessed with the generalized Nyquist criterion by plotting the loci of the eigenvalues of the fully populated matrix of frequency response functions between the five error signals and five input signals to the amplifiers driving the actuators. The control performance properties have been assessed in terms of the spatially averaged response of the panel measured with a scanning laser vibrometer and the total sound power radiated measured in an anechoic room. The two analyses have shown that reductions of up to 10 dB in both vibration response and sound radiation are measured at low audio frequencies, below about 250 Hz.

  16. Extremum Seeking Control of Smart Inverters for VAR Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma; Auslander, David, M; Callaway, Duncan

    2015-09-04

    Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand information confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.

  17. Embedded Optimal Control of Robot Manipulators with Passive Joints

    Directory of Open Access Journals (Sweden)

    Alberto Olivares

    2015-01-01

    Full Text Available This paper studies the optimal control problem for planar underactuated robot manipulators with two revolute joints and brakes at the unactuated joints in the presence of gravity. The presence of a brake at an unactuated joint gives rise to two operating modes for that joint: free and braked. As a consequence, there exist two operating modes for a robot manipulator with one unactuated joint and four operating modes for a manipulator with two unactuated joints. Since these systems can change dynamics, they can be regarded as switched dynamical systems. The optimal control problem for these systems is solved using the so-called embedding approach. The main advantages of this technique are that assumptions about the number of switches are not necessary, integer or binary variables do not have to be introduced to model switching decisions between modes, and the optimal switching times between modes are not unknowns of the optimal control problem. As a consequence, the resulting problem is a classical continuous optimal control problem. In this way, a general method for the solution of optimal control problems for switched dynamical systems is obtained. It is shown in this paper that it can deal with nonintegrable differential constraints.

  18. FMI for Co-Simulation of Embedded Control Software

    DEFF Research Database (Denmark)

    Pedersen, Nicolai; Bojsen, Tom; Madsen, Jan

    2016-01-01

    Increased complexity of cyber-physical systems within the maritime industry demands closer cooperation be-tween engineering disciplines. The functional mockup interface (FMI) is an initiative aiding cross-discipline in-teraction by providing, a widely accepted, standard for model exchange and co......-simulation. The standard is sup-ported by a number of modelling tools. However, to im-plement it on an existing platform requires adaptation. This paper investigates how to adapt the software of an embedded control system to comply with the FMI for co-simulation standard. In particular, we suggest a way of advancing...... the clock of a real time operating system (RTOS), by overwriting the idle thread and waiting for a signal to start execution until return to idle. This ap-proach ensures a deterministic and temporal execution of the simulation across multiple nodes. As proof of concept, a co-simulation is conducted, showing...

  19. Controlling Smart Green House Using Fuzzy Logic Method

    Directory of Open Access Journals (Sweden)

    Rafiuddin Syam

    2015-10-01

    Full Text Available To increase agricultural output it is needed a system that can help the environmental conditions for optimum plant growth. Smart greenhouse allows for plants to grow optimally, because the temperature and humidity can be controlled so that no drastic changes. It is necessary for optimal smart greenhouse needed a system to manipulate the environment in accordance with the needs of the plant. In this case the setting temperature and humidity in the greenhouse according to the needs of the plant. So using an automated system for keeping such environmental condition is important. In this study, the authors use fuzzy logic to make the duration of watering the plants more dynamic in accordance with the input temperature and humidity so that the temperature and humidity in the green house plants maintained in accordance to the reference condition. Based on the experimental results using fuzzy logic method is effective to control the duration of watering and to maintain the optimum temperature and humidity inside the greenhouse

  20. Stochastic Model Predictive Control with Applications in Smart Energy Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Edlund, Kristian; Mølbak, Tommy

    2012-01-01

    to cover more than 50% of the total consumption by 2050. Energy systems based on significant amounts of renewable energy sources are subject to uncertainties. To accommodate the need for model predictive control (MPC) of such systems, the effect of the stochastic effects on the constraints must...... function). This is convenient for energy systems, since some constraints are very important to satisfy with a high probability, whereas violation of others are less prone to have a large economic penalty. In MPC applications the control action is obtained by solving an optimization problem at each sampling......, we show that tailored interior point algorithms are well suited to handle this type of problems. Namely, by utilizing structure-exploiting methods, we implement a special-purpose solver for control of smart energy systems. The solver is compared against general-purpose implementations. As a case...

  1. Optimal charging control of electric vehicles in smart grids

    CERN Document Server

    Tang, Wanrong

    2017-01-01

    This book introduces the optimal online charging control of electric vehicles (EVs) and battery energy storage systems (BESSs) in smart grids. The ultimate goal is to minimize the total energy cost as well as reduce the fluctuation of the total power flow caused by the integration of the EVs and renewable energy generators. Using both theoretic analysis and data-driven numerical results, the authors reveal the effectiveness and efficiency of the proposed control techniques. A major benefit of these control techniques is their practicality, since they do not rely on any non-causal knowledge of future information. Researchers, operators of power grids, and EV users will find this to be an exceptional resource. It is also suitable for advanced-level students of computer science interested in networks, electric vehicles, and energy systems.

  2. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  3. State of the Art Authentication, Access Control, and Secure Integration in Smart Grid

    Directory of Open Access Journals (Sweden)

    Neetesh Saxena

    2015-10-01

    Full Text Available The smart grid (SG is a promising platform for providing more reliable, efficient, and cost effective electricity to the consumers in a secure manner. Numerous initiatives across the globe are taken by both industry and academia in order to compile various security issues in the smart grid network. Unfortunately, there is no impactful survey paper available in the literature on authentications in the smart grid network. Therefore, this paper addresses the required objectives of an authentication protocol in the smart grid network along with the focus on mutual authentication, access control, and secure integration among different SG components. We review the existing authentication protocols, and analyze mutual authentication, privacy, trust, integrity, and confidentiality of communicating information in the smart grid network. We review authentications between the communicated entities in the smart grid, such as smart appliance, smart meter, energy provider, control center (CC, and home/building/neighborhood area network gateways (GW. We also review the existing authentication schemes for the vehicle-to-grid (V2G communication network along with various available secure integration and access control schemes. We also discuss the importance of the mutual authentication among SG entities while providing confidentiality and privacy preservation, seamless integration, and required access control with lower overhead, cost, and delay. This paper will help to provide a better understanding of current authentication, authorization, and secure integration issues in the smart grid network and directions to create interest among researchers to further explore these promising areas.

  4. Adaptive Cruise Control for a SMART Car : A Comparison Benchmark for MPC-PWA Control Methods

    NARCIS (Netherlands)

    Corona, D.; De Schutter, B.

    2008-01-01

    The design of an adaptive cruise controller for a SMART car, a type of small car, is proposed as a benchmark setup for several model predictive control methods for nonlinear and piecewise affine systems. Each of these methods has been already applied to specific case studies, different from method

  5. Cross-Platform Android/iOS-Based Smart Switch Control Middleware in a Digital Home

    Directory of Open Access Journals (Sweden)

    Guo Jie

    2015-01-01

    Full Text Available With technological and economic development, people’s lives have been improved substantially, especially their home environments. One of the key aspects of these improvements is home intellectualization, whose core is the smart home control system. Furthermore, as smart phones have become increasingly popular, we can use them to control the home system through Wi-Fi, Bluetooth, and GSM. This means that control with phones is more convenient and fast and now becomes the primary terminal controller in the smart home. In this paper, we propose middleware for developing a cross-platform Android/iOS-based solution for smart switch control software, focus on the Wi-Fi based communication protocols between the cellphone and the smart switch, achieved a plugin-based smart switch function, defined and implemented the JavaScript interface, and then implemented the cross-platform Android/iOS-based smart switch control software; also the scenarios are illustrated. Finally, tests were performed after the completed realization of the smart switch control system.

  6. Photoneuron: dynamically reconfigurable information processing control element utilizing embedded-fiber waveguide interconnects

    Science.gov (United States)

    Glista, Andrew S., Jr.

    1991-12-01

    The term `photoneuron' describes an electro-optic hardware element that permits an optical implementation of the postulated information transfer processes of the neurons in the human brain. The photoneuron provides a dynamic activation and control mechanism for highly parallel computers and permits immediate implementation of reconfigurable high speed optical interconnects. The suggested method for interconnecting processors in a photoneuronic network consists of embedded optical fibers in composite materials to form optical backplanes utilizing `smart skin' technology. This method eliminates the environmental concerns and technological barriers posed by free space optics and integrated optics, while providing a sound engineering approach leading to the all optical computer. This paper briefly reviews the physiological activity of neurons in the human brain. Optical analogies for processor activation in neural networks corresponding to the nerve impulse activation in the brain are then described. The paper then suggests the utilization of optical signal parameters and encoding to emulate the information exchange of neurotransmitters provided by first and second messenger molecular activity across the synaptic `connections' of neurons in the brain. This represents a departure from most neural networks which dwell on threshold processor activation and ignore the exceedingly complex molecular information exchange mechanisms of the brain. Digital, analog, and combinatorial alternatives are described.

  7. Applying Distributed Object Technology to Distributed Embedded Control Systems

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Dalgaard, Lars

    2012-01-01

    In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. Micro...

  8. Utilizing Network QoS for Dependability of Adaptive Smart Grid Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Kristensen, Thomas le Fevre; Olsen, Rasmus Løvenstein

    2014-01-01

    A smart grid is a complex system consisting of a wide range of electric grid components, entities controlling power distribution, generation and consumption, and a communication network supporting data exchange. This paper focuses on the influence of imperfect network conditions on smart grid con......- trollers, and how this can be counteracted by utilizing Quality of Service (QoS) information from the communication network. Such an interface between grid controller and network QoS is particularly relevant for smart grid scenarios that use third party communication network infrastructure, where...... modification of networking and lower layer protocols are impossible. This paper defines a middleware solution for adaptation of smart grid control, which uses network QoS information and interacts with the smart grid controller to increase dependability. In order to verify the methodology, an example scenario...

  9. A Real-Time Embedded Control System for Electro-Fused Magnesia Furnace

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-01-01

    Full Text Available Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

  10. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  11. Smart Security System For Home Appliances Control Based On Internet Of Things

    Directory of Open Access Journals (Sweden)

    Su Zin Zin Win

    2015-08-01

    Full Text Available Technology is always evolves. Home security is essential for occupants convenience and protection. Security systems are being preferred over manual system. With the rapid increase in the number of users of internet over the past decade has made Internet a part and parcel of life and IoTs is the latest and emerging internet technology. Home Appliances Control of Smart Security System using IoTs uses computers or mobile devices to control basic home functions and features through internet from anywhere around the world. This security system differs from other system by allowing the user to operate the system from anywhere around the world through internet connection. With the implementation of Arduino Mega microcontroller as an Embedded device security system design was constructed with many sensors and web server database. The Arduino Ethernet shield is used to eliminate the use of a personal computer PC. The motion sensing circuit temperature and humidity sensing circuit smoke or gas sensing circuit door lock sensing circuit light onoff circuit were designed to be connected with Arduino Mega microcontroller and Ethernet shield. This system can monitor the temperature and humidity values and the state of some sensors for intruder detection. It can also control the electric appliances like lights and door at home. Real time result was displayed on web server page via the internet.

  12. Vibration Control of Double-Beam System with Multiple Smart Damping Members

    OpenAIRE

    Dominik Pisarski; Tomasz Szmidt; Czesław I. Bajer; Bartłomiej Dyniewicz; Jacek M. Bajkowski

    2016-01-01

    A control method to stabilize vibration of a double cantilever system with a set of smart damping blocks is designed and numerically evaluated. The externally controlled magnetorheological sheared elastomer damping block is considered, but other smart materials can be used as well. The robust bang-bang control law for stabilization the bilinear system is elaborated. The key feature of the closed loop controller is the efficiency for different types of initial excitement. By employing the fini...

  13. Comparison of individual pitch and smart rotor control strategies for load reduction

    Science.gov (United States)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  14. Scripting, control, and privacy in domestic smart grid technologies: insights from a Danish pilot study

    DEFF Research Database (Denmark)

    Hansen, Meiken; Hauge, Bettina

    2017-01-01

    Smart grid research in Denmark has increasingly turned its focus on aggregator trading flexibility achieved by remotely controlling appliances, studying the technologies involved rather than the control. This paper investigates how different types of control were envisioned and designed for a two......-year smart grid trial in Denmark with 20 private households. Using the notion of script, processes of in- and de-scription were used to gain insights into perceived and enacted control. Based on empirical data from 26 interviews and three workshops, we show how the in-scription process of control can...... a reference for ‘passive consumers’ within a smart grid. This design prompts questions about how the users in smart grid development are envisioned and configured using different ideas about control. With current development and the need for additional energy reductions, consumers who invest in photovoltaic...

  15. Security Aspects of Smart Cards vs. Embedded Security in Machine-to-Machine (M2M) Advanced Mobile Network Applications

    Science.gov (United States)

    Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra

    The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.

  16. Smart microneedle coatings for controlled delivery and biomedical analysis.

    Science.gov (United States)

    Khan, H; Mehta, P; Msallam, H; Armitage, D; Ahmad, Z

    2014-11-01

    The work presented demonstrates an unconventional approach in the preparation of smart microneedle (MN) coatings utilising electrohydrodynamic atomisation (EHDA) principles. Stainless steel (600-900 µm in height) MNs were coupled to a ground electrode (in the EHDA coating set-up) with the deposition distance and collecting methodology varied for an ethanol:methanol (50:50) vehicle system. The preparation of nano- and micrometre-scaled pharmaceutical coatings was achieved. Fluorescein dye (serving as potential drug, sensory materials or disease state markers) and polyvinylpyrrolidone (PVP, polymer matrix system) formed the remaining components of the coating formulation. Based on these excipients and by varying the coating process, particles (100 nm to 3 µm) and fibres (400 nm to 1 µm) were deposited directly on MNs in controlled and selectable fashion (flow rates variable ∼ 5-50 µL/min, applied voltage variable 6-19 kV). These demonstrated options for multiple targeting and analysis applications. The underlying EHDA process permits room temperature fabrication, controlled output and scale-up potential for emerging MN devices as drug systems or lab-chip testing devices.

  17. Membrane deformation controlled by monolayer composition of embedded amphiphilic nanoparticles

    Science.gov (United States)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2014-03-01

    In recent work, we have shown that charged, amphiphilic nanoparticles (NPs) can spontaneously insert into lipid bilayers, embedding the NP in a conformation resembling a transmembrane protein. Many embedded membrane proteins exert an influence on surrounding lipids that lead to deformation and membrane-mediated interactions that may be essential for function. Similarly, embedded NPs will also induce membrane deformations related to the same physicochemical forces. Unlike many transmembrane proteins, however, the highly charged NPs may exert preferential interactions on surrounding lipid head groups. In this work, we use atomistic molecular dynamics simulations to show that the membrane around embedded particles may experience local thinning, head group reorientation, and an increase in lipid density depending on the size and surface composition of the NP. We quantify the extent of these deformations and illustrate the complex interplay between lipid tail group and head group interactions that go beyond pure thickness deformations that may be expected from coarse-grained or continuum models. This work thus suggests guidelines for the design of particles that spontaneously partition into lipid bilayers and influence local membrane mechanical properties in a targeted manner.

  18. Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Deepak Gautam

    2013-11-01

    Full Text Available This paper deals with the modelling, simulation-based controller design and path planning of a four rotor helicopter known as a quadrotor. All the drags, aerodynamic, coriolis and gyroscopic effect are neglected. A Newton-Euler formulation is used to derive the mathematical model. A smart self-tuning fuzzy PID controller based on an EKF algorithm is proposed for the attitude and position control of the quadrotor. The PID gains are tuned using a self-tuning fuzzy algorithm. The self-tuning of fuzzy parameters is achieved based on an EKF algorithm. A smart selection technique and exclusive tuning of active fuzzy parameters is proposed to reduce the computational time. Dijkstra's algorithm is used for path planning in a closed and known environment filled with obstacles and/or boundaries. The Dijkstra algorithm helps avoid obstacle and find the shortest route from a given initial position to the final position.

  19. Dynamic Access Control Model for Security Client Services in Smart Grid

    National Research Council Canada - National Science Library

    Yeo, Sang-Soo; Kim, Si-Jung; Cho, Do-Eun

    2014-01-01

    In the next-generation intelligent power grid, known as the smart grid, various objects can access systems in several network environments, and, accordingly, access control security becomes critical...

  20. Management of Renewable Energy for a Shared Facility Controller in Smart Grid

    National Research Council Canada - National Science Library

    Tushar, Wayes; Zhang, Jian Andrew; Yuen, Chau; Smith, David B; Ul Hassan, Naveed

    2016-01-01

    .... In this context, a shared facility controller (SFC) with a number of solar photovoltaic panels in a smart community is considered that has the capability to schedule the generated energy for consumption and trade to other entities...

  1. Smart materials for microrobotics motion control and power harvesting

    OpenAIRE

    Brufau Penella, Jordi

    2009-01-01

    This thesis focuses on the use of smart materials in microrobotic applications. The development of materials with the capabilities to mechanically respond to electrical stimuli or, at the same time, to electrically respond to mechanical stimuli, has entailed the microrobotics rapid evolution. Along this thesis the use of three smart materials families in the filed of microrobotics is studied. The materials used are the piezoelectric ceramics, the piezoelectric polymers and the ionic polymers...

  2. Security Challenges in Smart-Grid Metering and Control Systems

    OpenAIRE

    Xinxin Fan; Guang Gong

    2013-01-01

    The smart grid is a next-generation power system that is increasingly attracting the attention of government, industry, and academia. It is an upgraded electricity network that depends on two-way digital communications between supplier and consumer that in turn give support to intelligent metering and monitoring systems. Considering that energy utilities play an increasingly important role in our daily life, smart-grid technology introduces new security challenges that must be addressed. Depl...

  3. Smarter energy from smart metering to the smart grid

    CERN Document Server

    Sun, Hongjian; Poor, H Vincent; Carpanini, Laurence; Fornié, Miguel Angel Sánchez

    2016-01-01

    This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.

  4. User interface guidelines for the control of interactive television systems via smart phone applications

    OpenAIRE

    Bernhaupt, Regina; Pirker, Michael

    2014-01-01

    International audience; There are a growing number of smart phone applications allowing the user to control their television, set-top box or other entertainment devices. The success of these applications is limited. Based on findings from media studies in Austria and France focusing on how people currently use their TV and iTV systems and associated devices, this article describes recommendations for the design of a smart phone application enabling users to control Internet Protocol Televisio...

  5. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lian, Jianming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marinovici, Laurentiu D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moya, Christian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Jeffery E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-30

    implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  6. Halloysite Nanotubes: Controlled Access and Release by Smart Gates.

    Science.gov (United States)

    Cavallaro, Giuseppe; Danilushkina, Anna A; Evtugyn, Vladimir G; Lazzara, Giuseppe; Milioto, Stefana; Parisi, Filippo; Rozhina, Elvira V; Fakhrullin, Rawil F

    2017-07-28

    Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH)₂ into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO₂ gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We prove that adding halloysite filled with Ca(OH)₂ to paper can reduce the impact of acid exposure on both the mechanical performance and pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive in the smart protection of cellulose-based materials.

  7. Distributed Variable Droop Curve Control Strategies in Smart Microgrid

    Directory of Open Access Journals (Sweden)

    Changhong Deng

    2017-12-01

    Full Text Available In micro grid (MG, active/reactive power sharing for all dis-patchable units is an important issue. To meet fluctuating loads’ active and reactive power demands, the units generally adopt primary P-f and Q-U droop control methods. However, at different state of charge (SOC values, the capability of Lead Acid Battery Bank (LABB based units to take loads varies in a large range; active power should not be shared according to the units P capacities in a constant ratio. Besides, influenced by the output and line impedance between units, reactive power is not able to be shared in proportion to the units Q capacities. Another problem, after MG power balance requirement is satisfied, frequency and voltage are deviating from their rated values thus power quality is reduced. This paper presents a new smart MG which is based on the multi agent system. To solve the problems mentioned above, P-f and Q-U droop curves are adjusted dynamically and autonomously in local agents. To improve the power quality, secondary restoration function is realized in a decentralized way, the computation tasks are assigned to local, the computation capability and communication reliability requirements for central PC are low, and operation reliability is high. Simulation results back the proposed methods.

  8. Economic Model Predictive Control for Building Climate Control in a Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    and electricity price. Simulation studies demonstrate the capabilities of the proposed model and algorithm. Compared to traditional operation of heat pumps with constant electricity prices, the optimized operating strategy saves 25-33% of the electricity cost.......Model Predictive Control (MPC) can be used to control a system of energy producers and consumers in a Smart Grid. In this paper, we use heat pumps for heating residential buildings with a floor heating system. We use the thermal capacity of the building to shift the electricity consumptions...... to periods with low energy prices. In this way the heating system of the house becomes a flexible power consumer in the Smart Grid. This scenario is relevant for systems with a significant share of stochastic energy producers, e.g. wind turbines, where the ability to shift power consumption according...

  9. A decentralized control method for direct smart grid control of refrigeration systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    . No model information is required in this method. The temperature limits/constraints are respected. A novel adaptive saturation filter is also proposed to increase the system flexibility in storing and delivering the energy. The proposed control strategy is applied to a simulation benchmark that fairly......A decentralized control method is proposed to govern the electrical power consumption of supermarket refrigeration systems (SRS) for demand-side management in the smart grid. The control structure is designed in a supervisory level to provide desired set-points for distributed level controllers...... simulates the CO2 booster system of a supermarket refrigeration....

  10. Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces

    Science.gov (United States)

    Wang, Kai; Tan, Min; Zhang, Jianwei

    2014-01-01

    This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG-) based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface. PMID:24688413

  11. Design and Control of an Embedded Vision Guided Robotic Fish with Multiple Control Surfaces

    Directory of Open Access Journals (Sweden)

    Junzhi Yu

    2014-01-01

    Full Text Available This paper focuses on the development and control issues of a self-propelled robotic fish with multiple artificial control surfaces and an embedded vision system. By virtue of the hybrid propulsion capability in the body plus the caudal fin and the complementary maneuverability in accessory fins, a synthesized propulsion scheme including a caudal fin, a pair of pectoral fins, and a pelvic fin is proposed. To achieve flexible yet stable motions in aquatic environments, a central pattern generator- (CPG- based control method is employed. Meanwhile, a monocular underwater vision serves as sensory feedback that modifies the control parameters. The integration of the CPG-based motion control and the visual processing in an embedded microcontroller allows the robotic fish to navigate online. Aquatic tests demonstrate the efficacy of the proposed mechatronic design and swimming control methods. Particularly, a pelvic fin actuated sideward swimming gait was first implemented. It is also found that the speeds and maneuverability of the robotic fish with coordinated control surfaces were largely superior to that of the swimming robot propelled by a single control surface.

  12. Frequency Control Using On line Learning Method for Island Smart Grid with EVs and PVs

    Science.gov (United States)

    2014-07-06

    generation from renewable energy in the smart grid (i.e., photovoltaic ( PV ) or wind farm), large frequency fluctuation occurs when the load - frequency...photovoltaic ( PV ) arrays provide active power to local load , such as smart homes. Two EV stations could be treated as dispersed battery energy...photovoltaic ( PV ) or wind farm), large frequency fluctuation occurs when the loadfrequency control (LFC) capacity is not enough to compensate the

  13. An embedded laser marking controller based on ARM and FPGA processors

    National Research Council Canada - National Science Library

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    .... Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors...

  14. Promise of a low power mobile CPU based embedded system in artificial leg control.

    Science.gov (United States)

    Hernandez, Robert; Zhang, Fan; Zhang, Xiaorong; Huang, He; Yang, Qing

    2012-01-01

    This paper presents the design and implementation of a low power embedded system using mobile processor technology (Intel Atom™ Z530 Processor) specifically tailored for a neural-machine interface (NMI) for artificial limbs. This embedded system effectively performs our previously developed NMI algorithm based on neuromuscular-mechanical fusion and phase-dependent pattern classification. The analysis shows that NMI embedded system can meet real-time constraints with high accuracies for recognizing the user's locomotion mode. Our implementation utilizes the mobile processor efficiently to allow a power consumption of 2.2 watts and low CPU utilization (less than 4.3%) while executing the complex NMI algorithm. Our experiments have shown that the highly optimized C program implementation on the embedded system has superb advantages over existing PC implementations on MATLAB. The study results suggest that mobile-CPU-based embedded system is promising for implementing advanced control for powered lower limb prostheses.

  15. Design of an embedded PID controller applied to blood pressure control.

    Science.gov (United States)

    Ribeiro, Anna G C D; Maitelli, André L; de M Valentim, Ricardo A; Leite, Cicília R M; Soares, Heliana B; de Almeida, Nathalee C; Sizilio, Gláucia R M A; Guerreiro, Ana M G

    2011-01-01

    Some diseases, such as hypertension, require a close control of the patient's blood pressure. This is even more critical when that patient is going through--or has just underwent--a surgical procedure In such situations, reducing blood pressure to normal levels is of paramount importance. Usually, this demanding and time consuming monitoring is done manually by clinical personnel and are subject to mistakes and inconsistent practices. In this paper, we propose a solution to the manual monitoring through the design and implementation of an embedded PID controller to handle blood pressure, integrated to an automated monitoring system to assist in detecting anomalies and to optimize the process of patient care.

  16. Embedded systems design for high-speed data acquisition and control

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2015-01-01

    This book serves as a practical guide for practicing engineers who need to design embedded systems for high-speed data acquisition and control systems. A minimum amount of theory is presented, along with a review of analog and digital electronics, followed by detailed explanations of essential topics in hardware design and software development. The discussion of hardware focuses on microcontroller design (ARM microcontrollers and FPGAs), techniques of embedded design, high speed data acquisition (DAQ) and control systems. Coverage of software development includes main programming techniques, culminating in the study of real-time operating systems. All concepts are introduced in a manner to be highly-accessible to practicing engineers and lead to the practical implementation of an embedded board that can be used in various industrial fields as a control system and high speed data acquisition system.   • Describes fundamentals of embedded systems design in an accessible manner; • Takes a problem-solving ...

  17. Management and Control of Domestic Smart Grid Technology

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Bosman, M.G.C.; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    Emerging new technologies like distributed generation, distributed storage, and demand-side load management will change the way we consume and produce energy. These techniques enable the possibility to reduce the greenhouse effect and improve grid stability by optimizing energy streams. By smartly

  18. CONTEXT BASED ANDROID APPLICATIONADMINISTRATIVE ACCESS CONTROL (CBAA–AAC FOR SMART PHONES

    Directory of Open Access Journals (Sweden)

    S. Sharavanan

    2016-07-01

    Full Text Available Android applications in smart phones are generally towards provide greater flexibility and convince for users. Considering the fact that the Android applications are having privilege to access data and resources in mobile after it gets installed (one time permission provided by end user on the time installation, these application may also lead to issues in security for the user data as well as issues relate smart phone with peripheral environment. A practical example for an issue which relates smart phone with peripheral environment can be even an Android smart phone application of a college student use camera resource to capture photos of R&D cell and transfer without user or organization permission. The security of the organization and user should be prevented by providing an adoptable solution. The proposed concept of CBAA-AAC (Context Based Android Application Administrative Access Control is used to control the privileges of any Android application over a corresponding longitude and latitude by the organization administrator. In this way, administrator is able to block malicious application of every individual smart phone which can have activity towards utilizing services and resources that may affect the security of the organization, such an move is must for assuring security of any organization and educational institutions while they allow users to “bring their own smart phones/mobile devices” into the campus.

