WorldWideScience

Sample records for embedded piezoelectric fibers

  1. Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

    Science.gov (United States)

    Duffy, Kirsten P.; Lerch, Bradley A.; Wilmoth, Nathan G.; Kray, Nicholas; Gemeinhardt, Gregory

    2012-01-01

    Piezoelectric materials have been proposed as a means of decreasing turbomachinery blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite (PMFC) blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. Before implementation of a piezoelectric element within a PMFC blade, the effect on PMFC mechanical properties needs to be understood. This study attempts to determine how the inclusion of a packaged piezoelectric patch affects the material properties of the PMFC. Composite specimens with embedded piezoelectric patches were tested in four-point bending, short beam shear, and flatwise tension configurations. Results show that the embedded piezoelectric material does decrease the strength of the composite material, especially in flatwise tension, attributable to failure at the interface or within the piezoelectric element itself. In addition, the sensing properties of the post-cured embedded piezoelectric materials were tested, and performed as expected. The piezoelectric materials include a non-flexible patch incorporating solid piezoceramic material, and two flexible patch types incorporating piezoelectric fibers. The piezoceramic material used in these patches was Navy Type-II PZT.

  2. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    Science.gov (United States)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  3. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate

    International Nuclear Information System (INIS)

    Konka, Hari P; Wahab, M A; Lian, K

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber–epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension–tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT

  4. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    Science.gov (United States)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  5. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  6. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  7. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  8. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  9. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  10. Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms.

    Science.gov (United States)

    Lu, Xin; Qu, Hang; Skorobogatiy, Maksim

    2017-06-06

    We demonstrate planar laminated piezoelectric generators and piezoelectric microstructured fibers based on BaTiO 3 -polyvinylidene and carbon-loaded-polyethylene materials combinations. The laminated piezoelectric generators were assembled by sandwiching the electrospun BaTiO 3 -polyvinylidene mat between two carbon-loaded-polyethylene films. The piezoelectric microstructured fiber was fabricated via drawing of the multilayer fiber preform, and features a swissroll geometry that have ~10 alternating piezoelectric and conductive layers. Both piezoelectric generators have excellent mechanical durability, and could retain their piezoelectric performance after 3 day's cyclic bend-release tests. Compared to the laminated generators, the piezoelectric fibers are advantageous as they could be directly woven into large-area commercial fabrics. Potential applications of the proposed piezoelectric fibers include micro-power-generation and remote sensing in wearable, automotive and aerospace industries.

  11. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  12. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  13. A study on the performance of piezoelectric composite materials for designing embedded transducers for concrete assessment

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2018-03-01

    Ultrasonic measurements of concrete can provide crucial information about its state of health. The most common practice in the construction industry consists in using external probes which strongly limits the use of the method since large parts of the in-service structures are difficult to access. It is also possible to assess in real time the setting process of the concrete using ultrasonic measurements. In practice, the field measurement of the concrete hardening is limited by the formworks. As an alternative, some research teams have studied the possibility to directly embed the transducers into the concrete structures. The current embedded ultrasonic transducers are of two categories: bulk piezoelectric elements surrounded by several coating and matching layers and composites piezoelectric elements. Both technologies aim at optimizing the wave energy transmitted to the tested medium. The performances of the transducers of the first kind have been studied in a previous study. A fair amount of recent research has been focused on the development of novel cement-based piezoelectric composites. In this study, we first compare the effective properties of such cement-based materials with more widespread composites made with matrices of epoxy resins or polyurethane. The study only concerns the 1-3 fiber arrangement composites. The effective properties are computed using both an analytical mixing rule method and a finite element based homogenization method using representative volume elements (RVEs) which allows for considering more realistic fiber arrangements, leading yet to very similar results. The effective piezoelectric properties of cement-based composites appear to be very low compared to composites made of epoxy or polyurethane. This result is underlined by looking at the acoustic response and the electric input impedance of different piezoelectric disks where we compare performances of such transducers with a low-cost bulk piezoelectric disc element. The first

  14. Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators: wires out by molded-in holes

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid

    2003-08-01

    This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.

  15. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    Science.gov (United States)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  16. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  17. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  18. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    International Nuclear Information System (INIS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  19. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  1. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  2. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering.

    Science.gov (United States)

    Tajitsu, Y

    2008-05-01

    Poly-L-lactic acid (PLLA), which is a type of chiral polymer, exhibits a high shear piezoelectric constant. To realize a higher shear piezoelectric constant, we spun PLLA resin into fibers. We succeeded in controlling the piezoelectric motion of a PLLA fiber by applying a dc voltage and ac voltage, similar to the control of a piezoelectric actuator. On the basis of this experimental result, we designed a catheter using a PLLA fiber (PLLA fiber catheter) and tweezers using a pair of PLLA fibers (PLLA fiber tweezers), controlled by adjusting the applied voltage. Then, using the PLLA fiber tweezers or catheter, we successfully picked up and removed small samples, such as a thrombosis in a blood vessel.

  3. A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2014-07-01

    Full Text Available Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2–3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors.

  4. An aeroelastic analysis of helicopter rotor blades incorporating piezoelectric fiber composite twist actuation

    Science.gov (United States)

    Wilkie, W. Keats; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  5. Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers

    Science.gov (United States)

    Safaei, Mohsen; Meneghini, R. Michael; Anton, Steven R.

    2017-09-01

    Total knee arthroplasty is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.

  6. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    International Nuclear Information System (INIS)

    Ray, M C

    2010-01-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e 31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503)

  7. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    Science.gov (United States)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  8. Embedded Fiber Optic Sensors for Integral Armor

    National Research Council Canada - National Science Library

    Fink, Bruce

    2000-01-01

    This report describes the work performed with Production Products Manufacturing & Sales (PPMS), Inc., under the "Liquid Molded Composite Armor Smart Structures Using Embedded Sensors" Small Business Innovative Research...

  9. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  10. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  11. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  12. Impedance-based structural health monitoring of additive manufactured structures with embedded piezoelectric wafers

    Science.gov (United States)

    Scheyer, Austin G.; Anton, Steven R.

    2017-04-01

    Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple

  13. Photonic lantern with multimode fibers embedded

    Science.gov (United States)

    Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min

    2014-08-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.

  14. Photonic lantern with multimode fibers embedded

    International Nuclear Information System (INIS)

    Yu Hai-Jiao; Yan Qi; Huang Zong-Jun; Tian He; Jiang Yu; Liu Yong-Jun; Zhang Jian-Zhong; Sun Wei-Min

    2014-01-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined. (research papers)

  15. Using embedded fibers to measure explosive detonation velocities

    Energy Technology Data Exchange (ETDEWEB)

    Podsednik, Jason W.; Parks, Shawn Michael; Navarro, Rudolfo J.

    2012-07-01

    Single-mode fibers were cleverly embedded into fixtures holding nitromethane, and used in conjunction with a photonic Doppler velocimeter (PDV) to measure the associated detonation velocity. These measurements have aided us in our understanding of energetic materials and enhanced our diagnostic capabilities.

  16. Embedded system of image storage based on fiber channel

    Science.gov (United States)

    Chen, Xiaodong; Su, Wanxin; Xing, Zhongbao; Wang, Hualong

    2008-03-01

    In domains of aerospace, aviation, aiming, and optic measure etc., the embedded system of imaging, processing and recording is absolutely necessary, which has small volume, high processing speed and high resolution. But the embedded storage technology becomes system bottleneck because of developing slowly. It is used to use RAID to promote storage speed, but it is unsuitable for the embedded system because of its big volume. Fiber channel (FC) technology offers a new method to develop the high-speed, portable storage system. In order to make storage subsystem meet the needs of high storage rate, make use of powerful Virtex-4 FPGA and high speed fiber channel, advance a project of embedded system of digital image storage based on Xilinx Fiber Channel Arbitrated Loop LogiCORE. This project utilizes Virtex- 4 RocketIO MGT transceivers to transmit the data serially, and connects many Fiber Channel hard drivers by using of Arbitrated Loop optionally. It can achieve 400MBps storage rate, breaks through the bottleneck of PCI interface, and has excellences of high-speed, real-time, portable and massive capacity.

  17. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  18. Switchable static friction of piezoelectric composite-silicon wafer contacts

    NARCIS (Netherlands)

    Ende, D.A. van den; Fischer, H.R.; Groen, W.A.; Zwaag, S. van der

    2013-01-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and

  19. Switchable static friction of piezoelectric composite—silicon wafer contacts

    NARCIS (Netherlands)

    Van den Ende, D.A.; Fischer, H.R.; Groen, W.A.; Van der Zwaag, S.

    2013-01-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and

  20. Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2014-05-28

    We have successfully developed hybrid piezoelectric paper through fiber functionalization that involves anchoring nanostructured BaTiO3 into a stable matrix with wood cellulose fibers prior to the process of making paper sheets. This is realized by alternating immersion of wood fibers in a solution of poly(diallyldimethylammonium chloride) PDDA (+), followed by poly(sodium 4-styrenesulfonate) PSS (-), and once again in PDDA (+), resulting in the creation of a positively charged surface on the wood fibers. The treated wood fibers are then immersed in a BaTiO3 suspension, resulting in the attachment of BaTiO3 nanoparticles to the wood fibers due to a strong electrostatic interaction. Zeta potential measurements, X-ray diffraction, and microscopic and spectroscopic analysis imply successful functionalization of wood fibers with BaTiO3 nanoparticles without altering the hydrogen bonding and crystal structure of the wood fibers. The paper has the largest piezoelectric coefficient, d33 = 4.8 ± 0.4 pC N(-1), at the highest nanoparticle loading of 48 wt % BaTiO3. This newly developed piezoelectric hybrid paper is promising as a low-cost substrate to build sensing devices.

  1. Signal processing techniques for damage detection with piezoelectric wafer active sensors and embedded ultrasonic structural radar

    Science.gov (United States)

    Yu, Lingyu; Bao, Jingjing; Giurgiutiu, Victor

    2004-07-01

    Embedded ultrasonic structural radar (EUSR) algorithm is developed for using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. Signal processing techniques are used to extract the time of flight of the wave packages, and thereby to determine the location of the defects with the EUSR algorithm. In our research, the transient tone-burst wave propagation signals are generated and collected by the embedded PWAS. Then, with signal processing, the frequency contents of the signals and the time of flight of individual frequencies are determined. This paper starts with an introduction of embedded ultrasonic structural radar algorithm. Then we will describe the signal processing methods used to extract the time of flight of the wave packages. The signal processing methods being used include the wavelet denoising, the cross correlation, and Hilbert transform. Though hardware device can provide averaging function to eliminate the noise coming from the signal collection process, wavelet denoising is included to ensure better signal quality for the application in real severe environment. For better recognition of time of flight, cross correlation method is used. Hilbert transform is applied to the signals after cross correlation in order to extract the envelope of the signals. Signal processing and EUSR are both implemented by developing a graphical user-friendly interface program in LabView. We conclude with a description of our vision for applying EUSR signal analysis to structural health monitoring and embedded nondestructive evaluation. To this end, we envisage an automatic damage detection application utilizing embedded PWAS, EUSR, and advanced signal processing.

  2. Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites

    International Nuclear Information System (INIS)

    Kundalwal, S I; Suresh Kumar, R; Ray, M C

    2013-01-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1–3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs. (paper)

  3. Real time sensing of structural glass fiber reinforced composites by using embedded PVA - carbon nanotube fibers

    Directory of Open Access Journals (Sweden)

    Marioli-Riga Z.

    2010-06-01

    Full Text Available Polyvinyl alcohol - carbon nanotube (PVA-CNT fibers had been embedded to glass fiber reinforced polymers (GFRP for the structural health monitoring of the composite material. The addition of the conductive PVA-CNT fiber to the nonconductive GFRP material aimed to enhance its sensing ability by means of the electrical resistance measurement method. The test specimen’s response to mechanical load and the in situ PVA-CNT fiber’s electrical resistance measurements were correlated for sensing and damage monitoring purposes. The embedded PVA-CNT fiber worked as a sensor in GFRP coupons in tensile loadings. Sensing ability of the PVA-CNT fibers was also demonstrated on an integral composite structure. PVA-CNT fiber near the fracture area of the structure recorded very high values when essential damage occurred to the structure. A finite element model of the same structure was developed to predict axial strains at locations of the integral composite structure where the fibers were embedded. The predicted FEA strains were correlated with the experimental measurements from the PVA-CNT fibers. Calculated and experimental values were in good agreement, thus enabling PVA-CNT fibers to be used as strain sensors.

  4. Embedded Bragg grating fiber optic sensor for composite flexbeams

    Science.gov (United States)

    Bullock, Daniel; Dunphy, James; Hufstetler, Gerard

    1993-03-01

    An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.

  5. INFLUENCE OF PIEZOELECTRIC TRANSDUCER TO GLASS FIBER REINFORCED COMPOSITE STIFFNESS

    Directory of Open Access Journals (Sweden)

    Witold Rządkowski

    2015-08-01

    Full Text Available The main goal was to determine if transducers based on piezoelectric materials are suitable for strain calculations in thin GFRP specimens. Numerous experimental studies, both physical and numerical, performed by the authors, have shown that there is a huge influence of bonded piezoelectric transducer on the overall stiffness of the measured object. The paper presents tensile test performed on strength machine with Digital Image Correlation strain and deflection observations. Test were compared with FEM models for detailed investigation. The main conclusion is piezoelectric transducers has huge influence on local stiffness of measured object. That is critical especially when they are used as strain sensors, when presence of sensor is influencing to measured results.

  6. Self-Powered Active Sensor with Concentric Topography of Piezoelectric Fibers.

    Science.gov (United States)

    Fuh, Yiin Kuen; Huang, Zih Ming; Wang, Bo Sheng; Li, Shan Chien

    2017-12-01

    In this study, we demonstrated a flexible and self-powered sensor based on piezoelectric fibers in the diameter range of nano- and micro-scales. Our work is distinctively different from previous electrospinning research; we fabricated this apparatus precisely via near-field electrospinning which has a spectacular performance to harvest mechanical deformation in arbitrary direction and a novel concentrically circular topography. There are many piezoelectric devices based on electrospinning polymeric fibers. However, the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. To overcome this predicament, we re-arranged the parallel alignment into concentric circle pattern which made it possible to collect the mechanical energy whenever the deformation is along same axis or not. Despite the change of topography, the output voltage and current could still reach to 5 V and 400 nA, respectively, despite the mechanical deformation was from different direction. This new arbitrarily directional piezoelectric generator with concentrically circular topography (PGCT) allowed the piezoelectric device to harvest more mechanical energy than the one-directional alignment fiber-based devices, and this PGCT could perform even better output which promised more versatile and efficient using as a wearable electronics or sensor.

  7. Optical Fiber Sensors Based on Nanoparticle-Embedded Coatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2015-01-01

    Full Text Available The use of nanoparticles (NPs in scientific applications has attracted the attention of many researchers in the last few years. The use of NPs can help researchers to tune the physical characteristics of the sensing coating (thickness, roughness, specific area, refractive index, etc. leading to enhanced sensors with response time or sensitivity better than traditional sensing coatings. Additionally, NPs also offer other special properties that depend on their nanometric size, and this is also a source of new sensing applications. This review focuses on the current status of research in the use of NPs within coatings in optical fiber sensing. Most used sensing principles in fiber optics are briefly described and classified into several groups: absorbance-based sensors, interferometric sensors, fluorescence-based sensors, fiber grating sensors, and resonance-based sensors, among others. For each sensor group, specific examples of the utilization of NP-embedded coatings in their sensing structure are reported.

  8. Online monitoring of cracking in concrete structures using embedded piezoelectric transducers

    International Nuclear Information System (INIS)

    Dumoulin, C; Karaiskos, G; Deraemaeker, A; Sener, J-Y

    2014-01-01

    Online damage detection is of great interest in the field of concrete structures and, more generally, within the construction industry. Current economic requirements impose the reduction of the operating costs related to such inspection while the security and the reliability of structures must constantly be improved. In this paper, nondestructive testing is applied using piezoelectric transducers embedded in concrete structures. These transducers are especially adapted for online ultrasonic monitoring, due to their low cost, small size, and broad frequency band. These recent transducers are called smart aggregates. The technique of health monitoring developed in this study is based on a ultrasonic pulse velocity test with an embedded ultrasonic emitter-receiver pair (pitch-catch). The damage indicator focuses on the early wave arrival. The Belgian company MS3 takes an interest in evaluating the quality of the concrete around the anchorage system of highway security barriers after important shocks. The failure mechanism can be viewed as a combination of a bending and the failure of the anchorages. Accordingly, the monitoring technique has been applied both on a three-points bending test and several pull-out tests. The results indicate a very high sensitivity of the method, which is able to detect the crack initiation phase and follow the crack propagation over the entire duration of the test. (paper)

  9. Piezoelectricity

    CERN Document Server

    Lubitz, Karl

    2008-01-01

    Piezoelectric materials play a key role in an innovative market. Advances in applications derive from new materials and their development, as well as to new market requirements. This report elucidates these developments by a broad spectrum of examples, comprising ultrasound in medicine and defence industry, and frequency control.

  10. Study on strain transfer of embedded fiber Bragg grating sensors

    Science.gov (United States)

    Wu, Rujun; Zheng, Bailin; Fu, Kunkun; He, Pengfei; Tan, Yuegang

    2014-08-01

    In this study, a theoretical model of embedded fiber Bragg grating sensors was developed to provide predictions of the strain transfer rate and average strain transfer rate without the assumption that the host material is subjected to uniform axial stress. Further, a finite element (FE) analysis was performed to validate the present model. It was shown that the theoretical results with the present model are in good agreement with those by FE analysis. Finally, the parametric analysis was used to quantitatively investigate the effect of the parameters of the adhesive layer and host material on the strain transfer rate and average strain transfer rate.

  11. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  12. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    International Nuclear Information System (INIS)

    Acer, Merve; Salerno, Marco; Paik, Jamie; Agbeviade, Kossi

    2015-01-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5–2.3 mm in thickness, with the sensitivity in the range of 0.07–0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed. (paper)

  13. Damage detection monitoring applications in self-healing concrete structures using embedded piezoelectric transducers and recovery

    International Nuclear Information System (INIS)

    Karaiskos, G; Tsangouri, E; Aggelis, D G; Van Hemelrijck, D; Deraemaeker, A

    2015-01-01

    The ageing, operational and ambient loadings have a great impact in the operational and maintenance cost of concrete structures. Their service life prolongation is of utmost importance and this can be efficiently achieved by using reliable and low-cost monitoring and self-healing techniques. In the present study, the ultrasonic pulse velocity (UPV) method using embedded small-size and low-cost piezoelectric PZT (lead zirconate titanate) ceramic transducers in concrete with self-healing properties is implemented for monitoring not only the setting and hardening phases of concrete since casting time, but also for the detection of damage initiation, propagation and recovery of integrity after healing. A couple of small-scale notched unreinforced concrete beams are subjected to mode-I fracture through three-point bending tests. After a 24-hour healing agent curing period, the beams are reloaded using the same loading scenario. The results demonstrate the excellent performance of the proposed monitoring technique during the hydration, damage generation and recovery periods. (paper)

  14. Development and characterization of silicone embedded distributed piezoelectric sensors for contact detection

    Science.gov (United States)

    Acer, Merve; Salerno, Marco; Agbeviade, Kossi; Paik, Jamie

    2015-07-01

    Tactile sensing transfers complex interactive information in a most intuitive sense. Such a populated set of data from the environment and human interactions necessitates various degrees of information from both modular and distributed areas. A sensor design that could provide such types of feedback becomes challenging when the target component has a nonuniform, agile, high resolution, and soft surface. This paper presents an innovative methodology for the manufacture of novel soft sensors that have a high resolution sensing array due to the sensitivity of ceramic piezoelectric (PZT) elements, while uncommonly matched with the high stretchability of the soft substrate and electrode design. Further, they have a low profile and their transfer function is easy to tune by changing the material and thickness of the soft substrate in which the PZTs are embedded. In this manuscript, we present experimental results of the soft sensor prototypes: PZTs arranged in a four by two array form, measuring 1.5-2.3 mm in thickness, with the sensitivity in the range of 0.07-0.12 of the normalized signal change per unit force. We have conducted extensive tests under dynamic loading conditions that include impact, step and cyclic. The presented prototype's mechanical and functional capacities are promising for applications in biomedical systems where soft, wearable and high precision sensors are needed.

  15. A layered shell containing patches of piezoelectric fibers and interdigitated electrodes: Finite element modeling and experimental validation

    DEFF Research Database (Denmark)

    Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar

    2017-01-01

    The work gives a theoretical and experimental contribution to the problem of smart materials connected to double curved flexible shells. In the theoretical part the finite element modeling of a double curved flexible shell with a piezoelectric fiber patch with interdigitated electrodes (IDEs......) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... the piezoelectric material properties to zero. The electrical field applied via the IDEs is aligned with the piezoelectric fibers, and hence the direct d33 piezoelectric constant is utilized for the electromechanical coupling. The dynamic performance of a shell with a microfiber composite (MFC) patch...

  16. Evaluation of insertion characteristics of less invasive Si optoneural probe with embedded optical fiber

    Science.gov (United States)

    Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2017-04-01

    A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.

  17. An Enhanced Piezoelectric Vibration Energy Harvesting System with Macro Fiber Composite

    Directory of Open Access Journals (Sweden)

    Shuwen Zhang

    2015-01-01

    Full Text Available Self-power supply is a promising project in various applied conditions. Among this research area, piezoelectric material-based energy harvesting (EH method has been researched in recent years due to its advantages. With the limitation of energy form acceptance range of EH circuit system, a sum of energy is not accessible to be obtained. To enlarge the EH quantity from the vibration, an enhanced piezoelectric vibration EH structure with piezoelectric film is developed in this work. Piezoelectric-based energy harvesting mechanism is primarily proposed in this work. The special-designed electric circuit for EH from macro fiber composite (MFC is proposed and then analyzed. When the structure vibrates in its modes of frequencies, the experiments are developed to measure the EH effect. The energy harvested from the vibrating structure is analyzed and the enhanced effect is presented. The results indicate that, with the enhanced EH structure in this work, vibration energy from structure is obtained in a larger range, and the general EH quantity is enlarged.

  18. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  19. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-01-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials. (paper)

  20. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  1. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    Science.gov (United States)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS

  2. Active wing design with integrated flight control using piezoelectric macro fiber composites

    International Nuclear Information System (INIS)

    Paradies, Rolf; Ciresa, Paolo

    2009-01-01

    Piezoelectric macro fiber composites (MFCs) have been implemented as actuators into an active composite wing. The goal of the project was the design of a wing for an unmanned aerial vehicle (UAV) with a thin profile and integrated roll control with piezoelectric elements. The design and its optimization were based on a fully coupled structural fluid dynamics model that implemented constraints from available materials and manufacturing. A scaled prototype wing was manufactured. The design model was validated with static and preliminary dynamic tests of the prototype wing. The qualitative agreement between the numerical model and experiments was good. Dynamic tests were also performed on a sandwich wing of the same size with conventional aileron control for comparison. Even though the roll moment generated by the active wing was lower, it proved sufficient for the intended roll control of the UAV. The active wing with piezoelectric flight control constitutes one of the first examples where such a design has been optimized and the numerical model has been validated in experiments

  3. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

    International Nuclear Information System (INIS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin; She, Jun-Kuan

    2014-01-01

    Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements. (paper)

  4. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  5. Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units

    Science.gov (United States)

    Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.

    2015-04-01

    The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.

  6. Study of interface influence on bending performance of CFRP with embedded optical fibers

    Science.gov (United States)

    Liu, Rong-mei; Liang, Da-kai

    2008-11-01

    Studies showed that the bending strength of composite would be affected by embedded optical fibers. Interface strength between the embedded optical fiber and the matrix was studied in this paper. Based on the single fiber pull out tests, the interfacial shear strength between the coating and the clad is the weakest. The shear strength of the optical fiber used in this study is near to 0.8MPa. In order to study the interfacial effect on bending property of generic smart structure, a quasi-isotropic composite laminates were produced from Toray T300C/ epoxy prepreg. Optical fibers were embedded within different orientation plies of the plates, with the optical fibers embedded in the same direction. Accordingly, five different types of plates were produced. Impact tests were carried out on the 5 different plate types. It is shown that when the fiber was embedded at the upper layer, the bending strength drops mostly. The bending normal stress on material arrives at the maximum. So does the normal stress applied on the optical fiber at the surface. Therefore, destructions could originate at the interface between the coating and the clad foremost. The ultimate strength of the smart structure will be affected furthest.

  7. Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; Mikkelsen, Lars Pilgaard; McGugan, Malcolm

    2015-01-01

    In this paper a novel method to assess a crack growing/damage event in fiber reinforced plastic, or adhesive using Fiber Bragg Grating (FBG) sensors embedded in a host material is shown. Different features of the crack mechanism that induce a change in the FBG response were identified. Double...

