WorldWideScience

Sample records for elicitor induces sesquiterpenoid

  1. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor

    International Nuclear Information System (INIS)

    Chappell, J.; Nable, R.

    1987-01-01

    Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [ 14 C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity, an enzyme of general isoprenoid metabolism, paralleled the changes in [ 14 C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [ 14 C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [ 3 H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures

  2. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    International Nuclear Information System (INIS)

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  3. Abscisic acid negatively regulates elicitor-induced synthesis of capsidiol in wild tobacco.

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-07-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8'-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8'-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants.

  4. Abscisic Acid Negatively Regulates Elicitor-Induced Synthesis of Capsidiol in Wild Tobacco1[W

    Science.gov (United States)

    Mialoundama, Alexis Samba; Heintz, Dimitri; Debayle, Delphine; Rahier, Alain; Camara, Bilal; Bouvier, Florence

    2009-01-01

    In the Solanaceae, biotic and abiotic elicitors induce de novo synthesis of sesquiterpenoid stress metabolites known as phytoalexins. Because plant hormones play critical roles in the induction of defense-responsive genes, we have explored the effect of abscisic acid (ABA) on the synthesis of capsidiol, the major wild tobacco (Nicotiana plumbaginifolia) sesquiterpenoid phytoalexin, using wild-type plants versus nonallelic mutants Npaba2 and Npaba1 that are deficient in ABA synthesis. Npaba2 and Npaba1 mutants exhibited a 2-fold higher synthesis of capsidiol than wild-type plants when elicited with either cellulase or arachidonic acid or when infected by Botrytis cinerea. The same trend was observed for the expression of the capsidiol biosynthetic genes 5-epi-aristolochene synthase and 5-epi-aristolochene hydroxylase. Treatment of wild-type plants with fluridone, an inhibitor of the upstream ABA pathway, recapitulated the behavior of Npaba2 and Npaba1 mutants, while the application of exogenous ABA reversed the enhanced synthesis of capsidiol in Npaba2 and Npaba1 mutants. Concomitant with the production of capsidiol, we observed the induction of ABA 8′-hydroxylase in elicited plants. In wild-type plants, the induction of ABA 8′-hydroxylase coincided with a decrease in ABA content and with the accumulation of ABA catabolic products such as phaseic acid and dihydrophaseic acid, suggesting a negative regulation exerted by ABA on capsidiol synthesis. Collectively, our data indicate that ABA is not required per se for the induction of capsidiol synthesis but is essentially implicated in a stress-response checkpoint to fine-tune the amplification of capsidiol synthesis in challenged plants. PMID:19420326

  5. Proteinaceous and oligosaccharidic elicitors induce different calcium signatures in the nucleus of tobacco cells.

    Science.gov (United States)

    Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain

    2005-12-01

    We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.

  6. Sesquiterpenoids from the cultured mycelia of Ganoderma capense.

    Science.gov (United States)

    Tan, Zhen; Zhao, Jinlian; Liu, Jimei; Zhang, Min; Chen, Ridao; Xie, Kebo; Dai, Jungui

    2017-04-01

    Eleven new sesquiterpenoids, including eight cadinane-type sesquiterpenoids, Ganodermanol A-H (1-8), and three eudesmane-type sesquiterpenoids, Ganodermanol I-K (9-11), together with three known compounds (12-14), were isolated from the cultured mycelia of Ganoderma capense. Their structures and absolute configurations were identified through combined extensive spectroscopic analysis, circular dichroism (CD), and Mo 2 (AcO) 4 -induced CD. Compounds 4 and 9 exhibited moderate cytotoxic activity against the human cancer cell line HCT116 with IC 50 values of 16.6 and 12.2μM, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells.

    Science.gov (United States)

    Xu, Maojun; Dong, Jufang; Wang, Huizhong; Huang, Luqi

    2009-08-01

    The antagonistic action between jasmonic acid (JA) and salicylic acid (SA) in plant defence responses has been well documented. However, their relationship in secondary metabolite production is largely unknown. Here, we report that PB90, a protein elicitor from Phytophthora boehmeriae, triggers JA generation, SA accumulation and flavonol glycoside production of Ginkgo biloba cells. JA inhibitors suppress not only PB90-triggered JA generation, but also the elicitor-induced flavonol glycoside production. However, the elicitor can still enhance flavonol glycoside production even though the JA generation is totally inhibited. Over-expression of SA hydrolase gene NahG not only abolishes SA accumulation, but also suppresses the elicitor-induced flavonol glycoside production when JA signalling is inhibited. Interestingly, expression of NahG does not inhibit the elicitor-induced flavonol glycoside accumulation in the absence of JA inhibitors. Moreover, JA levels are significantly enhanced when SA accumulation is impaired in the transgenic cells. Together, the data suggest that both JA and SA are involved in PB90-induced flavonol glycoside production. Furthermore, we demonstrate that JA signalling might be enhanced to substitute for SA to mediate the elicitor-induced flavonol glycoside accumulation when SA signalling is impaired, which reveals an unusual complementary relationship between JA and SA in mediating plant secondary metabolite production.

