Sample records for embedded accreting protostellar

  1. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.


    Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims....... Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  2. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.


    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...... and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used...

  3. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo


    Context. Understanding how protostars accrete their mass is a centralquestion of star formation. One aspect of this is trying to understandwhether the time evolution of accretion rates in deeply embedded objectsis best characterised by a smooth decline from early to late stages orby intermittent...

  4. Heating of protostellar accretion disks (United States)

    de Campos, R. R.; Jatenco-Pereira, V.


    The magneto-rotational instability (MRI) is believed to be the mechanism responsible for a magneto-hydrodynamic turbulence that could lead to the accretion observed in protoplanetary disks. The need of a minimum amount of ionization in protostellar accretion disks is necessary for the MRI to take place. There are in the literature several studies that include the damping of Alfvén waves as an additional heating source besides the viscous heating mechanism in a geometrically thin and optically thick disk. The damping of the waves transfers energy to the disk increasing the temperature and consequently its ionization fraction, making possible the presence of the MRI in a large part of the disk. We analyzed the contribution of non-ideal effects such as Ohmic and ambipolar diffusion for the disk heating and compare these heating rates with those obtained by damping of Alfvén waves. In order to study these non-ideal effects, we have estimated the radiation emission of each effect through the energy conservation equation, and associated each emission with a black body radiation, which enabled us to assign a temperature contribution of each effect. Using the ATHENA code we were able to simulate the disk at different radial distances, and estimate the electric current density needed to calculate the radiation emission associated with each effect. Once we have those data, we were able to compare the results with other heating sources, like viscosity and Alfvén waves damping, and we concluded that the Ohmic and ambipolar diffusions do not heat the disk in any significant way.

  5. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo


    used foranalysing the observations. Methods: Simple freeze-out andsublimation chemistry is added to the simulation, and syntheticC18O line cubes are created for a large number of simulatedprotostars. The spatial extent of C18O is measured for thesimulated protostars and compared directly to a sample...... by infall from the larger scales of the molecular cloud, anddo not include any disk physics. The discrepancy between simulation andobservations is taken as support for the necessity of disks, even indeeply embedded objects, to produce episodic accretion events ofsufficient frequency and amplitude....

  6. Dead Zone Accretion Flows in Protostellar Disks (United States)

    Turner, Neal; Sano, T.


    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  7. The structure of young embedded protostellar discs (United States)

    MacFarlane, Benjamin A.; Stamatellos, Dimitris


    Young protostellar discs provide the initial conditions for planet formation. The properties of these discs may be different from those of late-phase (T Tauri) discs due to continuing infall from the envelope and protostellar variability resulting from irregular gas accretion. We use a set of hydrodynamic simulations to determine the structure of discs forming in collapsing molecular clouds. We examine how radiative feedback from the host protostar affects the disc properties by examining three regimes: without radiative feedback, with continuous radiative feedback and with episodic feedback, similar to FU Ori-type outbursts. We find that the radial surface density and temperature profiles vary significantly as the disc accretes gas from the infalling envelope. These profiles are sensitive to the presence of spiral structure, induced by gravitational instabilities, and the radiative feedback provided by the protostar, especially in the case when the feedback is episodic. We also investigate whether mass estimates from position-velocity (PV) diagrams are accurate for early-phase discs. We find that the protostellar system mass (I.e. the mass of the protostar and its disc) is underestimated by up to 20 per cent, due to the impact of an enhanced radial pressure gradient on the gas. The mass of early-phase discs is a significant fraction of the mass of the protostar, so PV diagrams cannot accurately provide the mass of the protostar alone. The enhanced radial pressure gradient expected in young discs may lead to an increased rate of dust depletion due to gas drag, and therefore to a reduced dust-to-gas ratio.


    Energy Technology Data Exchange (ETDEWEB)

    Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Li Zhiyun; Zhao Bo [University of Virginia, Astronomy Department, Charlottesville (United States)


    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  9. Infall-driven protostellar accretion and the solution to the luminosity problem

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke


    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates...... in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall...... rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10–5 M ☉ yr–1, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed...

  10. Modeling circumstellar disc fragmentation and episodic protostellar accretion with smoothed particle hydrodynamics in cell (United States)

    Stoyanovskaya, O. P.; Snytnikov, N. V.; Snytnikov, V. N.


    We discuss the ability of the smoothed particle hydrodynamics (SPH) method combined with a grid-based solver for the Poisson equation to model mass accretion onto protostars in gravitationally unstable protostellar discs. We scrutinize important features of coupling the SPH with grid-based solvers and numerical issues associated with (1) large number of SPH neighbors and (2) relation between gravitational softening and hydrodynamic smoothing length. We report results of our simulations of razor-thin disc prone to fragmentation and demonstrate that the algorithm being simple and homogeneous captures the target physical processes - disc gravitational fragmentation and accretion of gas onto the protostar caused by inward migration of dense clumps. In particular, we obtain two types of accretion bursts: a short-duration one caused by a quick inward migration of the clump, previously reported in the literature, and the prolonged one caused by the clump lingering at radial distances on the order of 15-25 au. The latter is culminated with a sharp accretion surge caused by the clump ultimately falling on the protostar.

  11. cluster-in-a-box: Statistical model of sub-millimeter emission from embedded protostellar clusters (United States)

    Kristensen, Lars E.; Bergin, Edwin A.


    Cluster-in-a-box provides a statistical model of sub-millimeter emission from embedded protostellar clusters and consists of three modules grouped in two scripts. The first (cluster_distribution) generates the cluster based on the number of stars, input initial mass function, spatial distribution and age distribution. The second (cluster_emission) takes an input file of observations, determines the mass-intensity correlation and generates outflow emission for all low-mass Class 0 and I sources. The output is stored as a FITS image where the flux density is determined by the desired resolution, pixel scale and cluster distance.

  12. Time-Domain Sub-mm Astronomy. Measuring the Accretion Variability of Deeply Embedded Protostars. (United States)

    Johnstone, Douglas


    During the protostellar phase of stellar evolution, accretion is expected to be variable, but this variability has been difficult to detect because protostars are deeply embedded. We have undertaken a 3-year dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions (Herczeg et al. 2017) to search for sub-mm brightness variations as a proxy of episodic accretion. Here, we describe a sub-mm luminosity burst of the Class I protostar EC 53 in Serpens Main (Yoo et al. 2017). The change in sub-mm brightness of EC 53 is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar. The sub-mm lightcurve resembles the historical K-band lightcurve, which varies by a factor of ˜6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. We further compare archival SCUBA-2 observations against the first year of our survey (Mairs et al. 2017) and perform a statistical analysis of the first eighteen months of the survey (Johnstone et al. 2017). We conclude that greater than 5% of the known deeply embedded protostars are found to vary in the sub-mm.

  13. Protostellar outflows (United States)

    Kristensen, Lars E.


    Protostellar outflows, winds and jets are ubiquitous in young stellar objects (YSOs). Although historically not predicted by any theory of star formation, they show up at all evolutionary stages as long as the star is accreting. These ejection phenomena play a crucial role in the evolution of forming stars: they remove angular momentum from the accreting star and surrounding disk, they play a role in determining the final mass of the star, and they inject turbulence into the parental molecular cloud. No theory of star formation is complete without the inclusion of ejection processes.I will review advances in our understanding of outflows, winds and jets from protostars with a focus on recent observational results at far-infrared and sub-millimeter wavelengths where most of the gas cooling lines are located. These will include lessons learnt from the Herschel Space Observatory and early ALMA results, and a view toward the future of observations of outflows.


    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tan, Jonathan C., E-mail: [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)


    Even today in our Galaxy, stars form from gas cores in a variety of environments, which may affect the properties of the resulting star and planetary systems. Here, we study the role of pressure, parameterized via ambient clump mass surface density, on protostellar evolution and appearance, focusing on low-mass Sun-like stars and considering a range of conditions from relatively low pressure filaments in Taurus, to intermediate pressures of cluster-forming clumps like the Orion Nebula Cluster, to very high pressures that may be found in the densest infrared dark clouds or in the Galactic center. We present unified analytic and numerical models for the collapse of prestellar cores, accretion disks, protostellar evolution, and bipolar outflows, coupled with radiative transfer calculations and a simple astrochemical model to predict CO gas-phase abundances. Prestellar cores in high-pressure environments are smaller and denser and thus collapse with higher accretion rates and efficiencies, resulting in higher luminosity protostars with more powerful outflows. The protostellar envelope is heated to warmer temperatures, affecting infrared morphologies (and thus classification) and astrochemical processes like CO depletion onto dust grain ice mantles (and thus CO morphologies). These results have general implications for star and planet formation, especially via their effect on astrochemical and dust grain evolution during infall to and through protostellar accretion disks.

  15. Protostellar Jets in Context

    CERN Document Server

    Tsinganos, Kanaris; Stute, Matthias


    This volume contains the proceedings of the Conference Protostellar Jets in Context held by the JETSET Marie Curie Research Training Network in July 2008. This meeting not only served to showcase some of the network's achievements but was also a platform to hear from, discuss and debate the recent findings of world-class astrophysicists in the field of protostellar jet research. Jets from young stars are of course not an isolated astrophysical phenomenon. It is known that objects as diverse as young brown dwarfs, planetary nebulae, symbiotic stars, micro-quasars, AGN, and gamma-ray bursters produce jets. Thus in a series of talks, protostellar jets were put in context by comparing them with their often much larger brethren and also by considering the ubiquitous accretion disks that seem to be necessary for their formation. With this spectrum of contributions on observations and the theory of astrophysical jets and accretion disks, this book serves as a comprehensive reference work for researchers and students...

  16. Disc truncation in embedded star clusters: Dynamical encounters versus face-on accretion (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.


    Observations indicate that the dispersal of protoplanetary discs in star clusters occurs on time scales of about 5 Myr. Several processes are thought to be responsible for this disc dispersal. Here we compare two of these processes: dynamical encounters and interaction with the interstellar medium, which includes face-on accretion and ram pressure stripping. We perform simulations of embedded star clusters with parameterisations for both processes to determine the environment in which either of these processes is dominant. We find that face-on accretion, including ram pressure stripping, is the dominant disc truncation process if the fraction of the total cluster mass in stars is ≲30% regardless of the cluster mass and radius. Dynamical encounters require stellar densities ≳104 pc-3 combined with a mass fraction in stars of ≈90% to become the dominant process. Our results show that during the embedded phase of the cluster, the truncation of the discs is dominated by face-on accretion and dynamical encounters become dominant when the intra-cluster gas has been expelled. As a result of face-on accretion, the protoplanetary discs become compact and their surface density increases. In contrast, dynamical encounters lead to discs that are less massive and remain larger.

  17. Accretion (United States)

    Murdin, P.


    The process by which a celestial body increases its mass by aggregating smaller objects which collide with it. Several types of object grow by accretion. In binary stars in which mass transfer is taking place, one member grows at the expense of the other; black holes, including supermassive black holes believed to be present in active galactic nuclei, also increase their mass by accretion. In bot...

  18. Episodic accretion: the interplay of infall and disc instabilities (United States)

    Küffmeier, Michael; Frimann, Søren; Jensen, Sigurd S.; Haugbølle, Troels


    Using zoom-simulations carried out with the adaptive mesh-refinement code RAMSES with a dynamic range of up to 227 ≈ 1.34 × 108 we investigate the accretion profiles around six stars embedded in different environments inside a (40 pc)3 giant molecular cloud, the role of mass infall and disc instabilities on the accretion profile, and thus on the luminosity of the forming protostar. Our results show that the environment in which the protostar is embedded determines the overall accretion profile of the protostar. Infall onto the circumstellar disc may trigger gravitational disc instabilities in the disc at distances of around ˜10 to ˜50 AU leading to rapid transport of angular momentum and strong accretion bursts. These bursts typically last for about ˜10 to a ˜100 years, consistent with typical orbital times at the location of the instability, and enhance the luminosity of the protostar. Calculations with the stellar evolution code MESA show that the accretion bursts induce significant changes in the protostellar properties, such as the stellar temperature and radius. We apply the obtained protostellar properties to produce synthetic observables with RADMC3D and predict that accretion bursts lead to observable enhancements around 20 to 200 μm in the spectral energy distribution of Class 0 type young stellar objects.

  19. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars? (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael


    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  20. A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor (United States)

    Gaches, Brandt A. L.; Offner, Stella S. R.


    We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.


    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)


    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  2. Tracing Protostellar Envelope Evolution with HOPS, the Herschel Orion Protostar Survey (United States)

    Fischer, Will; Megeath, Tom; Furlan, Elise; Ali, Babar; Stutz, Amy; Booker, Joseph; Tobin, John; Stanke, Thomas; Osorio, Mayra


    HOPS, the Herschel Orion Protostar Survey, is an unprecedented program of large surveys with the Herschel, Spitzer, Hubble, and APEX observatories, as well as near-IR observations from the IRTF and other telescopes. Together these are providing a comprehensive observational assessment of protostellar evolution, from the earliest phases (see poster by A. Stutz) through the dissipation of the protostellar envelope. The BLT (bolometric luminosity and temperature) diagram for the ˜300 HOPS protostars resembles those constructed for other nearby star-forming regions. We fit the 1-870 um SEDs of the protostars with our grid of radiative transfer models to determine their luminosities, envelope densities, cavity angles, and inclinations (see poster by E. Furlan). High-resolution HST images of the scattered light nebulae provide additional constraints on envelope density, disk geometry, cavity geometry, and inclination angle (see poster by J. Booker). Finally, near-IR atomic hydrogen lines provide independent estimates of reddening and accretion luminosity in the less embedded sources. This multi-pronged modeling approach provides a more reliable assessment of envelope evolution than raw observational diagnostics like the bolometric temperature. We will compare the distributions of envelope densities and protostellar luminosities to the predictions of star-formation models.

  3. The extraordinary outburst in the massive protostellar system NGC6334I-MM1: dimming of the hypercompact HII region and destruction of water masers (United States)

    Brogan, Crystal; Hunter, Todd Russell


    I will present results from multi-epoch JVLA 1.3 and 0.7 cm observations of the massive protostellar outburst in NGC6334I-MM1. The continuum data reveal that as of 2016, the free-free emission from the central protostar dropped by a factor of 5 since 2011, likely in response to the outburst observed in the millimeter continuum that began in 2015. Additionally, the water maser emission toward MM1 has dramatically reduced. In contrast, the water masers in other locations in the protocluster have flared, with the strongest spots associated with CM2, a non-thermal radio source that appears to mark a shock aligned with a jet emanating northward from MM1. The pre-outburst luminosity and HCHII region are consistent with a deeply-embedded central object having a spectral type of B3 (ZAMS). The observed quenching of the HCHII region suggests a reduction in uv photon production due either to an elevated disk-mediated accretion rate that is ongoing, or the rapid accretion of a substantial mass (0.1 Msun) which has caused the protostellar photosphere to expand and radiate at a much larger luminosity, but with a lower effective temperature. These data demonstrate the need for higher sensitivity and higher angular resolution ~1 cm centimeter observations, as enabled by the ngVLA, to trace the evolution of massive protostellar accretion.


    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi, E-mail:, E-mail: [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)


    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity of accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.

  5. Accretion outbursts in self-gravitating protoplanetary disks

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Nelson, Richard P., E-mail:, E-mail:, E-mail:, E-mail: [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)


    We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of the gravitationally unstable region before they trigger outbursts at R ≲ 1 AU where GI cannot be sustained. This long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our standard model where zero dead-zone residual viscosity (α{sub rd}) is assumed, the GI-induced stress measured at the onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our previous one-dimensional calculations, we confirm that the presence of a small but finite α{sub rd} triggers thermally driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when α{sub rd} = 0. The inclusion of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a 'quiescent' accretion phase with M-dot {sub acc}∼10{sup −8}--10{sup −7} M{sub ⊙} yr{sup −1} over 60% of the time and spend less than 15% of the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on the

  6. Evolution of Deeply Embedded Protostars

    DEFF Research Database (Denmark)

    Frimann, Søren

    Recent advances in both observations and numerical simulations of star-forming regions have opened up the possibility of coupling these two fields together. This thesis presents detailed radiative transfer models created from large-scale simulations of star-forming molecular clouds. The radiative...... of this comparison is both to benchmark the simulations by testing if observational results can be reproduced, and to use the simulations to aid in the interpretation of the observations. The research deals with the earliest stages of star formation – the protostellar phase – where the protostars are still embedded...... tolink evidence of accretion bursts together with evidence of circumstellardisks. The study targets 20 embedded protostars in the Perseusmolecular cloud, and reveals plenty of evidence for variable accretionthrough observations of C18O (an optically thin isotopologue of CO).The study also reveals...


    Energy Technology Data Exchange (ETDEWEB)

    Poteet, Charles A.; Megeath, S. Thomas; Bjorkman, Jon E. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Pontoppidan, Klaus M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Watson, Dan M.; Sheehan, Patrick D. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Isokoski, Karoliina; Linnartz, Harold, E-mail: [Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)


    We report the detection of a unique CO{sub 2} ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph on board the Spitzer Space Telescope, reveals a 15.2 {mu}m CO{sub 2} ice bending mode profile that cannot be modeled with the same ice structure typically found toward other protostars. We develop a modified CO{sub 2} ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO{sub 2} ice. Using this model, we find that 87%-92% of the CO{sub 2} is sequestered as spherical, CO{sub 2}-rich mantles, while typical interstellar ices show evidence of irregularly shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line of sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO{sub 2} ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO{sub 2} ice profile, the formation of nearly pure CO{sub 2} ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.

  8. On the diversity and statistical properties of protostellar discs (United States)

    Bate, Matthew R.


    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yrs. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order ten to a few hundred au, grow in size on timescales ≲ 104 yr, and are smaller around lower-mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ∝r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1 - 1 to ages ≲ 104 yrs and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  9. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong


    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  10. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)


    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  11. Impact of Protostellar Outflows on Turbulence and Star Formation Efficiency in Magnetized Dense Cores (United States)

    Offner, Stella S. R.; Chaban, Jonah


    The star-forming efficiency of dense gas is thought to be set within cores by outflow and radiative feedback. We use magnetohydrodynamic simulations to investigate the relation between protostellar outflow evolution, turbulence, and star formation efficiency. We model the collapse and evolution of isolated dense cores for ≳0.5 Myr including the effects of turbulence, radiation transfer, and both radiation and outflow feedback from forming protostars. We show that outflows drive and maintain turbulence in the core environment even with strong initial fields. The star formation efficiency decreases with increasing field strength, and the final efficiencies are 15%-40%. The Stage 0 lifetime, during which the protostellar mass is lower than that of the dense envelope, increases proportionally with the initial magnetic field strength and ranges from ˜ 0.1 {to} 0.4 {Myr}. The average accretion rate is well represented by a tapered turbulent core model, which is a function of the final protostellar mass and is independent of the magnetic field strength. By tagging material launched in the outflow, we demonstrate that the outflow entrains about three times the actual launched gas mass, a ratio that remains roughly constant in time regardless of the initial magnetic field strength. However, turbulent driving increases for stronger fields since momentum is more efficiently imparted to non-outflow material. The protostellar outflow momentum is highest during the first 0.1 Myr and declines thereafter by a factor of ≳ 10 as the accretion rate diminishes.

  12. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)


    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  13. Solid methane toward deeply embedded protostars

    NARCIS (Netherlands)

    Boogert, ACA; Schutte, WA; Tielens, AGGM; Whittet, DCB; Helmich, FP; Ehrenfreund, P; Wesselius, PR; deGraauw, T; Prusti, T


    We report on the detection of an absorption feature near 7.67 mu m toward the deeply embedded protostellar objects W 33A and NGC 7538 : IRS9. Comparison with laboratory spectra shows that this feature can be identified as the v(4) ('deformation') mode of solid state CH4 embedded in polar molecules

  14. A rotating protostellar jet launched from the innermost disk of HH 212 (United States)

    Lee, Chin-Fei; Ho, Paul. T. P.; Li, Zhi-Yun; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien


    The central problem in forming a star is the angular momentum in the circumstellar disk, which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-velocity and poorly collimated) molecular outflows and (high-velocity and highly collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii1. Previous observations have suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ˜10 au scales2,3,4,5,6, allowing the material in the outer disk to be transported to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ˜0.05 au scale, enabling the material in the innermost region of the disk to accrete towards the central protostar. This is supported by the rotation of the jet measured down to ˜10 au from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ˜0.05-0.02+0.05 au on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances with those at its base through energy and angular momentum conservation7.

  15. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings (United States)

    Plunkett, Adele


    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  16. Synthetic Observations of Magnetic Fields in Protostellar Cores (United States)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R.


    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degrees of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ˜0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.

  17. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold


    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  18. Protostellar Outflow Evolution in Turbulent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, A; Frank, A; Carroll, J; Blackman, E; Quillen, A


    The link between turbulence in star formatting environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers-type turbulence and produces a driving scale-length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star forming environments. In the last section we contrast our work and its conclusions with previous studies which claim that jets can not be the source of turbulence.

  19. Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben


    Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported discs (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal magnetohydrodynamic simulations, that removing very small grains (VSGs: ∼10 Å to few 100 Å) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here, we extend the simulations of disc formation enabled by VSG removal to 3D. We find that the key to this scenario of disc formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the 102-103 au scale 'pseudo-disc' where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disc-forming region, which lowers the magnetic braking efficiency. We find that the initial discs enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete on to the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive for a long term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar discs and potentially multiple systems.

  20. revealing H{sub 2}D{sup +} depletion and compact structure in starless and protostellar cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, R. K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto, ON M5S 3H4 (Canada); Di Francesco, J. [National Research Council Canada, Radio Astronomy Program, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bourke, T. L. [Radio and Geoastronomy Division, Harvard Smithsonian Center for Astrophysics, MS-42, Cambridge, MA 02138 (United States); Caselli, P. [Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany); Jørgensen, J. K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø. (Denmark); Pineda, J. E. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland); Wong, M., E-mail: [University of British Columbia, Vancouver, BC V6T 1Z4 (Canada)


    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H{sub 2}D{sup +} 1{sub 10}-1{sub 11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M ≲ 0.02 M {sub ☉} (∼20 M {sub Jup}). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H{sub 2}D{sup +} is only detected toward SM1N, offset from the continuum peak by ∼150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H{sub 2}D{sup +}) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ∼ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.

  1. X-rays from protostellar jets: emission from continuous flows (United States)

    Bonito, R.; Orlando, S.; Peres, G.; Favata, F.; Rosner, R.


    Context: Recently X-ray emission from protostellar jets has been detected with both XMM-Newton and Chandra satellites, but the physical mechanism which can give rise to this emission is still unclear. Aims: We performed an extensive exploration of the parameter space for the main parameters influencing the jet/ambient medium interaction. Aims include: 1) to constrain the jet/ambient medium interaction regimes leading to the X-ray emission observed in Herbig-Haro objects in terms of the emission by a shock forming at the interaction front between a continuous supersonic jet and the surrounding medium; 2) to derive detailed predictions to be compared with optical and X-ray observations of protostellar jets; 3) to get insight into the protostellar jet's physical conditions. Methods: We performed a set of two-dimensional hydrodynamic numerical simulations, in cylindrical coordinates, modeling supersonic jets ramming into a uniform ambient medium. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. Results: Our model explains the observed X-ray emission from protostellar jets in a natural way. In particular, we find that a protostellar jet that is less dense than the ambient medium well reproduces the observations of the nearest Herbig-Haro object, HH 154, and allows us to make detailed predictions of a possible X-ray source proper motion (v_sh ≈500 km s-1) detectable with Chandra. Furthermore, our results suggest that the simulated protostellar jets which best reproduce the X-rays observations cannot drive molecular outflows.

  2. Accreting White Dwarfs as Universal Accretion Laboratories (United States)

    Knigge, Christian

    Accreting white dwarfs (AWDs) are numerous, bright and nearby, making them excellent laboratories for the study of accretion physics. Since their accretion flows are unaffected by relativistic effects or ultra-strong magnetic fields, they provide a crucial "control" group for efforts to understand more complex/compact systems, such as accreting neutron stars (NSs) and black holes (BHs). Here, I will review recent work on AWDs, which has revealed that these superficially simple systems actually exhibit the full range of accretion-related phenomenology seen in accreting NSs and BHs. For example, (i) AWDs undergo mass loss in the form of both disk winds and radio jets; (ii) their disk winds are only seen in high-Mdot states, similar to what is observed in accreting BHs; (iii) they exhibit (possibly hysteretic) outbursts produced by disk instabilities, as also seen in NS and BH transients; and (iv) they produce accretion-induced stochastic variability ("flickering") that exhibits the same rms-flux relation as observed in low-mass X-ray binaries and AGN. Based on this rich and shared phenomenology, it is reasonable to hope that much of accretion physics is universal. In this context, AWDs hold great promise as observational testing grounds for attempts to model and understand these physics.

  3. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward......Stars and their corresponding protoplanetary disks form in different environments of Giant Molecular Clouds. By carrying state-of-the art zoom-simulations with the magnetohydrodynamical code ramses, I investigated the accretion process around young stars that are embedded in such different...... for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...

  4. Accretion Processes in Astrophysics (United States)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge


    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  5. The Early History of Stellar Spin: the Theory of Accretion onto Young Stellar Objects

    Directory of Open Access Journals (Sweden)

    Pudritz Ralph E.


    Full Text Available The interaction of the magnetospheres of forming stars with their surrounding protostellar disks results in magnetospheric accretion flow onto the star. How is the associated angular momentum of accreting material channelled? The resolution of this issue is crucial for understanding the origin of the spins of pre main sequence stars. A significant fraction of these rotate very slowly, which indicates that an efficient angular momentum transport mechanism is at work to counteract the strong accretion spin up torques. We review the observational, theoretical, and computational advances in the field and argue that an accretion powered stellar winds together with highly time variable mass ejections from the disk/magnetosphere interface is a likely solution.

  6. Revealing H2D+ depletion and compact structure in starless and protostellar cores with ALMA

    DEFF Research Database (Denmark)

    Friesen, R. K.; Di Francesco, J.; Bourke, T. L.


    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 110-111 emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within......, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star...... formation process, coeval with or just after the formation of a first hydrostatic core or protostar....


    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)


    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  8. Misalignment of magnetic fields and outflows in protostellar cores

    NARCIS (Netherlands)

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erica; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.; Looney, Leslie W.; Matthews, Brenda C.; Mundy, Lee; Pillai, Thushara; Pound, Marc W.; Stephens, Ian W.; Tobin, John J.; Vaillancourt, John E.; Volgenau, N. H.; Wright, Melvyn C. H.


    We present results of lambda 1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with similar to 2 ''.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of similar to 1000 AU are not tightly aligned with outflows from the

  9. Signatures of Chemical Evolution in Protostellar Nebulae (United States)

    Nuth, Joseph A., III; Johnson, Natasha


    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  10. A Survey Of High Mass Protostellar Objects for Evidence of Infall (United States)

    Fuller, G. A.; Williams, S. J.; Sridharan, T. K.


    An important aspect of understanding star formation is identifying and studying the accretion flows which are adding mass to the protostars. Although spectroscopic evidence of gravitational infall has been detected in the envelopes of a number of low mass protostars, little is known about infall towards forming high mass stars. Here we report on the first results of a survey to search for evidence of infall towards a sample of high mass protostellar objects (HMPOs). The sources being observed are IRAS point sources which are infrared bright with the same infrared colours and fluxes as UCHII regions. The sources are associated with hot, dense gas but have not yet produced their own UCHII regions. This list of 69 candidate isolated sources have luminosities ranging from 103 to 105Lsun and have been shown by Sridharan et al. (2002) to be good candidate high mass protostellar objects, analogues of the low mass Class 0 sources, the youngest class of low mass protostars. In an infalling envelope, the different extinction suffered by the red and blue shifted emission of an optically thick line leads to an asymmetric line profile, with stronger blue than red shifted emission (e.g. Zhou 1992). This is the so called infall asymmetry which has been detected towards a number of low mass protostars and also starless cores (Mardones et al. 1997;Lee et al. 1999; Williams et al 1999). We are using the IRAM 30m telescope and JCMT to search for this blue line asymmetry as evidence of gravitational infall of the massive circumstellar envelopes around these HMPOs. We are observing the J=4-3 transition of HCO+ and the J=3-2 transition of H13CO+ with JCMT and the HCO+ J=1-0, N2H+ J=1-0 and H2CO 21,2}-1{1,1 transitions with the IRAM 30m. Presenting our initial results for the incidence of blue asymmetry in the line profiles, we will discuss whether the observed asymmetries are tracing infall and the range of mass accretion rates consistent with the observations.


    Energy Technology Data Exchange (ETDEWEB)

    Cécere, Mariana [Instituto de Astronomía Teórica y Experimental, Universidad Nacional de Córdoba, X5000BGR, Córdoba (Argentina); Velázquez, Pablo F.; De Colle, Fabio; Esquivel, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, CP: 04510, D.F., México (Mexico); Araudo, Anabella T. [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, 58090, Morelia, Michoacán, México (Mexico)


    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ∼1000 km s{sup −1} and ∼10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  12. Bondi-Hoyle accretion in a turbulent, magnetized medium (United States)

    Burleigh, Kaylan J.; McKee, Christopher F.; Cunningham, Andrew J.; Lee, Aaron T.; Klein, Richard I.


    We present simulations of accretion on to point masses embedded in an isothermal gas that is magnetized and supersonically turbulent, as occurs for protostars in molecular clouds. We use the orion2 adaptive mesh refinement (AMR) code to carry out ideal magnetohydrodynamic simulations for an rms Mach number M_{rms}=5 and a wide range of Alfvén Mach numbers. We find that the probability density functions for accretion rates in all models are very wide (±0.5 dex) and asymmetric, tilted to low accretion rates; the mean accretion rate is about twice the median. We find that the results of Lee et al. for magnetized Bondi-Hoyle accretion with the relative velocity parallel to the field describe our results to within a factor of 2, and we suggest that this should be valid at least for M_{rms}≲ 10. Our results show that turbulent magnetic fields of the strength observed in molecular clouds reduce the accretion rate relative to the classical Bondi-Hoyle rate by a factor of a few for Alfvén Mach numbers of order unity, but this is comparable to the reduction due to supersonic hydrodynamic turbulence alone. This reduction in accretion rates should be taken into account in analytic models of competitive accretion and analytic estimates of the accretion luminosities of young stellar objects in molecular clouds.

  13. From nearby low-mass protostars to high redshift starbursts: protostellar outflows tracing the IMF (United States)

    Kristensen, Lars E.; Bergin, Edwin


    Embedded low-mass protostars are notoriously difficult to observe even in the nearest Galactic high-mass clusters where they outnumber the high-mass protostars by orders of magnitude. Thus, without a good tracer of the low-mass population, we do not have a good handle on the shape of the initial (core) mass function, leaving little hope for extrapolating to extragalactic regions where we will never have neither the sensitivity nor the resolution to directly observe this population. A good tracer of the low-mass population is needed.One such physical tracer is outflows. Outflow emission is directly proportional to envelope mass, and outflows are predominantly active during the deeply embedded phases of star formation. What is required for this method to work is species and transitions tracing outflows uniquely such that any signal is not diluted by the surrounding cloud, such as certain methanol transitions, water, high-J CO (J > 10).I will present a statistical model of a forming high-mass cluster. The model includes what we currently know about Galactic high-mass clusters and incorporates outflow emission from low-mass protostars. The latter component is obtained from observations of tens of nearby embedded low-mass protostellar outflows in the above-mentioned tracers. The model is benchmarked against ALMA and Herschel-HIFI observations of Galactic clusters proving the concept, and preliminary extrapolations to the extragalactic regime are presented. With this new probe, and traditional probes of the distant star formation which predominantly trace high mass stars, we will be able to explore the IMF in starburst galaxies from low to high redshift.

  14. Complex organics in IRAS 4A revisited with ALMA and PdBI: Striking contrast between two neighbouring protostellar cores (United States)

    López-Sepulcre, A.; Sakai, N.; Neri, R.; Imai, M.; Oya, Y.; Ceccarelli, C.; Higuchi, A. E.; Aikawa, Y.; Bottinelli, S.; Caux, E.; Hirota, T.; Kahane, C.; Lefloch, B.; Vastel, C.; Watanabe, Y.; Yamamoto, S.


    that the size of a hypothetical hot corino in A1 should be less than 12 au. Conclusions: Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness. The extremely low abundances of organic molecules in A1 with respect to those in A2 demonstrate that the dense inner regions of a young protostellar core lacking hot corino activity may be poorer in COMs than the outer protostellar envelope. The reduced datacube is only available at the CDS via anonymous ftp to ( or via

  15. Herschel-HIFI view of mid-IR quiet massive protostellar objects (United States)

    Herpin, F.; Chavarría, L.; Jacq, T.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.; Baudry, A.; Bontemps, S.; Kristensen, L.; Schmalzl, M.; Mata, J.