  8. Analysis and experimental study on the strain transfer mechanism of an embedded basalt fiber-encapsulated fiber Bragg grating sensor

    Science.gov (United States)

    Zhang, Zhenglin; Wang, Yuan; Sun, Yangyang; Zhang, Qinghua; You, Zewei; Huang, Xiaodi

    2017-01-01

    The precision of the encapsulated fiber optic sensor embedded into a host suffers from the influences of encapsulating materials. Furthermore, an interface transfer effect of strain sensing exists. This study uses an embedded basalt fiber-encapsulated fiber Bragg grating (FBG) sensor as the research object to derive an expression in a multilayer interface strain transfer coefficient by considering the mechanical properties of the host material. The direct impact of the host material on the strain transfer at an embedded multipoint continuous FBG (i.e., multiple gratings written on a single optical fiber) monitoring strain sensor, which was self-developed and encapsulated with basalt fiber, is studied to present the strain transfer coefficients corresponding to the positions of various gratings. The strain transfer coefficients of the sensor are analyzed based on the experiments designed for this study. The error of the experimental results is ˜2 μɛ when the strain is at 60 μɛ and below. Moreover, the measured curves almost completely coincide with the theoretical curves. The changes in the internal strain field inside the embedded structure of the basalt fiber-encapsulated FBG strain sensor could be easily monitored. Hence, important references are provided to measure the internal stress strain of the sensor.

  9. Energy in elastic fiber embedded in elastic matrix containing incident SH wave

    Science.gov (United States)

    Williams, James H., Jr.; Nagem, Raymond J.

    1989-01-01

    A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.

  10. Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links

    International Nuclear Information System (INIS)

    Watkins, J. G.; Rajpal, R.; Mandaliya, H.; Watkins, M.; Boivin, R. L.

    2012-01-01

    This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.

  11. Direct degradation of dyes by piezoelectric fibers through scavenging low frequency vibration

    Science.gov (United States)

    Zhu, Ruijian; Xu, Yunhua; Bai, Qing; Wang, Zengmei; Guo, Xinli; Kimura, Hideo

    2018-06-01

    A newly discovered nanometer material-mediated piezoelectrochemical (PZEC) for the direct conversion of mechanical energy to chemical energy has attracted increasing attention, for its great potential to be a green dye water decomposition technique. However, it is far from being a cost-effective and practical technique because only ultrasonic can be scavenged to decomposed organic pollutant in previous studies. Here, we prepared 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) piezoelectric fibers for the degradation of dye solution via slow stirring and studied the degradation mechanism. It provides a practical, green and low-cost method for decomposing organic dye by scavenging waste mechanical energy from the surrounding environment.

  12. Radially Polarized Conical Beam from an Embedded Etched Fiber

    OpenAIRE

    Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.

    2009-01-01

    International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...

  13. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yirong [Univ. of Texas, El Paso, TX (United States)

    2017-12-10

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall material property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.

  14. Radially polarized conical beam from an embedded etched fiber.

    Science.gov (United States)

    Kalaidji, Djamel; Spajer, Michel; Marthouret, Nadège; Grosjean, Thierry

    2009-06-15

    We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

  15. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    OpenAIRE

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedde...

  16. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [Electromagnetism and Telecommunications Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Gusarov, Andrei [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Faustov, Alexey [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Electromagnetisme and Telecommunication Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Areias, Lou [Mechanics of Materials and Constructions Department of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, (Belgium); European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol, (Belgium)

    2015-07-01

    We present the preliminary results obtained with bare fiber Bragg grating-based sensors embedded into half-scale Belgian Supercontainer concept. Being temperature and strain sensitive, some sensors were placed into aluminum tubes to monitor only temperature and results were compared with thermocouples data. The utility of using bare fiber Bragg gratings, knowing that these ones are very fragile, is to have a direct contact between the high alkaline environment of the concrete and silica fibers and to determine its impact over a very long time. (authors)

  17. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    Science.gov (United States)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  18. On Embedding N2R Structures in Optical Fiber OMS-SP Ring

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Nielsen, Rasmus Hjorth

    2006-01-01

    The objective of this paper is to propose methods for embedding N2R structures in optical fiber OMS-SP rings. The OMS-SP ring supports full mesh structure and restoration on the optical level. The N2R structures have been proven to be superior to other degree 3 network structures. Two main mapping...

  19. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  20. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    Science.gov (United States)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  1. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    Science.gov (United States)

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  2. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  3. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  4. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    Science.gov (United States)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  5. Four-plate piezoelectric actuator driving a large-diameter special optical fiber for nonlinear optical microendoscopy.

    Science.gov (United States)

    Wang, Ying; Li, Zhi; Liang, Xiaobao; Fu, Ling

    2016-08-22

    In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

  6. Recent developments in the use of plastic optical fiber for an embedded wear sensor

    Science.gov (United States)

    Cohen, Edward I.; Mastro, Stephen A.; Nemarich, Christopher P.; Korczynski, Joseph F., Jr.; Jarrett, Andrew W.; Jones, Wayne C.

    1999-05-01

    This paper describes recent developments of a practical, low cost embedded plastic optical fiber (POF) wear sensor system for the condition based maintenance of external outboard water lubricated bearings aboard U.S. Navy Ships. The benefit of this measurement system over the status quo is the ability to remotely monitor bearing wear. The Embedded Wear Sensor system (Navy invention disclosure #78,570) features a sacrificial wear fiber embedded into the nitrile rubber bearing. This fiber may also act as a conduit for the transmission of pressure and temperature data that may be resolved into alignment data. The authors selected a commercially-off-the- shelf plastic fiber for the sensor because of its material compatibility with the nitrile rubber bearing staves in terms of flexural modulus and wear properties. Presented herein is a description of the system concept, the results of non-linear finite element analysis, market survey of POF, mold studies, small scale prototyping and abrasive wear testing. A description of the sensor concept and the results of the preliminary finite element analysis of the bearing stave geometry are presented. Preliminary results of molding and glue bonding POF in nitrile rubber and then abrasive wear testing indicate that this is a viable concept.

  7. Fiber Bragg grating sensor based on cantilever structure embedded in polymer 3D printed material

    Science.gov (United States)

    Lima, Rita; Tavares, R.; Silva, S. O.; Abreu, P.; Restivo, Maria T.; Frazão, O.

    2017-04-01

    A cantilever structure in 3D printed based on a fiber Bragg grating (FBG) sensor embedded in polymer material is proposed. The FBG sensor was embedded in 3D printed coating and was tested under three physical parameters: displacement, temperature and vibration. The sensor was tested in displacement in two different regions of the cantilever, namely, on its midpoint and end point. The maximum displacement sensitivity achieved was (3 +/- 0.1) pm/mm for end point displacement, and a temperature sensitivity of (30 +/- 1) pm/°C was also attained. In the case of vibration measurements it was possible to obtain a 10.23Hz-low frequency oscillation.

  8. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  9. Controlling the set of carbon-fiber embedded cement with electric current

    Science.gov (United States)

    Mattus, Alfred J.

    2004-06-15

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  10. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  11. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  12. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  13. Effects of bond primers on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2011-02-01

    To evaluate the effect of three commonly used bond primers on the bending strength of glass fibers and their bond strength to maxillofacial silicone elastomer after 360 hours of accelerated daylight aging. Eighty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer M511 (Cosmesil). Twenty fiber bundles served as control and did not receive surface treatment with primers, whereas the remaining 60 fibers were treated with three primers (n = 20): G611 (Principality Medical), A-304 (Factor II), and A-330-Gold (Factor II). Forty specimens were dry stored at room temperature (23 ± 1°C) for 24 hours, and the remaining specimens were aged using an environmental chamber under accelerated exposure to artificial daylight for 360 hours. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2) ) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. A 3-point bending test was performed to evaluate the bending strength of the fiber bundles. One-way Analysis of Variance (ANOVA), Bonferroni post hoc test, and an independent t-test were carried out to detect statistical significances (p accelerated daylight aging. Treatment with primer and accelerated daylight aging increased bending strength of glass fibers. © 2011 by The American College of Prosthodontists.

  14. Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zheng-fang Wang

    2015-01-01

    Full Text Available Smart geogrids embedded with fiber Bragg grating (FBG for reinforcement as well as measurement of geotechnical structures have been developed. After the fabricating process of the geogrids is detailed, finite element (FE simulations are conducted to analyze the strain distribution of geogrids and the strain transfer characteristics from geogrids to fiber optic. Results indicate that FBG should be deployed in the middle of the geogrids rib to make sure that uniform strain distribution along the FBG. Also, PVC protective sleeves, which are used to protect fiber optic when integrated with geogrids, have smaller strain transfer loss than nylon sleeves. Tensile experiments are conducted to test strain measurement performance of proposed geogrids, and the results demonstrate that proposed smart geogrids have good linearity and consistency. Temperature experiments show that FBG embedded in geogrids has higher temperature sensitivity, and the temperature induced error can be compensated by an extra FBG strain-independent sensor. Furthermore, designed smart geogrids are used in a geotechnical model test to monitor strain during tunnel excavation. The strain tendency measured by smart geogrids and traditional strain sensor agree very well. The results indicate that smart geogrids embedded with FBGs can be an effective method to measure strains for geological engineering related applications.

  15. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    Science.gov (United States)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  16. Protection of critical infrastructure using fiber optic sensors embedded in technical textiles

    Science.gov (United States)

    Krebber, Katerina; Lenke, Philipp; Liehr, Sascha; Noether, Nils; Wendt, Mario; Wosniok, Aleksander

    2010-04-01

    Terrorists and criminals more and more attack and destroy important infrastructures like routes, railways, bridges, tunnels, dikes and dams, important buildings. Therefore, reliable on-line and long-term monitoring systems are required to protect such critical infrastructures. Fiber optic sensors are well-suited for that. They can be installed over many kilometers and are able to measure continuously distributed strain, pressure, temperature and further mechanical and physical quantities. The very tiny optical fibers can be integrated into structures and materials and can provide information about any significant changes or damages of the structures. These so-called smart materials and smart structures are able to monitor itself or its environment. Particularly smart technical textiles with embedded fiber optic sensors have become very attractive because of their high importance for the structural health monitoring of geotechnical and masonry infrastructures. Such textiles are usually used for reinforcement of the structures; the embedded fiber optic sensors provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, critical infrastructures can be preventively protected. The paper will introduce this innovative field and will present the results achieved within several German and European projects.

  17. A Novel Piezoelectric Energy Harvester Using the Macro Fiber Composite Cantilever with a Bicylinder in Water

    Directory of Open Access Journals (Sweden)

    Rujun Song

    2015-12-01

    Full Text Available A novel piezoelectric energy harvester equipped with two piezoelectric beams and two cylinders was proposed in this work. The energy harvester can convert the kinetic energy of water into electrical energy by means of vortex-induced vibration (VIV and wake-induced vibration (WIV. The effects of load resistance, water velocity and cylinder diameter on the performance of the harvester were investigated. It was found that the vibration of the upstream cylinder was VIV which enhanced the energy harvesting capacity of the upstream piezoelectric beam. As for the downstream cylinder, both VIV and the WIV could be obtained. The VIV was found with small L/D, e.g., 2.125, 2.28, 2.5, and 2.8. Additionally, the WIV was stimulated with the increase of L/D (such as 3.25, 4, and 5.5. Due to the WIV, the downstream beam presented better performance in energy harvesting with the increase of water velocity. Furthermore, it revealed that more electrical energy could be obtained by appropriately matching the resistance and the diameter of the cylinder. With optimal resistance (170 kΩ and diameter of the cylinder (30 mm, the maximum output power of 21.86 μW (sum of both piezoelectric beams was obtained at a water velocity of 0.31 m/s.

  18. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring.

    Science.gov (United States)

    Sartiano, Demetrio; Sales, Salvador

    2017-12-13

    The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA ® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  19. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Demetrio Sartiano

    2017-12-01

    Full Text Available The aim of this paper is to report the design of a low-cost plastic optical fiber (POF pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm and a silicon light sensor. The Super ESKA® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2–5 s (0.2–0.5 Hz. The sensor has a resolution of force applied on a single point of 2.2–4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  20. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin

    International Nuclear Information System (INIS)

    Wu, Mingliang; Yuan, Xi; Luo, Hang; Chen, Haiyan; Chen, Chao; Zhou, Kechao; Zhang, Dou

    2017-01-01

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr 1−x Ti x )O 3 (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO 3 (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO 3 nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO 3 nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  1. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO{sub 3} nanoparticles in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingliang; Yuan, Xi [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Luo, Hang, E-mail: xtluohang@163.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Haiyan; Chen, Chao; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Dou, E-mail: dzhang@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2017-05-18

    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO{sub 3} (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO{sub 3} nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO{sub 3} nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  2. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications.

    Science.gov (United States)

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-07-03

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath's piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers' diameter regularity (core and sheath). The materials' viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core's specific resistance.

  3. Strain monitoring of cement-based materials with embedded polyvinyl alcohol - carbon nanotube (PVA-CNT fibers

    Directory of Open Access Journals (Sweden)

    Zoi S. Metaxa

    2017-04-01

    Full Text Available This article investigates the possibility of exploiting innovative polyvinyl alcohol fibers reinforced with carbon nanotubes (PVA-CNT fiber as a strain sensor in cement mortars used in the restoration of Cultural Heritage Monuments. Two types of PVA-CNT fibers were embedded in the matrix at a short distance from the bottom of the beam and their readings were correlated with traditional sensors, e.g. strain gauges and Fiber Optic Bragg Gratings. The Electrical Resistance Change (ERC of the embedded PVA-CNT fiber was in-situ monitored during four-point bending mechanical tests. For the case of coated PVA-CNT fiber, a linear correlation of the applied strain at the bottom surface of the specimen along with ERC values of the fiber was noticed for the low strain regime. For the case of incremental increasing loading – unloading loops, the coated and annealed PVA-CNT fiber gave the best results either as embedded or as ‘surface attached’ sensor that exhibited linear correlation of ERC with applied strain for the low applied strain regime as well as hysteresis loops during unloading. The article discusses their high potential to be exploited as strain/damage sensor in applications of civil engineering as well as in restoration of Monuments of Cultural Heritage.

  4. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    International Nuclear Information System (INIS)

    Panda, Satyajit; Ray, M C

    2008-01-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed

  5. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    Science.gov (United States)

    Panda, Satyajit; Ray, M. C.

    2008-04-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.

  6. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Science.gov (United States)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  7. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Directory of Open Access Journals (Sweden)

    Amos Martinez

    2017-12-01

    Full Text Available The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50% and poor saturable to non-saturable absorption ratios (typically above 1:5. In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%, and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  8. Damage detection in laminar thermoplastic composite materials by means of embedded optical fibers

    Directory of Open Access Journals (Sweden)

    Kojović Aleksandar M.

    2006-01-01

    Full Text Available This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers. Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before

  9. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating

    Science.gov (United States)

    Yan, Haitao; Han, Daofu; Li, Ming; Lin, Bo

    2017-01-01

    This paper presents the design, fabrication, and characterization of a D-shaped fiber coated with polyvinyl alcohol (PVA) embedding an Au grating-based relative humidity (RH) sensor. The Au grating is fabricated on a D-shaped fiber to match the wave-vector and excite the surface plasmon, and the PVA is embedded in the Au grating as a sensitive cladding film. The refractive index of PVA changes with the ambient humidity. Measurements in a controlled environment show that the RH sensor can achieve a sensitivity of 5.4 nm per relative humidity unit in the RH range from 0% to 70% RH. Moreover, the surface plasmon resonance can be realized and used for RH sensing at the C band of optical fiber communication instead of the visible light band due to the metallic grating microstructure on the D-shaped fiber.

  10. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    Science.gov (United States)

    Chen, Yijin; Yin, Weilong; Liu, Yanju; Leng, Jinsong

    2011-08-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure.

  11. Structural design and analysis of morphing skin embedded with pneumatic muscle fibers

    International Nuclear Information System (INIS)

    Chen, Yijin; Yin, Weilong; Leng, Jinsong; Liu, Yanju

    2011-01-01

    In this paper, a kind of morphing skin embedded with pneumatic muscle fibers is proposed from the bionics perspective. The elastic modulus of the designed pneumatic muscle fibers is experimentally determined and their output force is tested with internal air pressure varying from 0 to 0.4 MPa. The experimental results show that the contraction ratio of the pneumatic muscle fibers using the given material could reach up to 26.8%. Isothermal tensile tests are conducted on the fabricated morphing skin, and the results are compared with theoretical predictions based on the rule of mixture. When the strain is lower than 3% and in its linear-elastic range, the rule of mixture is proved to possess satisfying accuracy in the prediction of the elastic modulus of the morphing skin. Subsequently, the output force of the morphing skin is tested. It is revealed that when the volume ratio of the pneumatic muscle fibers is 0.228, the contraction ratio can reach up to 17.8%, which is satisfactory for meeting the camber requirement of morphing skin with maximum strain level below 2%. Finally, stress-bearing capability tests of the morphing skin on local uniformly distributed loads are conducted, and the test results show that the transverse stiffness of the morphing skin can be regulated by changing the internal air pressure. Under a uniformly distributed load of 540 Pa, the designed morphing skin is capable of varying by more than two orders of magnitude in the transverse stiffness by changing the internal air pressure

  12. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  13. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  14. Finite element analysis of the macro fiber composite actuator: macroscopic elastic and piezoelectric properties and active control thereof by means of negative capacitance shunt circuit

    Czech Academy of Sciences Publication Activity Database

    Steiger, Kateřina; Mokrý, P.

    2015-01-01

    Roč. 24, č. 2 (2015), 025026-025026 ISSN 0964-1726 R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : piezoelectric macro-fiber composite actuator * macroscopic material properties * finite element analysis (FEA) Subject RIV: BI - Acoustics Impact factor: 2.769, year: 2015 http://iopscience.iop.org/0964-1726

  15. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    Science.gov (United States)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  16. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    Science.gov (United States)

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  17. Impact Localization Method for Composite Plate Based on Low Sampling Rate Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zhuo Pang

    2017-01-01

    Full Text Available Fiber Bragg Grating (FBG sensors have been increasingly used in the field of Structural Health Monitoring (SHM in recent years. In this paper, we proposed an impact localization algorithm based on the Empirical Mode Decomposition (EMD and Particle Swarm Optimization-Support Vector Machine (PSO-SVM to achieve better localization accuracy for the FBG-embedded plate. In our method, EMD is used to extract the features of FBG signals, and PSO-SVM is then applied to automatically train a classification model for the impact localization. Meanwhile, an impact monitoring system for the FBG-embedded composites has been established to actually validate our algorithm. Moreover, the relationship between the localization accuracy and the distance from impact to the nearest sensor has also been studied. Results suggest that the localization accuracy keeps increasing and is satisfactory, ranging from 93.89% to 97.14%, on our experimental conditions with the decrease of the distance. This article reports an effective and easy-implementing method for FBG signal processing on SHM systems of the composites.

  18. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    International Nuclear Information System (INIS)

    Bachmann, F; Delpero, T; Ermanni, P; De Oliveira, R; Sigg, A; Michaud, V; Schnyder, V; Jaehne, R; Bergamini, A

    2012-01-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty. (paper)

  19. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    Science.gov (United States)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  20. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries

    2010-01-01

    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  1. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    Science.gov (United States)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  2. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    Science.gov (United States)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  3. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    Science.gov (United States)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  4. Elasto-plastic bond mechanics of embedded fiber optic sensors in concrete under uniaxial tension with strain localization

    Science.gov (United States)

    Li, Qingbin; Li, Guang; Wang, Guanglun

    2003-12-01

    Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.

  5. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  6. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  7. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    Science.gov (United States)

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  8. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  9. Detection of local birefringence in embedded fiber Bragg grating caused by concentrated transverse load using optical frequency domain reflectometry

    Science.gov (United States)

    Wada, D.; Murayama, H.; Igawa, H.

    2014-05-01

    We investigate the capability of local birefringence detection in an embedded fiber Bragg grating (FBG) using optical frequency domain reflectometry. We embed an FBG into carbon fiber reinforced plastic specimen, and conduct 3-point bending test. The cross-sectional stresses are applied to the FBG at the loading location in addition to the non-uniform longitudinal strain distribution over the length of the FBG. The local birefringence due to the cross-sectional stresses was successfully detected while the non-uniform longitudinal strain distribution was accurately measured.

  10. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  11. Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Xuqing; Zhong, Yu; Xia, Xinhui; Xia, Yang; Wang, Donghuang; Zhou, Cheng'ao; Tang, Wangjia; Wang, Xiuli; Wu, J B; Tu, Jiangping

    2018-04-25

    Lithium-sulfur batteries (LSBs) are deemed to be among the most prospective next-generation advanced high-energy batteries. Advanced cathode materials fabricated from biological carbon are becoming more popular due to their unique properties. Inspired by the fibrous structure of bamboo, herein we put forward a smart strategy to convert bamboo sticks for barbecue into uniform bamboo carbon fibers (BCF) via a simple hydrothermal treatment proceeded in alkaline solution. Then NiCl 2 is used to etch the fibers through a heat treatment to achieve Ni-embedded porous graphitic carbon fibers (PGCF/Ni) for LSBs. The designed PGCF/Ni/S electrode exhibits improved electrochemical performances including high initial capacity (1198 mAh g -1 at 0.2 C), prolonged cycling life (1030 mAh g -1 at 0.2 C after 200 cycles), and improved rate capability. The excellent properties are attributed to the synergistic effect of 3D porous graphitic carbon fibers with highly conductive Ni nanoparticles embedded.

  12. Design and test of a novel accelerometer made-up of an optical-fiber embedded within a polymer resin

    Directory of Open Access Journals (Sweden)

    Tihon Pierre

    2015-01-01

    Full Text Available This paper presents a transducer for an optical-fiber accelerometer based on a polarization analysis. The transducer is made up of a fiber section embedded within a resin placed between two metallic pieces. Due to the acceleration, the resin is crushed between the metallic pieces, deforming the fiber section and inducing birefringence in the latter. This birefringence modifies the light polarization state, which can be used as an acceleration measurement. The sensor characteristics (sensitivity and resonance frequency are numerically and experimentally determined. Sine accelerations at 120 Hz with amplitudes going from 5 m/s2 to 13 m/s2 have been successfully measured. The resonance frequency for the transducer crushing mode is above 5000 Hz, but low-frequency vibration modes exist, disturbing the measurements.

  13. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  14. Enhanced active piezoelectric 0-3 nanocomposites fabricated through electrospun nanowires

    International Nuclear Information System (INIS)

    Feenstra, Joel; Sodano, Henry A.

    2008-01-01

    The use of monolithic piezoceramic materials in sensing and actuation applications has become quite common over the past decade. However, these materials have several properties that limit their application in practical systems. These materials are very brittle due to the ceramic nature of the monolithic material, making them vulnerable to accidental breakage during handling and bonding procedures. In addition, they have very poor ability to conform to curved surfaces and result in large add-on mass associated with using a typically lead-based ceramic. These limitations have motivated the development of alternative methods of applying the piezoceramic material, including piezoceramic fiber composites and piezoelectric 0-3 composites (also known as piezoelectric paint). Piezoelectric paint is desirable because it can be spayed or painted on and can be used with abnormal surfaces. However, the piezoelectric paint developed in prior studies has resulted in low coupling, limiting its application. In order to increase the coupling of the piezoelectric paint, this effort has investigated the use of piezoelectric nanowires rather than spherical piezoelectric particle, which are difficult to strain when embedded in a polymer matrix. The piezoceramic wires were electrospun from a barium titanate (BaTiO 3 ) sol gel to produce fibers with 500-1000 nm diameters and subsequently calcinated to acquire perovskite BaTiO 3 . An active nanocomposite paint was formed using the resulting piezoelectric wires and was compared to the same paint with piezoelectric nanoparticles. The results show that the piezoceramic wires produce 0-3 nanocomposites with as high as 300% increase in electromechanical coupling

  15. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  16. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.

    2016-05-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.

  17. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb$_3$Sn superconducting magnets for high energy physics

    CERN Document Server

    Chiuchiolo, A; Bajko, M; Consales, M; Giordano, M; Perez, J C; Cusano, A

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb$_{3}$Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb$_{3}$Sn coil during the fabrication process. © (2016) COPYRIGHT Society of Photo-Optical Inst...

  18. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    Science.gov (United States)

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic Strain Measurements on Automotive and Aeronautic Composite Components by Means of Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2015-10-01

    Full Text Available The measurement of the internal deformations occurring in real-life composite components is a very challenging task, especially for those components that are rather difficult to access. Optical fiber sensors can overcome such a problem, since they can be embedded in the composite materials and serve as in situ sensors. In this article, embedded optical fiber Bragg grating (FBG sensors are used to analyze the vibration characteristics of two real-life composite components. The first component is a carbon fiber-reinforced polymer automotive control arm; the second is a glass fiber-reinforced polymer aeronautic hinge arm. The modal parameters of both components were estimated by processing the FBG signals with two interrogation techniques: the maximum detection and fast phase correlation algorithms were employed for the demodulation of the FBG signals; the Peak-Picking and PolyMax techniques were instead used for the parameter estimation. To validate the FBG outcomes, reference measurements were performed by means of a laser Doppler vibrometer. Sensors 2015, 15 27175 The analysis of the results showed that the FBG sensing capabilities were enhanced when the recently-introduced fast phase correlation algorithm was combined with the state-of-the-art PolyMax estimator curve fitting method. In this case, the FBGs provided the most accurate results, i.e. it was possible to fully characterize the vibration behavior of both composite components. When using more traditional interrogation algorithms (maximum detection and modal parameter estimation techniques (Peak-Picking, some of the modes were not successfully identified.

  20. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  1. Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers

    Science.gov (United States)

    Güner, Tuğrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sari, Emre; Demir, Mustafa M.