  8. The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea

    Directory of Open Access Journals (Sweden)

    Jie eYuan

    2016-03-01

    Full Text Available Ethylene, the first known gaseous phytohormone, is involved in plant growth, development as well as responses to environmental signals. However, limited information is available on the role of ethylene in endophytic fungi induced secondary metabolites biosynthesis. Atractylodes lancea is a traditional Chinese herb, and its quality depends on the main active compounds sesquiterpenoids. This work showed that the endophytic fungus Gilmaniella sp. AL12 induced ethylene production in Atractylodes lancea. Pre-treatment of plantlets with ethylene inhibiter aminooxyacetic acid (AOA suppressed endophytic fungi induced accumulation of ethylene and sesquiterpenoids. Plantlets were further treated with AOA, salicylic acid (SA biosynthesis inhibitor paclobutrazol (PAC, jasmonic acid inhibitor ibuprofen (IBU, hydrogen peroxide (H2O2 scavenger catalase (CAT, nitric oxide (NO-specific scavenger 2-(4-Carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO. With endophytic fungi inoculation, IBU or PAC did not inhibit ethylene production, and JA and SA generation were suppressed by AOA, showing that ethylene may act as an upstream signal of JA and SA pathway. With endophytic fungi inoculation, CAT or cPTIO suppressed ethylene production, and H2O2 or NO generation was not affected by 1-aminocyclopropane-1-carboxylic acid (ACC, showing that ethylene may act as a downstream signal of H2O2 and NO pathway. Then, plantlets were treated with ethylene donor ACC, JA, SA, H2O2, NO donor sodium nitroprusside (SNP. Exogenous ACC could trigger JA and SA generation, whereas exogenous JA or SA did not affect ethylene production, and the induced sesquiterpenoids accumulation triggered by ACC was partly suppressed by IBU and PAC, showing that ethylene acted as an upstream signal of JA and SA pathway. Exogenous ACC did not affect H2O2 or NO generation, whereas exogenous H2O2 and SNP induced ethylene production, and the induced sesquiterpenoids

  9. Plant Defense Response to Fungal Pathogens (Activation of Host-Plasma Membrane H+-ATPase by Elicitor-Induced Enzyme Dephosphorylation).

    Science.gov (United States)

    Vera-Estrella, R.; Barkla, B. J.; Higgins, V. J.; Blumwald, E.

    1994-01-01

    Elicitor preparations containing the avr5 gene products from race 4 of Cladosporium fulvum and tomato (Lycopersicon esculentum L.) cells near isogenic for the resistance gene Cf5 were used to investigate events following the treatment of host plasma membranes with elicitor. A 4-fold increase in H+-ATPase activity, coincident with the acidification of the extracellular medium, was detected immediately after elicitor treatment. The elicitor-induced stimulation of the plasma membrane H+-ATPase was inhibited by okadaic acid but not by staurosporine, suggesting that protein dephosphorylation was required for increased H+-ATPase activity. This observation was confirmed by [gamma]-32P labeling and immunodetection of the plasma membrane H+-ATPase. Effects of guanidine nucleotide analogs and mastoparan on the ATPase activity suggested the role of GTP-binding proteins in mediating the putative elicitor-receptor binding, resulting in activation of a phosphatase(s), which in turn stimulates the plasma membrane H+-ATPase by dephosphorylation. PMID:12232073

  10. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors.

    Science.gov (United States)

    Liñeiro, Eva; Chiva, Cristina; Cantoral, Jesús M; Sabido, Eduard; Fernández-Acero, Francisco Javier

    2016-06-01

    Phosphorylation is one of the main post-translational modification (PTM) involved in signaling network in the ascomycete Botrytis cinerea , one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW). A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099). Further interpretation and discussion of these data are provided in our research article entitled "Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors" (Liñeiro et al., 2016) [1].

  11. Estimation of induced secondary metabolites in chickpea tissues in response to elicitor preparation of seaweeds

    International Nuclear Information System (INIS)

    Bi, F.; Iqbal, S.

    2000-01-01

    Disease response of plants in terms of induced browning and phytoalexin (induced secondary metabolites) production were recorded in the tissues of Cicer arietinum (Chick pea) treated with the High Molecular Crude Elicitor Preparations, HMWCEP 'Polysaccharides' of Hypnea musciformis (red algae), Padina tetrastromatica (brown algae) and Ulva lactulus (green algae). A UV-visible spectrophotometric method has been developed for the quantification of induced secondary metabolites with time. (author)

  12. Two rice GRAS family genes responsive to N -acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells.

    Science.gov (United States)

    Day, R Bradley; Tanabe, Shigeru; Koshioka, Masaji; Mitsui, Toshiaki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Kaku, Hanae; Shibuya, Naoto; Minami, Eiichi

    2004-01-01

    In this study, we present data showing that two members of the GRAS family of genes from rice, CIGR1 and CIGR2 (chitin-inducible gibberellin-responsive), inducible by the potent elicitor N -acetylchitooligosaccharide (GN), are rapidly induced by exogenous gibberellins. The pattern of mRNA accumulation was dependent on the dose and biological activity of the gibberellins, suggesting that the induction of the genes by gibberellin is mediated by a biological receptor capable of specific recognition and signal transduction upon perception of the phytoactive compounds. Further pharmacological analysis revealed that the CIGR1 and CIGR2 mRNA accumulation by treatment with gibberellin is dependent upon protein phosphorylation/dephosphorylation events. In rice calli derived from slender rice 1, a constitutive gibberellin-responsive mutant, or d1, a mutant deficient in the alpha -subunit of the heterotrimeric G-protein, CIGR1 and CIGR2 were induced by a GN elicitor, yet not by gibberellin. Neither gibberellin nor GN showed related activities in defense or development, respectively. These results strongly suggested that the signal transduction cascade from gibberellin is independent of that from GN, and further implied that CIGR1 and CIGR2 have dual, distinct roles in defense and development.