    Aims: We present Herschel/HIFI observations of 14 water lines in a small sample of Galactic massive protostellar objects: NGC 6334I(N), DR21(OH), IRAS 16272-4837, and IRAS 05358+3543. Using water as a tracer of the structure and kinematics, we individually study each of these objects with the aim to estimate the amount of water around them, but to also to shed light on the high-mass star formation process. Methods: We analyzed the gas dynamics from the line profiles using Herschel-HIFI observations acquired as part of the WISH key-project of 14 far-IR water lines (H_216O, H_217O, H_218O) and several other species. Then through modeling the observations using the RATRAN radiative transfer code, we estimated outflow, infall, turbulent velocities, and molecular abundances and investigated the correlation with the evolutionary status of each source. Results: The four sources (and the previously studied W43-MM1) have been ordered in terms of evolution based on their spectral energy distribution from youngest to older: 1) NGC 64334I(N); 2) W43-MM1; 3) DR21(OH); 4) IRAS 16272-4837; 5) IRAS 05358+3543. The molecular line profiles exhibit a broad component coming from the shocks along the cavity walls that is associated with the protostars, and an infalling (or expanding, for IRAS 05358+3543) and passively heated envelope component, with highly supersonic turbulence that probably increases with the distance from the center. Accretion rates between 6.3 × 10-5 and 5.6 × 10-4M⊙ yr-1 are derived from the infall observed in three of our sources. The outer water abundance is estimated to be at the typical value of a few 10-8, while the inner abundance varies from 1.7 × 10-6 to 1.4 × 10-4 with respect to H2 depending on the source. Conclusions: We confirm that regions of massive star formation are highly turbulent and that the turbulence probably increases in the envelope with the distance to the star. The inner abundances are lower than the expected, 10-4, perhaps because

  16. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.


    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  17. Three-dimensional dynamics of protostellar evolution. [Nonlinear problems, kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.L.


    A three-dimensional finite difference numerical methodology was developed for self-gravitating, rotating gaseous systems. The fully nonlinear equations for time-varying fluid dynamics are solved by high speed computer in a cylindrical coordinate system rotating with an instantaneous angular velocity, selected such that the net angular momentum relative to the rotating frame is zero. The time-dependent adiabatic collapse of gravitationally bound, rotating, protostellar clouds is studied for specified uniform and nonuniform initial conditions. Uniform clouds can form axisymmetric, rotating toroidal configurations. If the thermal pressure is high, nonuniform clouds can also collapse to axisymmetric toroids. For low thermal pressures, however, the collapsing cloud is unstable to initial perturbations. The fragmentation of protostellar clouds is investigated by studying the response of rotating, self-gravitating, equilibrium toroids to non-axisymmetric perturbations. The detailed evolution of the fragmenting toroid depends upon a non-dimensional function of the initial entropy, the total mass in the toroid, the angular velocity of rotation, and the number of perturbation wavelengths around the circumference of the toroid. For low and intermediate entropies, the configuration develops into co-rotating components with spiral streamers. In the spiral regions retrograde vortices are observed in some examples. For high levels of entropy, barred spirals can exist as intermediate states of the fragmentation.

  18. Spectroscopic diagnostics of organic chemistry in the protostellar environment (United States)

    Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.


    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  19. HST Images of Protostellar Disks and Envelopes in Orion (United States)

    Booker, Joseph; Fischer, Will; Megeath, Tom; Tobin, John; Kounkel, Marina; Poteet, Charles; Ali, Babar; Furlan, Elise; Stanke, Thomas; Stutz, Amelia


    We present near-infrared HST NICMOS+WFC3 images of disk shadows, envelopes, and envelope cavities of 244 Orion protostars at better than 100 AU spatial resolution. Orion is home to half the young stellar objects in the nearest 500 pc and is a largely unexplored ground for scattered-light studies of protostellar envelopes and disks. This region is the focus of HOPS, the Herschel Orion Protostar Survey, a multi-observatory study of protostars using Herschel, Spitzer, Hubble, and APEX. Scattered light images allow us to break degeneracies in fitting the 1-870 micron spectral energy distributions (see posters by E. Furlan and W. Fischer), in particular by constraining the inclination of the source and the opening angle of the envelope cavity. We present a grid of ~2900 models of the scattered light images to show how the nebulosity depends on cavity shape and inclination. For edge-on protostars, the comparison of the HST images to models allows us to determine the properties of protostellar disks by their shape in absorption against the scattered light and by the shadows they cast in the envelope. We present an initial example of HOPS 136 (Fischer et al. in prep.), where we have used the NICMOS data to provide strong constraints on the disk radius, mass, and structure, and we present a sample of 15 edge-on sources that are the subject of a similar analysis.


    Energy Technology Data Exchange (ETDEWEB)

    Graninger, Dawn M.; Wilkins, Olivia H.; Öberg, Karin I., E-mail: [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)


    Large interstellar organic molecules are potential precursors of prebiotic molecules. Their formation pathways and chemical relationships with one another and simpler molecules are therefore of great interest. In this paper we address the relationships between two classes of large organic molecules, carbon chains and saturated complex organic molecules at the early stages of star formation through observations of C{sub 4}H and CH{sub 3}OH. We surveyed these molecules with the IRAM 30 m telescope toward 16 deeply embedded low-mass protostars selected from the Spitzer c2d ice survey. We find that CH{sub 3}OH and C{sub 4}H are positively correlated, indicating that these two classes of molecules can coexist during the embedded protostellar stage. The C{sub 4}H/CH{sub 3}OH gas abundance ratio tentatively correlates with the CH{sub 4}/CH{sub 3}OH ice abundance ratio in the same lines of sight. This relationship supports a scenario where carbon chain formation in protostellar envelopes begins with CH{sub 4} ice desorption.

  1. Primordial protostars accreting beyond the ΩΓ-limit: radiation effect around the star-disc boundary (United States)

    Takahashi, Sanemichi Z.; Omukai, Kazuyuki


    We consider whether the maximum mass of first stars is imposed by the protostellar spin (i.e. by the so-called ΩΓ-limit), which requires the sum of the radiation and centrifugal forces at the stellar surface to be smaller than the inward pull of the gravity. Once the accreting protostar reaches such a marginal state, the star cannot spin up more and is not allowed to accrete more gas with inward angular momentum flux. So far, however, the effect of stellar radiation on the structure of the accretion disc has not been properly taken into account in discussing the effect of the ΩΓ-limit on the formation of the first stars. Here, we obtain a series of steady accretion-disc solutions considering such an effect, and we find solutions without net angular momentum influx to the stars with arbitrary rotation rates, in addition to those with finite angular momentum flows. The accretion of positive angular momentum flows pushes the star beyond the ΩΓ-limit, which is allowed only with the external pressure provided by the circumstellar disc. However, the accretion with no net angular momentum influx does not result in the spin-up of the star. Thus, the existence of the solution with no net angular momentum influx indicates that protostars can keep growing in mass by accretion, even after they reach the ΩΓ-limit.

  2. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel


    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  3. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    Many financial instruments are designed with embedded leverage such as options and leveraged exchange traded funds (ETFs). Embedded leverage alleviates investors’ leverage constraints and, therefore, we hypothesize that embedded leverage lowers required returns. Consistent with this hypothesis, we......, with t-statistics of 8.6 for equity options, 6.3 for index options, and 2.5 for ETFs. We provide extensive robustness tests and discuss the broader implications of embedded leverage for financial economics....

  4. Accretion disks and magnetic fields in astrophysics; Proceedings of the European Physical Society Study Conference, Noto, Italy, June 16-21, 1988 (United States)

    Belvedere, G.

    Various papers on accretion disks (ADs) and magnetic fields in astrophysics are presented. Individual topics addressed include: relevance of magnetic fields to stars and ADs, nonlinear breakup of the sun's toroidal field, accretion and particle acceleration by spiral shock wages, MHD flows in ADs and jets, slender flux tubes in ADs, magnetic fields in the ADs of cataclysmic variables (CVs), accretion disks and magnetic CVs, radio emission of dwarf novae, jets and magnetic fields, early stages of star formation, ADs and jets in protostellar systems, Monte Carlo simulation of H2 formation by cosmic rays, magnetic field generation during galaxy formation, numerical simulation of weakly magnetized propagating slab jets, numerical simulation of mass outflows from star-forming regions, outflows from AGN, relativistic radiative transfer using moment formalism, fluid models for relativistic warm plasmas, time variability of the X-ray emission from Seyfert galaxies, slim accretion disks.


    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Plambeck, Richard L.; Bower, Geoffrey C.; Heiles, Carl; Meredith Hughes, A. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Bolatto, Alberto D.; Jameson, Katherine; Mundy, Lee; Pound, Marc W. [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M.; Lamb, James W.; Pillai, Thushara [Department of Astronomy, California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125 (United States); Crutcher, Richard M.; Hakobian, Nicholas S.; Kwon, Woojin; Looney, Leslie W. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W Green Street, Urbana, IL 61801 (United States); Fiege, Jason D.; Franzmann, Erica [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Houde, Martin [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Matthews, Brenda C., E-mail: [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2 (Canada); and others


    We present results of {lambda}1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with {approx}2.''5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of {approx}1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.


    Energy Technology Data Exchange (ETDEWEB)

    Plunkett, Adele L.; Arce, Hector G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven CT 06520 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago (Chile); Mardones, Diego [Departameto de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Sargent, Anneila I. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Schnee, Scott L., E-mail: [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)


    We present observations of outflows in the star-forming region NGC 1333 using the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). We combined the {sup 12}CO and {sup 13}CO (1-0) CARMA mosaics with data from the 14 m Five College Radio Astronomy Observatory to probe the central, most dense, and active region of this protostellar cluster at scales from 5'' to 7' (or 1000 AU to 0.5 pc at a distance of 235 pc). We map and identify {sup 12}CO outflows, and along with {sup 13}CO data we estimate their mass, momentum, and energy. Within the 7' Multiplication-Sign 7' map, the 5'' resolution allows for a detailed study of morphology and kinematics of outflows and outflow candidates, some of which were previously confused with other outflow emission in the region. In total, we identify 22 outflow lobes, as well as 9 dense circumstellar envelopes marked by continuum emission, of which 6 drive outflows. We calculate a total outflow mass, momentum, and energy within the mapped region of 6 M{sub Sun }, 19 M{sub Sun} km s{sup -1}, and 7 Multiplication-Sign 10{sup 44} erg, respectively. Within this same region, we compare outflow kinematics with turbulence and gravitational energy, and we suggest that outflows are likely important agents for the maintenance of turbulence in this region. In the earliest stages of star formation, outflows do not yet contribute enough energy to totally disrupt the clustered region where most star formation is happening, but have the potential to do so as the protostellar sources evolve. Our results can be used to constrain outflow properties, such as outflow strength, in numerical simulations of outflow-driven turbulence in clusters.

  7. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated


    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A., E-mail: [NASA Goddard Space Flight Center, Astrochemistry Laboratory, Mail Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)


    The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest. We present here observations of C{sub 4}H and CH{sub 3}OH, tracing two distinct groups of interstellar organic molecules, toward 16 protostars in the Ophiuchus and Corona Australis molecular clouds. Together with observations in the literature, we present C{sub 4}H and CH{sub 3}OH data from single-dish observations of 40 embedded protostars. We find no correlation between the C{sub 4}H and CH{sub 3}OH column densities in this large sample. Based on this lack of correlation, a difference in line profiles between C{sub 4}H and CH{sub 3}OH, and previous interferometric observations of similar sources, we propose that the emission from these two molecules is spatially separated, with the CH{sub 3}OH tracing gas that has been transiently heated to high (∼70–100 K) temperatures and the C{sub 4}H tracing the cooler large-scale envelope where CH{sub 4} molecules have been liberated from ices. These results provide insight in the differentiation between hot corino and warm carbon-chain chemistry in embedded protostars.

  9. SCUBA and HIRES Results for Protostellar Cores in the MON OB1 Dark Cloud (United States)

    Wolf-Chase, G.; Moriarty-Schieven, G.; Fich, M.; Barsony, M.


    We have used HIRES-processing of IRAS data and point-source modelling techniques (Hurt & Barsony 1996; O'Linger 1997; Barsony et al. 1998), together with submillimeter continuum imaging using the Submillimeter Common-User Bolometer Array (SCUBA) on the 15-meter James Clerk Maxwell Telescope (JCMT), to search CS cores in the Mon OB1 dark cloud (Wolf-Chase, Walker, & Lada 1995; Wolf-Chase & Walker 1995) for deeply embedded sources. These observations, as well as follow-up millimeter photometry at the National Radio Astronomy Observatory (NRAO) 12-meter telescope on Kitt Peak, have lead to the identification of two Class 0 protostellar candidates, which were previously unresolved from two brighter IRAS point sources (IRAS 06382+0939 & IRAS 06381+1039) in this cloud. Until now, only one Class 0 object had been confirmed in Mon OB1; the driving source of the highly-collimated outflow NGC 2264 G (Ward-Thompson, Eiroa, & Casali 1995; Margulis et al. 1990; Lada & Fich 1996), which lies well outside the extended CS cores. One of the new Class 0 candidates may be an intermediate-mass source associated with an H_2O maser, and the other object is a low-mass source which may be associated with a near-infrared jet, and possibly with a molecular outflow. We report accurate positions for the new Class 0 candidates, based on the SCUBA images, and present new SEDs for these sources, as well as for the brighter IRAS point sources. A portion of this work was performed while GWC held a President's Fellowship from the University of California. MB and GWC gratefully acknowledge financial support from MB's NSF CAREER Grant, AST97-9753229.

  10. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien


    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ˜60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ˜16 au (0.″04) resolution. The envelope is detected in HCO+ J = 4-3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D2CO) are detected above and below the dusty disk within ˜40 au of the central protostar. The COMs are methanol (CH3OH), deuterated methanol (CH2DOH), methyl mercaptan (CH3SH), and formamide (NH2CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO+ and COMs and found a centrifugal barrier (CB) at a radius of ˜44 au, within which a Keplerian rotating disk is formed. This indicates that HCO+ traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  11. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi; Shang, Hsien [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Zhang, Qizhou, E-mail: [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanol (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  12. Embedded Systems

    Indian Academy of Sciences (India)

    An embedded system is a microprocessor-based system that is incorporated into a device to monitor and control the functions of the components of the device. They are used in many devices ranging from a microwave oven to a nuclear reactor. Unlike personal computers that run a variety of applications, embedded.

  13. Characterizing the Cep E protostellar outflow: the oxygen chemistry (United States)

    Gusdorf, Antoine


    With this proposal we aim at observing two positions in the Cep E protostellar outflow in OI and OH emission lines with the GREAT receiver. It is associated with another proposal by the same team to map the CII emission in this outflow associated to an intermediate mass protostar. These observations will be combined with Herschel observations of water line emission, and with previous CO data from various telescopes (IRAM 30m, PdBI, JCMT, Herschel, and most importantly, SOFIA). Their analysis will benefit from the important work initiated since the Cycle 0 of SOFIA, which has enabled our team to accurately link spatial structures (the jet, the outflow cavity, the terminal bowshock in the southern outflow lobe) to spectral components seen in the CO line profiles, and to precisely constrain the associated physical conditions by means of LVG methods or shock models. The goal is to precisely understand the water chemistry and to characterize the energetic impacts of the outflow based on a self-consistent and unique dataset that will allow us to fully characterize the associated shocks. Such a work is necessary also to understand the processes of formation of stars of intermediate mass with respect to their low-mass counterparts.

  14. Deuterium chemistry in the young massive protostellar core NGC 2264 CMM3 (United States)

    Awad, Z.; Shalabiea, O. M.


    In this work we present the first attempt of modelling the deuterium chemistry in the massive young protostellar core NGC 2264 CMM3. We investigated the sensitivity of this chemistry to the physical conditions in its surrounding environment. The results showed that deuteration, in the protostellar gas, is affected by variations in the core density, the amount of gas depletion onto grain surfaces, the CR ionisation rate, but it is insensitive to variations in the H2 ortho-to-para ratio. Our results, also, showed that deuteration is often enhanced in less-dense, partially depleted (chemistry in protostellar cores is: (i) sensitive to variations in the physical conditions in its environment, (ii) insensitive to changes in the H2 ortho-to-para ratio. We also conclude that the core NGC 2264 CMM3 is in its early stages of chemical evolution with an estimated age of (1-5)×104 yrs.


    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)


    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  16. Planet population synthesis driven by pebble accretion in cluster environments (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.


    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  17. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.


    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  18. Feedback of atomic jets from embedded protostars in NGC 1333 (United States)

    Dionatos, Odysseas; Güdel, Manuel


    Context. The feedback of star formation to the parent cloud is conventionally examined through the study of molecular outflows. Little is known, however, about the effect that atomic ejecta tracing fast shocks can have on small scales or on global cloud properties. Aims: Our immediate objective is to study the morphology of protostellar ejecta through far-infrared atomic lines, compare them to other outflow tracers, and associate them with their driving sources. The main goal is to study the feedback from atomic jet emission that is excited by fast shocks on the parent cloud material, and examine the relative importance of atomic jets as regulators of the star formation process. Methods: We employed [O I] and [C II] line maps of the NGC 1333 star-forming region observed with Herschel/PACS. We studied the detailed morphology and velocity distribution of the [O I] line using channel and line-centroid maps. We derived the momentum, energy, and mass flux for all the bipolar outflows traced by [O I] line emission. We compared the [O I] morphology to CO and H2 emission, and its dynamical and kinematic properties to the emission corresponding to CO outflows. Results: We find that the line-centroid maps can trace velocity structures down to 5 km s-1 which is a factor of 20 beyond the nominal velocity resolution reached by Herschel/PACS. These maps reveal an unprecedented degree of details that significantly assist in the association and characterization of outflows. We associate most of the [O I] emission with ejecta from embedded protostars. The spatial distribution of the [O I] emission closely follows the CO emission pattern and strongly correlates to the spatial distribution of the H2 emission, with the latter indicating excitation in shocks. The [O I] momentum accounts for only 1% of the momentum carried by the large-scale CO outflows. The energy released in shocks, however, corresponds to 50-100% of the energy carried away by outflows. Mass-flux estimates of the

  19. Spherical steady accretion flows -- dependence on the cosmological constant, exact isothermal solutions and applications to cosmology

    CERN Document Server

    Mach, Patryk; Karkowski, Janusz


    We investigate spherical, isothermal and polytropic steady accretion models in the presence of the cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test gas approximation. The cosmological constant damps the mass accretion rate and - above certain limit - completely stops the steady accretion onto black holes. A "homoclinic-type" accretion flow of polytropic gas has been discovered in AdS spacetimes in the test-gas limit. These results can have cosmological connotation, through the Einstein--Straus vacuole model of embedding local structures into Friedman-Lemaitre-Robertson-Walker spacetimes. In particular one infers that steady accretion would not exist in the late phases of the Penrose's scenario of the evolution of the Universe, known as the Weyl curvature hypothesis.

  20. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology (United States)

    Mach, Patryk; Malec, Edward; Karkowski, Janusz


    We investigate spherical, isothermal and polytropic steady accretion models in the presence of the cosmological constant. Exact solutions are found for three classes of isothermal fluids, assuming the test gas approximation. The cosmological constant damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes. A “homoclinic-type” accretion flow of polytropic gas has been discovered in anti-de Sitter spacetimes in the test-gas limit. These results can have cosmological connotation, through the Einstein-Straus vacuole model of embedding local structures into Friedman-Lemaitre-Robertson-Walker spacetimes. In particular, one infers that steady accretion would not exist in the late phases of Penrose’s scenario of the evolution of the Universe, known as the Weyl curvature hypothesis.

  1. Effect of angular momentum alignment and strong magnetic fields on the formation of protostellar discs (United States)

    Gray, William J.; McKee, Christopher F.; Klein, Richard I.


    Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.

  2. Nature of shocks revealed by SOFIA OI observations in the Cepheus e protostellar outflow

    DEFF Research Database (Denmark)

    Gusdorf, A.; Anderl, S.; Lefloch, B.


    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chem...

  3. Galactic fountains and gas accretion


    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.


    Star-forming disc galaxies such as the Milky Way need to accrete $\\gsim$ 1 $M_{\\odot}$ of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from th...

  4. Do siblings always form and evolve simultaneously? Testing the coevality of multiple protostellar systems through SEDs (United States)

    Murillo, N. M.; van Dishoeck, E. F.; Tobin, J. J.; Fedele, D.


    Context. Multiplicity is common in field stars and among protostellar systems. Models suggest two paths of formation: turbulent fragmentation and protostellar disk fragmentation. Aims: We attempt to find whether or not the coevality frequency of multiple protostellar systems can help to better understand their formation mechanism. The coevality frequency is determined by constraining the relative evolutionary stages of the components in a multiple system. Methods: Spectral energy distributions (SEDs) for known multiple protostars in Perseus were constructed from literature data. Herschel PACS photometric maps were used to sample the peak of the SED for systems with separations ≥7″, a crucial aspect in determining the evolutionary stage of a protostellar system. Inclination effects and the surrounding envelope and outflows were considered to decouple source geometry from evolution. This together with the shape and derived properties from the SED was used to determine each system's coevality as accurately as possible. SED models were used to examine the frequency of non-coevality that is due to geometry. Results: We find a non-coevality frequency of 33 ± 10% from the comparison of SED shapes of resolved multiple systems. Other source parameters suggest a somewhat lower frequency of non-coevality. The frequency of apparent non-coevality that is due to random inclination angle pairings of model SEDs is 17 ± 0.5%. Observations of the outflow of resolved multiple systems do not suggest significant misalignments within multiple systems. Effects of unresolved multiples on the SED shape are also investigated. Conclusions: We find that one-third of the multiple protostellar systems sampled here are non-coeval, which is more than expected from random geometric orientations. The other two-thirds are found to be coeval. Higher order multiples show a tendency to be non-coeval. The frequency of non-coevality found here is most likely due to formation and enhanced by

  5. Rethinking Black Hole Accretion Discs (United States)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  6. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.


    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  7. Embedded Hardware

    CERN Document Server

    Ganssle, Jack G; Eady, Fred; Edwards, Lewin; Katz, David J; Gentile, Rick


    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!. Circuit design using microcontrollers is both a science and an art. This book covers it all. It details all of the essential theory and facts to help an engineer design a robust embedded system. Processors, memory, and the hot topic of interconnects (I/O) are completely covered. Our authors bring a wealth of experience and ideas; thi

  8. Compression embedding (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.


    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  9. The X-ray emission mechanism in the protostellar jet HH 154 (United States)

    Bonito, R.; Orlando, S.; Peres, G.; Favata, F.; Rosner, R.


    We study the mechanism causing the X-ray emission recently detected in protostellar jets, by performing a detailed modeling of the interaction between a supersonic jet originating from a young stellar object and the ambient medium, for various values of density contrast, ν, between the ambient density and the jet, and of Mach number, M; radiative losses and thermal conduction have been taken into account. Here we report a representative case which reproduces, without any ad hoc assumption, the characteristics of the X-ray emission recently observed in the protostellar jet HH 154. We find that the X-ray emission originates from a localized blob, consistent with observations, which moves with velocity v ˜ 500 km s-1; we therefore predict the X-ray source to have a detectable proper motion.

  10. Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F


    We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  11. The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models (United States)

    Furlan, E.; Fischer, W. J.; Ali, B.; Stutz, A. M.; Stanke, T.; Tobin, J. J.; Megeath, S. T.; Osorio, M.; Hartmann, L.; Calvet, N.; Poteet, C. A.; Booker, J.; Manoj, P.; Watson, D. M.; Allen, L.


    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2-870 μm and sample the peak of the protostellar envelope emission at ˜100 μm. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  12. Accreted oceanic materials in Japan (United States)

    Isozaki, Y.; Maruyama, S.; Furuoka, F.


    The Phanerozoic circum-Pacific orogenic belts contain numerous ocean-derived materials accreted through plate converging processes. Japanese Islands, in particular, display various kinds of oceanic materials of different origins including fragments of seamounts, oceanic reef limestone, MORB-like rocks and oceanic mantle, and pelagic sediments. The compilation of these rocks in many subduction complexes of Late Permian to the present, led to following conclusions. Accretion processes work effectively only for materials primarily composing the upper portion of subducting oceanic crust, i.e. Layer 1 and Layer 2. Many fragments of seamount with alkali basalt (600), hot-spot seamount (26), oceanic reef limestone (291), MORB-like basalt (200), and numerous cherts (more than 1000) are recognized as ancient oceanic materials accreted to the Japanese Islands. However, gabbros and mantle materials of Layer 3 and lower parts of the oceanic lithosphere, scarcely occur in subduction-accretion complexes except for a few examples of back-arc basin or fore-arc origin. Accretion occurs episodically. In Southwest Japan, oceanic materials were accreted intermittently in (a) end-Permian, (b) Middle-Late Jurassic, (c) Late Cretaceous times, (d) at ca. 50 Ma, and (e) in Miocene times, while in Northeast Japan and Hokkaido this occurred in (b) Middle-Late Jurassic, (c) Late Cretaceous, and (f) Early Cretaceous times. In contrast to the general belief on accretion of younger oceanic plates, the majority of Japanese subduction-accretion complexes were formed during the subduction of plates, up to 160 Ma old. The accretionary events in end-Permian and Middle-Late Jurassic times coincide with northward collision of ancient island arcs, oceanic rises or seamount chains (of hot-spot origin) with the Asian continent. Accretion relevant to subduction of older plates may be controlled by the collision-subduction process of these topographic reliefs on an oceanic plate. In addition, the

  13. Measuring rotation in protostellar envelopes: ALMA Observations of Edge-On Orion Protostars (United States)

    Nagy, Zsofia; Megeath, Thomas; Fischer, William J.; Tobin, John; Stutz, Amelia M.; Ali, Babar; Wilson, Thomas; Poteet, Charles; Stanke, Thomas; Di Francesco, James; Booker, Joseph


    The observational characterization of the structure, infall, and rotation of protostellar envelopes is a crucial step in understanding the formation of stars and circumstellar disks and how the properties of a protostar can influence the initial conditions of planet formation. The rotation of envelopes of protostars can be best studied in an edge-on orientation. At a high angular resolution the envelope rotation can be measured, and converted into the angular momentum of the infalling envelope of protostars.We used ALMA to image four edge-on Orion protostars in 12CO, 13CO, and C18O 2-1 transitions at a ~1.7'' angular resolution. The sources were selected using Spitzer, Hubble, and Herschel space telescopes as part of the Herschel Orion Protostar Survey, and were shown in HST NICMOS and WFC3 imaging to have an edge on geometry with disks visible in near-IR absorption.By measuring for the first time the distribution of angular momentum in protostellar envelopes, these data are an important input to models of rotating collapse that describe the formation of protostellar disks.

  14. Ice accretion simulations on airfoils (United States)

    Özgen, S.; Uğur, N.; Görgülü, I.; Tatar, V.


    Ice shape predictions for a NACA0012 airfoil and collection efficiency predictions for the Twin Otter airfoil are obtained and presented. The results are validated with reference numerical and experimental data. Ice accretion modeling mainly consists of four steps: flow field solution; droplet trajectory calculations; thermodynamic analyses; and ice accretion simulation with the Extended Messinger Model. The models are implemented in a FORTRAN code to perform icing analyses for twodimensional (2D) geometries. The results are in good agreement with experimental and numerical reference data. It is deduced that increasing computational layers in calculations improves the ice shape predictions. The results indicate that collection efficiencies and impingement zone increase with increasing droplet diameter.

  15. Timing the accretion flow around accreting millisecond pulsars

    NARCIS (Netherlands)

    Linares, M.


    At present, ten years after they were first discovered, ten accreting millisecond pulsars are known. I present a study of the aperiodic X-ray variability in three of these systems, which led to the discovery of simultaneous kHz quasi periodic oscillations in XTE J1807—294 and extremely strong

  16. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian


    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  17. The Black Hole Accretion Code

    CERN Document Server

    Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael


    We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...

  18. Can massive stars be formed by accretion? (United States)

    Yorke, H. W.


    Radiative effects strongly hinder the formation of massive stars. A necessary condition for accretion growth of a hydrostatic object up to high masses is the formation of and accretion through a circumstellar disk.

  19. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)


    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  20. Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database

    DEFF Research Database (Denmark)

    Carney, M. T.; Ylldlz, U. A.; Mottram, J. C.


    and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust...... in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results. Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks...... in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales...

  1. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang


    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  2. The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A⋆⋆ (United States)

    Koumpia, E.; Semenov, D. A.; van der Tak, F. F. S.; Boogert, A. C. A.; Caux, E.


    Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims: We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (I) investigate the influence of the outflows on the chemistry; (II) constrain the age of our studied object; (III) compare it with a typical high-mass protostellar envelope. Methods: In our analysis we use JCMT line mapping (360-373 GHz) and HIFI pointed spectra (626.01-721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T 100 K or T 30 K) to fit our observations. We compare our best-fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results: We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4-11 km s-1), b) narrow emission (FWHMmaterial. Our maps provide information about the spatial and velocity structure of many of the molecules mentioned above, including the deuterated species, making it possible to distinguish between envelope and outflow structures also spatially. The derived abundance profiles are based only on the narrow component (envelope) of the species and are reproduced by a 1D pseudo-time-dependent gas-grain chemical

  3. Observations of nitrogen isotope fractionation in deeply embedded protostars

    DEFF Research Database (Denmark)

    Wampfler, Susanne Franziska; Jørgensen, Jes Kristian; Bizzarro, Martin


    (Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment......(Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N...... into the protostellar phases. Our aim is to measure the 14N/15N ratio around three nearby, embedded low-to-intermediate-mass protostars. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of H13CN, HC15N, HN13C, and H15NC transitions was observed with the APEX telescope. The 14N/15N ratios...

  4. Embedded Processor Laboratory (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  5. Outflows, infall and evolution of a sample of embedded low-mass protostars. The William Herschel Line Legacy (WILL) survey (United States)

    Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; Karska, A.; San José-García, I.; Khanna, S.; Herczeg, G. J.; André, Ph.; Bontemps, S.; Cabrit, S.; Carney, M. T.; Drozdovskaya, M. N.; Dunham, M. M.; Evans, N. J.; Fedele, D.; Green, J. D.; Harsono, D.; Johnstone, D.; Jørgensen, J. K.; Könyves, V.; Nisini, B.; Persson, M. V.; Tafalla, M.; Visser, R.; Yıldız, U. A.


    Context. Herschel observations of water and highly excited CO (J > 9) have allowed the physical and chemical conditions in the more active parts of protostellar outflows to be quantified in detail for the first time. However, to date, the studied samples of Class 0/I protostars in nearby star-forming regions have been selected from bright, well-known sources and have not been large enough for statistically significant trends to be firmly established. Aims: We aim to explore the relationships between the outflow, envelope and physical properties of a flux-limited sample of embedded low-mass Class 0/I protostars. Methods: We present spectroscopic observations in H2O, CO and related species with Herschel HIFI and PACS, as well as ground-based follow-up with the JCMT and APEX in CO, HCO+ and isotopologues, of a sample of 49 nearby (d < 500 pc) candidate protostars selected from Spitzer and Herschel photometric surveys of the Gould Belt. This more than doubles the sample of sources observed by the WISH and DIGIT surveys. These data are used to study the outflow and envelope properties of these sources. We also compile their continuum spectral energy distributions (SEDs) from the near-IR to mm wavelengths in order to constrain their physical properties (e.g. Lbol, Tbol and Menv). Results: Water emission is dominated by shocks associated with the outflow, rather than the cooler, slower entrained outflowing gas probed by ground-based CO observations. These shocks become less energetic as sources evolve from Class 0 to Class I. Outflow force, measured from low-J CO, also decreases with source evolutionary stage, while the fraction of mass in the outflow relative to the total envelope (I.e. Mout/Menv) remains broadly constant between Class 0 and I. The median value of 1% is consistent with a core to star formation efficiency on the order of 50% and an outflow duty cycle on the order of 5%. Entrainment efficiency, as probed by FCO/Ṁacc, is also invariant with source


    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)


    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  7. Bondi accretion onto cosmological black holes

    CERN Document Server

    Karkowski, Janusz


    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and --- above certain limit --- completely stops the steady accretion onto black holes, which in particular is prohibited in the inflation era and after (roughly) $10^{12}$ years from Big Bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose's scenario - known as the Weyl curvature hypothesis - of the evolution of the Universe.

  8. Bondi accretion onto cosmological black holes (United States)

    Karkowski, Janusz; Malec, Edward


    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  9. Depletion of chlorine into HCl ice in a protostellar core: The CHESS spectral survey of OMC-2 FIR 4

    NARCIS (Netherlands)

    Kama, M.; Caux, E.; López-Sepulcre, A.; Wakelam, V.; Dominik, C.; Ceccarelli, C.; Lanza, M.; Lique, F.; Ochsendorf, B.B.; Lis, D.C.; Caballero, R.N.; Tielens, A.G.G.M.