    2018-04-01

    Interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized several hundreds of nanometer long and ˜4 nm thick CsPbBr 3 nanowires (NWs). They were then integrated into electrospun polyurethane (PU) fibers to examine the polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr 3 NWs showed a remarkable increase in the degree of polarization from 0.17-0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells.

  2. Polarized Emission from CsPbBr3 Nanowires Embedded-Electrospun PU fibers.

    Science.gov (United States)

    Güner, Tugrul; Topçu, Gökhan; Savacı, Umut; Genç, Aziz; Turan, Servet; Sarı, Emre; Demir, Mustafa M

    2018-01-29

    The interest in all-inorganic halide perovskites has been increasing dramatically due to their high quantum yield, band gap tunability, and ease of fabrication in compositional and geometric diversity. In this study, we synthesized µm long and ~4 nm thick CsPbBr3 nanowires (NWs). They were, then, integrated into electrospun polyurethane (PU) fibers to examine polarization behavior of the composite fiber assembly. Aligned electrospun fibers containing CsPbBr3 nanowires show remarkable increase in degree of polarization from 0.17 to 0.30. This combination of NWs and PU fibers provides a promising composite material for various applications such as optoelectronic devices and solar cells. © 2018 IOP Publishing Ltd.

  3. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Ghannoum, AbdulRahman; Nieva, Patricia; Yu, Aiping; Khajepour, Amir

    2017-11-29

    The development, fabrication, and embedment of fiber-optic evanescent wave sensors (FOEWSs) to monitor the state of charge (SOC) and the state of health (SOH) of lithium-ion batteries (LIBs) are presented. Etching of FOEWSs is performed using a solution of 40 wt % ammonium fluoride (NH 4 F) and 49 wt % hydrofluoric acid (HF) (6:1), which is found to be superior to an etching solution containing just 49 wt % HF. FOEWSs were characterized using glycerol and found to have the highest sensitivity in a lithium-ion battery when they lose 92% of their transmittance in the presence of glycerol on their sensing region. The physical effect that the FOEWS has on the graphite anode is also investigated and is found to be much more significant in Swagelok cells compared to that in in-house-fabricated pouch cells, mainly due to pressure variation. The FOEWS was found to be most sensitive to the changes in the LIB when it was completely embedded using a slurry of graphite anode material within a pouch cell. The optimized fabrication process of the embedded FOEWS demonstrates the potential of using such sensors commercially for real-time monitoring of the SOC and SOH of LIBs while in operation.

  4. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    International Nuclear Information System (INIS)

    Wang, Huaping; Xiang, Ping

    2016-01-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks. (paper)

  5. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    Science.gov (United States)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  6. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage [ANIMMA--2015-IO-337

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); Gusarov, Andrei [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Faustov, Alexey [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Areias, Lou [Department Mechanics of Materials and Constructions - MeMC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); EIG EURIDICE - European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol (Belgium)

    2015-07-01

    Nuclear power plants have been generating electricity for more than 50 years. In Belgium, 55% of the current energy supply comes from nuclear power. Providing for the safe storage of nuclear waste, including spent fuel (SF) and vitrified high level radioactive waste (HLW), remains an important challenge in the life cycle of nuclear fuel. In this context, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) is investigating a reference conceptual design called the Supercontainer (SC) for the packaging of SF and HLW. This conceptual design is based on a multiple-barrier system consisting of a hermetically-sealed carbon steel overpack and a surrounding highly-alkaline concrete buffer. The first one is developed to retain the radionuclides. The two main functions of the buffer are (a) to create a high pH environment around the carbon steel overpack in order to passivate the metal surface and so to slow down the corrosion propagation during the thermal phase and (b) to provide a radiological shielding during the construction and the handling of the Supercontainer. A recent test has been performed to investigate the feasibility to construct the SC. This test incorporated several kinds of sensors including Digital Image Correlation (DIC), Acoustic Emission (AE), corrosion sensing techniques and optical fibers with and without fiber Bragg gratings (FBGs). In particular, several single-mode optical fibers with 4 mm long FBGs with different Bragg wavelengths and distributed along the optical fibers were used. For casting and curing condition monitoring, a number of gratings were incorporated inside the concrete buffer during the first stage of construction. Then other sensors were embedded near a heat source installed in the second stage to simulate the effects of heat generated by radioactive waste. The FBGs were designed to measure both temperature and strain effects in the concrete. To discriminate between these effects special packaging

  7. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.

    Science.gov (United States)

    Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing

    2018-06-01

    With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  8. Influence of Axial Load on Electromechanical Impedance (EMI of Embedded Piezoceramic Transducers in Steel Fiber Concrete

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-06-01

    Full Text Available With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM, including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120 (kg/m3 were casted and the Lead Zirconate Titanate (PZT-based Smart Aggregate (SA was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT’s EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  9. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    Science.gov (United States)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  10. Soil-embedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system

    International Nuclear Information System (INIS)

    Lanticq, V; Bourgeois, E; Delepine-Lesoille, S; Magnien, P; Dieleman, L; Vinceslas, G; Sang, A

    2009-01-01

    A soil-embedded optical fiber sensing cable is evaluated for an embedded cavity detection and sinkhole warning system in railway tunnels. Tests were performed on a decametric structure equipped with an embedded 110 m long fiber optic cable. Both Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) sensing techniques were used for cable interrogation, yielding results that were in good qualitative agreement with finite-element calculations. Theoretical and experimental comparison enabled physical interpretation of the influence of ground properties, and the analysis of embedded cavity size and position. A 5 mm embedded cavity located 2 m away from the sensing cable was detected. The commercially available sensing cable remained intact after soil collapse. Specificities of each technique are analyzed in view of the application requirements. For tunnel monitoring, the OFDR technique was determined to be more viable than the B-OTDR due to higher spatial resolution, resulting in better detection and size determination of the embedded cavities. Conclusions of this investigation gave outlines for future field use of distributed strain-sensing methods under railways and more precisely enabled designing a warning system suited to the Ebersviller tunnel specificities

  11. Feasibility Study on the Development of 2-channel Embedded Infrared Fiber-optic Sensor for Thermometry of Secondary Water System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoo, W. J.; Jang, K. W.; Seo, J. K.; Moon, J.; Han, K. T.; Lee, B.; Park, B. G.

    2011-01-01

    Any warm object by measuring the emitted infrared (IR) radiation. The radiometers using infrared optical fibers are based on the relationship between the temperature of a heat source and the quality and the quantity of an IR radiation. To measure physical properties including a temperature, optical fiber-based sensor has many advantages, such as small size, low cost, high resolution, remote sensing and immunity to electromagnetic radiation over conventional electrical sensors. In this study, we carried out the feasibility study on the development of an embedded IR fiber-optic sensor for thermometry of the secondary water system in a nuclear power plant. The 2-channel embedded fiberoptic temperature sensor was fabricated using two identical IR optical fibers for accurate thermometry without complicated calibration processes. To decide accurate temperature of the water, we measured the difference between the IR radiations emitted from the two temperature sensing probes according to the temperature variation of the water

  12. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  13. Influence of the piezoelectric parameters on the dynamics of an active rotor

    Science.gov (United States)

    Gawryluk, Jarosław; Mitura, Andrzej; Teter, Andrzej

    2018-01-01

    The main aim of this paper is an experimental and numerical analysis of the dynamic behavior of an active rotor with three composite blades. The study focuses on developing an effective FE modeling technique of a macro fiber composite element (denoted as MFC or active element) for the dynamic tests of active structures. The active rotor under consideration consists of a hub with a drive shaft, three grips and three glass-epoxy laminate blades with embedded active elements. A simplified FE model of the macro fiber composite element exhibiting the d33 piezoelectric effect is developed using the Abaqus software package. The discussed transducer is modeled as quasi-homogeneous piezoelectric material, and voltage is applied to the opposite faces of the element. In this case, the effective (equivalent) piezoelectric constant d33* is specified. Both static and dynamic tests are performed to verify the proposed model. First, static deflections of the active blade caused by the voltage signal are determined by numerical and experimental analyses. Next, a numerical modal analysis of the active rotor is performed. The eigenmodes and corresponding eigenfrequencies are determined by the Lanczos method. The influence of the model parameters (i.e., the effective piezoelectric constant d33 *, voltage signal, angular velocity) on the dynamics of the active rotor is examined. Finally, selected numerical results are validated in experimental tests. The experimental findings demonstrate that the structural stiffening effect caused by the active element strongly depends on the value of the effective piezoelectric constant.

  14. Robust, Brillouin Active Embedded Fiber-Is-The-Sensor System in Smart Composite Structures

    Science.gov (United States)

    Yu, Chung

    1996-01-01

    Extensive review of our proposed sensing scheme, based mainly on the forward Guided Acoustic Wave Brillouin Scattering (GAWBS) with backward stimulated Brillouin scattering (sBs) as an auxiliary scheme for system fault tolerance has been completed during this project period. This preliminary study is conducted for a number of reasons. The most significant reasons lie in the essential capability of the system to measure temperature and pressure. These two measurands have been proposed to be sensed by sBs in our proposal. Temperature and pressure/strain are important measurands in structural monitoring, so that the effectiveness of sensing by sBs needs to be further examined. It has been pointed out initially that sBs shift will be dependent on temperature and pressure/strain simultaneously. The shift versus temperature or strain is linear. Now, the question is how can these two measurands be separated when sBs is used to sense an environment, in which both temperature and strain are changing simultaneously. Typical sBs shift plotted versus strain and varying temperature is shown in Fig. 1. As is clear, a fiber initially stressed will relax with rising temperature. This is verified by a displacement to the right with rising temperature of the sBs shift vs strain curves in the figure. A way to circumvent this ambiguity is by employing two fibers, one pre-stressed and the other is a free fiber. The latter will measure temperature and subtracting data in the latter fiber from those of the former will give us net strain readings. This is a laborious approach, since it involves the use of two identical fibers, and this is hard to accomplish, especially when many sensors are needed. Additional multiplexing of the data stream for data subtraction becomes a necessity.

  15. Arc-welding quality assurance by means of embedded fiber sensor and spectral processing combining feature selection and neural networks

    Science.gov (United States)

    Mirapeix, J.; García-Allende, P. B.; Cobo, A.; Conde, O.; López-Higuera, J. M.

    2007-07-01

    A new spectral processing technique designed for its application in the on-line detection and classification of arc-welding defects is presented in this paper. A non-invasive fiber sensor embedded within a TIG torch collects the plasma radiation originated during the welding process. The spectral information is then processed by means of two consecutive stages. A compression algorithm is first applied to the data allowing real-time analysis. The selected spectral bands are then used to feed a classification algorithm, which will be demonstrated to provide an efficient weld defect detection and classification. The results obtained with the proposed technique are compared to a similar processing scheme presented in a previous paper, giving rise to an improvement in the performance of the monitoring system.

  16. Application of Piezoelectric Macro-Fiber-Composite Actuators to the Suppression of Noise Transmission Through Curved Glass Plates

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Mokrý, P.; Václavík, Jan

    2012-01-01

    Roč. 59, č. 9 (2012), s. 2004-2014 ISSN 0885-3010. [International Symposium on Applications of Ferroelectrics and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials, ISAF/PFM /2011./. Vancouver, 24.07.2011-27.07.2011] R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional research plan: CEZ:AV0Z20430508 Keywords : Glass window * MFC piezoelectric actuator * Noise Transmission * FEM Simulation Subject RIV: BI - Acoustics Impact factor: 1.822, year: 2012

  17. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  18. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  19. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    OpenAIRE

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI ...

  20. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  1. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  2. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs

    Directory of Open Access Journals (Sweden)

    Victor V. Shishkin

    2016-01-01

    Full Text Available Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs sensors embedded in carbon fiber-reinforced plastic is proposed. The method is based on two-fiber technique, when two FBGs inscribed in different fibers with different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use of nonlinear approximation gives 1.5–2 times better accuracy. The obtained accuracies of temperature and strain measurements are 2.6–3.8°C and 50–83 με in temperature and strain range of 30–120°C and 0–400 με, respectively.

  3. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  4. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement.

    Science.gov (United States)

    Luan, Congcong; Yao, Xinhua; Shen, Hongyao; Fu, Jianzhong

    2018-03-27

    Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers' longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  5. Demonstration and Methodology of Structural Monitoring of Stringer Runs out Composite Areas by Embedded Optical Fiber Sensors and Connectors Integrated during Production in a Composite Plant.

    Science.gov (United States)

    Miguel Giraldo, Carlos; Zúñiga Sagredo, Juan; Sánchez Gómez, José; Corredera, Pedro

    2017-07-21

    Embedding optical fibers sensors into composite structures for Structural Health Monitoring purposes is not just one of the most attractive solutions contributing to smart structures, but also the optimum integration approach that insures maximum protection and integrity of the fibers. Nevertheless this intended integration level still remains an industrial challenge since today there is no mature integration process in composite plants matching all necessary requirements. This article describes the process developed to integrate optical fiber sensors in the Production cycle of a test specimen. The sensors, Bragg gratings, were integrated into the laminate during automatic tape lay-up and also by a secondary bonding process, both in the Airbus Composite Plant. The test specimen, completely representative of the root joint of the lower wing cover of a real aircraft, is comprised of a structural skin panel with the associated stringer run out. The ingress-egress was achieved through the precise design and integration of miniaturized optical connectors compatible with the manufacturing conditions and operational test requirements. After production, the specimen was trimmed, assembled and bolted to metallic plates to represent the real triform and buttstrap, and eventually installed into the structural test rig. The interrogation of the sensors proves the effectiveness of the integration process; the analysis of the strain results demonstrate the good correlation between fiber sensors and electrical gauges in those locations where they are installed nearby, and the curvature and load transfer analysis in the bolted stringer run out area enable demonstration of the consistency of the fiber sensors measurements. In conclusion, this work presents strong evidence of the performance of embedded optical sensors for structural health monitoring purposes, where in addition and most importantly, the fibers were integrated in a real production environment and the ingress

  6. Experimental characterization of PZT fibers using IDE electrodes

    Science.gov (United States)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  7. Electronics for Piezoelectric Smart Structures

    Science.gov (United States)

    Warkentin, D. J.; Tani, J.

    1997-01-01

    This paper briefly presents work addressing some of the basic considerations for the electronic components used in smart structures incorporating piezoelectric elements. After general remarks on the application of piezoelectric elements to the problem of structural vibration control, three main topics are described. Work to date on the development of techniques for embedding electronic components within structural parts is presented, followed by a description of the power flow and dissipation requirements of those components. Finally current work on the development of electronic circuits for use in an 'active wall' for acoustic noise is introduced.

  8. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement

    Directory of Open Access Journals (Sweden)

    Congcong Luan

    2018-03-01

    Full Text Available Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  9. A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum

    Science.gov (United States)

    Safaei, R.; Amiri, I. S.; Rezayi, M.; Ahmad, H.

    2018-01-01

    A compact fiber laser utilizing platinum nanoparticles doped on carbon (Pt/C) embedded in photonic crystal fiber capable of generating a stable Q-switch dual-wavelength is designed and verified. Stable Q-switch pulses, with a repetition rate of 73.6 kHz, pulse width of 1.45 µs and power of 3.8 nJ in two separated wavelengths of 1557.39 nm and 1558.86 nm at a pump power of 350 mW, have been obtained. This is a novel method for generating Q-switch dual-wavelength pulses using a well-protected component that introduces both a saturable absorber and Mach-Zehnder interferometer effects simultaneously in the laser cavity. Furthermore, to best of our knowledge, this is the first time that Pt/C nanoparticles have been used in a saturable absorber for optical pulse generation.

  10. Development of piezoelectric composites for transducers

    Science.gov (United States)

    Safari, A.

    1994-07-01

    For the past decade and a half, many different types of piezoelectric ceramic-polymer composites have been developed intended for transducer applications. These diphasic composites are prepared from non-active polymer, such as epoxy, and piezoelectric ceramic, such as PZT, in the form of filler powders, elongated fibers, multilayer and more complex three-dimensional structures. For the last four years, most of the efforts have been given to producing large area and fine scale PZT fiber composites. In this paper, processing of piezoelectric ceramic-polymer composites with various connectivity patterns are reviewed. Development of fine scale piezoelectric composites by lost mold, injection molding and the relic method are described. Research activities of different groups for preparing large area piezocomposites for hydrophone and actuator applications are briefly reviewed. Initial development of electrostrictive ceramics and composites are also

  11. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    Science.gov (United States)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  12. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  13. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    Science.gov (United States)

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  14. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  15. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    to establish fixation and permeabilization conditions for EM immunogold labeling of the fibers. We find that a simple fixation with depolymerized paraformaldehyde alone, followed by permeabilization with 0.01% saponin, offers the best compromise between the conflicting demands of unhindered tissue penetration...

  16. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  18. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    Science.gov (United States)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  19. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  20. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Weili [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); He, Jianxin, E-mail: hejianxin771117@163.com [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Sang, Feng [Department of Acquired Immune Deficiency Syndrome Treatment and Research Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450007 (China); Ding, Bin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China); Chen, Li, E-mail: chenli@tjpu.edu.cn [Key Laboratory of Advanced Textile Composites, Ministry of Education, Institute of Textile Composites, Tianjin Polytechnic University, Tianjin 300387 (China); Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin [College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007 (China); Collaborative Innovation Center of Textile and Garment Industry, Henan Province, Zhengzhou 450007 (China)

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. - Highlights: • A designing scaffold strategy to imitate the mineralized collagen bundles in natural bone was presented. • Aligned nanostructured composite fibers were fabricated by coaxial electrospinning using green water solvent. • Mechanical properties of aligned TSF nanofiber had been significantly improved by embedding with composite nanoparticles. • Composite scaffolds effectively supported proliferation of MG-63 cells and promoted biomineralization.

  1. Evaluation of fiber Bragg grating sensor interrogation using InGaAs linear detector arrays and Gaussian approximation on embedded hardware

    Science.gov (United States)

    Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan

    2018-02-01

    Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.

  2. ZnO Piezoelectric Nanowires for Use in a Self-Powered Structural Health Monitoring Device for Fiber-Reinforced Composites Uploading Attachment Instructions

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed research is to develop a new self-powered structural health monitoring (SHM) system for fiber-reinforced polymer (FRP) composites by using...

  3. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  4. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  5. A Wireless Fiber Photometry System Based on a High-Precision CMOS Biosensor With Embedded Continuous-Time Modulation.

    Science.gov (United States)

    Khiarak, Mehdi Noormohammadi; Martianova, Ekaterina; Bories, Cyril; Martel, Sylvain; Proulx, Christophe D; De Koninck, Yves; Gosselin, Benoit

    2018-06-01

    Fluorescence biophotometry measurements require wide dynamic range (DR) and high-sensitivity laboratory apparatus. Indeed, it is often very challenging to accurately resolve the small fluorescence variations in presence of noise and high-background tissue autofluorescence. There is a great need for smaller detectors combining high linearity, high sensitivity, and high-energy efficiency. This paper presents a new biophotometry sensor merging two individual building blocks, namely a low-noise sensing front-end and a order continuous-time modulator (CTSDM), into a single module for enabling high-sensitivity and high energy-efficiency photo-sensing. In particular, a differential CMOS photodetector associated with a differential capacitive transimpedance amplifier-based sensing front-end is merged with an incremental order 1-bit CTSDM to achieve a large DR, low hardware complexity, and high-energy efficiency. The sensor leverages a hardware sharing strategy to simplify the implementation and reduce power consumption. The proposed CMOS biosensor is integrated within a miniature wireless head mountable prototype for enabling biophotometry with a single implantable fiber in the brain of live mice. The proposed biophotometry sensor is implemented in a 0.18- CMOS technology, consuming from a 1.8- supply voltage, while achieving a peak dynamic range of over a 50- input bandwidth, a sensitivity of 24 mV/nW, and a minimum detectable current of 2.46- at a 20- sampling rate.

  6. Engineered piezoelectricity in graphene.

    Science.gov (United States)

    Ong, Mitchell T; Reed, Evan J

    2012-02-28

    We discover that piezoelectric effects can be engineered into nonpiezoelectric graphene through the selective surface adsorption of atoms. Our calculations show that doping a single sheet of graphene with atoms on one side results in the generation of piezoelectricity by breaking inversion symmetry. Despite their 2D nature, piezoelectric magnitudes are found to be comparable to those in 3D piezoelectric materials. Our results elucidate a designer piezoelectric phenomenon, unique to the nanoscale, that has potential to bring dynamical control to nanoscale electromechanical devices.

  7. Aeroelastic Analysis of Helicopter Rotor Blades Incorporating Anisotropic Piezoelectric Twist Actuation

    Science.gov (United States)

    Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.

    1996-01-01

    A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.

  8. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  9. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  10. Embedded Systems

    Indian Academy of Sciences (India)

    Embedded system, micro-con- troller ... Embedded systems differ from general purpose computers in many ... Low cost: As embedded systems are extensively used in con- .... operating systems for the desktop computers where scheduling.

  11. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  12. Control systems using modal domain optical fiber sensors for smart structure applications

    Science.gov (United States)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  13. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  14. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  15. A piezoelectric transformer

    Science.gov (United States)

    Won, C. C.

    1993-01-01

    This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.

  16. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  17. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    find that asset classes with embedded leverage offer low risk-adjusted returns and, in the cross-section, higher embedded leverage is associated with lower returns. A portfolio which is long low-embedded-leverage securities and short high-embedded-leverage securities earns large abnormal returns...

  18. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size

    Science.gov (United States)

    Barbero, Ever J.; Bedard, Antoine Joseph

    2018-04-01

    Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.

  19. Active control of structures using macro-fiber composite (MFC)

    Energy Technology Data Exchange (ETDEWEB)

    Kovalovs, A; Barkanov, E; Gluhihs, S [Institute of Materials and Structures, Riga Technical University, 16/20 Azenes Str., Riga, LV-1048 (Latvia)

    2007-12-15

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.

  20. Active control of structures using macro-fiber composite (MFC)

    International Nuclear Information System (INIS)

    Kovalovs, A; Barkanov, E; Gluhihs, S

    2007-01-01

    This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures

  1. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  2. On some three-dimensional problems of piezoelectricity | Saha ...

    African Journals Online (AJOL)

    The problem of an elliptical crack embedded in an unbounded transversely isotropic piezoelectric medium and subjected to remote normal loading is considered first. The integral equation method developed by Roy and his coworkers has been applied suitably with proper modifications to solve the problem. The method ...

  3. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  4. Ultra-Stretchable Piezoelectric Nanogenerators via Large-Scale Aligned Fractal Inspired Micro/Nanofibers

    Directory of Open Access Journals (Sweden)

    Yongqing Duan

    2017-12-01

    Full Text Available Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride (PVDF micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing and buckling-driven self-assembly. HE-Printing exploits “whipping/buckling” instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200% and electricity (currents >200 nA, it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.

  5. A 16-ch module for thermal neutron detection using ZnS:{sup 6}LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@psi.ch; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-11

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:{sup 6}LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current {sup 3}He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  6. A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics

    Science.gov (United States)

    Mosset, J.-B.; Stoykov, A.; Greuter, U.; Gromov, A.; Hildebrandt, M.; Panzner, T.; Schlumpf, N.

    2017-02-01

    A scalable 16-ch thermal neutron detection system has been developed in the framework of the upgrade of a neutron diffractometer. The detector is based on a ZnS:6LiF scintillator with embedded WLS fibers which are read out with SiPMs. In this paper, we present the 16-ch module, the dedicated readout electronics, a direct comparison between the performance of the diffractometer obtained with the current 3He detector and with the 16-ch detection module, and the channel-to-channel uniformity.

  7. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  8. Notes on Piezoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    These notes provide a pedagogical discussion of the physics of piezoelectricity. The exposition starts with a brief analysis of the classical (continuum) theory of piezoelectric phenomena in solids. The main subject of the notes is, however, a quantum mechanical analysis. We first derive the Frohlich Hamiltonian as part of the description of the electron-phonon interaction. The results of this analysis are then employed to derive the equations of piezoelectricity. A couple of examples with the zinc blende and and wurtzite structures are presented at the end

  9. Energy collection via Piezoelectricity

    International Nuclear Information System (INIS)

    Kumar, Ch Naveen

    2015-01-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal. (paper)

  10. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  11. Fabrication of flexible piezoelectric PZT/fabric composite.

    Science.gov (United States)

    Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying

    2013-01-01

    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.

  12. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  13. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  14. Laminated piezoelectric transformer

    Science.gov (United States)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  15. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  16. Multi-Purpose Anthropomorphic Robotic Hand Design for Extra-Vehicular Activity Manipulation Tasks using Embedded Fiber Optic Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS proposes to design and build fiber-optically sensorized robotic fingers that can sense force and, objects using only tactile feedback, similar to the skin on a...

  17. Finite element modeling of piezoelectric elements with complex electrode configuration

    International Nuclear Information System (INIS)

    Paradies, R; Schläpfer, B

    2009-01-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  18. Vibration control for precision manufacturing using piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, D.R.; Hinnerichs, T.D.; Redmond, J.M.