  19. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  20. PENINGKATAN KEAMANAN SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA PADA SMART GRID SEBAGAI INFRASTRUKTUR KRITIS

    Directory of Open Access Journals (Sweden)

    Ahmad Budi Setiawan

    2016-10-01

    Full Text Available SCADA (Supervisory Control and Data Acquisition systems as the control unit of the smart grid has been used in almost various industries around the world in terms of automation systems. Smart grid technology combines the energy infrastructure and telecommunications and Internet networks. The system provides the operational ease and efficiency in the industry. However, the system has a lot of vulnerabilities in information security aspects that can have a major impact for the industry and even the economy. This study tried to design in building a smart grid cyber security, it includes the strategies that must be done and the information security system architecture to be built. The study was conducted qualitative in-depth interviews, focus group discussions and direct observation. Results of this research is the design strategy recommendations ddalam development of smart grid cyber security. Recommendation results of this study also intended as a suggestion-making framework for smart grid cyber security as a reference implementation of the smart grid in Indonesia.

  1. Smart Demand for Improving Short-term Voltage Control on Distribution Networks

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; P. Da Silva, Luiz C.; Xu, Zhao

    2009-01-01

    Smart grids must involve active roles from end users in order to be truly smart. The energy consumption has to be done in a flexible and intelligent manner, in accordance with the current conditions of the power system. Moreover, with the advent of dispersed and renewable generation, increasing...... customer integration to aid power system performance is almost inevitable. This study introduces a new type of smart demand side technology, denoted demand as voltage controlled reserve (DVR), to improve short-term voltage control, where customers are expected to play a more dynamic role to improve voltage...... control. The technology can be provided by thermostatically controlled loads as well as other types of load. This technology is proven to be effective in case of distribution systems with a large composition of induction motors, where the voltage presents a slow recovery characteristic due to deceleration...

  2. Developing FPGA-based Embedded Controllers Using Matlab/Simulink

    OpenAIRE

    Barlas, T; Moallem, M.

    2010-01-01

    The use of the system-level tool DSP Builder for high-level development of FPGA-based controllers was studied. The capabilities of the DSP Builder tool were further extended by developing the Custom Control Library. The custom library is comprised of widely used components such as discretized integrators, PID controller, PWM generator, and A/D controller. DSP Builder and the Custom Control Library together can be used to rapidly develop controllers in the familiar and standard Simulink design...

  3. Embedded Control in Wearable Medical Devices: Application to the Artificial Pancreas

    Directory of Open Access Journals (Sweden)

    Stamatina Zavitsanou

    2016-09-01

    Full Text Available Significant increases in processing power, coupled with the miniaturization of processing units operating at low power levels, has motivated the embedding of modern control systems into medical devices. The design of such embedded decision-making strategies for medical applications is driven by multiple crucial factors, such as: (i guaranteed safety in the presence of exogenous disturbances and unexpected system failures; (ii constraints on computing resources; (iii portability and longevity in terms of size and power consumption; and (iv constraints on manufacturing and maintenance costs. Embedded control systems are especially compelling in the context of modern artificial pancreas systems (AP used in glucose regulation for patients with type 1 diabetes mellitus (T1DM. Herein, a review of potential embedded control strategies that can be leveraged in a fully-automated and portable AP is presented. Amongst competing controllers, emphasis is provided on model predictive control (MPC, since it has been established as a very promising control strategy for glucose regulation using the AP. Challenges involved in the design, implementation and validation of safety-critical embedded model predictive controllers for the AP application are discussed in detail. Additionally, the computational expenditure inherent to MPC strategies is investigated, and a comparative study of runtime performances and storage requirements among modern quadratic programming solvers is reported for a desktop environment and a prototype hardware platform.

  4. Implementation of fuzzy logic control algorithm in embedded ...

    African Journals Online (AJOL)

    Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...

  5. Polynomial embedding algorithms for controllers in a behavioral framework

    NARCIS (Netherlands)

    Trentelman, H.L.; Zavala Yoe, R.; Praagman, C.; Zavala Yoé, 27772

    2007-01-01

    In this correspondence, we will establish polynomial algorithms for computation of controllers in the behavioral approach to control, in particular for the computation of controllers that regularly implement a given desired behavior and for controllers that achieve pole placement and stabilization

  6. Application of new technology to SMART instrumentation and control systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Heui Youn; Lee, C. K.; Kim, D. H.; Suh, Y. S.; Hur, S.; Seong, S. H.; Jang, G. S.; Koo, I. S.; Chang, M. H

    1998-03-01

    It is very important to examine the conformance with licensing requirements and standards when new digital technology and equipment apply to nuclear plants. Key requirements of licensing on digitalisation using new technologies are software and hardware V and V, reliability of communication network, and diversity and defence-in-depth concept against common mode failures of hardware and software. And it should be also evaluated whether the selection and application of new technology comply with the design concept and requirements of SMART MMIS or not. In this report, we reviewed digitalisation materials such as EPRI`s ALWR utility requirements document, I and C upgrade plan, guideline on licensing digital upgrades, and IAEA`s issues and approaches to plant modernization to explore application method on new I and C technologies, and evaluated the state of applicable new technologies for SMART MMIS which are selected from the technologies, methods, and manuals of the industrial area. (author). 36 refs., 15 tabs.

  7. Cloud-Enhanced Robotic System for Smart City Crowd Control

    OpenAIRE

    Akhlaqur Rahman; Jiong Jin; Antonio Cricenti; Ashfaqur Rahman; Marimuthu Palaniswami; Tie Luo

    2016-01-01

    Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT) by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS). However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decisio...

  8. OFSETH: optical technologies embedded in smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging

    Science.gov (United States)

    Narbonneau, F.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Witt, J.; Krebber, K.; Paquet, B.; Depré, A.; D'Angelo, L. T.; Thiel, T.; Logier, R.

    2010-04-01

    The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging (MRI) is now proved. We report how two pure optical technologies can successfully sense textile elongation between, 0% and 3%, while maintaining the stretching properties of the textile substrates for a good comfort of the patient. Investigating influence of different patients' morphology as well as textile integration issues to let free all vitals organs for medical staff actions, the OFSETH harness allows a continuous measurement of respiration movements. For example, anaesthesia for MRI examination uses the same drugs as for any surgical procedure. Even if spontaneous respiration can be preserved most of the time, spontaneous respiration is constantly at risk of being impaired by anaesthetic drugs or by upper airway obstruction. Monitoring of the breathing activity is needed to assess adequate ventilation or to detect specific obstruction patterns. Moreover artefacts due to physiological motions induce a blooming effect on the MRI result. The use of synchronisation devices allows reducing these effects. Positioned at certain strategic places according to the investigated organ, the presented sensors could constitute an efficient and adapted solution for respiratory synchronisation of the MRI acquisition.

  9. Smart way; Smart way

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    A smart way, in which communication/information processing/control technologies are melted, is to realize a road traffic system which is safe/comfortable. This is planned as a common base supporting a lot of services such as the vehicle traffic information communication system, automatic toll collecting system and operation assisting road system. Vehicles running on the smart way exchange information with roads for increasing safety and relaxing regulation. Further, the way is expected as the social infrastructure of the 21st century which has a lot of possibilities such as acquisition of travel information and video/music information and cashless purchases at shops on the way. (translated by NEDO)

  10. Embedded Controller Design for Pig Stable Ventilation Systems

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob

    This thesis focuses on zone based climate control in pig stables and how to implement climate controllers in a new range of products. The presented controllers are based on simple models of climate dynamics and simple models of actuators. The implementation uses graphical point and click features...... source code for the actual target platform, on which the climate controller is expected to execute. The third paper also deals with the development cycle of controllers, showing how to build a graphical user interface for point and click modelling of zone based climate dynamics. The next two papers...

  11. An Embedded Based Digital Controller for Thermal Process

    Directory of Open Access Journals (Sweden)

    A. Lakshmi Sangeetha

    2008-01-01

    Full Text Available This paper describes a low cost virtual instrumentation (VI system to monitor and control the electrically heated water bath temperature. The PIC16F877 based digital microcontroller is used as thermostat which controls and monitors the temperature. The digital controller also allows the user to modify the sensor (PT100 calibration data values if necessary. The developed programmable on/off control function provides on-line display of measuring temperature, set point as well as the control function output plots through the parallel port. This bus interaction is realized in Visual Basic/Assembly Language and uses a 16 bit, 10 ms sampling analog-to-digital converter (ADS 7805 for monitoring and controlling the parameters of the temperature local digital controller.

  12. Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller

    Directory of Open Access Journals (Sweden)

    Mohit

    2015-01-01

    Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.

  13. A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

    Science.gov (United States)

    Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok

    2017-04-01

    Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.

  14. An embedded laser marking controller based on ARM and FPGA processors.

    Science.gov (United States)

    Dongyun, Wang; Xinpiao, Ye

    2014-01-01

    Laser marking is an important branch of the laser information processing technology. The existing laser marking machine based on PC and WINDOWS operating system, are large and inconvenient to move. Still, it cannot work outdoors or in other harsh environments. In order to compensate for the above mentioned disadvantages, this paper proposed an embedded laser marking controller based on ARM and FPGA processors. Based on the principle of laser galvanometer scanning marking, the hardware and software were designed for the application. Experiments showed that this new embedded laser marking controller controls the galvanometers synchronously and could achieve precise marking.

  15. Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft

    Energy Technology Data Exchange (ETDEWEB)

    Depuru, Soma Shekara Sreenadh Reddy, E-mail: sdepuru@rockets.utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States); Wang Lingfeng, E-mail: Lingfeng.Wang@utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States); Devabhaktuni, Vijay, E-mail: Vijay.Devabhaktuni@utoledo.ed [Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606 (United States)

    2011-02-15

    Non-technical loss (NTL) during transmission of electrical energy is a major problem in developing countries and it has been very difficult for the utility companies to detect and fight the people responsible for theft. Electricity theft forms a major chunk of NTL. These losses affect quality of supply, increase load on the generating station, and affect tariff imposed on genuine customers. This paper discusses the factors that influence the consumers to steal electricity. In view of these ill effects, various methods for detection and estimation of the theft are discussed. This paper proposes an architectural design of smart meter, external control station, harmonic generator, and filter circuit. Motivation of this work is to deject illegal consumers, and conserve and effectively utilize energy. As well, smart meters are designed to provide data of various parameters related to instantaneous power consumption. NTL in the distribution feeder is computed by external control station from the sending end information of the distribution feeder. If a considerable amount of NTL is detected, harmonic generator is operated at that feeder for introducing additional harmonic component for destroying appliances of the illegal consumers. For illustration, cost-benefit analysis for implementation of the proposed system in India is presented. - Research Highlights: {yields} Discusses several cases, issues and setbacks in the design of smart meters. {yields} Evaluates socio-economic, infrastructural, political and power quality issues. {yields} Proposes a smart meter that overcame several setbacks in implementation. {yields} Proposes a smart meter that chastises appliances of illegal consumers.

  16. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future.

    Science.gov (United States)

    Genchi, Giada Graziana; Marino, Attilio; Grillone, Agostina; Pezzini, Ilaria; Ciofani, Gianni

    2017-05-01

    The remote control of cellular functions through smart nanomaterials represents a biomanipulation approach with unprecedented potential applications in many fields of medicine, ranging from cancer therapy to tissue engineering. By actively responding to external stimuli, smart nanomaterials act as real nanotransducers able to mediate and/or convert different forms of energy into both physical and chemical cues, fostering specific cell behaviors. This report describes those classes of nanomaterials that have mostly paved the way to a "wireless" control of biological phenomena, focusing the discussion on some examples close to the clinical practice. In particular, magnetic fields, light irradiation, ultrasound, and pH will be presented as means to manipulate the cellular fate, due to the peculiar physical/chemical properties of some smart nanoparticles, thus providing realistic examples of "nanorobots" approaching the visionary ideas of Richard Feynman. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Smart Electrospun Nanofibers for Controlled Drug Release: Recent Advances and New Perspectives

    Science.gov (United States)

    Weng, Lin; Xie, Jingwei

    2017-01-01

    In biological systems, chemical molecules or ions often release upon certain conditions, at a specific location, and over a desired period of time. Electrospun nanofibers that undergo alterations in the physicochemical characteristics corresponding to environmental changes have gained considerable interest for various applications. Inspired by biological systems, therapeutic molecules have been integrated with these smart electrospun nanofibers, presenting activation-modulated or feedback-regulated control of drug release. Compared to other materials like smart hydrogels, environment-responsive nanofiber-based drug delivery systems are relatively new but possess incomparable advantages due to their greater permeability, which allows shorter response time and more precise control over the release rate. In this article, we review the mechanisms of various environmental parameters functioning as stimuli to tailor the release rates of smart electrospun nanofibers. We also illustrate several typical examples in specific applications. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25732665

  18. Embedded ARM Control Robotic Arm using BoaWeb server – a Survey

    Directory of Open Access Journals (Sweden)

    V.Sirisha

    2015-10-01

    Full Text Available In today’s market, the competing microprocessors are ARM (Advanced Risc Microprocessor, Intel, AMD. ARM is preferred since it has been powering portable devices for decades and has simple architecture to keep the energy waste to be minimum. The electronics advancements and embedded technology advancements have become a challenging field in today’s techno world. In paper, the diligent features of embedded systems are introduced. It deals about how a robot is controlled using embedded operating system and ARM. Based on the combination of ARM, DSP and ARM Linux, the robot is controlled. The paper introduces development of embedded robot control system using Wi-Fi and also IOT. The embedded control system design includes four aspects. i.e., system structure, functions, hardware design and software design. By using these aspects (hardware and software adjustments, many robotic applications can be developed. Due to the fast execution speed and reasonable Ethernet speed in ARM processor, this system can be used in industrial oriented applications where there is very much necessity of safety and security.

  19. Sensor technology for smart structures

    Science.gov (United States)

    Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.; Dehart, D. W.; Doederlein, T.

    1989-01-01

    Advanced aerospace structures are discussed that will very likely be fabricated with integral sensors, actuators, and microprocessors for monitoring and dynamic control of configuration. The concept of 'smart structures' integrates fiber-optic sensor technology with advanced composite materials, whereby the optical fibers are embedded in a composite material and provide internal sensing capability for monitoring parameters which are important for the safety, performance, and reliability of the material and the structure. Along with other research facilities, NASA has initiated a cooperative program to design, fabricate, and test composite trusses, tubes, and flat panels with embedded optical fibers for testing and developing prototype smart structures. It is shown that fiber-optic sensor technology can be combined with advanced material and structure concepts to produce a new class of materials with internal sensors for health monitoring of structures.

  20. Contribution of domestic heating systems to smart grid control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Meybodi, Soroush Afkhami

    2011-01-01

    . We have investigated how much power imbalance could be compensated, provided that a certain, yet user adjustable, level of residents' thermal comfort is satisfied. It is shown that the large heat capacity of the concrete floor alleviates undesired temperature fluctuations. Therefore, incorporating......How and to what extent, domestic heating systems can be helpful in regaining power balance in a smart grid, is the question to be answered in this paper. Our case study is an under-floor heating system supplied with a geothermal heat pump which is driven by electrical power from the grid. The idea...

  1. CSP channels for CAN-bus connected embedded control systems

    NARCIS (Netherlands)

    Orlic, B.; Broenink, Johannes F.; Schweizer, M.

    2002-01-01

    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To

  2. A Rapid Prototyping Tool for Embedded, Real-Time Hierarchical Control Systems

    Directory of Open Access Journals (Sweden)

    Hugo Andrade

    2008-12-01

    Full Text Available Laboratory Virtual Instrumentation and Engineering Workbench (LabVIEW is a graphical programming tool based on the dataflow language G. Recently, runtime support for a hard real-time environment has become available for LabVIEW, which makes it an option for embedded systems prototyping. Due to its characteristics, the environment presents itself as an ideal tool for both the design and implementation of embedded software. In this paper, we study the design and implementation of embedded software by using G as the specification language and the LabVIEW RT real-time platform. One of the main advantages of this approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for powerful cosimulation strategies (e.g., hardware in the loop, runtime modeling. We characterize the semantics and formal model of computation of G. We compare it to other models of computation and develop design rules and algorithms to propose sound embedded design in the language. We investigate the specification and mapping of hierarchical control systems in LabVIEW and G. Finally, we describe the development of a state-of-the-art embedded motion control system using LabVIEW as the specification, simulation and implementation tool, using the proposed design principles. The solution is state-of-the-art in terms of flexibility and control performance.

  3. A Rapid Prototyping Tool for Embedded, Real-Time Hierarchical Control Systems

    Directory of Open Access Journals (Sweden)

    Ramamoorthy Subramanian

    2008-01-01

    Full Text Available Abstract Laboratory Virtual Instrumentation and Engineering Workbench (LabVIEW is a graphical programming tool based on the dataflow language G. Recently, runtime support for a hard real-time environment has become available for LabVIEW, which makes it an option for embedded systems prototyping. Due to its characteristics, the environment presents itself as an ideal tool for both the design and implementation of embedded software. In this paper, we study the design and implementation of embedded software by using G as the specification language and the LabVIEW RT real-time platform. One of the main advantages of this approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for powerful cosimulation strategies (e.g., hardware in the loop, runtime modeling. We characterize the semantics and formal model of computation of G. We compare it to other models of computation and develop design rules and algorithms to propose sound embedded design in the language. We investigate the specification and mapping of hierarchical control systems in LabVIEW and G. Finally, we describe the development of a state-of-the-art embedded motion control system using LabVIEW as the specification, simulation and implementation tool, using the proposed design principles. The solution is state-of-the-art in terms of flexibility and control performance.

  4. Practical Implementation of Embedded Controlled Boost Converter for Solar Installation System

    Directory of Open Access Journals (Sweden)

    A. Kalirasu

    2010-08-01

    Full Text Available The solar photovoltaic power has received great attention and experienced impressive progress in the countries all over the world in recent years because of more and more serious energy crisis and environmental pollution. This paper proposes a Embedded controlled boost converter for solar installation system. Boost converter system is simulated using Matlab and it is implemented using embedded controller. The simulation and experimental results of this system are presented and compared. This converter has advantages like improved power factor, fast response and reduced hardware.

  5. Developing a Toolset Supporting the Construction of Reusable Components for Embedded Control Systems

    DEFF Research Database (Denmark)

    Guan, Wei; Sierszecki, Krzysztof; Angelov, Christo K.

    2010-01-01

    Reusing software components for embedded control applications enhances product quality and reduces time to market when appropriate (formal) methodologies and supporting toolsets are available. That is why industrial companies are interested in developing trusted, in-house reusable components....... That demand can be satisfied by a highly customized toolset providing an integrated development environment for rapid graphical component specification, component validation, automatic generation of artifacts and documentation. The paper presents a possible solution for creating a customized toolset based...... on open-source technology, in accordance with industrial requirements, as well as the approach used to engineer a toolset supporting component development for embedded control applications....

  6. Experimental Verifications of Vibration Suppression for a Smart Cantilever Beam with a Modified Velocity Feedback Controller

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2014-01-01

    Full Text Available This paper presents various experimental verifications for the theoretical analysis results of vibration suppression to a smart flexible beam bonded with a piezoelectric actuator by a velocity feedback controller and an extended state observer (ESO. During the state feedback control (SFC design process for the smart flexible beam with the pole placement theory, in the state feedback gain matrix, the velocity feedback gain is much more than the displacement feedback gain. For the difference between the velocity feedback gain and the displacement feedback gain, a modified velocity feedback controller is applied based on a dynamical model with the Hamilton principle to the smart beam. In addition, the feedback velocity is attained with the extended state observer and the displacement is acquired by the foil gauge on the root of the smart flexible beam. The control voltage is calculated by the designed velocity feedback gain multiplied by the feedback velocity. Through some experiment verifications for simulation results, it is indicated that the suppressed amplitude of free vibration is up to 62.13% while the attenuated magnitude of its velocity is up to 61.31%. Therefore, it is demonstrated that the modified velocity feedback control with the extended state observer is feasible to reduce free vibration.

  7. Investigation of Voltage Control at Consumers Connection Points Based on Smart Approach

    Directory of Open Access Journals (Sweden)

    Artem Vanin

    2016-07-01

    Full Text Available More and more functions are performed automatically with the use of various electrical appliances and sophisticated control systems in all spheres of human life. In this regard, the demand for reliable and quality power supply is increasing. To date, low power quality, in particular unacceptable voltage levels, is an important deterrent for introducing technologies of smart electricity consumers (smart homes, smart companies, smart cities. This paper presents a comprehensive solution of this problem with the use of a voltage control system in the distribution grids, which is oriented on grids with a large number of heterogeneous loads and low level of Information Technology (IT penetration. It is proposed to be installed on distribution substation special devices that perform continuous measurements of voltage levels, produce short-term forecasts and transmit the permissible ranges of voltage control to the power supply centers. The computing unit at the primary substation analyzes the data received from all distribution substations, and determines the optimum control actions to meet the requirements of all consumers. The proposed system was compared with conventional voltage control methods. The results have proved the effectiveness of the proposed approach.

  8. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes

    OpenAIRE

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G.

    2017-01-01

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ?subtractor? that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a b...

  9. Performance Estimation for Embedded Systems with Data and Control Dependencies

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2000-01-01

    In this paper we present an approach to performance estimation for hard real-time systems. We consider architectures consisting of multiple processors. The scheduling policy is based on a preemptive strategy with static priorities. Our model of the system captures both data and control dependenci...

  10. Technical Study on Improvement of Endurance Capability of Limit Short-circuit Current of Charge Control SMART Meter

    Science.gov (United States)

    Li, W. W.; Du, Z. Z.; Yuan, R. m.; Xiong, D. Z.; Shi, E. W.; Lu, G. N.; Dai, Z. Y.; Chen, X. Q.; Jiang, Z. Y.; Lv, Y. G.

    2017-10-01

    Smart meter represents the development direction of energy-saving smart grid in the future. The load switch, one of the core parts of smart meter, should be of high reliability, safety and endurance capability of limit short-circuit current. For this reason, this paper discusses the quick simulation of relationship between attraction and counterforce of load switch without iteration, establishes dual response surface model of attraction and counterforce and optimizes the design scheme of load switch for charge control smart meter, thus increasing electromagnetic attraction and spring counterforce. In this way, this paper puts forward a method to improve the withstand capacity of limit short-circuit current.

  11. Safety Design for Smart Electric Vehicle Charging with Current and Multiplexing Control

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua; Qiu, Charlie; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-21

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the server and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.

  12. SMART design to control over conformation and molecular packing in blue luminescent oligofluorenes

    Science.gov (United States)

    Yu, Meng-Na; Ou, Chang-Jin; Liu, Bin; Xie, Ling-Hai; Lin, Jin-Yi; Wang, Sha-Sha; Wei, Ying; Huang, Wei

    2018-01-01

    The uncertainty evolution of conformation and molecular packing from solution to film is key challenge for the repeatability of procedures in organic optoelectronics. Herein, we observed the noncovalent force at the bulky groups to decode the supramolecular steric hindrance (SSH) effect and to propose synergistically molecular attractor-repulsor theory (SMART). The fine difference between ideal and real bulks were described and the SSH effect have been proved by two comparable stat-of-the-art models. The SMART design guide us to discover blue oligo/polydiarylfluorenes with beta phase as well as nanosheets with the paradigm of Interdigital Lipid Bilayer-like (ILB) mode. SMART address one kind of AR molecules with potential controllable behaviors. The design of bulk-withdraw and bulk-rich will exhibit the unreplaceable role in morphology-directed design that is just like the role of donor-acceptor molecular design of organic polymer semiconductors.

  13. Optimization and control method for smart charging of EVs facilitated by Fleet operator

    DEFF Research Database (Denmark)

    Hu, Junjie; You, Shi; Si, Chengyong

    2013-01-01

    the energy during the period of high electricity penetration and feed the electricity back into the grid when the demand is high or in situations of insufficient electricity generation. However, the extra loads created by increasing EVs may have adverse impacts on grid. These factors will bring new......Electric vehicles (EV) can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. As an important solution to balance the intermittent renewable energy re-sources, such as wind power and PVs, EVs can absorb...... challenges to the utility system operator; accordingly, smart charging of EVs is needed. This paper presents a review and classification of methods for smart charging of EVs found in the literature. The study is mainly executed from the control theory perspectives. Firstly, service dependent aggrega...

  14. Length Variation Effect of the Impulse Response Model of a Secondary Path in Embedded Control

    Directory of Open Access Journals (Sweden)

    Young-Sup Lee

    2016-01-01

    Full Text Available This study presents theoretical and experimental investigation on the length variation effect of the impulse response function (IRF for the secondary path model in active noise control using an embedded control board. A narrowband sweep noise was the disturbance for control in a duct with the length of 1800 mm. The IRF model incorporated into an adaptive feedforward filtered-x LMS (FxLMS algorithm was then analyzed in the variation of its length in terms of the mean square error, computation complexity, stability requirement, and attenuation performance before and after control. The FxLMS algorithm with various IRF lengths was implemented in a dSPACE DS1104 embedded control board for the real-time control. Finally the most reasonable IRF length, considering the computation complexity and performance, can be determined through the systematic investigation. The results in this study can be used for practical active noise control systems.

  15. Voltage-Based Control of a Smart Transformer in a Microgrid

    DEFF Research Database (Denmark)

    Vandoorn, T. L.; De Kooning, J. D. M.; Meersman, B.

    2013-01-01

    of common coupling. This paper addresses this issue by introducing the concept of a smart transformer (ST) at the point of common coupling. This unit controls the active power exchange between a microgrid and the utility grid dependent on the state of both networks and other information communicated...

  16. A predictive model for smart control of a domestic heat pump and thermal storage

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Gebhardt, I.; de Wit, J.B.; Smit, Gerardus Johannes Maria

    The purpose of this paper is to develop and validate a predictive model of a thermal storage which is charged by a heat pump and used for domestic hot water supply. The model is used for smart grid control purposes and requires measurement signals of flow and temperature at the inlet and outlet of

  17. Evaluation of smart grid control strategies in co-simulation - integration of IPSYS and mosaik

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Lünsdorf, Ontje; Scherfke, Stefan

    2014-01-01

    This paper presents two different aspects consid- ering a co-simulation of smart grid scenarios. First considers representing the control strategy in a separate discrete event simulation developed in a multi-agent platform. This study investigates the design and implementation of such a simulator...

  18. Validation of a predictive model for smart control of electrical energy storage

    NARCIS (Netherlands)

    Homan, Bart; van Leeuwen, Richard Pieter; Smit, Gerardus Johannes Maria; Zhu, Lei; de Wit, Jan B.

    2016-01-01

    The purpose of this paper is to investigate the applicability of a relatively simple model which is based on energy conservation for model predictions as part of smart control of thermal and electric storage. The paper reviews commonly used predictive models. Model predictions of charging and

  19. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technology program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.

  20. Embedded Systems

    Indian Academy of Sciences (India)

    An embedded system is a microprocessor-based system that is incorporated into a device to monitor and control the functions of the components of the device. They are used in many devices ranging from a microwave oven to a nuclear reactor. Unlike personal computers that run a variety of applications, embedded.

  1. Analysis and Design of Embedded Controlled Parallel Resonant Converter

    Directory of Open Access Journals (Sweden)

    P. CHANDRASEKHAR

    2009-07-01

    Full Text Available Microcontroller based constant frequency controlled full bridge LC parallel resonant converter is presented in this paper for electrolyser application. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The DC power required by the electrolyser system is supplied by the DC-DC converter. Owing to operation under constant frequency, the filter designs are simplified and utilization of magnetic components is improved. This converter has advantages like high power density, low EMI and reduced switching stresses. DC-DC converter system is simulated using MATLAB, Simulink. Detailed simulation results are presented. The simulation results are compared with the experimental results.