    Context. The freezeout of gas-phase species onto cold dust grains can drastically alter the chemistry and the heating-cooling balance of protostellar material. In contrast to well-known species such as carbon monoxide (CO), the freezeout of various carriers of elements with abundances <10-5 has not

  10. Local expansions and accretive mappings

    Directory of Open Access Journals (Sweden)

    W. A. Kirk


    Full Text Available Let X and Y be complete metric spaces with Y metrically convex, let D⊂X be open, fix u0∈X, and let d(u=d(u0,u for all u∈D. Let f:X→2Y be a closed mapping which maps open subsets of D onto open sets in Y, and suppose f is locally expansive on D in the sense that there exists a continuous nonincreasing function c:R+→R+ with ∫+∞c(sds=+∞ such that each point x∈D has a neighborhood N for which dist(f(u,f(v≥c(max{d(u,d(v}d(u,v for all u,v∈N. Then, given y∈Y, it is shown that y∈f(D iff there exists x0∈D such that for x∈X\\D, dist(y,f(x0≤dist(u,f(x. This result is then applied to the study of existence of zeros of (set-valued locally strongly accretive and ϕ-accretive mappings in Banach spaces


    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)


    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  12. Episodic accretion on to strongly magnetic stars

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.


    Some accreting neutron stars and young stars show unexplained episodic flares in the form of quasi-periodic oscillations or recurrent outbursts. In a series of two papers, we present new work on an instability that can lead to episodic outbursts when the accretion disc is truncated by the star's

  13. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  14. Foundations of Black Hole Accretion Disk Theory. (United States)

    Abramowicz, Marek A; Fragile, P Chris


    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  15. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...

  16. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz


    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  17. Ultraviolet Echoes of Quasar Accretion Disks (United States)

    Trump, Jonathan


    We propose a novel ultraviolet monitoring campaign with WFC3/UVIS to measure quasar accretion disk structure. The bulk of supermassive black hole growth occurs in luminous quasar phases of rapid accretion, yet the governing physics remains poorly understood. Continuum reverberation mapping (RM) measures the accretion disk size via the time lag between short- and long-wavelength emission: the proposed UV monitoring forms the foundation for simultaneous optical observations (expected to continue for our quasars through 2019). Currently only 4 Seyfert AGNs have UV/optical RM accretion-disk sizes, all low-luminosity and at z<0.02. We propose to monitor 5 new quasars, spanning an order of magnitude higher accretion rate and out to z 1. The 5 quasar targets are drawn from SDSS-RM, a pioneering multi-object spectroscopic RM campaign, and have been monitored with optical photometry and spectroscopy since 2014. The higher luminosity and accurate RM masses of our sample enable the first measurements of accretion-rate effects on accretion-disk size, with UV monitoring directly probing changes in the inner disk suggested by theory and previous indirect observations. Our proposed HST monitoring campaign is unusually efficient, targeting 5 quasars per orbit using the DASH method with UVIS subarray readouts. We use simulations to demonstrate that our 2-day cadence over 32 epochs will accurately measure continuum lags and accretion-disk structure. Ultraviolet monitoring of these 5 quasars will enable critical new measurements of accretion-disk structure during the rapid accretion mode that dominates black hole growth.

  18. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores (United States)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.


    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn 1/2 during the core formation epoch (densities principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  19. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. (United States)

    Albertazzi, B; Ciardi, A; Nakatsutsumi, M; Vinci, T; Béard, J; Bonito, R; Billette, J; Borghesi, M; Burkley, Z; Chen, S N; Cowan, T E; Herrmannsdörfer, T; Higginson, D P; Kroll, F; Pikuz, S A; Naughton, K; Romagnani, L; Riconda, C; Revet, G; Riquier, R; Schlenvoigt, H-P; Skobelev, I Yu; Faenov, A Ya; Soloviev, A; Huarte-Espinosa, M; Frank, A; Portugall, O; Pépin, H; Fuchs, J


    Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154. Copyright © 2014, American Association for the Advancement of Science.

  20. Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse

    DEFF Research Database (Denmark)

    Vaytet, Neil; Audit, Edouard; Chabrier, Gilles


    Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate...... the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between...... the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce first cores with a slightly higher radius and central temperature. We also performed simulations of the collapse of a 10 and 0.1 solar mass cloud, which showed the properties of the first core...

  1. The Effects of Magnetic Fields and Protostellar Feedback on Low-mass Cluster Formation (United States)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.


    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top-heavy with time. In all cases we find that the competition between magnetic flux advection toward the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly-formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.


    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jaehan; Hartmann, Lee [Deptartment of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Zhu, Zhaohuan, E-mail:, E-mail:, E-mail: [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States)


    We carry out two-fluid, two-dimensional global hydrodynamic simulations to test whether protostellar infall can trigger the Rossby wave instability (RWI) in protoplanetry disks. Our results show that infall can trigger the RWI and generate vortices near the outer edge of the mass landing on the disk (i.e., centrifugal radius). We find that the RWI is triggered under a variety of conditions, although the details depend on the disk parameters and the infall pattern. The common key feature of triggering the RWI is the steep radial gradient of the azimuthal velocity induced by the local increase in density at the outer edge of the infall region. Vortices form when the instability enters the nonlinear regime. In our standard model where self-gravity is neglected, vortices merge together to a single vortex within ∼20 local orbital times, and the merged vortex survives for the remaining duration of the calculation (>170 local orbital times). The vortex takes part in outward angular momentum transport, with a Reynolds stress of ≲10{sup −2}. Our two-fluid calculations show that vortices efficiently trap dust particles with stopping times of the order of the orbital time, locally enhancing the dust to gas ratio for particles of the appropriate size by a factor of ∼40 in our standard model. When self-gravity is considered, however, vortices tend to be impeded from merging and may eventually dissipate. We conclude it may well be that protoplanetary disks have favorable conditions for vortex formation during the protostellar infall phase, which might enhance early planetary core formation.

  3. Hierarchical Fragmentation in the Perseus Molecular Cloud: From the Cloud Scale to Protostellar Objects (United States)

    Pokhrel, Riwaj; Myers, Philip C.; Dunham, Michael M.; Stephens, Ian W.; Sadavoy, Sarah I.; Zhang, Qizhou; Bourke, Tyler L.; Tobin, John J.; Lee, Katherine I.; Gutermuth, Robert A.; Offner, Stella S. R.


    We present a study of hierarchical structure in the Perseus molecular cloud, from the scale of the entire cloud (≳ 10 pc) to smaller clumps (∼1 pc), cores (∼0.05–0.1 pc), envelopes (∼300–3000 au), and protostellar objects (∼15 au). We use new observations from the Submillimeter Array (SMA) large project “Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES)” to probe the envelopes, and recent single-dish and interferometric observations from the literature for the remaining scales. This is the first study to analyze hierarchical structure over five scales in the same cloud complex. We compare the number of fragments with the number of Jeans masses in each scale to calculate the Jeans efficiency, or the ratio of observed to expected number of fragments. The velocity dispersion is assumed to arise either from purely thermal motions or from combined thermal and non-thermal motions inferred from observed spectral line widths. For each scale, thermal Jeans fragmentation predicts more fragments than observed, corresponding to inefficient thermal Jeans fragmentation. For the smallest scale, thermal plus non-thermal Jeans fragmentation also predicts too many protostellar objects. However, at each of the larger scales thermal plus non-thermal Jeans fragmentation predicts fewer than one fragment, corresponding to no fragmentation into envelopes, cores, and clumps. Over all scales, the results are inconsistent with complete Jeans fragmentation based on either thermal or thermal plus non-thermal motions. They are more nearly consistent with inefficient thermal Jeans fragmentation, where the thermal Jeans efficiency increases from the largest to the smallest scale.

  4. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann


    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid......The influential pure embedding methodology of embedding domain-specific languages (DSLs) as libraries into a general-purpose host language forces the DSL designer to commit to a single semantics. This precludes the subsequent addition of compilation, optimization or domain-specific analyses. We...

  5. Evolution of migrating protoplanets heated by pebble accretion (United States)

    Chrenko, Ondrej; Broz, Miroslav; Lambrechts, Michiel


    We study the interactions in a protoplanetary system consisting of a gas disk, a pebble disk and embedded low-mass protoplanets. The hydrodynamic simulations are performed using a new code based on 2D FARGO (Masset 2000) which we call FARGO_THORIN ( The code treats the hydrodynamics of gas and pebbles within a two-fluid approximation, accounts for the heating and cooling processes in the gaseous component (including heating due to pebble accretion) and propagates the planets in 3D using a high-order integration scheme (IAS15; Rein & Spiegel 2015). Our aim is to investigate how pebble accretion alters the orbital evolution of protoplanets undergoing Type-I migration.First, we demonstrate that pebble accretion can heat the protoplanets so that their luminosity induces the heating torque (Benítez-Llambay et al. 2015) and the hot-trail effect (Chrenko et al. 2017; Eklund & Masset 2017). The heating torque is always positive and alters the migration rates and directions profoundly, thus changing the position of planet traps and deserts. The hot-trail effect, on the other hand, pumps the eccentricity of initially circular orbits up to e ~ h. After becoming eccentric, the protoplanets exhibit reduced probability of resonant locking during the migration and moreover, their close encounters become more frequent and provide more opportunities for scattering or merger events. The mergers can be massive enough to become giant planet cores. We discuss the importance of the excited eccentricities and violent orbital evolution for the extrasolar planet population synthesis. Finally, we present an extended model with flux-mean opacities caused by a coupled disk of coagulating dust grains with a realistic size distribution. The aim of this model is to constrain possible pathways of migrating planets towards the inner rim of the protoplanetary disk.

  6. Galaxy Formation through Filamentary Accretion at z = 6.1 (United States)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.


    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C II] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C II] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  7. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole


    Installing and servicing complex electromechanical systems is more tedious than is necessary. By putting the product knowledge into the product itself, which then would allow automation in constructing the product from modules, could solve that. It would support personnel in aftersales installation...... and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  8. Super-Eddington Accreting Tidal Disruption Events (United States)

    Lin, Dacheng; Guillochon, James; Komossa, St.; Ramirez-Ruiz, Enrico; Irwin, Jimmy; Maksym, W. Peter; Grupe, Dirk; Godet, Olivier; Webb, Natalie; Barret, Didier; Zauderer, Bevin; Duc, Pierre-Alain; Carrasco, Eleazar R.; Gwyn, Stephen


    Multiwavelength flares from tidal disruption and subsequent accretion of stars are important for study of otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares were short-lived, with most emission confined to within ~1 year. Here, we report our discovery of a well observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit. The X-ray spectra are soft and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed. We also found two additional events showing similar X-ray spectra characteristic of super-Eddington accretion from two otherwise quiescent galaxies. Therefore these events seem to form a new, super-Eddington accreting class of tidal disruption events.

  9. Face-on accretion onto a protoplanetary disc (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.


    Context. Stars are generally born in clustered stellar environments, which can affect their subsequent evolution. An example of this environmental influence can be found in globular clusters (GCs) harbouring multiple stellar populations. An evolutionary scenario in which a second (and possibly higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population has been suggested to explain the multiple stellar populations. The idea, dubbed early disc accretion, is that the low-mass, pre-main-sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster core. The same process could also occur, to a lesser extent, in embedded stellar systems that are less dense. Aims: Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star of 0.4 M⊙ surrounded by a protoplanetary disc can accrete a sufficient amount of enriched material to account for the observed abundances in so-called second generation GC stars. In particular, we focus on the gas-loading rate onto the disc and star, as well as on the lifetime and stability of the disc. Methods: We perform simulations at multiple resolutions with two different smoothed particle hydrodynamics codes and compare the results. Each code uses a different implementation of the artificial viscosity. Results: We find that the gas-loading rate is about a factor of two smaller than the rate based on geometric arguments, because the effective cross-section of the disc is smaller than its surface area. Furthermore, the loading rate is consistent for both codes, irrespective of resolution. Although the disc gains mass in the high-resolution runs, it loses angular momentum on a timescale of 104 yr. Two effects determine the loss of (specific) angular momentum in our simulations: (1) continuous ram pressure stripping and (2

  10. High-J CO lines from low- to high-mass YSOs: the dynamics of protostellar envelopes (United States)

    San José-García, Irene; Mottram, Joseph C.; van Dishoeck, Ewine F.; Kristensen, Lars E.; Yildiz, Umut A.


    In order to form a complete understanding of Star Formation, it is critical to determine the similarities and differences between low- and high-mass young stellar objects (YSOs) from both a physical and chemical perspective. Within this context, the "Water in Star forming regions with Herschel" key program (WISH; van Dishoeck et al. 2011) is investigating the different processes that characterise protostellar environments across a wide range of luminosities by observing water, CO and other important molecules. The study of the CO and isotopologue emission lines of 51 YSOs has shown a strong linear correlation between the line and bolometric luminosities for all observed lines, suggesting that high J CO transitions (J >= 5) can be used as tracers of dense gas. In addition, the majority of the 12CO line profiles can be decomposed into broad and narrow Gaussian components, while the C18O spectra show a single velocity component. Analysis of the C18O data has also motivated a more detailed study of the dynamics of protostellar envelopes. In these regions, non-thermal motions, such as turbulence and infall, dominate this line profile but in different amounts for low (J < 5) and high rotational transitions. The width of the C18O lines becomes broader at higher J for low-mass protostars but remains constant for more massive YSOs. For the first time a characterisation of the dynamics in the inner warmer regions of protostellar envelopes can be performed and compared to the colder outer parts as a function of source luminosity. This is achieved through comparison with 1-dimensional spherically symmetric radiative transfer models. This study will allow us to better understand where infall and turbulence are dominant within protostellar envelopes and how this varies with luminosity.

  11. Foundations of Black Hole Accretion Disk Theory

    National Research Council Canada - National Science Library

    Abramowicz, Marek A; Fragile, P. Chris


    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves...

  12. The physics of accretion onto black holes

    CERN Document Server

    Belloni, Tomaso; Casella, Piergiorgio; Gilfanov, Marat; Jonker, Peter; King, Andrew


    This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented.  This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field.  Originally published in Space Science Reviews, Vol 183/1-4, 2014.

  13. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna


    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  14. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard


    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  15. Nature of shocks revealed by SOFIA OI observations in the Cepheus E protostellar outflow (United States)

    Gusdorf, A.; Anderl, S.; Lefloch, B.; Leurini, S.; Wiesemeyer, H.; Güsten, R.; Benedettini, M.; Codella, C.; Godard, B.; Gómez-Ruiz, A. I.; Jacobs, K.; Kristensen, L. E.; Lesaffre, P.; Pineau des Forêts, G.; Lis, D. C.


    Context. Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jet and outflow systems are launched, and to quantify their chemical and energetic impacts on the surrounding medium. Aims: We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions in the various components, and to understand the nature of the underlying shocks, thus probing the origin of the mass-loss phenomenon. Methods: We present observations of the O I 3P1 → 3P2, OH between 2Π1/2J = 3/2 and J = 1/2 at 1837.8 GHz, and CO (16-15) lines with the GREAT receiver onboard SOFIA towards three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results: The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas the OH line is not detected. In Cep E-BII, we identify three kinematical components in O I and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity ratios for all components. The O I column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is the region where the abundance ratio of O I to CO is the lowest (about 0.2), whereas the jet component is atomic (N(O I)/N(CO) 2.7). In the jet, we compare the [OI]63μm observations with shock models that successfully fit the integrated intensity of 10 CO lines. We find that these models most likely do not fit the [OI]63

  16. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard


    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area


    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail:, E-mail: [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)


    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  18. An Outflow-shaped Magnetic Field Toward the Class 0 Protostellar Source Serpens SMM1 (United States)

    Hull, Charles; Girart, Josep M.; Tychoniec, Lukasz; Rao, Ramprasad; Cortés, Paulo; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael; Kristensen, Lars; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard


    The results from the polarization system at the Atacama Large Millimeter/submillimeter Array (ALMA) have begun both to expand and to confound our understanding of the role of the magnetic field in low-mass star formation. Here we show the highest resolution and highest sensitivity polarization images made to date toward the very young, intermediate-mass Class 0 protostellar source Serpens SMM1, the brightest source in the Serpens Main star-forming region. These ALMA observations achieve ~140 AU resolution, allowing us to probe dust polarization—and thus magnetic field orientation—in the innermost regions surrounding the protostar. By complementing these observations with polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (~0.1 pc) scales—where the magnetic field is oriented E–W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (~1000 au resolution), the SMA (~350 au resolution), and ALMA. The ALMA maps reveal that the redshifted lobe of the bipolar outflow is clearly shaping the magnetic field in SMM1 on the southeast side of the source. High-spatial-resolution continuum and spectral-line observations also reveal a tight (~130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both CO(2-1) and SiO(5-4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like

  19. Water in embedded low-mass protostars: cold envelopes and warm outflows (United States)

    Kristensen, Lars E.; van Dishoeck, Ewine; Mottram, Joseph; Schmalzl, Markus; Visser, Ruud


    As stars form, gas from the parental cloud is transported through the molecular envelope to the protostellar disk from which planets eventually form. Water plays a crucial role in such systems: it forms the backbone of the oxygen chemistry, it is a unique probe of warm and hot gas, and it provides a unique link between the grain surface and gas-phase chemistries. The distribution of water, both as ice and gas, is a fundamental question to our understanding of how planetary systems, such as the Solar System, form.The Herschel Space Observatory observed many tens of embedded low-mass protostars in a suite of gas-phase water transitions in several programs (e.g. Water in Star-forming regions with Herschel, WISH, and the William Herschel Line Legacy Survey, WILL), and related species (e.g. CO in Protostars with HIFI, COPS-HIFI). I will summarize what Herschel has revealed about the water distribution in the cold outer molecular envelope of low-mass protostars, and the warm gas in outflows, the two components predominantly traced by Herschel observations. I will present our current understanding of where the water vapor is in protostellar systems and the underlying physical and chemical processes leading to this distribution. Through these dedicated observational surveys and complementary modeling efforts, we are now at a stage where we can quantify where the water is during the early stages of star formation.

  20. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NARCIS (Netherlands)

    Patruno, A.; D'Angelo, C.


    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion

  1. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.


    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  2. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  3. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado


    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  4. Accreting neutron stars by QFT (United States)

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  5. Pre-accretional sorting of grains in the outer solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Wozniakiewicz, P. J. [Earth Sciences Department, Mineral and Planetary Science Division, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bradley, J. P.; Ishii, H. A. [Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Price, M. C. [School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH (United Kingdom); Brownlee, D. E., E-mail: [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)


    Despite their micrometer-scale dimensions and nanogram masses, chondritic porous interplanetary dust particles (CP IDPs) are an important class of extraterrestrial material since their properties are consistent with a cometary origin and they show no evidence of significant post-accretional parent body alteration. Consequently, they can provide information about grain accretion in the comet-forming region of the outer solar nebula. We have previously reported our comparative study of the sizes and size distributions of crystalline silicate and sulfide grains in CP IDPs, in which we found these components exhibit a size-density relationship consistent with having been sorted together prior to accretion. Here we extend our data set and include GEMS (glass with embedded metal and sulfide), the most abundant amorphous silicate phase observed in CP IDPs. We find that while the silicate and sulfide sorting trend previously observed is maintained, the GEMS size data do not exhibit any clear relationship to these crystalline components. Therefore, GEMS do not appear to have been sorted with the silicate and sulfide crystals. The disparate sorting trends observed in GEMS and the crystalline grains in CP IDPs present an interesting challenge for modeling early transport and accretion processes. They may indicate that several sorting mechanisms operated on these CP IDP components, or alternatively, they may simply be a reflection of different source environments.

  6. Nature of shocks revealed by SOFIA OI observations in the Cepheus e protostellar outflow

    DEFF Research Database (Denmark)

    Gusdorf, A.; Anderl, S.; Lefloch, B.


    their chemical and energetic impacts on the surrounding medium. Aims. We performed a high-spectral resolution study of the [OI]63μm emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow, to constrain the chemical conditions...... three positions in the Cep E protostellar outflow: Cep E-mm (the driving protostar), Cep E-BI (in the southern lobe), and Cep E-BII (the terminal position in the southern lobe). Results. The CO (16-15) line is detected at all three positions. The [OI]63μm line is detected in Cep E-BI and BII, whereas...... the OH line is not detected. In Cep E-BII, we identify three kinematical components in O i and CO. These were already detected in CO transitions and relate to spatial components: the jet, the HH377 terminal bow-shock, and the outflow cavity. We measure line temperature and line integrated intensity...

  7. Unveiling the Detailed Density and Velocity Structures of the Protostellar Core B335 (United States)

    Kurono, Yasutaka; Saito, Masao; Kamazaki, Takeshi; Morita, Koh-Ichiro; Kawabe, Ryohei


    We present an observational study of the protostellar core B335 harboring a low-mass Class 0 source. The observations of the H13CO+(J = 1-0) line emission were carried out using the Nobeyama 45 m telescope and Nobeyama Millimeter Array. Our combined image of the interferometer and single-dish data depicts detailed structures of the dense envelope within the core. We found that the core has a radial density profile of n(r)vpropr -p and a reliable difference in the power-law indices between the outer and inner regions of the core: p ≈ 2 for r >~ 4000 AU and p ≈ 1.5 for r position-velocity diagram across the outflow axis. The model calculations of position-velocity diagrams do a good job of reproducing observational results using the collapse model of an isothermal sphere in which the core has an inner free-fall region and an outer region conserving the conditions at the formation stage of a central stellar object. We derived a central stellar mass of ~0.1 M ⊙, and suggest a small inward velocity, v_{r ≥ r_inf}˜ 0 km s^{-1} in the outer core at >~ 4000 AU. We concluded that our data can be well explained by gravitational collapse with a quasi-static initial condition, such as Shu's model, or by the isothermal collapse of a marginally critical Bonnor-Ebert sphere.

  8. Observing water in low-mass proto-stellar outflows: the case of L1448 (United States)

    Santangelo, G.; Nisini, B.; Antoniucci, S.; Giannini, T.; Benedettini, M.; Codella, C.; Liseau, R.; Lorenzani, A.; Tafalla, M.; Vasta, M.; van Dishoeck, E. F.; Kristensen, L.


    We will present Herschel observations of water emission towards the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud (d=300 pc). This outflow has been mapped with the PACS and HIFI instruments, in the 557 GHz and 1670 GHz water lines, as part of the WISH (Water In Star-forming regions with Herschel) key project. Two bright shock spots along the outflow have been also observed in an additional set of ortho and para water lines having different excitation conditions. We present here the obtained maps, in comparison with the maps of other shock tracers, such as CO and SiO, discussing how water appears unique in tracing gas components at intermediate radial velocities (10-40 km/s). We will also discuss the analysis performed on the HIFI observations in the two shock spots, showing strong variations in the excitation as a function of velocity and strong chemical differences among the two investigated positions. These observations thus proved how water is a unique and crucial molecule for our understanding of the physical and chemical conditions in outflows driven by low-mass proto-stars.

  9. Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri (United States)

    White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.


    Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.

  10. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae (United States)

    Nuth, Joseph A.; Johnson, N. M.


    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  11. Embedded Linux in het onderwijs

    NARCIS (Netherlands)

    Dr Ruud Ermers


    Embedded Linux wordt bij steeds meer grote bedrijven ingevoerd als embedded operating system. Binnen de opleiding Technische Informatica van Fontys Hogeschool ICT is Embedded Linux geïntroduceerd in samenwerking met het lectoraat Architectuur van Embedded Systemen. Embedded Linux is als vakgebied

  12. Gas Accretion and Star Formation Rates (United States)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  13. Aerodynamic Simulation of Ice Accretion on Airfoils (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel


    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  14. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf (United States)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.


    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  15. Accretion-powered Compact Binaries (United States)

    Mauche, Christopher W.


    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  16. Stream-fed accretion in intermediate polars (United States)

    Hellier, C.


    I review the observational evidence for stream-fed accretion in intermediate polars. Recent work on the discless system V2400 Oph confirms the pole-flipping model of stream-fed accretion, but this applies only to a minority of the flow. The bulk of the flow is in the form of blobs circling the white dwarf, a state which might have been a precursor to disc formation in other IPs. I also discuss work on the systems with anomalously long spin periods, V1025 Cen and EX Hya. There are arguments both for and against stream-fed accretion in V1025 Cen, and further work is necessary before reaching a conclusion about this system.

  17. Magnetohydrodynamic Simulations of Black Hole Accretion (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  18. Reverberation Mapping of AGN Accretion Disks (United States)

    Fausnaugh, Michael; AGN STORM Collaboration


    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  19. Supermassive blackholes without super Eddington accretion (United States)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John


    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  20. Continuum Reverberation Mapping of AGN Accretion Disks

    Directory of Open Access Journals (Sweden)

    Michael M. Fausnaugh


    Full Text Available We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011, which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R−3/4 expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  1. Brauer type embedding problems

    CERN Document Server

    Ledet, Arne


    This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. This book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the

  2. Simulating a Thin Accretion Disk Using PLUTO (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.


    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  3. Embedded Fragments Registry (EFR) (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  4. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet


    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  5. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  6. FCJ-130 Embedding response:

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Bech, Karin


    Ubiquitous computing positions a world where computation is embedded into our surrounding environment. Rather than retrieving information and communication from distinct devices (PCs) removed from contexts and activities, ubiquitous computing proposes that the mediated can become an integral part...

  7. Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA (United States)

    Bracco, A.; Palmeirim, P.; André, Ph.; Adam, R.; Ade, P.; Bacmann, A.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Didelon, P.; Doyle, S.; Goupy, J.; Könyves, V.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Motte, F.; Pajot, F.; Pascale, E.; Peretto, N.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roy, A.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.


    The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (I.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ 2) to protostellar cores (βRJ 1) and the Class II object (βRJ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain

  8. Learning with Memory Embeddings


    Tresp, Volker; Esteban, Cristóbal; Yang, Yinchong; Baier, Stephan; Krompaß, Denis


    Embedding learning, a.k.a. representation learning, has been shown to be able to model large-scale semantic knowledge graphs. A key concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted by models using latent representations of generalized entities. Latent variable models are well suited to deal with the high dimensionality and sparsity of typical knowledge graphs. In recent publications the embedding models were extended to also consider time evol...


    Energy Technology Data Exchange (ETDEWEB)

    Codella, C.; Fontani, F.; Gómez-Ruiz, A.; Vasta, M. [INAF, Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Viti, S. [Department of Physics and Astronomy, University College London, London (United Kingdom); Ceccarelli, C.; Lefloch, B.; Podio, L. [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Benedettini, M.; Busquet, G. [INAF, Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Roma (Italy); Caselli, P., E-mail: [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)


    We present the first detection of N{sub 2}H{sup +} toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ∼0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N{sub 2}H{sup +}(1-0) line originated from the dense (≥10{sup 5} cm{sup –3}) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N{sub 2}H{sup +} column density of a few 10{sup 12} cm{sup –2} corresponding to an abundance of (2-8) × 10{sup –9}. The N{sub 2}H{sup +} abundance can be matched by a model of quiescent gas evolved for more than 10{sup 4} yr, i.e., for more than the shock kinematical age (≅2000 yr). Modeling of C-shocks confirms that the abundance of N{sub 2}H{sup +} is not increased by the passage of the shock. In summary, N{sub 2}H{sup +} is a fossil record of the pre-shock gas, formed when the density of the gas was around 10{sup 4} cm{sup –3}, and then further compressed and accelerated by the shock.

  10. The massive protostar W43-MM1 as seen by Herschel-HIFI water spectra: high turbulence and accretion luminosity (United States)

    Herpin, F.; Chavarría, L.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.; Jacq, T.; Braine, J.; Baudry, A.; Bontemps, S.; Kristensen, L.


    Aims: We present Herschel-HIFI observations of 14 water lines in W43-MM1, a massive protostellar object in the luminous star-cluster-forming region W43. We place our study in the more general context of high-mass star formation. The dynamics of these regions may be represented by either the monolithic collapse of a turbulent core, or competitive accretion. Water turns out to be a particularly good tracer of the structure and kinematics of the inner regions, allowing an improved description of the physical structure of the massive protostar W43-MM1 and an estimation of the amount of water around it. Methods: We analyze the gas dynamics from the line profiles using Herschel-HIFI observations acquired as part of the Water In Star-forming regions with Herschel project of 14 far-IR water lines (H216O, H217O, H218O), CS(11-10), and C18O(9-8) lines, using our modeling of the continuum spectral energy distribution. The spectral modeling tools allow us to estimate outflow, infall, and turbulent velocities and molecular abundances. We compare our results to previous studies of low-, intermediate-, and other high-mass objects. Results: As for lower-mass protostellar objects, the molecular line profiles are a mix of emission and absorption, and can be decomposed into "medium" (full width at half maximum FWHM ≃ 5-10 km s-1), and "broad" velocity components (FWHM ≃ 20-35 km s-1). The broad component is the outflow associated with protostars of all masses. Our modeling shows that the remainder of the water profiles can be well-fitted by an infalling and passively heated envelope, with highly supersonic turbulence varying from 2.2 km s-1 in the inner region to 3.5 km s-1 in the outer envelope. In addition, W43-MM1 has a high accretion rate of between 4.0 × 10-4 and 4.0 × 10-2 M⊙ yr-1, as derived from the fast (0.4-2.9 km s-1) infall observed. We estimate a lower mass limit for gaseous water of 0.11 M⊙ and total water luminosity of 1.5 L⊙ (in the 14 lines presented here

  11. Widening of Protostellar Outflows: An Infrared Outflow Survey in Low-luminosity Objects (United States)

    Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud


    We present an outflow survey toward 20 low-luminosity objects (LLOs), namely, protostars with an internal luminosity lower than 0.2 {L}⊙ . Although a number of studies have reported the properties of individual LLOs, the reasons for their low luminosity remain uncertain. To answer this question, we need to know the evolutionary status of LLOs. Protostellar outflows are found to widen as their parent cores evolve, and therefore the outflow opening angle could be used as an evolutionary indicator. The infrared scattered light escapes out through the outflow cavity and highlights the cavity wall, giving us the opportunity to measure the outflow opening angle. Using the Canada-France-Hawaii Telescope, we detected outflows toward eight LLOs out of 20 at Ks band, and based on archival Spitzer IRAC1 images, we added four outflow-driving sources from the remaining 12 sources. By fitting these images with radiative transfer models, we derive the outflow opening angles and inclination angles. To study the widening of outflow cavities, we compare our sample with the young stellar objects from Arce & Sargent and Velusamy et al. in a plot of opening angle versus bolometric temperature taken as an evolutionary indicator. Our LLO targets match well the trend of increasing opening angle with bolometric temperature reported by Arce & Sargent and are broadly consistent with that reported by Velusamy et al., suggesting that the opening angle could be a good evolutionary indicator for LLOs. Accordingly, we conclude that at least 40% of the outflow-driving LLOs in our sample are young Class 0 objects.

  12. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion? (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano


    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  13. Accreting millisecond pulsars: one on each hand

    NARCIS (Netherlands)

    Linares, M.; van der Klis, M.; Wijnands, R.


    We report on the X-ray aperiodic timing analysis of two accreting millisecond pulsars: XTE J1807-294 and IGR J00291+5934. On the one hand, we discovered in XTE J1807-294 seven pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) separated in frequency by nearly the spin frequency

  14. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.


    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  15. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.


    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  16. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are ...

  17. Numerical Simulation of SLD Ice Accretions

    NARCIS (Netherlands)

    Hospers, Jacco; Hoeijmakers, Hendrik Willem Marie


    In this study, computational methods are presented that compute ice accretion on multiple-element airfoils in specified icing conditions. The ¿Droplerian¿ numerical simulation method used is based on an Eulerian method for predicting droplet trajectories and the resulting droplet catching efficiency

  18. The variability plane of accreting compact objects

    NARCIS (Netherlands)

    Körding, E.G.; Migliari, S.; Fender, R.; Belloni, T.; Knigge, C.; McHardy, I.


    Recently, it has been shown that soft-state black hole X-ray binaries and active galactic nuclei populate a plane in the space defined by the black hole mass, accretion rate and characteristic frequency. We show that this plane can be extended to hard-state objects if one allows a constant offset

  19. The Dusty Accretion of Polluted White Dwarfs (United States)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.


    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  20. Stellar explosions from accreting white dwarfs (United States)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  1. Probing neutron star physics using accreting neutron stars

    NARCIS (Netherlands)

    Patruno, A.


    We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars

  2. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain ...

  3. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)



    Feb 9, 2018 ... Abstract. We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the ...

  4. Development of 3D Ice Accretion Measurement Method (United States)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.


    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  5. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    Keywords. Accretion; accretion disks; black hole physics; instabilities. ... In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. ... Department of Physics, Yunnan Normal University, Kunming 650500, China.

  6. Eccentricity excitation and merging of planetary embryos heated by pebble accretion (United States)

    Chrenko, O.; Brož, M.; Lambrechts, M.