    1995-12-31

    Piezoelectric actuators provide high frequency, force, and stiffness capabilities along with reasonable Stroke limits, all of which can be used to increase performance levels in precision manufacturing systems. This paper describes two examples of embedding piezoelectric actuators in structural components for vibration control. One example involves suppressing the self excited chatter phenomenon in the metal cutting process of a milling machine and the other involves damping vibrations induced by rigid body stepping of a photolithography platen. Finite element modeling and analyses are essential for locating and sizing the actuators and permit further simulation studies of the response of the dynamic system. Experimental results are given for embedding piezoelectric actuators in a cantilevered bar configuration, which was used as a surrogate machine tool structure. These results are incorporated into a previously developed milling process simulation and the effect of the control on the cutting process stability diagram is quantified. Experimental results are also given for embedding three piezoelectric actuators in a surrogate photolithography platen to suppress vibrations. These results demonstrate the potential benefit that can be realized by applying advances from the field of adaptive structures to problems in precision manufacturing.

  19. A refined model for piezoelectric composite beams

    International Nuclear Information System (INIS)

    Luschi, Luca; Pieri, Francesco

    2016-01-01

    This work presents and compares few simple one-dimensional models for the piezoelectric actuation and detection of beams. The 1D nature, which allows an easy embedding of the model in the classical Euler-Bernoulli beam equations, is obtained by adopting simplifying assumptions along directions of the cross-sectional plane. By changing such assumptions, different models can be built. Their validity is discussed and compared with results of FEM simulations for varying geometries. We show that commonly adopted models fail in a series of practical cases and propose a new model capable of accurately describing wide beams. (paper)

  20. Piezoelectric effects in biomaterials

    International Nuclear Information System (INIS)

    Zimmerman, R.L.

    1976-03-01

    Precision methods have been developed for the simultaneous measurement of the complex piezoelectric stress constants and the electric conduction and polarization currents. Samples of Collagen, keratin, and chitin are prepared and measured in such a way to optimize the determination of the position and orientation of the electric dipole moments. The temperature and the hydration state of the samples are varied during the measurement of the piezoelectric constants in an effort to understand the role of water in biological material. Above 40 0 C, the inherent piezolectricity is enhanced by the water of hydration, in contrast to the more easily understood reduction observed at lower temperatures. Gelatin, which has no inherent piezoelectricity, displays a piezoelectricity proportional to the currents of conduction and polarization. An analysis of the new effect shows that it is a measure of the variation of the resistivity with deformation (d rho/dS - rho) in the same way that the electric field induced piezoelectricity is a measure of the variation of the dielectric constant with deformation (dk/dS + k). Both are sensitive to electric dipole relaxation effects. (Author) [pt

  1. Fpga-based control of piezoelectric actuators

    Directory of Open Access Journals (Sweden)

    Juhász László

    2011-01-01

    Full Text Available In many industrial applications like semiconductor production and optical inspection systems, the availability of positioning systems capable to follow trajectory paths in the range of several centimetres, featuring at the same time a nanometre-range precision, is demanding. Pure piezoelectric stages and standard positioning systems with motor and spindle are not able to meet such requirements, because of the small operation range and inadequacies like backlash and friction. One concept for overcoming these problems consists of a hybrid positioning system built through the integration of a DC-drive in series with a piezoelectric actuator. The wide range of potential applications enables a considerable market potential for such an actuator, but due to the high variety of possible positioned objects and dynamic requirements, the required control complexity may be significant. In this paper, a real-time capable state-space control concept for the piezoelectric actuators, embedded in such a hybrid micropositioning system, is presented. The implementation of the controller together with a real-time capable hysteresis compensation measure is performed using a low-budget FPGA-board, whereas the superimposed integrated controller is realized with a dSPACE RCP-system. The advantages of the designed control over a traditional proportional-integral control structure are proven through experimental results using a commercially available hybrid micropositioning system. Positioning results by different dynamic requirements featuring positioning velocities from 1 μm/s up to 5 cm/s are given.

  2. Peritubular dentin lacks piezoelectricity.

    Science.gov (United States)

    Habelitz, S; Rodriguez, B J; Marshall, S J; Marshall, G W; Kalinin, S V; Gruverman, A

    2007-09-01

    Dentin is a mesenchymal tissue, and, as such, is based on a collagenous matrix that is reinforced by apatite mineral. Collagen fibrils show piezoelectricity, a phenomenon that is used by piezoresponse force microscopy (PFM) to obtain high-resolution images. We applied PFM to image human dentin with 10-nm resolution, and to test the hypothesis that zones of piezoactivity, indicating the presence of collagen fibrils, can be distinguished in dentin. Piezoelectricity was observed by PFM in the dentin intertubular matrix, while the peritubular dentin remained without response. High-resolution imaging of chemically treated intertubular dentin attributed the piezoelectric effect to individual collagen fibrils that differed in the signal strength, depending on the fibril orientation. This study supports the hypothesis that peritubular dentin is a non-collagenous tissue and is thus an exception among mineralized tissues that derive from the mesenchyme.

  3. Piezoelectric energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Howells, Christopher A [Power Technology Branch, US Army, CERDEC, C2D, Ft. Belvoir, VA 22060-5816 (United States)

    2009-07-15

    Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. This technology, together with innovative mechanical coupling designs, can form the basis for harvesting energy from mechanical motion. Piezoelectric energy can be harvested to convert walking motion from the human body into electrical power. Recently four proof-of-concept Heel Strike Units were developed where each unit is essentially a small electric generator that utilizes piezoelectric elements to convert mechanical motion into electrical power in the form factor of the heel of a boot. The results of the testing and evaluation and the performance of this small electric generator are presented. The generator's conversion of mechanical motion into electrical power, the processes it goes through to produce useable power and commercial applications of the Heel Strike electric generator are discussed. (author)

  4. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  5. Piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    Howells, Christopher A

    2009-01-01

    Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. This technology, together with innovative mechanical coupling designs, can form the basis for harvesting energy from mechanical motion. Piezoelectric energy can be harvested to convert walking motion from the human body into electrical power. Recently four proof-of-concept Heel Strike Units were developed where each unit is essentially a small electric generator that utilizes piezoelectric elements to convert mechanical motion into electrical power in the form factor of the heel of a boot. The results of the testing and evaluation and the performance of this small electric generator are presented. The generator's conversion of mechanical motion into electrical power, the processes it goes through to produce useable power and commercial applications of the Heel Strike electric generator are discussed.

  6. Lead-Free Piezoelectrics

    CERN Document Server

    Nahm, Sahn

    2012-01-01

    Ecological restrictions in many parts of the world are demanding the elimination of Pb from all consumer items. At this moment in the piezoelectric ceramics industry, there is no issue of more importance than the transition to lead-free materials. The goal of Lead-Free Piezoelectrics is to provide a comprehensive overview of the fundamentals and developments in the field of lead-free materials and products to leading researchers in the world. The text presents chapters on demonstrated applications of the lead-free materials, which will allow readers to conceptualize the present possibilities and will be useful for both students and professionals conducting research on ferroelectrics, piezoelectrics, smart materials, lead-free materials, and a variety of applications including sensors, actuators, ultrasonic transducers and energy harvesters.

  7. Piezoelectricity in polymers

    International Nuclear Information System (INIS)

    Kepler, R.G.; Anderson, R.A.

    1980-01-01

    Piezoelectricity and related properties of polymers are reviewed. After presenting a historical overview of the field, the mathematical basis of piezo- and pyroelectricity is summarized. We show how the experimentally measured quantities are related to the changes in polarization and point out the serious inequlity between direct and converse piezoelectric coefficients in polymers. Theoretical models of the various origins of piezo- and pyroelectricity, which include piezoelectricity due to inhomogeneous material properties and strains, are reviewed. Relaxational effects are also considered. Experimental techniques are examined and the results for different materials are presented. Because of the considerable work in recent years polyimylidene fluoride, this polymer receives the majority of the attention. The numerous applications of piezo-and pyroelectric polymers are mentioned. This article concludes with a discussion of the possible role of piezo- and pyroelectricity in biological system

  8. Dynamic 3D strain measurements with embedded micro-structured optical fiber Bragg grating sensors during impact on a CFRP coupon

    Science.gov (United States)

    Goossens, Sidney; Geernaert, Thomas; De Pauw, Ben; Lamberti, Alfredo; Vanlanduit, Steve; Luyckx, Geert; Chiesura, Gabriele; Thienpont, Hugo; Berghmans, Francis

    2017-04-01

    Composite materials are increasingly used in aerospace applications, owing to their high strength-to-mass ratio. Such materials are nevertheless vulnerable to impact damage. It is therefore important to investigate the effects of impacts on composites. Here we embed specialty microstructured optical fiber Bragg grating based sensors inside a carbon fiber reinforced polymer, providing access to the 3D strain evolution within the composite during impact. We measured a maximum strain of -655 μɛ along the direction of impact, and substantially lower values in the two in-plane directions. Such in-situ characterization can trigger insight in the development of impact damage in composites.

  9. Piezoelectric Accelerometers Development

    DEFF Research Database (Denmark)

    Liu, Bin; Bang, Lisbet Fogh

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient...

  10. Piezoelectric accelerometeres development

    DEFF Research Database (Denmark)

    Liu, Bin

    1999-01-01

    The paper describes the development of piezoelectric accelerometers using Finite Element (FE) approach. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between simulated results and measured results of Type...... 8325 are below 6%. It is proved that the specifications of the accelerometer can be effectively predicted using the FE method, especially when modifications of the accelerometer are required. The development process of piezoelectric accelerometers in Brüel & Kjær is becoming more efficient....

  11. A theory of piezoelectric laminates

    International Nuclear Information System (INIS)

    Giangreco, E.

    1997-01-01

    A theory of piezoelectric laminates is rationally derived from the three-dimensional Voigt theory of piezoelectricity. The present theory is a generalization to piezoelectric laminates of the Reissner-Mindlin-type layer-wise theory of elastic laminates. Both a differential formulation and a variational formulation of the piezoelectric laminate problem are presented. The proposed theory is adopted in the analysis of simple problems, in order to verify its effectiveness. The results it provides turn out to be in good agreement with the results supplied by the Voigt theory of piezoelectricity

  12. Induced piezoelectricity in isotropic biomaterial.

    Science.gov (United States)

    Zimmerman, R L

    1976-01-01

    Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389

  13. Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material

    Directory of Open Access Journals (Sweden)

    Amna T

    2012-03-01

    Full Text Available Touseef Amna1, M Shamshi Hassan2, Ki-Taek Nam2, Yang You Bing3, Nasser AM Barakat2, Myung-Seob Khil2, Hak Yong Kim1,21Center for Healthcare Technology Development, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, Korea; 3Animal Science and Technology College, Henan University of Science and Technology, Luoyang, ChinaAbstract: The aim of this study was to fabricate camptothecin/iron(III oxide (CPT/Fe2O3-loaded poly(D,L-lactide-co-glycolide (PLGA composite mats to modulate the CPT release and to improve the structural integrity and antitumor activity of the released drug. The CPT/ Fe2O3-loaded PLGA ultrafine fibers were prepared for the first time by electrospinning a composite solution of CPT/Fe2O3 and neat PLGA (4 weight percent. The physicochemical characterization of the electrospun composite mat was carried out by scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, transmission electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction pattern. The medicated composite fibers were evaluated for their cytotoxicity on C2C12 cells using Cell Counting Kit-8 assay (Sigma-Aldrich Corporation, St Louis, MO. The in vitro studies indicated a slow and prolonged release over a period of 96 hours with mild initial burst. Scanning electron microscopy, thermogravimetry, and X-ray diffraction studies confirmed the interaction of CPT/Fe2O3 with the PLGA matrix and showed that the crystallinity of CPT decreased after loading. Incorporation of CPT in the polymer media affected both the morphology and the size of the CPT/Fe2O3-loaded PLGA composite fibers. Electron probe microanalysis and energy dispersive X-ray spectroscopy results confirmed well-oriented composite ultrafine fibers with good incorporation of CPT/Fe2O3. The cytotoxicity results illustrate that the pristine PLGA did not exhibit noteworthy cytotoxicity; conversely, the CPT

  14. The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites

    International Nuclear Information System (INIS)

    Andrews, C; Lin, Y; Sodano, H A

    2010-01-01

    Piezoelectric materials offer exceptional sensing and actuation properties; however, they are prone to breakage and difficult to apply on curved surfaces in their monolithic form. One method of alleviating these issues is through the use of 0–3 nanocomposites, which are formed by embedding piezoelectric particles into a polymer matrix. Material of this class offers certain advantages over monolithic materials; however, it has seen little use due to its low coupling. Here we develop micromechanics and finite element models to study the electroelastic properties of an active nanocomposite, as a function of the aspect ratio and alignment of the piezoelectric filler. Our results show that the aspect ratio is critical for achieving high electromechanical coupling, and with an increase from 1 to 10 at 30% volume fraction of piezoelectric filler the coupling can increase to 60 times its initial value and achieve a bulk composite coupling as high as 90% for a pure PZT-7A piezoelectric constituent

  15. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  16. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  17. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  18. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  19. Embedded Ultrasonics for SHM of Space Applications

    Science.gov (United States)

    2012-07-30

    information on material properties and other forms of damage such as cracks, structural fatigue and/or impact events. This synergistic aspect of the embedded...larger the phase shift. However, high excitation levels could contribute to sensor fatigue and levels in a range 15 to 20 (110 to 130 volts) are...joints each featuring three bolts. Piezoelectric wafers ( PZT ) with UNF electrodes were bonded to the isogrid panels using 3M 2216 epoxy

  20. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    Science.gov (United States)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  1. Experimental verification of distributed piezoelectric actuators for use in precision space structures

    Science.gov (United States)

    Crawley, E. F.; De Luis, J.

    1986-01-01

    An analytic model for structures with distributed piezoelectric actuators is experimentally verified for the cases of both surface-bonded and embedded actuators. A technique for the selection of such piezoelectric actuators' location has been developed, and is noted to indicate that segmented actuators are always more effective than continuous ones, since the output of each can be individually controlled. Manufacturing techniques for the bonding or embedding of segmented piezoelectric actuators are also developed which allow independent electrical contact to be made with each actuator. Static tests have been conducted to determine how the elastic properties of the composite are affected by the presence of an embedded actuator, for the case of glass/epoxy laminates.

  2. Monitoring of bone healing by piezoelectric-EMI method

    Science.gov (United States)

    Mazlina, M. H.; Sarpinah, Bibi; Tawie, Rudy; Daho, Claira Dalislone; Annuar, Ishak

    2016-02-01

    Smart Piezoelectric devices which have excellent piezoelectric properties have been employed for various sensor and actuators applications. The work presented here is an attempt to demonstrate the feasibility of bone healing monitoring by using piezoelectric-electromechanical impedance (EMI) method that have several advantages such as low cost, portable, light weight and simplicity in measurement. A Piezoelectric sensor (PZT) has been widely used in damage detection of various structures including concrete, pipes and bones due to their unique sensing and actuating properties. The EMI technique has emerged as a universal Structural Health Monitoring (SHM) tool suitable for almost all engineering materials and structures. The method used for this proposed study consists of put healing agent in the host structure in particular cracks bone to be monitored by PZT-needle sensor which is embedded to the host structure. The measurements were taken in the frequency range between 0.04 to 100 kHz at 1 kHz interval using AD5933 evaluation board. The signals retrieved from the AD5933 evaluation board, were quantify and analyse to obtain Root Mean Square Deviation (RMSD) percentage value. Measurements were taken every hour for 12 hours. The result from the study shows the feasibility of the piezoelectric-EMI method to effectively detect changes during bone-cracks healing process until the cracks bone is fully recovered.

  3. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  4. Piezoelectric Transformers: An Historical Review

    OpenAIRE

    Alfredo Vazquez Carazo

    2016-01-01

    Piezoelectric transformers (PTs) are solid-state devices that transform electrical energy into electrical energy by means of a mechanical vibration. These devices are manufactured using piezoelectric materials that are driven at resonance. With appropriate design and circuitry, it is possible to step up and step down the voltages between the input and output sections of the piezoelectric transformer, without making use of magnetic materials and obtaining excellent conversion efficiencies. The...

  5. Beating the heat! automated characterization of piezoelectric tubes for Starbugs

    Science.gov (United States)

    Piersiak, Rafal; Goodwin, Michael; Gilbert, James; Muller, Rolf

    2014-08-01

    The Australian Astronomical Observatory has extensively prototyped a new robotic positioner to allow simultaneous positioning of optical fibers at the focal plane called `Starbugs'. The Starbug devices each consist of two concentric piezoelectric tubes that `walk' the optical fiber over the focal plane to accuracy of several microns. Ongoing research has led to the development of several Starbug prototypes, but lack of performance data has hampered further progress in the design of the Starbug positioners and the support equipment required to power and control them. Furthermore, Starbugs have been selected for the TAIPAN instrument, a prototype for MANIFEST on the GMT. A need now arises to measure and characterize 100's of piezoelectric tubes before full scale production of Starbugs for TAIPAN. The manual measurements of these piezoelectric tubes are a time consuming process taking several hours. Therefore, a versatile automated system is needed to measure and characterize these tubes in the laboratory before production of Starbugs. We have solved this problem with the design of an automated LabVIEW application that significantly reduces test times to several minutes. We present the various design aspects of the automation system and provide analyses of example piezoelectric tubes for Starbugs.

  6. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. A 3D scanning laser endoscope architecture utilizing a circular piezoelectric membrane

    Science.gov (United States)

    Khayatzadeh, Ramin; Çivitci, Fehmi; Ferhanoğlu, Onur

    2017-12-01

    A piezo-scanning fiber endoscopic device architecture is proposed for 3D imaging or ablation. The endoscopic device consists of a piezoelectric membrane that is placed perpendicular to the optical axis, a fiber optic cable that extends out from and actuated by the piezoelectric membrane, and one or multiple lenses for beam delivery and collection. Unlike its counterparts that utilize piezoelectric cylinders for fiber actuation, the proposed architecture offers quasi-static actuation in the axial direction along with resonant actuation in the lateral directions forming a 3D scanning pattern, allowing adjustment of the focus plane. The actuation of the four-quadrant piezoelectric membrane involves driving of two orthogonal electrodes with AC signals for lateral scanning, while simultaneously driving all electrodes for axial scanning and focus adjustment. We have characterized piezoelectric membranes (5 -15mm diameter) with varying sizes to monitor axial displacement behavior with respect to applied DC voltage. We also demonstrate simultaneous lateral and axial actuation on a resolution target, and observe the change of lateral resolution on a selected plane through performing 1D cross-sectional images, as an indicator of focal shift through axial actuation. Based on experimental results, we identify the optical and geometrical parameters for optimal 3D imaging of tissue samples. Our findings reveal that a simple piezoelectric membrane, having comparable dimensions and drive voltage requirement with off-the-shelf MEMS scanner chips, offers tissue epithelial imaging with sub-cellular resolution.

  8. Piezoelectric antibacterial fabric comprised of poly(l-lactic acid) yarn

    Science.gov (United States)

    Ando, Masamichi; Takeshima, Satoshi; Ishiura, Yutaka; Ando, Kanako; Onishi, Osamu

    2017-10-01

    A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.

  9. Black branes as piezoelectrics.

    Science.gov (United States)

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

  10. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  11. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  12. Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators.

    Science.gov (United States)

    Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun; Seung, Wanchul; Lee, Jong Seok; Lee, Jaichan; Kim, Sang-Woo

    2017-08-01

    Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal-boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS 2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal-stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe 2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe 2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)-grown WSe 2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD-grown WSe 2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe 2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe 2 for which the device performance becomes degraded above a strain of 0.63%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    Science.gov (United States)

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  14. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  15. Actuators Using Piezoelectric Stacks and Displacement Enhancers

    Science.gov (United States)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Lee, Hyeong Jae; Walkenmeyer, Phillip; Lih, Shyh-Shiuh

    2015-01-01

    Actuators are used to drive all active mechanisms including machines, robots, and manipulators to name a few. The actuators are responsible for moving, manipulating, displacing, pushing and executing any action that is needed by the mechanism. There are many types and principles of actuation that are responsible for these movements ranging from electromagnetic, electroactive, thermo-mechanic, piezoelectric, electrostrictive etc. Actuators are readily available from commercial producers but there is a great need for reducing their size, increasing their efficiency and reducing their weight. Studies at JPL’s Non Destructive Evaluation and Advanced Actuators (NDEAA) Laboratory have been focused on the use of piezoelectric stacks and novel designs taking advantage of piezoelectric’s potential to provide high torque/force density actuation and high electromechanical conversion efficiency. The actuators/motors that have been developed and reviewed in this paper are operated by various horn configurations as well as the use of pre-stress flexures that make them thermally stable and increases their coupling efficiency. The use of monolithic designs that pre-stress the piezoelectric stack eliminates the use of compression stress bolt. These designs enable the embedding of developed solid-state motors/actuators in any structure with the only macroscopically moving parts are the rotor or the linear translator. Finite element modeling and design tools were used to determine the requirements and operation parameters and the results were used to simulate, design and fabricate novel actuators/motors. The developed actuators and performance will be described and discussed in this paper.

  16. Calculations for Piezoelectric Ultrasonic Transducers

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1986-01-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a boay which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation...

  17. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  18. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  19. Piezoelectric Transformers: An Historical Review

    Directory of Open Access Journals (Sweden)

    Alfredo Vazquez Carazo

    2016-04-01

    Full Text Available Piezoelectric transformers (PTs are solid-state devices that transform electrical energy into electrical energy by means of a mechanical vibration. These devices are manufactured using piezoelectric materials that are driven at resonance. With appropriate design and circuitry, it is possible to step up and step down the voltages between the input and output sections of the piezoelectric transformer, without making use of magnetic materials and obtaining excellent conversion efficiencies. The initial concept of a piezoelectric ceramic transformer was proposed by Charles A. Rosen in 1954. Since then, the evolution of piezoelectric transformers through history has been linked to the relevant work of some excellent researchers as well as to the evolution in materials, manufacturing processes, and driving circuit techniques. This paper summarizes the historical evolution of the technology.

  20. Embedded Hardware

    CERN Document Server

    Ganssle, Jack G; Eady, Fred; Edwards, Lewin; Katz, David J; Gentile, Rick

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!. Circuit design using microcontrollers is both a science and an art. This book covers it all. It details all of the essential theory and facts to help an engineer design a robust embedded system. Processors, memory, and the hot topic of interconnects (I/O) are completely covered. Our authors bring a wealth of experience and ideas; thi

  1. Nanostructured piezoelectric energy harvesters

    CERN Document Server

    Briscoe, Joe

    2014-01-01

    This book covers a range of devices that use piezoelectricity to convert mechanical deformation into electrical energy and relates their output capabilities to a range of potential applications. Starting with a description of the fundamental principles and properties of piezo- and ferroelectric materials, where applications of bulk materials are well established, the book shows how nanostructures of these materials are being developed for energy harvesting applications. The authors show how a nanostructured device can be produced, and put in context some of the approaches that are being invest

  2. Theoretical analysis of piezoelectric energy harvesting from traffic induced deformation of pavements

    International Nuclear Information System (INIS)

    Xiang, H J; Wang, J J; Shi, Z F; Zhang, Z W

    2013-01-01

    The problem of energy harvesting using piezoelectric transducers for pavement system applications is formulated with a focus on moving vehicle excitations. The pavement behavior is described by an infinite Bernoulli–Euler beam subjected to a moving line load and resting on a Winkler foundation. A closed-form dynamic response of the pavement is determined by a Fourier transform and the residue theorem. The voltage and power outputs of the piezoelectric harvester embedded in the pavements are then obtained by the direct piezoelectric effect. A comprehensive parametric study is conducted to show the effect of damping, the Winkler modulus, and the velocity of moving vehicles on the voltage and power output of the piezoelectric harvester. It is found that the output increases sharply when the velocity of the vehicle is close to the so-called critical velocity. (paper)

  3. The Modified Embedded Atom Method

    Energy Technology Data Exchange (ETDEWEB)

    Baskes, M.I.

    1994-08-01

    Recent modifications have been made to generalize the Embedded Atom Method (EAM) to describe bonding in diverse materials. By including angular dependence of the electron density in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce the basic energetic and structural properties of 45 elements. This method is ideal for examining interfacial behavior of dissimilar materials. This paper explains in detail the derivation of the method, shows how parameters of MEAM are determined directly from experiment or first principles calculations, and examine the quality of the reproduction of the database. Materials with fcc, bcc, hcp, and diamond cubic crystal structure are discussed. A few simple examples of the application of the MEAM to surfaces and interfaces are presented. Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show nonuniform deformation of the fiber.

  4. Using Piezoelectric Devices to Transmit Power through Walls

    Science.gov (United States)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi

    2008-01-01

    A method denoted wireless acoustic-electric feed-through (WAEF) has been conceived for transmitting power and/or data signals through walls or other solid objects made of a variety of elastic materials that could be electrically conductive or nonconductive. WAEF would make it unnecessary to use wires, optical fibers, tubes, or other discrete wall-penetrating signal-transmitting components, thereby eliminating the potential for structural weakening or leakage at such penetrations. Avoidance of such penetrations could be essential in some applications in which maintenance of pressure, vacuum, or chemical or biological isolation is required. In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall would be driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall would convert the vibrations back to an ultrasonic AC electric signal, which would then be detected and otherwise processed in a manner that would depend on the modulation (if any) applied to the signal and whether the signal was used to transmit power, data, or both. An electromechanical-network model has been derived as a computationally efficient means of analyzing and designing a WAEF system. This model is a variant of a prior model, known in the piezoelectric-transducer art as Mason's equivalent-circuit model, in which the electrical and mechanical dynamics, including electromechanical couplings, are expressed as electrical circuit elements that can include inductors, capacitors, and lumped-parameter complex impedances. The real parts of the complex impedances are used to account for dielectric, mechanical, and coupling losses in all components (including all piezoelectric-transducer, wall, and intermediate material layers). In an application to a three-layer piezoelectric structure, this model was shown to yield the same results as do solutions of the wave equations of piezoelectricity and acoustic

  5. Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone.