  13. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  14. Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants

    Directory of Open Access Journals (Sweden)

    Mayumi eEgusa

    2015-12-01

    Full Text Available Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1 mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.

  15. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    Science.gov (United States)

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Light and Fungal Elicitor Induce 3-Deoxy-d-arabino-Heptulosonate 7-Phosphate Synthase mRNA in Suspension Cultured Cells of Parsley (Petroselinum crispum L.) 1

    Science.gov (United States)

    Henstrand, John M.; McCue, Kent F.; Brink, Kent; Handa, Avtar K.; Herrmann, Klaus M.; Conn, Eric E.

    1992-01-01

    Light and fungal elicitor induce mRNA encoding 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase in suspension cultured cells of parsley (Petroselinum crispum L.). The kinetics and dose response of mRNA accumulation were similar for DAHP synthase and phenylalanine ammonia-lyase (PAL). Six micrograms of elicitor from Phytophthora megasperma f. glycinia gave a detectable induction within 1 hour. Induction of DAHP synthase and PAL mRNAs by light was transient, reaching maximal levels at 4 hours and returning to pretreatment levels after 24 hours. Our data suggest that either light or fungal elicitor transcriptionally activate DAHP synthase. A coordinate regulation for key enzymes in the synthesis of primary and secondary metabolites is indicated. ImagesFigure 1 PMID:16668708

  17. Optimization of Biochemical Screening Methods for Volatile and Unstable Sesquiterpenoids Using HS-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Trine Bundgaard Andersen

    2015-06-01

    Full Text Available HS-SPME-GC-MS has been suggested as a fast and robust analytical platform for the product characterization of sesquiterpene synthases. The choice of fiber and injection temperature can have a significant effect on the observed product profile, due to the chemical rearrangements that can occur on the fiber material. Here we present a systematic study on the effects of fiber choice and injection port temperature on the observed sesquiterpenoid profile of four sesquiterpene synthases expressed in Nicotiana benthamiana. We found that the absorbent material PDMS was much less likely to support acid-induced rearrangement of sesquiterpenoids when compared to the adsorbent materials PDMS/DVB, PDMS/CAR, and PDMS/CAR/DVB. Furthermore, utilizing an injection port temperature at 160 °C almost eliminated the inherent thermal instability of germacrene sesquiterpenoids. Thus, for fast screening of sesquiterpene synthases, the results suggest that PDMS fibers and an injection temperature of 160 °C provide a fast and reproducible HS-SPME GC-MS method when using H2 as carrier gas.

  18. Elicitor Mixtures Significantly Increase Bioactive Compounds, Antioxidant Activity, and Quality Parameters in Sweet Bell Pepper

    Directory of Open Access Journals (Sweden)

    Lina Garcia-Mier

    2015-01-01

    Full Text Available Sweet bell peppers are greatly appreciated for their taste, color, pungency, and aroma. Additionally, they are good sources of bioactive compounds with antioxidant activity, which can be improved by the use of elicitors. Elicitors act as metabolite-inducing factors (MIF by mimic stress conditions. Since plants rarely experience a single stress condition one by one but are more likely to be exposed to simultaneous stresses, it is important to evaluate the effect of elicitors on plant secondary metabolism as mixtures. Jasmonic acid (JA, hydrogen peroxide (HP, and chitosan (CH were applied to fruits and plants of bell pepper as mixtures. Bioactive compounds, antioxidant activity, and quality parameters were evaluated. The assessed elicitor cocktail leads to an increase in the variables evaluated (P ≤ 0.05 when applied to mature fruits after harvest, whereas the lowest values were observed in the treatment applied to immature fruits. Therefore, the application of the elicitor cocktail to harvested mature fruits is recommended in order to improve bioactive compounds and the antioxidant activity of sweet bell peppers.

  19. ORGANOGENESIS OF CYMBIDIUM ORCHID USING ELICITORS

    Directory of Open Access Journals (Sweden)

    Jabun Nahar SYEDA

    2015-12-01

    Full Text Available Elicitors are substances that induce protective responses in plants. In this study, methyl jasmonate (Me-JA and lysozyme elicitation on PLBs culture of Cymbidium insigne in vitro was investigated. Elicitation by 0.1 mg/l Me-JA enhanced maximum PLB, shoot and root formation. The effects of lysozyme under white fluorescent tube, results indicated that every concentrations of lysozyme induced PLB, shoot and root formation and 0.1 mg/l lysozyme enhanced maximum formation of PLB, shoot and root compare with control. Lysozyme is known to play a vital role in medical industry and the present study firstly used lysozyme, as a plant growth regulator in Cymbidium tissue culture.

  20. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid.