    Context. Planetary embryos can continue to grow by pebble accretion until they become giant planet cores. Simultaneously, these embryos mutually interact and also migrate due to torques arising from the protoplanetary disk. Aims: Our aim is to study how pebble accretion alters the orbital evolution of embryos undergoing Type-I migration. In particular, we try to determine whether or not the embryos establish resonant chains, and if so, whether or not these chains are prone to instabilities. Further, we investigate the possibility that giant planet cores form through embryo merging which can be more rapid than pebble accretion alone. Methods: For the first time, we perform self-consistent global-scale radiative hydrodynamic simulations of a two-fluid protoplanetary disk consisting of gas and pebbles, the latter being accreted by embedded embryos. Accretion heating, along with other radiative processes, is accounted for to correctly model the Type-I migration. Results: We track the evolution of four super-Earth-like embryos, initially located in a region where the disk structure allows for a convergent migration. Generally, embryo merging is facilitated by rapidly increasing embryo masses and breaks the otherwise oligarchic growth. Moreover, we find that the orbital eccentricity of each embryo is considerably excited (≃0.03) due to the presence of an asymmetric under-dense lobe of gas - a so-called "hot trail" - produced by accretion heating of the embryo's vicinity. Eccentric orbits lead the embryos to frequent close encounters and make resonant locking more difficult. Conclusions: Embryo merging typically produces one massive core (≳10 ME) in our simulations, orbiting near 10 AU. Pebble accretion is naturally accompanied by the occurrence of eccentric orbits which should be considered in future efforts to explain the structure of exoplanetary systems. The code is publicly available at chrenko/, and also at the CDS via anonymous

  7. Spherical Accretion in a Uniformly Expanding Universe (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira


    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  8. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François


    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  9. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre


    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles...... are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion...... of physical data referents – the real-world entities and spaces to which data corresponds – and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded...

  10. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform......This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  11. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth


    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  12. Early Results from NICER Observations of Accreting Neutron Stars (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.


    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  13. Helicopter rotor noise investigation during ice accretion (United States)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  14. Disk accretion onto a magnetized star

    Directory of Open Access Journals (Sweden)

    Istomin Ya. N.


    Full Text Available The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.

  15. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.


    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of the ice accretions is given in the paper. Only for the bridge hanger case, a short description of the evolution of the ice accretions is given. The aerodynamic force coefficients were then measured with varying yaw angle, angle of attack and wind speed, and are presented and discussed in the paper...

  16. Media Embedded Interactions. (United States)

    Johnson, J. David

    A review of literature and two surveys, one of college students and one of a random sample of adults, were used to examine four aspects of media embedded interactions (social behavior in front of a TV or radio): their functions, their environment, their effects, and the reactions of the interactants to them. Television is seen as performing a…

  17. Embedding Quantum Simulator (United States)

    di Candia, Roberto; Mejia, Bernabé; Castillo, Hernan; Simon Pedernales, Julen; Casanova, Jorge; Solano, Enrique


    We introduce the concept of embedding quantum simulator, a paradigm allowing efficient computation of dynamical quantities requiring full quantum tomography in a standard quantum simulator (one-to-one quantum simulator). The concept consists in the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this manner, non-trivial quantities are mapped onto physical observables, overcoming the necessity of full tomography, and reducing drastically the experimental requirements. As examples, we discuss how to evaluate entanglement monotones and time correlation functions, each in a suitable embedding quantum simulator. Finally, we expect that the proposed embedding framework paves the way for a general theory of enhanced one-to-one quantum simulators. This work is supported by Spanish MINECO FIS2012-36673-C03-02; UPV/EHU UFI 11/55; UPV/EHU PhD fellowship; Basque Government IT472-10; SOLID, CCQED, PROMISCE, SCALEQIT EU projects; and Marco Polo PUCP grant.

  18. Embedded-monolith armor

    Energy Technology Data Exchange (ETDEWEB)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.


    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  19. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard


    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  20. Airfoil Ice-Accretion Aerodynamics Simulation (United States)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.


    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  1. Numerical simulations of dissipationless disk accretion (United States)

    Bogovalov, S. V.; Tronin, I. V.


    Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.

  2. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama


    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  3. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal


    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  4. Characterising face-on accretion onto and the subsequent contraction of protoplanetary discs (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.


    Context. Observations indicate that stars generally lose their protoplanetary discs on a timescale of about 5 Myr. Which mechanisms are responsible for the disc dissipation is still debated. Aims: Here we investigate the movement through an ambient medium as a possible cause of disc dispersal. The ram pressure exerted by the flow can truncate the disc and the accretion of material with no azimuthal angular momentum leads to further disc contraction. Methods: We derive a theoretical model from accretion disc theory that describes the evolution of the disc radius, mass, and surface density profile as a function of the density and velocity of the ambient medium. We test our model by performing hydrodynamical simulations of a protoplanetary disc embedded in a flow with different velocities and densities. Results: We find that our model gives an adequate description of the evolution of the disc radius and accretion rate onto the disc. The total disc mass in the simulations follows the theoretically expected trend, except at the lowest density where our simulated discs lose mass owing to continuous stripping. This stripping may be a numerical rather than a physical effect. Some quantitative differences exist between the model predictions and the simulations. These are at least partly caused by numerical viscous effects in the disc and depend on the resolution of the simulation. Conclusions: Our model can be used as a conservative estimate for the process of face-on accretion onto protoplanetary discs, as long as viscous processes in the disc can be neglected. The model predicts that in dense gaseous environments, discs can shrink substantially in size and can, in theory, sweep up an amount of gas of the order of their initial mass. This process could be relevant for planet formation in dense environments.

  5. Water in star-forming regions with Herschel (WISH). V. The physical conditions in low-mass protostellar outflows revealed by multi-transition water observations (United States)

    Mottram, J. C.; Kristensen, L. E.; van Dishoeck, E. F.; Bruderer, S.; San José-García, I.; Karska, A.; Visser, R.; Santangelo, G.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Herpin, F.; Hogerheijde, M. R.; Johnstone, D.; van Kempen, T. A.; Liseau, R.; Nisini, B.; Tafalla, M.; van der Tak, F. F. S.; Wyrowski, F.


    Context. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in various parts of the protostar, particularly the outflow. Aims: We constrain and quantify the physical conditions probed by water in the outflow-jet system for Class 0 and I sources. Methods: We present velocity-resolved Herschel HIFI spectra of multiple water-transitions observed towards 29 nearby Class 0/I protostars as part of the WISH guaranteed time key programme. The lines are decomposed into different Gaussian components, with each component related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then use non-LTE radex models to constrain the excitation conditions present in the two outflow-related components. Results: Water emission at the source position is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H2 densities of order 105 - 108 cm-3 and H2O column densities of order 1016 - 1018 cm-2. H2O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200 AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30 AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. The similarity of the physical conditions is in contrast to off-source determinations which show similar densities but lower column densities and larger filling factors. We propose

  6. Protostellar hydrodynamics: Constructing and testing a spatially and temporally second-order-accurate method. I - Spherical coordinates (United States)

    Boss, Alan P.; Myhill, Elizabeth A.


    Two related numerical schemes for calculating the 3D collapse of protostellar clouds are defined, developed, and checked on a wide variety of test problems in spherical symmetry and multiple dimensions. One scheme is first-order accurate in time (code S), and the other second-order accurate in time (code ST). Through convergence testing, the codes are shown to be second-order accurate in spatial differences. Compared with the previous 3D code, the combination of reduced numerical dissipation through second-order accuracy and of removing the systematic bias toward central concentrations implies that the tendency for fragmentation into binary or multiple protostars should increase. A reinvestigation of fragmentation as a mechanism for forming binary stars is expected to yield an even more favorable evaluation.

  7. Mapping water in protostellar outflows with Herschel. PACS and HIFI observations of L1448-C (United States)

    Nisini, B.; Santangelo, G.; Antoniucci, S.; Benedettini, M.; Codella, C.; Giannini, T.; Lorenzani, A.; Liseau, R.; Tafalla, M.; Bjerkeli, P.; Cabrit, S.; Caselli, P.; Kristensen, L.; Neufeld, D.; Melnick, G.; van Dishoeck, E. F.


    Context. Water is a key probe of shocks and outflows from young stars because it is extremely sensitive to both the physical conditions associated with the interaction of supersonic outflows with the ambient medium and the chemical processes at play. Aims: Our goal is to investigate the spatial and velocity distribution of H2O along outflows, its relationship with other tracers, and its abundance variations. In particular, this study focuses on the outflow driven by the low-mass protostar L1448-C, which previous observations have shown to be one of the brightest H2O emitters among the class 0 outflows. Methods: To this end, maps of the o-H2O 110-101 and 212-101 transitions taken with the Herschel-HIFI and PACS instruments, respectively, are presented. For comparison, complementary maps of the CO(3-2) and SiO(8-7) transitions, obtained at the JCMT, and the H2 S(0) and S(1) transitions, taken from the literature, were used as well. Physical conditions and H2O column densities were inferred using large velocity gradient radiative transfer calculations. Results: The water distribution appears to be clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range ±10-50 km s-1, but extended emission at extreme velocities (up to vr ~ 80 km s-1) is detected and is associated with the L1448-C extreme high-velocity (EHV) jet. The H2O 110-101/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas that is responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, which could indicate molecular formation from dust-free gas directly ejected from the proto-stellar wind. The ratio between the two observed H2O lines and the comparison with H2 indicate averaged Tkin and n(H2) values of ~300-500 K and 5 × 106 cm-3, respectively, while a water abundance with

  8. Water distribution in shocked regions of the NGC 1333-IRAS 4A protostellar outflow (United States)

    Santangelo, G.; Nisini, B.; Codella, C.; Lorenzani, A.; Yıldız, U. A.; Antoniucci, S.; Bjerkeli, P.; Cabrit, S.; Giannini, T.; Kristensen, L. E.; Liseau, R.; Mottram, J. C.; Tafalla, M.; van Dishoeck, E. F.


    Context. Water is a key molecule in protostellar environments because its line emission is very sensitive to both the chemistry and the physical conditions of the gas. Observations of H2O line emission from low-mass protostars and their associated outflows performed with HIFI onboard the Herschel Space Observatory have highlighted the complexity of H2O line profiles, in which different kinematic components can be distinguished. Aims: The goal is to study the spatial distribution of H2O, in particular of the different kinematic components detected in H2O emission, at two bright shocked regions along IRAS 4A, one of the strongest H2O emitters among the Class 0 outflows. Methods: We obtained Herschel-PACS maps of the IRAS 4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38'' at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. A large velocity gradient (LVG) analysis was performed to determine the excitation conditions of the gas. Results: We detect four H2O lines and CO (16-15) at the two selected shocked positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the LVG analysis of the H2O emission suggests that the compact (about 3'', corresponding to about 700 AU) component is associated with a hot (T ~ 1000 K) gas with densities nH2 ~ (1-4) × 105 cm-3, whereas the extended (10''-17'', corresponding to 2400-4000 AU) one traces a warm (T ~ 300

  9. Magnetic diffusivities in 3D radiative chemo-hydrodynamic simulations of protostellar collapse (United States)

    Dzyurkevich, Natalia; Commerçon, Benoît; Lesaffre, Pierre; Semenov, Dimitry


    Context. Both theory and observations of star-forming clouds require simulations that combine the co-evolving chemistry, magneto-hydrodynamics, and radiative transfer in protostellar collapse simulation. A detailed knowledge of self-consistent chemical evolution for the main charge carriers (both gas species and dust grains) allows us to correctly estimate the rate and nature of magnetic dissipation in the collapsing core. This knowledge is critical to answer one of the most significant issues of star and planet formation: what is the magnitude and spatial distribution of magnetic flux as the initial condition to protoplanetary disk evolution? Aims: We use a chemo-dynamical version of RAMSES, which is described in a companion publication, to follow the chemo-dynamical evolution of collapsing dense cores with various dust properties and interpret differences that occur in magnetic diffusivity terms. These differences are crucial to circumstellar disk formation. Methods: We performed 3D chemo-dynamical simulations of 1 M⊙ isolated dense core collapse for a range in dust size assumptions. The number density of dust and its mean size affect the efficiency of charge capturing and the formation of ices. The radiative hydrodynamics and dynamical evolution of chemical abundances were used to reconstruct the magnetic diffusivity terms for clouds with various magnetisation. Results: The simulations are performed for a mean dust size ranging from 0.017 μm to 1 μm, and we adopt both a fixed dust size and a dust size distribution. The chemical abundances for this range of dust sizes are produced by RAMSES and serve as inputs to calculations of Ohmic, ambipolar, and Hall diffusivity terms. Ohmic resistivity only plays a role at the late stage of the collapse in the innermost region of the cloud where gas density is in excess of a few times 1013 cm-3. Ambipolar diffusion is a dominant magnetic diffusivity term in cases where mean dust size is a typical ISM value or larger. We

  10. Cold Accretion from the Cosmic Web (United States)

    Kohler, Susanna


    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two


    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungha; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Bourke, Tyler L. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Cheshire SK11 9DL (United Kingdom); II, Neal J. Evans [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Francesco, James Di [National Research Council Canada, Herzberg Institute of Astrophysics, Victoria, BC (Canada); Cieza, Lucas A. [Universidad Diego Portales, Facultad de Ingeniera, Av. Ejército 441, Santiago (Chile); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)


    We present a multi-wavelength observational study of a low-mass star-forming region, L1251-C, with observational results at wavelengths from the near-infrared to the millimeter. Spitzer Space Telescope observations confirmed that IRAS 22343+7501 is a small group of protostellar objects. The extended emission in the east–west direction with its intensity peak at the center of L1251A has been detected at 350 and 850 μm with the Caltech Submillimeter Observatory and James Clerk Maxwell telescopes, tracing dense envelope material around L1251A. The single-dish data from the Korean VLBI Network and TRAO telescopes show inconsistencies between the intensity peaks of several molecular emission lines and that of the continuum emission, suggesting complex distributions of molecular abundances around L1251A. The Submillimeter Array interferometer data, however, show intensity peaks of CO 2–1 and {sup 13}CO 2–1 located at the position of IRS 1, which is both the brightest source in the Infrared Array Camera image and the weakest source in the 1.3 mm dust-continuum map. IRS 1 is the strongest candidate for the driving source of the newly detected compact CO 2–1 outflow. Over the entire region (14′ × 14′) of L125l-C, 3 Class I and 16 Class II sources have been detected, including three young stellar objects (YSOs) in L1251A. A comparison between the average projected distance among the 19 YSOs in L1251-C and that among the 3 YSOs in L1251A suggests that L1251-C is an example of low-mass cluster formation where protostellar objects form in a small group.

  12. Fundamental Ice Crystal Accretion Physics Studies (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan


    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  13. Accretion processes in magnetically and tidally perturbed Schwarzschild black holes

    CERN Document Server

    Kovács, Zoltán; Vasúth, Mátyás


    We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts towards the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal perturbations.

  14. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)


    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  15. Analysis of surface roughness generation in aircraft ice accretion (United States)

    Hansman, R. J., Jr.; Reehorst, Andrew; Sims, James


    Patterns of roughness evolution have been studied analysis of high magnification video observations of accreting ice surfaces provided by the NASA Lewis Research Center. Three distinct patterns of surface roughness generation have been identified within the parametric regions studied. They include: Rime, Multi-Zone Glaze, and Uniform Glaze. Under most icing conditions, a brief period of transient rime ice growth was observed caused by heat conduction into the body. The resulting thin rime layer explains previously observed insensitivity of some ice accretions to substrate insensitivity of some ice accretions to substrate surface chemistry and may provide justification for simplifying assumptions in ice accretion sailing and modeling effects.

  16. Spectral Measurements of Cyg X-3: A Thermal Source Embedded in ...

    Indian Academy of Sciences (India)

    We propose that this behaviour can be explained by a simple geometry in which a thermal X-ray source is embedded in a hot plasma formed by winds from the accretion disk within a cold shell. The high/soft and low/hard X-ray states of the source are simply the manifestation of the extent of the surrounding scattering ...

  17. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus


    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  18. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.


    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  19. Radiative Magnetic Reconnection Near Accreting Black Holes (United States)

    Beloborodov, Andrei M.


    A radiative mechanism is proposed for magnetic flares near luminous accreting black holes. It is based on recent first-principle simulations of magnetic reconnection, which show a hierarchical chain of fast-moving plasmoids. The reconnection occurs in a compact region (comparable to the black hole radius), and the chain experiences fast Compton cooling accompanied by electron-positron pair creation. The distribution of plasmoid speeds is shaped by radiative losses, and the self-regulated chain radiates its energy in hard X-rays. The mechanism is illustrated by Monte-Carlo simulations of the transfer of seed soft photons through the reconnection layer. The emerging radiation spectrum has a cutoff near 100 keV similar to the hard-state spectra of X-ray binaries and AGN. We discuss how the chain cooling differs from previous phenomenological emission models, and suggest that it can explain the hard X-ray activity of accreting black holes from first principles. Particles accelerated at the X-points of the chain produce an additional high-energy component, explaining the “hybrid Comptonization” observed in Cyg X-1.

  20. Embedded microcontroller interfacing

    CERN Document Server

    Gupta, Gourab Sen


    Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teachi

  1. The Angular Momentum of the Accreting Gas

    NARCIS (Netherlands)

    Fraternali, F.

    Every galaxy is embedded in a multiphase and extended circumgalactic medium that comprises cold high-column density gas, warm ionised filaments and a hot rarefied atmosphere (corona). This circumgalactic medium is vital for maintaining blue star-forming galaxies as it provides new fresh gas for star

  2. BOOK REVIEW: Rotation and Accretion Powered Pulsars (United States)

    Kaspi, V. M.


    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  3. The extraordinary outburst in the massive protostellar system NGC6334I-MM1: the emergence of Class II 6.7 GHz methanol maser emission (United States)

    Hunter, Todd Russell; Brogan, Crystal; MacLeod, Gordon; Chibueze, James; Cyganowski, Claudia; Chandler, Claire J.; Friesen, Rachel; Hirota, Tomoya; Young, Ken


    Our 2015 and 2016 ALMA 1.3 to 0.87 mm observations (resolution ~ 200 au) of the massive protocluster NGC6334I revealed that an extraordinary outburst (luminosity increase of 70x) had occurred in the dominant millimeter dust core MM1 when compared with earlier SMA data from 2008. We describe new results from our recent JVLA A-configuration observations of the 5 cm continuum and 6.7 GHz methanol masers in this region. These Class II masers had not previously been detected toward MM1 in any interferometric observations recorded over the past 30 years that targeted the bright masers toward other members of the protocluster (MM2 and MM3 = NGC6334F). Strong masers now appear both toward and adjacent to MM1 with the strongest spots located in a dust cavity about 1 arcsec (1300 au) north of the MM1B hypercompact HII region, along the same direction as a jet and the compact synchrotron source CM2. These data provide direct observational evidence of the effects of episodic accretion onto a deeply-embedded high mass protostar and affords a unique opportunity to assess the ongoing impact of this event on the surrounding cluster. These data demonstrate the need for higher sensitivity and higher angular resolution centimeter observations, as enabled by the ngVLA, to trace the earliest phases of massive star formation.

  4. Halogens in chondritic meteorites and terrestrial accretion (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.


    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  5. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field: recent results and new exeprimental studies (United States)

    Vinci, Tommaso; Revet, Guilhem; Higginson, Drew; Béard, Jérome; Burdonov, K.; Chen, Sophia; Khagani, D.; Khiar, B.; Naughton, K.; Pikuz, S.; Riconda, Caterina; Riquier, R.; Soloviev, A.; Willi, O.; Portugall, O.; Pépin, Henry; Ciardi, Andrea; Fuchs, Julien; Albertazzi, Bruno


    Accretion shocks in Young Stellar Objects (YSO) are a subject of great interest in astrophysics; they exhibit intense magnetic activity and are surrounded by an accretion disk from which matter falls down onto the stellar surface in the form of columns following the magnetic lines (B ~ kG) at the free-fall velocity (100-500 km/s). As a column impacts the stellar surface, a radiative shock is created which heats up the infalling flow. As a consequence, a new reverse shock forms and some oscillations are expected in the emitted radiation as a proof of this periodic dynamic, but no periodicity has yet been detected in observations.To understand the reasons for this apparent inconsistency, we have recently developped an experimental setup [B. Albertazzi et al. Science 346, 325 (2014)] in which a plasma flow (generated by a high energy laser: 1013 W/cm2 - 0.6 ns pulse) is confined inside a poloidal magnetic field (20 T). This jet has an aspect ratio >10, a temperature of tens of eV, an electron density of 1018 cm-3 and propagates at 700 km/s as show by our previous numerical work [A. Ciardi et al. Physical Review Letters, 110 (2013)]. To investigate the accretion dynamics, the jet acts as the accretion column and hits a secondary target acting as the stellar surface. We will present the recent results on generation and dynamics of the jet and the new experimental results of this configuration, namely of a supersonic reverse shock traveling within the accretion column with a speed of 100 km/s, representing a Mach number of ~ 30, and the observation of increased density structures along the edges of the interaction. This will be discussed in the light of 3D-magneto-hydrodynamic simulations which parametric variations allow to understand how the various plasma parameters affect the accretion.

  6. Relations Between Timing Features and Colors in Accreting Millisecond Pulsars

    NARCIS (Netherlands)

    van Straaten, S.; van der Klis, M.; Wijnands, R.A.D.


    We have studied the aperiodic X-ray timing and color behavior of the accreting millisecond pulsars SAX J1808.4-3658, XTE J1751-305, XTE J0929-314, and XTE J1814-338 using large data sets obtained with the Rossi X-Ray Timing Explorer. We find that the accreting millisecond pulsars have timing

  7. Spectral properties of the accretion discs around rotating black holes

    Indian Academy of Sciences (India)

    Samir Mandal


    Feb 10, 2018 ... Abstract. We study the radiation properties of an accretion disc around a rotating black hole. We solve the hydrodynamic equations and calculate the transonic solutions of accretion disc in the presence of shocks. Then we use these solutions to generate the radiation spectrum in the presence of radiative ...

  8. Does mass accretion lead to field decay in neutron stars? (United States)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.


    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  9. The multiplicity and anisotropy of galactic satellite accretion (United States)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Simpson, Christine M.


    We study the incidence of group and filamentary dwarf galaxy accretion into Milky Way (MW) mass haloes using two types of hydrodynamical simulations: EAGLE, which resolves a large cosmological volume, and the AURIGA suite, which are very high resolution zoom-in simulations of individual MW-sized haloes. The present-day 11 most massive satellites are predominantly (75%) accreted in single events, 14% in pairs and 6% in triplets, with higher group multiplicities being unlikely. Group accretion becomes more common for fainter satellites, with 60% of the top 50 satellites accreted singly, 12% in pairs, and 28% in richer groups. A group similar in stellar mass to the Large Magellanic Cloud (LMC) would bring on average 15 members with stellar mass larger than 10^4{ M_\\odot}. Half of the top 11 satellites are accreted along the two richest filaments. The accretion of dwarf galaxies is highly anisotropic, taking place preferentially perpendicular to the halo minor axis, and, within this plane, preferentially along the halo major axis. The satellite entry points tend to be aligned with the present-day central galaxy disc and satellite plane, but to a lesser extent than with the halo shape. Dwarfs accreted in groups or along the richest filament have entry points that show an even larger degree of alignment with the host halo than the full satellite population. We also find that having most satellites accreted as a single group or along a single filament is unlikely to explain the MW disc of satellites.

  10. Equilibrium and stability of tokamak plasmas and accretion disks

    NARCIS (Netherlands)

    Blokland, J.W.S.


    In both fusion research as well in astrophysics, plasmas are widely studied. These plasmas can be found in different geometric configurations, such as in a tokamak, stellarator or in astrophysical jets, accretion disks, etc. In this thesis we focus on plasmas found in tokamaks or accretion disks. In

  11. Revolutionizing our View of Protostellar Multiplicity and Disks: The VLA Nascent Disk and Multiplicity (VANDAM) Survey of the Perseus Molecular Cloud (United States)

    Tobin, J. J.; Looney, L. W.; Li, Z.-Y.; Chandler, C. J.; Dunham, M. M.; Segura-Cox, D.; Cox, E. G.; Harris, R. J.; Melis, C.; Sadavoy, S. I.; Pérez, L.; Kratter, K.


    There is substantial evidence for disk formation taking place during the early stages of star formation and for most stars being born in multiple systems; however, protostellar multiplicity and disk searches have been hampered by low resolution, sample bias, and variable sensitivity. We have conducted an unbiased, high-sensitivity Karl G. Jansky Very Large Array (VLA) survey toward all known protostars (n = 94) in the Perseus molecular cloud (d ˜ 230 pc), with a resolution of ˜ 15 AU (0.06'') at λ = 8 mm. We have detected candidate protostellar disks toward 17 sources (with 12 of those in the Class 0 stage) and we have found substructure on < 50 AU scales for three Class 0 disk candidates, possibly evidence for disk fragmentation. We have discovered 16 new multiple systems (or new components) in this survey; the new systems have separations < 500 AU and 3 by < 30 AU. We also found a bi-modal distribution of separations, with peaks at ˜ 75 AU and ˜ 3000 AU, suggestive of formation through two distinct mechanisms: disk and turbulent fragmentation. The results from this survey demonstrate the necessity and utility of uniform, unbiased surveys of protostellar systems at millimeter and centimeter wavelengths.

  12. Design Methods for Embedded Security

    Directory of Open Access Journals (Sweden)

    I. Verbauwhede


    Full Text Available Embedded devices need both an efficient and a secure implementation of cryptographic algorithms. In this overview paper we show a typical top-down approach for secure and efficient implementation of embedded systems. We outline the security pyramid by illustrating the five primary abstraction levels in an embedded system. Focusing only on two levels - architecture and circuit level - we show how the design can be implemented to be both efficient and secure.

  13. Flux Accretion and Coronal Mass Ejection Dynamics (United States)

    Welsch, Brian


    Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. The equations of ideal magnetohydrodynamics (MHD) have been used to model the onset and, in some cases, the subsequent acceleration of ejections. Both observations and numerical modeling, however, suggest that magnetic reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the dynamical effects of accretion of magnetic flux onto a rising ejection by reconnection involving the ejection's background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying forces acting during the eruption, generically leading to faster acceleration of the CME. Our ultimate aim is to characterize changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux, deduced from observations of flare ribbons and photospheric magnetic fields.

  14. Accreting Millisecond Pulsars and Fundamental Physics (United States)

    Strohmayer, Tod


    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  15. Thermal continua of AGN accretion disks (United States)

    Shields, G. A.; Coleman, H. H.


    We have computed the thermal continuum energy distribution of thermal radiation from the atmospheres of supermassive accretion disks around supermassive black holes. Non-LTE radiative transfer is combined with a model of the vertical structure at each radius appropriate to the low effective gravities of these disks. Locally, the Lyman edge of H can be in emission or absorption. When the emission is summed over the disk with Doppler and gravitational redshifts taken into account, the observed continuum typically shows little sign of a discontinuity near the Lyman edge. For relatively cool disks, the Lyman edge is in absorption, but it appears as a slope change extending over several hundred angstroms, rather than an abrupt discontinuity. Disks around Kerr black holes can explain the observed range of soft X-ray luminosities of AGN, but disks around Schwarzschild holes are much too faint in soft X-rays.

  16. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)


    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  17. Accretion onto a noncommutative geometry inspired black hole (United States)

    Kumar, Rahul; Ghosh, Sushant G.


    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  18. Energetic particle acceleration in spherically symmetric accretion flows and shocks (United States)

    Webb, G. M.; Bogdan, T. J.


    Steady state, spherically symmetric solutions of the cosmic-ray transport equation describing the acceleration of energetic particles in galactic accretion flows onto neutron stars, black holes, white dwarfs, and protostars are studied. The results indicate that astrophysical accretion flows can be partitioned into distinct classes depending upon whether the accretion rate lies above or below a critical value of a few times 10 to the -7th stellar masses/yr. When the particle transport is convection-dominated, both classes of accretion flows exhibit a spectral index appropriate for first-order Fermi acceleration at a plane shock in the absence of losses. As the particle transport becomes diffusion-dominated, both classes show a break and precipitous falloff in the particle spectrum due to the escape of these particles from the accretion flow. The precise nature of the spectrum depends on the relationship between the particle momentum and the spatial diffusion coefficient.

  19. Adaptable Embedded Systems

    CERN Document Server

    Lisbôa, Carlos; Carro, Luigi


    As embedded systems become more complex, designers face a number of challenges at different levels: they need to boost performance, while keeping energy consumption as low as possible, they need to reuse existent software code, and at the same time they need to take advantage of the extra logic available in the chip, represented by multiple processors working together.  This book describes several strategies to achieve such different and interrelated goals, by the use of adaptability. Coverage includes reconfigurable systems, dynamic optimization techniques such as binary translation and trace reuse, new memory architectures including homogeneous and heterogeneous multiprocessor systems, communication issues and NOCs, fault tolerance against fabrication defects and soft errors, and finally, how one can combine several of these techniques together to achieve higher levels of performance and adaptability.  The discussion also includes how to employ specialized software to improve this new adaptive system, and...

  20. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash


    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  1. AGN Variability: Probing Black Hole Accretion (United States)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.


    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  2. Embedding complementarity in HCI methods

    DEFF Research Database (Denmark)

    Nielsen, Janni; Yssing, Carsten; Levinsen, Karin


    Differences in cultural contexts constitute differences in cognition, and research has shown that different cultures may use different cognitive tools for perception and reasoning. The cultural embeddings are significant in relation to HCI, because the cultural context is also embedded in the tec......Differences in cultural contexts constitute differences in cognition, and research has shown that different cultures may use different cognitive tools for perception and reasoning. The cultural embeddings are significant in relation to HCI, because the cultural context is also embedded...... the HCI paradigm in system development....

  3. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav


    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  4. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine


    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  5. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas


    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  6. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.


    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  7. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.


    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  8. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events (United States)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian


    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  9. Bondi-Hoyle accretion in an isothermal magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J., E-mail: [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States)


    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  10. Explaining Embedded Software Modelling Decisions

    NARCIS (Netherlands)

    Marincic, J.; Mader, Angelika H.; Wieringa, Roelf J.

    As today’s devices, gadgets and machines become more intelligent, the complexity of embedded software controlling them grows enormously. To deal with this complexity, embedded software is designed using model-based paradigms. The process of modelling is a combination of formal and creative, design

  11. Stylistic Embedding in Yoruba Literature. (United States)

    Olabode, Afolabi

    The process of embedding, a term used in generative grammar to refer to a construction in which a sentence is included within another sentence, is examined as it occurs in Yoruba literature. Examples are drawn from Yoruba praise poetry, in both written and oral form and within Yoruba novels. Forms of embedding identified include those to draw…

  12. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob


    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE...

  13. Asymmetric distances for binary embeddings. (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana


    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  14. Processing lexically embedded spoken words. (United States)

    Luce, P A; Lyons, E A


    A large number of multisyllabic words contain syllables that are themselves words. Previous research using cross-modal priming and word-spotting tasks suggests that embedded words may be activated when the carrier word is heard. To determine the effects of an embedded word on processing of the larger word, processing times for matched pairs of bisyllabic words were examined to contrast the effects of the presence or absence of embedded words in both 1st- and 2nd-syllable positions. Results from auditory lexical decision and single-word shadowing demonstrate that the presence of an embedded word in the 1st-syllable position speeds processing times for the carrier word. The presence of an embedded word in the 2nd syllable has no demonstrable effect.

  15. Atmospheric signatures of giant exoplanet formation by pebble accretion (United States)

    Madhusudhan, Nikku; Bitsch, Bertram; Johansen, Anders; Eriksson, Linn


    Atmospheric chemical abundances of giant planets lead to important constraints on planetary formation and migration. Studies have shown that giant planets that migrate through the protoplanetary disc can accrete substantial amounts of oxygen-rich planetesimals, leading to supersolar metallicities in the envelope and solar or subsolar C/O ratios. Pebble accretion has been demonstrated to play an important role in core accretion and to have growth rates that are consistent with planetary migration. The high pebble accretion rates allow planetary cores to start their growth beyond 10 au and subsequently migrate to cold (≳1 au), warm (˜0.1-1 au) or hot (≲0.1 au) orbits. In this work we investigate how the formation of giant planets via pebble accretion influences their atmospheric chemical compositions. We find that under the standard pebble accretion scenario, where the core is isolated from the envelope, the resulting metallicities (O/H and C/H ratios) are subsolar, while the C/O ratios are supersolar. Planets that migrate through the disc to become hot Jupiters accrete substantial amounts of water vapour, but still acquire slightly subsolar O/H and supersolar C/O of 0.7-0.8. The metallicity can be substantially subsolar (˜0.2-0.5 × solar) and the C/O can even approach 1.0 if the planet accretes its envelope mostly beyond the CO2 ice line, i.e. cold Jupiters or hot Jupiters that form far out and migrate in by scattering. Allowing for core erosion yields significantly supersolar metallicities and solar or subsolar C/O, which can also be achieved by other means, e.g. photoevaporation and late-stage planetesimal accretion.

  16. The Wasp-Waist Nebula: VLA Ammonia Observations of the Molecular Core Envelope In a Unique Class 0 Protostellar System (United States)

    Wiseman, Jennifer


    The Wasp-Waist Nebula was discovered in the IRAC c2d survey of the Ophiuchus starforming clouds. It is powered by a well-isolated, low-luminosity, low-mass Class 0 object. Its weak outflow has been mapped in the CO (3-2) transition with the JCMT, in 2.12 micron H2 emission with WIRC (the Wide-Field Infrared Camera) on the Hale 5-meter, and, most recently, in six H2 mid-infrared lines with the IRS (InfraRed Spectrograph) on-board the Spitzer Space Telescope; possible jet twisting structure may be evidence of unique core dynamics. Here, we report results of recent VLA ammonia mapping observations of the dense gas envelope feeding the central core protostellar system. We describe the morphology, kinematics, and angular momentum characteristics of this unique system. The results are compared with the envelope structure deduced from IRAC 8-micron absorption of the PAH (polycyclic aromatic hydrocarbon) background emission from the cloud.