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2009-07-28

    Understanding piezoelectricity, the linear electromechanical transduction, in bone and tendon and its potential role in mechanoelectric transduction leading to their growth and remodeling remains a challenging subject. With high-resolution piezoresponse force microscopy, we probed piezoelectric behavior in relevant biological samples at different scale levels: from the subfibrillar structures of single isolated collagen fibrils to bone. We revealed that, beyond the general understanding of collagen fibril being a piezoelectric material, there existed an intrinsic piezoelectric heterogeneity within a collagen fibril coinciding with the periodic variation of its gap and overlap regions. This piezoelectric heterogeneity persisted even for the collagen fibrils embedded in bone, bringing about new implications for its possible roles in structural formation and remodeling of bone.

  6. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  7. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  8. Fatigue life characterization for piezoelectric macrofiber composites

    International Nuclear Information System (INIS)

    A Henslee, Isaac; Miller, David A; Tempero, Tyler

    2012-01-01

    In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from − 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number. (paper)

  9. Fatigue life characterization for piezoelectric macrofiber composites

    Science.gov (United States)

    Henslee, Isaac A.; Miller, David A.; Tempero, Tyler

    2012-10-01

    In an effort to aid the investigation into lightweight and reliable materials for actuator design, a study was developed to characterize the temperature-dependent lifetime performance of a piezoelectric macrofiber composite (MFC). MFCs are thin rectangular patches of polyimide film, epoxy and a single layer of rectangular lead zirconium titanate (PZT) fibers. In this study, the useful life of the MFC is characterized to determine the effect of temperature on the performance of the composite as it is fatigued by cyclic piezoelectric excitation. The test specimen consists of the MFC laminated to a cantilevered stainless steel beam. Beam strain and tip displacement measurements are used as a basis for determining the performance of the MFC as it is cyclically actuated under various operating temperatures. The temperature of the beam laminate is held constant and then cycled to failure, or 250 million cycles, in order to determine the useful life of the MFC over a temperature range from - 15 to 145 °C. The results of the experiments show a strong temperature dependence of the operational life for the MFC. Damage inside the composite was identified through in situ visual inspection and during post-test microstructural observation; however, no degradation in operational performance was identified as it was cyclically actuated up to the point of failure, regardless of temperature or actuation cycle number.

  10. Piezoelectric effect in strained quantum wells

    International Nuclear Information System (INIS)

    Dang, L.S.; Andre, R.; Cibert, J.

    1995-01-01

    This paper describes some physical aspects of the piezoelectric effect which takes place in strained semiconductor heterostructures grown along a polar axis. First we show how piezoelectric fields can be accurately measured by optical spectroscopy. Then we discuss about the origin of the non-linear piezoelectric effect reported recently for CdTe, and maybe for InAs as well. Finally we compare excitonic effects in piezoelectric and non-piezoelectric quantum wells. (orig.)

  11. Combined Pyroelectric, Piezoelectric and Shape Memory Effects for Thermal Energy Harvesting

    International Nuclear Information System (INIS)

    Zakharov, D; Gusarov, B; Cugat, O; Delamare, J; Gimeno, L; Gusarova, E; Viala, B

    2013-01-01

    This work proposes an enhanced method for thermal energy harvesting exploiting combined pyroelectric, piezoelectric and shape memory (SME) effects, and presents its experimental validation. A material which is pyroelectric is also piezoelectric. If it is combined with a material with SME, which generates large strain and stress in a rather narrow temperature range, the resulting composite material would generate voltage from temperature variations using two different energy conversion principles at once: (1) pyroelectric effect, (2) piezoelectric effect driven by SME. A Macro Fiber Composite piezoelectric was shown here to exhibit significant pyroelectric effect (∼4 V/°C). When combining it with a SME Ti-Ni-Cu alloy into a laminated structure, this effect increased by 50%. This increase may be an order of magnitude higher for an optimized system. Such composites open an opportunity to harvest thermal energy from natural sources, since this method can increase the rather low efficiency of current pyroelectric materials especially for small temperature variations

  12. Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health

    National Research Council Canada - National Science Library

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-01-01

    .... Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage...

  13. Energy harvesting from vibration using a piezoelectric membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ericka, M.; Vasic, D.; Costa, F.; Tliba, S. [Ecole Normale Superieure de Cachan, Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE, UMR 8029), 94 - Cachan (France); Poulin, G. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, Laboratoire d' Automatique de Grenoble, 38 (France)

    2005-09-01

    In this paper we investigate the capability of harvesting the electric energy from mechanical vibrations in a dynamic environment through a piezoelectric membrane transducer. This transducer consists of 2 layers lead zirconate titanate (PZT)/brass, the brass layer is embedded over the whole circumference by epoxy adhesive. A very small vibration gives a consequent deformation of the membrane which generates electric energy. Due to the impedance matrices connecting the efforts and flows of the membrane, we have established the dynamic electric equivalent circuit of the transducer. In a first study and in order to validate theoretical results, we performed experiments with a vibrating machine moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 1.8 mW was generated at the resonance frequency (2.58 kHz) across a 56 k{omega} optimal resistor and for a 2 g acceleration. (authors)

  14. Piezoelectric energy harvesting for powering low power electronics

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, M.; Palosaari, J.; Hannu, J.; Juuti, J.; Jantunen, H. (Univ. of Oulu, Dept. of Electrical and Information Engineering (Finland)). email: jajuu@ee.oulu.fi

    2009-07-01

    Although wireless data transmission techniques are commonly used in electronic devices, they still suffer from wires for the power supply or from batteries which require charging, replacement and other maintenance. The vision for the portable electronics and industrial measurement systems of the future is that they are intelligent and independent on their energy supply. The major obstacle in this path is the energy source which enables all other functions and 'smartness' of the systems as the computing power is also restricted by the available energy. The development of long-life energy harvesters would reduce the need for batteries and wires thus enabling cost-effective and environment friendlier solutions for various applications such as autonomous wireless sensor networks, powering of portable electronics and other maintenance-free systems. One of the most promising techniques is mechanical energy harvesting e.g. by piezoelectric components where deformations produced by different means is directly converted to electrical charge via direct piezoelectric effect. Subsequently the electrical energy can be regulated or stored for further use. The total mechanical energy in vibration of machines can be very large and usually only a fraction of it can be transformed to electrical energy. Recently, piezoelectric vibration based energy harvesters have been developed widely for different energy consumption and application areas. As an example for low energy device an piezoelectric energy harvester based on impulse type excitations has been developed for active RFID identification. Moreover, piezoharvester with externally leveraged mechanism for force amplification was reported to be able to generate mean power of 0.4 mW from backpack movement. Significantly higher power levels are expected from larger scale testing in Israel, where piezoelectric material is embedded under active walking street, road, airport or railroad. The energy is harvested from human or

  15. Torsion sensing based on patterned piezoelectric beams

    Science.gov (United States)

    Cha, Youngsu; You, Hangil

    2018-03-01

    In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.

  16. Structural Origins of Silk Piezoelectricity.

    Science.gov (United States)

    Yucel, Tuna; Cebe, Peggy; Kaplan, David L

    2011-02-22

    Uniaxially oriented, piezoelectric silk films were prepared by a two-step method that involved: (1) air drying aqueous, regenerated silk fibroin solutions into films, and (2) drawing the silk films to a desired draw ratio. The utility of two different drawing techniques, zone drawing and water immersion drawing were investigated for processing the silk for piezoelectric studies. Silk films zone drawn to a ratio of λ= 2.7 displayed relatively high dynamic shear piezoelectric coefficients of d(14) = -1.5 pC/N, corresponding to over two orders of magnitude increase in d(14) due to film drawing. A strong correlation was observed between the increase in the silk II, β-sheet content with increasing draw ratio measured by FTIR spectroscopy (C(β)∝ e(2.5) (λ)), the concomitant increasing degree of orientation of β-sheet crystals detected via WAXD (FWHM = 0.22° for λ= 2.7), and the improvement in silk piezoelectricity (d(14)∝ e(2.4) (λ)). Water immersion drawing led to a predominantly silk I structure with a low degree of orientation (FWHM = 75°) and a much weaker piezoelectric response compared to zone drawing. Similarly, increasing the β-sheet crystallinity without inducing crystal alignment, e.g. by methanol treatment, did not result in a significant enhancement of silk piezoelectricity. Overall, a combination of a high degree of silk II, β-sheet crystallinity and crystalline orientation are prerequisites for a strong piezoelectric effect in silk. Further understanding of the structural origins of silk piezoelectricity will provide important options for future biotechnological and biomedical applications of this protein.

  17. Piezoelectric composite morphing control surfaces for unmanned aerial vehicles

    Science.gov (United States)

    Ohanian, Osgar J., III; Karni, Etan D.; Olien, Chris C.; Gustafson, Eric A.; Kochersberger, Kevin B.; Gelhausen, Paul A.; Brown, Bridget L.

    2011-04-01

    The authors have explored the use of morphing control surfaces to replace traditional servo-actuated control surfaces in UAV applications. The morphing actuation is accomplished using Macro Fiber Composite (MFC) piezoelectric actuators in a bimorph configuration to deflect the aft section of a control surface cross section. The resulting camber change produces forces and moments for vehicle control. The flexible piezoelectric actuators are damage tolerant and provide excellent bandwidth. The large amplitude morphing deflections attained in bench-top experiments demonstrate the potential for excellent control authority. Aerodynamic performance calculations using experimentally measured morphed geometries indicate changes in sectional lift coefficients that are superior to a servo-actuated hinged flap airfoil. This morphing flight control actuation technology could eliminate the need for servos and mechanical linkages in small UAVs and thereby increase reliability and reduce drag.

  18. Integration of Geometrical and Material Nonlinear Energy Sink with Piezoelectric Material Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ye-Wei Zhang

    2017-01-01

    Full Text Available This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.

  19. An Investigation of Finite Element Analysis (FEA on Piezoelectric Compliance in Ultrasonic Vibration Assisted Milling (UVAM

    Directory of Open Access Journals (Sweden)

    Ibrahim Rasidi

    2018-01-01

    Full Text Available Finite element analysis for piezoelectric actuator has been developed in Ansys Software which are a program that can analyses and simulate the dynamic behaviour of piezoelectric. The Ultrasonic Vibration assisted Milling (UVAM experimental having a difficulty to investigate the effect of vibration mechanism where existence of error in material, mechanism and attachment of piezoelectric thus affect the amplitude and frequency of mechanical compliance during the machining of UVAM. This paper will investigate the modelling of piezoelectric compliance and follow the procedures of FEA to accurately predict the dynamic behaviour of compliance. The parameters for simulation of piezoelectric are voltage, electromechanical coupling and frequency. The compliance mechanism is model by using SolidWorks 2014 and imported to Ansys Mechanical APDL Software were the piezoelectric are embedded on the mechanism. Modal analysis and harmonic analysis has been used in order to obtain the mode shape and displacement. The displacement of the compliance mechanism will be compare between simulation and experimental. The dynamic behaviour was discussed in simulation to study the reliability of the compliance mechanism before it safely used in UVAM.

  20. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    Science.gov (United States)

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  1. Piezoelectrically Initiated Pyrotechnic Igniter

    Science.gov (United States)

    Quince, Asia; Dutton, Maureen; Hicks, Robert; Burnham, Karen

    2013-01-01

    This innovation consists of a pyrotechnic initiator and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments. Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as "T" handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot. The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a "T" handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go "high order." In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture. The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first

  2. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  3. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    Science.gov (United States)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  4. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al; Jabbour, Ghassan E.

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films

  5. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  6. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  7. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  8. Disc piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  9. Bar piezoelectric ceramic transformers.

    Science.gov (United States)

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  10. Structured Piezoelectric Composites: Materials and Applications

    OpenAIRE

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits their practical application to certain specific fields. Piezoelectric composites, which contain an active piezoelectric (ceramic) phase in a robust polymer matrix, can potentially have better proper...

  11. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Van den Ende, D A; Van de Wiel, H J; Groen, W A; Van der Zwaag, S

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  12. High precision optical measurement of displacement and simultaneous determinations of piezoelectric coefficients

    Science.gov (United States)

    Gamboa, Bryan M.; Malladi, Madhuri; Vadlamani, Ramya; Guo, Ruyan; Bhalla, Amar

    2016-09-01

    PZT are also well known for their applications in Micro Electrical Mechanical Systems (MEMS). It is necessary to study the piezoelectric coefficients of the materials accurately in order to design a sensor as an example, which defines their strain dependent applications. Systematic study of the electro mechanic displacement measurement was conducted and compared using a white light fiber optic sensor, a heterodyne laser Doppler vibrometer, and a homodyne laser interferometry setup. Frequency dependent measurement is conducted to evaluate displacement values well below and near the piezoelectric resonances. UHF-120 ultra-high frequency Vibrometer is used to measure the longitudinal piezoelectric displacement or x33 and the MTI 2000 FotonicTM Sensor is used to measure the transverse piezoelectric displacement or x11 over 100Hz to 2MHz. A Multiphysics Finite Element Analysis method, COMSOL, is also adopted in the study to generate a three dimensional electromechanical coupled model based on experimentally determined strains x33 and x11 as a function of frequency of the electric field applied. The full family of piezoelectric coefficients of the poled electronic ceramic PZT, d33, d31, and d15, can be then derived, upon satisfactory simulation of the COMSOL. This is achieved without the usual need of preparation of piezoelectric resonators of fundamental longitudinal, transversal, and shear modes respectively.

  13. Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete

    International Nuclear Information System (INIS)

    Kee, Seong-Hoon; Zhu, Jinying

    2013-01-01

    The ultrasonic pulse velocity (UPV) test has been a widely used non-destructive testing method for concrete structures. However, the conventional UPV test has limitations in consistency of results and applicability in hard-to-access regions of structures. The authors explore the feasibility of embedded piezoelectric (PZT) sensors for ultrasonic measurements in concrete structures. Two PZT sensors were embedded in a reinforced concrete specimen. One sensor worked as an actuator driven by an ultrasonic pulse-receiver, and another sensor worked as a receiver. A series of ultrasonic tests were conducted to investigate the performance of the embedded sensors in crack-free concrete and concrete specimens having a surface-breaking crack under various external loadings. Signals measured by the embedded sensors show a broad bandwidth with a centre frequency around 80 kHz, and very good coherence in the frequency range from 30 to 180 kHz. Furthermore, experimental variability in ultrasonic pulse velocity and attenuation is substantially reduced compared to previously reported values from conventional UPV equipment. Findings from this study demonstrate that the embedded sensors have great potential as a low-cost solution for ultrasonic transducers for health monitoring of concrete in structures. (paper)

  14. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Directory of Open Access Journals (Sweden)

    Yiin-Kuen Fuh

    2017-07-01

    Full Text Available In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS. A new integration of print circuit board (PCB technology-based piezoelectric generator (PG concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  15. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection

    Science.gov (United States)

    Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu

    2017-07-01

    In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.

  16. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  17. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  18. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    Science.gov (United States)

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  20. Microfabricated Bulk Piezoelectric Transformers

    Science.gov (United States)

    Barham, Oliver M.

    Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0

  1. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    Science.gov (United States)

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  2. Acoustic emission characteristics during bending fracture process of piezoelectric composite actuators

    International Nuclear Information System (INIS)

    Woo, Sung Choong; Goo, Nam Seo

    2006-01-01

    The objective of this study is to investigate the damage mechanisms in a thin monolithic PZT wafer and an asymmetrically laminated piezoelectric composite actuator (PCA) under bending loading by the acoustic emission (AE) technique. Fracture surface examinations were conducted using a scanning electron microscope (SEM) and an optical microscope. Using the fabricated PCAs, correlations were established between the observed damage growth mechanisms and the AE results in terms of the AE amplitude and dominant frequency band which was processed by fast Fourier transform (FFT). These correlations can be used to monitor the damage evolution in the plate-type piezoelectric composite actuators exhibiting multiple modes of damage. Results from this study revealed that the AE technique is a powerful and effective tool for identifying damage mechanisms such as brittle fracture in the PZT, matrix cracking, fiber-matrix debonding, fiber breakage and delamination between the PZT layer and fiber composite layer in the asymmetrically laminated PCAs.

  3. Relaxor-PT Single Crystal Piezoelectric Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2014-07-01

    Full Text Available Relaxor-PbTiO3 piezoelectric single crystals have been widely used in a broad range of electromechanical devices, including piezoelectric sensors, actuators, and transducers. This paper reviews the unique properties of these single crystals for piezoelectric sensors. Design, fabrication and characterization of various relaxor-PT single crystal piezoelectric sensors and their applications are presented and compared with their piezoelectric ceramic counterparts. Newly applicable fields and future trends of relaxor-PT sensors are also suggested in this review paper.

  4. Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix under simulated sintering conditions

    Science.gov (United States)

    Bedard, Antoine Joseph; Barbero, Ever J.

    2018-03-01

    Magnetoelectric (ME) composites can be produced by embedding magnetostrictive H particles in a piezoelectric E matrix derived from a piezoelectric powder precursor. Previously, using a bi-disperse hard-shell model (Barbero and Bedard in Comput Part Mech, 2018. https://doi.org/10.1007/s40571-017-0165-4), it has been shown that the electrical percolation threshold of the conductive H phase can be increased by decreasing the piezoelectric E particle size, relative to the H phase particle size, and by increasing short-range affinity between the E and H particles. This study builds on our previous study by exploring what happens during sintering of the ME composite when either the H or E particles undergo deformation. It was found that deformation of the H particles reduces the percolation threshold, and that deformation of E particles increases inter-phase H-E mechanical coupling, thus contributing to enhancing of ME coupling.

  5. Patient cloth with motion recognition sensors based on flexible piezoelectric materials.

    Science.gov (United States)

    Youngsu Cha; Kihyuk Nam; Doik Kim

    2017-07-01

    In this paper, we introduce a patient cloth for position monitoring using motion recognition sensors based on flexible piezoelectric materials. The motion recognition sensors are embedded in three parts, which are the knee, hip and back, in the patient cloth. We use polyvinylidene fluoride (PVDF) as the flexible piezoelectric material for the sensors. By using the piezoelectric effect of the PVDF, we detect electrical signals when the cloth is bent or extended. We analyze the sensing values for our human motions by processing the sensor outputs in a custom-made program. Specifically, we focus on the transitions between standing and sitting, and sitting knee extension and supine position, which are important motions for patient monitoring.

  6. Control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators

    International Nuclear Information System (INIS)

    Huang, Bin; Soo Kim, Heung

    2014-01-01

    The control of free-edge interlaminar stresses in laminated composite structures using a stress function-based approach is proposed. The assumed stress fields satisfy pointwise traction and free boundary conditions at surfaces. Governing equations are derived using the principle of complementary virtual work. A general eigenvalue solution procedure was adopted to obtain accurate stress states of the laminated composite structure. The results obtained from the proposed method were compared with those obtained by three-dimensional finite element analyses. It was found that interlaminar stresses generated by mechanical loadings could be significantly reduced by applying proper electric fields to piezoelectric actuators, which were surface bonded or embedded in composite laminates. Locations of piezoelectric actuators also influenced the distributions of interlaminar stresses. The results provided that piezoelectric actuators have potential in the application to actively control interlaminar stresses in composite laminates. (paper)

  7. Control and characterization of a bistable laminate generated with piezoelectricity

    Science.gov (United States)

    Lee, Andrew J.; Moosavian, Amin; Inman, Daniel J.

    2017-08-01

    Extensive research has been conducted on utilizing smart materials such as piezoelectric and shape memory alloy actuators to induce snap through of bistable structures for morphing applications. However, there has only been limited success in initiating snap through from both stable states due to the lack of actuation authority. A novel solution in the form of a piezoelectrically generated bistable laminate consisting of only macro fiber composites (MFC), allowing complete configuration control without any external assistance, is explored in detail here. Specifically, this paper presents the full analytical, computational, and experimental results of the laminate’s design, geometry, bifurcation behavior, and snap through capability. By bonding two actuated MFCs in a [0MFC/90MFC]T layup and releasing the voltage post cure, piezoelectric strain anisotropy and the resulting in-plane residual stresses yield two statically stable states that are cylindrically shaped. The analytical model uses the Rayleigh-Ritz minimization of total potential energy and finite element analysis is implemented in MSC Nastran. The [0MFC/90MFC]T laminate is then manufactured and experimentally characterized for model validation. This paper demonstrates the adaptive laminate’s unassisted forward and reverse snap through capability enabled by the efficiencies gained from simultaneously being the actuator and the primary structure.

  8. BIOMINERALOGICAL INVESTIGATION OF APATITE PIEZOELECTRICITY

    Directory of Open Access Journals (Sweden)

    M. Pawlikowski

    2016-01-01

    Full Text Available Investigation of apatite piezoelectricity was conducted in order to assess piezoelectric properties of bone. In the first stage, mineralogical analysis of different apatite crystals, regarding their purity and fitness for the experiments was performed. After the crystals had been chosen, 0.8 mm-thick plates were cut, perpendicular and parallel to the crystallographic Z axis. The plates were then polished and dusted with gold. Electrodes were attached to the opposite surfaces of the plates with conductive glue. So prepared plates were hooked up to the EEG machine used for measuring electrical activity in the brain. The plates were then gently tapped to observe and register currents generated in them. Acquired data was processed by subtracting from the resulting graphs those generated by a hand movement, without tapping the plate. Results indicate that apatite plates have weak piezoelectric properties. Observed phenomenon may be translated to bone apatite, which would explain, at least partially, piezoelectric properties of bone. Acquired results suggest that there is a relation between the mechanical workload of bones (bone apatite and theirelectrical properties. Considering the massive internal surface of bones, they may be treated as a kind of internal “antenna” reacting not only to mechanical stimuli, but to changes in electromagnetic field as well. Observed phenomena no doubt significantly influence the biological processes occurring in bones and the whole human body.

  9. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  10. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  11. Novel Fiber-Optic Ring Acoustic Emission Sensor

    Directory of Open Access Journals (Sweden)

    Peng Wei

    2018-01-01

    Full Text Available Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  12. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  13. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    Science.gov (United States)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  14. A piezoelectric fibre composite based energy harvesting device for potential wearable applications

    International Nuclear Information System (INIS)

    Swallow, L M; Luo, J K; Siores, E; Patel, I; Dodds, D

    2008-01-01

    Rapid technological advances in nanotechnology, microelectronic sensors and systems are becoming increasingly miniaturized to the point where embedded wearable applications are beginning to emerge. A restriction to the widespread application of these microsystems is the power supply of relatively sizable dimensions, weight, and limited lifespan. Emerging micropower sources exploit self-powered generators utilizing the intrinsic energy conversion characteristics of smart materials. 'Energy harvesting' describes the process by which energy is extracted from the environment, converted and stored. Piezoelectric materials have been used to convert mechanical into electrical energy through their inherent piezoelectric effect. This paper focuses on the development of a micropower generator using microcomposite based piezoelectric materials for energy reclamation in glove structures. Devices consist of piezoelectric fibres, 90–250 µm in diameter, aligned in a unidirectional manner and incorporated into a composite structure. The fibres are laid within a single laminate structure with copper interdigitated electrodes assembled on both sides, forming a thin film device. Performances of devices with different fibre diameters and material thicknesses are investigated. Experiments are outlined that detail the performance characteristics of such piezoelectric fibre laminates. Results presented show voltage outputs up to 6 V which is considered enough for potential applications in powering wearable microsystems

  15. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  16. A Capacitance-Based Methodology for the Estimation of Piezoelectric Coefficients of Poled Piezoelectric Materials

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2010-01-01

    A methodology is proposed to estimate the piezoelectric coefficients of bulk piezoelectric materials using simple capacitance measurements. The extracted values of d33 and d31 from the capacitance measurements were 506 pC/N and 247 p

  17. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann

    2008-01-01

    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid...

  18. The direct piezoelectric effect in the globular protein lysozyme

    Science.gov (United States)

    Stapleton, A.; Noor, M. R.; Sweeney, J.; Casey, V.; Kholkin, A. L.; Silien, C.; Gandhi, A. A.; Soulimane, T.; Tofail, S. A. M.

    2017-10-01

    Here, we present experimental evidence of the direct piezoelectric effect in the globular protein, lysozyme. Piezoelectric materials are employed in many actuating and sensing applications because they can convert mechanical energy into electrical energy and vice versa. Although originally studied in inorganic materials, several biological materials including amino acids and bone, also exhibit piezoelectricity. The exact mechanisms supporting biological piezoelectricity are not known, nor is it known whether biological piezoelectricity conforms strictly to the criteria of classical piezoelectricity. The observation of piezoelectricity in protein crystals presented here links biological piezoelectricity with the classical theory of piezoelectricity. We quantify the direct piezoelectric effect in monoclinic and tetragonal aggregate films of lysozyme using conventional techniques based on the Berlincourt Method. The largest piezoelectric effect measured in a crystalline aggregate film of lysozyme was approximately 6.5 pC N-1. These findings raise fundamental questions as to the possible physiological significance of piezoelectricity in lysozyme and the potential for technical applications.