    Science.gov (United States)

    van Aubel, Géraldine; Cambier, Pierre; Dieu, Marc; Van Cutsem, Pierre

    2016-06-01

    Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  2. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors

    Directory of Open Access Journals (Sweden)

    Eva Liñeiro

    2016-06-01

    Full Text Available Phosphorylation is one of the main post-translational modification (PTM involved in signaling network in the ascomycete Botrytis cinerea, one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW. A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099. Further interpretation and discussion of these data are provided in our research article entitled “Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors” (Liñeiro et al., 2016 [1].

  3. Drimane sesquiterpenoids from the Aspergillus oryzae QXPC-4.

    Science.gov (United States)

    Ren, Ren; Chen, Chao-Jun; Hu, Sha-Sha; Ge, Hui-Ming; Zhu, Wen-Yong; Tan, Ren-Xiang; Jiao, Rui-Hua

    2015-03-01

    Three new drimane sesquiterpenoids, astellolides C-E (1-3, resp.), four new drimane sesquiterpenoid p-hydroxybenzoates, astellolides F-I (4-7, resp.), together with two known compounds astellolides A and B (8 and 9, resp.), have been isolated from the liquid culture of Aspergillus oryzae (strain No. QXPC-4). Their structures were established by comprehensive analysis of spectroscopic data. The relative and absolute configurations were determined on the basis of NOESY and CD data, together with single-crystal X-ray diffraction analyses of compounds 1-3. The metabolites were evaluated for their cytotoxic activities, however, no compounds showed a significant cytotoxicity against the tested cell lines at a concentration of 20 μM. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    Science.gov (United States)

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  5. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    Directory of Open Access Journals (Sweden)

    Mengjie Liu

    2016-07-01

    Full Text Available The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The 3-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI. To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and 8 truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  6. Two new sesquiterpenoids produced by halophilic Nocardiopsis chromatogenes YIM 90109.

    Science.gov (United States)

    Sun, Ming-Wei; Zhang, Xiao-Mei; Bi, Hui-Li; Li, Wen-Jun; Lu, Chun-Hua

    2017-01-01

    Two new germacradiene-type sesquiterpenoids, including 1(10)E,5E-germacradiene-9β,11-diol (or 9β-hydroxyl germacradienol) (1) and 11-hydroxy-1(10)E,5E-germacradien-2-one (2-oxygermacradienol) (2), together with a known geosmin-type sesquiterpenoid (1β,4β,4aβ,7α,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a,7(2H)-triol (3), were elucidated by their NMR spectroscopic data, HR-ESI-MS and single-crystal X-ray diffraction from the halophilic strain Nocardiopsis chromatogenes YIM 90109. The antimicrobial activities were evaluated by paper diffusion method.

  7. Plant defense induced in in vitro propagated banana (Musa paradisiaca) plantlets by Fusarium derived elicitors.

    Science.gov (United States)

    Patel, Miral; Kothari, I L; Mohan, J S S

    2004-07-01

    Perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used fungal components of Fusarium under in vitro condition and checked the rise in signal molecule, salicylic acid (SA), and marker enzymes in defense reactions against the pathogen. SA level increased by 21 folds in elicitor treated plantlets as compared to that of control plantlets and there was marked increase in phenylalanine ammonia-lyase(PAL), peroxidase(POX), polyphenol oxidase(PPO) along with higher total phenolic content. Present results indicated that use of fungal components had successfully induced systemic resistance in in vitro cultured banana plantlets.

  8. Curcumolide, a unique sesquiterpenoid with anti-inflammatory properties from Curcuma wenyujin.

    Science.gov (United States)

    Dong, Jianyong; Shao, Weiwei; Yan, Pengcheng; Cai, Xiaoqing; Fang, Lianglian; Zhao, Xiaowei; Lin, Weiwei; Cai, Yuan

    2015-01-15

    Curcumolide, a novel sesquiterpenoid with a unique 5/6/5 tricyclic skeleton, was isolated from Curcuma wenyujin. The structure and absolute configuration were elucidated by extensive NMR, ECD data analysis, and a single-crystal X-ray study. This molecule exhibited significant anti-inflammatory effects in LPS-induced RAW 264.7 macrophages. It suppressed LPS-induced NF-κB activation, including the nuclear translocation and DNA binding activity of NF-κB, and decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), nitric oxide (NO) and reactive oxygen species (ROS) production. Therefore, Curcumolide may have therapeutic potential for treating inflammatory diseases by inhibiting NF-κB activation and pro-inflammatory mediator production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Data on eleven sesquiterpenoids from the cultured mycelia of Ganoderma capense

    Directory of Open Access Journals (Sweden)

    Zhen Tan

    2017-06-01

    Full Text Available The data included in this paper are associated with the research article entitled “Sesquiterpenoids from the cultured mycelia of Ganoderma capense” [1]. 1H NMR, 13C NMR, DEPT, HSQC, 1H–1H COSY, HMBC, NOESY, HRESIMS, and IR spectra of Ganodermanol A–H (1–11, together with Mo2(AcO4-induced CD spectrum of Ganodermanol A, CD spectra of Ganodermanol D–E were included in the Data in Brief article. In addition, the cytotoxicities and anti-HIV-1 activity of isolated compounds were also included in the Data in Brief article.

  10. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    Science.gov (United States)

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse

  11. A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene.

    Science.gov (United States)

    Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B

    1995-01-01

    Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.