  2. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  3. Smart materials-based actuators at the micronano-scale characterization, control, and applications

    CERN Document Server

    2013-01-01

    Smart Materials-Based Actuators at the Micro/Nano-Scale: Characterization, Control, and Applications gives a state of the art of emerging techniques to the characterization and control of actuators based on smart materials working at the micro/nano scale. The book aims to characterize some commonly used structures based on piezoelectric and electroactive polymeric actuators and also focuses on various and emerging techniques employed to control them. This book also includes two of the most emerging topics and applications: nanorobotics and cells micro/nano-manipulation. This book: Provides both theoretical and experimental results Contains complete information from characterization, modeling, identification, control to final applications for researchers and engineers that would like to model, characterize, control and apply their own micro/nano-systems Discusses applications such as microrobotics and their control, design and fabrication of microsystems, microassembly and its automation, nanorobotics and thei...

  4. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-02-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  5. Vibration Control of Double-Beam System with Multiple Smart Damping Members

    Directory of Open Access Journals (Sweden)

    Dominik Pisarski

    2016-01-01

    Full Text Available A control method to stabilize vibration of a double cantilever system with a set of smart damping blocks is designed and numerically evaluated. The externally controlled magnetorheological sheared elastomer damping block is considered, but other smart materials can be used as well. The robust bang-bang control law for stabilization the bilinear system is elaborated. The key feature of the closed loop controller is the efficiency for different types of initial excitement. By employing the finite element model, the performance of the controller is validated for strong wind blow load and concentrated impact excitement of the particular point of one of the beams. For each of the excitations, the closed loop control outperforms the optimal passive damping case by over 27% for the considered energy metric.

  6. The Smart Card concept applied to access control

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, S.

    1986-01-01

    Passwords tend to be handled carelessly, and so are easily lost or stolen. Because they are intangible, their loss or theft generally goes unnoticed. Because they are constant, they may be used by anyone for as long as they remain in active use by a legitimate user. A step up in password security is offered by a new range of products which generate a new code each time the device is used. Devices are being produced in packages as small as a standard plastic credit card, including internal battery power, integral keyboard and LCD display. Security features of the Smart Card are reviewed, and several random access code generators currently available in the commercial marketplace are described.

  7. Fully embedded myoelectric control for a wearable robotic hand orthosis.

    Science.gov (United States)

    Ryser, Franziska; Butzer, Tobias; Held, Jeremia P; Lambercy, Olivier; Gassert, Roger

    2017-07-01

    To prevent learned non-use of the affected hand in chronic stroke survivors, rehabilitative training should be continued after discharge from the hospital. Robotic hand orthoses are a promising approach for home rehabilitation. When combined with intuitive control based on electromyography, the therapy outcome can be improved. However, such systems often require extensive cabling, experience in electrode placement and connection to external computers. This paper presents the framework for a stand-alone, fully wearable and real-time myoelectric intention detection system based on the Myo armband. The hard and software for real-time gesture classification were developed and combined with a routine to train and customize the classifier, leading to a unique ease of use. The system including training of the classifier can be set up within less than one minute. Results demonstrated that: (1) the proposed algorithm can classify five gestures with an accuracy of 98%, (2) the final system can online classify three gestures with an accuracy of 94.3% and, in a preliminary test, (3) classify three gestures from data acquired from mildly to severely impaired stroke survivors with an accuracy of over 78.8%. These results highlight the potential of the presented system for electromyography-based intention detection for stroke survivors and, with the integration of the system into a robotic hand orthosis, the potential for a wearable platform for all day robot-assisted home rehabilitation.

  8. SystemCSP: A graphical language for designing concurrent component-based embedded control systems

    NARCIS (Netherlands)

    Orlic, B.

    2007-01-01

    Realization of embedded control systems is a complex task. Increasing part of this complexity is nowadays located in the design and implementation of software that runs them. A major source of difficulties is the limitation of the average software developer to understand and design complex

  9. Active microvibration control of precision manufacturing factories with smart structure using piezoelectric actuators

    Science.gov (United States)

    Fujita, Takafumi; Enomoto, Masahito; Arikabe, Takeo; Ogawa, Tomohiro; Murai, Nobuyoshi; Hashimoto, Yoshiyuki; Hamaguchi, Hiroki; Kitahara, Takashi

    2001-07-01

    In order to achieve more perfect vibration-free environment in precision manufacturing facilities such as semiconductor manufacturing factories, and apply steel frame structures to semiconductor manufacturing factories of the next generation, a smart structure was tested for active microvibration control of a 2-story steel frame building model of a 5 X 3 X 4H m outer size and a 2,500 kg total weight which was excited by ambient ground vibration. In the structure, piezoelectric actuators attached to the columns and the beams were used for the microvibration control by bending moment control of them. The controller was designed using the H-infinity control theory. The tests showed that the smart structure could effectively reduce the 3D microvibration of the building model, and its applicability to floors and even entire buildings of semiconductor manufacturing factories having steel frame structures.

  10. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    Science.gov (United States)

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  11. Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments

    Directory of Open Access Journals (Sweden)

    Carlos Perez-Vidal

    2012-04-01

    Full Text Available This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753 to measure the consumption of electrical energy and thento transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600 has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user’s program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.

  12. Analysis of Timing Requirements for Data Aggregation and Control in Smart Grids

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Olsen, Rasmus Løvenstein

    2014-01-01

    delays. The collected data is used to train resource allocation learning algorithm implemented in Matlab. The method will enable us to have a real number evaluation of time allocation for the communication network and the controller by taking into account constraints present on the system......Modern communication mechanisms are at the heart of a smart grid system to ensure that the required information is transmitted within various components of the grid. Throughout this paper, we have studied how communication performance delays and smart grid controller delays effects the overall...... control system operation. The main goal of this paper is to propose and analyze resource allocation algorithm satisfying delay requirements of the communication infrastructure and the controller. Simulation of a communication network is implemented using OMNeT++ to study and record the corresponding...

  13. Security-Enhanced Push Button Configuration for Home Smart Control.

    Science.gov (United States)

    Han, Junghee; Park, Taejoon

    2017-06-08

    With the emergence of smart and converged home services, the need for the secure and easy interplay of various devices has been increased. Push Button Configuration (PBC) is one of the technologies proposed for easy set-up of a secure session between IT and consumer devices. Although the Wi-Fi Direct specification explicitly states that all devices must support the PBC method, its applicability is very limited. This is because the security vulnerability of PBC can be maliciously exploited so that attackers can make illegitimate sessions with consumer devices. To address this problem, this paper proposes a novel Security-enhanced PBC (SePBC) scheme with which we can uncover suspicious or malicious devices. The proposed mechanism has several unique features. First, we develop a secure handshake distance measurement protocol by preventing an adversary sitting outside the region from maliciously manipulating its distance to be fake. Second, it is compatible with the original Wi-Fi PBC without introducing a brand-new methodology. Finally, SePBC uses lightweight operations without CPU-intensive cryptography computation and employs inexpensive H/W. Moreover, it needs to incur little overhead when there is no attack. This paper also designs and implements the proposed SePBC in the real world. Our experimental results and analysis show that the proposed SePBC scheme effectively defeats attacks on PBC while minimizing the modification of the original PBC equipment.

  14. Smart Security System For Home Appliances Control Based On Internet Of Things

    OpenAIRE

    Su Zin Zin Win; Zaw Min Min Htun; Hla Myo Tun

    2015-01-01

    Technology is always evolves. Home security is essential for occupants convenience and protection. Security systems are being preferred over manual system. With the rapid increase in the number of users of internet over the past decade has made Internet a part and parcel of life and IoTs is the latest and emerging internet technology. Home Appliances Control of Smart Security System using IoTs uses computers or mobile devices to control basic home functions and features through internet from...

  15. A Security Architecture for Data Aggregation and Access Control in Smart Grids

    OpenAIRE

    Ruj, Sushmita; Nayak, Amiya; Stojmenovic, Ivan

    2011-01-01

    We propose an integrated architecture for smart grids, that supports data aggregation and access control. Data can be aggregated by home area network, building area network and neighboring area network in such a way that the privacy of customers is protected. We use homomorphic encryption technique to achieve this. The consumer data that is collected is sent to the substations where it is monitored by remote terminal units (RTU). The proposed access control mechanism gives selective access to...

  16. Research on Spillover Effects for Vibration Control of Piezoelectric Smart Structures by ANSYS

    Directory of Open Access Journals (Sweden)

    Xingjian Dong

    2014-01-01

    Full Text Available To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL, the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.

  17. SIMULATION AND IMPLEMENTATION OF PID-ANN CONTROLLER FOR CHOPPER FED EMBEDDED PMDC MOTOR

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2012-04-01

    Full Text Available The closed loop control of PMDC drive with an inner current controller and an outer PID-ANN (Proportional Integral Derivative – Artificial Neural Network based speed controller is designed and presented in this paper. Motor is fed by DC / DC buck converter (DC Chopper. The controller is used to change the duty cycle of the converter and thereby, the voltage fed to the PMDC motor to regulate the speed. The PID-ANN controller designed was evaluated by computer simulation and it was implemented using an 8051 based embedded system. This system will operate in forward motoring with variable speed.

  18. Double-beam cantilever structure with embedded intelligent damping block: Dynamics and control

    Science.gov (United States)

    Szmidt, Tomasz; Pisarski, Dominik; Bajer, Czesław; Dyniewicz, Bartłomiej

    2017-08-01

    In this paper a semi-active method to control the vibrations of twin beams connected at their tips by a smart damping element is investigated. The damping element can be made of a magnetorheological elastomer or a smart material of another type, for instance vacuum packed particles. What is crucial is the ability to modify the storage and loss moduli of the damping block by means of devices attached directly to the vibrating structure. First, a simple dynamical model of the system is proposed. The continuous model is discretized using the Galerkin procedure. Then, a practical state-feedback control law is developed. The control strategy aims at achieving the best instantaneous energy dissipation of the system. Numerical simulations confirm its effectiveness in reducing free vibrations. The proposed control strategy appears to be robust in the sense that its application does not require any knowledge of the initial conditions imposed on the structure, and its performance is better than passive solutions, especially for the system induced in the first mode.

  19. An Overview of Distributed Microgrid State Estimation and Control for Smart Grids

    Directory of Open Access Journals (Sweden)

    Md Masud Rana

    2015-02-01

    Full Text Available Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method.

  20. An overview of distributed microgrid state estimation and control for smart grids.

    Science.gov (United States)

    Rana, Md Masud; Li, Li

    2015-02-12

    Given the significant concerns regarding carbon emission from the fossil fuels, global warming and energy crisis, the renewable distributed energy resources (DERs) are going to be integrated in the smart grid. This grid can spread the intelligence of the energy distribution and control system from the central unit to the long-distance remote areas, thus enabling accurate state estimation (SE) and wide-area real-time monitoring of these intermittent energy sources. In contrast to the traditional methods of SE, this paper proposes a novel accuracy dependent Kalman filter (KF) based microgrid SE for the smart grid that uses typical communication systems. Then this article proposes a discrete-time linear quadratic regulation to control the state deviations of the microgrid incorporating multiple DERs. Therefore, integrating these two approaches with application to the smart grid forms a novel contributions in green energy and control research communities. Finally, the simulation results show that the proposed KF based microgrid SE and control algorithm provides an accurate SE and control compared with the existing method.

  1. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  2. Resilience of Urban Smart Grids Involving Multiple Control Loops

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Pillai, Jayakrishnan Radhakrishna; Schwefel, Hans-Peter

    2016-01-01

    Intelligent control of energy distribution grids is implemented via a hierarchy of control loops with different input values and different control targets, which also work on different time-scales. This control is enabled by a bi-directional communication flow, which can be interrupted due to ICT...

  3. Smart mask ship to control for enhanced on wafer CD performance

    Science.gov (United States)

    Utzny, Clemens; Schumacher, Karl; Seltmann, Rolf

    2016-10-01

    In the process of semicondutcor fabrication the translation of the final product requirements into specific targets for each component of the manufacturing process is one of the most demanding tasks. This involves the careful assessment of the error budgets of each component as well as the sensible balancing of the costs implied by the requirements. Photolithographic masks play a pivotal role in the semiconductor fabrication. This attributes a crucial role to mask error budgeting within the overall wafer production process. Masks with borderline performance with respect to the wafer fabrication requirements have a detrimental effect on the wafer process window thus inducing delays and costs. However, prohibitively strict mask specifications will induce large costs and delays in the mask manufacturing process. Thus setting smart control mechanisms for mask quality assessment is highly relevant for an efficient production flow. To this end GLOBALFOUNDRIES and the AMTC have set up a new mask specification check to enable a smart ship to control process for mask manufacturing. Within this process the mask CD distribution is checked as to whether it is commensurable with the advanced dose control capabilities of the stepper in the wafer factory. If this is the case, masks with borderline CD performance will be usable within the manufacturing process as the signatures can be compensated. In this paper we give a detailed explanation of the smart ship control approach with its implications for mask quality.

  4. Active buckling control of smart plate as diaphragm with PZT5 sensor/actuator patches

    Science.gov (United States)

    Viliani, N. S.; Pourrostami, H.; Mostafavi, S. M.; Hashemizadeh, F.; Safian, M. R.; Hashemi, M.

    2014-12-01

    In current study, buckling analyses of smart plate is presented. The various types of piezoelectric materials are under investigation for petrochemical industry and other applications. The PZT sensor output is used to determine the input to the PZT actuator using the feedback control algorithm for buckling control of FG plate. This study investigated the governing differential equations of motion of smart plate which includes FG plate as the membrane and PZT5 patches as actuator and sensor. The Fourier series method adopted to obtain the solution for the equation of motion. Also the effects of feedback gain and FGM volume fraction exponent on the critical buckling load for PZT-5A are studied. The potential application of current study can be found in optimal design of sensor's diaphragm. The variation of critical buckling load vs. feedback gain indicates that by increasing the feedback gain, the buckling load increases.

  5. A scaleable integrated sensing and control system for NDE, monitoring, and control of medium to very large composite smart structures

    Science.gov (United States)

    Jones, Jerry; Rhoades, Valerie; Arner, Radford; Clem, Timothy; Cuneo, Adam

    2007-04-01

    NDE measurements, monitoring, and control of smart and adaptive composite structures requires that the central knowledge system have an awareness of the entire structure. Achieving this goal necessitates the implementation of an integrated network of significant numbers of sensors. Additionally, in order to temporally coordinate the data from specially distributed sensors, the data must be time relevant. Early adoption precludes development of sensor technology specifically for this application, instead it will depend on the ability to utilize legacy systems. Partially supported by the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Development Program (NIST-ATP), a scalable integrated system has been developed to implement monitoring of structural integrity and the control of adaptive/intelligent structures. The project, called SHIELD (Structural Health Identification and Electronic Life Determination), was jointly undertaken by: Caterpillar, N.A. Tech., Motorola, and Microstrain. SHIELD is capable of operation with composite structures, metallic structures, or hybrid structures. SHIELD consists of a real-time processing core on a Motorola MPC5200 using a C language based real-time operating system (RTOS). The RTOS kernel was customized to include a virtual backplane which makes the system completely scalable. This architecture provides for multiple processes to be operating simultaneously. They may be embedded as multiple threads on the core hardware or as separate independent processors connected to the core using a software driver called a NAT-Network Integrator (NATNI). NATNI's can be created for any communications application. In it's current embodiment, NATNI's have been created for CAN bus, TCP/IP (Ethernet) - both wired and 802.11 b and g, and serial communications using RS485 and RS232. Since SHIELD uses standard C language, it is easy to port any monitoring or control algorithm, thus providing for legacy

  6. Smart Control of Energy Distribution Grids over Heterogeneous Communication Networks

    DEFF Research Database (Denmark)

    Schwefel, Hans-Peter; Silva, Nuno; Olsen, Rasmus Løvenstein

    2018-01-01

    Off-the shelf wireless communication technologies reduce infrastructure deployment costs and are thus attractive for distribution system control. Wireless communication however may lead to variable network performance. Hence the impact of this variability on overall distribution system control be...

  7. Different Optimal Control Strategies for Exploitation of Demand Response in the Smart Grid

    DEFF Research Database (Denmark)

    Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver

    2012-01-01

    resources, intermittent renewable energy resources in the Smart Grid. This paper presents different optimal control (Genetic Algorithm-based and Model Predictive Control-based) algorithms that schedule controlled loads in the industrial and residential sectors, based on dynamic price and weather forecast......, considering users’ comfort settings to meet an optimization objective, such as maximum profit or minimum energy consumption. It is demonstrated in this work that the GA-based and MPC-based optimal control strategies are able to achieve load shifting for grid reliability and energy savings, including demand...

  8. Generation of Controlled Analog Emissions from Embedded Devices using Software Stress Methods

    Science.gov (United States)

    2017-03-01

    Generation of Controlled Analog Emissions from Embedded Devices using Software Stress Methods Oren Sternberg, Jonathan H. Nelson, Israel Perez...as dynamic memory allocation, hard disk writing and computations. Each stressing operation creates a pulse in an amplitude shift keying scheme...software stress testing and diagnostic and security applications including StressLinux (Linux) [17], KALI (Linux) [18] and a multitude of tools in

  9. MAS Based Event-Triggered Hybrid Control for Smart Microgrids

    DEFF Research Database (Denmark)

    Dou, Chunxia; Liu, Bin; Guerrero, Josep M.

    2013-01-01

    This paper is focused on an advanced control for autonomous microgrids. In order to improve the performance regarding security and stability, a hierarchical decentralized coordinated control scheme is proposed based on multi-agents structure. Moreover, corresponding to the multi-mode and the hybrid...... haracteristics of microgrids, an event-triggered hybrid control, including three kinds of switching controls, is designed to intelligently reconstruct operation mode when the security stability assessment indexes or the constraint conditions are violated. The validity of proposed control scheme is demonstrated...

  10. Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading.

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Li, Li; Liu, Hongliang; Liu, Guang; Zhang, Liwen; Zhang, Deyuan; Jiang, Lei

    2017-02-15

    Unidirectional liquid spreading without energy input has attracted considerable attention due to various potential applications such as biofluidics devices and self-lubrication. Introducing a surface wettable gradient or asymmetric nanostructures onto the surface has successfully harnessed the liquid to spread unidirectionally. However, these surfaces are still plagued with problems that restrict their practical applications: fixed spreading state for a fixed surface, and spreading slowly over a short distance. Herein, bioinspired from the fast continuous unidirectional water transport on the peristome of Nepenthes alata, we report a smart peristome with temperature-controlled unidirectional water spreading. The smart artificial peristome was fabricated by grafting the thermoresponsive material PNIPAAm onto the artificial PDMS peristome. Unidirectional water spreading on the smart peristome can be dynamically regulated by changing the surface temperature. Besides, the water spreading is demonstrated with a remarkable reversibility and stability. By investigating the relationship between liquid spreading distance and wettability, the underlying mechanism was revealed. This work gives a new way to achieve the control of unidirectional liquid spreading available for controllable microfluidics and medical devices.

  11. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: Toward controllable oil/water separation

    KAUST Repository

    Zhang, L.

    2012-02-01

    Advanced materials with surfaces that have controllable oil wettability when submerged in aqueous media have great potential for various underwater applications. Here we have developed smart surfaces on commonly used materials, including non-woven textiles and polyurethane sponges, which are able to switch between superoleophilicity and superoleophobicity in aqueous media. The smart surfaces are obtained by grafting a block copolymer, comprising blocks of pH-responsive poly(2-vinylpyridine) and oleophilic/hydrophobic polydimethylsiloxane (i.e., P2VP-b-PDMS) on these materials. The P2VP block can alter its wettability and its conformation via protonation and deprotonation in response to the pH of the aqueous media, which provides controllable and switchable access of oil by the PDMS block, resulting in the switchable surface oil wettability in the aqueous media. On the other hand, the high flexibility of the PDMS block facilitates the reversible switching of the surface oil wettability. As a proof of concept, we also demonstrate that materials functionalized with our smart surfaces can be used for highly controllable oil/water separation processes.

  12. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    Science.gov (United States)

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  13. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  14. Distributed hierarchical control architecture for integrating smart grid assets during normal and disrupted operations

    Science.gov (United States)

    Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek; Pratt, Robert G.; Chassin, David P.; Hammerstrom, Donald J.

    2017-09-12

    Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.

  15. [Research of controlling of smart home system based on P300 brain-computer interface].

    Science.gov (United States)

    Wang, Jinjia; Yang, Chengjie

    2014-08-01

    Using electroencephalogram (EEG) signal to control external devices has always been the research focus in the field of brain-computer interface (BCI). This is especially significant for those disabilities who have lost capacity of movements. In this paper, the P300-based BCI and the microcontroller-based wireless radio frequency (RF) technology are utilized to design a smart home control system, which can be used to control household appliances, lighting system, and security devices directly. Experiment results showed that the system was simple, reliable and easy to be populirised.

  16. An active control logic to improve the fatigue strength of smart flexible structures

    Science.gov (United States)

    Ambrosio, Pasquale; Braghin, Francesco; Resta, Ferruccio; Ripamonti, Francesco

    2013-04-01

    In general active vibration control intrinsically implies a fatigue damage reduction. Anyway, this assumption is not always verified. In these cases it is possible to deeper investigate the fatigue phenomena on smart flexible structures and their reduction from a control point of view. In this article, to identify the problem main parameters, a simplified interpretation of fatigue damage is given using the frequency analysis framework. Then, the active control logic is defined as an optimization problem with a quadratic functional taking into account the previously cited parameters. Finally, because of non-linearity of fatigue phenomenon, an adaptive approach is applied and a numerical/experimental validation is carried out.

  17. Control and prediction for blackouts caused by frequency collapse in smart grids.

    Science.gov (United States)

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  18. Control and prediction for blackouts caused by frequency collapse in smart grids

    Science.gov (United States)

    Wang, Chengwei; Grebogi, Celso; Baptista, Murilo S.

    2016-09-01

    The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model. This model allows one to simultaneously consider different types of power sources (e.g., traditional AC power plants and renewable power sources connected by DC/AC inverters) and different types of loads (e.g., consumers connected to distribution networks and consumers directly connected to power plants). We propose two new control strategies based on our model, one for traditional power grids and another one for smart grids. The control strategies show the efficient function of the fast-response energy storage systems in preventing and predicting blackouts in smart grids. This work provides innovative ideas which help us to build up a robuster and more economic smart power system.

  19. Smart Hand For Manipulators

    Science.gov (United States)

    Fiorini, Paolo

    1987-10-01

    Sensor based, computer controlled end effectors for mechanical arms are receiving more and more attention in the robotics industry, because commonly available grippers are only adequate for simple pick and place tasks. This paper describes the current status of the research at JPL on a smart hand for a Puma 560 robot arm. The hand is a self contained, autonomous system, capable of executing high level commands from a supervisory computer. The mechanism consists of parallel fingers, powered by a DC motor, and controlled by a microprocessor embedded in the hand housing. Special sensors are integrated in the hand for measuring the grasp force of the fingers, and for measuring forces and torques applied between the arm and the surrounding environment. Fingers can be exercised under position, velocity and force control modes. The single-chip microcomputer in the hand executes the tasks of communication, data acquisition and sensor based motor control, with a sample cycle of 2 ms and a transmission rate of 9600 baud. The smart hand described in this paper represents a new development in the area of end effector design because of its multi-functionality and autonomy. It will also be a versatile test bed for experimenting with advanced control schemes for dexterous manipulation.

  20. Information access for event-driven smart grid controllers

    DEFF Research Database (Denmark)

    Kristensen, Thomas Le Fevre; Olsen, Rasmus Løvenstein; Rasmussen, Jakob Gulddahl

    2018-01-01

    have been crossed at any measurement point in the grid. We assess the information access methods on information reliability and how this affects control performance. We focus on two different information quality metrics; (1) information age and (2) mismatch probability, which are expressed via...... stochastic models. We investigate in this paper the suitability for using these two metrics for optimization in a voltage grid control scenario. We conclude that, while the mismatch probability is very useful compared to the simpler information age metric from a network designers and operators point of view...... in setting quality of service requirements, it is not as helpful for control engineers....

  1. Real-Time Embedded Control System for a Portable Meteorological Station

    Directory of Open Access Journals (Sweden)

    Marcelo Moya

    2015-09-01

    Full Text Available The aim of this work is to design and code an embedded system for a portable automatic weather station. The portable station includes high performance sensors to measure parameters such as: i wind speed and direction, micro perturbations and wind gusts, ii air temperature, iii solar radiation, iv relative humidity, and v atmospheric pressure. The main contribution of this work is the development of an embedded control system operating in real time. This system is based on a Field Programmable Gate Array (FPGA device. The method developed guarantees high-resolution data acquisition of a number of samples in real time. The samples obtained are grouped and stored in a database, which will be used as a starting point for further analysis.

  2. Stability Concerns for Indirect Consumer Control in Smart Grids

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Andersen, Palle; Wisniewski, Rafal

    2013-01-01

    Demand side management will be an important tool for maintaining a balanced electrical grid in the future, when the penetration of volatile resources, such as wind and solar energy increases. Recent research focuses on two different management approaches, namely direct consumer control...... by an external third party, and indirect consumer control through incentives and price signals. In this work we present a simple formulation of indirect control, where the behavior of each consumer, is governed by local optimization of energy consumption. The local optimization accounts for both cost of energy...... and distribution losses, as well as any discomfort incurred by consumers from any shift in energy consumption. Our work will illustrate that in the simplest formulation of indirect control, the stability is greatly affected of both the behavior of consumers, and the number of consumers to include. We will show how...

  3. Analysis of Information Quality in event triggered Smart Grid Control

    DEFF Research Database (Denmark)

    Kristensen, Thomas le Fevre; Olsen, Rasmus Løvenstein; Rasmussen, Jakob Gulddahl

    2015-01-01

    The integration of renewable energy sources into the power grid requires added control intelligence which imposes new communication requirements onto the future power grid. Since large scale implementation of new communication infrastructure is infeasible, we consider methods of increasing...

  4. Smart Control of Energy Distribution Grids over Heterogeneous Communication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Iov, Florin; Hägerling, Christian

    2014-01-01

    The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses) and the qu......The expected growth in distributed generation will significantly affect the operation and control of todays distribution grids. Being confronted with short time power variations of distributed generations, the assurance of a reliable service (grid stability, avoidance of energy losses...

  5. Acoustic Replication in Smart Structures Using Active Structural/acoustic Control

    Science.gov (United States)

    Griffin, Steven Fulton

    1995-01-01

    There has been a great deal of research on the use of active vibration control with the goal of changing the vibration characteristics of structures. These vibration characteristics may result in undesirable acoustic fields that radiate from the structure. Traditional active noise control approaches center around canceling the offensive acoustic field using loudspeakers to set up opposing fields. A more recent approach is to use active vibration control techniques to directly modify the vibration characteristics and thus the acoustically radiative properties of the structure. A very effective way of achieving this structural/acoustic control is through the use of smart structures in which sensors and actuators are integrated into the structure itself. The subject of this thesis is to explore the potential for the use of active structural/acoustic control and smart structures in acoustic replication. In acoustic replication, an offensive acoustic response of an acoustically radiative smart structure is modified to match a desired acoustic response using active structural/acoustic control. The desired goal, in this case, is not necessarily suppression but to match the acoustic response of a similar structure that has desired acoustic properties. The model that is developed in detail is an elastic plate with piezoceramic sensors and actuators backed by a rigid, vented cavity. One specific application explored is the acoustic guitar. Detailed information on desired acoustic response of guitars is readily available in the literature, and experimental specimens are relatively easy to obtain. The way such an instrument vibrates in response to excitation of the strings determines the acoustic field that results. The feasibility of changing these vibrational characteristics using active structural/acoustic control is examined in detail including analytical and experimental results. The feasibility of applying acoustic replication to an aircraft cockpit is also examined

  6. Development of an Embedded Solar Tracking System with LabVIEW Motion Control

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jin; Hyun, Jun Ho; Oh, Won Jong; Kim, Yeong Min; Lee, Yoon Joon; Chun, Won Gee [Jeju National University, Jeju (Korea, Republic of)

    2010-10-15

    Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device such as a hydraulic pump, linear actuator, or an electric motor. The motion control is widely used in the packaging, printing, textile, semiconductor production, and power plants. National Instruments LabVIEW is a graphical programming language that has its roots in automation control and data acquisition. Its graphical representation, similar to a process flow diagram, was created to provide an intuitive programming environment for scientist and engineers. Crystal River Nuclear Plant engineers developed automated testing system of nuclear plant control modules in an aging nuclear power plant using LabVIEW to improve performance and reliability and reduce cost. In this study, an embedded two-axis solar tracking system was developed using LabVIEW motion control module

  7. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  8. Development of smart controller model for dual fuel generator systems

    African Journals Online (AJOL)

    Application of dual fuel powered electric generators such as one of diesel and biogas has gained popularity locally both as emergency power supply units and in distributed power systems. Dual fuel generators use two fuel types simultaneously in their operations. This is however faced with challenges in control and fuel ...