  19. Piezoelectric Structures and Low Power Generation Devices

    Directory of Open Access Journals (Sweden)

    Irinela CHILIBON

    2016-10-01

    Full Text Available A short overview of different piezoelectric structures and devices for generating renewable electricity under mechanical actions is presented. A vibrating piezoelectric device differs from a typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. Several techniques have been developed to extract energy from the environment. Generally, “vibration energy” could be converted into electrical energy by three techniques: electrostatic charge, magnetic fields and piezoelectric. Mechanical resonance frequency of piezoelectric bimorph transducers depends on geometric size (length, width, and thickness of each layer, and the piezoelectric coefficients of the piezoelectric material. Manufacturing processes and intended applications of several energy harvesting devices are presented.

  20. Characterization of Piezoelectric Energy Harvesting MEMS

    Science.gov (United States)

    2015-12-01

    of previously fabricated MEMS piezoelectric energy harvesters and use the results to optimize an advanced finite element model to be used in...possibilities of using solar power and the piezoelectric effect to harvest energy [12]. The design goal was to develop an energy harvester with a resonant... The piezoelectric properties of AlN are also relatively constant over a wide range of temperatures [7]. AlN was further characterized

  1. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  2. Piezoelectric Transformer Characterization and Application of Electronic Ballast

    OpenAIRE

    Lin, Ray-Lee

    2001-01-01

    The characterization and modeling of piezoelectric transformers are studied and developed for use in electronic ballasts. By replacing conventional L-C resonant tanks with piezoelectric transformers, inductor-less piezoelectric transformer electronic ballasts have been developed for use in fluorescent lamps. The piezoelectric transformer is a combination of piezoelectric actuators as the primary side and piezoelectric transducers as the secondary side, both of which work in longitudinal o...

  3. Piezoelectric Vibration Energy Harvesting Device Combined with Damper

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2014-05-01

    Full Text Available Piezoelectricity is a type of material that enables mechanical energy and electrical energy to be interchangeable, which can be divided into positive piezoelectric effect and inverse piezoelectric effect. The positive piezoelectric effect is that the electric dipole moment of material generates changes when the piezoelectric material is subjected to pressure, resulting in electrical energy. Conversely, the inverse piezoelectric effect is the process of electrical energy converted into mechanical energy.

  4. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  5. Strong piezoelectricity in bioinspired peptide nanotubes.

    Science.gov (United States)

    Kholkin, Andrei; Amdursky, Nadav; Bdikin, Igor; Gazit, Ehud; Rosenman, Gil

    2010-02-23

    We show anomalously strong shear piezoelectric activity in self-assembled diphenylalanine peptide nanotubes (PNTs), indicating electric polarization directed along the tube axis. Comparison with well-known piezoelectric LiNbO(3) and lateral signal calibration yields sufficiently high effective piezoelectric coefficient values of at least 60 pm/V (shear response for tubes of approximately 200 nm in diameter). PNTs demonstrate linear deformation without irreversible degradation in a broad range of driving voltages. The results open up a wide avenue for developing new generations of "green" piezoelectric materials and piezonanodevices based on bioactive tubular nanostructures potentially compatible with human tissue.

  6. Calculations for piezoelectric ultrasonic transducers

    International Nuclear Information System (INIS)

    Jensen, H.

    1986-05-01

    Analysis of piezoelectric ultrasonic transducers implies a solution of a boundary value problem, for a body which consists of different materials, including a piezoelectric part. The problem is dynamic at frequencies, where a typical wavelength is somewhat less than the size of the body. Radiation losses as well as internal losses may be important. Due to the complexity of the problem, a closed form solution is the exception rather than the rule. For this reason, it is necessary to use approximate methods for the analysis. Equivalent circuits, the Rayleigh-Ritz method, Mindlin plate theory and in particular the finite element method are considered. The finite element method is utilized for analysis of axisymmetric transducers. An explicit, fully piezoelectric, triangular ring element, with linear variations in displacement and electric potential is given. The influence of a fluid half-space is also given, in the form of a complex stiffness matrix. A special stacking procedure, for analysis of the backing has been developed. This procedure gives a saving, which is similar to that of the fast fourier transform algorithm, and is also wellsuited for analysis of finite and infinite waveguides. Results obtained by the finite element method are shown and compared with measurements and exact solutions. Good agreement is obtained. It is concluded that the finite element method can be a valueable tool in analysis and design of ultrasonic transducers. (author)

  7. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  8. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    Science.gov (United States)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  9. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  10. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms

    International Nuclear Information System (INIS)

    Erturk, Alper; Delporte, Ghislain

    2011-01-01

    Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy

  11. Optimal design of robust piezoelectric unimorph microgrippers

    DEFF Research Database (Denmark)

    Ruiz, David; Díaz-Molina, Alex; Sigmund, Ole

    2018-01-01

    Topology optimization can be used to design piezoelectric actuators by simultaneous design of host structure and polarization profile. Subsequent micro-scale fabrication leads us to overcome important manufacturing limitations: difficulties in placing a piezoelectric layer on both top and bottom...

  12. Development of High Performance Piezoelectric Polyimides

    Science.gov (United States)

    Simpson, Joycelyn O.; St.Clair, Terry L.; Welch, Sharon S.

    1996-01-01

    In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.

  13. Structured Piezoelectric Composites : Materials and Applications

    NARCIS (Netherlands)

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits

  14. An improved resonantly driven piezoelectric gas pump

    International Nuclear Information System (INIS)

    Wu, Yue; Liu, Yong; Liu, Jianfang; Jiao, Xiaoyang; Yang, Zhigang; Wang, Long

    2013-01-01

    Piezoelectric pumps have the potential to be used in a variety of applications, such as in air circulation and compression. However, piezoelectric membrane pumps do not have enough driving capacity, and the heat induced during the direct contact between the driving part and the gas medium cannot be dissipated smoothly. When the gas is blocked, the piezoelectric vibrator generates heat quickly, which may eventually lead to damage. Resonantly driven piezoelectric stack pumps have high performance but no price advantage. In this situation, a novel, resonantly driven piezoelectric gas pump with annular bimorph as the driver is presented. In the study, the working principle of the novel pump was analyzed, the vibration mechanics model was determined, and the displacement amplified theory was studied. The outcome indicates that the displacement amplification factor is related with the original displacement provided by the piezoelectric bimorph. In addition, the displacement amplification effect is related to the stiffness of the spring lamination, adjustment spring, and piezoelectric vibrator, as well as to the systematic damping factor and the driving frequency. The experimental prototypes of the proposed pump were designed, and the displacement amplification effect and gas output performance were measured. At 70 V of sinusoidal AC driving voltage, the improved pump amplified the piezoelectric vibrator displacement by 4.2 times, the maximum gas output flow rate reached 1685 ml/min, and the temperature of the bimorph remained normal after 2000 hours of operation when the gas medium was blocked.

  15. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  16. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  17. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    Science.gov (United States)

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  18. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  19. Special topics in the theory of piezoelectricity

    CERN Document Server

    Yang, Jiashi

    2009-01-01

    Piezoelectricity has been a steadily growing field, with recent advances made by researchers from applied physics, acoustics, materials science, and engineering. This collective work presents a comprehensive treatment of selected advanced topics in the subject. The book is written for an intermediate graduate level and is intended for researchers, mechanical engineers, and applied mathematicians interested in the advances and new applications in piezoelectricity.

  20. Vibrations of Thin Piezoelectric Shallow Shells

    Indian Academy of Sciences (India)

    Abstract. In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  1. Variational principles for nonlinear piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)

    2004-12-01

    In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)

  2. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  3. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  4. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  5. Web Server Embedded System

    Directory of Open Access Journals (Sweden)

    Adharul Muttaqin

    2014-07-01

    Full Text Available Abstrak Embedded sistem saat ini menjadi perhatian khusus pada teknologi komputer, beberapa sistem operasi linux dan web server yang beraneka ragam juga sudah dipersiapkan untuk mendukung sistem embedded, salah satu aplikasi yang dapat digunakan dalam operasi pada sistem embedded adalah web server. Pemilihan web server pada lingkungan embedded saat ini masih jarang dilakukan, oleh karena itu penelitian ini dilakukan dengan menitik beratkan pada dua buah aplikasi web server yang tergolong memiliki fitur utama yang menawarkan “keringanan” pada konsumsi CPU maupun memori seperti Light HTTPD dan Tiny HTTPD. Dengan menggunakan parameter thread (users, ramp-up periods, dan loop count pada stress test embedded system, penelitian ini menawarkan solusi web server manakah diantara Light HTTPD dan Tiny HTTPD yang memiliki kecocokan fitur dalam penggunaan embedded sistem menggunakan beagleboard ditinjau dari konsumsi CPU dan memori. Hasil penelitian menunjukkan bahwa dalam hal konsumsi CPU pada beagleboard embedded system lebih disarankan penggunaan Light HTTPD dibandingkan dengan tiny HTTPD dikarenakan terdapat perbedaan CPU load yang sangat signifikan antar kedua layanan web tersebut Kata kunci: embedded system, web server Abstract Embedded systems are currently of particular concern in computer technology, some of the linux operating system and web server variegated also prepared to support the embedded system, one of the applications that can be used in embedded systems are operating on the web server. Selection of embedded web server on the environment is still rarely done, therefore this study was conducted with a focus on two web application servers belonging to the main features that offer a "lightness" to the CPU and memory consumption as Light HTTPD and Tiny HTTPD. By using the parameters of the thread (users, ramp-up periods, and loop count on a stress test embedded systems, this study offers a solution of web server which between the Light

  6. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  7. Multistage Force Amplification of Piezoelectric Stacks

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)

    2015-01-01

    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  8. Giant piezoelectricity on Si for hyperactive MEMS.

    Science.gov (United States)

    Baek, S H; Park, J; Kim, D M; Aksyuk, V A; Das, R R; Bu, S D; Felker, D A; Lettieri, J; Vaithyanathan, V; Bharadwaja, S S N; Bassiri-Gharb, N; Chen, Y B; Sun, H P; Folkman, C M; Jang, H W; Kreft, D J; Streiffer, S K; Ramesh, R; Pan, X Q; Trolier-McKinstry, S; Schlom, D G; Rzchowski, M S; Blick, R H; Eom, C B

    2011-11-18

    Microelectromechanical systems (MEMS) incorporating active piezoelectric layers offer integrated actuation, sensing, and transduction. The broad implementation of such active MEMS has long been constrained by the inability to integrate materials with giant piezoelectric response, such as Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PMN-PT). We synthesized high-quality PMN-PT epitaxial thin films on vicinal (001) Si wafers with the use of an epitaxial (001) SrTiO(3) template layer with superior piezoelectric coefficients (e(31,f) = -27 ± 3 coulombs per square meter) and figures of merit for piezoelectric energy-harvesting systems. We have incorporated these heterostructures into microcantilevers that are actuated with extremely low drive voltage due to thin-film piezoelectric properties that rival bulk PMN-PT single crystals. These epitaxial heterostructures exhibit very large electromechanical coupling for ultrasound medical imaging, microfluidic control, mechanical sensing, and energy harvesting.

  9. Orthotropic Piezoelectricity in 2D Nanocellulose.

    Science.gov (United States)

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  10. Applications of piezoelectric materials in oilfield services.

    Science.gov (United States)

    Goujon, Nicolas; Hori, Hiroshi; Liang, Kenneth K; Sinha, Bikash K

    2012-09-01

    Piezoelectric materials are used in many applications in the oilfield services industry. Four illustrative examples are given in this paper: marine seismic survey, precision pressure measurement, sonic logging-while-drilling, and ultrasonic bore-hole imaging. In marine seismics, piezoelectric hydrophones are deployed on a massive scale in a relatively benign environment. Hence, unit cost and device reliability are major considerations. The remaining three applications take place downhole in a characteristically harsh environment with high temperature and high pressure among other factors. The number of piezoelectric devices involved is generally small but otherwise highly valued. The selection of piezoelectric materials is limited, and the devices have to be engineered to withstand the operating conditions. With the global demand for energy increasing in the foreseeable future, the search for hydrocarbon resources is reaching into deeper and hotter wells. There is, therefore, a continuing and pressing need for high-temperature and high-coupling piezoelectric materials.

  11. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  12. Optimal Location of Piezoelectric Patch on Composite Structure using Viewing Method

    Science.gov (United States)

    Samyal, Rahul; Bagha, Ashok K.

    2017-08-01

    A useful material which is manufactured by mixing of two or three different materials in homogeneous level is termed as composite material. In now day’s composite materials are used in wide area such as aerospace, automobiles, satellite, bullet proof jackets, rotor blades etc. In this paper modal analysis of composite material, mixture of polyester as matrix and glass as fiber, is carried out by using ABAQUS software. The modal analysis of composite material for fiber orientation 450 is carried out. In this paper by viewing the different mode shapes of the composite material, the optimal location of piezoelectric patch is carried out.

  13. An overheight vehicle bridge collision monitoring system using piezoelectric transducers

    Science.gov (United States)

    Song, G.; Olmi, C.; Gu, H.

    2007-04-01

    With increasing traffic volume follows an increase in the number of overheight truck collisions with highway bridges. The detection of collision impact and evaluation of the impact level is a critical issue in the maintenance of a concrete bridge. In this paper, an overheight collision detection and evaluation system is developed for concrete bridge girders using piezoelectric transducers. An electric circuit is designed to detect the impact and to activate a digital camera to take photos of the offending truck. Impact tests and a health monitoring test were conducted on a model concrete bridge girder by using three piezoelectric transducers embedded before casting. From the experimental data of the impact test, it can be seen that there is a linear relation between the output of sensor energy and the impact energy. The health monitoring results show that the proposed damage index indicates the level of damage inside the model concrete bridge girder. The proposed overheight truck-bridge collision detection and evaluation system has the potential to be applied to the safety monitoring of highway bridges.

  14. Experimental study of optical fibers influence on composite

    Science.gov (United States)

    Liu, Rong-Mei; Liang, Da-Kai

    2010-03-01

    Bending strength and elasticity modulus of composite, with and without embedded optical fibers, were experimentally studied. Two kinds of laminates, which were denoted as group 1 and group 2, were fabricated from an orthogonal woven glass/epoxy prepreg. Since the normal stress value becomes the biggest at the surface of a beam, the optical fibers were embedded at the outmost layer and were all along the loading direction. Four types of materials, using each kind of laminated prepreg respectively, were manufactured. The embedded optical fibers for the 4 material types were 0, 10, 30 and 50 respectively. Three-point bending tests were carried out on the produced specimens to study the influence of embedded optical fiber on host composite. The experimental results indicated that the materials in group 2 were more sensitive to the embedded optical fibers.

  15. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  16. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  17. Piezoelectric accelerometers with integral electronics

    CERN Document Server

    Levinzon, Felix

    2014-01-01

    This book provides an invaluable reference to Piezoelectric Accelerometers with Integral Electronics (IEPE). It describes the design and performance parameters of IEPE accelerometers and their key elements, PE transducers and FET-input amplifiers. Coverage includes recently designed, low-noise and high temperature IEPE accelerometers. Readers will benefit from the detailed noise analysis of the IEPE accelerometer, which enables estimation of its noise floor and noise limits. Other topics useful for designers of low-noise, high temperature silicon-based electronics include noise analysis of FET

  18. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  19. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force

    Science.gov (United States)

    Zhang, Chunli; Wang, Xiaoyuan; Chen, Weiqiu; Yang, Jiashi

    2017-02-01

    This paper presents a theoretical analysis on the axial extension of an n-type ZnO piezoelectric semiconductor nanofiber under an axial force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics and the conservation of charge was used. The equations were linearized for small axial force and hence small electron concentration perturbation, and were reduced to one-dimensional equations for thin fibers. Simple and analytical expressions for the electromechanical fields and electron concentration in the fiber were obtained. The fields are either totally or partially described by hyperbolic functions relatively large near the ends of the fiber and change rapidly there. The behavior of the fields is sensitive to the initial electron concentration and the applied axial force. For higher initial electron concentrations the fields are larger near the ends and change more rapidly there.

  20. Preisach model of hysteresis for the Piezoelectric Actuator Drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a precise piezoelectric motor generating high-torque rotary motion, which employs piezoelectric stack actuators in a wobblestyle actuation to generate rotation. The piezoelectric stacked ceramics used as the basis for motion in the motor suffer from...

  1. Fuzzy Fiber Sensors for Structural Composite Health Monitoring (Preprint)

    Science.gov (United States)

    2011-12-01

    fuzzy fibers to applied strain was measured in the following configurations: individual fiber, fiber tow, tow in matrix, and tow in laminated composite...panels, 12″ × 12″, were fabricated with IM7/977-2 prepreg unidirectional carbon fiber tape. Three panels each were prepared with unidirectional [0]8 or...were fabricated with 6″-long fuzzy fiber strain sensors embedded at the midpoint of the laminate plies. Eight straight-sided specimens (as shown in

  2. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  3. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where ve...

  4. Using Diffusion Bonding in Making Piezoelectric Actuators

    Science.gov (United States)

    Sager, Frank E.

    2003-01-01

    A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature

  5. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  6. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I; Su, Yu-Chuan

    2014-01-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300∼600 kPa and extreme piezoelectricity of d 33 >2000 pC/N and d 31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d 31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ∼200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices

  7. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    Science.gov (United States)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan

    2014-11-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.

  8. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  9. A Novel Bearing Lubricating Device Based on the Piezoelectric Micro-Jet

    Directory of Open Access Journals (Sweden)

    Kai Li

    2016-02-01

    Full Text Available A novel bearing lubricating device, which is embedded in gyroscope’s bearing system and based on the theory of the piezoelectric micro-jet, was designed for this study. The embedded structure of a bearing lubricating system can make effective use of the limited space of bearing systems without increasing the whole mass of the system. The drop-on-demand (DOD lubrication can be realized by the piezoelectric micro-jet system to implement the long acting lubrication of the bearing system. A mathematical model of inlet boundary conditions was established to carry on the numerical simulation based on CFD. The motion states of the droplets with different voltage excitations were analyzed via numerical simulations, and the injection performances of the piezoelectric micro-jet lubricating device were tested in accordance with past experiments. The influences of different parameters of voltage excitation on injection performance were obtained, and the methods of adjusting the injection performance to meet different requirements are given according to the analyses of the results. The mathematical model and numerical simulation method were confirmed by comparing the results of past simulations and experiments.

  10. Methods And Apparatus For Acoustic Fiber Fractionation

    Science.gov (United States)

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  11. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  12. New design for inertial piezoelectric motors

    Science.gov (United States)

    Liu, Lige; Ge, Weifeng; Meng, Wenjie; Hou, Yubin; Zhang, Jing; Lu, Qingyou

    2018-03-01

    We have designed, implemented, and tested a novel inertial piezoelectric motor (IPM) that is the first IPM to have controllable total friction force, which means that it sticks with large total friction forces and slips with severely reduced total friction forces. This allows the IPM to work with greater robustness and produce a larger output force at a lower threshold voltage while also providing higher rigidity. This is a new IPM design that means that the total friction force can be dramatically reduced or even canceled where necessary by pushing the clamping points at the ends of a piezoelectric tube that contains the sliding shaft inside it in the opposite directions during piezoelectric deformation. Therefore, when the shaft is propelled forward by another exterior piezoelectric tube, the inner piezoelectric tube can deform to reduce the total friction force acting on the shaft instantly and cause more effective stepping movement of the shaft. While our new IPM requires the addition of another piezoelectric tube, which leads to an increase in volume of 120% when compared with traditional IPMs, the average step size has increased by more than 400% and the threshold voltage has decreased by more than 50 V. The improvement in performance is far more significant than the increase in volume. This enhanced performance will allow the proposed IPM to work under large load conditions where a simple and powerful piezoelectric motor is needed.

  13. Piezoelectric paint: characterization for further applications

    International Nuclear Information System (INIS)

    Yang, C; Fritzen, C-P

    2012-01-01

    Piezoelectric paint is a very attractive piezoelectric composite in many fields, such as non-destructive testing, or structural health monitoring. However, there are still many obstacles which restrict the real application of it. One of the main problems is that piezoelectric paint lacks a standard fabrication procedure, thus characterization is needed before use. The work presented here explores the characterization of piezoelectric paint. It starts with fabrication of samples with certain piezoelectric powder weight percentages. The microstructures of the samples are investigated by a scanning electron microscope; the results indicate that the fabrication method can produce high quality samples. This is followed by measurements of Young’s modulus and sensitivity. The piezoelectric charge constant d 31 is then deduced from the experimental data; the results agree well with a published result, which validates the effectiveness of the fabrication and characterization method. The characterized piezoelectric paint can expand its applications into different fields and therefore becomes a more promising and competitive smart material. (paper)

  14. Embedded Linux in het onderwijs

    NARCIS (Netherlands)

    Dr Ruud Ermers

    2008-01-01

    Embedded Linux wordt bij steeds meer grote bedrijven ingevoerd als embedded operating system. Binnen de opleiding Technische Informatica van Fontys Hogeschool ICT is Embedded Linux geïntroduceerd in samenwerking met het lectoraat Architectuur van Embedded Systemen. Embedded Linux is als vakgebied

  15. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles

    International Nuclear Information System (INIS)

    Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao

    2015-01-01

    Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)

  16. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  17. Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths

    OpenAIRE

    Gao, Xiaotong; Shih, Wei-Heng; Shih, Wan Y.

    2010-01-01

    We have examined a piezoelectric unimorph cantilever (PUC) with unequal piezoelectric and nonpiezoelectric lengths for vibration energy harvesting theoretically by extending the analysis of a PUC with equal piezoelectric and nonpiezoelectric lengths. The theoretical approach was validated by experiments. A case study showed that for a fixed vibration frequency, the maximum open-circuit induced voltage which was important for charge storage for later use occurred with a PUC that had a nonpiezo...

  18. Miniature Piezoelectric Macro-Mass Balance

    Science.gov (United States)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA

  19. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  20. Finite element analysis of piezoelectric materials

    International Nuclear Information System (INIS)

    Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)

  1. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  2. Electrically aligned cellulose film for electro-active paper and its piezoelectricity

    International Nuclear Information System (INIS)

    Yun, Sungryul; Jang, Sangdong; Yun, Gyu-Young; Kim, Jaehwan

    2009-01-01

    Electrically aligned regenerated cellulose films were fabricated and the effect of applied electric field was investigated for the piezoelectricity of electro-active paper (EAPap). The EAPap was fabricated by coating gold electrodes on both sides of regenerated cellulose film. The cellulose film was prepared by dissolving cotton pulp in LiCl/N,N-dimethylacetamide solution followed by a cellulose chain regeneration process. During the regeneration process an external electric field was applied in the direction of mechanical stretching. Alignment of cellulose fiber chains was investigated as a function of applied electric field. The material characteristics of the cellulose films were analyzed by using an x-ray diffractometer, a field emission scanning electron microscope and a high voltage electron microscope. The application of external electric fields was found to induce formation of nanofibers in the cellulose, resulting in an increase in the crystallinity index (CI) values. It was also found that samples with higher CI values showed higher in-plane piezoelectric constant, d 31 , values. The piezoelectricity of the current EAPap films was measured to be equivalent or better than that of ordinary PVDF films. Therefore, an external electric field applied to a cellulose film along with a mechanical stretching during the regeneration process can enhance the piezoelectricity. (technical note)

  3. Brauer type embedding problems

    CERN Document Server

    Ledet, Arne

    2005-01-01

    This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. This book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the

  4. Time-dependent embedding

    OpenAIRE

    Inglesfield, J. E.

    2007-01-01

    A method of solving the time-dependent Schr\\"odinger equation is presented, in which a finite region of space is treated explicitly, with the boundary conditions for matching the wave-functions on to the rest of the system replaced by an embedding term added on to the Hamiltonian. This time-dependent embedding term is derived from the Fourier transform of the energy-dependent embedding potential, which embeds the time-independent Schr\\"odinger equation. Results are presented for a one-dimensi...

  5. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  6. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  7. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  8. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  9. Cryogenic Rotary Piezoelectric Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of high frequency oscillation of high force precision ceramic elements. The high power oscillations are converted to...

  10. Polarization Stability of Amorphous Piezoelectric Polyimides

    Science.gov (United States)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  11. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  12. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  13. Cryogenic Rotary Piezoelectric Motor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric motors operate on the principal of converting the high-frequency oscillation of high-force, precision ceramic elements into useful continuous motion....

  14. Robust Tracking Control for a Piezoelectric Actuator

    National Research Council Canada - National Science Library

    Salah, M; McIntyre, M; Dawson, D; Wagner, J

    2006-01-01

    In this paper, a hysteresis model-based nonlinear robust controller is developed for a piezoelectric actuator, utilizing a Lyapunov-based stability analysis, which ensures that a desired displacement...

  15. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  16. Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators

    Science.gov (United States)

    Martín-Sánchez, Javier; Trotta, Rinaldo; Mariscal, Antonio; Serna, Rosalía; Piredda, Giovanni; Stroj, Sandra; Edlinger, Johannes; Schimpf, Christian; Aberl, Johannes; Lettner, Thomas; Wildmann, Johannes; Huang, Huiying; Yuan, Xueyong; Ziss, Dorian; Stangl, Julian; Rastelli, Armando

    2018-01-01

    The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots (QDs) embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. It is shown that unprocessed piezoelectric substrates (monolithic actuators) allow to obtain a certain degree of control over the nanomaterials’ emission properties such as their emission energy, fine-structure-splitting in self-assembled InAs QDs and semiconductor 2D materials, upconversion phenomena in BaTiO3 thin films or piezotronic effects in ZnS:Mn films and InAs QDs. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary QDs. Future research directions and prospects are discussed.