  12. Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence

    Directory of Open Access Journals (Sweden)

    Kay eGully

    2015-01-01

    Full Text Available Members of the AtPep group of Arabidopsis endogenous peptides have frequently been reported to induce pattern-triggered immunity and to increase resistance to diverse pathogens by amplifying the innate immune response. Here, we made the surprising observation that dark-induced leaf senescence was accelerated by the presence of Peps. Adult leaves as well as leaf discs of Col-0 wild type plants showed a Pep-triggered early onset of chlorophyll breakdown and leaf yellowing whereas pepr1 pepr2 double mutant plants were insensitive. In addition, this response was dependent on ethylene signaling and inhibited by the addition of cytokinins. Notably, addition of the bacterial elicitors flg22 or elf18, both potent inducers of pattern-triggered immunity, did not provoke an early onset of leaf senescence.Continuous darkness leads to energy deprivation and starvation and therewith promotes leaf senescence. We found that continuous darkness also strongly induced PROPEP3 transcription. Moreover, Pep-perception led to a rapid induction of PAO, APG7 and APG8a, genes indispensable for chlorophyll degradation as well as autophagy, respectively, and all three hallmarks of starvation and senescence. Notably, addition of sucrose as a source of energy inhibited the Pep-triggered early onset of senescence. In conclusion, we report that Pep-perception accelerates dark/starvation-induced senescence via an early induction of chlorophyll degradation and autophagy. This represents a novel and unique characteristic of PEPR signaling, unrelated to pattern-triggered immunity.

  13. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    Science.gov (United States)

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  14. Novel skeleton sesquiterpenoids isolated from guava leaves.

    Science.gov (United States)

    Ouyang, Wen; Zhu, Xiao-ai; Wang, Wei; Chen, Xue-Xiang; Chen, Yun-Jiao; Cao, Yong

    2016-01-01

    A chemical investigation of the plant Psidium guajava L., collected in Guangdong province, afforded two novel skeleton sesquiterpenoids 1 and 2. Compound 2 also known as isocaryolan-9-one was a new natural product. The structure of the novel compound 1 was determined as guavacid A by various spectroscopic methods. A possible biosynthetic pathway for 1 and 2 was proposed.

  15. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Science.gov (United States)

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  16. Molecular effects of resistance elicitors from biological origin and their potential for crop protection

    Directory of Open Access Journals (Sweden)

    Lea eWiesel

    2014-11-01

    Full Text Available Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonising internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance towards non-adapted pathogens they can also be described as ‘defence elicitors’. In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defence elicitors in the absence of pathogens can promote plant resistance by uncoupling defence activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.

  17. A paralog of the proteinaceous elicitor sm1 affects colonization of maize roots by Trichoderma virens

    Science.gov (United States)

    The biocontrol agent, Trichoderma virens, has the ability to protect plants from pathogens by eliciting plant defense responses, involvement in mycoparasitism, or secreting antagonistic secondary metabolites. SM1, an elicitor of induced systemic resistance (ISR), was found to have three paralogs wi...

  18. A New Sesquiterpenoid from the Rhizome of Curcuma zedoaria

    International Nuclear Information System (INIS)

    Eun, So Hee; Choi, In Ho; Shim, Sang Hee

    2010-01-01

    Chemical studies of Curcuma zedoaria led to isolation of a new sesquiterpenoid 1 and a known flavonoid 2. The structures of both compounds were elucidated on the basis of NMR and MS data. Curcuma zedoaria Rosc, also known as white turmeric, zedoaria, or gajutsu, is a perennial rhizomatous herb that belongs to the Zingiberaceae family. The plant is indigenous to Bangladesh, Sri Lanka, and India, and is also cultivated in China, Japan, Brazil, Nepal, and Thailand. The rhizome of the plant has been used in Japanese and Chinese folk medicine as an aromatic stomachic, emmenagogus, or for the treatment of 'Oketsu' syndrome caused by blood stagnation. Zedoaria has also been reported to have antimicrobial and antifungal activities, a larvicidal effect, and analgesic, antiallergic, hepatoprotective, anti-inflammatory, antimutagenic, cytotoxic, anticancer, and antioxidant activities. Previous chemical studies of this plant have revealed the presence of curcuminoids and different kinds of sesquiterpenoids, including furanodiene, furanodienone, zederone, curzerenone, curzeone, germacrone, curcumenol, and zedoaronediol

  19. A New Sesquiterpenoid from the Rhizome of Curcuma zedoaria

    Energy Technology Data Exchange (ETDEWEB)

    Eun, So Hee; Choi, In Ho; Shim, Sang Hee [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2010-05-15

    Chemical studies of Curcuma zedoaria led to isolation of a new sesquiterpenoid 1 and a known flavonoid 2. The structures of both compounds were elucidated on the basis of NMR and MS data. Curcuma zedoaria Rosc, also known as white turmeric, zedoaria, or gajutsu, is a perennial rhizomatous herb that belongs to the Zingiberaceae family. The plant is indigenous to Bangladesh, Sri Lanka, and India, and is also cultivated in China, Japan, Brazil, Nepal, and Thailand. The rhizome of the plant has been used in Japanese and Chinese folk medicine as an aromatic stomachic, emmenagogus, or for the treatment of 'Oketsu' syndrome caused by blood stagnation. Zedoaria has also been reported to have antimicrobial and antifungal activities, a larvicidal effect, and analgesic, antiallergic, hepatoprotective, anti-inflammatory, antimutagenic, cytotoxic, anticancer, and antioxidant activities. Previous chemical studies of this plant have revealed the presence of curcuminoids and different kinds of sesquiterpenoids, including furanodiene, furanodienone, zederone, curzerenone, curzeone, germacrone, curcumenol, and zedoaronediol.