  9. Structural monitoring and smart control of a wind turbine

    DEFF Research Database (Denmark)

    Caterino, Nicola; Trinchillo, Francesco; Georgakis, Christos T.

    2014-01-01

    The remarkable growth in height of wind turbines in the last years - for a higher production of electricity - makes the issues of monitoring and control of such challenging engineering works pressing than ever. The research herein proposed is addressed to monitor the structural demand imposed...

  10. Smart Materials, Structures, and Mathematical Issues for Active Damage Control

    Science.gov (United States)

    1997-10-01

    Analysis and Correlation, ed. by DTA /NAFEMS, Cambria, England, UK, July, 1996. Inman, D. J. and Leo, D. J., 1996. "Convex Controller Design for Wind...Luikov Heat and Mass Transfer Institute, and Research and Development Engineer, MART , Minsk, Byelorus, visited CIMSS during the Fall of 1995 to

  11. Research and design of smart grid monitoring control via terminal based on iOS system

    Science.gov (United States)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  12. Controlled Owicki-Gries Concurrency: Reasoning about the Preemptible eChronos Embedded Operating System

    Directory of Open Access Journals (Sweden)

    June Andronick

    2015-11-01

    Full Text Available We introduce a controlled concurrency framework, derived from the Owicki-Gries method, for describing a hardware interface in detail sufficient to support the modelling and verification of small, embedded operating systems (OS's whose run-time responsiveness is paramount. Such real-time systems run with interrupts mostly enabled, including during scheduling. That differs from many other successfully modelled and verified OS's that typically reduce the complexity of concurrency by running on uniprocessor platforms and by switching interrupts off as much as possible. Our framework builds on the traditional Owicki-Gries method, for its fine-grained concurrency is needed for high-performance system code. We adapt it to support explicit concurrency control, by providing a simple, faithful representation of the hardware interface that allows software to control the degree of interleaving between user code, OS code, interrupt handlers and a scheduler that controls context switching. We then apply this framework to model the interleaving behavior of the eChronos OS, a preemptible real-time OS for embedded micro-controllers. We discuss the accuracy and usability of our approach when instantiated to model the eChronos OS. Both our framework and the eChronos model are formalised in the Isabelle/HOL theorem prover, taking advantage of the high level of automation in modern reasoning tools.

  13. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  14. An Overview of Demand Side Management Control Schemes for Buildings in Smart Grids

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Costanzo, Giuseppe Tommaso; Bindner, Henrik W.

    2013-01-01

    demand is needed. The research area of demand side management is still very much in flux and several options are being presented which can all be used to manage loads in order to achieve a flexible and more responsive demand. These different control schemes are developed with different organization...... of the power sector in mind and thus can differ significantly in their architecture, their integration into the various markets, their integration into distribution network operation and several other aspects. This paper proposes a classification of load control policies for demand side management in smart...

  15. Loss minimization and voltage control in smart distribution grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafael

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...... power control to maintain satisfactory grid operation. Numerical case studies illustrate how our approach can significantly increase installation of both electric vehicles and solar panels, while avoiding unsatisfactory over- and under-voltages throughout the grid....

  16. Loss Minimization and Voltage Control in Smart Distribution Grid

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Sloth, Christoffer; Wisniewski, Rafal

    2014-01-01

    This work presents a strategy for increasing the installation of electric vehicles and solar panels in low-voltage grids, while obeying voltage variation constraints. Our approach employs minimization of active power losses for coordinating consumption and generation of power, as well as reactive...... power control to maintain satisfactory grid operation. Numerical case studies illustrate how our approach can significantly increase installation of both electric vehicles and solar panels, while avoiding unsatisfactory over- and under-voltages throughout the grid....

  17. Smart Algorithms to Control a Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Nabil Farhane

    2017-12-01

    Full Text Available In this paper, a robust adaptive fuzzy neural network sliding mode (AFNNSM control design is proposed to maximize the captured energy for a variable speed wind turbine and to minimize the efforts of the drive shaft. Fuzzy neural network (FNN is used to improve the mathematical system model, by the prediction of model unknown function, which is used by the Sliding mode control approach (SMC and enables a lower switching gain to be used despite the presence of large uncertainties. As a result, the used robust control action did not exhibit any chattering behavior. This FNN is trained on-line using the backpropagation algorithm (BP. The particle swarm optimization (PSO algorithm is used in this study to optimize the learning rate of BP algorithm in order to improve the network performance in term of the speed of convergence. The stability is shown by the Lyapunov theory and the trajectory tracking errors converge to zero without any oscillatory behavior. Simulations illustrate the effectiveness of the designed method.

  18. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  19. Numerical and Experimental Study on Integration of Control Actions into the Finite Element Solutions in Smart Structures

    Directory of Open Access Journals (Sweden)

    L. Malgaca

    2009-01-01

    Full Text Available Piezoelectric smart structures can be modeled using commercial finite element packages. Integration of control actions into the finite element model solutions (ICFES can be done in ANSYS by using parametric design language. Simulation results can be obtained easily in smart structures by this method. In this work, cantilever smart structures consisting of aluminum beams and lead-zirconate-titanate (PZT patches are considered. Two cases are studied numerically and experimentally in parallel. In the first case, a smart structure with a single PZT patch is used for the free vibration control under an initial tip displacement. In the second case, a smart structure with two PZT patches is used for the forced vibration control under harmonic excitation, where one of the PZT patches is used as vibration generating shaker while the other is used as vibration controlling actuator. For the two cases, modal analyses are done using chirp signals; Control OFF and Control ON responses in the time domain are obtained for various controller gains. A non-contact laser displacement sensor and strain gauges are utilized for the feedback signals. It is observed that all the simulation results agree with the experimental results.

  20. Active control of acoustic pressure fields using smart material technologies

    Science.gov (United States)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  1. Embedded system in Arduino platform with Fuzzy control to support the grain aeration decision

    Directory of Open Access Journals (Sweden)

    Albino Szesz Junior

    Full Text Available ABSTRACT: Aeration is currently the most commonly used technique to improve the drying and storage of grain, depending on temperature and water content of the grain, as of the temperature and relative humidity of the outside air. In order to monitor temperature and humidity of the grain mass, it is possible to have a network of sensors in the cells of both internal and external storage. Use of artificial intelligence through Fuzzy theory, has been used since the 60s and enables their application on various forms. Thus, it is observed that the aeration of grain in function of representing a system of controlled environment can be studied in relation to the application of this theory. Therefore, the aim of this paper is to present an embedded Fuzzy control system based on the mathematical model of CRUZ et al. (2002 and applied to the Arduino platform, for decision support in aeration of grain. For this, an embedded Arduino system was developed, which received the environmental values of temperature and humidity to then be processed in a Fuzzy controller and return the output as a recommendation to control the aeration process rationally. Comparing the results obtained from the graph presented by LASSERAN (1981 it was observed that the system is effective.

  2. Smart Card

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2006-01-01

    Full Text Available Reforms in electronic business have presented new opportunities to use smart card technology as an enabling tool. The network-centric applications, where resources are located throughout the Internet and access to them is possible from any location, require authenticated access and secured transactions. Smart cards represent an ideal solution: they offers an additional layer of electronic security and information assurance for user authentication, confidentiality, non-repudiation, information integrity, physical access control to facilities, and logical access control to an computer systems.

  3. Simple synthesis of smart magnetically driven fibrous films for remote controllable oil removal

    Science.gov (United States)

    Wu, Jing; Wang, Nü; Zhao, Yong; Jiang, Lei

    2015-01-01

    Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3O4 nanoparticles, such fibrous films act as a ``smart magnetically controlled oil removal carrier'', which effectively overcome the drawbacks of other in situ oil adsorbant materials and can also be easily recovered. This work provides a simple strategy to fabricate magnetic responsive intelligent oil removal materials, which will find broad applications in complex environment oil-water separation.Inspired by the marine mussel adhesive protein, smart, magnetically controllable, oil adsorption nanofibrous materials were successfully fabricated in this research. Taking advantage of the properties of dopamine whose molecular structure mimics the single unit of the marine mussel adhesive protein and can be polymerized in alkaline solution forming a ``glue'' layer on many kinds of material surfaces, magnetic iron(ii, iii) oxide (Fe3O4) nanoparticles were easily and robustly anchored on to electrospun poly(vinylidene fluoride) fibrous films. After fluorination, the as-prepared hierarchical structured films exhibited superhydrophobicity, superoleophilicity and an excellent oil adsorption capacity from water. Importantly, because of the magnetically controllable property endowed by the Fe3

  4. Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell

    Science.gov (United States)

    Liechty, Derek S.; Hollis, Brian R.; Edquist, Karl T.

    2002-01-01

    Several configurations, having a Viking aeroshell heritage and providing lift-to-drag required for precision landing, have been considered for a proposed Mars Smart Lander. An experimental aeroheating investigation of two configurations, one having a blended tab and the other a blended shelf control surface, has been conducted at the NASA Langley Research Center in the 20-Inch Mach 6 Air Tunnel to assess heating levels on these control surfaces and their effects on afterbody heating. The proposed Mars Smart Lander concept is to be attached through its aeroshell to the main spacecraft bus, thereby producing cavities in the forebody heat shield upon separation prior to entry into the Martian atmosphere. The effects these cavities will have on the heating levels experienced by the control surface and the afterbody were also examined. The effects of Reynolds number, angle-of-attack, and cavity location on aeroheating levels and distributions were determined and are presented. At the highest angle-of-attack, blended tab heating was increased due to transitional reattachment of the separated shear layer. The placement of cavities downstream of the control surface greatly influenced aeroheating levels and distributions. Forebody heat shield cavities had no effect on afterbody heating and the presence of control surfaces decreased leeward afterbody heating slightly.

  5. Embedded Web Technology: Internet Technology Applied to Real-Time System Control

    Science.gov (United States)

    Daniele, Carl J.

    1998-01-01

    The NASA Lewis Research Center is developing software tools to bridge the gap between the traditionally non-real-time Internet technology and the real-time, embedded-controls environment for space applications. Internet technology has been expanding at a phenomenal rate. The simple World Wide Web browsers (such as earlier versions of Netscape, Mosaic, and Internet Explorer) that resided on personal computers just a few years ago only enabled users to log into and view a remote computer site. With current browsers, users not only view but also interact with remote sites. In addition, the technology now supports numerous computer platforms (PC's, MAC's, and Unix platforms), thereby providing platform independence.In contrast, the development of software to interact with a microprocessor (embedded controller) that is used to monitor and control a space experiment has generally been a unique development effort. For each experiment, a specific graphical user interface (GUI) has been developed. This procedure works well for a single-user environment. However, the interface for the International Space Station (ISS) Fluids and Combustion Facility will have to enable scientists throughout the world and astronauts onboard the ISS, using different computer platforms, to interact with their experiments in the Fluids and Combustion Facility. Developing a specific GUI for all these users would be cost prohibitive. An innovative solution to this requirement, developed at Lewis, is to use Internet technology, where the general problem of platform independence has already been partially solved, and to leverage this expanding technology as new products are developed. This approach led to the development of the Embedded Web Technology (EWT) program at Lewis, which has the potential to significantly reduce software development costs for both flight and ground software.

  6. Distributed embedded controller development with petri nets application to globally-asynchronous locally-synchronous systems

    CERN Document Server

    Moutinho, Filipe de Carvalho

    2016-01-01

    This book describes a model-based development approach for globally-asynchronous locally-synchronous distributed embedded controllers.  This approach uses Petri nets as modeling formalism to create platform and network independent models supporting the use of design automation tools.  To support this development approach, the Petri nets class in use is extended with time-domains and asynchronous-channels. The authors’ approach uses models not only providing a better understanding of the distributed controller and improving the communication among the stakeholders, but also to be ready to support the entire lifecycle, including the simulation, the verification (using model-checking tools), the implementation (relying on automatic code generators), and the deployment of the distributed controller into specific platforms. Uses a graphical and intuitive modeling formalism supported by design automation tools; Enables verification, ensuring that the distributed controller was correctly specified; Provides flex...

  7. Control and Operation of the LHCb Readout Boards Using Embedded Microcontrollers and the PVSS II

    CERN Document Server

    Köstner, Stefan

    2006-01-01

    LHCb is one of the four experiments at the Large Hadron Collider. Before final reconstruction of the data in PC farms, high speed preprocessing is performed on a set of a few hundred custom electronics boards employing large modern field programmable gate array (FPGA) driven electronics. The local control of these boards is achieved via an embedded microcontroller which is connected to a large Local Area Network. After a brief introduction to the hardware we summarize the implementation of the entire layered software architecture for the readout boards and its integration into the Experiment Control System, which is built upon a common control framework based on an industrial SCADA system. Abstraction of different access modes and separation from the modeling of the components in the control system allow the reuse of various components on different hardware types. Each board has several hundreds of registers and memory blocks, so the optimization of write and read accesses is crucial for the s...

  8. Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction.

    Science.gov (United States)

    Kerckhoff, Joseph; Nurdin, Hendra I; Pavlichin, Dmitri S; Mabuchi, Hideo

    2010-07-23

    We propose an approach to quantum error correction based on coding and continuous syndrome readout via scattering of coherent probe fields, in which the usual steps of measurement and discrete restoration are replaced by direct physical processing of the probe beams and coherent feedback to the register qubits. Our approach is well matched to physical implementations that feature solid-state qubits embedded in planar electromagnetic circuits, providing an autonomous and "on-chip" quantum memory design requiring no external clocking or control logic.

  9. Case study: the development of an embedded realtime tracking and control application for a tracking radar

    CSIR Research Space (South Africa)

    Thomson

    2011-04-01

    Full Text Available stream_source_info Thomson_2011.pdf.txt stream_content_type text/plain stream_size 19031 Content-Encoding ISO-8859-1 stream_name Thomson_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A Case Study...: The development of an embedded realtime Tracking and Control Application for a tracking radar Paul Thomson Defence, Peace, Safety and Security CSIR Pretoria, South Africa Email: pthomson@csir.co.za Bader Almutery National Program for Electronics...

  10. An Embedded Web based Real Time Application for Remote Monitoring & Controlling of MST RADAR Transmitters

    Directory of Open Access Journals (Sweden)

    Nagabhushan Raju KONDURU

    2012-01-01

    Full Text Available An embedded web based radar transmitters control & interlock system is developed in the present work. This research activity facilitates controlling and monitoring 53-MHz, 2.5 Mega-watt peak power MST radar triode based transmitters via internet. This radar is a prime instrument for atmospheric science research with 32 transmitters powering 1024-element antenna array. A comprehensive safety interlock is built in to protect expensive devices; by sensing anode voltages, heater currents and airflow etc. It automatically prevents fatal damages by switching transmitter / RF off. The system is designed and developed using RISC microcontroller ARM LPC 2148 based on a 32- bit ARM7 TDMI-S CPU with real-time emulation and embedded trace support and 512 kB high speed flash memory. The microcontroller is a blend of serial communication interface, dual 10-bit ADC’s and fast GPIO. Ethernet controller LM3S6432 is used to send sensors’ digitalized data over internet.

  11. Towards an Interface for Music Mixing based on Smart Tangibles and Multitouch

    DEFF Research Database (Denmark)

    Gelineck, Steven; Overholt, Daniel; Büchert, Morten

    2013-01-01

    This paper presents the continuous work towards the development of an interface for music mixing targeted towards expert sound technicians and producers. The mixing interface uses a stage metaphor mapping scheme where audio channels are represented as digital widgets on a 2D surface. These can...... be controlled by multi touch or by smart tangibles, which are tangible blocks with embedded sensors. The smart tangibles developed for this interface are able to sense how they are grasped by the user. The paper presents the design of the mixing interface including the smart tangible as well as a preliminary...... user study involving a hands-on focus group session where 5 different control technologies are contrasted and discussed. Preliminary findings suggest that smart tangibles were preferred, but that an optimal interface would include a combination of touch, smart tangibles and an extra function control...

  12. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ticci, Sara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g., ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates (Miami

  13. Load Control Timescales Simulation in a Multi-Agent Smart Grid Platform

    DEFF Research Database (Denmark)

    Oliveira, Pedro; Gomes, Luis; Pinto, Tiago

    2013-01-01

    Environmental concerns and the shortage in the fossil fuel reserves have been potentiating the growth and globalization of distributed generation. Another resource that has been increasing its importance is the demand response, which is used to change consumers’ consumption profile, helping...... to reduce peak demand. Aiming to support small players’ participation in demand response events, the Curtailment Service Provider emerged. This player works as an aggregator for demand response events. The control of small and medium players which act in smart grid and micro grid environments is enhanced...

  14. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Fenaughty, Karen [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States)

    2018-01-15

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  15. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric; Fenaughty, Karen; Parker, Danny; Lubiner, Michael : Howard, Luke

    2018-01-29

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  16. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)

    2012-11-15

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  17. Development of a control logic for nuclear heating operation for primary system for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Kwang; Kang, H. O.; Yoon, J. H.; Kim, K. K.; Lee, D. J

    2000-11-01

    A nuclear heating concept is adopted in the SMART compared with the commercial nuclear power plant using the primary coolant pumps for heating the primary system. In this report, five options of heatup control logic are proposed and each option is evaluated using MMS code. In option 1, control rod is controlled by a signal of difference in require heatup rate (dT/dt)req. and actual heatup rate (dT/dt)act., which is calculated from the measured value of core outlet temperature. In option 2, control rod is controlled by a signal of difference in reference temperature and actual measured temperature. In option 3, control rod is controlled by a signal of difference in required core power Qcore and actual measured core power N. Primary side temperature difference in measured values between steam generator (SG) inlet and outlet is used in determining Qcore in option 3. Because of this dependency on difference in measured temperature Qcore, in conjunction with measurement channel error in temperature, involves certain uncertainty during specially low flow conditions where primary side temperature difference in SG inlet and outlet is very small. Option 4 is a modified version of option 3. In option 4, SG outlet temperature is not needed to calculate Qcore. However a compensating program which enable Qcore to be evaluated without SG outlet temperature is needed. In option 5, control rod is controlled by a signal of difference in required preset step core power Qcore and actual measured core power N. From the simulation results it is concluded that option 5 using step power setting during heatup operation is suitable for as a heatup control logic for SMART.

  18. Chaos control in delayed phase space constructed by the Takens embedding theory

    Science.gov (United States)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  19. All-printed smart structures: a viable option?

    Science.gov (United States)

    O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory

    2014-03-01

    The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.

  20. Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids

    Directory of Open Access Journals (Sweden)

    Kai Ma

    2017-07-01

    Full Text Available This work proposes three switched control strategies for aggregated heating, ventilation, and air conditioning (HVAC systems in commercial buildings to track the automatic generation control (AGC signal in smart grid. The existing control strategies include the direct load control strategy and the setpoint regulation strategy. The direct load control strategy cannot track the AGC signal when the state of charge (SOC of the aggregated thermostatically controlled loads (TCLs exceeds their regulation capacity, while the setpoint regulation strategy provides flexible regulation capacity, but causes larger tracking errors. To improve the tracking performance, we took the advantages of the two control modes and developed three switched control strategies. The control strategies switch between the direct load control mode and the setpoint regulation mode according to different switching indices. Specifically, we design a discrete-time controller and optimize the controller parameter for the setpoint regulation strategy using the Fibonacci optimization algorithm, enabling us to propose two switched control strategies across multiple time steps. Furthermore, we extend the switched control strategies by introducing a two-stage regulation in a single time step. Simulation results demonstrate that the proposed switched control strategies can reduce the tracking errors for frequency regulation.

  1. Development of linear pulse motor type control element drive mechanism for smart

    Energy Technology Data Exchange (ETDEWEB)

    Je-Yong, Yu; Jong-in, Kim; Ji-ho, Kim; Hyung, Huh; Moon-Hee, Chang [Power Reactor Technology Development Team, Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2001-07-01

    The system-integrated modular advanced reactor (SMART) currently under development at the Korea Atomic Energy Research Institute is being designed with soluble boron free operation and the use of nuclear heating for reactor start-up. These design features require a Control Element Drive Mechanism(CEDM) for SMART to have fine-step movement capability as well as high reliability for fine reactivity control. In this paper, the design characteristics of a new concept CEDM driven by a Linear Pulse Motor (LPM) which meets the design requirements of the integral reactor SMART are introduced. The primary dimensions of the linear pulse motor are determined by electro-magnetic analysis and the results are also presented. In parallel with the electro-magnetic analysis, the conceptual design of the CEDM is visualized and checked for interferences among parts by assembling three dimensional (3D) models on computer. A prototype of the LPM with double air-gaps for the CEDM sub-assemblies to lift 100 kg is designed, analysed, manufactured and tested to confirm the validity of the CEDM design concept. A converter and test facility are manufactured to verify the dynamic performance of the LPM. The mover of the LPM is welded with ferromagnetic material and non-ferromagnetic material to get the magnetic flux path between the inner stator and outer stator. The thrust forces of LPM predicted by the analytic model have shown good agreement with experimental results from the prototype LPM. It is found that the LPM type CEDM has high force density and a simple drive mechanism to reduce volume and satisfy reactor operating circumstances with high pressure and temperature. (authors)

  2. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  3. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    Science.gov (United States)

    Tseng, Kevin C.; Lin, Bor-Shing; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG) acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state. PMID:25756862

  4. Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller

    Directory of Open Access Journals (Sweden)

    Kevin C. Tseng

    2015-03-01

    Full Text Available Music is a way of expressing our feelings and emotions. Suitable music can positively affect people. However, current multimedia control methods, such as manual selection or automatic random mechanisms, which are now applied broadly in MP3 and CD players, cannot adaptively select suitable music according to the user’s physiological state. In this study, a brain computer interface-based smart multimedia controller was proposed to select music in different situations according to the user’s physiological state. Here, a commercial mobile tablet was used as the multimedia platform, and a wireless multi-channel electroencephalograph (EEG acquisition module was designed for real-time EEG monitoring. A smart multimedia control program built in the multimedia platform was developed to analyze the user’s EEG feature and select music according his/her state. The relationship between the user’s state and music sorted by listener’s preference was also examined in this study. The experimental results show that real-time music biofeedback according a user’s EEG feature may positively improve the user’s attention state.

  5. PSO-Based Voltage Control Strategy for Loadability Enhancement in Smart Power Grids

    Directory of Open Access Journals (Sweden)

    Heng-Yi Su

    2016-12-01

    Full Text Available This paper proposes a new voltage control methodology using the particle swarm optimization (PSO technique for smart grid loadability enhancement. The goal of this paper is to achieve reliable and efficient voltage profile/stability regulation in power grids. This methodology is based on the decouple power flow equations and the worst-case design technique. Specifically, the secondary voltage control (SVC problem is formulated as an L-infinity norm minimization problem which considers overall load voltage deviations in electrical power systems as an objective model, and the PSO technique is employed to determine a robust control action which aims to improve voltage profile and to enlarge transmission grid loadability by optimal coordinated control of VAR sources. The methodology was successfully tested on several IEEE benchmark systems.

  6. Application of smart technology in monitoring and control of home appliances

    Directory of Open Access Journals (Sweden)

    A. A. Abdulrazaq

    2017-08-01

    Full Text Available The inherent dependency of home appliances on human for monitoring and control has been found to be mainly responsible for power wastage, and increase in the rate of wear and tear, which invariably implies additional spending on the part of owners. The smart technology provides a way out. This paper presents an automated system which is based on arduino and android device for monitoring and controlling appliances to prevent the wastage of power. The system design is based on the Microcontroller MIKRO-C software, active sensors and wireless internet services which is used in different monitoring and control processes of fan, air-conditioner, light and heater. The system when tested performs efficiently in monitoring and controlling through switching the appliances in the room based on human presence and environmental changes due to light intensity and temperature variation.

  7. Smart City Environmental Pollution Prevention and Control Design Based on Internet of Things

    Science.gov (United States)

    Peng, He; Bohong, Zheng; Qinpei, Kuang

    2017-11-01

    Due to increasingly serious urban pollution, this paper proposes an environmental pollution prevention and control system in combination with Internet of things. The system transfers data through the Internet, which also utilizes sensor, pH sensor and smoke sensor to obtain environmental data. Besides, combined with the video data acquired through monitoring, the data are transferred to data center to analyze the haze pollution, water pollution and fire disaster in environment. According to the results, multi-purpose vehicles are mobilized to complete the tasks such as spraying water to relieve haze, water source purification and fire fighting in city environment. Experiments show that the environmental pollution prevention and control system designed in this paper can automatically complete the urban environmental pollution detection, prevention and control, which thus reduces human and material resources and improves the efficiency of pollution prevention and control. Therefore, it possesses greatly practical significance to the construction of smart city.

  8. A Taxonomy on Accountability and Privacy Issues in Smart Grids

    Science.gov (United States)

    Naik, Ameya; Shahnasser, Hamid

    2017-07-01

    Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.

  9. Perancangan Sistem Automatic Cruise Control (ACC) Menggunakan Metode Depes (Development Process of Embedded System) Dengan Simulasi Java

    OpenAIRE

    Santoso, M. Iman

    2010-01-01

    Design is an important parl of a system building. Design of the system could be existing system development or create from the scratch. This paper studies the system development in case of Automatic Cruice Control (ACC). DePES (Development Process of Embedded System) is used to design such system. This Process focused on embedded sofware components, problem analysis, specifications, architechture and test. In order to illustrate and test the proposed sytem, Java simulation is provided.

  10. Way of Working for Embedded Control Software using Model-Driven Development Techniques

    NARCIS (Netherlands)

    Bezemer, M.M.; Groothuis, M.A.; Brugali, D.; Schlegel, C.; Broenink, Johannes F.

    2011-01-01

    Embedded targets normally do not have much resources to aid developing and debugging the software. So model-driven development (MDD) is used for designing embedded software with a `first time right' approach. For such an approach, a good way of working (WoW) is required for embedded software

  11. Smart materials and structures

    Science.gov (United States)

    Rogowski, Robert S.; Heyman, Joseph S.

    1993-01-01

    Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.

  12. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    Science.gov (United States)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  13. Smart Circuit Breaker Communication Infrastructure

    Directory of Open Access Journals (Sweden)

    Octavian Mihai MACHIDON

    2017-11-01

    Full Text Available The expansion of the Internet of Things has fostered the development of smart technologies in fields such as power transmission and distribution systems (as is the Smart Grid and also in regard to home automation (the Smart Home concept. This paper addresses the network communication infrastructure for a Smart Circuit Breaker system, a novel application at the edge of the two afore-mentioned systems (Smart Grid and Smart Home. Such a communication interface has high requirements from functionality, performance and security point of views, given the large amount of distributed connected elements and the real-time information transmission and system management. The paper describes the design and implementation of the data server, Web interface and the embedded networking capabilities of the smart circuit breakers, underlining the protocols and communication technologies used.