  17. Optimal materials selection for bimaterial piezoelectric microactuators

    OpenAIRE

    Srinivasan, P.; Spearing, S.M.

    2008-01-01

    Piezoelectric actuation is one of the commonly employed actuation schemes in microsystems. This paper focuses on identifying and ranking promising active material/substrate combinations for bimaterial piezoelectric (BPE) microactuators based on their performance. The mechanics of BPE structures following simple beam theory assumptions available in the literature are applied to evolve critical performance metrics which govern the materials selection process. Contours of equal performance are p...

  18. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  19. Electromechanical Modeling of Piezoelectric Energy Harvesters

    OpenAIRE

    Erturk, Alper

    2009-01-01

    Vibration-based energy harvesting has been investigated by several researchers over the last decade. The ultimate goal in this research field is to power small electronic components (such as wireless sensors) by using the vibration energy available in their environment. Among the basic transduction mechanisms that can be used for vibration-to-electricity conversion, piezoelectric transduction has received the most attention in the literature. Piezoelectric materials are preferred in energy ha...

  20. Plate-fin array cooling using a finger-like piezoelectric fan

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Syu, Jhih-Zong

    2014-01-01

    In this study, the heat transfer of a plate-fin array cooled by a vibrating finger-like piezoelectric fan comprising four flexible rectangular blades was investigated. The results indicated that the heat transfer enhancement of the fin array cooled by a vibrating piezoelectric fan at x/L = 0.5 and H = 5 mm ranged between 1.5 and 3.3, regardless of the fin array orientation. However, the heat transfer enhancement caused by a fan being placed at either edge of the fin array yielded a dissimilar result between both of the fin array orientations because of the superimposed effects of the boundary layer development and the air flow induced by the fan. This dissimilarity was especially noticeable when the piezoelectric fan was composed of aluminum blades to accommodate the moderate Reynolds number. In addition to the Reynolds number, the ratio of the fan blade vibration envelope to the source area determined the Nu number of the piezoelectric fan-cooled fin array. This design enhanced the fin array heat transfer and reduced cooler volume by embedding multiple vibrating beams into the fin array. -- Highlights: • Heat transfer of a piezoelectric fan-cooled plate-fin array was investigated. • Effects of fan position, fan height and fan material on heat transfer were examined. • Similar heat transfer enhancement range was shown for both fin array orientations. • Fin heat transfer with a running Al fan at x = 0 was higher than that at x = 0.25L. • Besides fan Reynolds number, the area ratio also determined Nu of the fin array

  1. Oriented nanofibers embedded in a polymer matrix

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Lozano, Karen (Inventor); Rodriguez-Macias, Fernando J. (Inventor); Chibante, Luis Paulo Felipe (Inventor); Stewart, David Harris (Inventor)

    2011-01-01

    A method of forming a composite of embedded nanofibers in a polymer matrix is disclosed. The method includes incorporating nanofibers in a plastic matrix forming agglomerates, and uniformly distributing the nanofibers by exposing the agglomerates to hydrodynamic stresses. The hydrodynamic said stresses force the agglomerates to break apart. In combination or additionally elongational flow is used to achieve small diameters and alignment. A nanofiber reinforced polymer composite system is disclosed. The system includes a plurality of nanofibers that are embedded in polymer matrices in micron size fibers. A method for producing nanotube continuous fibers is disclosed. Nanofibers are fibrils with diameters of 100 nm, multiwall nanotubes, single wall nanotubes and their various functionalized and derivatized forms. The method includes mixing a nanofiber in a polymer; and inducing an orientation of the nanofibers that enables the nanofibers to be used to enhance mechanical, thermal and electrical properties. Orientation is induced by high shear mixing and elongational flow, singly or in combination. The polymer may be removed from said nanofibers, leaving micron size fibers of aligned nanofibers.

  2. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  3. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  4. Analysis of active piezoelectric energy harvester

    Directory of Open Access Journals (Sweden)

    Yiliang CUI

    2018-02-01

    Full Text Available Most of the existing piezoelectric traps are designed for a narrow frequency range of vibration, but the surrounding environment has a very wide frequency range, and the frequency may also be subject to change, causing the problem of difficult to achieve energy capture or capture inefficiency. In order to solve problem, a new T-type piezoelectric cantilever is proposed as a capture energy structure in the paper. To begin with the aspects of structural design and circuit design, the static analysis, modal analysis and resonance analysis of the structure are carried out and the natural frequency and excitation frequency of the device are analyzed. The design and calculation of the power consumption and the loss of the components of the circuit are analyzed by the simulation and verification of the active capture energy circuit, and the active and passive techniques are compared and analyzed, the simulation of the active capture circuit is verified by analyzing the power consumption of the circuit and the maximum power obtained by the active technology is 5 times of that of the passive technology. And then the voltage-controlled active boundary control method can be used for interface circuit design, taking the initiative to use each piezoelectric transduction cycle triggered by the electrical boundary conditions to effectively increase the input piezoelectric pump energy, and then increase output power. The way of utilizing the active trapping of piezoelectric materials is innovated, which has a positive effect on the development of piezoelectric traps.

  5. Multimodal piezoelectric devices optimization for energy harvesting

    Directory of Open Access Journals (Sweden)

    G Acciani

    2016-09-01

    Full Text Available The use of the piezoelectric effect to convert ambient vibration into useful electrical energy constitutes one of the most studied areas in Energy Harvesting (EH research. This paper presents a typical cantilevered Energy Harvester device, which relates the electrical outputs to the vibration mode shape easily. The dynamic strain induced in the piezoceramic layer results in an alternating voltage output. The first six modes of frequencies and the deformation pattern of the beam are carried out basing on an eigenfrequency analysis conducted by the MEMS modules of the COMSOL Multiphysic® v3.5a to perform the Finite Element Analysis of the model. Subsequently, the piezoelectric material is cut around the inflection points to minimize the voltage cancellation effect occurring when the sign changes in the material. This study shows that the voltage produced by the device, increases in as the dimensions of the cuts vary in the piezoelectric layer. Such voltage reaches the optimum amount of piezoelectric material and cuts positioning. This proves that the optimized piezoelectric layer is 16% more efficient than the whole piezoelectric layer.

  6. Tubular fluoropolymer arrays with high piezoelectric response

    Science.gov (United States)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz

    2018-01-01

    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  7. Dielectric loss against piezoelectric power harvesting

    Science.gov (United States)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  8. Evaluation of two thermal neutron detection units consisting of ZnS/{sup 6}LiF scintillating layers with embedded WLS fibers read out with a SiPM

    Energy Technology Data Exchange (ETDEWEB)

    Mosset, J.-B., E-mail: jean-baptiste.mosset@a3.epfl.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Stoykov, A.; Greuter, U.; Hildebrandt, M.; Schlumpf, N. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Van Swygenhoven, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2014-11-11

    Two single channel detection units for thermal neutron detection are investigated in a neutron beam. They consist of two ZnS/{sup 6}LiF scintillating layers sandwiching an array of WLS fibers. The pattern of these units can be repeated laterally and vertically in order to build up a one-dimensional position sensitive multi-channel detector with the needed sensitive surface and with the required neutron absorption probability. The originality of this work arises from the fact that the WLS fibers are read out with SiPMs instead of the traditionally used PMTs or MaPMTs. The signal processing system is based on a photon counting approach. For SiPMs with a dark count rate as high as 0.7 MHz, a trigger efficiency of 80% is achieved together with a system background rate lower than 10{sup −3}Hz and a dead time of 30μs. No change of performance is observed for neutron count rates of up to 3.6 kHz.

  9. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  10. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  11. Active vibration control of smart hull structure using piezoelectric composite actuators

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok; Lee, Chul-Hee

    2009-01-01

    In this paper, active vibration control performance of the smart hull structure with macro-fiber composite (MFC) is evaluated. MFC is an advanced piezoelectric composite which has great flexibility and increased actuating performance compared to a monolithic piezoelectric ceramic patch. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell–Mushtari shell theory. The actuating model for the interaction between hull structure and MFC is included in the governing equations. Subsequently, modal characteristics are investigated and compared with the results obtained from experiment. The governing equations of the vibration control system are then established and expressed in the state space form. A linear quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and vibration control performances are evaluated

  12. Design and characterization of piezoelectric ultrasonic motors

    Science.gov (United States)

    Yener, Serra

    This thesis presents modeling and prototype fabrication and characterization of new types of piezoelectric ultrasonic micromotors. Our approach in designing these piezoelectric motors was: (i) to simplify the structure including the poling configuration of piezoelectric elements used in the stator and (ii) to reduce the number of components in order to decrease the cost and enhance the driving reliability. There are two different types of piezoelectric motors designed throughout this research. The first of these designs consists of a metal tube, on which two piezoelectric ceramic plates poled in thickness direction, were bonded. Two orthogonal bending modes of the hollow cylinder were superimposed resulting in a rotational vibration. Since the structure and poling configuration of the active piezoelectric elements used in the stator are simple, this motor structure is very suitable for miniaturization. Moreover, a single driving source can excite two bending modes at the same time, thus generate a wobble motion. Three types of prototypes are included in this design. The piezoelectric stator structure is the same for all. However, the dimensions of the motors are reduced by almost 50 percent. Starting with a 10 mm long stator, we reached to 4 mm in the last prototype. The initial diameter was 2.4 mm, which was reduced to 1.6 mm. In the final design, the rotor part of the motor was changed resulting in the reduction in the number of components. In terms of driving circuit, a single driving source was enough to run the motors and a conventional switching power supply type resonant L-C circuit was used. A simple motor structure with a simple driving circuit were combined successfully and fabricated inexpensively. The second design is a shear type piezoelectric linear motor. The behavior of a single rectangular piezoelectric shear plate was analyzed and after optimizing the dimensions and the mode characteristics, a prototype was fabricated. The prototype consists of

  13. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    al., [7]. The modules are made of low temperature cofired ceramic (LTCC tapes with an embedded lead zirconate titanate (PZT plate and are manufactured in multilayer technique. For joining conducting copper (Cu wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8] providing sufficient thermal stability for a subsequent casting process. Keywords: Active noise reduction, Laser assisted wire bonding, Smart structures, Piezoelectric transducers, Die casting, Lightweight design

  14. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  15. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    Summary form only given. Embedded systems are everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded systems. Over 99% of the microprocessors produced today are used in embedded systems, and recently the number of embedded systems...

  16. Stress transfer in microdroplet tensile test: PVC-coated and uncoated Kevlar-29 single fiber

    Science.gov (United States)

    Zhenkun, Lei; Quan, Wang; Yilan, Kang; Wei, Qiu; Xuemin, Pan

    2010-11-01

    The single fiber/microdroplet tensile test is applied for evaluating the interfacial mechanics between a fiber and a resin substrate. It is used to investigate the influence of a polymer coating on a Kevlar-29 fiber surface, specifically the stress transfer between the fiber and epoxy resin in a microdroplet. Unlike usual tests, this new test ensures a symmetrical axial stress on the embedded fiber and reduces the stress singularity that appears at the embedded fiber entry. Using a homemade loading device, symmetrical tensile tests are performed on a Kevlar-29 fiber with or without polyvinylchloride (PVC) coating, the surface of which is in contact with two epoxy resin microdroplets during curing. Raman spectra on the embedded fiber are recorded by micro-Raman Spectroscopy under different strain levels. Then they are transformed to the distributions of fiber axis stress based on the relationship between stress and Raman shift. The Raman results reveal that the fiber axial stresses increase with the applied loads, and the antisymmetric interfacial shear stresses, obtained by a straightforward balance of shear-to-axial forces argument, lead to the appearance of shear stress concentrations at a distance to the embedded fiber entry. The load is transferred from the outer fiber to the embedded fiber in the epoxy microdroplet. As is observed by scanning electronic microscopy (SEM), the existence of a flexible polymer coating on the fiber surface reduces the stress transfer efficiency.

  17. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    Science.gov (United States)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  18. Model of a Piezoelectric Transducer

    Science.gov (United States)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  19. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  20. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François

    2014-01-01

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  1. Lithium tri borate (LiB3O5) embedded polymer electret for mechanical sensing application

    Science.gov (United States)

    Murugan, S.; Praveen, E.; Prasad, M. V. N.; Jayakumar, K.

    2017-05-01

    Lithium tri borate (LiB3O5) particles were synthesized by precipitation assisted high temperature solid state reaction. The particles were embedded in chitosan polymer and used as an electret. This electret was characterized for the suitability as a sensing element in vibration accelerometer. It is observed that LiB3O5 embedded electret exhibiting piezoelectric property. The electret is also giving an isolation of > 999 MΩ at 100 Vdc, 250 Vdc, 500 Vdc and 1kVdc confirms compatible for intrinsically safe sensing alternative in vibration accelerometer.

  2. Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors.

    Science.gov (United States)

    Qin, Lei; Ren, Hong-Wei; Dong, Bi-Qin; Xing, Feng

    2014-10-02

    Acoustic emission (AE) is capable of monitoring the cracking activities inside materials. In this study, embedded sensors were employed to monitor the AE behavior of early age concrete. Type 1-3 cement-based piezoelectric composites, which had lower mechanical quality factor and acoustic impedance, were fabricated and used to make sensors. Sensors made of the composites illustrated broadband frequency response. In a laboratory, the cracking of early age concrete was monitored to recognize different hydration stages. The sensors were also embedded in a mass concrete foundation to localize the temperature gradient cracks.

  3. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  4. A study of principle and testing of piezoelectric transformer

    International Nuclear Information System (INIS)

    Liu Weiyue; Wang Yanfang; Huang Yihua; Shi Jun

    2002-01-01

    The operating principle and structure of a kind of piezoelectric transformer which can be used in a particle accelerator are investigated. The properties of piezoelectric transformer are tested through equivalent circuit combined with experiment

  5. Theoretical and experimental research on the influence of multiple piezoelectric effects on physical parameters of piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Liping Shi

    2015-04-01

    Full Text Available Compared with the traditional actuator of machinery and electricity, the piezoelectric actuator has the advantages of a compact structure, small volume, no mechanical friction, athermancy and no electromagnetic interference. Therefore, it has high application value in the fields of MEMS, bioengineering, medical science and so on. This article draws conclusions from the influence of multiple piezoelectric effects on the physical parameters (dielectric coefficient, equivalent capacity, energy conversion and piezoelectric coefficient of piezoelectric actuators. These data from theoretical and experimental research show the following: (1 The rate between the dielectric coefficient of piezoelectric in mechanical freedom and clamping is obtained from the secondary direct piezoelectric effect, which enhances the dielectric property, increases the dielectric coefficient and decreases the coefficient of dielectric isolation; (2 Under external field, E n ( ex = E 1 , exterior stress T = 0, that is to say, under the boundary condition of mechanical freedom, piezoelectric can store electric energy and elasticity, which obtains power density, elastic density and an electromechanical coupling factor; (3 According to the piezoelectric strain S i ( 1 , piezoelectric displacement D m ( 2 and piezoelectric strain S i ( 3 of multiple piezoelectric effects, when the dielectric coefficient of the first converse piezoelectric effect ε33 is 1326 and the dielectric coefficient of the secondary direct piezoelectric effect increases to 3336, the dielectric coefficient of the ceramic chip increases. When the piezoelectric coefficient of the first converse piezoelectric effect d33 is 595 and the piezoelectric coefficient of the secondary direct piezoelectric effect decreases to 240, the piezoelectric coefficient of the ceramic chip will decrease. It is of major significance both in the applications and in basic theory to research the influence of multiple piezoelectric

  6. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  7. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  8. Photothermoacoustic effect in solids with piezoelectric detection

    International Nuclear Information System (INIS)

    Kozachenko, V. V.; Kucherov, I.Ya.

    2004-01-01

    Full text: In the last few years, a growing interest has been expressed in studies of substances in different aggregate states which were performed with the help of the photothermoacoustic PTA effect. Main in this method is use of thermal waves as the carrier of the information about properties of explored substance. The excitation of thermal waves is carried out, as a rule, by modulated light flux. A specific feature of the PTA effect is the dependence of the information obtained from it on the method used for detecting thermal waves. One of the most sensitive methods for detecting a PTA signal is the piezoelectric method. For studies of solids, the PTA effect in plates offers considerable promise. In this work, PTA effect in a solid-piezoelectric layered structure is studied theoretically and experimentally. The layered plate consisting of an isotropic solid and piezoelectric crystal of a class 6 mm (or piezoelectric ceramics) is considered. The surface of a solid body is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. Expressions for the potential difference U across an arbitrary layer of piezoelectric transducer are derived. The solid bodies with various optical and thermal properties for cases of one-layer and two-layer piezoelectric transducer are analyzed. In particular, is shown, that for the case two-layer piezoelectric transducer, in the high-frequency region, the amplitude ratio U 1 / U 2 the tangent of the phase difference tg(Δφ) of signals taken from individual layers of the transducer depend almost linearly on the inverse square root of the frequency f -1/2 . With use of these features, the new method of definition of some elastic and thermal parameters of solid bodies offered. An experiment is performed with samples Cu, Fe

  9. Eigenstates of coupling factor and loss factor of piezoelectric ceramics

    International Nuclear Information System (INIS)

    Smits, J.G.

    1978-01-01

    A short history of piezoelectricity is given and its occurence in nature described. The physical background of piezoelectric loss is discussed together with how material coefficients like susceptibilities can be used to describe the relation between canonical variables and to determine the dissipation of energy. The piezoelectric coupling factor, the applications of the eigencoupling state, elastic and piezoelectric digenstates are dealt with. The composition of the measurement system is described and experimental values of ceramics given. (C.F.)

  10. Energy Harvesting From Low Frequency Applications Using Piezoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huidong; Tian, Chuan; Deng, Zhiqun

    2014-11-06

    This paper reviewed the state of research on piezoelectric energy harvesters. Various types of harvester configurations, piezoelectric materials, and techniques used to improve the mechanical-to-electrical energy conversion efficiency were discussed. Most of the piezoelectric energy harvesters studied today have focused on scavenging mechanical energy from vibration sources due to their abundance in both natural and industrial environments. Cantilever beams have been the most studied structure for piezoelectric energy harvester to date because of the high responsiveness to small vibrations.

  11. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  12. High-Fidelity Piezoelectric Audio Device

    Science.gov (United States)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  13. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  14. Piezoelectric polydimethylsiloxane films for MEMS transducers

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Hsu, Tsung-Hsing; Yeh, Che-Nan; Tsai, Jui-Wei; Su, Yu-Chuan

    2012-01-01

    We have successfully demonstrated the fabrication of piezoelectric polydimethylsiloxane (PDMS) films utilizing multilayer casting, stacking, surface coating and micro plasma discharge processes. To realize the desired electromechanical sensitivity, cellular PDMS structures with micrometer-sized voids are implanted with bipolar charges on the opposite inner surfaces. The implanted charge pairs function as dipoles, which respond promptly to diverse electromechanical stimulation. In the prototype demonstration, cellular PDMS films with various void geometries are fabricated and internally coated with a thin layer of polytetrafluoroethylene, which can help secure the implanted charges. An electric field up to 35 MV m −1 is applied across the fabricated PDMS films to ionize the air in the voids and to accelerate the resulting bipolar charges to bombard the opposite inner surfaces. The resulting charge-implanted, cellular PDMS films show a low effective elastic modulus (E) of about 500 kPa, and a piezoelectric coefficient (d 33 ) higher than 300 pC N −1 , which is more than ten times higher than those of common piezoelectric polymers (e.g. polyvinylidene fluoride). Furthermore, the piezoelectricity of the PDMS films can be tailored by adjusting the dimensions of the cellular structures. As such, the demonstrated piezoelectric PDMS films could potentially serve as flexible and sensitive electromechanical materials, and fulfill the needs of a variety of sensor and energy harvesting applications. (paper)

  15. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring

    International Nuclear Information System (INIS)

    Lin, Shuyu; Hu, Jing; Fu, Zhiqiang

    2013-01-01

    A new type of piezoelectric ceramic transformer in radial vibration is presented. The piezoelectric transformer consists of a pairing of a concentric piezoelectric ceramic circular disk and ring. The inner piezoelectric ceramic disk is axially polarized and the outer piezoelectric ring is radially polarized. Based on the plane stress theory, the exact analytical theory for the piezoelectric transformer is developed and its electromechanical equivalent circuit is introduced. The resonance/anti-resonance frequency equations of the transformer are obtained and the relationship between the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient and the geometrical dimensions of the piezoelectric transformer is analyzed. The dependency of the voltage transformation ratio on the frequency is obtained. To verify the analytical theory, a numerical method is used to simulate the electromechanical characteristics of the piezoelectric transformer. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the numerical results. (paper)

  16. Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces.

    Science.gov (United States)

    Jiao, Fengyu; Wei, Peijun; Li, Yueqiu

    2018-01-01

    Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric material are first derived from the general governing equation. Different from the classical piezoelectric medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstructure effects taken into consideration. The state vectors are obtained by the summation of contributions from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios and further the energy flux ratios of various waves are evaluated numerically. The numerical results are shown graphically and are validated by the energy conservation law. Based on these numerical results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients on the wave propagation are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the coupling effects of piezoelectricity and flexoelectricity in piezoelectric nanostructures

    Directory of Open Access Journals (Sweden)

    Liwen He

    2017-10-01

    Full Text Available Flexoelectricity is a novel kind of electromechanical coupling phenomenon that is prevalent in all solid dielectrics and usually of vital importance in nanostructures and soft materials. Although the fundamental theory of flexoelectric solids and related beam or plate theories were extensively studied in recent years, the coupling effect of flexoelectricity and piezoelectricity in piezoelectric nanostructures has not been completely clarified yet. In the present work, a geometrically nonlinear piezoelectric plate model is established with a focus on the coupling effect. The constitutive equations for piezoelectric plates are derived under both the electrically short-circuit and open-circuit conditions. It is found that due to the coupling between flexoelectricity and piezoelectricity, stretching-bending coupling stiffness arises in the homogeneous plate and its specific value relies on the applied electrical boundary conditions. The effects of the flexoelectric-piezoelectric coupling on the effective mechanical behavior and the electromechanical behavior of nanobeams and nanoplates are also discussed. The developed model and presented results are expected to benefit the design and analysis of piezoelectric and flexoelectric devices and systems.

  18. The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent?

    International Nuclear Information System (INIS)

    Kisi, E H; Piltz, R O; Forrester, J S; Howard, C J

    2003-01-01

    Lead zinc niobate-lead titanate (PZN-PT) single crystals show very large piezoelectric strains for electric fields applied along the unit cell edges e.g. [001] R . It has been widely reported that this effect is caused by an electric field induced phase transition from rhombohedral (R3m) to monoclinic (Cm or Pm) symmetry in an essentially continuous manner. Group theoretical analysis using the computer program ISOTROPY indicates phase transitions between R3m and Cm (or Pm) must be discontinuous under Landau theory. An analysis of the symmetry of a strained unit cell in R3m and a simple expansion of the piezoelectric strain equation indicate that the piezoelectric distortion due to an electric field along a cell edge in rhombohedral perovskite-based ferroelectrics is intrinsically monoclinic (Cm), even for infinitesimal electric fields. PZN-PT crystals have up to nine times the elastic compliance of other piezoelectric perovskites and it might be expected that the piezoelectric strains are also very large. A field induced phase transition is therefore indistinguishable from the piezoelectric distortion and is neither sufficient nor necessary to understand the large piezoelectric response of PZN-PT

  19. Embedding JIT into MRP

    NARCIS (Netherlands)

    Flapper, S.D.P.; Miltenburg, G.J.; Wijngaard, J.

    1991-01-01

    Today many companies who are using MRP production control systems are investigating how they can produce some or all of their products using just-in time (JIT) principles. They wonder to what extent MRP can provide support for JIT production. This paper describes how JIT can be embedded into MRP. A

  20. Embedded Multimaterial Extrusion Bioprinting

    NARCIS (Netherlands)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A.; Zhang, Yu Shrike

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial

  1. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...

  2. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  3. Embedded enzymes catalyse capture

    Science.gov (United States)

    Kentish, Sandra

    2018-05-01

    Membrane technologies for carbon capture can offer economic and environmental advantages over conventional amine-based absorption, but can suffer from limited gas flux and selectivity to CO2. Now, a membrane based on enzymes embedded in hydrophilic pores is shown to exhibit combined flux and selectivity that challenges the state of the art.

  4. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  5. Characterization of a Piezoelectric Buzzer Using a Michelson Interferometer

    Science.gov (United States)

    Lloyd, S.; Paetkau, M.