  20. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-01-01

    Full Text Available Green leaf volatiles (GLV prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA. In maize this response is specifically linked to insect elicitor (IE-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA, caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA.

  1. New Sesquiterpenoids and Anti-Platelet Aggregation Constituents from the Rhizomes of Curcuma zedoaria.

    Science.gov (United States)

    Chen, Jih-Jung; Tsai, Tung-Han; Liao, Hsiang-Ruei; Chen, Li-Chai; Kuo, Yueh-Hsiung; Sung, Ping-Jyun; Chen, Chun-Lin; Wei, Chun-Sheng

    2016-10-17

    Two new sesquiterpenoids-13-hydroxycurzerenone ( 1 ) and 1-oxocurzerenone ( 2 )-have been isolated from the rhizomes of Curcuma zedoaria , together with 13 known compounds ( 3 - 15 ). The structures of two new compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, 13-hydroxycurzerenone ( 1 ), 1-oxocurzerenone ( 2 ), curzerenone ( 3 ), germacrone ( 4 ), curcolone ( 5 ), procurcumenol ( 6 ), ermanin ( 7 ), curcumin ( 8 ), and a mixture of stigmast-4-en-3,6-dione ( 12 ) and stigmasta-4,22-dien-3,6-dione ( 13 ) exhibited inhibition (with inhibition % in the range of 21.28%-67.58%) against collagen-induced platelet aggregation at 100 μM. Compounds 1 , 5 , 7 , 8 , and the mixture of 12 and 13 inhibited arachidonic acid (AA)-induced platelet aggregation at 100 μM with inhibition % in the range of 23.44%-95.36%.

  2. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  3. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense

    OpenAIRE

    Huffaker, Alisa; Pearce, Gregory; Veyrat, Nathalie; Erb, Matthias; Turlings, Ted C. J.; Sartor, Ryan; Shen, Zhouxin; Briggs, Steven P.; Vaughan, Martha M.; Alborn, Hans T.; Teal, Peter E. A.; Schmelz, Eric A.

    2013-01-01

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression o...

  4. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison.

    Science.gov (United States)

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-07-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate ( K 2 HPO 4 ), Oxalic acid (OA), Isonicotinic acid (INA), Salicylic acid (SA), Acetylsalicylate (AS), Arachidonic acid (AA) and Calcium chloride (CaCl 2 ) to stimulate innate immune responses in Lycopersicum esculentum Mill. Excised tomato leaves, treated with elicitors at three different concentrations, were found to stimulate defense and antioxidative enzymes, total phenol and flavonoid content after 24 h of incubation. CaCl 2 (0.5 %) followed by INA (2.5 mM) were found most effective in activation of all such defense molecules in tomato leaves. Furthermore, nitric oxide (NO), a key gaseous mediator in plant defense signaling, was also measured after subsequent elicitor application. Higher doses of elicitors showed an elevated level of reactive oxygen species (ROS) generation, enhanced lipid peroxidation rate and proline content, which indicates the extent of abiotic stress generation on the leaves. However, ROS production, lipid peroxidation rate and proline concentration remain significantly reduced as a result of CaCl 2 (0.5 %) and INA (2.5 mM) application. A sharp increase of total chlorophyll content was also recorded due to treatment of CaCl 2 (0.5 %). These results demonstrate the effects of different abiogenic elicitors to regulate the production of defense molecules. Results also suggest that among all such chemicals, CaCl 2 (0.5 %) and INA (2.5 mM) can be used as a potential elicitor in organic farming of tomato.

  5. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    KAUST Repository

    Lori, M.; van Verk, M. C.; Hander, T.; Schatowitz, H.; Klauser, D.; Flury, P.; Gehring, Christoph A; Boller, T.; Bartels, S.

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were

  6. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors : interfamily incompatibility of perception but compatibility of downstream signalling

    NARCIS (Netherlands)

    Lori, Martina; van Verk, Marcel C; Hander, Tim; Schatowitz, Hendrik; Klauser, Dominik; Flury, Pascale; Gehring, Christoph A; Boller, Thomas; Bartels, Sebastian

    2015-01-01

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail.

  7. Celorbicol, isocelorbicol, and their esters: new sesquiterpenoids from Celastrus orbiculatus

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.R. Jr. (Dept. of Agriculture, Peoria, IL); Miller, R.W.; Weisleder, D.; Rohwedder, W.K.; Eickman, N.; Clardy, J.

    1976-10-01

    Esters of two new sesquiterpenoid polyalcohols - celorbicol and isocelorbicol - have been isolated from Celastrus orbiculatus. Structures of the parent alcohols have been established by x-ray crystallography, and those of the derived esters have been assigned by NMR spectroscopy. These compounds are structurally related to other polyesters and ester alkaloids from the Celastraceae, all of which are based on the dihydroagarofuran ring system.