  14. ROBUST MIXED H2/H8 ACTIVE VIBRATION CONTROLLER IN ATTENUATION OF SMART BEAM

    Directory of Open Access Journals (Sweden)

    Atta Oveisi

    2014-12-01

    Full Text Available The lack of robustness of the mechanical systems due to the unmodeled dynamics and the external disturbances withholds the performance and optimality of the structures. In this paper, this deficiency is obviated in order to reach the desired robust stability and performance on smart structures. For this purpose a multi-objective robust control strategy is proposed for vibration suppression of a clamped-free smart beam with piezoelectric actuator and vibrometer sensor in an LMI framework which is capable of handling weighted exogenous input signals and provides desired pole placement and robust performance at the same time. An accurate model of a homogeneous beam is derived by means of the finite element modal analysis. Then a low order modal system is considered as the nominal model and remaining modes are left as the multiplicative unstructured uncertainty. Next, a robust controller with a regional pole placement constraint is designed based on the augmented plant composed of the nominal model and its accompanied uncertainty by solving a convex optimization problem. Finally, the robustness of the uncertain closed-loop model and the effect of performance index weights on the system output are investigated both in simulation and practice.

  15. Investigation of actuator debonding effects on active control in smart composite laminates

    Directory of Open Access Journals (Sweden)

    Bin Huang

    2015-04-01

    Full Text Available This article presents a numerical study of active vibration control of smart composite laminates in the presence of actuator debonding failures. A comparison between the smart composite laminates with healthy actuator and various partially debonded actuator cases is performed to investigate the debonding effects on the vibration suppression. The improved layerwise theory with Heaviside’s unit step function is adopted to model the displacement field with actuator debonding failure. The higher order electric potential field is adopted to describe the potential variation through the thickness. The finite element method–based formulations are derived using the plate element, taking into consideration the electro-mechanical coupling effect. The reduced-order model is represented by the state-space form and further for the vibration suppression using a simple constant gain velocity feedback control strategy. For the purpose of demonstration, a 16-layer cross-ply substrate laminate ([0/90]4s is employed for the numerical study. The results show that the actuator debonding affects the closed-loop frequencies, active damping ratios, and efficiency of vibration suppression.

  16. A Galerkin-Parameterization Method for the Optimal Control of Smart Microbeams

    Directory of Open Access Journals (Sweden)

    Marwan Abukhaled

    2009-01-01

    Full Text Available A proposed computational method is applied to damp out the excess vibrations in smart microbeams, where the control action is implemented using piezoceramic actuators. From a mathematical point of view, we wish to determine the optimal boundary actuators that minimize a given energy-based performance measure. The minimization of the performance measure over the actuators is subjected to the full motion of the structural vibrations of the micro-beams. A direct state-control parametrization approach is proposed where the shifted Legendre polynomials are employed to solve the optimization problem. Legendre operational matrix and the properties of Kronecker product are utilized to find the approximated optimal trajectory and optimal control law of the lumped parameter systems with respect to the quadratic cost function by solving linear algebraic equations. Numerical examples are provided to demonstrate the applicability and efficiency of the proposed approach.

  17. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  18. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  19. Flatness-based embedded adaptive fuzzy control of turbocharged diesel engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    In this paper nonlinear embedded control for turbocharged Diesel engines is developed with the use of Differential flatness theory and adaptive fuzzy control. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances an adaptive fuzzy control scheme is implemanted making use of the transformed dynamical system of the diesel engine that is obtained through the application of differential flatness theory. Since only the system's output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for neuro-fuzzy approximators, which are part of the controller, so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed observer-based adaptive fuzzy control scheme results in H∞ tracking performance.

  20. An Actuator Control Unit for Safety-Critical Mechatronic Applications with Embedded Energy Storage Backup

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2016-03-01

    Full Text Available This paper presents an actuator control unit (ACU with a 450-J embedded energy storage backup to face safety critical mechatronic applications. The idea is to ensure full operation of electric actuators, even in the case of battery failure, by using supercapacitors as a local energy tank. Thanks to integrated switching converter circuitry, the supercapacitors provide the required voltage and current levels for the required time to guarantee actuator operation until the system enters into safety mode. Experimental results are presented for a target application related to the control of servomotors for a robotized prosthetic arm. Mechatronic devices for rehabilitation or assisted living of injured and/or elderly people are available today. In most cases, they are battery powered with lithium-based cells, providing high energy density and low weight, but at the expense of a reduced robustness compared to lead-acid- or nickel-based battery cells. The ACU of this work ensures full operation of the wearable robotized arm, controlled through acceleration and electromyography (EMG sensor signals, even in the case of battery failure, thanks to the embedded energy backup unit. To prove the configurability and scalability of the proposed solution, experimental results related to the electric actuation of the car door latch and of a robotized gearbox in vehicles are also shown. The reliability of the energy backup device has been assessed in a wide temperature range, from −40 to 130 °C, and in a durability test campaign of more than 10,000 cycles. Achieved results prove the suitability of the proposed approach for ACUs requiring a burst of power of hundreds of watts for only a few seconds in safety-critical applications. Alternatively, the aging and temperature characterizations of energy backup units is limited to supercapacitors of thousands of farads for high power applications (e.g., electric/hybrid propulsion and with a temperature range limited to

  1. Design And Implementation Of Smart Living Room Wireless Control For Safety Purpose

    Directory of Open Access Journals (Sweden)

    Aeindra Myint Lwin

    2015-07-01

    Full Text Available Abstract This research presents the microcontroller controlled smart living room system using Bluetooth wireless technology from mobile phone.An android apk is created in mobile for controlling the living room system. A 16F877A microcontroller is interfaced serially to a bluetooth module transceiver. It is used for controlling fan speed control dim light control lighting ONOFF and window angle control. An arduino controller is used for keypad control door security. It is connected to DC motor control circuit and switching circuit for opening and closing of the door keypad for entering password and serial LCD for displaying the update status of the door.User can control the home appliances by using bluetooth connection from mobile phone in its range. User can adjust the dim light fan speed window angle and light bulbs from android apk. An internal EEPROM is built in 16F877A microcontroller and it stores the last requested data of the appliances. If userwants to recover the former conditions of the appliances he can recall them from android apk.

  2. Design And Implementation Of Smart Parking System Using Peripheral Interface Controllers And Infrared Sensors

    Directory of Open Access Journals (Sweden)

    May Thaw Htet

    2015-08-01

    Full Text Available With the increase in world population and vehicle production parking spaces and facilities are required. As the numbers of vehicles on the road are increasing day by day parking problems which are increasing at an alarming rate in every major city cause drivers frustration traffic congestion and time wasting especially during the peak business hours. Lot of researches was being done all over the world to implement better parking management system which reduces parking problems. SPARK Smart Parking is parking garage system that utilizes various technologies to implement best parking system. The proposed system is aimed to inform drivers about the number of available parking spaces without any parking difficulties. This system is designed for two- level parking slots with twenty six parking spaces and one aisle on each floor. The condition of parking slots is detected by IR sensors and is reported periodically to main controller via floor controllers and self controllers. PIC 18F4550 is chosen to be used as controllers because it is suitable for the proposed system. Each floor contains LCD display which will show available parking spaces of that floor. LCD display at the entrance gate will show overall available parking slots of two floors. In this paper a new parking system called Smart Parking system is proposed to help drivers getting the real-time parking information and to find vacant spaces in a car park in a shorter time. This kind of system minimizes not only traffic congestion problems but also staff requirements to control the traffic in the car park.

  3. Smart Cruise Control: UAV sensor operator intent estimation and its application

    Science.gov (United States)

    Cheng, Hui; Butler, Darren; Kumar, Rakesh

    2006-05-01

    Due to their long endurance, superior mobility and the low risk posed to the pilot and sensor operator, UAVs have become the preferred platform for persistent ISR missions. However, currently most UAV based ISR missions are conducted through manual operation. Event the simplest tasks, such as vehicle tracking, route reconnaissance and site monitoring, need the sensor operator's undivided attention and constant adjustment of the sensor control. The lack of autonomous behaviour greatly limits of the effectiveness and the capability of UAV-based ISR, especially the use of a large number of UAVs simultaneously. Although fully autonomous UAV based ISR system is desirable, it is still a distant dream due to the complexity and diversity of combat and ISR missions. In this paper, we propose a Smart Cruise Control system that can learn UAV sensor operator's intent and use it to complete tasks automatically, such as route reconnaissance and site monitoring. Using an operator attention model, the proposed system can estimate the operator's intent from how they control the sensor (e.g. camera) and the content of the imagery that is acquired. Therefore, for example, from initially manually controlling the UAV sensor to follow a road, the system can learn not only the preferred operation, "tracking", but also the road appearance, "what to track" in real-time. Then, the learnt models of both road and the desired operation can be used to complete the task automatically. We have demonstrated the Smart Cruise Control system using real UAV videos where roads need to be tracked and buildings need to be monitored.

  4. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    Science.gov (United States)

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  5. Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart" material.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra

    2015-06-01

    Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.

  6. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Sousa, Tiago

    2016-01-01

    Electric vehicles can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. On the transmission system level, electric vehicles are regarded as an important means of balancing the intermittent renewable energ...... of battery dynamics and driving patterns of electric vehicles, charging and communications standards are introduced; after that, three control strategies and their commonly used algorithms are described; finally, conclusion and recommendations are made.......Electric vehicles can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. On the transmission system level, electric vehicles are regarded as an important means of balancing the intermittent renewable energy...... resources such as wind power. This is because electric vehicles can be used to absorb the energy during the period of high electricity penetration and feed the electricity back into the grid when the demand is high or in situations of insufficient electricity generation. However, on the distribution system...

  7. A new high dynamic range ROIC with smart light intensity control unit

    Science.gov (United States)

    Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar

    2017-05-01

    This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.

  8. Active vibration control for a smart panel with enhanced acoustic performances

    Science.gov (United States)

    Ripamonti, Francesco; Baro, Simone; Molgora, Manuel

    2017-04-01

    The spread of smart structures has recorded a significant increase during the last decades. Nowadays these solutions are applied in various fields such as aerospace, automotive and civil constructions. This kind of structures was born in the past in order to cope with the high vibrations that every lightweight structure has to face. In order to reduce weight designers usually decide to use very thin and lightweight structures. In the automotive field, for example, a reduced fuel consumption is obtained employing lightweight materials. However, in general a worsening of the vibroacoustic comfort is obtained with undesired vibrations that can be really annoying for passengers and dangerous for the structure itself. This work presents an innovative smart plate that is able to actively vary its dynamic properties, by means of an IMSC control logic, in order to improve the acoustic performances. An investigation about the system response in the high frequency range allowed to assess the behavior in terms of absorption, reflection coefficient and transmission loss.

  9. Knowledge Discovery for Smart Grid Operation, Control, and Situation Awareness -- A Big Data Visualization Platform

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen; Zhang, Jun Jason; Gao, Tianlu; Muljadi, Eduard

    2016-11-21

    In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmit the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.

  10. A New Pricing Scheme for Controlling Energy Storage Devices in Future Smart Grid

    Directory of Open Access Journals (Sweden)

    Jingwei Zhu

    2014-01-01

    Full Text Available Improvement of the overall efficiency of energy infrastructure is one of the main anticipated benefits of the deployment of smart grid technology. Advancement in energy storage technology and two-way communication in the electric network are indispensable components to achieve such a vision, while efficient pricing schemes and appropriate storage management are also essential. In this paper, we propose a universal pricing scheme which permits one to indirectly control the energy storage devices in the grid to achieve a more desirable aggregate demand profile that meets a particular target of the grid operator such as energy generation cost minimization and carbon emission reduction. Such a pricing scheme can potentially be applied to control the behavior of energy storage devices installed for integration of intermittent renewable energy sources that have permission to grid connection and will have broader applications as an increasing number of novel and low-cost energy storage technologies emerge.

  11. Design and implementation of a low power mobile CPU based embedded system for artificial leg control.

    Science.gov (United States)

    Hernandez, Robert; Yang, Qing; Huang, He; Zhang, Fan; Zhang, Xiaorong

    2013-01-01

    This paper presents the design and implementation of a new neural-machine-interface (NMI) for control of artificial legs. The requirements of high accuracy, real-time processing, low power consumption, and mobility of the NMI place great challenges on the computation engine of the system. By utilizing the architectural features of a mobile embedded CPU, we are able to implement our decision-making algorithm, based on neuromuscular phase-dependant support vector machines (SVM), with exceptional accuracy and processing speed. To demonstrate the superiority of our NMI, real-time experiments were performed on an able bodied subject with a 20 ms window increment. The 20 ms testing yielded accuracies of 99.94% while executing our algorithm efficiently with less than 11% processor loads.

  12. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Science.gov (United States)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan

    2017-05-01

    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  13. Embedded reference electrodes for corrosion potential monitoring, electrochemical characterization, and controlled-potential cathodic protection

    Science.gov (United States)

    Merten, Bobbi Jo Elizabeth

    A thin wire Ag/AgCl reference electrode was prepared using 50 mum Ag wire in dilute FeCl3. The wire was embedded beneath the polyurethane topcoat of two sacrificial coating systems to monitor their corrosion potential. This is the first report of a reference electrode embedded between organic coating layers to monitor substrate health. The embedded reference electrode (ERE) successfully monitored the corrosion potential of Mg primer on AA 2024-T3 for 800 days of constant immersion in dilute Harrison's solution. Zn primer on steel had low accuracy in comparison. This is in part due to short circuiting by Zn oxidation products, which are much more conductive than Mg corrosion products. Data interpretation was improved through statistical analysis. On average, ERE corrosion potentials are 0.1 to 0.2 V and 0.2 to 0.3 V more positive than a saturated calomel electrode (SCE) in solution for AA 2024-T3 and steel coating systems, respectively. Further research may confirm that ERE obtains corrosion potential information not possible by an exterior, conventional reference electrode. The ERE is stable under polarization. AA 2024-T3 was polarized to -0.95 V vs ERE to emulate controlled potential cathodic protection (CPCP) applications. Polarizations of -0.75 V vs ERE are recommended for future experiments to minimize cathodic delamination. The ERE was utilized to analyze coating mixtures of lithium carbonate, magnesium nitrate, and Mg metal on AA2024-T3. Corrosion potential, low frequency impedance by electrochemical impedance spectroscopy (EIS), and noise resistance by electrochemical noise method (ENM) were reported. Coating performance ranking is consistent with standard electrochemical characterization and visual analyses. The results suggest anti-corrosion resistance superior to a standard Mg primer following 1600 hours of B117 salt spray. Both lithium carbonate and magnesium nitrate are necessary to achieve corrosion protection. Unique corrosion protective coatings for

  14. Design and implementation of a smart card based billing system for ...

    African Journals Online (AJOL)

    A smart card based billing system for petroleum dispenser is just one of the many ways in which smart cards can be employed to make commerce efficient. It incorporates the use of smart card as its legal tender and a smart card reader embedded into the filling station dispenser design. The smart card reader processes the ...

  15. Smart Product Design and Production Control for Effective Mass Customization in the Industry 4.0 Concept

    Directory of Open Access Journals (Sweden)

    Zawadzki Przemysław

    2016-09-01

    Full Text Available The paper presents a general concept of smart design and production control as key elements for efficient operation of a smart factory. The authors present various techniques that aid the design process of individualized products and organization of their production in the context of realization of the mass customization strategy, which allows a shortened time of development for a new product. Particular attention was paid to integration of additive manufacturing technologies and virtual reality techniques, which are a base of the so-called hybrid prototyping.

  16. Highly Adaptive Primary Mirror Having Embedded Actuators, Sensors, and Neural Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Xinetics has demonstrated the technology required to fabricate a self-compensating highly adaptive silicon carbide primary mirror system having embedded actuators,...

  17. Smart pitch control strategy for wind generation system using doubly fed induction generator

    Science.gov (United States)

    Raza, Syed Ahmed

    A smart pitch control strategy for a variable speed doubly fed wind generation system is presented in this thesis. A complete dynamic model of DFIG system is developed. The model consists of the generator, wind turbine, aerodynamic and the converter system. The strategy proposed includes the use of adaptive neural network to generate optimized controller gains for pitch control. This involves the generation of controller parameters of pitch controller making use of differential evolution intelligent technique. Training of the back propagation neural network has been carried out for the development of an adaptive neural network. This tunes the weights of the network according to the system states in a variable wind speed environment. Four cases have been taken to test the pitch controller which includes step and sinusoidal changes in wind speeds. The step change is composed of both step up and step down changes in wind speeds. The last case makes use of scaled wind data collected from the wind turbine installed at King Fahd University beach front. Simulation studies show that the differential evolution based adaptive neural network is capable of generating the appropriate control to deliver the maximum possible aerodynamic power available from wind to the generator in an efficient manner by minimizing the transients.

  18. Smart monitoring system based on adaptive current control for superconducting cable test

    Science.gov (United States)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  19. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  20. Effect of Smart Rotor Control Using a Deformable Trailing Edge Flap on Load Reduction under Normal and Extreme Turbulence

    Directory of Open Access Journals (Sweden)

    Jian Zhong Xu

    2012-09-01

    Full Text Available This paper presents a newly developed aero-servo-elastic platform for implementing smart rotor control and shows its effectiveness with aerodynamic loads on large-scale offshore wind turbines. The platform was built by improving the FAST/Aerodyn codes with the integration of an external deformable trailing edge flap controller in the Matlab/Simulink software. Smart rotor control was applied to an Upwind/NREL 5 MW reference wind turbine under various operating wind conditions in accordance with the IEC Normal Turbulence Model (NTM and Extreme Turbulence Model (ETM. Results showed that, irrespective of whether the NTM or ETM case was considered, aerodynamic load in terms of blade flapwise root moment and tip deflection were effectively reduced. Furthermore, the smart rotor control also positively affected generator power, pitch system and tower load. These results laying a foundation for a future migration of the “smart rotor control” concept into the design of large-scale offshore wind turbines.

  1. Healthy Foundations Study: a randomised controlled trial to evaluate biological embedding of early-life experiences.

    Science.gov (United States)

    Gonzalez, Andrea; Catherine, Nicole; Boyle, Michael; Jack, Susan M; Atkinson, Leslie; Kobor, Michael; Sheehan, Debbie; Tonmyr, Lil; Waddell, Charlotte; MacMillan, Harriet L

    2018-01-26

    Adverse early experiences are associated with long-lasting disruptions in physiology, development and health. These experiences may be 'biologically embedded' into molecular and genomic systems that determine later expressions of vulnerability. Most studies to date have not examined whether preventive interventions can potentially reverse biological embedding. The Nurse-Family Partnership (NFP) is an evidence-based intervention with demonstrated efficacy in improving prenatal health, parenting and child functioning. The Healthy Foundations Study is an innovative birth cohort which will evaluate the impact of the NFP on biological outcomes of mothers and their infants. Starting in 2013, up to 400 pregnant mothers and their newborns were recruited from the British Columbia Healthy Connections Project-a randomised controlled trial of the NFP, and will be followed to child aged 2 years. Women were recruited prior to 28 weeks' gestation and then individually randomised to receive existing services (comparison group) or NFP plus existing services (intervention group). Hair samples are collected from mothers at baseline and 2 months post partum to measure physiological stress. Saliva samples are collected from infants during all visits for analyses of stress and immune function. Buccal swabs are collected from infants at 2 and 24 months to assess DNA methylation. Biological samples will be related to child outcome measures at age 2 years. The study received ethical approval from seven research ethics boards. Findings from this study will be shared broadly with the research community through peer-reviewed publications, and conference presentations, as well as seminars with our policy partners and relevant healthcare providers. The outcomes of this study will provide all stakeholders with important information regarding how early adversity may lead to health and behavioural disparities and how these may be altered through early interventions. NCT01672060; Pre-results.

  2. PDMS embedded microneedles as a controlled release system for the eye.

    Science.gov (United States)

    Mahadevan, Geetha; Sheardown, Heather; Selvaganapathy, Ponnambalam

    2013-07-01

    To demonstrate intraocular drug delivery using a novel device fabricated by embedding hollow glass microneedles within a soft and flexible poly (dimethylsiloxane) (PDMS) substrate for ease of device insertion into the eye. Hollow glass microneedles (5 µm ID tips), fabricated using standard glass drawing techniques, were assembled into a photolithographically micropatterned PDMS substrate. The microneedles were fluidically coupled to a drug reservoir through a 300 µm microchannel to test for in vitro release of 6-aminoquinolone (144 Da) and Rose Bengal (1044 Da). Intravitreal delivery in ex vivo bovine eyes was also studied. The microneedles penetrated UV-crosslinked collagen and excised bovine sclera without breaking or delaminating from the PDMS matrix. A total of 45 ng of 6-aminoquinolone and 16 µg of Rose Bengal was released into buffered saline over a 20-min infusion at a delivery rate of 50 µL/min. Microinjection of Rose Bengal for 8 h into ex vivo bovine vitreous resulted in a total mass accumulation of 0.0202 mg into both phases of the vitreous humor and to the uveal face of the sclera without clogging of the internal needle microchannel. PDMS-embedded microneedles offer an integrated method of drug targeting to the intraocular tissues using a less invasive and less painful approach when compared with macroscale hypodermic needles. The release rates from the microneedles were controllable on demand using a syringe pump and were independent of the properties of the drugs tested. The device demonstrated a new hybrid approach of coupling rigid microneedles strong enough to penetrate the tough, fibrous sclera with a soft and pliable PDMS substrate that could conform to the contours of the eye.

  3. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    Science.gov (United States)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  4. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    Directory of Open Access Journals (Sweden)

    Jordi Serra

    2014-01-01

    of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  5. EMBEDDED CONTROLLER BUILDING FOR BALL AND BEAM SYSTEM USING OPTIMAL CONTROL SYNTHESIS

    Directory of Open Access Journals (Sweden)

    B. M. HUNG

    2017-06-01

    Full Text Available The controller design for the Ball and Beam system is particularly crucial in the aviation fields due to its likeness to the aircraft control during the flight and landing under turbulent. Since the actual tests on the aircrafts are not possible, the Ball and Beam system could be necessary as an alternative to these manoeuvring. In addition, the ball and beam system is a nonlinear dynamical model intended to test various control algorithms. The complete system includes a ball, a beam, a motor and several sensors. The input torque is generated from the motor to control the position of the ball on the beam, where the ball rolls on the beam freely. The concise mathematical model has been obtained by linearized around the horizontal region. The presented control strategies are based on the optimal control synthesis including LQR and H2 optimization to manipulate the complete ball-beam system. These control algorithms have been successfully tested to figure out the control performance for specific applications. Finally, the control systems are implemented in the real ball and beam system with a data acquisition card of DSP F28335.

  6. A Smart Home Center Platform Solution Based on Smart Mirror

    Directory of Open Access Journals (Sweden)

    Deng Xibo

    2017-01-01

    Full Text Available With the popularization of the concept of smart home, people have raised requirements on the experience of smart living. A smart home platform center solution is put forward in order to solve the intelligent interoperability and information integration of smart home, which enable people to have a more intelligent and convenient life experience. This platform center is achieved through the Smart Mirror. The Smart Mirror refers to a smart furniture, on the basis of the traditional concept of mirror, combining Raspberry Pi, the application of one-way mirror imaging principle, the touch-enabled design, voice and video interaction. Smart Mirror can provide a series of intelligent experience for the residents, such as controlling all the intelligent furniture through Smart Mirror; accessing and displaying the weather, time, news and other life information; monitoring the home environment; remote interconnection operation.

  7. Modeling and distributed gain scheduling strategy for load frequency control in smart grids with communication topology changes.

    Science.gov (United States)

    Liu, Shichao; Liu, Xiaoping P; El Saddik, Abdulmotaleb

    2014-03-01

    In this paper, we investigate the modeling and distributed control problems for the load frequency control (LFC) in a smart grid. In contrast with existing works, we consider more practical and real scenarios, where the communication topology of the smart grid changes because of either link failures or packet losses. These topology changes are modeled as a time-varying communication topology matrix. By using this matrix, a new closed-loop power system model is proposed to integrate the communication topology changes into the dynamics of a physical power system. The globally asymptotical stability of this closed-loop power system is analyzed. A distributed gain scheduling LFC strategy is proposed to compensate for the potential degradation of dynamic performance (mean square errors of state vectors) of the power system under communication topology changes. In comparison to conventional centralized control approaches, the proposed method can improve the robustness of the smart grid to the variation of the communication network as well as to reduce computation load. Simulation results show that the proposed distributed gain scheduling approach is capable to improve the robustness of the smart grid to communication topology changes. © 2013 ISA. Published by ISA. All rights reserved.

  8. What Rules Should Apply to Smart Consumer Goods? Goods with Embedded Digital Content in the Borderland Between the Digital Content Directive and “Normal” Contract Law

    OpenAIRE

    Sein, Karin

    2017-01-01

    The European Commission’s approach in the “Proposal of Digital Content Directive” to regulate digital content contracts based on the object, rather than the type of contract, has led to a situation where a component of a product (the embedded digital content) can end up being subject to a contractual regime different from that applicable to the rest of the “smart” product. Different solutions have been proposed to solve this situation: firstly, one could apply goods rules to the whole product...

  9. SMART Layer and SMART Suitcase for structural health monitoring applications

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  10. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  11. A reinforcement sensor embedded vertical handoff controller for vehicular heterogeneous wireless networks.

    Science.gov (United States)

    Li, Limin; Xu, Yubin; Soong, Boon-Hee; Ma, Lin

    2013-11-04

    Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN). Moreover, for the media access control (MAC) scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS) embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience.

  12. A Reinforcement Sensor Embedded Vertical Handoff Controller for Vehicular Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2013-11-01

    Full Text Available Vehicular communication platforms that provide real-time access to wireless networks have drawn more and more attention in recent years. IEEE 802.11p is the main radio access technology that supports communication for high mobility terminals, however, due to its limited coverage, IEEE 802.11p is usually deployed by coupling with cellular networks to achieve seamless mobility. In a heterogeneous cellular/802.11p network, vehicular communication is characterized by its short time span in association with a wireless local area network (WLAN. Moreover, for the media access control (MAC scheme used for WLAN, the network throughput dramatically decreases with increasing user quantity. In response to these compelling problems, we propose a reinforcement sensor (RFS embedded vertical handoff control strategy to support mobility management. The RFS has online learning capability and can provide optimal handoff decisions in an adaptive fashion without prior knowledge. The algorithm integrates considerations including vehicular mobility, traffic load, handoff latency, and network status. Simulation results verify that the proposed algorithm can adaptively adjust the handoff strategy, allowing users to stay connected to the best network. Furthermore, the algorithm can ensure that RSUs are adequate, thereby guaranteeing a high quality user experience.

  13. Temperature control of micro heater using Pt thin film temperature sensor embedded in micro gas sensor

    Science.gov (United States)

    Kang, Jun-gu; Park, Joon-Shik; Park, Kwang-Bum; Shin, Junho; Lee, Eung-An; Noh, Sangsoo; Lee, Hoo-Jeong

    2017-12-01

    Pt thin film temperature sensors (Pt T sensors) are embedded in micro gas sensors to measure and control the working temperature. We characterized electrical resistances of Pt T sensors and micro heaters with temperature changing in the oven and by Joule heating. In order to enhance the accuracy of temperature measurement by the Pt T sensors, we investigated the correlation among the Pt T sensor, micro heater, and the working temperature, which was linear proportional relation expressed as the equation: T2 = 6.466R1-642.8, where T2 = temperature of the Pt micro heater and R1 = the electrical resistance of the Pt T sensor. As the error by physically separated gap between Pt T sensor and micro heater calibrated, measuring and controlling temperature of micro heater in micro gas sensors were possible through the Pt T sensors. For the practical use of Pt T sensor in micro gas sensor, the gas sensing properties of fabricated micro gas sensors to 25 ppm CO and 1 ppm HCHO gases were characterized.