  17. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.


    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  18. Does mass accretion lead to field decay in neutron stars (United States)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.


    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  19. Accreting fluids onto regular black holes via Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)


    We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)

  20. Externally Heated Protostellar Cores in the Ophiuchus Star-Forming Region (United States)

    Lindberg, Johan E.; Charnley, Steven B.; Jorgensen, Jes K.; Cordiner, Martin A.; Bjerkeli, Per


    We present APEX 218 GHz observations of molecular emission in a complete sample of embedded protostars in the Ophiuchus star-forming region. To study the physical properties of the cores, we calculate H2CO and c-C3H2 rotational temperatures, both of which are good tracers of the kinetic temperature of the molecular gas. We find that the H2CO temperatures range between 16K and 124K, with the highest H2CO temperatures toward the hot corino source IRAS 16293-2422 (69-124 K) and the sources in the rho Oph A cloud (23-49 K) located close to the luminous Herbig Be star S1, which externally irradiates the rho Oph A cores. On the other hand, the c-C3H2 rotational temperature is consistently low (7-17 K) in all sources. Our results indicate that the c-C3H2 emission is primarily tracing more shielded parts of the envelope whereas the H2CO emission (at the angular scale of the APEX beam; 3600 au in Ophiuchus) mainly traces the outer irradiated envelopes, apart from in IRAS?16293-2422, where the hot corino emission dominates. In some sources, a secondary velocity component is also seen, possibly tracing the molecular outflow.

  1. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk


    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  2. Accreting Binary Populations in the Earlier Universe (United States)

    Hornschemeier, Ann


    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  3. Accretion Dynamics on Wet Granular Materials (United States)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre


    Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.

  4. Classifying the embedded young stellar population in Perseus and Taurus and the LOMASS database (United States)

    Carney, M. T.; Yıldız, U. A.; Mottram, J. C.; van Dishoeck, E. F.; Ramchandani, J.; Jørgensen, J. K.


    Context. The classification of young stellar objects (YSOs) is typically done using the infrared spectral slope or bolometric temperature, but either can result in contamination of samples. More accurate methods to determine the evolutionary stage of YSOs will improve the reliability of statistics for the embedded YSO population and provide more robust stage lifetimes. Aims: We aim to separate the truly embedded YSOs from more evolved sources. Methods: Maps of HCO+J = 4-3 and C18O J = 3-2 were observed with HARP on the James Clerk Maxwell Telescope (JCMT) for a sample of 56 candidate YSOs in Perseus and Taurus in order to characterize the presence and morphology of emission from high density (ncrit > 106 cm-3) and high column density gas, respectively. These are supplemented with archival dust continuum maps observed with SCUBA on the JCMT and Herschel PACS to compare the morphology of the gas and dust in the protostellar envelopes. The spatial concentration of HCO+J = 4-3 and 850 μm dust emission are used to classify the embedded nature of YSOs. Results: Approximately 30% of Class 0+I sources in Perseus and Taurus are not Stage I, but are likely to be more evolved Stage II pre-main sequence (PMS) stars with disks. An additional 16% are confused sources with an uncertain evolutionary stage. Outflows are found to make a negligible contribution to the integrated HCO+ intensity for the majority of sources in this study. Conclusions: Separating classifications by cloud reveals that a high percentage of the Class 0+I sources in the Perseus star forming region are truly embedded Stage I sources (71%), while the Taurus cloud hosts a majority of evolved PMS stars with disks (68%). The concentration factor method is useful to correct misidentified embedded YSOs, yielding higher accuracy for YSO population statistics and Stage timescales. Current estimates (0.54 Myr) may overpredict the Stage I lifetime on the order of 30%, resulting in timescales down to 0.38 Myr for the

  5. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio


    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  6. Embedded sensors in layered manufacturing (United States)

    Li, Xiaochun

    Layered Manufacturing can be applied to build ``smart'' parts with sensors, integrated circuits, and actuators placed within the component. Embedded sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of components in service. Techniques for embedding fiber optic sensors in metals, polymers, and ceramics have been investigated. Embedding optical fibers into metals is especially challenging because engineering alloys tend to exhibit high melting temperatures. In the present research an embedding sequence was developed capable of embedding fiber sensors into parts made of metal alloys with high melting temperatures. Fiber Bragg Grating (FBG) sensors were selected as the most promising sensor candidate. The embedded FBG sensors were characterized for temperature and strain measurements. The embedded FBG sensors in nickel and stainless steel provided high sensitivity, good accuracy, and high temperature capacity for temperature measurements. Temperature sensitivity approximately 100% higher than that of bare FBGs was demonstrated. For strain measurements, the sensors embedded in metal and polyurethane yielded high sensitivity, accuracy, and linearity. The sensitivity of the embedded FBGs was in good agreement with that of bare FBGs. Moreover, a decoupling technique for embedded FBG sensors was developed to separate temperature and strain effects. The embedded FBG sensors were used to monitor the accumulation of residual stresses during the laser- assisted Layered Manufacturing, to measure the strain field in layered materials, to measure pressure, and to monitor temperature and strain simultaneously. New techniques have been developed for temperature and strain measurements of rotating components with FBG sensors embedded or attached to the surface. Tunable laser diodes were incorporated into the sensing system for monitoring the Bragg grating wavelength

  7. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul


    -to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...... of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...

  8. Specialized Orthonormal Frames and Embedding

    Directory of Open Access Journals (Sweden)

    Frank B. Estabrook


    Full Text Available We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge-Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.

  9. A Systems-Level Perspective on Engine Ice Accretion (United States)

    May, Ryan David; Guo, Ten-Huei; Simon, Donald L.


    Talk covers: (1) Problem of Engine Power Loss;(2) Modeling Engine Icing Effects; (3) Simulation of Engine Rollback; (4) Icing/Engine Control System Interaction; (5) Detection of Ice Accretion; (6) Potential Mitigation Strategies.

  10. Dynamically important magnetic fields near accreting supermassive black holes. (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A


    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.


    Luft, John H.


    Epoxy embedding methods of Glauert and Kushida have been modified so as to yield rapid, reproducible, and convenient embedding methods for electron microscopy. The sections are robust and tissue damage is less than with methacrylate embedding. PMID:13764136

  12. Advective accretion flow properties around rotating black holes ...

    Indian Academy of Sciences (India)



    Feb 10, 2018 ... in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of ak based on observed. HFQPOs (∼300 Hz and ∼450 Hz) for the black hole source GRO J1655-40. Keywords. Accretion: accretion disc—black hole physics—shock waves—ISM: jets and outflows—X-ray: binaries. 1.

  13. On the accretion of phantom energy onto wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)]. E-mail:


    By using a properly generalized accretion formalism it is argued that the accretion of phantom energy onto a wormhole does not make the size of the wormhole throat to comovingly scale with the scale factor of the universe, but instead induces an increase of that size so big that the wormhole can engulf the universe itself before it reaches the big rip singularity, at least relative to an asymptotic observer.

  14. G 10.472+0.027: An Extreme Water Maser Outflow Associated with a Massive Protostellar Cluster (United States)

    Titmarsh, A. M.; Ellingsen, S. P.; Breen, S. L.; Caswell, J. L.; Voronkov, M. A.


    An Australia Telescope Compact Array search for 22 GHz water masers toward 6.7 GHz class II methanol masers detected in the Methanol Multibeam survey has resulted in the detection of extremely high-velocity emission from one of the sources. The water maser emission associated with this young stellar object covers a velocity span of nearly 300 km s-1. The highest velocity water maser emission is redshifted from the systemic velocity by 250 km s-1, which is a new record for high-mass star formation regions. The maser is associated with a very young late O, or early B star, which may still be actively accreting matter (and driving the extreme outflow). If that is the case, future observations of the kinematics of this water maser will provide a unique probe of accretion processes in the highest mass young stellar objects and test models of water maser formation.


    Energy Technology Data Exchange (ETDEWEB)

    Titmarsh, A. M.; Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); Breen, S. L.; Caswell, J. L.; Voronkov, M. A. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76 Epping, NSW 1710 (Australia)


    An Australia Telescope Compact Array search for 22 GHz water masers toward 6.7 GHz class II methanol masers detected in the Methanol Multibeam survey has resulted in the detection of extremely high-velocity emission from one of the sources. The water maser emission associated with this young stellar object covers a velocity span of nearly 300 km s{sup –1}. The highest velocity water maser emission is redshifted from the systemic velocity by 250 km s{sup –1}, which is a new record for high-mass star formation regions. The maser is associated with a very young late O, or early B star, which may still be actively accreting matter (and driving the extreme outflow). If that is the case, future observations of the kinematics of this water maser will provide a unique probe of accretion processes in the highest mass young stellar objects and test models of water maser formation.

  16. Accretion Disks and Coronae in the X-Ray Flashlight (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan


    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  17. Turbulent Mixing on Helium-accreting White Dwarfs (United States)

    Piro, Anthony L.


    An attractive scenario for producing Type Ia supernovae (SNe Ia) is a double detonation, where detonation of an accreted helium layer triggers ignition of a C/O core. Whether or not such a mechanism can explain some or most SNe Ia depends on the properties of the helium burning, which in turn is set by the composition of the surface material. Using a combination of semi-analytic and simple numerical models, I explore when turbulent mixing due to hydrodynamic instabilities during the accretion process can mix C/O core material up into the accreted helium. Mixing is strongest at high accretion rates, large white dwarf (WD) masses, and slow spin rates. The mixing would result in subsequent helium burning that better matches the observed properties of SNe Ia. In some cases, there is considerable mixing that can lead to more than 50% C/O in the accreted layer at the time of ignition. These results will hopefully motivate future theoretical studies of such strongly mixed conditions. Mixing also has implications for other types of WD surface explosions, including the so-called .Ia supernovae, the calcium-rich transients (if they arise from accreting WDs), and metal-enriched classical novae.

  18. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.


    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  19. Freddi: Fast Rise Exponential Decay accretion Disk model Implementation (United States)

    Malanchev, K. L.; Lipunova, G. V.


    Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

  20. Implementation and Validation of 3-D Ice Accretion Measurement Methodology (United States)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd


    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  1. Germanium Nanocrystals Embedded in Sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Sharp, I.D.; Liao, C.Y.; Yi, D.O.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Chrzan, D.C.; Haller, E.E.


    {sup 74}Ge nanocrystals are formed in a sapphire matrix by ion implantation followed by damage. Embedded nanocrystals experience large compressive stress relative to bulk, as embedded in sapphire melt very close to the bulk melting point (Tm = 936 C) whereas experience considerably lower stresses. Also, in situ TEM reveals that nanocrystals ion-beam-synthesized nanocrystals embedded in silica are observed to be spherical and measured by Raman spectroscopy of the zone center optical phonon. In contrast, reveals that the nanocrystals are faceted and have a bi-modal size distribution. Notably, the matrix remains crystalline despite the large implantation dose and corresponding thermal annealing. Transmission electron microscopy (TEM) of as-grown samples those embedded in silica exhibit a significant melting point hysteresis around T{sub m}.

  2. Pouring 'Cold Water' on Hot Accretion (United States)

    Rubin, A. E.


    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid

  3. Initiation of continental accretion: metamorphic conditions (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid


    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from directly be interpreted in terms of syn-convergence nappe stacking only and must reflect a component of initial (pre-collisional) high-geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  4. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten


    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  5. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten


    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  6. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin


    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  7. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores (United States)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.


    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  8. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 (United States)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.


    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  9. Analyzing the Spectra of Accreting X-Ray Pulsars (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  10. Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud (United States)

    Sheehan, Patrick D.; Eisner, Josh A.


    Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.

  11. Radiation-driven Turbulent Accretion onto Massive Black Holes (United States)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara


    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ˜2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  12. Embedded Linux projects using Yocto project cookbook

    CERN Document Server

    González, Alex


    If you are an embedded developer learning about embedded Linux with some experience with the Yocto project, this book is the ideal way to become proficient and broaden your knowledge with examples that are immediately applicable to your embedded developments. Experienced embedded Yocto developers will find new insight into working methodologies and ARM specific development competence.

  13. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis


    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...


    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A.; Mastrano, A., E-mail:, E-mail: [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)


    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  15. CMB bounds on disk-accreting massive primordial black holes (United States)

    Poulin, Vivian; Serpico, Pasquale D.; Calore, Francesca; Clesse, Sébastien; Kohri, Kazunori


    Stellar-mass primordial black holes (PBH) have been recently reconsidered as a dark matter (DM) candidate after the aLIGO discovery of several binary black hole (BH) mergers with masses of tens of M⊙ . Matter accretion on such massive objects leads to the emission of high-energy photons, capable of altering the ionization and thermal history of the universe. This, in turn, affects the statistical properties of the cosmic microwave background (CMB) anisotropies. Previous analyses have assumed spherical accretion. We argue that this approximation likely breaks down and that an accretion disk should form in the dark ages. Using the most up-to-date tools to compute the energy deposition in the medium, we derive constraints on the fraction of DM in PBH. Provided that disks form early on, even under conservative assumptions for accretion, these constraints exclude a monochromatic distribution of PBH with masses above ˜2 M⊙ as the dominant form of DM. The bound on the median PBH mass gets more stringent if a broad, log-normal mass function is considered. A deepened understanding of nonlinear clustering properties and BH accretion disk physics would permit an improved treatment and possibly lead to more stringent constraints.

  16. Observations of nitrogen isotope fractionation in deeply embedded protostars⋆ (United States)

    Wampfler, S. F.; Jørgensen, J. K.; Bizzarro, M.; Bisschop, S. E.


    Context The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Aims The aim of this study is to measure the 14N/15N ratio around three nearby, embedded low- to intermediate-mass protostars. Methods Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of J = 3–2 and 4–3 transitions of H13CN, HC15N, HN13C, and H15NC was observed with the Atacama Pathfinder EXperiment telescope (APEX). The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Results Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of ~1.5–2.5 in both HCN and HNC with respect to the solar composition. IRAS 16293A falls in the range of typical prestellar core values. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. Conclusions The enhanced 15N abundances in HCN and HNC found in two Class 0 sources (14N/15N ~ 160–290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between

  17. Embedding Graphs in Lorentzian Spacetime

    CERN Document Server

    Clough, James R


    Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise the classical MDS algorithm, defined only for metrics with a Euclidean signature, to manifolds of any metric signature. We then use this general method to develop an algorithm to be used on networks which have causal structure allowing them to be embedded in Lorentzian manifolds. The method is demonstrated by calculating embeddings for both causal sets and citation networks in Minkowski spacetime. We finally suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

  18. Embedded Processor Oriented Compiler Infrastructure

    Directory of Open Access Journals (Sweden)

    DJUKIC, M.


    Full Text Available In the recent years, research of special compiler techniques and algorithms for embedded processors broaden the knowledge of how to achieve better compiler performance in irregular processor architectures. However, industrial strength compilers, besides ability to generate efficient code, must also be robust, understandable, maintainable, and extensible. This raises the need for compiler infrastructure that provides means for convenient implementation of embedded processor oriented compiler techniques. Cirrus Logic Coyote 32 DSP is an example that shows how traditional compiler infrastructure is not able to cope with the problem. That is why the new compiler infrastructure was developed for this processor, based on research. in the field of embedded system software tools and experience in development of industrial strength compilers. The new infrastructure is described in this paper. Compiler generated code quality is compared with code generated by the previous compiler for the same processor architecture.

  19. Design Methodologies for Secure Embedded Systems

    CERN Document Server

    Biedermann, Alexander


    Embedded systems have been almost invisibly pervading our daily lives for several decades. They facilitate smooth operations in avionics, automotive electronics, or telecommunication. New problems arise by the increasing employment, interconnection, and communication of embedded systems in heterogeneous environments: How secure are these embedded systems against attacks or breakdowns? Therefore, how can embedded systems be designed to be more secure? And how can embedded systems autonomically react to threats? Facing these questions, Sorin A. Huss is significantly involved in the exploration o

  20. Graph Embedding for Pattern Analysis

    CERN Document Server

    Ma, Yunqian


    Graph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.

  1. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA


    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  2. Certifiable Java for Embedded Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Hansen, René Rydhof; Ravn, Anders P.


    The Certifiable Java for Embedded Systems (CJ4ES) project aimed to develop a prototype development environment and platform for safety-critical software for embedded applications. There are three core constituents: A profile of the Java programming language that is tailored for safety......-critical applications, a predictable Java processor built with FPGA technology, and an Eclipse based application development environment that binds the profile and the platform together and provides analyses that help to provide evidence that can be used as part of a safety case. This paper summarizes key contributions...

  3. The formation of massive star systems by accretion. (United States)

    Krumholz, Mark R; Klein, Richard I; McKee, Christopher F; Offner, Stella S R; Cunningham, Andrew J


    Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt accretion. Instead, gravitational and Rayleigh-Taylor instabilities channel gas onto the star system through nonaxisymmetric disks and filaments that self-shield against radiation while allowing radiation to escape through optically thin bubbles. Gravitational instabilities cause the disk to fragment and form a massive companion to the primary star. Radiation pressure does not limit stellar masses, but the instabilities that allow accretion to continue lead to small multiple systems.

  4. Laboratory unraveling of matter accretion in young stars. (United States)

    Revet, Guilhem; Chen, Sophia N; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N; Yu Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien


    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

  5. Grinding Down Stars and Stellar Remnants Into Accretion Disks (United States)

    Sadika Nasim, Syeda; Fabj, Gaia; McKernan, Barry; Ford, K. E. Saavik


    Active galactic nuclei (AGN) are powered by the accretion of matter onto supermassive black holes (SMBH). Most accretion models take the form of disks of gas around the SMBH. Stars and stellar remnants also orbit the SMBH. Orbiting objects plunging through the disk experience a drag force, and through repeated passage, orbiters can have their orbits ground-down into the plane of the disk. Using two different accretion disk models, TQM (Thompson, Quataert & Murray), and SG (Sirko & Goodman), we determine the grind-down time for stars and stellar remnants, as a function of initial inclination angle, and initial radius. Orbital grind-down time is important because stellar-mass black holes (sBH) within AGN disks are likely to merge at a higher rate than in the field. Accurate estimates of orbital grind-down time can help constrain predictions of the AGN channel for LIGO.

  6. Laboratory unravelling of matter accretion in young stars (United States)

    Revet, G.; Chen, S. N.; Bonito, R.; Khiar, B.; Filippov, E.; Argiroffi, C.; Higginson, D. P.; Orlando, S.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Khaghani, D.; Naughton, K.; Pépin, H.; Portugall, O.; Riquier, R.; Rodriguez, R.; Ryazantsev, S. N.; Skobelev, I. Yu.; Soloviev, A.; Willi, O.; Pikuz, S.; Ciardi, A.; Fuchs, J.


    Accretion dynamics in the forming of young stars is still object of debate because of limitations in observations and modelling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is laterally ejected from the solid surface, then refocused by the magnetic field toward the incoming stream. Such ejected matter forms a plasma shell that envelops the shocked core, reducing escaped X-ray emission. This demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from X-ray and optical observations.

  7. On the Maximum Mass of Accreting Primordial Supermassive Stars (United States)

    Woods, T. E.; Heger, Alexander; Whalen, Daniel J.; Haemmerlé, Lionel; Klessen, Ralf S.


    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ˜ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01-10 M ⊙ yr-1 using the stellar evolution code Kepler. Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000-330,000 M ⊙ for accretion rates of 0.1-10 M ⊙ yr-1, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  8. On the Maximum Mass of Accreting Primordial Supermassive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woods, T. E.; Heger, Alexander [Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800 (Australia); Whalen, Daniel J. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX (United Kingdom); Haemmerlé, Lionel; Klessen, Ralf S. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische. Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)


    Supermassive primordial stars are suspected to be the progenitors of the most massive quasars at z ∼ 6. Previous studies of such stars were either unable to resolve hydrodynamical timescales or considered stars in isolation, not in the extreme accretion flows in which they actually form. Therefore, they could not self-consistently predict their final masses at collapse, or those of the resulting supermassive black hole seeds, but rather invoked comparison to simple polytropic models. Here, we systematically examine the birth, evolution, and collapse of accreting, non-rotating supermassive stars under accretion rates of 0.01–10 M {sub ⊙} yr{sup −1} using the stellar evolution code Kepler . Our approach includes post-Newtonian corrections to the stellar structure and an adaptive nuclear network and can transition to following the hydrodynamic evolution of supermassive stars after they encounter the general relativistic instability. We find that this instability triggers the collapse of the star at masses of 150,000–330,000 M {sub ⊙} for accretion rates of 0.1–10 M {sub ⊙} yr{sup −1}, and that the final mass of the star scales roughly logarithmically with the rate. The structure of the star, and thus its stability against collapse, is sensitive to the treatment of convection and the heat content of the outer accreted envelope. Comparison with other codes suggests differences here may lead to small deviations in the evolutionary state of the star as a function of time, that worsen with accretion rate. Since the general relativistic instability leads to the immediate death of these stars, our models place an upper limit on the masses of the first quasars at birth.

  9. Universal subhalo accretion in cold and warm dark matter cosmologies (United States)

    Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda


    The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.

  10. Fountain-driven gas accretion by the Milky Way

    Directory of Open Access Journals (Sweden)

    Ciotti L.


    Full Text Available Accretion of fresh gas at a rate of ∼ 1M☉yr−1 is necessary in star-forming disc galaxies, such as the Milky Way, in order to sustain their star-formation rates. In this work we present the results of a new hydrodynamic simulation supporting the scenario in which the gas required for star formation is drawn from the hot corona that surrounds the star-forming disc. In particular, the cooling of this hot gas and its accretion on to the disc are caused by the passage of cold galactic fountain clouds through the corona.

  11. Embedded Temperature-Change Sensors (United States)

    Thakoor, Sarita; Thakoor, Anil; Karmon, Dan


    Transducers sensitive to rates of change of temperature embedded in integrated circuits and discrete electronic components damaged by overheating, according to proposal. Used to detect onset of rapid heating and to trigger shutoffs of power or other corrective actions before temperatures rise beyond safe limits. Sensors respond fast and reliably to incipient overheating because they are in direct thermal contact with vulnerable circuit elements.

  12. Embedding Sensors During Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sbriglia, Lexey Raylene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This PowerPoint presentation had the following headings: Fused deposition modeling (FDM); Open source 3D printing; Objectives; Vibration analysis; Equipment; Design; Material choices; Failure causes, such as tension, bubbling; Potential solutions; Simulations; Embedding the sensors; LabView programming; Alternate data acquisition; Problem and proposed solution; and, Conclusions

  13. Density-orbital embedding theory

    NARCIS (Netherlands)

    Visscher, L.; Gritsenko, O.


    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total

  14. Motif-based embedding for graph clustering (United States)

    Lim, Sungsu; Lee, Jae-Gil


    Community detection in complex networks is a fundamental problem that has been extensively studied owing to its wide range of applications. However, because community detection methods typically rely on the relations between vertices in networks, they may fail to discover higher-order graph substructures, called the network motifs. In this paper, we propose a novel embedding method for graph clustering that considers higher-order relationships involving multiple vertices. We show that our embedding method, which we call motif-based embedding, is more effective in detecting communities than existing graph embedding methods, spectral embedding and force-directed embedding, both theoretically and experimentally.

  15. A Literary Discourse of Nigerian Children's Accretive Songs ...

    African Journals Online (AJOL)

    The paper has chosen to discuss Nigerian childlore and specifically children's accretive songs with a view to highlighting their socio-cultural, political and aesthetic values. Furthermore, the paper shows how children's play culture reflects broader debates about creativity; thereby confirming the symbiosis between adults' ...

  16. Accretion of the Outer Planets: Oligarchy or Monarchy? (United States)

    Weidenschilling, S. J.; Marzari, F.; Davis, D. R.


    Timescale for runaway growth is shortened if accretion is seeded by a large body in a swarm of small planetesimals. Bodies of mass ~ 10^25 g scattered from the Jupiter-Saturn region are effective in nucleating formation of Uranus and Neptune.

  17. X-ray reverberation around accreting black holes

    NARCIS (Netherlands)

    Uttley, P.; Cackett, E.M.; Fabian, A.C.; Kara, E.; Wilkins, D.R.


    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time delays between changes in the direct coronal emission and corresponding variations in its reflection from the

  18. The magnetic-field strengths of accreting millisecond pulsars

    NARCIS (Netherlands)

    Mukherjee, D.; Bult, P.; van der Klis, M.; Bhattacharya, D.


    In this work we have estimated upper and lower limits to the strength of the magnetic dipole moment of all 14 accreting millisecond X-ray pulsars observed with the Rossi X-ray Timing Explorer (RXTE). For each source we searched the archival RXTE data for the highest and lowest flux levels with a

  19. Intermittent accreting millisecond pulsars: Light houses with broken lamps?

    NARCIS (Netherlands)

    Altamirano, D.; Casella, P.


    Intermittent accreting millisecond X-ray pulsars are an exciting new type of sources. Their pulsations appear and disappear either on timescales of hundreds of seconds or on timescales of days. The study of these sources add new observational constraints to present models that explain the presence

  20. Durability of the accretion disk of millisecond pulsars. (United States)

    Michel, F C; Dessler, A J


    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.

  1. Accreting millisecond X-ray pulsars: recent developments

    NARCIS (Netherlands)

    Wijnands, R.


    It is now more than eleven years since the discovery of the first accreting millisecond X-ray pulsar. Since then, eleven additional systems have been found, two of them during the last year. Here I briefly discuss the most recent developments with respect to these systems.

  2. Constraining jet physics in weakly accreting black holes

    NARCIS (Netherlands)

    Markoff, S.


    Outflowing jets are observed in a variety of astronomical objects such as accreting compact objects from X-ray binaries (XRBs) to active galactic nuclei (AGN), as well as at stellar birth and death. Yet we still do not know exactly what they are comprised of, why and how they form, or their exact

  3. Advective accretion flow properties around rotating black holes ...

    Indian Academy of Sciences (India)

    We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter ( α ).

  4. Interaction of Accretion Shocks with Winds Kinsuk Acharya , Sandip ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Accretion shocks are known to oscillate in presence of cool- ing processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well. We show examples of shock oscillations under the influence of ...

  5. Stochastic Resonance of Accretion Disk and the Persistent Low ...

    Indian Academy of Sciences (India)

    In this paper, we use a Langevin type equation with a damping term and stochastic force to describe the stochastic oscillations on the vertical direction of the accretion disk around a black hole, and calculate the luminosity and power spectral density (PSD) for an oscillating disk. Then we discuss the stochastic resonance ...

  6. Eclipsing the innermost accretion disc regions in AGN

    Czech Academy of Sciences Publication Activity Database

    Sanfrutos, M.; Miniutti, G.; Dovčiak, Michal; Agis-Gonzalez, B.


    Roč. 337, 4-5 (2016), s. 546-551 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : accretion disks * black hole physics * relativistic effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  7. Shocks in the relativistic transonic accretion with low angular momentum

    Czech Academy of Sciences Publication Activity Database

    Suková, Petra; Charzynski, S.; Janiuk, A.


    Roč. 472, č. 4 (2017), s. 4327-4342 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : accretion discs * hydrodynamics * shock waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  8. Angular Momentum Transport in Quasi-Keplerian Accretion Disks

    Indian Academy of Sciences (India)

    We reexamine arguments advanced by Hayashi & Matsuda (2001), who claim that several simple, physically motivated derivations based on mean free path theory for calculating the viscous torque in a quasi-Keplerian accretion disk ... School of Computational Sciences, George Mason University, Fairfax, VA 22030, USA.

  9. Magnetically Regulated Gas Accretion in High-Redshift Galactic Disks (United States)

    Birnboim, Yuval


    Disk galaxies are in hydrostatic equilibrium along their vertical axis. The pressure allowing for this configuration consists of thermal, turbulent, magnetic, and cosmic-ray components. For the Milky Way the thermal pressure contributes ~10% of the total pressure near the plane, with this fraction dropping toward higher altitudes. Out of the rest, magnetic fields contribute ~1/3 of the pressure to distances of ~3 kpc above the disk plane. In this Letter, we attempt to extrapolate these local values to high-redshift, rapidly accreting, rapidly star-forming disk galaxies and study the effect of the extra pressure sources on the accretion of gas onto the galaxies. In particular, magnetic field tension may convert a smooth cold-flow accretion to clumpy, irregular star formation regions and rates. The infalling gas accumulates on the edge of the magnetic fields, supported by magnetic tension. When the mass of the infalling gas exceeds some threshold mass, its gravitational force cannot be balanced by magnetic tension anymore, and it falls toward the disk's plane, rapidly making stars. Simplified estimations of this threshold mass are consistent with clumpy star formation observed in SINS, UDF, GOODS, and GEMS surveys. We discuss the shortcomings of pure hydrodynamic codes in simulating the accretion of cold flows into galaxies, and emphasize the need for magnetohydrodynamic simulations.

  10. Shocks in the relativistic transonic accretion with low angular momentum (United States)

    Suková, P.; Charzyński, S.; Janiuk, A.


    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  11. Structure and Spectroscopy of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Liedahl, D; Mauche, C


    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  12. AGN jet-driven stochastic cold accretion in cluster cores (United States)

    Prasad, Deovrat; Sharma, Prateek; Babul, Arif


    Several arguments suggest that stochastic condensation of cold gas and its accretion on to the central supermassive black hole (SMBH) is essential for active galactic nuclei (AGNs) feedback to work in the most massive galaxies that lie at the centres of galaxy clusters. Our 3-D hydrodynamic AGN jet-ICM (intracluster medium) simulations, looking at the detailed angular momentum distribution of cold gas and its time variability for the first time, show that the angular momentum of the cold gas crossing ≲1 kpc is essentially isotropic. With almost equal mass in clockwise and counterclockwise orientations, we expect a cancellation of the angular momentum on roughly the dynamical time. This means that a compact accretion flow with a short viscous time ought to form, through which enough accretion power can be channeled into jet mechanical energy sufficiently quickly to prevent a cooling flow. The inherent stochasticity, expected in feedback cycles driven by cold gas condensation, gives rise to a large variation in the cold gas mass at the centres of galaxy clusters, for similar cluster and SMBH masses, in agreement with the observations. Such correlations are expected to be much tighter for the smoother hot/Bondi accretion. The weak correlation between cavity power and Bondi power obtained from our simulations also matches observations.

  13. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution (United States)

    Wijnen, Thomas; Pols, Onno; Portegies Zwart, Simon


    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classic picture of star formation in GCs, which approximates them as a single generation of stars. However, Bastian et al. recently suggested an evolutionary scenario in which a second (and higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population. In this early disc accretion scenario the low-mass, pre-main sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster centre.Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can indeed accrete sufficient enriched material to account for the observed abundances in 'second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and check for consistency. In particular, we focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  14. Gas accretion from minor mergers in local spiral galaxies

    NARCIS (Netherlands)

    Di Teodoro, E. M.; Fraternali, F.

    We quantify the gas accretion rate from minor mergers onto star-forming galaxies in the local Universe using Hi observations of 148 nearby spiral galaxies (WHISP sample). We developed a dedicated code that iteratively analyses Hi data-cubes, finds dwarf gas-rich satellites around larger galaxies,

  15. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks. (United States)

    Turolla; Dullemond


    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xiradius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  16. Thermal wind from hot accretion flows at large radii (United States)

    Bu, De-Fu; Yang, Xiao-Hong


    We study slowly rotating accretion flow at parsec and sub-parsec scale irradiated by a low luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6 - 10-3)LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate onto the black hole. ɛ lies in the rage 10-4 - 1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.

  17. Power Spectrum Density of Stochastic Oscillating Accretion Disk GB ...

    Indian Academy of Sciences (India)

    Power Spectrum Density of Stochastic Oscillating Accretion Disk. G. B. Long, J. W. Ou & Y. G. Zheng. ∗. Department of Physics, Yunnan Normal University, Kunming 650500, China. ∗ e-mail: Received 5 September 2015; accepted 24 November 2015. DOI: 10.1007/s12036-016-9372-2. Abstract.

  18. Accretion among preplanetary bodies : The many faces of runaway growth

    NARCIS (Netherlands)

    Ormel, C. W.; Dullemond, C. P.; Spaans, M.


    When preplanetary bodies reach proportions of similar to 1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is

  19. Orbital Evolution Measurement of the Accreting Millisecond X-ray ...

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4–3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the ...

  20. 92 A Literary Discourse of Nigerian Children's Accretive Songs (Pp ...

    African Journals Online (AJOL)

    Nekky Umera

    Limiting itself to Ibibio and. Yoruba Children's playlore, as arche types, this paper attempts an analysis of some Children's accretive songs providing refreshing insights into the genre and highlighting their socio-cultural values, religious implications; language and literary relevance. In this regard the present article points to ...