  8. Proteomics analysis of Bacillus licheniformis in response to oligosaccharides elicitors.

    Science.gov (United States)

    Reffatti, Patricia Fernanda; Roy, Ipsita; Odell, Mark; Keshavarz, Tajalli

    2014-01-01

    The role of oligosaccharides as biotic elicitors has been recognised in the enhanced production of antibiotics from fungal and bacterial cultures. The yield of bacitracin A in cultures of Bacillus licheniformis was increased after supplementation with oligoguluronate (OG), and mannan oligosaccharides (MO) and its mechanism at transcription level been established already. However, the elicitation mechanism at post transcriptional level has not been reported so far. In this paper we investigate changes in proteomics of B. licheniformis in presence of the oligosaccharide elicitors OG and MO. Differentially expressed proteins were examined using 2D-PAGE stained with colloidal Coomassie and were further identified by LC-MS/MS. We identified 19 differentially expressed proteins including those involved in carbon metabolism, energy generation, amino acid biosynthesis, oxidative and general stress response. The novel findings of this work, together with previous reports, contribute to the unravelling of the overall mechanism of elicitation in B. licheniformis cultures and reliability of the use of these elicitors for potential industrial application. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile

    Directory of Open Access Journals (Sweden)

    Shuiyuan Cheng

    2016-03-01

    Full Text Available Roman chamomile (Chamaemelum nobile L. is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969 was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  10. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-03-08

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  11. Comparison of the chemical composition of three species of smartweed (genus Persicaria) with a focus on drimane sesquiterpenoids.

    Science.gov (United States)

    Prota, N; Mumm, R; Bouwmeester, H J; Jongsma, M A

    2014-12-01

    The genus Persicaria is known to include species accumulating drimane sesquiterpenoids, but a comparative analysis highlighting the compositional differences has not been done. In this study, the secondary metabolites of both flowers and leaves of Persicariahydropiper, Persicariamaculosa and Persicariaminor, three species which occur in the same habitat, were compared. Using gas chromatography-mass spectrometry (GC-MS) analysis of extracts, overall 21/29 identified compounds in extracts were sesquiterpenoids and 5/29 were drimanes. Polygodial was detected in all species, though not in every sample of P. maculosa. On average, P. hydropiper flowers contained about 6.2 mg g FW(-1) of polygodial, but P. minor flowers had 200-fold, and P. maculosa 100,000 fold lower concentrations. Comparatively, also other sesquiterpenes were much lower in those species, suggesting the fitness benefit to depend on either investing a lot or not at all in terpenoid-based secondary defences. For P. hydropiper, effects of flower and leaf development and headspace volatiles were analysed as well. The flower stage immediately after fertilisation was the one with the highest content of drimane sesquiterpenoids and leaves contained about 10-fold less of these compounds compared to flowers. The headspace of P. hydropiper contained 8 compounds: one monoterpene, one alkyl aldehyde and six sesquiterpenes, but none were drimanes. The potential ecological significance of the presence or absence of drimane sesquiterpenoids and other metabolites for these plant species are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  13. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice.

    Science.gov (United States)

    Nishiyama, Tozo; Mae, Tatsumasa; Kishida, Hideyuki; Tsukagawa, Misuzu; Mimaki, Yoshihiro; Kuroda, Minpei; Sashida, Yutaka; Takahashi, Kazuma; Kawada, Teruo; Nakagawa, Kaku; Kitahara, Mikio

    2005-02-23

    Turmeric, the rhizome of Curcuma longa L., has a wide range of effects on human health. The chemistry includes curcuminoids and sesquiterpenoids as components, which are known to have antioxidative, anticarcinogenic, and antiinflammatory activities. In this study, we investigated the effects of three turmeric extracts on blood glucose levels in type 2 diabetic KK-A(y) mice (6 weeks old, n = 5/group). These turmeric extracts were obtained by ethanol extraction (E-ext) to yield both curcuminoids and sesquiterpenoids, hexane extraction (H-ext) to yield sesquiterpenoids, and ethanol extraction from hexane-extraction residue (HE-ext) to yield curcuminoids. The control group was fed a basal diet, while the other groups were fed a diet containing 0.1 or 0.5 g of H-ext or HE-ext/100 g of diet or 0.2 or 1.0 g of E-ext/100 g of diet for 4 weeks. Although blood glucose levels in the control group significantly increased (P turmeric extracts had human peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligand-binding activity in a GAL4-PPAR-gamma chimera assay. Also, curcumin, demethoxycurcumin, bisdemethoxycurcumin, and ar-turmerone had PPAR-gamma ligand-binding activity. These results indicate that both curcuminoids and sesquiterpenoids in turmeric exhibit hypoglycemic effects via PPAR-gamma activation as one of the mechanisms, and suggest that E-ext including curcuminoids and sesquiterpenoids has the additive or synergistic effects of both components.

  14. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    Science.gov (United States)

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Use of elicitors as an approach for sustainable agriculture

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... elicitors act in cellular defense mechanism of crops, to improve protection and management for sustainable ... mechanisms governing resistance to plant diseases and therefore could ..... Emerging MAP kinase pathways in ...

  16. The application of biotic elicitor on Artemisia annua L. to increase artemisinin content

    Science.gov (United States)

    Darwati, I.; Manohara, D.; Rohimatun; Nurhayati, H.