  14. Agent-Oriented Embedded Control System Design and Development of a Vision-Based Automated Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Wu Xing

    2012-07-01

    Full Text Available This paper presents a control system design and development approach for a vision-based automated guided vehicle (AGV based on the multi-agent system (MAS methodology and embedded system resources. A three-phase agent-oriented design methodology Prometheus is used to analyse system functions, construct operation scenarios, define agent types and design the MAS coordination mechanism. The control system is then developed in an embedded implementation containing a digital signal processor (DSP and an advanced RISC machine (ARM by using the multitasking processing capacity of multiple microprocessors and system services of a real-time operating system (RTOS. As a paradigm, an onboard embedded controller is designed and developed for the AGV with a camera detecting guiding landmarks, and the entire procedure has a high efficiency and a clear hierarchy. A vision guidance experiment for our AGV is carried out in a space-limited laboratory environment to verify the perception capacity and the onboard intelligence of the agent-oriented embedded control system.

  15. Design of Smart Home Systems Prototype Using MyRIO

    Science.gov (United States)

    Ratna Wati, Dwi Ann; Abadianto, Dika

    2017-06-01

    This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.

  16. Photovoltaic Impact Assessment of Smart Inverter Volt-VAR Control on Distribution System Conservation Voltage Reduction and Power Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baggu, Murali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nguyen, Andu [SolarCity, San Mateo, CA (United States); Walinga, Sarah [SolarCity, San Mateo, CA (United States); McCarty, Michael [SolarCity, San Mateo, CA (United States); Bell, Frances [SolarCity, San Mateo, CA (United States)

    2016-12-01

    This report presents an impact assessment study of distributed photovoltaic (PV) with smart inverter Volt-VAR control on conservation voltage reduction (CVR) energy savings and distribution system power quality. CVR is a methodology of flattening and lowering a distribution system voltage profile in order to conserve energy. Traditional CVR relies on operating utility voltage regulators and switched capacitors. However, with the increased penetration of distributed PV systems, smart inverters provide the new opportunity to control local voltage and power factor by regulating the reactive power output, leading to a potential increase in CVR energy savings. This report proposes a methodology to implement CVR scheme by operating voltage regulators, capacitors, and autonomous smart inverter Volt-VAR control in order to achieve increased CVR benefit. Power quality is an important consideration when operating a distribution system, especially when implementing CVR. It is easy to measure the individual components that make up power quality, but a comprehensive method to incorporate all of these values into a single score has yet to be undertaken. As a result, this report proposes a power quality scoring mechanism to measure the relative power quality of distribution systems using a single number, which is aptly named the 'power quality score' (PQS). Both the CVR and PQS methodologies were applied to two distribution system models, one obtained from the Hawaiian Electric Company (HECO) and another obtained from Pacific Gas and Electric (PG&E). These two models were converted to the OpenDSS platform using previous model conversion tools that were developed by NREL. Multiple scenarios including various PV penetration levels and smart inverter densities were simulated to analyze the impact of smart inverter Volt-VAR support on CVR energy savings and feeder power quality. In order to analyze the CVR benefit and PQS, an annual simulation was conducted for each

  17. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Directory of Open Access Journals (Sweden)

    Fabrizio Riente

    2017-05-01

    Full Text Available Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  18. Charge-controlled switchable CO adsorption on FeN4 cluster embedded in graphene

    Science.gov (United States)

    Omidvar, Akbar

    2018-02-01

    Electrical charging of an FeN4 cluster embedded in graphene (FeN4G) is proposed as an approach for electrocatalytically switchable carbon monoxide (CO) adsorption. Using density functional theory (DFT), we found that the CO molecule is strongly adsorbed on the uncharged FeN4G cluster. Our results show that the adsorption energy of a CO molecule on the FeN4G cluster is dramatically decreased by introducing extra electrons into the cluster. Once the charges are removed, the CO molecule is spontaneously adsorbed on the FeN4G absorbent. In the framework of frontier molecular orbital (FMO) analysis, the enhanced sensitivity and reactivity of the FeN4G cluster towards the CO molecule can be interpreted in terms of interaction between the HOMO of CO molecule and the LUMO of FeN4G cluster. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Our study indicates that the FeN4G nanomaterial is an excellent absorbent for controllable and reversible capture and release of the CO.

  19. A Real-Time Algorithm for Intelligent Control Embedded in Knowledge based Systems

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2011-11-01

    Full Text Available Consistent with the growing interest in organizational knowledge and Knowledge Management, many ICT researchers have been promoting a class of Knowledge Management Systems (KMSs, referred as Knowledge based Systems. The objective of a KMS is to support knowledge capturing, categorizing, storing, searching, distributing and application within organizations. Technical advances in computers’ processing and storage capacity, together with linking these computers into networks of distributed nodes, have greatly increased the organizations’ capability to deliver goods and services. Along with these capabilities we need quality, accuracy, responsiveness and capacity. The aim of this paper is to present a Knowledge Management System based on Fuzzy Logic (KMSFL, a real-time expert system to meet the challenges of the dynamic environment. The main feature of our integrated shell KMSFL is that it models and integrates the temporal relationships between the dynamic of the process evolution with some fuzzy inferential methods, using a knowledge model for control, embedded within the expert system’s operational knowledge base.

  20. Design considerations for medium access control in resource constrained embedded wireless networks

    OpenAIRE

    Ansari, Junaid

    2012-01-01

    Recent years have experienced a huge influx of daily life applications based on embedded wireless networks. While new applications with more demanding requirements and challenging deployment conditions are being explored, most of the existing networks suffer from communication deficiencies, inefficient use of resources, and inability to satisfy desired quality of service requirements. In order to carry on exploitation and exploration of embedded wireless networks in different daily life appli...

  1. An Active Smart Material Control System for F/A-18 Buffet Alleviation

    Science.gov (United States)

    Sheta, Essam F.; Moses, Robert W.; Huttsell, Lawrence J.; Harrand, Vincent J.

    2003-01-01

    The vertical tail buffet problem of fighter aircraft occurs at high angles of attack when the vortical flow breaks down ahead of the vertical tails resulting in unsteady and unbalanced pressure loads on the vertical tails. The buffet loads imposed upon the vertical tails resulted in a premature fatigue failure of the tails, and consequently limits the performance and super maneuverability of twin-tail fighter aircraft. An active smart material control system using distributed piezoelectric actuators has been developed for buffet alleviation and is presented. The inboard and outboard surfaces of the vertical tail are equipped with piezoelectric actuators to control the buffet responses in the first bending and torsion modes. The electrodynamics of the piezoelectric actuators are expressed with a three-dimensional finite-element model. A single-input-single-output controller is designed to drive the active piezoelectric actuators. High-fidelity multidisciplinary analysis modules for the fluid dynamics, structure dynamics, electrodynamics of the piezoelectric actuators, control law, fluid structure interfacing, and grid motion are integrated into a multidisciplinary computing environment that controls the temporal synchronization of the analysis modules. At 30 degree angle of attack, RMS values of tip acceleration are reduced by as much as 12%. The peak values of the power spectral density of tail-tip acceleration are reduced by as much as 22% in the first bending mode and by as much as 82% in the first torsion mode. The actively controlled piezoelectric actuators were also effective in adding damping at wide range of angles of attack.

  2. Machine learning in smart home control systems - Algorithms and new opportunities

    Science.gov (United States)

    Berg, Ivan A.; Khorev, Oleg E.; Matvevnina, Arina I.; Prisjazhnyj, Alexey V.

    2017-11-01

    Worldwide, more and more attention is paid to issues related to a smart home. If in 2000 Scopus registered 25 publications with about "smart house", in 2016 their number increased up to 1600. The top three countries with interest in smart home technologies include the United States, China and India. Corporations begin to offer their package solutions for automation of the intellectual home, dozens of start-ups around the creation of technology are established. Where is such interest from? What can offer intelligent home technologies? What can an end user receive?

  3. SmartVeh: Secure and Efficient Message Access Control and Authentication for Vehicular Cloud Computing.

    Science.gov (United States)

    Huang, Qinlong; Yang, Yixian; Shi, Yuxiang

    2018-02-24

    With the growing number of vehicles and popularity of various services in vehicular cloud computing (VCC), message exchanging among vehicles under traffic conditions and in emergency situations is one of the most pressing demands, and has attracted significant attention. However, it is an important challenge to authenticate the legitimate sources of broadcast messages and achieve fine-grained message access control. In this work, we propose SmartVeh, a secure and efficient message access control and authentication scheme in VCC. A hierarchical, attribute-based encryption technique is utilized to achieve fine-grained and flexible message sharing, which ensures that vehicles whose persistent or dynamic attributes satisfy the access policies can access the broadcast message with equipped on-board units (OBUs). Message authentication is enforced by integrating an attribute-based signature, which achieves message authentication and maintains the anonymity of the vehicles. In order to reduce the computations of the OBUs in the vehicles, we outsource the heavy computations of encryption, decryption and signing to a cloud server and road-side units. The theoretical analysis and simulation results reveal that our secure and efficient scheme is suitable for VCC.

  4. Price-based Energy Control for V2G Networks in the Industrial Smart Grid

    Directory of Open Access Journals (Sweden)

    Rong Yu

    2015-08-01

    Full Text Available The energy crisis and global warming call for a new industrial revolution in production and distribution of renewable energy. Distributed power generation will be well developed in the new smart electricity distribution grid, in which robust power distribution will be the key technology. In this paper, we present a new vehicle-to-grid (V2G network for energy transfer, in which distributed renewable energy helps the power grid balance demand and supply. Plug-in hybrid electric vehicles (PHEVs will act as transporters of electricity for distributed renewable energy dispatching. We formulate and analyze the V2G network within the theoretical framework of complex network. We also employ the generalized synchronization method to study the dynamic behavior of V2G networks. Furthermore, we develop a new price-based energy control method to stimulate the PHEV's behavior of charging and discharging. Simulation results indicate that the V2G network can achieve synchronization and each region is able to balance energy supply and demand through price-based control.

  5. A novel device based on smart textile to control heart's activity during exercise.

    Science.gov (United States)

    Romagnoli, Marco; Alis, Rafael; Guillen, Javier; Basterra, Javier; Villacastin, J P; Guillen, Sergio

    2014-06-01

    In recent years, several systems have been developed to control cardiac function during exercise, and some are also capable of recording RR data to provide heart rate variability (HRV) analyses. In this study we compare time between heart beats and HRV parameters obtained with a smart textile system (GOW; Weartech sl., Spain) and an electrocardiogram machine commonly used in hospitals during continuous cycling tests. Twelve cardiology patients performed a 30-min cycling test at stable submaximal intensity. RR interval data were recorded during the test by both systems. 3-min RR segments were taken to compare the time intervals between beats and HRV variables using Bland-Altman analyses and intraclass correlation coefficients. Limits of agreement (LoAs) on RR intervals were stable at around 3 ms (widest LoAs -5.754 to 6.094 ms, tightest LoAs -2.557 to 3.105 ms, medium LoAs -3.638 ± 0.812 to 3.145 ± 0.539 ms). HRV parameters related to short-term change presented wide LoAs (RMSSD -0.17 to 18.41 %, HF -17.64 to 33.21 %, SD1 -0.50 to 17.54 %) as an effect of the error measurement of the GOW system. The GOW system is a valid tool for controlling HR during physical activity, although its use as a clinical tool for HRV cannot be supported.

  6. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  7. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  8. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-01-01

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.  PMID:28208787

  9. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  10. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    Science.gov (United States)

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.

  11. An embedded randomised controlled trial of a Teaser Campaign to optimise recruitment in primary care.

    Science.gov (United States)

    Lee, Hopin; Hübscher, Markus; Moseley, G Lorimer; Kamper, Steven J; Traeger, Adrian C; Skinner, Ian W; Williams, Christopher M; McAuley, James H

    2017-04-01

    Marketing communication and brand identity is a fundamental principle of advertising and end-user engagement. Health researchers have begun to apply this principle to trial recruitment in primary care. The aim of this study was to evaluate whether a Teaser Campaign using a series of postcards in advance of a conventional mail-out increases the number of primary care clinics that engage with a clinical trial. Embedded randomised recruitment trial across primary care clinics (general practitioners and physiotherapists) in the Sydney metropolitan area. Clinics in the Teaser Campaign group received a series of branded promotional postcards in advance of a standard letter inviting them to participate in a clinical trial. Clinics in the Standard Mail group did not receive the postcards. From a total of 744 clinics that were sent an invitation letter, 46 clinics in the Teaser Campaign group and 40 clinics in the Standard Mail group responded (11.6% total response rate). There was no between-group difference in the odds of responding to the invitation letter (odds ratio = 1.18, 95% confidence interval = 0.75-1.85, p = 0.49). For physiotherapy clinics and general practice clinics, the odds ratios were 1.43 (confidence interval = 0.82-2.48, p = 0.21) and 0.77 (confidence interval = 0.34-1.75, p  = 0.54), respectively. A Teaser Campaign using a series of branded promotional postcards did not improve clinic engagement for a randomised controlled trial in primary care.

  12. CONTEXT BASED ANDROID APPLICATIONADMINISTRATIVE ACCESS CONTROL (CBAA–AAC) FOR SMART PHONES

    OpenAIRE

    S. Sharavanan; R.M. Balajee

    2016-01-01

    Android applications in smart phones are generally towards provide greater flexibility and convince for users. Considering the fact that the Android applications are having privilege to access data and resources in mobile after it gets installed (one time permission provided by end user on the time installation), these application may also lead to issues in security for the user data as well as issues relate smart phone with peripheral environment. A practical example for an issue which relat...

  13. Design, Development and Implementation of a Smartphone Overdependence Management System for the Self-Control of Smart Devices

    OpenAIRE

    Seo-Joon Lee; Mi Jung Rho; In Hye Yook; Seung-Ho Park; Kwang-Soo Jang; Bum-Joon Park; Ook Lee; Dong Kyun Lee; Dai-Jin Kim; In Young Choi

    2016-01-01

    Background: Smartphone overdependence is a type of mental disorder that requires continuous treatment for cure and prevention. A smartphone overdependence management system that is based on scientific evidence is required. This study proposes the design, development and implementation of a smartphone overdependence management system for self-control of smart devices. Methods: The system architecture of the Smartphone Overdependence Management System (SOMS) primarily consists of four sessions ...

  14. Design of a High Performance Green-Mode PWM Controller IC with Smart Sensing Protection Circuits

    Directory of Open Access Journals (Sweden)

    Shen-Li Chen

    2014-08-01

    Full Text Available A design of high performance green-mode pulse-width-modulation (PWM controller IC with smart sensing protection circuits for the application of lithium-ion battery charger (1.52 V ~ 7.5 V is investigated in this paper. The protection circuits architecture of this system mainly bases on the lithium battery function and does for the system design standard of control circuit. In this work, the PWM controller will be with an automatic load sensing and judges the system operated in the operating mode or in the standby mode. Therefore, it reduces system’s power dissipation effectively and achieves the saving power target. In the same time, many protection sensing circuits such as: (1 over current protection (OCP and under current protection (UCP, (2 over voltage protection (OVP and under voltage protection (UVP, (3 loading determintion and short circuit protection (SCP, (4 over temperature protection (OTP, (5 VDD surge-spiking protection are included. Then, it has the characteristics of an effective monitoring the output loading and the harm prevention as a battery charging. Eventually, this green-mode pulse-width-modulation (PWM controller IC will be that the operation voltage is 3.3 V, the operation frequency is 0.98 MHz, and the output current range is from 454 mA to 500 mA. Meanwhile, the output convert efficiency is range from 74.8 % to 91 %, the power dissipation efficiency in green-mode is 25 %, and the operation temperature range is between -20 0C ~ 114 0C.

  15. CONVISO® SMART – a new solution to control monocotyledonous and dicotyledonous weeds in ALStolerant sugar beets

    Directory of Open Access Journals (Sweden)

    Balgheim, Natalie

    2016-02-01

    Full Text Available CONVISO SMART is a new system to control monocotyledonous and dicotyledonous weeds in ALS-inhibitor tolerant sugar beets. This system consists of an ALS-inhibiting herbicide and a sugar beet variety which is tolerant against the complementary herbicide due to classic breeding mechanisms. The herbicide CONVISO is a combination of the two active ingredients foramsulfuron and thiencarbazonemethyl. Whereas foramsulfuron is the leaf active compound, thiencarbazone-methyl is leaf as well as soil active. The product will be formulated as an oily dispersion (OD. The registration was requested with an application rate of 1 x 1 l/ha or 2 x 0.5 l/ha in ALS-inhibitor tolerant sugar beets. Application should be done from BBCH 10 – 14 of the weeds, especially of Chenopodium album as well as from BBCH 12 – 18 of the sugar beet. The estimated introduction of this system on the German market will be 2018. CONVISO is well active against the most important weeds in sugar beets, including Polygonum and Chenopodium species. Furthermore several difficult to control weeds as Aethusa cynapium and Mercurialis annua will be controlled by CONVISO. The addition of special herbicides to control those difficult weeds will no longer be necessary. The tolerance of the variety against CONVISO is very strong, which will be shown by the results of the weed free selectivity trials. Due to the high tolerance of the variety against CONVISO and the not occurring of negative herbicide effects, the full yield potential can be utilized.

  16. Vehicular applications of smart material systems

    Science.gov (United States)

    Leo, Donald J.; Weddle, Craig; Naganathan, Ganapathy; Buckley, Stephen J.

    1998-06-01

    The results of an initial investigation in the use of smart material system for automobiles are presented. For this work, a smart material system is defined as a network of embedded electromechanical devices that are able to sense and affect their environment and autonomously adapt to changes in operating conditions. The development of smart material system for production vehicles has the potential for compact, lightweight subsystems that reduce vehicle weight and improve vehicle performance. This paper presents an overview of current technology and how it contrasts with the development of highly integrated smart material systems. Automotive design requirements are examined to highlight practical constraints associated with integrating smart material technology into automobiles. Representative examples of a embedded sensor-actuator system for camless engines and a smart automotive seat are presented to illustrate the design concepts.

  17. A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2013-01-01

    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  18. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  19. Exploring the Applicability of Nano-Poration for Remote Control in Smart Drug Delivery Systems.

    Science.gov (United States)

    Denzi, Agnese; Della Valle, Elena; Apollonio, Francesca; Breton, Marie; Mir, Lluis M; Liberti, Micaela

    2017-02-01

    Smart drug delivery systems represent an interesting tool to significantly improve the efficiency and the precision in the treatment of a broad category of diseases. In this context, a drug delivery mediated by nanosecond pulsed electric fields seems a promising technique, allowing for a controlled release and uptake of drugs by the synergy between the electropulsation and nanocarriers with encapsulated drugs. The main concern about the use of electroporation for drug delivery applications is the difference in dimension between the liposome (nanometer range) and the cell (micrometer range). The choice of liposome dimension is not trivial. Liposomes larger than 500 nm of diameter could be recognized as pathogen agents by the immune system, while liposomes of smaller size would require external electric field of high amplitudes for the membrane electroporation that could compromise the cell viability. The aim of this work is to theoretically study the possibility of a simultaneous cell and liposomes electroporation. The numerical simulations reported the possibility to electroporate the cell and a significant percentage of liposomes with comparable values of external electric field, when a 12 nsPEF is used.

  20. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  1. Embedded Real-Time Linux for Instrument Control and Data Logging

    Science.gov (United States)

    Clanton, Sam; Gore, Warren J. (Technical Monitor)

    2002-01-01

    When I moved to the west. coast to take a job at NASA's Ames Research Center in Mountain View, CA, I was impressed with the variety of equipment and software which scientists at the center use to conduct their research. was happy to find that I was just as likely to see a machine running Lenox as one running Windows in the offices and laboratories of NASA Ames (although many people seem to use Moos around here). I was especially happy to find that the particular group with whom I was going to work, the Atmospheric Physics Branch at Ames, relied almost entirely on Lenox machines for their day-to-day work. So it was no surprise that when it was time to construct a new control system for one of their most important pieces of hardware, a switch from an unpredictable DOS-based platform to an Embedded Linux-based one was a decision easily made. The system I am working on is called the Solar Spectral Flux Radiometer (SSFR), a PC-104 based system custom-built by Dr. Warren Gore at Ames. Dr. Gore, Dr. Peter Pilewskie, Dr. Maura Robberies and Larry Pezzolo use the SSFR in their research. The team working on the controller project consists of Dr. Gore, John Pommier, and myself. The SSFR is used by the ,cities Atmospheric Radiation Group to measure solar spectral irradiance at moderate resolution to determine the radiative effect of clouds, aerosols, and gases on climate, and also to infer the physical properties of aerosols and clouds. Two identical SSFR's have been built and successfully deployed in three field missions: 1) the Department of Energy Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE) II in February/March, 2000; 2) the Puerto Rico Dust Experiment (PRIDE) in July, 2000; and 3) the South African Regional Science Initiative (SAFARI) in August/September, 2000. Additionally, the SSFR was used to acquire water vapor spectra using the Ames Diameter base-path multiple-reflection absorption cell in a laboratory experiment.

  2. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    Many financial instruments are designed with embedded leverage such as options and leveraged exchange traded funds (ETFs). Embedded leverage alleviates investors’ leverage constraints and, therefore, we hypothesize that embedded leverage lowers required returns. Consistent with this hypothesis, we......, with t-statistics of 8.6 for equity options, 6.3 for index options, and 2.5 for ETFs. We provide extensive robustness tests and discuss the broader implications of embedded leverage for financial economics....

  3. Embedded resistance wire as a heating element for temperature control in microbioreactors

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Schäpper, Daniel; Gernaey, Krist

    2010-01-01

    . The microbioreactor (working volume of 100 mu L) is designed to work bubble-free, and is fabricated out of the polymers poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS). The temperature is measured with a Pt 100 sensor, and the resistance wires are embedded in the polymer such that they either...

  4. Efficient Implementation of Solvers for Linear Model Predictive Control on Embedded Devices

    DEFF Research Database (Denmark)

    Frison, Gianluca; Kwame Minde Kufoalor, D.; Imsland, Lars

    2014-01-01

    of a single routine (the matrix-matrix multiplication gemm) can speed-up an interior-point method for linear MPC. The results show that the high-performance MPC obtained using the proposed approach is several times faster than the current state-of-the-art IP method for linear MPC on embedded devices....

  5. Enhanced polystyrene surface mobility under carbon dioxide at low temperature for nanoparticle embedding control

    NARCIS (Netherlands)

    Yang, Qiuyan; Xu, Qun; Loos, Katja

    2015-01-01

    The surface properties of polystyrene (PS) films under carbon dioxide (CO2) were studied via a particle embedding technique at quite a low temperature range (308 to 323 K) in which polystyrene is typically considered to be in a glassy state without CO2. Atomic force microscope (AFM) technique with a

  6. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  7. Making the Grid "Smart" Through "Smart" Microgrids: Real-Time Power Management of Microgrids with Multiple Distributed Generation Sources Using Intelligent Control

    Energy Technology Data Exchange (ETDEWEB)

    Nehrir, M. Hashem [Montana State Univ., Bozeman, MT (United States)

    2016-10-20

    In this Project we collaborated with two DOE National Laboratories, Pacific Northwest National Lab (PNNL) and Lawrence Berkeley National Lab (LBL). Dr. Hammerstrom of PNNL initially supported our project and was on the graduate committee of one of the Ph.D. students (graduated in 2014) who was supported by this project. He is also a committee member of a current graduate student of the PI who was supported by this project in the last two years (August 2014-July 2016). The graduate student is now supported be the Electrical and Computer Engineering (ECE) Department at Montana State University (MSU). Dr. Chris Marney of LBL provided actual load data, and the software WEBOPT developed at LBL for microgrid (MG) design for our project. NEC-Labs America, a private industry, also supported our project, providing expert support and modest financial support. We also used the software “HOMER,” originally developed at the National Renewable Energy Laboratory (NREL) and the most recent version made available to us by HOMER Energy, Inc., for MG (hybrid energy system) unit sizing. We compared the findings from WebOpt and HOMER and designed appropriately sized hybrid systems for our case studies. The objective of the project was to investigate real-time power management strategies for MGs using intelligent control, considering maximum feasible energy sustainability, reliability and efficiency while, minimizing cost and undesired environmental impact (emissions). Through analytic and simulation studies, we evaluated the suitability of several heuristic and artificial-intelligence (AI)-based optimization techniques that had potential for real-time MG power management, including genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), and multi-agent systems (MAS), which is based on the negotiation of smart software-based agents. We found that PSO and MAS, in particular, distributed MAS, were more efficient and better suited for our work. We

  8. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-05-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  9. The SmartHand transradial prosthesis

    Directory of Open Access Journals (Sweden)

    Carrozza Maria Chiara

    2011-05-01

    Full Text Available Abstract Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g and speed (closing time: 1.5 seconds are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial

  10. A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Poulsen, Niels Kjølstad

    2015-01-01

    The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ....... The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotechnical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved...

  11. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    Science.gov (United States)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  12. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    Science.gov (United States)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  13. Smart meters in smart manufacturing

    OpenAIRE

    Martín Rubio, Irene; Florence Sandoval, Antonio; Gonzalez Sanchez, Elena; Andina de la Fuente, Diego

    2016-01-01

    The extent of change in business process and smart manufacturing usage should be taken into account in every energy efficiency project in industries. A significant part of smart metering success depends upon making the business processes more systematic. Smart manufacturing in the dramatically intensified and pervasive application of networked information-based technologies through the manufacturing and supply chain enterprise. There is no doubt that the deployment os smart meters involves ...

  14. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  15. Speech Rate Control for Improving Elderly Speech Recognition of Smart Devices

    Directory of Open Access Journals (Sweden)

    SON, G.

    2017-05-01

    Full Text Available Although smart devices have become a widely-adopted tool for communication in modern society, it still requires a steep learning curve among the elderly. By introducing a voice-based interface for smart devices using voice recognition technology, smart devices can become more user-friendly and useful to the elderly. However, the voice recognition technology used in current devices is attuned to the voice patterns of the young. Therefore, speech recognition falters when an elderly user speaks into the device. This paper has identified that the elderly's improper speech rate by each syllable contributes to the failure in the voice recognition system. Thus, upon modifying the speech rate by each syllable, the voice recognition rate saw an increase of 12.3%. This paper demonstrates that by simply modifying the speech rate by each syllable, which is one of the factors that causes errors in voice recognition, the recognition rate can be substantially increased. Such improvements in voice recognition technology can make it easier for the elderly to operate smart devices that will allow them to be more socially connected in a mobile world and access information at their fingertips. It may also be helpful in bridging the communication divide between generations.

  16. DoD Comprehensive Military Unmanned Aerial Vehicle Smart Device Ground Control Station Threat Model

    Science.gov (United States)

    2015-04-01

    thereby increasing the chances that phishing, spam , mal- ware, and spyware will infiltrate the system (Leavitt, 2011). Maintainers of the smart device...as spam and phishing. Communication from outside the secure network should be blocked. Spam filters can also be used to prevent receipt of spam

  17. Islanding Control Architecture in future smart grid with both demand and wind turbine control

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2013-01-01

    In recent years, a large number of Distributed Generation units (DG units) such as Wind Turbines (WTs) and Combined Heat and Power plants (CHPs) have been penetrating the distribution systems. Meanwhile, an intentional island operation of distribution systems is proposed as a potential measure...... against power supply outages by continuously running DG units during system emergencies. However, there are some challenging security issues for an island operation, such as the power imbalance during the islanding transition and the coordination of feeder protection systems. To tackle the former issue......, which is the focus of this paper, available resources including both DG units and demand should be fully utilized as reserves. The control and coordination among different resources requires an integral architecture to serve the purpose. This paper develops the Islanding Control Architecture (ICA...