    2010-01-01

    A piezoelectric material generates an electric potential across its surface when subjected to mechanical stress; conversely, the inverse piezoelectric effect describes the expansion or contraction of the material when subjected to some applied voltage. Piezoelectric materials are used in devices such as doorbell buzzers, barbeque igniters, and…

  6. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  7. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis

    Science.gov (United States)

    Beringer, Laura Toth

    Flexible, self-powered materials are in demand for a multitude of applications such as energy harvesting, robotic devices, and lab-on-a chip medical diagnostics. Lab-on-a-chip materials or cell-based biosensors can provide new diagnostic or therapeutic tools for numerous diseases. This dissertation explores the fabrication and characterization of a cell-based sensor termed a nanogenerator with three major aims. The first aim of this research was to fabricate a piezoelectric material that could act as both a cell scaffold and sensor and characterize the response to cell-scale deformation. Electrospinning piezoelectric fluoropolymers into nanofibers can provide both of these functionalities in a facile method. PVDF-TrFe was electrospun in an aligned format and interfaced with a flexible plastic substrate in order to create a platform for voltage response characterization after small force cantilever deformations. Voltage peak signals were an average of +/- 0.4 V, and this response did not change after platform sterilization. However, when placed in cell culture media, piezoelectric response was dampened, which was taken into consideration for the next two aims. An aligned electrospun coaxial fiber system of PVDF-TrFe and collagen was created and interfaced with the nanogenerator for the second aim in order to provide a more biologically favorable surface for cells to adhere to. These nanogenerators were successfully characterized for their piezoelectric response, which was an average of +/- 0.1 V. Additionally, the aligned coaxial collagen/PVDF-TrFe fibers supported both neuron and HeLa cell attachment and growth, demonstrating that they were not cytotoxic. To assess the potential for the nanogenerators to be used as a contractile analysis lab-on-a-chip based device, HeLa cell contraction was induced with potassium chloride and signal response was analyzed. The nanogenerator system was able to detect both the resting state of HeLa cells, a contraction state, and a

  8. Adaptive fiber optics collimator based on flexible hinges.

    Science.gov (United States)

    Zhi, Dong; Ma, Yanxing; Ma, Pengfei; Si, Lei; Wang, Xiaolin; Zhou, Pu

    2014-08-20

    In this manuscript, we present a new design for an adaptive fiber optics collimator (AFOC) based on flexible hinges by using piezoelectric stacks actuators for X-Y displacement. Different from traditional AFOC, the new structure is based on flexible hinges to drive the fiber end cap instead of naked fiber. We fabricated a real AFOC based on flexible hinges, and the end cap's deviation and resonance frequency of the device were measured. Experimental results show that this new AFOC can provide fast control of tip-tilt deviation of the laser beam emitting from the end cap. As a result, the fiber end cap can support much higher power than naked fiber, which makes the new structure ideal for tip-tilt controlling in a high-power fiber laser system.

  9. Industrial approach to piezoelectric damping of large fighter aircraft components

    Science.gov (United States)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  10. Study of piezoelectric materials combined with electromagnetic design for bicycle harvesting system

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2016-04-01

    Full Text Available Energy harvesting device involves capturing energy from the environment and it is increasingly crucial in the crisis of greenhouse effect nowadays. Equipping bicycles with many types of shock absorbers can enhance the riding comfort. Additionally, an embedded energy harvesting device will gain much benefit beyond the sports. This study applied the finite element method to analyze the components of nonlinear magnetic spring. The analytical simulations were conducted to analyze the electromagnetic effect in ANSYS©/Emag software. A model equipped with nonlinear magnetic springs was constructed to absorb the impact energy. Nevertheless, the piezoelectric components were used to capture the piezoelectric effect current caused by the compressive stress. A series of simulations were conducted, such as changing the diameter of the magnet, electric coil width, and the position of the coils. Moreover, with those finite element analysis data, the Taguchi method L9(34 orthogonal arrays were applied to determine the optimal parametric dimensions of the electromagnetic and piezoelectric assemblies for maximizing the captured kinetic energy and power transformation. The results could assist the suspension manufacturers to innovate their design for energy harvesting and impact absorbing.

  11. Piezoelectric surgery in implant dentistry: clinical applications

    Directory of Open Access Journals (Sweden)

    Lydia Masako Ferreira

    2009-01-01

    Full Text Available Pizosurgery has therapeutic characteristics in osteotomies, such as extremely precise, selective and millimetric cuts and a clear operating field. Piezoelectricity uses ultrasonic frequencies, which cause the points specially designed for osteotomy to vibrate. The points of the instrument oscillate, allowing effective osteotomy with minimal or no injury to the adjacent soft tissues, membranes and nerve tissues. This article presents the various applications of piezoelectricity in oral implant surgery such as: removal of autogenous bone; bone window during elevation of the sinus membrane and removal of fractured implants. The cavitational effect caused by the vibration of the point and the spray of physiological solution, provided a field free of bleeding and easy to visualize. The study showed that the piezoelectric surgery is a new surgical procedurethat presents advantages for bone cutting in many situations in implant dentistry, with great advantages in comparison with conventional instrumentation. Operating time is longer when compared with that of conventional cutters.

  12. Flow Energy Piezoelectric Bimorph Nozzle Harvester

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)

    2016-01-01

    A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.

  13. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  14. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  15. Loss Factor Characterization Methodology for Piezoelectric Ceramics

    International Nuclear Information System (INIS)

    Zhuang Yuan; Ural, Seyit O; Uchino, Kenji

    2011-01-01

    The key factor for the miniaturization of piezoelectric devices is power density, which is limited by the heat generation or loss mechanisms. There are three loss components for piezoelectric vibrators, i.e., dielectric, elastic and piezoelectric losses. The mechanical quality factor, determined by these three factors, is the figure of merit in the sense of loss or heat generation. In this paper, quality factors of resonance and antiresonance for k 31 , k 33 , and k 15 vibration modes are derived, and the methodology to determine loss factors in various directions is provided. For simplicity, we focus on materials with ∞mm (equivalent to 6mm) crystal symmetry for deriving the loss factors of polycrystalline ceramics, and 16 different loss factors among total 20 can be obtained from the admittance/ impedance measurements.

  16. Fiber Optic Temperature Sensor Insert for High Temperature Environments

    Science.gov (United States)

    Black, Richard James (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Zarnescu, Livia (Inventor)

    2017-01-01

    A thermal protection system (TPS) test plug has optical fibers with FBGs embedded in the optical fiber arranged in a helix, an axial fiber, and a combination of the two. Optionally, one of the optical fibers is a sapphire FBG for measurement of the highest temperatures in the TPS plug. The test plug may include an ablating surface and a non-ablating surface, with an engagement surface with threads formed, the threads having a groove for placement of the optical fiber. The test plug may also include an optical connector positioned at the non-ablating surface for protection of the optical fiber during insertion and removal.

  17. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  18. Raman measurements of Kevlar-29 fiber pull-out test at different strain levels

    Science.gov (United States)

    Wang, Quan; Lei, Zhenkun; Kang, Yilan; Qiu, Wei

    2008-11-01

    This paper adopted Kevlar-29 fiber monofilament embedding technology to prepare fiber/ epoxy resin tensile specimen. The specimen was pulled on a homemade and portable mini-loading device. At the same time micro-Raman spectroscopy is introduced to detect the distributions of stress on the embedded fiber at different strain levels. The characteristic peak shift of the 1610 cm-1 in Raman band has a linear relationship with the strain or stress. The experimental results show that the fiber axial stress decreases gradually from the embedded fiber-start to the embedded fiber-end at the same strain level. At different strain levels, the fiber axial stress increases along with the applied load. It reveals that there is a larger fiber axial stress distribution under a larger strain level. And the stress transfer is realized gradually from the embedded fiber-start to the fiber-end. Stress concentration exists in the embedded fiber-end, which is a dangerous region for interfacial debonding easily.

  19. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution

    International Nuclear Information System (INIS)

    Dongyu, Xu; Xin, Cheng; Shifeng, Huang; Banerjee, Sourav

    2014-01-01

    The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction of piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer

  20. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  1. Dielectric loss against piezoelectric power harvesting

    International Nuclear Information System (INIS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-01-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems. (fast track communications)

  2. Energy harvesting with piezoelectric and pyroelectric materials

    CERN Document Server

    Muensit, Nantakan

    2011-01-01

    The purpose of this book is to present the current state of knowledge in the field of energy harvesting using piezoelectric and pyroelectric materials. The book is addressed to students and academics engaged in research in the fields of energy harvesting, material sciences and engineering. Scientists and engineers who are working in the area of energy conservation and renewable energy resources should find it useful as well. Explanations of fundamental physical properties such as piezoelectricity and pyroelectricity are included to aid the understanding of the non-specialist. Specific technolo

  3. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  4. Reducing the capacitance of piezoelectric film sensors

    International Nuclear Information System (INIS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-01-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N"2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  5. Topological design of compliant smart structures with embedded movable actuators

    International Nuclear Information System (INIS)

    Wang, Yiqiang; Zhang, Xiaopeng; Kang, Zhan; Luo, Zhen

    2014-01-01

    In the optimal configuration design of piezoelectric smart structures, it is favorable to use actuation elements with certain predefined geometries from the viewpoint of manufacturability of fragile piezoelectric ceramics in practical applications. However, preserving the exact shape of these embedded actuators and tracking their dynamic motions presents a more challenging research task than merely allowing them to take arbitrary shapes. This paper proposes an integrated topology optimization method for the systematic design of compliant smart structures with embedded movable PZT (lead zirconate titanate) actuators. Compared with most existing studies, which either optimize positions/sizes of the actuators in a given host structure or design the host structure with pre-determined actuator locations, the proposed method simultaneously optimizes the positions of the movable PZT actuators and the topology of the host structure, typically a compliant mechanism for amplifying the small strain stroke. A combined topological description model is employed in the optimization, where the level set model is used to track the movements of the PZT actuators and the independent point-wise density interpolation (iPDI) approach is utilized to search for the optimal topology of the host structure. Furthermore, we define an integral-type constraint function to prevent overlaps between the PZT actuators and between the actuators and the external boundaries of the design domain. Such a constraint provides a unified and explicit mathematical statement of the non-overlap condition for any number of arbitrarily shaped embedded actuators. Several numerical examples are used to demonstrate the effectiveness of the proposed optimization method. (paper)

  6. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  7. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  8. Fundamentals of piezoelectric sensorics mechanical, dielectric, and thermodynamical properties of piezoelectric materials

    CERN Document Server

    Tichý, Jan; Kittinger, Erwin; Prívratská, Jana; Privatska, Jana; Janovec, Vaclav

    2010-01-01

    This book presents the physics of piezoleletric sensors in a straight-forward and easy-to-grasp way, from the fundamentals of phenomenological crystal physics through more complex concepts, to its explanation of several important piezoelectric materials.

  9. Embedding in thermosetting resins

    International Nuclear Information System (INIS)

    Buzonniere, A. de

    1985-01-01

    Medium activity waste coming either from nuclear power plants in operation such as evaporator concentrates, spent resins, filter cartridges or the dismantling of installations are embedded in order to obtain a product suitable for long term disposal. Embedding in thermosetting resins (polyester or epoxy) is one among currently used techniques; it is being developed by the CEA (Commissariat a l'Energie Atomique) and Technicatome (subsidiary of CEA and EDF). The process is easy to operate and yields excellent results particularly as far as volume reduction and radioelement containment (cesium particularly) are concerned. The process has already been in operation in four stationary plants for several years. Extension of the process to mobile units has been completed by Technicatome in collaboration with the CEA [fr

  10. A review on one dimensional perovskite nanocrystals for piezoelectric applications

    Directory of Open Access Journals (Sweden)

    Li-Qian Cheng

    2016-03-01

    Full Text Available In recent years, one-dimensional piezoelectric nanomaterials have become a research topic of interest because of their special morphology and excellent piezoelectric properties. This article presents a short review on one dimensional perovskite piezoelectric materials in different systems including Pb(Zr,TiO3, BaTiO3 and (K,NaNbO3 (KNN. We emphasize KNN as a promising lead-free piezoelectric compound with a high Curie temperature and high piezoelectric properties and describe its synthesis and characterization. In particular, details are presented for nanoscale piezoelectricity characterization of a single KNN nanocrystal by piezoresponse force microscopy. Finally, this review describes recent progress in applications based on one dimensional piezoelectric nanostructures with a focus on energy harvesting composite materials.

  11. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  12. Active damping of multiferroic composite plates using 1-3 piezoelectric composites

    Science.gov (United States)

    Kattimani, S. C.

    2017-12-01

    A layer-wise shear deformation theory is used to analyze the smart damping of multiferroic composite or magneto-electro-elastic (MEE) plates. The intent of this analysis is to investigate the need for incorporating additional smart elements for controlling the vibrations of multiferroic composite plates. Active constrained layer damping (ACLD) treatment has been incorporated to alleviate the vibration of MEE plate. A layer of viscoelastic material is used as constrained layer for the ACLD treatment. The coupled constitutive equations of multiferroic (ferroelectric and ferromagnetic) composite materials along with the total potential energy principle are used to derive the finite element formulation for the overall multiferroic or MEE plate. Maxwell’s electrostatic and electromagnetic relations are used to compute the electric and magnetic potential distribution. Influence of obliquely reinforced piezoelectric fibers in the piezoelectric layer of the ACLD treatment has also been investigated. In order to investigate the importance of using ACLD treatment for an active damping of multiferroic or MEE plate, an active control of MEE plate has also been analyzed by providing the control voltage directly to the piezoelectric layers of the MEE substrate plate without using the ACLD treatment. The present study suggests that for an optimal control of MEE plates, the smartness element such as the ACLD treatment is essentially required.

  13. Piezoelectric multilayer actuator life test.

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  14. Fabrication and characterization of a piezoelectric accelerometer

    DEFF Research Database (Denmark)

    Reus, Roger De; Gulløv, Jens; Scheeper, Patrick

    1999-01-01

    Zinc oxide based piezoelectric accelerometers were fabricated by bulk micromachining. A high yield was obtained in a relatively simple process sequence. For two electrode configurations a direction selectivity better than 100 was obtained for acceleration in the vertical direction and a selectivity...

  15. Development of a Piezoelectric Rotary Hammer Drill

    Science.gov (United States)

    Domm, Lukas N.

    2011-01-01

    The Piezoelectric Rotary Hammer Drill is designed to core through rock using a combination of rotation and high frequency hammering powered by a single piezoelectric actuator. It is designed as a low axial preload, low mass, and low power device for sample acquisition on future missions to extraterrestrial bodies. The purpose of this internship is to develop and test a prototype of the Piezoelectric Rotary Hammer Drill in order to verify the use of a horn with helical or angled cuts as a hammering and torque inducing mechanism. Through an iterative design process using models in ANSYS Finite Element software and a Mason's Equivalent Circuit model in MATLAB, a horn design was chosen for fabrication based on the predicted horn tip motion, electromechanical coupling, and neutral plane location. The design was then machined and a test bed assembled. The completed prototype has proven that a single piezoelectric actuator can be used to produce both rotation and hammering in a drill string through the use of a torque inducing horn. Final data results include bit rotation produced versus input power, and best drilling rate achieved with the prototype.

  16. Piezoelectric pump and pressurised circuit provided therewith

    NARCIS (Netherlands)

    Van Es, Johannes; Wits, Wessel Willems

    2015-01-01

    A piezoelectric pump for use in a pressurised circuit is provided, comprising a pump chamber (5) with an inlet (6) provided with a one way inlet valve (7), for connection to a feeding line (8) of the pressurised circuit and an outlet (9) provided with a one way outlet valve (10), for connection to a

  17. Wind energy harvesting with a piezoelectric harvester

    International Nuclear Information System (INIS)

    Wu, Nan; Wang, Quan; Xie, Xiangdong

    2013-01-01

    An energy harvester comprising a cantilever attached to piezoelectric patches and a proof mass is developed for wind energy harvesting, from a cross wind-induced vibration of the cantilever, by the electromechanical coupling effect of piezoelectric materials. The vibration of the cantilever under the cross wind is induced by the air pressure owing to a vortex shedding phenomenon that occurs on the leeward side of the cantilever. To describe the energy harvesting process, a theoretical model considering the cross wind-induced vibration on the piezoelectric coupled cantilever energy harvester is developed, to calculate the charge and the voltage from the harvester. The influences of the length and location of the piezoelectric patches as well as the proof mass on the generated electric power are investigated. Results show that the total generated electric power can be as high as 2 W when the resonant frequency of the cantilever harvester is close to the vortex shedding frequency. Moreover, a value of total generated electric power up to 1.02 W can be practically realized for a cross wind with a variable wind velocity of 9–10 m s −1 by a harvester with a length of 1.2 m. This research facilitates an effective and compact wind energy harvesting device. (paper)

  18. Piezoelectric Zinc Oxide Based MEMS Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Aarti Arora

    2008-04-01

    Full Text Available An acoustic sensors exhibiting good sensitivity was fabricated using MEMS technology having piezoelectric zinc oxide as a dielectric between two plates of capacitor. Thin film zinc oxide has structural, piezoelectric and optical properties for surface acoustic wave (SAW and bulk acoustic wave (BAW devices. Oxygen effficient films are transparent and insulating having wide applications for sensors and transducers. A rf sputtered piezoelectric ZnO layer transforms the mechanical deflection of a thin etched silicon diaphragm into a piezoelectric charge. For 25-micron thin diaphragm Si was etched in tetramethylammonium hydroxide solution using bulk micromachining. This was followed by deposition of sandwiched structure composed of bottom aluminum electrode, sputtered 3 micron ZnO film and top aluminum electrode. A glass having 1 mm diameter hole was bonded on backside of device to compensate sound pressure in side the cavity. The measured value of central capacitance and dissipation factor of the fabricated MEMS acoustic sensor was found to be 82.4pF and 0.115 respectively, where as the value of ~176 pF was obtained for the rim capacitance with a dissipation factor of 0.138. The response of the acoustic sensors was reproducible for the devices prepared under similar processing conditions under different batches. The acoustic sensor was found to be working from 30Hz to 8KHz with a sensitivity of 139µV/Pa under varying acoustic pressure.

  19. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  20. Multiplexed FBG and etched fiber sensors for process and health monitoring of 2-&3-D RTM components

    OpenAIRE

    Keulen, Casey J.; Yıldız, Mehmet; Yildiz, Mehmet; Suleman, Afzal

    2011-01-01

    This paper presents research being conducted on the use of a combination of fiber optic sensors for process and health monitoring of resin transfer molded (RTM) composite structures. A laboratory scale RTM apparatus has been designed and built with the capability of visually monitoring the resin filling process and embedding fiber optic sensors into the composite. Fiber Bragg gratings (FBG) and etched fiber sensors (EFS) have been multiplexed and embedded in quasi-2-D panels and 3-D hollow se...

  1. Monitoring eating habits using a piezoelectric sensor-based necklace.

    Science.gov (United States)

    Kalantarian, Haik; Alshurafa, Nabil; Le, Tuan; Sarrafzadeh, Majid

    2015-03-01

    Maintaining appropriate levels of food intake and developing regularity in eating habits is crucial to weight loss and the preservation of a healthy lifestyle. Moreover, awareness of eating habits is an important step towards portion control and weight loss. In this paper, we introduce a novel food-intake monitoring system based around a wearable wireless-enabled necklace. The proposed necklace includes an embedded piezoelectric sensor, small Arduino-compatible microcontroller, Bluetooth LE transceiver, and Lithium-Polymer battery. Motion in the throat is captured and transmitted to a mobile application for processing and user guidance. Results from data collected from 30 subjects indicate that it is possible to detect solid and liquid foods, with an F-measure of 0.837 and 0.864, respectively, using a naive Bayes classifier. Furthermore, identification of extraneous motions such as head turns and walking are shown to significantly reduce the false positive rate of swallow detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Integration of bulk piezoelectric materials into microsystems

    Science.gov (United States)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with integration of a 50-80% efficient power management IC, which incorporates a supply-independent bias circuitry, an active diode for low-dropout rectification, a bias-flip system for higher efficiency, and a trickle battery charger. The overall system does not require a pre-charged battery, and has power consumption of <1microW in active-mode (measured) and <5pA in sleep-mode (simulated). Under lg vibration at 155Hz, a 70mF ultra-capacitor is charged from OV to 1.85V in 50 minutes.

  3. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  4. Enhanced Piezoelectricity in a Robust and Harmonious Multilayer Assembly of Electrospun Nanofiber Mats and Microbead-Based Electrodes.

    Science.gov (United States)

    Kim, Young Won; Lee, Han Bit; Yeon, Si Mo; Park, Jeanho; Lee, Hye Jin; Yoon, Jonghun; Park, Suk Hee

    2018-02-14

    Here, we present a simple yet highly efficient method to enhance the output performance of a piezoelectric device containing electrospun nanofiber mats. Multiple nanofiber mats were assembled together to harness larger piezoelectric sources in the as-spun fibers, thereby providing enhanced voltage and current outputs compared to those of a single-mat device. In addition to the multilayer assembly, microbead-based electrodes were integrated with the nanofiber mats to deliver a complexed compression and tension force excitation to the piezoelectric layers. A vacuum-packing process was performed to attain a tight and well-organized assembly of the device components even though the total thickness was several millimeters. The integrated piezoelectric device exhibited a maximum voltage and current of 10.4 V and 2.3 μA, respectively. Furthermore, the robust integrity of the device components could provide high-precision sensitivity to perceive small pressures down to approximately 100 Pa while retaining a linear input-output relationship.

  5. Energy harvesting from arterial blood pressure for powering embedded brain sensors

    Science.gov (United States)

    Nanda, Aditya; Karami, M. Amin

    2016-04-01

    This paper investigates energy harvesting from arterial blood pressure via the piezoelectric effect by using a novel streaked cylinder geometry for the purpose of powering embedded micro-sensors in the brain. Initially, we look at the energy harvested by a piezoelectric cylinder placed inside an artery acted upon by blood pressure. Such an arrangement would be tantamount to constructing a stent out of piezoelectric materials. A stent is a cylinder placed in veins and arteries to prevent obstruction in blood flow. The governing equations of a conductor coated piezoelectric cylinder are obtained using Hamilton's principle. Pressure acting in arteries is radially directed and this is used to simplify the modal analysis and obtain the transfer function relating pressure to the induced voltage across the surface of the harvester. The power harvested by the cylindrical harvester is obtained for different shunt resistances. Radially directed pressure occurs elsewhere and we also look at harvesting energy from oil flow in pipelines. Although the energy harvested by the cylindrical energy harvester is significant at resonance, the natural frequency of the system is found to be very high. To decrease the natural frequency, we propose a novel streaked stent design by cutting it along the length, transforming it to a curved plate and decreasing the natural frequency. The governing equations corresponding to the new geometry are derived using Hamilton's principle and modal analysis is used to obtain the transfer function.

  6. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus

    2017-01-01

    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  7. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  8. Touching force response of the piezoelectric Braille cell.

    Science.gov (United States)

    Smithmaitrie, Pruittikorn; Kanjantoe, Jinda; Tandayya, Pichaya

    2008-11-01

    The objective of this research is to investigate dynamic responses of the piezoelectric Braille cell when it is subjected to both electrical signal and touching force. Physical behavior of the piezoelectric actuator inside the piezoelectric Braille cell is analyzed. The mathematical model of the piezoelectric Braille system is presented. Then, data of visually impaired people using a Braille Note is studied as design information and a reference input for calculation of the piezoelectric Braille response under the touching force. The results show dynamic responses of the piezoelectric Braille cell. The designed piezoelectric bimorph has a settling time of 0.15 second. The relationship between the Braille dot height and applied voltage is linear. The behavior of the piezoelectric Braille dot when it is touched during operation shows that the dot height is decreased as the force increases. The result provides understanding of the piezoelectric Braille cell behavior under both touching force and electrical excitation simultaneously. This is the important issue for the design and development of piezoelectric Braille cells in senses of controlling Braille dot displacement or force-feedback in the future.

  9. Embedded microcontroller interfacing

    CERN Document Server

    Gupta, Gourab Sen

    2010-01-01

    Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teachi

  10. Diaphragm Pump With Resonant Piezoelectric Drive

    Science.gov (United States)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  11. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  12. Embedded Multimaterial Extrusion Bioprinting.

    Science.gov (United States)

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  13. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  14. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    Science.gov (United States)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  15. Investigating the Electromechanical Coupling in Piezoelectric Actuator Drive Motor Under Heavy Load

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.; Zhang, Zhe

    2014-01-01

    The Piezoelectric Actuator Drive (PAD) is an accurate, high-torque rotary piezoelectric motor that employs piezoelectric stack actuators and inverse hypocycloidal motion to generate rotation. Important factors that determine motor performance are the proper concentric alignment between the motor...

  16. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  17. Power harvesting using PZT ceramics embedded in orthopedic implants.

    Science.gov (United States)

    Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua

    2009-09-01

    Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.

  18. Piezoelectricity of a ferroelectric liquid crystal with a glass transition.

    Science.gov (United States)

    Jákli, A; Tóth-Katona, T; Scharf, T; Schadt, M; Saupe, A

    2002-07-01

    Pressure-electric (hydrostatic piezoelectric) measurements are reported on bookshelf textures of a ferroelectric smectic-C (Sm C*) liquid crystal with a glass transition. The continuous variation of a partially fluid state to the solid glass enables one to trace how the piezoelectric effect depends on the consistency of the material. It was observed that in the Sm C* samples with poled glass the piezoelectric constants are comparable to conventional piezoelectric crystals and poled piezoelectric polymers. This implies their application possibilities. The magnitude of the piezoelectric constant in the glassy state depends very much on the poling conditions. The studies indicate that there are two counteracting effects, which cancel each other out in the Sm C* phase near the glass transition. Our analysis indicates that the pressure-induced director tilt change has a dominating effect both in the fluid and the glassy Sm C* states.

  19. Structure-Property Study of Piezoelectricity in Polyimides

    Science.gov (United States)

    Ounaies, Zoubeida; Park, Cheol; Harrison, Joycelyn S.; Smith, Joseph G.; Hinkley, Jeffrey

    1999-01-01

    High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.

  20. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.