  1. Runaway gas accretion and gap opening versus type I migration (United States)

    Crida, A.; Bitsch, B.


    Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This

  2. Formation of Extrasolar Giant Planets by Core Nucleated Accretion (United States)

    Bodenheimer, Peter

    Central objectives: Improving our understanding of extra-solar gas giant planet formation through the Core-Nucleated Accretion model, based on constraints derived from extrasolar planet observations. More specifically, we will determine: (1) the physical conditions in a protoplanetary disk, at various distances from the star, that may lead to the formation of gas giant planets; (2) the effects of planetary migration, due to resonant torques, on realistic planet formation models, when disk evolution is taken into account; (3) luminosities, surface temperatures, and other observable properties of giant planets formed through core-nucleated accretion, which will help in the characterization of young planet candidates detected via imaging techniques. Methods and techniques: We will pursue these objectives mainly by means of numerical modeling. A number of state-of-the-art codes will be employed to model in detail different processes at various stages of the planet's growth. (1) A multi-zone accretion code will be used to model accretion of planetesimals onto the solid core. This approach will allow us to account for the evolution of the size distribution of the planetesimals, the variations of their velocity distribution relative to the planet's core, the orbital spacing of potential competing cores, and a time variable rate of accretion of small planetesimals with a range of sizes as well as of stochastic impacts of larger bodies. All these effects will provide a more accurate determination of the time scales for the growth of a giant planet's solid core. (2) A planet formation code that includes a large number of physical effects, calculated in a detailed manner, will be used to model the planet evolution until gas accretion ends. The code computes the interaction of the planetesimals with the protoplanet's envelope and determines whether the planetesimals reach the core or are dissolved in the envelope. The calculation of the thermal structure of the envelope takes

  3. An unbiased infrared H2 search for embedded flows from young stars in Orion A (United States)

    Stanke, Thomas


    phase of strong accretion, which subsequently decreases. The shortening of the jets with time requires the presence of a continuous deceleration of the jets. A simple model of the simultaneous evolution of a protostar, its circumstellar environment, and its outflow (Smith 2000) can reproduce the measured values of H2 luminosity and driving source luminosity under the assumption of a strong accretion plus high ejection efficiency phase early in the protostellar evolution. Tatematsu et al. (1993) found 125 dense cloud cores in the survey area. The jet driving sources are found to have formed predominantly in quiet cores with a low ratio of internal kinetic energy to gravitational potential energy; these are the cores with higher masses. The cores which are associated with jets have on average larger linewidths than cores without jets. This is due to the preferred presence of jets in more massive cores, which generally have larger linewidths. There is no evidence for additional internal motions excited by the interaction of the jets with the cores. The jet H2 luminosity and the core linewidth (as predicted by theory) are related, if Class 0 and Class I jets are considered separately; the relation lies at higher values of the H2 luminosity for the Class 0 jets than for Class I jets. This also suggests a time evolution of the accretion rate, with a strong peak early on and a subsequent decay. Finally, the impact of a protostellar jet population on a molecular cloud is considered. Under the conservative assumption of strict forward momentum conservation, the jets appear to fail to provide sufficient momentum to replenish decaying turbulence on the scales of a giant molecular cloud and on the scales of molecular cloud cores. At the intermediate scales of molecular clumps with sizes of a few parsec and masses of a few hundred solar masses, the jets provide enough momentum in a short enough time to potentially replenish turbulence and thus might help to stabilize the clump

  4. Black-Hole Accretion Disks --- Towards a New Paradigm --- (United States)

    Kato, S.; Fukue, J.; Mineshige, S.


    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  5. A Foundation for Embedded Languages

    DEFF Research Database (Denmark)

    Rhiger, Morten


    Recent work on embedding object languages into Haskell use "phantom types" (i.e., parameterized types whose parameter does not occur on the right-hand side of the type definition) to ensure that the embedded object-language terms are simply typed. But is it a safe assumption that only simply-typed...... terms can be represented in Haskell using phantom types? And conversely, can all simply-typed terms be represented in Haskell under the restrictions imposed by phantom types? In this article we investigate the conditions under which these assumptions are true: We show that these questions can...... be answered affirmatively for an idealized Haskell-like language and discuss to which extent Haskell can be used as a meta-language....

  6. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory....

  7. Graph Embedded Extreme Learning Machine. (United States)

    Iosifidis, Alexandros; Tefas, Anastasios; Pitas, Ioannis


    In this paper, we propose a novel extension of the extreme learning machine (ELM) algorithm for single-hidden layer feedforward neural network training that is able to incorporate subspace learning (SL) criteria on the optimization process followed for the calculation of the network's output weights. The proposed graph embedded ELM (GEELM) algorithm is able to naturally exploit both intrinsic and penalty SL criteria that have been (or will be) designed under the graph embedding framework. In addition, we extend the proposed GEELM algorithm in order to be able to exploit SL criteria in arbitrary (even infinite) dimensional ELM spaces. We evaluate the proposed approach on eight standard classification problems and nine publicly available datasets designed for three problems related to human behavior analysis, i.e., the recognition of human face, facial expression, and activity. Experimental results denote the effectiveness of the proposed approach, since it outperforms other ELM-based classification schemes in all the cases.

  8. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens


    systems, in particular place-value and quasi place-value systems. 2. The development of algebraic symbolisms. 3. The discussion whether “scientific revolutions” ever take place in mathematics, or new conceptualizations always include what preceded them. A final section investigates the relation between...

  9. Embedded multiprocessors scheduling and synchronization

    CERN Document Server

    Sriram, Sundararajan


    Techniques for Optimizing Multiprocessor Implementations of Signal Processing ApplicationsAn indispensable component of the information age, signal processing is embedded in a variety of consumer devices, including cell phones and digital television, as well as in communication infrastructure, such as media servers and cellular base stations. Multiple programmable processors, along with custom hardware running in parallel, are needed to achieve the computation throughput required of such applications. Reviews important research in key areas related to the multiprocessor implementation of multi

  10. Characterization of Embedded BPM Collimators

    CERN Document Server

    VALENTINO, Gianluca


    During LS1, 16 tertiary collimators (TCTs) and 2 secondary collimators (TCSGs) in IR6 were replaced by new embedded BPM collimators. The BPM functionality allows the possibility to align the collimators more quickly and therefore be able to respond faster to machine configuration changes, as well as a direct monitoring of the beam orbit at the collimators. Following an initial commissioning phase, an MD was carried out to test the new collimators and acquisition electronics with beam in the LHC.

  11. Corrosion Monitors for Embedded Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Casias, Adrian L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    We have developed and characterized novel in-situ corrosion sensors to monitor and quantify the corrosive potential and history of localized environments. Embedded corrosion sensors can provide information to aid health assessments of internal electrical components including connectors, microelectronics, wires, and other susceptible parts. When combined with other data (e.g. temperature and humidity), theory, and computational simulation, the reliability of monitored systems can be predicted with higher fidelity.

  12. Knowledge Engineering for Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur


    This thesis presents a way to simplify setup of complex product systems with the help of embedded configuration. To achieve this, one has to focus on what subsystems need to communicate between themselves. The required internal knowledge is then structured at three abstraction levels. Simplificat......This thesis presents a way to simplify setup of complex product systems with the help of embedded configuration. To achieve this, one has to focus on what subsystems need to communicate between themselves. The required internal knowledge is then structured at three abstraction levels....... Simplifications of the internal workings are both due to hardware- and application-induced configuration taking place both within the overall system and in each subsystem. By relating parameters in such a way, the number of user inputs or decision variables should decrease drastically, thus increasing the overall...... usability of the installation. In our case, we have rationalized that this should be done with embedded configuration, and the expected result is enhanced usability. The suggested method is deeply rooted in system theory. It draws on the emergent properties expected from the system, and tries to embed...

  13. Embedding graphs in Lorentzian spacetime.

    Directory of Open Access Journals (Sweden)

    James R Clough

    Full Text Available Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs (DAG into Minkowski spacetime using Multidimensional scaling (MDS. First we generalise the classical MDS algorithm, defined only for metrics with a Riemannian signature, to manifolds of any metric signature. We then use this general method to develop an algorithm which exploits the causal structure of a DAG to assign space and time coordinates in a Minkowski spacetime to each vertex. As in the causal set approach to quantum gravity, causal connections in the discrete graph correspond to timelike separation in the continuous spacetime. The method is demonstrated by calculating embeddings for simple models of causal sets and random DAGs, as well as real citation networks. We find that the citation networks we test yield significantly more accurate embeddings that random DAGs of the same size. Finally we suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

  14. The Herschel HIFI water line survey in the low-mass proto-stellar outflow L1448 (United States)

    Santangelo, G.; Nisini, B.; Giannini, T.; Antoniucci, S.; Vasta, M.; Codella, C.; Lorenzani, A.; Tafalla, M.; Liseau, R.; van Dishoeck, E. F.; Kristensen, L. E.


    Aims: As part of the WISH (Water In Star-forming regions with Herschel) key project, systematic observations of H2O transitions in young outflows are being carried out with the aim of understanding the role of water in shock chemistry and its physical and dynamical properties. We report on the observations of several ortho- and para-H2O lines performed with the HIFI instrument toward two bright shock spots (R4 and B2) along the outflow driven by the L1448 low-mass proto-stellar system, located in the Perseus cloud. These data are used to identify the physical conditions giving rise to the H2O emission and to infer any dependence on velocity. Methods: We used a large velocity gradient (LVG) analysis to derive the main physical parameters of the emitting regions, namely n(H2), Tkin, N(H2O) and emitting-region size. We compared these with other main shock tracers, such as CO, SiO and H2 and with shock models available in the literature. Results: These observations provide evidence that the observed water lines probe a warm (Tkin ~ 400-600 K) and very dense (n ~ 106-107 cm-3) gas that is not traced by other molecules, such as low-J CO and SiO, but is traced by mid-IR H2 emission. In particular, H2O shows strong differences with SiO in the excitation conditions and in the line profiles in the two observed shocked positions, pointing to chemical variations across the various velocity regimes and chemical evolution in the different shock spots. Physical and kinematical differences can be seen at the two shocked positions. At the R4 position, two velocity components with different excitation can be distinguished, of which the component at higher velocity (R4-HV) is less extended and less dense than the low velocity component (R4-LV). H2O column densities of about 2 × 1013 and 4 × 1014 cm-2 were derived for the R4-LV and the R4-HV components, respectively. The conditions inferred for the B2 position are similar to those of the R4-HV component, with H2O column density in

  15. Complex Protostellar Chemistry (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.


    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  16. Embedded Services in Chinese Academic Libraries (United States)

    Si, Li; Xing, Wenming; Zhou, Limei; Liu, Sha


    Embedded librarianship service describes the practice of librarians integrating actively into the user's environment, rather than remaining in the library to await requests for service. This paper examines the concept of embedded service in the recent literature, within the past 5 years. It reports on a survey of embedded service in Chinese…

  17. General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars (United States)

    Parfrey, Kyle; Tchekhovskoy, Alexander


    Accreting neutron stars can power a wide range of astrophysical phenomena including short- and long-duration gamma-ray bursts, ultra-luminous X-ray sources, and X-ray binaries. Numerical simulations are a valuable tool for studying the accretion-disk–magnetosphere interaction that is central to these problems, most clearly for the recently discovered transitional millisecond pulsars. However, magnetohydrodynamic (MHD) methods, widely used for simulating accretion, have difficulty in highly magnetized stellar magnetospheres, while force-free methods, suitable for such regions, cannot include the accreting gas. We present an MHD method that can stably evolve essentially force-free, highly magnetized regions, and describe the first time-dependent relativistic simulations of magnetized accretion onto millisecond pulsars. Our axisymmetric general-relativistic MHD simulations for the first time demonstrate how the interaction of a turbulent accretion flow with a pulsar’s electromagnetic wind can lead to the transition of an isolated pulsar to the accreting state. This transition naturally leads to the formation of relativistic jets, whose power can greatly exceed the power of the isolated pulsar’s wind. If the accretion rate is below a critical value, the pulsar instead expels the accretion stream. More generally, our simulations produce for the first time the four possible accretion regimes, in order of decreasing mass accretion rate: (a) crushed magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar wind.

  18. Magnetospheric Accretion in Close Pre-main-sequence Binaries (United States)

    Ardila, David R.; Jonhs-Krull, Christopher; Herczeg, Gregory J.; Mathieu, Robert D.; Quijano-Vodniza, Alberto


    The transfer of matter between a circumbinary disk and a young binary system remains poorly understood, obscuring the interpretation of accretion indicators. To explore the behavior of these indicators in multiple systems, we have performed the first systematic time-domain study of young binaries in the ultraviolet. We obtained far- and near-ultraviolet HST/COS spectra of the young spectroscopic binaries DQ Tau and UZ Tau E. Here we focus on the continuum from 2800 to 3200 Å and on the C iv doublet (λλ1548.19, 1550.77 Å) as accretion diagnostics. Each system was observed over three or four consecutive binary orbits, at phases ∼0, 0.2, 0.5, and 0.7. Those observations are complemented by ground-based U-band measurements. Contrary to model predictions, we do not detect any clear correlation between accretion luminosity and phase. Further, we do not detect any correlation between C iv flux and phase. For both stars the appearance of the C iv line is similar to that of single Classical T Tauri Stars (CTTSs), despite the lack of stable long-lived circumstellar disks. However, unlike the case in single CTTSs, the narrow and broad components of the C iv lines are uncorrelated, and we argue that the narrow component is powered by processes other than accretion, such as flares in the stellar magnetospheres and/or enhanced activity in the upper atmosphere. We find that both stars contribute equally to the narrow component C iv flux in DQ Tau, but the primary dominates the narrow component C iv emission in UZ Tau E. The C iv broad component flux is correlated with other accretion indicators, suggesting an accretion origin. However, the line is blueshifted, which is inconsistent with its origin in an infall flow close to the star. It is possible that the complicated geometry of the region, as well as turbulence in the shock region, are responsible for the blueshifted line profiles.

  19. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.


    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample


    Energy Technology Data Exchange (ETDEWEB)

    Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D. [Department of Planetary Science, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85719 (United States); Duchene, G. [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, Berkeley, CA 94720-3411 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Grady, C. [Eureka Scientific, 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Mendigutía, I. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Montesinos, B. [Departamento de Astrofísica, Centro de Astrobiología, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Carpenter, J. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Gorti, U. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Meijerink, R. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Meyer, M. R., E-mail:, E-mail: [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)


    In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.

  1. Permutation entropy with vector embedding delays (United States)

    Little, Douglas J.; Kane, Deb M.


    Permutation entropy (PE) is a statistic used widely for the detection of structure within a time series. Embedding delay times at which the PE is reduced are characteristic timescales for which such structure exists. Here, a generalized scheme is investigated where embedding delays are represented by vectors rather than scalars, permitting PE to be calculated over a (D -1 ) -dimensional space, where D is the embedding dimension. This scheme is applied to numerically generated noise, sine wave and logistic map series, and experimental data sets taken from a vertical-cavity surface emitting laser exhibiting temporally localized pulse structures within the round-trip time of the laser cavity. Results are visualized as PE maps as a function of embedding delay, with low PE values indicating combinations of embedding delays where correlation structure is present. It is demonstrated that vector embedding delays enable identification of structure that is ambiguous or masked, when the embedding delay is constrained to scalar form.

  2. Accreting Millisecond Pulsars: Neutron Star Masses and Radii (United States)

    Strohmayer, Tod


    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  3. Ballooning Instability in Polar Caps of Accreting Neutron Stars (United States)

    Litwin, C.; Brown, Edward F.; Rosner, R.


    We assess the stability of Kruskal-Schwarzschild (magnetic Rayleigh-Taylor) type modes for accreted matter on the surface of a neutron star confined by a strong (>~1012 G) magnetic field. Employing the energy principle to analyze the stability of short-wavelength ballooning modes, we find that line-tying to the neutron star crust stabilizes these modes until the overpressure at the top of the neutron star crust exceeds the magnetic pressure by a factor ~8(a/h), where a and h are, respectively, the lateral extent of the accretion region and the density scale height. The most unstable modes are localized within a density scale height above the crust. We calculate the amount of mass that can be accumulated at the polar cap before the onset of instability.

  4. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo


    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  5. Aerodynamics and thermal physics of helicopter ice accretion (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  6. Revisiting Field Burial by Accretion onto Neutron Stars (United States)

    Mukherjee, Dipanjan


    The surface magnetic field strength of millisecond pulsars (MSPs) is found to be about 4 orders of magnitude lower than that of garden variety radio pulsars (with a spin of {˜ }0.5-5 s and B{˜ }10^{12} G). The exact mechanism of the apparent reduction of field strength in MSPs is still a subject of debate. One of the proposed mechanisms is burial of the surface magnetic field under matter accreted from a companion. In this article we review the recent work on magnetic confinement of accreted matter on neutron stars poles. We present the solutions of the magneto-static equations with a more accurate equation of state of the magnetically confined plasma and discuss its implications for the field burial mechanism.

  7. Stochastic late accretion to Earth, the Moon, and Mars. (United States)

    Bottke, William F; Walker, Richard J; Day, James M D; Nesvorny, David; Elkins-Tanton, Linda


    Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.

  8. On Hydromagnetic Stresses in Accretion Disk Boundary Layers

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan


    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where......, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds...

  9. Black hole accretion in scalar-tensor-vector gravity

    CERN Document Server

    John, Anslyn J


    We examine the accretion of matter onto a black hole in scalar--tensor--vector gravity (STVG). The gravitational constant is $G=G_{N} (1 + \\alpha)$ where $\\alpha$ is a parameter taken to be constant for static black holes in the theory. The STVG black hole is spherically symmetric and characterised by two event horizons. The matter falling into the black hole obeys the polytrope equation of state and passes through two critical points before entering the outer horizon. We obtain analytical expressions for the mass accretion rate as well as for the outer critical point, critical velocity and critical sound speed. Our results complement existing strong field tests like lensing and orbital motion and could be used in conjunction to determine observational constraints on STVG.

  10. MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets

    CERN Document Server

    Beskin, Vasily S


    Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...

  11. Self-gravity in Magnetized Neutrino-dominated Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Shahamat, Narjes; Abbassi, Shahram, E-mail: [Department of Physics, School of Science, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1436 (Iran, Islamic Republic of)


    In the present work we study self-gravity effects on the vertical structure of a magnetized neutrino-dominated accretion disk as a central engine for gamma-ray bursts (GRBs). Some of the disk physical timescales that are supposed to play a pivotal role in the late-time evolutions of the disk, such as viscous, cooling, and diffusion timescales, have been studied. We are interested in investigating the possibility of the occurrence of X-ray flares, observed in late-time GRBs’ extended emission through the “magnetic barrier” and “fragmentation” processes in our model. The results lead us to interpret self-gravity as an amplifier for Blandford–Payne luminosity (BP power) and the generated magnetic field, but a suppressor for neutrino luminosity and magnetic barrier processes via highlighting the fragmentation mechanism in the outer disk, especially for the higher mass accretion rates.

  12. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs (United States)

    Feng, W.; Desch, S.


    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  13. The slimming effect of advection on black-hole accretion flows (United States)

    Lasota, J.-P.; Vieira, R. S. S.; Sadowski, A.; Narayan, R.; Abramowicz, M. A.


    Context. At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R ≲ 1) or thick (H/R> 1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. Aims: We wish to establish under what conditions slim accretion flows become thick. Methods: We use analytical equations, numerical 1 + 1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates. Results: We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. Conclusions: At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.

  14. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike


    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  15. The dynamic of stellar wind accretion and the HMXB zoo (United States)

    Walter, Roland; Manousakis, Antonios


    The dynamic of the accretion of stellar wind on the pulsar in Vela X-1 is dominated by unstable hydrodynamical flows. Off-states, 10^{37} erg/s flares, quasi-periodic oscillations and log normal flux distribution can all be reproduced by hydrodynamical simulations and reveal the complex motion of bow shocks moving either towards or away from the neutron star. These behaviors are enlightening the zoo of HMXB and suggest new phenomenology to be detected.

  16. Unstable Helium Shell Burning on Accreting White Dwarfs (United States)

    Shen, Ken J.; Bildsten, Lars


    AM Canum Venaticorum (AM CVn) binaries consist of a degenerate helium donor and a helium, C/O, or O/Ne white dwarf accretor, with accretion rates of \\dot{M} = 10^{-13}\\--10^{-5} \\, M_\\odot \\; yr^{-1}. For accretion rates thermonuclear supernovae. In this paper, we study the evolution of the He-burning shells in more detail. We calculate maximum achievable temperatures as well as the minimum envelope masses that achieve dynamical burning conditions, finding that AM CVn systems with accretors gsim0.8 M sun will undergo dynamical burning. Triple-α reactions during the hydrostatic evolution set a lower limit to the 12C mass fraction of 0.001-0.05 when dynamical burning occurs, but core dredge-up may yield 12C, 16O, and/or 20Ne mass fractions of ~0.1. Accreted 14N will likely remain 14N during the accretion and convective phases, but regardless of 14N's fate, the neutron-to-proton ratio at the beginning of convection is fixed until the onset of dynamical burning. During explosive burning, the 14N will undergo 14N(α, γ)18F(α, p)21Ne, liberating a proton for the subsequent 12C(p, γ)13N(α, p)16O reaction, which bypasses the relatively slow α-capture onto 12C. Future hydrodynamic simulations must include these isotopes, as the additional reactions will reduce the Zel'dovich-von Neumann-Döring length, making the propagation of the detonation wave more likely.

  17. MHD Stability of Polar Caps of Accreting Neutron Stars (United States)

    Litwin, C.; Brown, E. F.; Rosner, R.


    We assess the stability of magnetic Rayleigh-Taylor type modes driven by the overpressure of magnetically confined accreted matter on the surface of a neutron star. We employ the magnetohydrodynamic (MHD) energy principle to analyze the stability of short-wavelength (ballooning) modes subject to line-tying in the neutron star crust. Research supported by ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

  18. Multiple accretion events as a trigger for Sagittarius A* activity

    Czech Academy of Sciences Publication Activity Database

    Czerny, B.; Kunneriath, Devaky; Karas, Vladimír; Das, T. K.


    Roč. 555, July (2013), A97/1-A97/11 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GC13-00070J Grant - others:EU(XE) COST Action ref. 208092 Institutional support: RVO:67985815 Keywords : accretion * galaxy center * black hole s Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  19. Accurate Modelling of Relativistic Iron Lines from Accretion Discs


    Beckwith, Kris; Done, Chris


    Observations of fluorescent iron lines from accreting black holes provide one of the best tests of strong field gravity available to date, and the only current observational tool to probe black hole spacetime. However, the two most widely used models for spectral fitting (diskline, laor) are over a decade old and have significant limitations. We present a new code for calculating these effects which will be incorporated within the XSPEC package

  20. Disruption of light He companions in accreting neutron star binaries (United States)

    Ruderman, M. A.; Shaham, J.


    An old neutron star, being spun up to become a radio pulsar by accretion from a very low-mass He secondary, will ultimately tidally disrupt the secondary before the latter's mass reaches 0.004 solar mass. Even if angular momentum loss from the binary is carried away only by gravitational radiation, the formation of an isolated rapidly spinning pulsar in this way will take less than 10 to the 10th yr.

  1. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.


    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  2. Simulations of the magnetospheres of accreting millisecond pulsars (United States)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.


    Accreting pulsars power relativistic jets and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field, shaped by its interaction with the surrounding accretion disc. Here, we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The magnetic field is also evolved inside the disc, which is a defined volume with a specified velocity field and conductivity profile, found using an α-disc model. We study a range of disc α-parameters, thicknesses, magnetic Prandtl numbers and inner truncation radii. We find that a large fraction of the magnetic flux in the pulsar's closed zone is opened by the intrusion of the disc, leading to an enhancement of the power extracted by the pulsar wind and the spin-down torque applied to the pulsar. In our simulations, most of the spin-down contribution to the stellar torque acts on open field lines. The efficiency of field-line opening is high in the simulations' long-term quasi-steady states, which implies that a millisecond pulsar's electromagnetic wind could be strong enough to power the observed neutron-star radio jets, and may significantly affect the pulsar's spin evolution.

  3. X-ray reverberation around accreting black holes (United States)

    Uttley, P.; Cackett, E. M.; Fabian, A. C.; Kara, E.; Wilkins, D. R.


    Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy dependence of the high-frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.

  4. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg


    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  5. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk (United States)

    Samadi, Maryam; Abbassi, Shahram


    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  6. Prevention of accretion onto white dwarfs by stellar winds (United States)

    Macdonald, James


    There is indirect observational evidence that hot white dwarfs may have weak stellar winds. In this paper, the interaction between such a wind and the flow of ISM material in the gravitational field of the white dwarf is investigated with the aim of finding limits on the mass-loss rate and terminal velocity of winds capable of preventing accretion from the ISM. The limiting cases of no relative motion of the star and the ISM and supersonic relative motion of the star through ISM are separately investigated. Each case is treated by generalizing models for the interaction between the solar wind and the local ISM to include the effects of gravity. It is found that, for wind velocities expected for radiatively driven winds, mass-loss rates as low as 10 exp -21 solar mass/yr are sufficient to prevent accretion from the hot phase of the ISM. To prevent accretion during passages through cold clouds, wind mass-loss rates of order 10 exp -18 to 10 exp -17 are required.

  7. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)


    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  8. Cosmic microwave background limits on accreting primordial black holes (United States)

    Ali-Haïmoud, Yacine; Kamionkowski, Marc


    Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.

  9. The multiwavelength spectrum of NGC 3115: Hot accretion flow properties (United States)

    Almeida, Ivan; Nemmen, Rodrigo; Wong, Ka-Wah; Wu, Qingwen; Irwin, Jimmy A.


    NGC 3115 is the nearest galaxy hosting a billion solar mass black hole and is also a low-luminosity active galactic nucleus (LLAGN). X-ray observations of this LLAGN are able to spatially resolve the hot gas within the sphere of gravitational influence of the supermassive black hole. These observations make NGC 3115 an important testbed for black hole accretion theory in galactic nuclei since they constrain the outer boundary conditions of the hot accretion flow. We present a compilation of the multiwavelength spectral energy distribution (SED) of the nucleus of NGC 3115 from radio to X-rays. We report the results from modeling the observed SED with radiatively inefficient accretion flow (RIAF) models. The radio emission can be well-explained by synchrotron emission from the RIAF without the need for contribution from a relativistic jet. We obtain a tight constraint on the RIAF density profile, ρ (r) ∝ r^{-0.73 _{-0.02} ^{+0.01}}, implying that mass-loss through subrelativistic outflows from the RIAF is significant. The lower frequency radio observation requires the synchrotron emission from a nonthermal electron population in the RIAF, similarly to Sgr A*.

  10. B335: protostar or embedded pre-main-sequence star

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, C.J. (Edinburgh Univ. (UK). Dept. of Astronomy); Gear, W.K. (Royal Observatory, Edinburgh (UK)); Sandell, G.; Hayashi, S.; Duncan, W.D. (Joint Astronomy Centre, Hilo, Hawaii (USA)); Griffin, M.J.; Hazell, A.S. (Queen Mary Coll., London (UK). Dept. of Physics)


    High-resolution submillimetre continuum observations of the far-infrared source in the isolated Bok globule B335 have been made using the JCMT. The continuum source is resolved perpendicular to the axis of the accompanying outflow in an 8 arcsec beam, but unresolved parallel to it. We conclude that it is a very dense core of dust and gas surrounding a central protostellar or pre-main-sequence object. We find that this core is able to collimate an initially isotropic wind into its observed bipolar structure. The central object does not appear to fit the currently popular models for protostellar evolution, because of its high A{sub V}, low luminosity, and the presence of an outflow. (author).

  11. Testing framework for embedded languages (United States)

    Leskó, Dániel; Tejfel, Máté


    Embedding a new programming language into an existing one is a widely used technique, because it fastens the development process and gives a part of a language infrastructure for free (e.g. lexical, syntactical analyzers). In this paper we are presenting a new advantage of this development approach regarding to adding testing support for these new languages. Tool support for testing is a crucial point for a newly designed programming language. It could be done in the hard way by creating a testing tool from scratch, or we could try to reuse existing testing tools by extending them with an interface to our new language. The second approach requires less work, and also it fits very well for the embedded approach. The problem is that the creation of such interfaces is not straightforward at all, because the existing testing tools were mostly not designed to be extendable and to be able to deal with new languages. This paper presents an extendable and modular model of a testing framework, in which the most basic design decision was to keep the - previously mentioned - interface creation simple and straightforward. Other important aspects of our model are the test data generation, the oracle problem and the customizability of the whole testing phase.

  12. Embedded diagnostics in combat systems (United States)

    Miles, Christopher; Bankowski, Elena N.


    Diagnostics capability of combat systems shall be compatible with the Army Diagnostic Improvement Program. Present systems are capable of performing health monitoring and health checks using internal embedded resources. They employ standard sensors and data busses that monitor data signals and built-in test (BIT). These devices provide a comprehensive source of data to accomplish an accurate system level diagnostics and fault isolation at line replaceable unit (LRU) level. Prognostics routines provide capability to identify the cause of predicted failure and corrective action to prevent unscheduled maintenance action. Combat system"s health status and prognostic information are displayed to operator, crew, and maintenance personnel. Present systems use common data/information interchange network in accordance with standards defined in the Joint Technical Architecture (JTA) to provide access to vehicle"s health data. The technologies utilized in present systems include embedded diagnostics, combat maintainer, schematic viewer, etc. Implementation of these technologies significantly reduced maintenance hours of combat systems. Health monitoring, diagnostics and prognostics of future systems will utilize federated software and probes approach. Gauges will determine if the system operates within acceptable performance bands by monitoring data provided by the probes. Health monitoring system will use models of missions to make intelligent choices considering tasks criticality.

  13. Audio Steganography with Embedded Text (United States)

    Teck Jian, Chua; Chai Wen, Chuah; Rahman, Nurul Hidayah Binti Ab.; Hamid, Isredza Rahmi Binti A.


    Audio steganography is about hiding the secret message into the audio. It is a technique uses to secure the transmission of secret information or hide their existence. It also may provide confidentiality to secret message if the message is encrypted. To date most of the steganography software such as Mp3Stego and DeepSound use block cipher such as Advanced Encryption Standard or Data Encryption Standard to encrypt the secret message. It is a good practice for security. However, the encrypted message may become too long to embed in audio and cause distortion of cover audio if the secret message is too long. Hence, there is a need to encrypt the message with stream cipher before embedding the message into the audio. This is because stream cipher provides bit by bit encryption meanwhile block cipher provide a fixed length of bits encryption which result a longer output compare to stream cipher. Hence, an audio steganography with embedding text with Rivest Cipher 4 encryption cipher is design, develop and test in this project.

  14. On the Nature of the Deeply Embedded Protostar OMC-2 FIR 4 (United States)

    Furlan, E.; Megeath, S. T.; Osorio, M.; Stutz, A. M.; Fischer, W. J.; Ali, B.; Stanke, T.; Manoj, P.; Adams, J. D.; Tobin, J. J.


    We use mid-infrared to submillimeter data from the Spitzer, Herschel, and Atacama Pathfinder Experiment telescopes to study the bright submillimeter source OMC-2 FIR 4. We find a point source at 8, 24, and 70 μm, and a compact, but extended source at 160, 350, and 870 μm. The peak of the emission from 8 to 70 μm, attributed to the protostar associated with FIR 4, is displaced relative to the peak of the extended emission; the latter represents the large molecular core the protostar is embedded within. We determine that the protostar has a bolometric luminosity of 37 L ⊙, although including more extended emission surrounding the point source raises this value to 86 L ⊙. Radiative transfer models of the protostellar system fit the observed spectral energy distribution well and yield a total luminosity of most likely less than 100 L ⊙. Our models suggest that the bolometric luminosity of the protostar could be as low as 12-14 L ⊙, while the luminosity of the colder (~20 K) extended core could be around 100 L ⊙, with a mass of about 27 M ⊙. Our derived luminosities for the protostar OMC-2 FIR 4 are in direct contradiction with previous claims of a total luminosity of 1000 L ⊙. Furthermore, we find evidence from far-infrared molecular spectra and 3.6 cm emission that FIR 4 drives an outflow. The final stellar mass the protostar will ultimately achieve is uncertain due to its association with the large reservoir of mass found in the cold core.

  15. Spitzer Space Telescope Spectroscopy of Ices toward Low-Mass Embedded Protostars (United States)

    Boogert, A. C. Adwin; Pontoppidan, Klaus M.; Lahuis, Fred; Jørgensen, Jes K.; Augereau, Jean-Charles; Blake, Geoffrey A.; Brooke, Timothy Y.; Brown, Joanna; Dullemond, C. P.; Evans, Neal J., II; Geers, Vincent; Hogerheijde, Michiel R.; Kessler-Silacci, Jacqueline; Knez, Claudia; Morris, Pat; Noriega-Crespo, Alberto; Schöier, Fredrik L.; van Dishoeck, Ewine F.; Allen, Lori E.; Harvey, Paul M.; Koerner, David W.; Mundy, Lee G.; Myers, Philip C.; Padgett, Deborah L.; Sargent, Anneila I.; Stapelfeldt, Karl R.