  18. IEEE 1451.2 based Smart sensor system using ADuc847

    Science.gov (United States)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  19. Optical control of capacitance in a metal-insulator-semiconductor diode with embedded metal nanoparticles

    Science.gov (United States)

    Mikhelashvili, V.; Ankonina, G.; Kauffmann, Y.; Atiya, G.; Kaplan, W. D.; Padmanabhan, R.; Eisenstein, G.

    2017-06-01

    This paper describes a metal-insulator-semiconductor (MIS) capacitor with flat capacitance voltage characteristics and a small quadratic voltage capacitance coefficient. The device characteristics resemble a metal-insulator-metal diode except that here the capacitance depends on illumination and exhibits a strong frequency dispersion. The device incorporates Fe nanoparticles (NPs), mixed with SrF2, which are embedded in an insulator stack of SiO2 and HfO2. Positively charged Fe ions induce dipole type traps with an electronic polarization that is enhanced by photogenerated carriers injected from the substrate and/or by inter nanoparticle exchange of carriers. The obtained characteristics are compared with those of five other MIS structures: two based on Fe NPs, one with and the other without SrF2 sublayers. Additionally, devices contain Co NPs embedded in SrF2 sublayers, and finally, two structures have no NPs, with one based on a stack of SiO2 and HfO2 and the other which also includes SrF2. Only structures containing Fe NPs, which are incorporated into SrF2, yield a voltage independent capacitance, the level of which can be changed by illumination. These properties are essential in radio frequency/analog mixed signal applications.

  20. Control and Operation of the LHCb Readout Boards Using Embedded Microcontrollers and the PVSS II SCADA System

    CERN Document Server

    Köstner, S

    2007-01-01

    LHCb is one of the four experiments at the Large Hadron Collider. Before final reconstruction of the data in PC farms, high speed preprocessing is performed on a set of a few hundred custom electronics boards employing large modern field programmable gate array (FPGA) driven electronics. The local control of these boards is achieved via an embedded microcontroller which is connected to a large Local Area Network. After a brief introduction to the hardware we summarize the implementation of the entire layered software architecture for the readout boards and its integration into the Experiment Control System, which is built upon a common control framework based on an industrial SCADA system. Abstraction of different access modes and separation from the modeling of the components in the control system allow the reuse of various components on different hardware types. Each board has several hundreds of registers and memory blocks, so the optimization of write and read accesses is crucial for the start up configur...

  1. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis

    2015-01-01

    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...

  2. A Smart Mobile Lab-on-Chip-Based Medical Diagnostics System Architecture Designed For Evolvability

    DEFF Research Database (Denmark)

    Patou, François; Dimaki, Maria; Svendsen, Winnie Edith

    2015-01-01

    for this work. We introduce a smart-mobile and LoC-based system architecture designed for evolvability. By propagating LoC programmability, instrumentation, and control tools to the highlevel abstraction smart-mobile software layer, our architecture facilitates the realisation of new use......-cases and the accommodation for incremental LoC-technology developments. We demonstrate these features with an implementation allowing the interfacing of LoCs embedding current- or impedance-based biosensors such as Silicon Nanowire Field Effect Transistors (SiNW-FETs) or electrochemical transducers. Structural modifications...

  3. A case study on the safety impact of implementing smart patient-controlled analgesic pumps at a tertiary care academic medical center.

    Science.gov (United States)

    Tran, Mai; Ciarkowski, Scott; Wagner, Deborah; Stevenson, James G

    2012-03-01

    As with the use of any therapy involving opioids, patient-controlled analgesia (PCA)-related errors can lead to overdose and even death. "Smart" (computerized) pumps have medication safety enhancements, particularly those related to operator errors during administration, to improve overall safety and efficacy. After the occurrence of PCA-related errors that occurred at a tertiary care academic medical center, an analysis of PCA errors was conducted. The introduction of smart pumps was identified as a possible solution, and the medical center adopted the technology in 2006. A study was conducted to investigate the impact of implementation. The study had three primary objectives: (1) to evaluate history logs stored in the smart PCA pumps to characterize the nature of hard and soft stop alerts and identify potential errors that may have been averted, (2) to examine the impact of smart PCA pumps on voluntarily reported PCA therapy-related errors, and (3) to assess nursing perceptions regarding the improvement in safety due to the introduction of smart PCA pumps. The smart pumps potentially prevented 159 errors for the January-June 2007 period; upper hard limits had the most number of alerts, representing avoidance of errors with the greatest potential to be detrimental to the patient. In addition, pump-programming errors due to wrong concentration were eliminated after implementation. Finally, nursing staff perceived smart pumps to be valuable in improving patient safety. Smart PCA pumps had an important positive impact on PCA-related patient safety at the medical center. Other facilities should adopt PCA devices with additional safety features such as bar-code verification of the drug and concentration, as well as dosage limits, to prevent pump-programming errors.

  4. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  5. Increasing follow-up questionnaire response rates in a randomized controlled trial of telehealth for depression: three embedded controlled studies.

    Science.gov (United States)

    Edwards, Louisa; Salisbury, Chris; Horspool, Kimberley; Foster, Alexis; Garner, Katy; Montgomery, Alan A

    2016-02-24

    Attrition is problematic in trials, and may be exacerbated in longer studies, telehealth trials and participants with depression - three features of The Healthlines Study. Advance notification, including a photograph and using action-oriented email subject lines might increase response rates, but require further investigation. We examined the effectiveness of these interventions in three embedded Healthlines studies. Based in different trial sites, participants with depression were alternately allocated to be pre-called or not ahead of the 8-month follow-up questionnaire (Study 1), randomized to receive a research team photograph or not with their 12-month questionnaire (Study 2), and randomized to receive an action-oriented ('ACTION REQUIRED') or standard ('Questionnaire reminder') 12-month email reminder (Study 3). Participants could complete online or postal questionnaires, and received up to five questionnaire reminders. The primary outcome was completion of the Patient Health Questionnaire (PHQ-9). Secondary outcome measures were the number of reminders and time to questionnaire completion. Of a total of 609 Healthlines depression participants, 190, 251 and 231 participants were included in Studies 1-3 (intervention: 95, 126 and 115), respectively. Outcome completion was ≥90 % across studies, with no differences between trial arms (Study 1: OR 0.38, 95 % CI 0.07-2.10; Study 2: OR 0.84, 95 % CI 0.26-2.66; Study 3: OR 0.53 95 % CI 0.19-1.49). Pre-called participants were less likely to require a reminder (48.4 % vs 62.1 %, OR 0.41, 95 % CI 0.21-0.78), required fewer reminders (adjusted difference in means -0.67, 95 % CI -1.13 to -0.20), and completed follow-up quicker (median 8 vs 15 days, HR 1.35, 95 % CI 1.00-1.82) than control subjects. There were no significant between-group differences in Studies 2 or 3. Eventual response rates in this trial were high, with no further improvement from these interventions. While the photograph and email interventions were

  6. Pregnancy, exercise and nutrition research study with smart phone app support (Pears): Study protocol of a randomized controlled trial.

    Science.gov (United States)

    Kennelly, Maria A; Ainscough, Kate; Lindsay, Karen; Gibney, Eileen; Mc Carthy, Mary; McAuliffe, Fionnuala M

    2016-01-01

    Maternal adiposity confers an increased risk of GDM in pregnancy. A low glycemic index (GI) dietary intervention has been found to improve glucose homeostasis and reduce gestational weight gain. Mobile Health (mHealth) Technology-assisted interventions are becoming commonplace as an aid to treating many chronic diseases. The aim of this study is to assess the impact of a 'healthy lifestyle package' with mHealth smart phone technology as support compared with usual care on the incidence of GDM in an overweight and obese pregnant population. We propose a randomized controlled trial of an mHealth assisted healthy lifestyle intervention package versus standard obstetric care in pregnant women with a BMI ≥25kg/m(2)-39.9kg/m(2). Patients are randomized to control or intervention group in a 1:1 ratio. The intervention arm healthy lifestyle package includes a motivational counseling session to encourage behavior change, involving targeted, low GI nutritional advice and daily physical activity prescription delivered before 18weeks gestation, as well as a smart phone app to provide ongoing healthy lifestyle advice and support throughout pregnancy. The primary outcome is the incidence of GDM at 29weeks' gestation and power analysis indicates that 253 women are required in each group to detect a difference. This will be the first clinical trial to evaluate the effectiveness of a smart phone technology-assisted targeted healthy lifestyle intervention, which is grounded in behavior change theories and techniques, to support antenatal management of an overweight and obese pregnant population in preventing GDM. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Development of Smart Home System for Controlling and Monitoring Energy Consumption using WebSocket Protocol

    Science.gov (United States)

    Witthayawiroj, Niti; Nilaphruek, Pongpon

    2017-03-01

    Energy consumption especially electricity is considered one of the most serious problems in households these days. It is because the amount of electricity consumed is more than the amount that people actually need. This means that there is an overusing which resulted from the inconvenience of moving to the switch to turn off the light or any appliances and it is often that closing the light is forgettable, for instance; in addition, there are no tools for monitoring how much energy that is consumed in residents. From this, it can be easily seen that people are having a problem in energy usage monitor and control. There are two main objectives of this study including 1) creating the communication framework among server, clients and devices, and 2) developing the prototype system that try to solve the mentioned problems which gives the user an opportunity to know the amount of electricity they have used in their houses and also the ability to turn appliances on and off through the Internet on smart devices such as smart phones and tablets that support Android platform or any web browser. Raspberry Pi is used as a microcontroller and the data is transferred to the smart device by WebSocket protocol which is strongly recommended for real-time communication. The example features on the device’s screen are user management, controlling and monitoring of appliances. The result expresses that the system is very effective and not difficult to use from users’ satisfaction. However, current sensors may be used for a more accurate electricity measurement and Wi-Fi module for more appliances to calculate its power in the future.

  8. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    Science.gov (United States)

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  9. Position-Controlled Data Acquisition Embedded System for Magnetic NDE of Bridge Stay Cables

    Directory of Open Access Journals (Sweden)

    Rouven Christen

    2010-12-01

    Full Text Available This work presents a custom-tailored sensing and data acquisition embedded system, designed to be integrated in a new magnetic NDE inspection device under development at Empa, a device intended for routine testing of large diameter bridge stay cables. The data acquisition (DAQ system fulfills the speed and resolution requirements of the application and is able to continuously capture and store up to 2 GB of data at a sampling rate of 27 kS/s, with 12-bit resolution. This paper describes the DAQ system in detail, including both hardware and software implementation, as well as the key design challenges nd the techniques employed to meet the specifications. Experimental results showing the performance of the system are also presented.

  10. Scattering effects of glass-embedded microstructures by roughness controlled fs-laser micromachining

    Science.gov (United States)

    Lo Turco, Sara; Di Donato, Andrea; Criante, Luigino

    2017-06-01

    We report a full roughness analysis carried out upon the internal walls of fs-fabricated micro-structures embedded in fused silica glass. In addition to the standard mapping methods based on RMS evaluation, we performed a spectral analysis to compare different types of surface morphology. In detail, introducing the correlation length L c as a key parameter to describe the profile periodicity, we highlight that the bottom- top- and side-wall of a square micro-channel show a different surface order and differently affect the light scattering. This is further validated by fast Fourier transform calculations and supported by beam transmission holograms. Here we suggest that proper beam shaping could ensure uniform energy distribution and low scattering effects.

  11. Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers

    Science.gov (United States)

    Hehr, Adam J.

    Ultrasonic additive manufacturing (UAM) is a recent additive manufacturing technology which combines ultrasonic metal welding, CNC machining, and mechanized foil layering to create large gapless near net-shape metallic parts. The process has been attracting much attention lately due to its low formation temperature, the capability to join dissimilar metals, and the ability to create complex design features not possible with traditional subtractive processes alone. These process attributes enable light-weighting of structures and components in an unprecedented way. However, UAM is currently limited to niche areas due to the lack of quality tracking and inadequate scientific understanding of the process. As a result, this thesis work is focused on improving both component quality tracking and process understanding through the use of average electrical power input to the welder. Additionally, the understanding and application space of embedding fibers into metals using UAM is investigated, with particular focus on NiTi shape memory alloy fibers.

  12. AUTOMATIC CONTROL SYSTEM FOR THE HEAT PUMP EMBEDDED IN THE MILK PASTEURIZATION AND COOLING INSTALLATION, part II

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2013-04-01

    Full Text Available The goal of the present work is to elaborate the scheme of the disturbance compensation system, which is influencing the level of refrigerant consumption in evaporators and gas coolers of the heat pump embedded in the milk pasteurization and cooling installation, as well as, to design the automatic control system for the heat-exchanger with two output parameters – the water temperature at the outlet of the primary and secondary heat-carrying agent circuits by adjusting the consumption level in the secondary heat-carrying agent circuit and by adjusting the heat exchange surface area. System structures are based on principles of the coordinated control and the multidimensional systems control. The proposed structural scheme of the coordinated system for control of the consumption in evaporators, both water heating and cooling segments, is more accurate in transient processes than alternative systems of non-integrated control of the working agent consumption in each evaporator. The heat exchanger control system with two controls controlling segments (controlling the heat exchange surface area and controlling the consumption level in the secondary coolant circuit has proven to have good transient characteristics.

  13. An experimental study on load-peak shaving in smart homes by means of online admission control

    DEFF Research Database (Denmark)

    Costanzo, Giuseppe Tommaso; Kosek, Anna Magdalena; Zhu, Guchuan

    2012-01-01

    This paper presents the design, implementation, and experimental results of an architecture for autonomous demand-side load management (ADSM) system for Smart Buildings in view of influencing the energy demand in the Smart Grid. In such an architecture, the management system has a layered structure...... for ADSM systems for smart buildings....

  14. "Smart pebble" designs for sediment transport monitoring

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  15. Smart mobility in smart cities

    Energy Technology Data Exchange (ETDEWEB)

    Baucells, Aleta N.

    2016-07-01

    Cities are currently undergoing a transformation into the Smart concept, like Smartphones or SmartTV. Many initiatives are being developed in the framework of the Smart Cities projects, however, there is a lack of consistent indicators and methodologies to assess, finance, prioritize and implement this kind of projects. Smart Cities projects are classified according to six axes: Government, Mobility, Environment, Economy, People and Living. (Giffinger, 2007). The main objective of this research is to develop an evaluation model in relation to the mobility concept as one of the six axes of the Smart City classification and apply it to the Spanish cities. The evaluation was carried out in the 62 cities that made up in September 2015 the Spanish Network of Smart Cities (RECI- Red Española de Ciudades Inteligentes). This research is part of a larger project about Smart Cities’ evaluation (+CITIES), the project evaluates RECI’s cities in all the axes. The analysis was carried out taking into account sociodemographic indicators such as the size of the city or the municipal budget per inhabitant. The mobility’s evaluation in those cities has been focused in: sustainability mobility urban plans and measures to reduce the number of vehicles. The 62 cities from the RECI have been evaluated according to their degree of progress in several Smart Cities’ initiatives related to smart mobility. The applied methodology has been specifically made for this project. The grading scale has different ranks depending on the deployment level of smart cities’ initiatives. (Author)

  16. Smart textiles.

    Science.gov (United States)

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  17. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release.

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Unnithan, Afeesh Rajan; Yun, Yeo-Heung; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    The study describes the design and synthesis of an implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. This device is achieved using a two-component smart nanofiber matrix from monodisperse iron oxide nanoparticles (IONPs) as well as bortezomib (BTZ), a chemotherapeutic drug. The IONP-incorporated nanofiber matrix was developed by electrospinning a biocompatible and bioresorbable polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by exploiting mussel-inspired surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the borate-containing BTZ anticancer drug through a catechol metal binding in a pH-sensitive manner. Thus, an implantable smart magnetic nanofiber device can be exploited to both apply hyperthermia with an alternating magnetic field (AMF) and to achieve cancer cell-specific drug release to enable synergistic cancer therapy. These results confirm that the BTZ-loaded mussel-inspired magnetic nanofiber matrix (BTZ-MMNF) is highly beneficial not only due to the higher therapeutic efficacy and low toxicity towards normal cells but also, as a result of the availability of magnetic nanoparticles for repeated hyperthermia application and tumor-triggered controlled drug release. The current work report on the design and development of a smart nanoplatform responsive to a magnetic field to administer both hyperthermia and pH-dependent anticancer drug release for the synergistic anticancer treatment. The iron oxide nanoparticles (IONPs) incorporated nanofiber matrix was developed by electrospinning a biocompatible polymer, poly (d,l-lactide-co-glycolide) (PLGA), and tumor-triggered anticancer drug delivery is realized by surface functionalization using 2-(3,4-dihydroxyphenyl)ethylamine (dopamine) to conjugate the boratecontaining anticancer drug bortezomib through a catechol metal binding in a p

  18. Study of Mental Activity and Regular Training (SMART) in at risk individuals: a randomised double blind, sham controlled, longitudinal trial.

    Science.gov (United States)

    Gates, Nicola J; Valenzuela, Michael; Sachdev, Perminder S; Singh, Nalin A; Baune, Bernhard T; Brodaty, Henry; Suo, Chao; Jain, Nidhi; Wilson, Guy C; Wang, Yi; Baker, Michael K; Williamson, Dominique; Foroughi, Nasim; Fiatarone Singh, Maria A

    2011-04-21

    The extent to which mental and physical exercise may slow cognitive decline in adults with early signs of cognitive impairment is unknown. This article provides the rationale and methodology of the first trial to investigate the isolated and combined effects of cognitive training (CT) and progressive resistance training (PRT) on general cognitive function and functional independence in older adults with early cognitive impairment: Study of Mental and Regular Training (SMART). Our secondary aim is to quantify the differential adaptations to these interventions in terms of brain morphology and function, cardiovascular and metabolic function, exercise capacity, psychological state and body composition, to identify the potential mechanisms of benefit and broader health status effects. SMART is a double-blind randomized, double sham-controlled trial. One hundred and thirty-two community-dwelling volunteers will be recruited. Primary inclusion criteria are: at risk for cognitive decline as defined by neuropsychology assessment, low physical activity levels, stable disease, and age over 55 years. The two active interventions are computerized CT and whole body, high intensity PRT. The two sham interventions are educational videos and seated calisthenics. Participants are randomized into 1 of 4 supervised training groups (2 d/wk×6 mo) in a fully factorial design. Primary outcomes measured at baseline, 6, and 18 months are the Alzheimer's Disease Assessment Scale (ADAS-Cog), neuropsychological test scores, and Bayer Informant Instrumental Activities of Daily Living (B-IADLs). Secondary outcomes are psychological well-being, quality of life, cardiovascular and musculoskeletal function, body composition, insulin resistance, systemic inflammation and anabolic/neurotrophic hormones, and brain morphology and function via Magnetic Resonance Imaging (MRI) and Spectroscopy (fMRS). SMART will provide a novel evaluation of the immediate and long term benefits of CT, PRT, and combined

  19. Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform

    Science.gov (United States)

    Villarrubia, Gabriel; De Paz, Juan F.; Bajo, Javier; Corchado, Juan M.

    2014-01-01

    Ambient intelligence has advanced significantly during the last few years. The incorporation of image processing and artificial intelligence techniques have opened the possibility for such aspects as pattern recognition, thus allowing for a better adaptation of these systems. This study presents a new model of an embedded agent especially designed to be implemented in sensing devices with resource constraints. This new model of an agent is integrated within the PANGEA (Platform for the Automatic Construction of Organiztions of Intelligent Agents) platform, an organizational-based platform, defining a new sensor role in the system and aimed at providing contextual information and interacting with the environment. A case study was developed over the PANGEA platform and designed using different agents and sensors responsible for providing user support at home in the event of incidents or emergencies. The system presented in the case study incorporates agents in Arduino hardware devices with recognition modules and illuminated bands; it also incorporates IP cameras programmed for automatic tracking, which can connect remotely in the event of emergencies. The user wears a bracelet, which contains a simple vibration sensor that can receive notifications about the emergency situation. PMID:25090416

  20. Optimum Aggregation and Control of Spatially Distributed Flexible Resources in Smart Grid

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Mendaza, Iker Diaz de Cerio; Myers, Kurt S.

    2017-01-01

    This study presents an algorithm to optimally aggregate spatially distributed flexible resources at strategic microgrid/smart-grid locations. The aggregation reduces a distribution network having thousands of nodes to an equivalent network with a few aggregated nodes, thereby enabling distribution...... approaches is proposed to practically deploy the aggregated flexibility. The proposed method serves as a great operational tool for DSOs to decide the exact amount of required flexibilities from different network section(s) for solving grid constraint violations. The effectiveness of the proposed method...

  1. Design and Implementation of Output Feedback Control for Piezo Actuated Structure Using Embedded System

    Directory of Open Access Journals (Sweden)

    R.Maheswari

    2008-06-01

    Full Text Available This paper presents the design of periodic output feedback control using state feedback gain to control the vibration of piezo actuated cantilever beam. The effectiveness of the controller is evaluated through simulation and experimentally by exciting the structure at resonance. Real time implementation of the controller is done using microcontroller. The closed loop eigen values of the system with periodic output feedback and state feedback are identical.

  2. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    -time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance...

  3. Smart Metering System for Microgrids

    DEFF Research Database (Denmark)

    Palacios-Garcia, Emilio; Guan, Yajuan; Savaghebi, Mehdi

    2015-01-01

    Smart meters are the cornerstone in the new conception of the electrical network or Smart Grid (SG), providing detailed information about users' energy consumption and allowing the suppliers to remotely collect data for billing. Nevertheless, their features are not only useful for the energy...... will expose an example of Smart Meters integration in a Microgrid scenario, which is the Intelligent Microgrid Lab of Aalborg University (AAU). To do this, first the installation available in the Microgrid Lab will be introduced. Then, three different test scenarios and their respective results...... will be presented, regarding the capabilities of this system and the advantages of integration the Smart Meters information in the Microgrid control....

  4. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  5. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  6. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-10-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  7. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  8. Network Transfer of Control Data: An Application of the NIST SMART DATA FLOW

    Directory of Open Access Journals (Sweden)

    Vincent Stanford

    2004-12-01

    Full Text Available Pervasive Computing environments range from basic mobile point of sale terminal systems, to rich Smart Spaces with many devices and sensors such as lapel microphones, audio and video sensor arrays and multiple interactive PDA acting as electronic brief cases, providing authentication, and user preference data to the environment. These systems present new challenges in distributed human-computer interfaces such as how to best use sensor streams, distribute interfaces across multiple devices, and dynamic network management as users come an go, and as devices are added or fail. The NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY SMART DATA FLOW system is a low overhead, high bandwidth transport mechanism for standardized multi-modal data streams. It is designed to allow integration of multiple sensors with distributed processing needed for the sense-recognize-respond cycle of multi modal user interfaces. Its core is a server/client architecture, allowing clients to produce or subscribe to data flows, and supporting steps toward scalable processing, distributing the computing requirements among many network connected computers and pervasive devices. This article introduces the communication broker and provides an example of an effective real time sensor fusion to track a speaker with a video camera using data captured from multi-channel microphone array.

  9. "Smart pebble" design for environmental monitoring applications

    Science.gov (United States)

    Valyrakis, Manousos; Pavlovskis, Edgars

    2014-05-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.

  10. Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices

    Science.gov (United States)

    Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly

    2010-01-01

    In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.

  11. Embedded system based on a real time fuzzy motor speed controller

    Directory of Open Access Journals (Sweden)

    Ebrahim Abd El-Hamid Mohamed Ramadan

    2014-06-01

    Full Text Available This paper describes an implementation of a fuzzy logic control (FLC system and a/the conventional proportional-integral (PI controller for speed control of DC motor, based on field programmable gate array (FPGA circuit. The proposed scheme is aimed to improve the tracking performance and to eliminate the load disturbance in the speed control of DC motors. The proposed fuzzy system has been applied to a permanent magnet DC motor, via a configuration of H-bridge. The fuzzy control algorithm is designed and verified with a nonlinear model, using the MATLAB® tools. Both FLC and conventional PI controller hardware are synthesized, functionally verified and implemented using Xilinx Integrated Software Environment (ISE Version 11.1i. The real time implementation of these controllers is made on Spartan-3E FPGA starter kit (XC3S500E. The practical results showed that the proposed FLC scheme has better tracking performance than the conventional PI controller for the speed control of DC motors.

  12. An Appraisal of Asia-Pacific Cities as Control and Command Centres Embedded in World City Network

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-08-01

    Full Text Available Since the globalization trend is proliferating at a staggering rate, world cities have emerged as the most dominant vanguard incorporated into global economy. Control and command function is one of the robust integral parts of world city formation, which is closely associated with the corporate headquarter status of some dominant multinational companies. Previous research works on this topic tend to concentrate on the Western Europe and North American arenas neglecting the Asia-Pacific region. Hence, the objective of this paper is to explore control and command functions of Asia-Pacific cities with reference to headquarters’ locations of multinational companies. The methodology will utilize the Forbes global 2000 dataset from the seminal study of GaWC research group, and apply the control and command center model and the interlocking city network model to discover the control and command index, as well as network connectivity of Asia-Pacific cities. Based upon the empirical study of this research, we could identify the hierarchical structure and spatial structure of Asia-Pacific world cities to emerge as some control and command centers embedded in world city network.

  13. Smart Cities for Smart Children

    DEFF Research Database (Denmark)

    Rehm, Matthias; Jensen, Martin Lynge; Wøldike, Niels Peter

    This position paper presents the concept of smart cities for smart children before highlighting three concrete projects we are currently running in order to investigate different aspects of the underlying concept like social-relational interaction and situated and experiential learning....

  14. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    Science.gov (United States)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  15. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  16. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  17. Smart Grid Communication Middleware Comparison

    DEFF Research Database (Denmark)

    Petersen, Bo Søborg; Bindner, Henrik W.; Poulsen, Bjarne

    2017-01-01

    are possible by their performance, which is limited by the middleware characteristics, primarily interchangeable serialization and the Publish-Subscribe messaging pattern. The earlier paper “Smart Grid Serialization Comparison” (Petersen et al. 2017) aids in the choice of serialization, which has a big impact...... the strongest candidates for Smart Grid distributed control, but WAMP should also be considered in the future....

  18. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  19. Implementation of formalin-fixed, paraffin-embedded cell line pellets as high-quality process controls in quality assessment programs for KRAS mutation analysis

    DEFF Research Database (Denmark)

    Dijkstra, Jeroen R; Opdam, Frank J M; Boonyaratanakornkit, Jerry

    2013-01-01

    . We assessed a novel synthetic control for formalin-fixed, paraffin-embedded (FFPE) tumor samples in a blind study conducted within nine laboratories across Europe. We show that FFPE material can, at least in part, mimic clinical samples and we demonstrate this control to be a valuable tool...

  20. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  1. Smart Distribution Systems

    Directory of Open Access Journals (Sweden)

    Yazhou Jiang

    2016-04-01

    Full Text Available The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. A comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD, is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs is introduced. Future research in a smart distribution environment is proposed.

  2. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Science.gov (United States)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  3. A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX

    Directory of Open Access Journals (Sweden)

    Fabio Leccese

    2014-12-01

    Full Text Available A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field.

  4. A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX

    Science.gov (United States)

    Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele

    2014-01-01

    A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field. PMID:25529206

  5. A smart city application: a fully controlled street lighting isle based on Raspberry-Pi card, a ZigBee sensor network and WiMAX.

    Science.gov (United States)

    Leccese, Fabio; Cagnetti, Marco; Trinca, Daniele

    2014-12-18

    A smart city application has been realized and tested. It is a fully remote controlled isle of lamp posts based on new technologies. It has been designed and organized in different hierarchical layers, which perform local activities to physically control the lamp posts and transmit information with another for remote control. Locally, each lamp post uses an electronic card for management and a ZigBee tlc network transmits data to a central control unit, which manages the whole isle. The central unit is realized with a Raspberry-Pi control card due to its good computing performance at very low price. Finally, a WiMAX connection was tested and used to remotely control the smart grid, thus overcoming the distance limitations of commercial Wi-Fi networks. The isle has been realized and tested for some months in the field.