    Sensitive 5-38 μm Spitzer Space Telescope and ground-based 3-5 μm spectra of the embedded low-mass protostars B5 IRS1 and HH 46 IRS show deep ice absorption bands superposed on steeply rising mid-infrared continua. The ices likely originate in the circumstellar envelopes. The CO2 bending mode at 15 μm is a particularly powerful tracer of the ice composition and processing history. Toward these protostars, this band shows little evidence for thermal processing at temperatures above 50 K. Signatures of lower temperature processing are present in the CO and OCN- bands, however. The observed CO2 profile indicates an intimate mixture with H2O, but not necessarily with CH3OH, in contrast to some high-mass protostars. This is consistent with the low CH3OH abundance derived from the ground-based L-band spectra. The CO2:H2O column density ratios are high in both B5 IRS1 and HH 46 IRS (~35%). Clearly, the Spitzer spectra are essential for studying ice evolution in low-mass protostellar environments and for eventually determining the relation between interstellar and solar system ices. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The VLT ISAAC spectra were obtained at the European Southern Observatory, Paranal, Chile, in the observing program 272.C-5008.

  16. Extreme ultraviolet light curves of UZ Fornacis: Evidence for accretion stream absorption and vertical extent of the accretion spot (United States)

    Warren, John K.; Sirk, Martin M.; Vallerga, John V.


    We report on two pointed observations of UZ For carried out by the imaging photometers aboard the Extreme Ultraviolet Explorer (EUVE), one as part of the EUVE Right Angle Program and one as an off-axis source during a guest observation. Both observations lasted approximately 3 days and covered a total of 72 orbits of the UZ For binary providing multiple coverage of all the orbital phases of UZ For. The resulting high signal-to-noise phase-folded light curve strongly constrains the emission and absorption geometry of UZ For. We have detected a narrow absorption dip that we attribute to the accretion stream at the location of the stagnation region many white dwarf radii away from the accretion spot and have also detected a broad dip caused by absorption much closer to the white dwarf surface. Both absorption effects are variable in time and phase. Based on the timescales of M-star eclipse ingress and egress, the angular spot size is constrained to be less than 5 deg; thus the ratio of spot area to white dwarf surface area is less than or equal to 0.0005. To explain the light curve phase duration given this small angular spot size, the extreme-ultraviolet (EUV) accretion spot must be raised vertically by approximately 5% of the white dwarf radius.

  17. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. (United States)

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin


    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  18. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion (United States)

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin


    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  19. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China (United States)

    Zhou, Jian-Bo; Cao, Jia-Lin; Wilde, Simon A.; Zhao, Guo-Chun; Zhang, Jin-Jiang; Wang, Bin


    The Nadanhada Terrane, located along the eastern margin of Eurasia, contains a typical accretionary complex related to paleo-Pacific plate subduction-accretion. The Yuejinshan Complex is the first stage accretion complex that consists of meta-clastic rocks and metamafic-ultramafic rocks, whereas the Raohe Complex forms the main parts of the terrane and consists of limestone, bedded chert, and mafic-ultramafic rocks embedded as olistolith blocks in a weakly sheared matrix of clastic meta-sedimentary rocks. Geochemical data indicate that the Yuejinshan metabasalts have normal mid-ocean ridge basalt (N-MORB) affinity, whereas the Raohe basaltic pillow lavas have an affinity to ocean island basalts (OIB). Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon analyses of gabbro in the Raohe Complex yield a weighted mean 206Pb/238U zircon age of 216 ± 5 Ma, whereas two samples of granite intruded into the complex yield weighted mean 206Pb/238U zircon ages of 128 ± 2 and 129 ± 2 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) U-Pb zircon analyses of basaltic pillow lava in the Raohe Complex define a weighted mean age of 167 ± 1 Ma. Two sandstone samples in the Raohe Complex record younger concordant zircon weighted mean ages of 167 ± 17 and 137 ± 3 Ma. These new data support the view that accretion of the Raohe Complex was between 170 and 137 Ma, and that final emplacement of the Raohe Complex took place at 137-130 Ma. The accretion of the Yuejinshan Complex probably occurred between the 210 and 180 Ma, suggesting that paleo-Pacific plate subduction was initiated in the Late Triassic to Early Jurassic.

  20. Graphical Model Debugger Framework for Embedded Systems

    DEFF Research Database (Denmark)

    Zeng, Kebin; Guo, Yu; Angelov, Christo K.


    Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...... and check the running status of the system, which offers a debugging capability on a higher level of abstraction. The framework intends to contribute a tool to the Eclipse society, especially suitable for model-driven development of embedded systems....

  1. Distributed FDI of a networked embedded microdrone


    Tanwani, Aneel; Gentil, Sylviane; Lesecq, Suzanne; Thiriet, Jean-Marc


    International audience; Embedded systems constitute a category whose safety is critical and where FDI real time constraints are particularly important. Embedded algorithms must be the simplest possible and computations may be distributed between the embedded system and a more powerful distant computer. This paper proposes a bank of observers to diagnose faults of a small helicopter controlled in closed loop. The studied prototype is a 4 rotors mini drone equipped with an attitude central for ...

  2. A combinatorial characterisation of embedded polar spaces


    De Beule, Jan; De Boeck, Maarten


    Some classical polar spaces admit polar spaces of the same rank as embedded polar spaces (often arisen as the intersection of the polar space with a non-tangent hyperplane). In this article we look at sets of generators that behave combinatorially as the set of generators of such an embedded polar space, and we prove that they are the set of generators of an embedded polar space.

  3. The embedded operating system project (United States)

    Campbell, R. H.


    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  4. Embedded EZ-Source Inverters

    DEFF Research Database (Denmark)

    Chiang Loh, Poh; Gao, Feng; Blaabjerg, Frede


    Z-source inverters are recent topological options proposed for buck–boost energy conversion with a number of possible voltage- and current-type circuitries already reported in the literature. Comparing them, a common feature noted is their inclusion of an LC impedance network, placed between the dc...... input source and inverter bridge. This impedance network allows the output end of a voltage-type Z-source inverter to be shorted for voltage boosting without causing a large current flow and the terminal current of a current-type inverter to be interrupted for current boosting without introducing...... of embedded EZ-source inverters that can produce the same gain as the Z-source inverters but with smoother and smaller current/voltage maintained across the dc input source and within the impedance network. These latter features are attained without using any additional passive filter, which surely...

  5. Graphical Model Debugger Framework for Embedded Systems

    DEFF Research Database (Denmark)

    Zeng, Kebin


    Model Driven Software Development has offered a faster way to design and implement embedded real-time software by moving the design to a model level, and by transforming models to code. However, the testing of embedded systems has remained at the code level. This paper presents a Graphical Model...... Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...

  6. Embedded Diagnostics & Prognostics Wireless Sensing Platforms

    National Research Council Canada - National Science Library

    Ousachi, Mark; Scott, Andrew; Yee, David; Hosmer, Thomas; Daniszewski, Dave


    An embedded diagnostics and prognostics architecture affects several aspects associated with military ground vehicles such as improved safety, reduction in maintenance times, weapon system readiness...

  7. Damping of prominence longitudinal oscillations due to mass accretion (United States)

    Ruderman, Michael S.; Luna, Manuel


    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the

  8. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings (United States)

    Lashkajani, Kazem Hasanzadeh

    This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil

  9. Accretion of Moon and Earth and the emergence of life (United States)

    Arrhenius, G.; Lepland, A.


    The discrepancy between the impact records on the Earth and Moon in the time period, 4.0-3.5 Ga calls for a re-evaluation of the cause and localization of the late lunar bombardment. As one possible explanation, we propose that the time coverage in the ancient rock record is sufficiently fragmentary, so that the effects of giant, sterilizing impacts throughout the inner solar system, caused by marauding asteroids, could have escaped detection in terrestrial and Martian records. Alternatively, the lunar impact record may reflect collisions of the receding Moon with a series of small, original satellites of the Earth and their debris in the time period about 4.0-3.5 Ga. The effects on Earth of such encounters could have been comparatively small. The location of these tellurian moonlets has been estimated to have been in the region around 40 Earth radii. Calculations presented here, indicate that this is the region that the Moon would traverse at 4.0-3.5 Ga, when the heavy and declining lunar bombardment took place. The ultimate time limit for the emergence of life on Earth is determined by the effects of planetary accretion--existing models offer a variety of scenarios, ranging from low average surface temperature at slow accretion of the mantle, to complete melting of the planet followed by protracted cooling. The choice of accretion model affects the habitability of the planet by dictating the early evolution of the atmosphere and hydrosphere. Further exploration of the sedimentary record on Earth and Mars, and of the chemical composition of impact-generated ejecta on the Moon, may determine the choice between the different interpretations of the late lunar bombardment and cast additional light on the time and conditions for the emergence of life.

  10. Periodic self-lensing from accreting massive black hole binaries (United States)

    D'Orazio, Daniel J.; Di Stefano, Rosanne


    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  11. Features of the accretion in the EX Hydrae system: Results of numerical simulation (United States)

    Isakova, P. B.; Zhilkin, A. G.; Bisikalo, D. V.; Semena, A. N.; Revnivtsev, M. G.


    A two-dimensional numerical model in the axisymmetric approximation that describes the flow structure in the magnetosphere of the white dwarf in the EX Hya system has been developed. Results of simulations show that the accretion in EX Hya proceeds via accretion columns, which are not closed and have curtain-like shapes. The thickness of the accretion curtains depends only weakly on the thickness of the accretion disk. This thickness developed in the simulations does not agree with observations. It is concluded that the main reason for the formation of thick accretion curtains in the model is the assumption that the magnetic field penetrates fully into the plasma of the disk. An analysis based on simple estimates shows that a diamagnetic disk that fully or partially shields the magnetic field of the star may be a more attractive explanation for the observed features of the accretion in EX Hya.

  12. Accretion Disks around Black Holes: Twenty Five Years Later (United States)

    Chakrabarti, Sandip K.

    After the revolutionary model of Shakura and Sunyaev in 1973, a quarter of a century has passed by. Has our understanding of the physics of black hole accretion improved? We make a critical review on the development of various models and emphasize on the advective disks solutions. We briefly compare the predictions of both the time independent and time dependent solutions of this model with the observational results. Some of the spin-offs of this model to other branches of astrophysics such as nuclear astrophysics, gravity wave astronomy, physics of jets, etc. are also mentioned ^{1-2}.

  13. Bimodal SLD Ice Accretion on a NACA 0012 Airfoil Model (United States)

    Potapczuk, Mark; Tsao, Jen-Ching; King-Steen, Laura


    This presentation describes the results of ice accretion measurements on a NACA 0012 airfoil model, from the NASA Icing Research Tunnel, using an icing cloud composed of a bimodal distribution of Supercooled Large Droplets. The data consists of photographs, laser scans of the ice surface, and measurements of the mass of ice for each icing condition. The results of ice shapes accumulated as a result of exposure to an icing cloud with a bimodal droplet distribution were compared to the ice shapes resulting from an equivalent cloud composed of a droplet distribution with a standard bell curve shape.

  14. Initiation of continental accretion in the Betic-Rif domain (United States)

    Maxime, Daudet; Frederic, Mouthereau; Stéphanie, Brichau; Ana, Crespo-Blanc; Arnaud, Vacherat


    The Betic - Rif cordillera in southern Spain and northern Morocco, respectively, form one of the tightest orogenic arc on Earth. The formation of this arcuate orogenic belt resulted from the westward migration of the Alboran crustal domain, constituted by the internal zone of the orogeny and the basement of the Alboran back-arc basin, that collided with the rifted margins of Iberia and Africa at least since the early Miocene. This collision is intimately linked to the post-35-30Ma regional slab roll-back and back-arc extension in the western Mediterranean region. The geodynamics of the Betic-Rif domain, which is of great importance for the paleogeographic reconstructions of the Tethys-Altantic and the Mediterranean sea, is still largely debated. Answers will come from a more detailed structural analyses, including refinement of the time-temperature paths and kinematics of the main structural units, which is one of the main objectives of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. In this study, we focus on the well-developed flysch-type sediments now accreted in the Betics-Rif but initially deposited in a basin, north of the african margin and on the iberian margin from the Early Cretaceous to the Early Miocene. Using low-temperature thermochronology (fission-track and (U-Th)/He analyses) combined with zircon U-Pb geochronology on the flyschs deposited on the most distal part of the margin, we aim to constrain the thermal history of both the source rocks and accreted thrust sheets at the earliest stages of continental accretion. Sample have been collected in flyschs series ranging from Mesozoic, Paleogene to Neogene ages. Additional samples have been collected in the Rif where Cretaceous series are more developed. Combined with a detailed structural analysis, LT thermochronological constraints will refine the kinematics of thrust units when continental accretion started before the final thrust emplacement occurred in the Early Miocene

  15. How much mass and angular momentum can the progenitors of carbon-enriched stars accrete? (United States)

    Matrozis, E.; Abate, C.; Stancliffe, R. J.


    The chemically peculiar barium stars, CH stars, and most carbon-enhanced metal-poor (CEMP) stars are all believed to be the products of mass transfer in binary systems from a now extinct asymptotic giant branch (AGB) primary star. The mass of the AGB star and the orbital parameters of the system are the key factors usually considered when determining how much mass is transferred onto the lower-mass main-sequence companion. What is usually neglected, however, is the angular momentum of the accreted material, which should spin up the accreting star. If the star reaches critical rotation, further accretion should cease until the excess angular momentum is somehow dealt with. If the star cannot redistribute or lose the angular momentum while the primary is on the AGB, the amount of mass accreted could be much lower than otherwise expected. Here we present calculations, based on detailed stellar evolution models, of the mass that can be accreted by putative progenitors of Ba and CEMP stars before they reach critical rotation under the assumption that no angular momentum loss occurs during the mass transfer. We consider different accretion rates and values of specific angular momentum. The most stringent limits on the accreted masses result from considering accretion from a Keplerian accretion disk, which is likely present during the formation of most extrinsically-polluted carbon-enriched stars. Our calculations indicate that in this scenario only about 0.05 M⊙ of material can be added to the accreting star before it reaches critical rotation, which is much too low to explain the chemical enrichment of many Ba and CEMP stars. Either the specific angular momentum of the accreted material has to effectively be lower by about a factor of ten than the Keplerian value, or significant angular momentum losses must occur for substantial accretion to take place.

  16. Multithreading for Embedded Reconfigurable Multicore Systems

    NARCIS (Netherlands)

    Zaykov, P.G.


    In this dissertation, we address the problem of performance efficient multithreading execution on heterogeneous multicore embedded systems. By heterogeneous multicore embedded systems we refer to those, which have real-time requirements and consist of processor tiles with General Purpose Processor

  17. Embedded Picture Mnemonics to Learn Letters (United States)

    Shmidman, Adina; Ehri, Linnea


    Can embedded mnemonics ease the task of learning a foreign alphabet? English-speaking preschoolers (N = 36, M = 5;2 years) were taught 10 Hebrew letter-sound relations. Experimental letters were learned with mnemonics that embedded letter shapes in drawings of objects whose shapes resembled the letters and whose English names began with the…

  18. Isometric embeddings in cosmology and astrophysics

    Indian Academy of Sciences (India)

    Recent interest in higher-dimensional cosmological models has prompted some signifi-cant work on the mathematical technicalities of how one goes about embedding spacetimes into some higher-dimensional space. We survey results in the literature (existence theorems and simple explicit embeddings); briefly outline our ...

  19. An investigation of embeddings for spherically symmetric ...

    Indian Academy of Sciences (India)

    Embeddings into higher dimensions are very important in the study of higherdimensional theories of our Universe and in high-energy physics. Theorems which have been developed recently guarantee the existence of embeddings of pseudo-Riemannian manifolds into Einstein spaces and more general ...

  20. Embedded Systems Design with 8051 Microcontrollers

    DEFF Research Database (Denmark)

    Karakahayov, Zdravko; Winther, Ole; Christensen, Knud Smed

    Textbook on embedded microcontrollers. Example microcontroller family: Intel 8051 with special emphasis on Philips 80C552. Structure, design examples and programming in C and assembler. Hardware - software codesign. EProm emulator.......Textbook on embedded microcontrollers. Example microcontroller family: Intel 8051 with special emphasis on Philips 80C552. Structure, design examples and programming in C and assembler. Hardware - software codesign. EProm emulator....

  1. Embedding complementarity in HCI methods and techniques

    DEFF Research Database (Denmark)

    Nielsen, Janni; Yssing, Carsten; Tweddell Levinsen, Karin


    Differences in cultural contexts constitute differences in cognition, and research has shown that different cultures may use different cognitive tools for perception and reasoning. The cultural embeddings are significant in relation to HCI, because the cultural context is also embedded in the tec...... the HCI paradigm in system development....

  2. TTCN-3 for Distributed Testing Embedded Software

    NARCIS (Netherlands)

    Blom, Stefan; Deiß, Thomas; Ioustinova, Natalia; Kontio, Ari; van de Pol, Jan Cornelis; Rennoch, Axel; Sidorova, Natalia; Virbitskaite, I.; Voronkov, A.

    TTCN-3 is a standardized language for specifying and executing test suites that is particularly popular for testing embedded systems. Prior to testing embedded software in a target environment, the software is usually tested in the host environment. Executing in the host environment often affects

  3. Relativistic dust accretion of charged particles in Kerr-Newman spacetime (United States)

    Schroven, Kris; Hackmann, Eva; Lämmerzahl, Claus


    We describe a new analytical model for the accretion of particles from a rotating and charged spherical shell of dilute collisionless plasma onto a rotating and charged black hole. By assuming a continuous injection of particles at the spherical shell and by treating the black hole and a featureless accretion disk located in the equatorial plane as passive sinks of particles, we build a stationary accretion model. This may then serve as a toy model for plasma feeding an accretion disk around a charged and rotating black hole. Therefore, our new model is a direct generalization of the analytical accretion model introduced by E. Tejeda, P. A. Taylor, and J. C. Miller [Mon. Not. R. Astron. Soc. 429, 925 (2013), 10.1093/mnras/sts316]. We use our generalized model to analyze the influence of a net charge of the black hole, which will in general be very small, on the accretion of plasma. Within the assumptions of our model we demonstrate that already a vanishingly small charge of the black hole may in general still have a non-negligible effect on the motion of the plasma, as long as the electromagnetic field of the plasma is still negligible. Furthermore, we argue that the inner and outer edges of the forming accretion disk strongly depend on the charge of the accreted plasma. The resulting possible configurations of accretion disks are analyzed in detail.

  4. Monitoring The Land Accretion Development at Coastal Area of Blanakan, Subang Indonesia (United States)

    Nandi; Meriana, Ginna; Somantri, Lili


    A land accretion is formed by deposition in estuaries. Recently, a land development in Subang coastal area has raised an increase. Beside its potential, coastal areas are also threatened with damage including abrasion, accretion, loss of mangrove forests, and sea water intrusion. One of the coastal areas that have been arising in very extensive land is Blanakan coastal in Subang Regency. This study aims to monitor the development of a land accretion that have been arise during the period of 1990 to 2015 and also to examine the use of a land accretion and analyze the impact of a land accretion to the social and economic conditions in the Blanakan Coastal Areas. The method used in this research was descriptive quantitative method. In this research, The Landsat imageries were overlaid came from 1990, 2000, 2010, and 2015 to determine the development of a land accretion. Based on the results of Landsat imagery overlaid over the period 1990-2015. Overall, during the period 1990-2015, accreted land formed was an area of 782.9 hectares and abrasion area of 73.3 hectares with changes in the most far reaching 1580.3 m. The use of land accretion in the Blanakan Coastal mostly used for a fishpond with a key commodity is Milkfish and Bago shrimps. The impact of land accretion to the social and economic conditions was reflected through the five indicators such as livelihoods, income, education, health, and ownership of assets.

  5. Evidence of Cosmic Accretion in Local Tadpole Galaxies (United States)

    Elmegreen, Debra M.; Elmegreen, Bruce; Sanchez Almeida, Jorge; Munoz-Tunon, Casiana; Rafelski, Marc; Gallagher, John S.; Mendez-Abreu, Jairo; Amorin, R.; Filho, M.; Ascasibar, Y.; Papaderos, P.; Vilchez, J.; Perez-Montero, E.


    Star formation in galaxies over cosmic time may be driven by gas accretion from the cosmic web. Spectra of local extremely metal-poor galaxies (XMPs), obtained using the Gran Telescopio Canarias, show oxygen abundances that decrease by a factor of 5 to 10 in the main star-forming regions compared with the disks in 9 of 10 observed galaxies. The results suggest that the galaxies have accreted metal-poor gas in the starburst regions. Tadpole galaxies, which have a main star-forming head and a tail, are common at high redshift but rare locally. Local tadpoles tend to be XMPs. We present multiband HST WFC3 observations of Kiso 5639, one of the tadpole XMPs in our GTC sample. There are faint extended H alpha filaments, and dense star clusters in the midst of a powerful starburst. The clusters, with log masses of 4 to 5, are reminiscent of those found in other dwarf irregular galaxies where impacting gas streams have been suggested.

  6. Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian


    Full Text Available In the framework of microscopic theory of black hole (MTBH, which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs to the present time and examine the observable signatures today. Given the redshifts, masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and masses of the corresponding seed black holes. For the present masses MBH/M⊙≃1.1×106 to 1.3×1010 of 377 black holes, the computed intermediate seed masses are ranging from MBHSeed/M⊙≃26.4 to 2.9×105. We also compute the fluxes of ultrahigh energy (UHE neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (θ≪1.

  7. Instability in strongly magnetized accretion discs: a global perspective (United States)

    Das, Upasana; Begelman, Mitchell C.; Lesur, Geoffroy


    We examine the properties of strongly magnetized accretion discs in a global framework, with particular focus on the evolution of magnetohydrodynamic instabilities such as the magnetorotational instability (MRI). Work by Pessah & Psaltis showed that MRI is stabilized beyond a critical toroidal field in compressible, differentially rotating flows and, also, reported the appearance of two new instabilities beyond this field. Their results stemmed from considering geometric curvature effects due to the suprathermal background toroidal field, which had been previously ignored in weak-field studies. However, their calculations were performed under the local approximation, which poses the danger of introducing spurious behaviour due to the introduction of global geometric terms in an otherwise local framework. In order to avoid this, we perform a global eigenvalue analysis of the linearized MHD equations in cylindrical geometry. We confirm that MRI indeed tends to be highly suppressed when the background toroidal field attains the Pessah-Psaltis limit. We also observe the appearance of two new instabilities that emerge in the presence of highly suprathermal toroidal fields. These results were additionally verified using numerical simulations in PLUTO. There are, however, certain differences between the the local and global results, especially in the vertical wavenumber occupancies of the various instabilities, which we discuss in detail. We also study the global eigenfunctions of the most unstable modes in the suprathermal regime, which are inaccessible in the local analysis. Overall, our findings emphasize the necessity of a global treatment for accurately modelling strongly magnetized accretion discs.

  8. Evolving Nonthermal Electrons in Simulations of Black Hole Accretion (United States)

    Chael, Andrew; Narayan, Ramesh; Sadowski, Aleksander


    Current simulations of hot accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. However, processes like magnetic reconnection and shocks can accelerate electrons into a nonthermal distribution, which will not quickly thermalise at the very low densities found in many systems. Such nonthermal electrons have been invoked to explain the infrared and X-ray spectra and strong variability of Sagittarius A* (Sgr A*), the black hole at the Galactic Center. We present a method for self-consistent evolution of a nonthermal electron population in the GRMHD code KORAL. The electron distribution is tracked across Lorentz factor space and is evolved in space and time, in parallel with thermal electrons, thermal ions, and radiation. At present, for simplicity, energy injection into the nonthermal distribution is taken as a fixed fraction of the local electron viscous heating rate. Numerical results are presented for a model with a low mass accretion rate similar to Sgr A*. We find that the presence of a nonthermal population of electrons has negligible effect on the overall dynamics of the system. Relative to a purely thermal simulation, the radiative power in the nonthermal simulation is enhanced at large radii and at high frequencies. The energy distribution of the nonthermal electrons shows a synchrotron cooling break, with the break Lorentz factor varying with location and time, reflecting the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity.

  9. Pebble Accretion at the Origin of Water in Europa (United States)

    Ronnet, Thomas; Mousis, Olivier; Vernazza, Pierre


    Despite the fact that the observed gradient in water content among the Galilean satellites is globally consistent with a formation in a circum-Jovian disk on both sides of the snowline, the mechanisms that led to a low water mass fraction in Europa (˜8%) are not yet understood. Here, we present new modeling results of solids transport in the circum-Jovian disk accounting for aerodynamic drag, turbulent diffusion, surface temperature evolution, and sublimation of water ice. We find that the water mass fraction of pebbles (e.g., solids with sizes of 10-2-1 m) as they drift inward is globally consistent with the current water content of the Galilean system. This opens the possibility that each satellite could have formed through pebble accretion within a delimited region whose boundaries were defined by the position of the snowline. This further implies that the migration of the forming satellites was tied to the evolution of the snowline so that Europa fully accreted from partially dehydrated material in the region just inside of the snowline.

  10. Accretion in supergiant High Mass X-ray Binaries

    Directory of Open Access Journals (Sweden)

    Manousakis Antonios


    Full Text Available Supergiant High Mass X-ray Binary systems (sgHMXBs consist of a massive, late type, star and a neutron star. The massive stars exhibits strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i A heavily obscured sgHMXB (IGR J17252–3616 discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii A classical sgHMXB (Vela X-1 has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior. In conclusion, the neutron star, in these two examples, acts very effciently as a probe to study stellar winds.

  11. Bulk viscosity of accretion disks around non rotating black holes (United States)

    Moeen Moghaddas, M.


    In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.

  12. The diversity of quasars unified by accretion and orientation (United States)

    Shen, Yue; Ho, Luis C.


    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as `Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the `Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.

  13. Boundary Between Stable and Unstable Regimes of Accretion

    Directory of Open Access Journals (Sweden)

    Blinova A. A.


    Full Text Available We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a “cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction, which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter α=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius rm (where the magnetic stress in the magnetosphere matches the matter stress in the disk and corotation radius rcor (where the Keplerian velocity in the disk is equal to the angular velocity of the star. For a small misalignment angle of the dipole field, Θ = 5°, accretion is unstable if rcor/rm> 1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Θ = 20°, instability occurs at slightly larger values, rcor/rm> 1.41

  14. A New Paradigm for Gamma Ray Bursts: Long Term Accretion Rate Modulation by an External Accretion Disk (United States)

    Cannizzo, John; Gehrels, Neil


    We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.

  15. Development of the Embedded Membrane Concept

    Energy Technology Data Exchange (ETDEWEB)

    Nick R. Mann; R. S. Herbst; T. L. Trowbridge


    Recent evaluations in the field of biomass separations have resulted in a novel concept termed the “embedded membrane.” Biomass solutions, which typically consist of a sludge-like material, contain a wide range of particle types and concentrations. These highly abusive solutions have the potential to cause reduced flux and even catastrophic failure through erosion mechanisms within the membrane. The embedded membrane concept relies on embedding finer, filtration inducing particles (e.g. ceramic such as TiO2) into the interstices of a macroporous support (e.g., sintered metal such as sintered stainless steel). It is believed that the embedded membrane would be resistant to erosion processes, since only the macroporous support material would be subjected to the harsh hydrodynamic properties of the flowing bulk process fluid. Moreover, the finer, filtration inducing embedded particles that provide the necessary filtration efficiency are protected from the bulk process fluid. In an effort to investigate the embedded membrane concept, samples of sintered stainless steel membranes embedded with ceramic particles have been prepared.

  16. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe. (United States)

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio


    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations. Copyright © 2015, American Association for the Advancement of Science.

  17. Experimental Investigation of Ice Accretion Effects on a Swept Wing (United States)

    Papadakis, M.; Yeong, H. W.; Wong, S. C.; Vargas, M.; Potapczuk, M.


    An experimental investigation was conducted to study the effects of 2-, 5-, 10-, and 22.5-min ice accretions on the aerodynamic performance of a swept finite wing. The ice shapes tested included castings of ice accretions obtained from icing tests at the NASA Glenn Icing Research Tunnel (IRT) and simulated ice shapes obtained with the LEWICE 2.0 ice accretion code. The conditions used for the icing tests were selected to provide five glaze ice shapes with complete and incomplete scallop features and a small rime ice shape. The LEWICE ice shapes were defined for the same conditions as those used in the icing tests. All aerodynamic performance tests were conducted in the 7- x 10-ft Low-Speed Wind Tunnel Facility at Wichita State University. Six component force and moment measurements, aileron hinge moments, and surface pressures were obtained for a Reynolds number of 1.8 million based on mean aerodynamic chord and aileron deflections in the range of -15o to 20o. Tests were performed with the clean wing, six IRT ice shape castings, seven smooth LEWICE ice shapes, and seven rough LEWICE ice shapes. Roughness for the LEWICE ice shapes was simulated with 36-size grit. The experiments conducted showed that the glaze ice castings reduced the maximum lift coefficient of the clean wing by 11.5% to 93.6%, while the 5-min rime ice casting increased maximum lift by 3.4%. Minimum iced wing drag was 133% to 3533% greater with respect to the clean case. The drag of the iced wing near the clean wing stall angle of attack was 17% to 104% higher than that of the clean case. In general, the aileron remained effective in changing the lift of the clean and iced wings for all angles of attack and aileron deflections tested. Aileron hinge moments for the iced wing cases remained within the maximum and minimum limits defined by the clean wing hinge moments. Tests conducted with the LEWICE ice shapes showed that in general the trends in aerodynamic performance degradation of the wing with

  18. Orientifolds, hypercharge embeddings and the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, P. [Department of Physics, University of Athens, Panepistimiopolis, Zografou, 157 84 Athens (Greece)]. E-mail:; Dijkstra, T. [NIKHEF, Kruislaan 409, 1009DB Amsterdam (Netherlands); Kiritsis, E. [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Department of Physics, University of Crete, 71003 Heraklion (Greece); Schellekens, B. [NIKHEF, Kruislaan 409, 1009DB Amsterdam (Netherlands); IMAPP, Radboud Universiteit Nijmegen (Netherlands)


    The embedding of the SM hypercharge into an orientifold gauge group is studied. Possible embeddings are classified, and a systematic construction of bottom-up configurations and top-down orientifold vacua is achieved, solving the tadpole conditions in the context of Gepner orientifolds. Some hypercharge embeddings are strongly preferred compared to others. Configurations with chiral anti-symmetric tensors are suppressed. We find among others, genuine examples of supersymmetric SU(5), flipped SU(5), Pati-Salam and trinification vacua with no chiral exotics.

  19. Embedded Solenoid Transformer for Power Conversion

    DEFF Research Database (Denmark)


    A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board...... comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first...

  20. Oracle Embedded Programming and Application Development

    CERN Document Server

    Bulusu, Lakshman


    Focusing on tried and true best practice techniques in cross-technology based Oracle embedded programming, this book provides authoritative guidance for improving your code compilation and execution. Geared towards IT professionals developing Oracle-based Web-enabled applications in PL/SQL, Java, C, C++, .NET, Perl, and PHP, it covers application development from concepts to customization, following a pragmatic approach to design, coding, testing, deployment, and customization--explaining how to maximize embedded programming practices. Oracle Embedded Programming and Application Development ex

  1. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva


    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the face boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping...... query, one-flip- linkable(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log 2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler...

  2. Dynamic planar embeddings of dynamic graphs

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva


    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping......-flip-linkable(u, v) providing a suggestion for a flip that will make them linkable if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting...

  3. Secure smart embedded devices, platforms and applications

    CERN Document Server

    Markantonakis, Konstantinos


    New generations of IT users are increasingly abstracted from the underlying devices and platforms that provide and safeguard their services. As a result they may have little awareness that they are critically dependent on the embedded security devices that are becoming pervasive in daily modern life. Secure Smart Embedded Devices, Platforms and Applications provides a broad overview of the many security and practical issues of embedded devices, tokens, and their operation systems, platforms and main applications. It also addresses a diverse range of industry/government initiatives and consider

  4. Rapid timescales for accretion and melting of differentiated planetesimals inferred from Al-Mg chronometry

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, H.; Baker, J.A.


    million years of solar system formation, when Al and Fe were extant enough to induce planetesimal melting. Finally, thermal modeling constrains the accretion of these differentiated asteroids to within 1 million years of solar system formation, that is, prior to the accretion of chondrite parent bodies....

  5. Hiccup accretion in the swinging pulsar IGR J18245-2452

    NARCIS (Netherlands)

    Ferrigno, C.; Bozzo, E.; Papitto, A.; Rea, N.; Pavan, L.; Campana, S.; Wieringa, M.; Filipović, M.; Falanga, M.; Stella, L.


    The source IGR J18245-2452 is the fifteenth discovered accreting millisecond X-ray pulsar and the first neutron star to show direct evidence of a transition between accretion- and rotation-powered emission states. These swings provided the strongest confirmation to date of the pulsar recycling

  6. Lighthouses with two lights: Burst oscillations from the accretion-powered millisecond pulsars

    NARCIS (Netherlands)

    Watts, A.L.