  6. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  7. Preserving Smart Objects Privacy through Anonymous and Accountable Access Control for a M2M-Enabled Internet of Things

    Directory of Open Access Journals (Sweden)

    José L. Hernández-Ramos

    2015-07-01

    Full Text Available As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things.

  8. Preserving Smart Objects Privacy through Anonymous and Accountable Access Control for a M2M-Enabled Internet of Things.

    Science.gov (United States)

    Hernández-Ramos, José L; Bernabe, Jorge Bernal; Moreno, M Victoria; Skarmeta, Antonio F

    2015-07-01

    As we get into the Internet of Things era, security and privacy concerns remain as the main obstacles in the development of innovative and valuable services to be exploited by society. Given the Machine-to-Machine (M2M) nature of these emerging scenarios, the application of current privacy-friendly technologies needs to be reconsidered and adapted to be deployed in such global ecosystem. This work proposes different privacy-preserving mechanisms through the application of anonymous credential systems and certificateless public key cryptography. The resulting alternatives are intended to enable an anonymous and accountable access control approach to be deployed on large-scale scenarios, such as Smart Cities. Furthermore, the proposed mechanisms have been deployed on constrained devices, in order to assess their suitability for a secure and privacy-preserving M2M-enabled Internet of Things.

  9. Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects

    DEFF Research Database (Denmark)

    Hu, Junjie; Morais, Hugo; Sousa, Tiago

    2016-01-01

    Electric vehicles can become integral parts of a smart grid, since they are capable of providing valuable services to power systems other than just consuming power. On the transmission system level, electric vehicles are regarded as an important means of balancing the intermittent renewable energy...... resources such as wind power. This is because electric vehicles can be used to absorb the energy during the period of high electricity penetration and feed the electricity back into the grid when the demand is high or in situations of insufficient electricity generation. However, on the distribution system...... level, the extra loads created by the increasing number of electric vehicles may have adverse impacts on grid. These factors bring new challenges to the power system operators. To coordinate the interests and solve the conflicts, electric vehicle fleet operators are proposed both by academics...

  10. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    2016-11-21

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reduction and energy saving, as well as working productivity improvements, can be achieved.

  11. Transition from Legacy to Connectivity Solution for Infrastructure Control of Smart Municipal Systems

    Science.gov (United States)

    Zabasta, A.; Kunicina, N.; Kondratjevs, K.

    2017-06-01

    Collaboration between heterogeneous systems and architectures is not an easy problem in the automation domain. By now, utilities and suppliers encounter real problems due to underestimated costs of technical solutions, frustration in selecting technical solutions relevant for local needs, and incompatibilities between a plenty of protocols and appropriate solutions. The paper presents research on creation of architecture of smart municipal systems in a local cloud of services that apply SOA and IoT approaches. The authors of the paper have developed a broker that applies orchestration services and resides on a gateway, which provides adapter and protocol translation functions, as well as applies a tool for wiring together hardware devices, APIs and online services.

  12. Transition from Legacy to Connectivity Solution for Infrastructure Control of Smart Municipal Systems

    Directory of Open Access Journals (Sweden)

    Zabasta A.

    2017-06-01

    Full Text Available Collaboration between heterogeneous systems and architectures is not an easy problem in the automation domain. By now, utilities and suppliers encounter real problems due to underestimated costs of technical solutions, frustration in selecting technical solutions relevant for local needs, and incompatibilities between a plenty of protocols and appropriate solutions. The paper presents research on creation of architecture of smart municipal systems in a local cloud of services that apply SOA and IoT approaches. The authors of the paper have developed a broker that applies orchestration services and resides on a gateway, which provides adapter and protocol translation functions, as well as applies a tool for wiring together hardware devices, APIs and online services.

  13. Smart Grid Operation and Control – Challenges for Danish Distribution Systems Operators

    DEFF Research Database (Denmark)

    Iov, Florin

    2016-01-01

    high in the distribution grids and more units are expected to be installed. Thus, new challenges for daily operation of distribution grids will arise. This paper deals with operational challenges related to this high penetration of renewable generation and smart grid devices into distribution grids......The modern society is focussing more and more on reducing CO2 emissions, and increasing the use of sustainable energy technologies. The official European Union objectives are captured in the "20/20/20 plans". For Denmark, the objectives are to reduce greenhouse gas emissions in 2020 by 20% compared......, to be produced from sustainable technologies. As part of the total objective, the Danish government aims to 50% of the electricity consumption to be produced by wind power in 2020. In comparison, in 2014, 39% of the electricity consumption was produced by wind power in 2012 this was 30.1%, which indicates...

  14. Decreasing the damage in smart structures using integrated online DDA/ISMP and semi-active control

    Science.gov (United States)

    Karami, K.; Amini, F.

    2012-10-01

    Integrated structural health monitoring (SHM) and vibration control has been considered recently by researchers. Up to now, all of the research in the field of integrated SHM and vibration control has been conducted using control devices and control algorithms to enhance system identification and damage detection. In this study, online SHM is used to improve the performance of structural vibration control, unlike previous research. Also, a proposed algorithm including integrated online SHM and a semi-active control strategy is used to reduce both damage and seismic response of the main structure due to strong seismic disturbance. In the proposed algorithm the nonlinear behavior of the building structure is simulated during the excitation. Then, using the measured data and the damage detection algorithm based on identified system Markov parameters (DDA/ISMP), a method proposed by the authors, damage corresponding to axial and bending stiffness of all structural elements is identified. In this study, a 20 t MR damper is employed as a control device to mitigate both damage and dynamic response of the building structure. Also, the interaction between SHM and a semi-active control strategy is assessed. To illustrate the efficiency of the proposed algorithm, a two bay two story steel braced frame structure is used. By defining the damage index and damage rate index, the input current of the MR damper is generated using a fuzzy logic controller. The obtained results show that the possibility of smart building creation is provided using the proposed algorithm. In comparison to the widely used strategy of only vibration control, it is shown that the proposed algorithm is more effective. Furthermore, in the proposed algorithm, the total consumed current intensity and generated control forces are considerably less than for the strategy of only vibration control.

  15. Health-Enabled Smart Sensor Fusion Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proven that the combination of smart sensors with embedded metadata and wireless technologies present real opportunities for significant improvements in...

  16. Design and Use of CSP Meta-Model for Embedded Control Software Development

    NARCIS (Netherlands)

    Bezemer, M.M.; Wilterdink, R.J.W.; Broenink, Johannes F.; Welch, Peter H.; Barnes, Frederick R.M.; Chalmers, Kevin; Baekgaard Pedersen, Jan; Sampson, Adam T.

    Software that is used to control machines and robots must be predictable and reliable. Model-Driven Design (MDD) techniques are used to comply with both the technical and business needs. This paper introduces a CSP meta-model that is suitable for these MDD techniques. The meta-model describes the

  17. Wind Power Plant Voltage Control Optimization with Embedded Application of Wind Turbines and Statcom

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Solanas, Jose Ignacio Busca; Zhao, Haoran

    2017-01-01

    Increasing wind power penetration and the size of wind power plants (WPPs) brings challenges to the operation and control of power systems. Most of WPPs are located far from load centers and the short circuit ratio at the point of common coupling (PCC) is low. The fluctuations of wind power...

  18. Securing smart grid technology

    Science.gov (United States)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  19. Study of Mental Activity and Regular Training (SMART in at risk individuals: A randomised double blind, sham controlled, longitudinal trial

    Directory of Open Access Journals (Sweden)

    Jain Nidhi

    2011-04-01

    Full Text Available Abstract Background The extent to which mental and physical exercise may slow cognitive decline in adults with early signs of cognitive impairment is unknown. This article provides the rationale and methodology of the first trial to investigate the isolated and combined effects of cognitive training (CT and progressive resistance training (PRT on general cognitive function and functional independence in older adults with early cognitive impairment: Study of Mental and Regular Training (SMART. Our secondary aim is to quantify the differential adaptations to these interventions in terms of brain morphology and function, cardiovascular and metabolic function, exercise capacity, psychological state and body composition, to identify the potential mechanisms of benefit and broader health status effects. Methods SMART is a double-blind randomized, double sham-controlled trial. One hundred and thirty-two community-dwelling volunteers will be recruited. Primary inclusion criteria are: at risk for cognitive decline as defined by neuropsychology assessment, low physical activity levels, stable disease, and age over 55 years. The two active interventions are computerized CT and whole body, high intensity PRT. The two sham interventions are educational videos and seated calisthenics. Participants are randomized into 1 of 4 supervised training groups (2 d/wk × 6 mo in a fully factorial design. Primary outcomes measured at baseline, 6, and 18 months are the Alzheimer's Disease Assessment Scale (ADAS-Cog, neuropsychological test scores, and Bayer Informant Instrumental Activities of Daily Living (B-IADLs. Secondary outcomes are psychological well-being, quality of life, cardiovascular and musculoskeletal function, body composition, insulin resistance, systemic inflammation and anabolic/neurotrophic hormones, and brain morphology and function via Magnetic Resonance Imaging (MRI and Spectroscopy (fMRS. Discussion SMART will provide a novel evaluation of the

  20. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  1. Preventing parastomal hernia with modified stapled mesh stoma reinforcement technique (SMART) in patients who underwent surgery for rectal cancer: a case-control study.

    Science.gov (United States)

    Canda, A E; Terzi, C; Agalar, C; Egeli, T; Arslan, C; Altay, C; Obuz, F

    2018-01-05

    Parastomal hernia is a frequent complication of an abdominal wall stoma. Surgical repairs have high complication and recurrence rates. Several different techniques have been suggested to prevent parastomal hernia during stoma creation. The aim of the present case-control study was to evaluate the efficacy of modified Stapled Mesh stomA Reinforcement Technique (SMART) for prevention of parastomal hernia compared with conventional colostomy formation in patients who underwent open or laparoscopic rectal resection and end colostomy for cancer. Between January 2014 and May 2016, all consecutive patients who underwent open or laparoscopic resection and end colostomy for primary or recurrent rectal cancer were identified from a prospectively collected database. Since January 2014, one surgeon in our team has routinely offered modified SMART procedure to all patients who are candidates for permanent terminal colostomy. In the SMART group patients, while creating an end colostomy, we placed a standard polypropylene mesh in the retromuscular position, fixed and cut the mesh by firing a 31- or 33-mm-diameter circular stapler and constructed the stoma. In the control group, a stoma was created conventionally by a longitudinal or transverse incision of the rectus abdominis sheath sufficiently large for the colon to pass through. Twenty-nine patients underwent parastomal hernia prophylaxis with modified SMART and 38 patients underwent end-colostomy formation without prophylaxis (control group). Groups were similar in terms of age, sex and underlying conditions predisposing to herniation. Median follow-up time is 27 (range 12-41) months. Nineteen patients (28.4%) developed parastomal herniation. In the SMART group, 4 patients (13.8%) developed parastomal herniation which is significantly lower than the control group in which 15 patients (39.5%) developed parastomal herniation (p = 0.029). We did not observe mesh infection, stenosis, erosion or fistulation in the SMART group

  2. An Embedded Voltage Harmonic Compensation Strategy for Current Controlled DG Interfacing Converters

    DEFF Research Database (Denmark)

    Zhao, Xin; Meng, Lexuan; Guerrero, Josep M.

    2016-01-01

    converters. The novelty and main advantages of the proposed method include: 1) it realizes seamless interface of HC with inner fundamental current control loop; 2) compared with conventional active power filtering method, it does not require remote load harmonic current measurement since it is based on local...... voltage detection; 3) compared with conventional voltage detection based method, it offers better performance because of direct harmonic voltage regulation. Experimental results are presented to demonstrate the effectiveness of the method....

  3. Smart Card

    OpenAIRE

    Floarea NASTASE

    2006-01-01

    Reforms in electronic business have presented new opportunities to use smart card technology as an enabling tool. The network-centric applications, where resources are located throughout the Internet and access to them is possible from any location, require authenticated access and secured transactions. Smart cards represent an ideal solution: they offers an additional layer of electronic security and information assurance for user authentication, confidentiality, non-repudiation, information...

  4. BEAGLEBOARD EMBEDDED SYSTEM FOR ADAPTIVE TRAFFIC LIGHT CONTROL SYSTEM WITH CAMERA SENSOR

    Directory of Open Access Journals (Sweden)

    Muhammad Febrian Rachmadi

    2012-07-01

    Full Text Available Traffic is one of the most important aspects in human daily life because traffic affects smoothness of capital flows, logistics, and other community activities. Without appropriate traffic light control system, possibility of traffic congestion will be very high and hinder people’s life in urban areas. Adaptive traffic light control system can be used to solve traffic congestions in an intersection because it can adaptively change the durations of green light each lane in an intersection depend on traffic density. The proposed adaptive traffic light control system prototype uses Beagleboard-xM, CCTV camera, and AVR microcontrollers. We use computer vision technique to obtain information on traffic density combining Viola-Jones method with Kalman Filter method. To calculate traffic light time of each traffic light in intersection, we use Distributed Constraint Satisfaction Problem (DCSP. From implementations and experiments results, we conclude that BeagleBoard-xM can be used as main engine of adaptive traffic light control system with 91.735% average counting rate. Lalu intas adalah salah satu aspek yang paling penting dalam kehidupan sehari-hari manusia karena lalu lintas memengaruhi kelancaran arus modal, logistik, dan kegiatan masyarakat lainnya. Tanpa sistem kontrol lampu lalu lintas yang memadai, kemungkinan kemacetan lalu lintas akan sangat tinggi dan menghambat kehidupan masyarakat di perkotaan. Sistem kontrol lampu lalu lintas adaptif dapat digunakan untuk memecahkan kemacetan lalu lintas di persimpangan karena dapat mengubah durasi lampu hijau di setiap persimpangan jalan tergantung pada kepadatan lalu lintas. Prototipe sistem kontrol lampu lalu lintas menggunakan BeagleBoard-XM, kamera CCTV, dan mikrokontroler AVR. Peneliti menggunakan teknik computer vision untuk mendapatkan informasi tentang kepadatan lalu lintas dengan menggabungkan metode Viola-Jones dan metode Filter Kalman. Untuk menghitung waktu setiap lampu lalu lintas

  5. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  6. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    Science.gov (United States)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  7. Embedded sensors in layered manufacturing

    Science.gov (United States)

    Li, Xiaochun

    Layered Manufacturing can be applied to build ``smart'' parts with sensors, integrated circuits, and actuators placed within the component. Embedded sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of components in service. Techniques for embedding fiber optic sensors in metals, polymers, and ceramics have been investigated. Embedding optical fibers into metals is especially challenging because engineering alloys tend to exhibit high melting temperatures. In the present research an embedding sequence was developed capable of embedding fiber sensors into parts made of metal alloys with high melting temperatures. Fiber Bragg Grating (FBG) sensors were selected as the most promising sensor candidate. The embedded FBG sensors were characterized for temperature and strain measurements. The embedded FBG sensors in nickel and stainless steel provided high sensitivity, good accuracy, and high temperature capacity for temperature measurements. Temperature sensitivity approximately 100% higher than that of bare FBGs was demonstrated. For strain measurements, the sensors embedded in metal and polyurethane yielded high sensitivity, accuracy, and linearity. The sensitivity of the embedded FBGs was in good agreement with that of bare FBGs. Moreover, a decoupling technique for embedded FBG sensors was developed to separate temperature and strain effects. The embedded FBG sensors were used to monitor the accumulation of residual stresses during the laser- assisted Layered Manufacturing, to measure the strain field in layered materials, to measure pressure, and to monitor temperature and strain simultaneously. New techniques have been developed for temperature and strain measurements of rotating components with FBG sensors embedded or attached to the surface. Tunable laser diodes were incorporated into the sensing system for monitoring the Bragg grating wavelength

  8. The economy of Smart Grids requires Smart Markets

    Energy Technology Data Exchange (ETDEWEB)

    Buehner, Volker [EUS GmbH, Dortmund (Germany); Buchholz, Bernd Michael [NTB Technoservice, Pyrbaum (Germany); Fenn, Bernhard [HSE AG, Darmstadt (Germany)

    2012-07-01

    The enhancement of electricity networks into Smart Grid requires significant investment. Under the current market conditions in Germany the return of investment is not visible. Smart Grids and Smart Market can be developed only in a mutual relation. A vision for the prospective electricity market including the business models motivating the Smart Grid enhancement is considered for the distribution level. The required investment for the enhancement of a 20 kV distribution network into a Smart Grid is considered based on the installation experience of the European lighthouse project Web2Energy. Market aspects like the aggregation of distributed energy resources, storage units and controllable loads into a virtual power plant (VPP) or the market integration of consumers by dynamic tariffs are also included in this investigation. Based on the visionary market conditions economic benefits may be presented. (orig.)

  9. Electrically Controlled Plasmonic Lasing Resonances with Silver Nanoparticles Embedded in Amplifying Nematic Liquid Crystals

    CERN Document Server

    Wang, Chin

    2014-01-01

    We demonstrate an electrically controlled coherent random lasing with silver nano-particles dispersed in a dye-doped nematic liquid crystal (NLC), in which external electric field dependent emission intensity and frequency-splitting are recorded. A modified rate equation model is proposed to interpret the observed coherent lasing, which is a manifestation of double enhancements, caused by the plasmon-polariton near-fields of Ag particles, on the population inversion of laser dye molecules and the optical energy density of lasing modes. The noticeable quenching of lasing resonances in a weak applied field is due to the dynamic light scattering by irregular director fluctuations of the NLC host, which wash out the coherent interference among different particle palsmon-polariton fields. This provides a proof to support that the present lasing resonances are very sensitive to the dielectric perturbations in the host medium and thus are likely associated with some coupled plasmonic oscillations of metal nanopartic...

  10. Security-Enhanced Push Button Configuration for Home Smart Control

    Science.gov (United States)

    Han, Junghee; Park, Taejoon

    2017-01-01

    With the emergence of smart and converged home services, the need for the secure and easy interplay of various devices has been increased. Push Button Configuration (PBC) is one of the technologies proposed for easy set-up of a secure session between IT and consumer devices. Although the Wi-Fi Direct specification explicitly states that all devices must support the PBC method, its applicability is very limited. This is because the security vulnerability of PBC can be maliciously exploited so that attackers can make illegitimate sessions with consumer devices. To address this problem, this paper proposes a novel Security-enhanced PBC (SePBC) scheme with which we can uncover suspicious or malicious devices. The proposed mechanism has several unique features. First, we develop a secure handshake distance measurement protocol by preventing an adversary sitting outside the region from maliciously manipulating its distance to be fake. Second, it is compatible with the original Wi-Fi PBC without introducing a brand-new methodology. Finally, SePBC uses lightweight operations without CPU-intensive cryptography computation and employs inexpensive H/W. Moreover, it needs to incur little overhead when there is no attack. This paper also designs and implements the proposed SePBC in the real world. Our experimental results and analysis show that the proposed SePBC scheme effectively defeats attacks on PBC while minimizing the modification of the original PBC equipment. PMID:28594370

  11. NSTAR Smart Grid Pilot

    Energy Technology Data Exchange (ETDEWEB)

    Rabari, Anil [NSTAR Electric, Manchester, NH (United States); Fadipe, Oloruntomi [NSTAR Electric, Manchester, NH (United States)

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  12. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Collaborative Research: Fundamental Studies of Plasma Control Using Surface Embedded Electronic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Overzet, Lawrence J. [Univ. of Texas, Dallas, TX (United States); Raja, L. [Univ. of Texas, Austin, TX (United States)

    2015-06-06

    The research program was collaborative between the researchers at the University of Texas at Dallas and the University of Texas at Austin. The primary subject of this program was to investigate the possibility of active control of secondary electron emission (SEE) from surfaces in contact with plasmas and thereby actively control plasmas. Very few studies of ion-induced electron emission (IIEE) from semiconductors exist, and those that do exist primarily used high-energy ion beams in the experiments. Furthermore, those few studies took extreme measures to ensure that the measurements were performed on atomically clean surfaces because of the surface sensitivity of the IIEE process. Even a small exposure to air can change the IIEE yield significantly. In addition, much of the existing data for IIEE from semiconductors was obtained in the 1950s and ‘60s, when semiconductor materials were first being refined. As a result, nearly all of that data is for p-type Ge and Si. Before this investigation, experimental data on n-type materials was virtually non-existent. While the basic theory assumed that IIEE yields ought to be substantially independent of doping type and concentration, recent measurements of near atmospheric pressure plasmas and of breakdown suggested otherwise. These indirect measurements were made on surfaces that were not atomically clean and seemed to indicate that deep sub-surface changes to the bulk conduction band electron density could lead to substantial variations in the IIEE yield. Exactly in contradiction to the generally accepted theory. Insufficient direct data existed to settle the matter. We performed both experimental measurements and theoretical calculations of IIEE yields from both Si and Ge in order to help clarify whether or not conduction band electrons substantially change the IIEE yield. We used three wafers of each material to carry out the investigation: a heavily doped p-type, an intrinsic and a heavily doped n-type wafer. There

  14. Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Fugate, David L [ORNL; Melin, Alexander M [ORNL; Holcomb, David Eugene [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Cruz Molina, Carola [ORNL

    2013-07-01

    This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

  15. USING A DIGITAL VIDEO CAMERA AS THE SMART SENSOR OF THE SYSTEM FOR AUTOMATIC PROCESS CONTROL OF GRANULAR FODDER MOLDING

    Directory of Open Access Journals (Sweden)

    M. M. Blagoveshchenskaya

    2014-01-01

    Full Text Available Summary. The most important operation of granular mixed fodder production is molding process. Properties of granular mixed fodder are defined during this process. They determine the process of production and final product quality. The possibility of digital video camera usage as intellectual sensor for control system in process of production is analyzed in the article. The developed parametric model of the process of bundles molding from granular fodder mass is presented in the paper. Dynamic characteristics of the molding process were determined. A mathematical model of motion of bundle of granular fodder mass after matrix holes was developed. The developed mathematical model of the automatic control system (ACS with the use of etalon video frame as the set point in the MATLAB software environment was shown. As a parameter of the bundles molding process it is proposed to use the value of the specific area defined in the mathematical treatment of the video frame. The algorithms of the programs to determine the changes in structural and mechanical properties of the feed mass in video frames images were developed. Digital video shooting of various modes of the molding machine was carried out and after the mathematical processing of video the transfer functions for use as a change of adjustable parameters of the specific area were determined. Structural and functional diagrams of the system of regulation of the food bundles molding process with the use of digital camcorders were built and analyzed. Based on the solution of the equations of fluid dynamics mathematical model of bundle motion after leaving the hole matrix was obtained. In addition to its viscosity, creep property was considered that is characteristic of the feed mass. The mathematical model ACS of the bundles molding process allowing to investigate transient processes which occur in the control system that uses a digital video camera as the smart sensor was developed in Simulink

  16. A Smart Audio on Demand Application on Android Systems

    Directory of Open Access Journals (Sweden)

    Ing-Jr Ding

    2015-05-01

    Full Text Available This paper describes a study of the realization of intelligent Audio on Demand (AOD processing in the embedded system environment. This study describes the development of innovative Android software that will enhance user experience of the increasingly popular number of smart mobile devices now available on the market. The application we developed can accumulate records of the songs that are played and automatically analyze the favorite song types of a user. The application can also select sound control playback functions to make operation more convenient. A large number of different types of music genre were collected to create a sound database and build an intelligent AOD processing mechanism. Formant analysis was used to extract voice features and the K-means clustering method and acoustic modeling technology of the Gaussian mixture model (GMM were used to study and develop the application mechanism. The processes we developed run smoothly in the embedded Android platform.

  17. Smart Distribution Boxes, Complete Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Platise, Uros

    2010-09-15

    Present households demand side management implementations are turning conventional appliances into smart ones to support auto demand (AutoDR) response function. Present concept features a direct link between the power meters and appliances. In this paper new concept and example of implementation of a so-called Smart Distribution Box (SmartDB) is represented for complete energy and power management. SmartDBs, as an intermediate layer, are extending smart grid power meter functionality to support AutoDR with fast and guaranteed response times, distributed power sources, and besides provide full control over energy management and extra safety functions to the consumers.

  18. Light on! Real world evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.

    Science.gov (United States)

    Carabalona, Roberta; Grossi, Ferdinando; Tessadri, Adam; Castiglioni, Paolo; Caracciolo, Antonio; de Munari, Ilaria

    2012-01-01

    Brain-computer interface (BCI) systems aim to enable interaction with other people and the environment without muscular activation by the exploitation of changes in brain signals due to the execution of cognitive tasks. In this context, the visual P300 potential appears suited to control smart homes through BCI spellers. The aim of this work is to evaluate whether the widely used character-speller is more sustainable than an icon-based one, designed to operate smart home environment or to communicate moods and needs. Nine subjects with neurodegenerative diseases and no BCI experience used both speller types in a real smart home environment. User experience during BCI tasks was evaluated recording concurrent physiological signals. Usability was assessed for each speller type immediately after use. Classification accuracy was lower for the icon-speller, which was also more attention demanding. However, in subjective evaluations, the effect of a real feedback partially counterbalanced the difficulty in BCI use. Since inclusive BCIs require to consider interface sustainability, we evaluated different ergonomic aspects of the interaction of disabled users with a character-speller (goal: word spelling) and an icon-speller (goal: operating a real smart home). We found the first one as more sustainable in terms of accuracy and cognitive effort.

  19. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: A pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    S.A. Costigan

    2015-01-01

    Full Text Available Current physical activity and fitness levels among adolescents are low, increasing the risk of chronic disease. Although the efficacy of high intensity interval training (HIIT for improving metabolic health is now well established, it is not known if this type of activity can be effective to improve adolescent health. The primary aim of this study is to assess the effectiveness and feasibility of embedding HIIT into the school day. A 3-arm pilot randomized controlled trial was conducted in one secondary school in Newcastle, Australia. Participants (n = 65; mean age = 15.8(0.6 years were randomized into one of three conditions: aerobic exercise program (AEP (n = 21, resistance and aerobic exercise program (RAP (n = 22 and control (n = 22. The 8-week intervention consisted of three HIIT sessions per week (8–10 min/session, delivered during physical education (PE lessons or at lunchtime. Assessments were conducted at baseline and post-intervention to detect changes in cardiorespiratory fitness (multi-stage shuttle-run, muscular fitness (push-up, standing long jump tests, body composition (Body Mass Index (BMI, BMI-z scores, waist circumference and physical activity motivation (questionnaire, by researchers blinded to treatment allocation. Intervention effects for outcomes were examined using linear mixed models, and Cohen's d effect sizes were reported. Participants in the AEP and RAP groups had moderate intervention effects for waist circumference (p = 0.024, BMI-z (p = 0.037 and BMI (not significant in comparison to the control group. A small intervention effect was also evident for cardiorespiratory fitness in the RAP group.

  20. Smart sensors

    Science.gov (United States)

    Corsi, Carlo

    2006-08-01

    The term "Smart Sensors" refer to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. In a broad sense, they include any sensor systems covering the whole electromagnetic spectrum: this paper deals specifically with a new class of smart sensors in infrared spectral bands whose developments started some years ago, when it was recognized that the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic infrared detector array technology could be combined to develop new generations of infrared smart sensor systems with much improved performance. So, sophisticated signal processing operations have been developed for these new systems by integrating microcomputers and other VLSI signal processors within or next to the sensor arrays on the same focal plane avoiding complex computing located far away from the sensors. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduce inside the sensor some of the basic function of living eyes, such as dynamic stare, dishomogenity compensation, spatial and temporal filtering. New objectives and requirements of these new focal plane processors are presented for this type of new infrared smart sensor systems. This paper is concerned with the processing techniques for only the front end of the focal plane processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation threshold.