    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and

  7. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion ...

    Indian Academy of Sciences (India)

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence ...

  8. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick


    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  9. Stable accretion from a cold disc in highly magnetized neutron stars (United States)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.


    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  10. Angular momentum, accretion, and radial flows in chemodynamical models of spiral galaxies

    NARCIS (Netherlands)

    Pezzulli, G.; Fraternali, F.


    Gas accretion and radial flows are key ingredients of the chemical evolution of spiral galaxies. They are also tightly linked to each other (accretion drives radial flows due to angular momentum conservation) and should therefore be modeled simultaneously. We summarize an algorithm that can be used

  11. Efficiency of gas cooling and accretion at the disc-corona interface

    NARCIS (Netherlands)

    Armillotta, L.; Fraternali, F.; Marinacci, F.


    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding

  12. Quantifying the Imprecision of Accretion Theory and Implications for Multi-Epoch Observations of Protoplanetary Discs

    DEFF Research Database (Denmark)

    Blackman, Eric G.; Nauman, Farrukh; Edgar, Richard G.


    If accretion disc emission results from turbulent dissipation, then axisymmetric accretion theory must be used as a mean field theory: turbulent flows are at most axisymmetric only when suitably averaged. Spectral predictions therefore have an intrinsic imprecision that must be quantified to inte...

  13. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    Directory of Open Access Journals (Sweden)

    Mukherjee Dipanjan


    Full Text Available In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local field distortion. From simulations of cyclotron resonance scattering features from HMXBs, we conclude that local field distortion will greatly affect the shape and nature of the CRSF. From phase resolved spectral analysis one can infer the local field structure and hence the nature of mass loading of field lines at the accretion disc. We also study the stability of such mounds by performing MHD simulations using the PLUTO MHD code. We find that pressure and gravity driven instabilities depend on the total mass accreted and the nature of mass loading of the field lines.

  14. Theoretical Considerations on the Properties of Accreting Millisecond Pulsars (United States)

    Nelson, Lorne A.; Rappaport, Saul


    We examine a number of evolutionary scenarios for the recently discovered class of accretion-powered millisecond X-ray pulsars in ultracompact binaries, including XTE JO929-314 and XTE J1751-305. These systems have very short orbital periods of Porb = 43.6 and 42.4 minutes, respectively, and extremely small mass functions. We focus on a particular scenario that can naturally explain the present-day properties of these systems. This model invokes a donor star that was either very close to the main-sequence turnoff at the onset of mass transfer or had sufficient time to evolve during the mass-transfer phase. We have run a systematic set of binary evolution calculations with a wide range of initial conditions.

  15. Bare AGN: an Unobscured View of the Innermost Accretion Geometry (United States)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; Garcia, J.; Walton, D.


    In a systematic study of the relativistic reflection spectra and coronal properties for a sample of bare AGN we analyze high signal-to-noise spectra obtained with the XMM-Newton and NuSTAR observatories utilizing state-of-the-art reflection codes. Features of blurred reflection off an ionized accretion disk are modelled using different flavors of the relativistic ray-tracing code Relxill. We show that the more physically motivated and self-consistent lamp-post geometry is largely consistent with fits of broken power-law emissivity profiles. We provide good constraints on parameters describing the compact reprocessing corona, i.e., the reflection fraction and the lamp-post height. The latter are found to be prevalent within 1-10 r_{g}, while our models generally find close-to-maximal black hole spins. These results are discussed and compared with previous studies by Walton et al. (2013).

  16. Whiting 1: Confirmation of its accretion by the Milky Way

    Directory of Open Access Journals (Sweden)

    Carballo-Bello Julio A.


    Full Text Available We investigate the association of Whiting 1 with the Sagittarius tidal stream by obtaining radial velocities for a sample of 101 stars observed with VIMOS. Our results reveal the presence of a component of the Sagittarius tidal stream with a radial velocity – and distance – compatible with that of the globular cluster. Therefore, we conclude that Whiting1 was formed in the interior of the Sagittarius dwarf spheroidal galaxy and later accreted by the Milky Way. In addition, our data also reveal the detection for the first time of an ancient wrap of the Sagittarius tidal stream along the same line-of-sight and at the same heliocentric distance.

  17. An accretion disk model for periodic timing variations of pulsars (United States)

    Qiao, G. J.; Xue, Y. Q.; Xu, R. X.; Wang, H. G.; Xiao, B. W.


    The long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of two isolated pulsars (PSRs) PSR B1828-11 and PSR B1642-03 were discovered recently. This phenomenon may provide evidence for ``free precession'' as suggested in the literature. Some authors presented various kinds of models to explain this phenomenon within the framework of free precession. Here we present an accretion disk model for this precession phenomenon instead. Under reasonable parameters, the observed phenomenon can be explained by an isolated pulsar with a fossil disk. This may link radio pulsars and anomalous X-ray pulsars (AXPs) and present an indirect evidence for the existence of the fossil disk in nature.

  18. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)


    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  19. Probing the Accretion Processes in Soft X-Ray Selected Polars

    Directory of Open Access Journals (Sweden)

    I. Traulsen


    Full Text Available High-energy data of accreting white dwarfs give access to the regime of the primary accretion-induced energy release and the different proposed accretion scenarios. We perform XMM-Newton observations of polars selected due to their ROSAT hardness ratios close to -1.0 and model the emission processes in accretion column and accretion region. Our models consider the multi-temperature structure of the emission regions and are mainly determined by mass-flow density, magnetic field strength, and white-dwarf mass. To describe the full spectral energy distribution from infrared to X-rays in a physically consistent way, we include the stellar contributions and establish composite models, which will also be of relevance for future X-ray missions. We confirm the X-ray soft nature of three polars.

  20. Asymmetric MHD outflows/jets from accreting T Tauri stars (United States)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.


    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  1. Observational aspects of galactic accretion at redshift 3.3 (United States)

    Rauch, Michael; Becker, George D.; Haehnelt, Martin G.


    We investigate the origin of extragalactic continuum emission and its relation to the stellar population of a recently discovered peculiar z = 3.344 Ly α emitter. Based on an analysis of the broad-band colours and morphology, we find further support for the idea that the underlying galaxy is being fed by a large-scale (L ≥ 35 kpc) accretion stream. ArchivalHST images show small-scale (˜5 kpc) tentacular filaments converging near a hotspot of star formation, possibly fueled by gas falling in along the filaments. The spectral energy distribution of the tentacles is broadly compatible with either (1) non-ionizing rest-frame far-UV continuum emission from stars formed in a 60 million-year-old starburst; (2) nebular two-photon continuum radiation, arising from collisional excitation cooling; or (3) a recombination spectrum emitted by hydrogen fluorescing in response to ionizing radiation escaping from the galaxy. The latter possibility simultaneously accounts for the presence of asymmetric Lyα emission from the large-scale gaseous filament, and the nebular continuum in the smaller scale tentacles as caused by the escape of ionizing radiation from the galaxy. Possible astrophysical explanations for the nature of the tentacles include: a galactic wind powered by the starburst; infalling gas during cold accretion, or tails of interstellar medium dragged out of the galaxy by satellite haloes that have plunged through the main halo. The possibility of detecting extragalactic two-photon continuum emission in space-based, broad-band images suggests a tool for studying the gaseous environment of high-redshift galaxies at much greater spatial detail than possible with Lyα or other resonance line emission.

  2. Late veneer and late accretion to the terrestrial planets (United States)

    Brasser, R.; Mojzsis, S. J.; Werner, S. C.; Matsumura, S.; Ida, S.


    It is generally accepted that silicate-metal ('rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. Outcomes from a combination of N-body and Monte Carlo simulations of planet formation lead us to four key conclusions about the nature of this early epoch. First, matching the terrestrial to lunar HSE ratio requires either that the late veneer on Earth consisted of a single lunar-size impactor striking the Earth before 4.45 Ga, or that it originated from the impact that created the Moon. An added complication is that analysis of lunar samples indicates the Moon does not preserve convincing evidence for a late veneer like Earth. Second, the expected chondritic veneer component on Mars is 0.06 weight percent. Third, the flux of terrestrial impactors must have been low (≲10-6 M⊕ Myr-1) to avoid wholesale melting of Earth's crust after 4.4 Ga, and to simultaneously match the number of observed lunar basins. This conclusion leads to an Hadean eon which is more clement than assumed previously. Last, after the terrestrial planets had fully formed, the mass in remnant planetesimals was ∼10-3 M⊕, lower by at least an order of magnitude than most previous models suggest. Our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  3. Embedded Face Detection and Recognition

    Directory of Open Access Journals (Sweden)

    Göksel Günlü


    Full Text Available The need to increase security in open or public spaces has in turn given rise to the requirement to monitor these spaces and analyse those images on-site and on-time. At this point, the use of smart cameras – of which the popularity has been increasing – is one step ahead. With sensors and Digital Signal Processors (DSPs, smart cameras generate ad hoc results by analysing the numeric images transmitted from the sensor by means of a variety of image-processing algorithms. Since the images are not transmitted to a distance processing unit but rather are processed inside the camera, it does not necessitate high-bandwidth networks or high processor powered systems; it can instantaneously decide on the required access. Nonetheless, on account of restricted memory, processing power and overall power, image processing algorithms need to be developed and optimized for embedded processors. Among these algorithms, one of the most important is for face detection and recognition. A number of face detection and recognition methods have been proposed recently and many of these methods have been tested on general-purpose processors. In smart cameras – which are real-life applications of such methods – the widest use is on DSPs. In the present study, the Viola-Jones face detection method – which was reported to run faster on PCs – was optimized for DSPs; the face recognition method was combined with the developed sub-region and mask-based DCT (Discrete Cosine Transform. As the employed DSP is a fixed-point processor, the processes were performed with integers insofar as it was possible. To enable face recognition, the image was divided into sub-regions and from each sub-region the robust coefficients against disruptive elements – like face expression, illumination, etc. – were selected as the features. The discrimination of the selected features was enhanced via LDA (Linear Discriminant Analysis and then employed for recognition. Thanks to its

  4. Power for Vehicle Embedded MEMS Sensors Project (United States)

    National Aeronautics and Space Administration — Embedded wireless sensors of the future will enable flight vehicle systems to be "highly aware" of onboard health and performance parameters, as well as the external...

  5. Apparatuses And Systems For Embedded Thermoelectric Generators

    KAUST Repository

    Hussain, Muhammad M.


    An apparatus and a system for embedded thermoelectric generators are disclosed. In one embodiment, the apparatus is embedded in an interface where the ambient temperatures on two sides of the interface are different. In one embodiment, the apparatus is fabricated with the interface in integrity as a unitary piece. In one embodiment, the apparatus includes a first thermoelectric material embedded through the interface. The apparatus further includes a second thermoelectric material embedded through the interface. The first thermoelectric material is electrically coupled to the second thermoelectric material. In one embodiment, the apparatus further includes an output structure coupled to the first thermoelectric material and the second thermoelectric material and configured to output a voltage.

  6. Multidimensional artificial field embedding with spatial sensitivity

    CSIR Research Space (South Africa)

    Lunga, D


    Full Text Available Multidimensional embedding is a technique useful for characterizing spectral signature relations in hyperspectral images. However, such images consist of disjoint similar spectral classes that are spatially sensitive, thus presenting challenges...

  7. Piecewise flat embeddings for hyperspectral image analysis (United States)

    Hayes, Tyler L.; Meinhold, Renee T.; Hamilton, John F.; Cahill, Nathan D.


    Graph-based dimensionality reduction techniques such as Laplacian Eigenmaps (LE), Local Linear Embedding (LLE), Isometric Feature Mapping (ISOMAP), and Kernel Principal Components Analysis (KPCA) have been used in a variety of hyperspectral image analysis applications for generating smooth data embeddings. Recently, Piecewise Flat Embeddings (PFE) were introduced in the computer vision community as a technique for generating piecewise constant embeddings that make data clustering / image segmentation a straightforward process. In this paper, we show how PFE arises by modifying LE, yielding a constrained ℓ1-minimization problem that can be solved iteratively. Using publicly available data, we carry out experiments to illustrate the implications of applying PFE to pixel-based hyperspectral image clustering and classification.

  8. A randomized model for communicating embedded systems

    NARCIS (Netherlands)

    Bujorianu, M.C.; Bujorianu, L.M.


    Nowadays, there is an intense research activity in designing systems that operate in real life, physical environments. This research is spanned by various areas in computer science and engineering: embedded systems, reactive systems, wireless communications, hybrid systems, stochastic processes,

  9. Embedding Moodle into Ubiquitous Computing Environments

    NARCIS (Netherlands)

    Glahn, Christian; Specht, Marcus


    Glahn, C., & Specht, M. (2010). Embedding Moodle into Ubiquitous Computing Environments. In M. Montebello, et al. (Eds.), 9th World Conference on Mobile and Contextual Learning (MLearn2010) (pp. 100-107). October, 19-22, 2010, Valletta, Malta.

  10. Isometric embeddings in cosmology and astrophysics

    Indian Academy of Sciences (India)

    hierarchy problem, the origins of the ... In §4 we describe how the (conformal) Killing geometry of static spherically symmetric (SSS) spacetimes is .... to generate energetically rigid (Killing vector preserving) warped local embeddings for spherically ...


    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H. M.; Wolk, S. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wolter, U.; Robrade, J., E-mail: [Universitaet Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)


    Young T Tauri stars (TTS) are surrounded by an accretion disk, which over time disperses due to photoevaporation, accretion, and possibly planet formation. The accretion shock on the central star produces an UV/optical veiling continuum, line emission, and X-ray signatures. As the accretion rate decreases, the impact on the central star must change. In this article we study MN Lup, a young star where no indications of a disk are seen in IR observations. We present XMM-Newton and VLT/UVES observations, some of them taken simultaneously. The X-ray data show that MN Lup is an active star with L{sub X} /L{sub bol} close to the saturation limit. However, we find high densities (n{sub e} > 3 Multiplication-Sign 10{sup 10} cm{sup -3}) in the X-ray grating spectrum. This can be well fitted using an accretion shock model with an accretion rate of 2 Multiplication-Sign 10{sup -11} M{sub Sun} yr{sup -1}. Despite the simple H{alpha} line profile which has a broad component, but no absorption signatures as typically seen on accreting TTS, we find rotational modulation in Ca II K and in photospheric absorption lines. These line profile modulations do not clearly indicate the presence of a localized hot accretion spot on the star. In the H{alpha} line we see a prominence in absorption about 2R{sub *} above the stellar surface-the first of its kind on a TTS. MN Lup is also the only TTS where accretion is seen, but no dust disk is detected that could fuel it. We suggest that MN Lup presents a unique and short-lived state in the disk evolution. It may have lost its dust disk only recently and is now accreting the remaining gas at a very low rate.

  12. Audience design: embedded versus word search priming


    Leckie, Tomlin


    The present study looks at manipulating audience design using different priming techniques. We were trying to test the effectiveness of different priming techniques (priming words embedded in a story versus priming words embedded in a word search) on audience design by making people more or less helpful in a story retelling task. A time constraint was also introduced to see if the effect of word search priming would be cancelled out. In order to answer these questions two experiments were ru...

  13. Modified Embedded Switched Inductor Z Source Inverter


    V. Saravanan; R. Ramanujam; M. Arumugam


    A novel modified embedded switched inductor Z-source inverter is proposed by inserting the photovoltaic panels at various locations to improve the output voltage boosting performance. The proposed inverter have the concepts of embedded and switched inductor Z source network to have better features in terms of increased voltage boost inversion ability, continuous input current, reduced voltage stress on the switches/capacitors. Simulations are carried out by employing (120°) pulse width modula...

  14. Embedded Lattice and Properties of Gram Matrix

    Directory of Open Access Journals (Sweden)

    Futa Yuichi


    Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].

  15. Homework Assignments in Hybrid and Embedded Control


    Mattsson, Niklas


    In this thesis we discuss the development of three homeworks for the course Hybrid and Embedded Control Systems given at the institution S3 (Signals, Sensors and Systems) at the Royal Institute of Technology (KTH) in Stockholm. The main objective of the course is to present tools for modeling, analyze and design embedded control system. The course, first given in spring 2003, is interdisciplinary since its program cover arguments strictly related to system theory and computer science. As part...

  16. Low-Latency Embedded Vision Processor (LLEVS) (United States)


    DP Double Precision DSP Digital Signal Processor DU Drexel University DVE Degraded Visual Environment DWT Discrete Wavelet Transform EMI...AFRL-RH-WP-TR-2016-0017 Low-Latency Embedded Vision Processor (LLEVS) Greg Cream*, Wesley Sheridan*, and Prawat Nagvajara...Embedded Vision Processor (LLEVS) 5a. CONTRACT NUMBER FA8650-15-M-6659 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 65502F 6. AUTHOR(S) Greg

  17. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.


    the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... by the protostellar luminosity, ultraviolet irradiation of the outflow cavity walls, and small-scale C-type shocks along the cavity walls. Most of the model parameters are constrained from independent observations; the two remaining free parameters considered here are the protostellar UV luminosity and the shock...

  18. Maximum mass of planetary embryos that formed in core-accretion models (United States)

    Alibert, Y.


    Context. In the core-accretion model, the typical size of solids that are accreted to form planetary embryos and planetary cores is debated. First, models assumed that the main part of planetary cores came from large-sized planetesimals, but other more recent models are based on the accretion of small-sized pebbles. Aims: The goal of this paper is to compute the maximum mass a growing planetary embryo can reach depending on the size of accreted planetesimals or pebbles, and to infer the possibility of growing the cores of giant planets and giant planets themselves. Methods: We computed the internal structure of the gas envelope of planetary embryos to determine the core mass that is necessary to bind an envelope large enough to destroy planetesimals or pebbles while they are gravitationally captured. We also considered the effect of the advection wind originating from the protoplanetary disk, following the results of Ormel et al. (2015, MNRAS, 447, 3512). Results: We show that for low-mass pebbles the envelope is large enough to destroy and vaporize pebbles completely before they can reach the core once the planetary embryo is larger than a fraction of the Earth mass. The material constituting pebbles is therefore released in the planetary envelope and is later on dispersed in the protoplanetary disk if the advection wind is strong enough. As a consequence, the growth of the planetary embryo is stopped at a mass that is so low that Kelvin-Helmholtz accretion cannot lead to the accretion of significant amounts of gas. For larger planetesimals, a similar process occurs but at much higher mass, on the order of ten Earth masses, and it is followed by rapid accretion of gas. Conclusions: If the effect of the advection wind is as efficient as described in Ormel et al. (2015), the combined effect of the vaporization of accreted solids in the envelope of forming planetary embryos and of this advection wind prevents the growth of the planets at masses lower than or similar

  19. Accretion and differentiation of carbon in the early Earth. (United States)

    Tingle, T N


    The abundance of C in carbonaceous and ordinary chondrites decreases exponentially with increasing shock pressure as inferred from the petrologic shock classification of Scott et al. [Scott, E.R.D., Keil, K., Stoffler, D., 1992. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281-4293] and Stoffler et al. [Stoffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845-3867]. This confirms the experimental results of Tyburczy et al. [Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet. Sci. Lett. 80, 201-207] on shock-induced devolatization of the Murchison meteorite showing that carbonaceous chondrites appear to be completely devolatilized at impact velocities greater than 2 km s-1. Both of these results suggest that C incorporation would have been most efficient in the early stages of accretion, and that the primordial C content of the Earth was between 10(24) and 10(25) g C (1-10% efficiency of incorporation). This estimate agrees well with the value of 3-7 x 10(24) g C based on the atmospheric abundance of 36Ar and the chondritic C/36Ar (Marty and Jambon, 1987). Several observations suggest that C likely was incorporated into the Earth's core during accretion. (1) Graphite and carbides are commonly present in iron meteorites, and those iron meteorites with Widmanstatten patterns reflecting the slowest cooling rates (mostly Group I and IIIb) contain the highest C abundances. The C abundance-cooling rate correlation is consistent with dissolution of C into Fe-Ni liquids that segregated to form the cores of the iron meteorite parent bodies. (2) The carbon isotopic composition of graphite in iron meteorites exhibits a uniform value of -5% [Deines, P., Wickman, F.E. 1973. The isotopic composition of 'graphitic' carbon from iron meteorites and some remarks on the troilitic

  20. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.


    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  1. Relativistic reverberation in the accretion flow of a tidal disruption event. (United States)

    Kara, Erin; Miller, Jon M; Reynolds, Chris; Dai, Lixin


    Our current understanding of the curved space-time around supermassive black holes is based on actively accreting black holes, which make up only ten per cent or less of the overall population. X-ray observations of that small fraction reveal strong gravitational redshifts that indicate that many of these black holes are rapidly rotating; however, selection biases suggest that these results are not necessarily reflective of the majority of black holes in the Universe. Tidal disruption events, where a star orbiting an otherwise dormant black hole gets tidally shredded and accreted onto the black hole, can provide a short, unbiased glimpse at the space-time around the other ninety per cent of black holes. Observations of tidal disruptions have hitherto revealed the formation of an accretion disk and the onset of an accretion-powered jet, but have failed to reveal emission from the inner accretion flow, which enables the measurement of black hole spin. Here we report observations of reverberation arising from gravitationally redshifted iron Kα photons reflected off the inner accretion flow in the tidal disruption event Swift J1644+57. From the reverberation timescale, we estimate the mass of the black hole to be a few million solar masses, suggesting an accretion rate of 100 times the Eddington limit or more. The detection of reverberation from the relativistic depths of this rare super-Eddington event demonstrates that the X-rays do not arise from the relativistically moving regions of a jet, as previously thought.

  2. Hydrodynamical processes in planet-forming accretion disks (United States)

    Lin, Min-Kai

    Understanding the physics of accretion flows in circumstellar disk provides the foundation to any theory of planet formation. The last few years have witnessed dramatic a revision in the fundamental fluid dynamics of protoplanetary accretion disks. There is growing evidence that the key to answering some of the most pressing questions, such as the origin of disk turbulence, mass transport, and planetesimal formation, may lie within, and intimately linked to, purely hydrodynamical processes in protoplanetary disks. Recent studies, including those from the proposal team, have discovered and highlighted the significance of several new hydrodynamical instabilities in the planet-forming regions of these disks. These include, but not limited to: the vertical shear instability, active between 10 to 100 AU; the zombie vortex instability, operating in regions interior to about 1AU; and the convective over-stability at intermediate radii. Secondary Rossbywave and elliptic instabilities may also be triggered, feeding off the structures that emerge from the above primary instabilities. The result of these hydrodynamic processes range from small-scale turbulence that transports angular momentum, to large-scale vortices that concentrate dust particles and enhance planetesimal formation. Hydrodynamic processes pertain to a wide range of disk conditions, meaning that at least one of these processes are active at any given disk location and evolutionary epoch. This remains true even after planet formation, which affects their subsequent orbital evolution. Hydrodynamical processes also have direct observable consequences. For example, vortices have being invoked to explain recent ALMA images of asymmetric `dust-traps' in transition disks. Hydrodynamic activities thus play a crucial role at every stage of planet formation and disk evolution. We propose to develop theoretical models of the above hydrodynamic processes under physical disk conditions by properly accounting for disk

  3. Reconstructing the Accretion History of the Galactic Stellar Halo from Chemical Abundance Ratio Distributions (United States)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will


    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ˜103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ˜6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  4. Simulations of small solid accretion on to planetesimals in the presence of gas (United States)

    Hughes, A. G.; Boley, A. C.


    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.


    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duane M. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Sen, Bodhisattva; Jessop, Will, E-mail: [Department of Statistics, Columbia University, New York City, NY 10027 (United States)


    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  6. Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence (United States)

    Fukushima, Hajime; Omukai, Kazuyuki; Hosokawa, Takashi


    We investigate the upper stellar mass limit set by radiative feedback for a forming star with various accretion rates and metallicities. Thus, we numerically solve the structures of both a protostar and its surrounding accretion envelope assuming a spherical symmetric and steady flow. The optical depth of the dust cocoon, a dusty part of the accretion envelope, differs for direct light from the stellar photosphere and diffuse light re-emitted as dust thermal emission. As a result, varying the metallicity qualitatively changes the way that the radiative feedback suppresses the accretion flow. With a fixed accretion rate of 10-3 M⊙ yr-1, both direct and diffuse light jointly operate to prevent mass accretion at Z ≳ 10-1 Z⊙. At Z ≲ 10-1 Z⊙, the diffuse light is no longer effective and the direct light solely limits the mass accretion. At Z ≲ 10-3 Z⊙, formation of the H II region plays an important role in terminating the accretion. The resultant upper mass limit increases with decreasing metallicity, from a few × 10 M⊙ to ∼103 M⊙ over Z = 1 Z⊙-10-4 Z⊙. We also illustrate how the radiation spectrum of massive star-forming cores changes with decreasing metallicity. First, the peak wavelength of the spectrum, which is located around 30 μm at 1 Z⊙, shifts to < 3 μm at Z ≲ 0.1 Z⊙. Secondly, a characteristic feature at 10 μm due to the amorphous silicate band appears as a dip at 1 Z⊙, but changes to a bump at Z ≲ 0.1 Z⊙. Using these spectral signatures, we can search massive accreting protostars in nearby low-metallicity environments with upcoming observations.

  7. Modes of Accretion at Slower Spreading Ocean Ridges (United States)

    Dick, H. J.


    Over two decades of drilling, sampling and seafloor mapping at oceanic core complexes in the Atlantic and Indian Oceans has overturned the conventional models for accretion of the ocean crust. Today crustal architecture at slow and ultraslow spreading ridges is viewed as highly varied, ranging from crustal sections that resemble the Penrose model of lavas, dikes and gabbros believed to characterize most Pacific crust, sections comprised of lava flows and scattered dikes overlying small intrusions in serpentinized mantle, to direct emplacement of serpentinized mantle peridotite to the seafloor as originally envisaged by Harry Hess. The concept of large magma chambers, as originally postulated by the Penrose model gave way early on due to a lack of seismic evidence and as the more direct result of drilling long gabbro sections consisting of innumerable small intrusions in oceanic core complexes at Hole 735B on the SWIR and in the MARK area at Sites 921-924. Evidence for large scale upward melt percolation through the lower crust by permeable flow, best seen in ODP Hole 735B, mechanical rafting of hybridized mantle rock from the crust-mantle boundary, first identified in IODP Hole U1309D, and evidence for vertical rafting of small crustal intrusions as documented by mapping and sampling high-temperature dynamically-deformed gabbros intercalated with undeformed greenschist-facies dikes at Atlantis Bank and Kane Megamullion, all represent previously unsuspected major modes of mass transfer and accretion of the lower crust. Thus, at slower spreading ridges, corner flow of the lithosphere may extend through the zone of intrusion up to the base of the sheeted dikes rather than having the crust built by simple intrusion over the upwelling mantle. These observations have major implications for mass transfer between the deep earth, crust, oceans, and atmospheres. Previously, it has been supposed that the bulk composition of the crust would be equal to that of primary magmas

  8. Chemical enrichment and accretion of nitrogen-loud quasars (United States)

    Matsuoka, K.; Nagao, T.; Maiolino, R.; Marconi, A.; Park, D.; Taniguchi, Y.


    We present rest-frame optical spectra of 12 "nitrogen-loud" quasars at z 2.2, whose rest-frame ultraviolet (UV) spectra show strong nitrogen broad emission lines. To investigate their narrow-line region (NLR) metallicities, we measure the equivalent width (EW) of the [O III]λ5007 emission line: if the NLR metallicity is remarkably high, as suggested by the strong UV nitrogen lines, the [O III]λ5007 line flux should be very weak due to the low equilibrium temperature of the ionized gas owing to significant metal cooling. In the result we found that our spectra show moderate EW of the [O III]λ5007 line similar to general quasars. This indicates that nitrogen-loud quasars do not have extremely metal-rich gas clouds in NLRs. This suggests that strong nitrogen lines from broad-line regions (BLRs) originate from exceptionally high abundances of nitrogen relative to oxygen without very high BLR metallicities. This result indicates that broad emission lines of nitrogen are not good indicators of the BLR metallicity in some cases. On the other hand, we also investigate virial black hole masses and Eddington ratios by using the Hβ and C IVλ1549 lines for our sample. As a result, we found that black hole masses and Eddington ratios of nitrogen-loud quasars tend to be low and high relative to normal quasars, suggesting that nitrogen-loud quasars seem to be in a rapidly accreting phase. This can be explained in terms of a positive correlation between Eddington ratios and nitrogen abundances of quasars, which is probably caused by the connection between the mass accretion onto black holes and nuclear star formation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 088.B-0191(A), and at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Reduced spectra (FITS files) are available at the CDS via anonymous ftp to (http://130

  9. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  10. Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions (United States)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Currie, Tom; Fuleki, Dan


    This paper describes ice accretion measurements from experiments conducted at the National Research Council (NRC) of Canada's Research Altitude Test Facility during 2012. Due to numerous engine power loss events associated with high altitude convective weather, potential ice accretion within an engine due to ice crystal ingestion is being investigated collaboratively by NASA and NRC. These investigations examine the physical mechanisms of ice accretion on surfaces exposed to ice crystal and mixed phase conditions, similar to those believed to exist in core compressor regions of jet engines. A further objective of these tests is to examine scaling effects since altitude appears to play a key role in this icing process.

  11. Spectrally resolved eclipse maps of the accretion disk in UX Ursae Majoris (United States)

    Rutten, Rene G. M.; Dhillon, V. S.; Horne, Keith; Kuulkers, E.; Van Paradijs, J.


    An effort is made to observationally constrain accretion disks on the basis of light curves from the eclipsing cataclysmic variable UX Ursae Majoris, reconstructing the spectral energy distribution across the face of an accretion disk. The spectral resolution obtained suffices to reveal not only the radial dependence of absorption and emission line features within the disk, but also the spectral details of the bright spot that is formed where the accretion stream from the secondary star collides with the disk. The importance of such constraints for theoretical models is noted.

  12. Spherical accretion of matter by charged black holes on f(T) Gravity (United States)

    Rodrigues, M. E.; Junior, E. L. B.


    We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  13. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Directory of Open Access Journals (Sweden)

    Matteo Guainazzi


    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  14. Accretion onto neutron stars with the presence of a double layer (United States)

    Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.


    It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.

  15. Spherical Accretion of Matter by Charged Black Holes on f(T) Gravity

    CERN Document Server

    Rodrigues, Manuel E


    We studied the spherical accretion of matter by charged black holes on $f(T)$ Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with $p=\\omega e$ and where $p$ is the pressure and $e$ the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  16. Chemical enrichment of stars due to accretion from the ISM during the Galaxy's assembly


    Shen, S; Kulkarni, G; Madau, P.; Mayer, L.


    Using the Eris zoom-in cosmological simulation of assembly of a Milky Way analogue, we study the chemical enrichment of stars due to accretion of metal-enriched gas from the interstellar medium (ISM) during the Galaxy’s development. We consider metal-poor and old stars in the Galactic halo and bulge through the use of stellar orbits, gas density and metallicity distributions in Eris. Assuming spherically symmetric Bondi–Hoyle accretion, we find that halo and bulge stars accrete metals at the ...

  17. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs. (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E


    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  18. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.


    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  19. Group theory for embedded random matrix ensembles (United States)

    Kota, V. K. B.


    Embedded random matrix ensembles are generic models for describing statistical properties of finite isolated quantum many-particle systems. For the simplest spinless fermion (or boson) systems with say m fermions (or bosons) in N single particle states and interacting with say k-body interactions, we have EGUE(k) [embedded GUE of k-body interactions) with GUE embedding and the embedding algebra is U(N). In this paper, using EGUE(k) representation for a Hamiltonian that is fc-body and an independent EGUE(t) representation for a transition operator that is t-body and employing the embedding U(N) algebra, finite-N formulas for moments up to order four are derived, for the first time, for the transition strength densities (transition strengths multiplied by the density of states at the initial and final energies). In the asymptotic limit, these formulas reduce to those derived for the EGOE version and establish that in general bivariate transition strength densities take bivariate Gaussian form for isolated finite quantum systems. Extension of these results for other types of transition operators and EGUE ensembles with further symmetries are discussed.

  20. Technical solutions to enable embedded generation growth

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, C.A.; Todd, S.; Millar, W.; Wood, H.S.


    This report describes the results of one of a series of studies commissioned by the UK Department of Trade and Industry into various aspects of embedded generation with the aim of supporting the development and deployment of electrical sources (particularly their ease of connection to the network) to deliver power to consumers. The first phase of the project involved a literature review and meetings with embedded generation developers and planning engineers from distribution network operators (DNOs). The second phase investigated embedded generation at different levels of the distribution network and included modelling a representative network. Technologies that could facilitate a significant increase in embedded generation were identified and estimates made of when and where significant development would be needed. Technical problems identified by DNOs were concerned with thermal loading, voltage regulation, fault levels, protection and network operation. A number of non-technical (commercial and regulatory) problems were also identified. The report describes the UK regulatory framework, the present situation, the British power system, the accommodation of embedded generation by established means, the representative model and technical innovations.