    2018-01-01

    Artemisinin-based Combination Therapy (ACT) has been recommended by WHO as an alternative to treat malaria overcoming drug resistance. The secondary metabolic products in plants, including artemisinin, can be increased by utilizing biotic elicitor from fungi. The research was conducted in Gunung Putri Research Installation, Cipanas, West Java from 2010 to 2011. Phytophthora sp. from eggplant and Colletotrichum sp. from Artemisia annua were applied as biotic elicitor. The types of biotic elicitor applied to the plants were 1) the medium of potato dextrose broth were inoculated with fungi and harvested after 10 days (filtrate), 2) powdery mycelium of both fungi. There were 16 treatments: control negative, control positive (uninoculated medium) 1%, 2%, 3% (v/v)], Phytophthora sp. filtrate [1, 2% and 3% (v/v)], Colletotrichum sp. filtrate [1, 2% and 3% (v/v)], Phytophthora sp. mycelium [1%, 2% and 3% (w/v)], Colletotrichum sp mycelium [1%, 2% and 3% (w/v)]. The elicitor application increased plant production by 26.21% and artemisinin yield by 72% compared to control. Furthermore, the artemisinin production of the plants treated with medium inoculated with 2% filtrate of Phytophthora sp (FP2) (25.19 kg/ha) and 1% powdery mycelium of Colletotrichum sp (MC1) (26.42 kg/ha) were higher than control (K) (11.17 kg/ha).

  17. Abiotic elicitors mediated elicitation of innate immunity in tomato: an ex vivo comparison

    OpenAIRE

    Chakraborty, Nilanjan; Ghosh, Sudeepa; Chandra, Swarnendu; Sengupta, Sarban; Acharya, Krishnendu

    2016-01-01

    Improvement of the host resistance by using hazard free chemical elicitors is emerging as an alternative approach in the field of plant disease management. In our present work, we have screened the efficacy and possible mechanism of abiogenic elicitors like Dipotassium hydrogen orthophosphate (K2HPO4), Oxalic acid?(OA), Isonicotinic acid (INA), Salicylic acid?(SA), Acetylsalicylate?(AS), Arachidonic acid (AA)?and Calcium chloride (CaCl2) to stimulate innate immune responses in Lycopersicum es...

  18. Picrotoxane sesquiterpenoids from the stems of Dendrobium nobile and their absolute configurations and angiogenesis effect.

    Science.gov (United States)

    Meng, Chun-Wang; He, Yu-Lin; Peng, Cheng; Ding, Xing-Jie; Guo, Li; Xiong, Liang

    2017-09-01

    Five picrotoxane sesquiterpenoids belonging to the unusual dendrobine-type (1 and 4) and the picrotoxinin-type (2, 3, and 5) were isolated from the stems of Dendrobium nobile Lindl. Their structures were established by spectroscopic analyses and physical properties. Compound 1 was a new dendrobine analogue. Although the planar structure of 2 and 3 had been reported, their absolute configurations were first determined by single-crystal X-ray diffraction and circular dichroism. Compound 2 exhibited angiogenesis effect against sunitinib-induced damage on intersegmental blood vessels in Tg (flk1: EGFP) and Tg (fli1: nEGFP) transgenic zebrafish at concentrations of 3.13, 6.25, 12.50, and 25.00μM. Copyright © 2017. Published by Elsevier B.V.

  19. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  20. Pyrenophoric acids B and C, two new phytotoxic sesquiterpenoids produced by Pyrenophora semeniperda

    Science.gov (United States)

    Marco Masi; Susan Meyer; Alessio Cimmino; Suzette Clement; Beth Black; Antonio Evidente

    2014-01-01

    Two new phytotoxic sesquiterpenoid acids, named pyrenophoric acids B and C, were isolated together with the related pyrenophoric and abscisic acids from solid Bromus tectorum (cheatgrass) seed culture of the seed pathogen Pyrenophora semeniperda. This fungus has been proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum), a Eurasian annual grass...

  1. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Nováková, Miroslava; Kim, P.D.; Šašek, Vladimír; Burketová, Lenka; Jindřichová, Barbora; Šantrůček, J.; Valentová, O.

    2016-01-01

    Roč. 32, č. 4 (2016), s. 918-928 ISSN 8756-7938 R&D Projects: GA ČR GA522/08/1581; GA MZe QH81201; GA MŠk LD14093 Institutional support: RVO:61389030 Keywords : elicitor * Brassica napus * Leptosphaeria maculans Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.986, year: 2016

  2. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. Copyright © 2016. Published by Elsevier B.V.

  3. Three new drimane sesquiterpenoids from cultures of the fungus Penicillium sp.

    Science.gov (United States)

    Ding, Jian-Hai; Ding, Zhang-Gui; Chunyu, Wei-Xun; Zhao, Jiang-Yuan; Wang, Hai-Bin; Liu, Shi-Wei; Wang, Fei

    2017-08-01

    Three new drimane sesquiterpenoids, 12-hydroxyalbrassitriol (1), drim-8(12)-en-6β,7α, 9α,11-tetraol (2), and drim-68(12)-dien-9α,11-diol (3), along with one known analog albrassitriol (4), were isolated from cultures of the tin mine tailings-associated fungus Penicillium sp. The new structures were determined on the basis of extensive spectroscopic analyses. All compounds were tested for their cytotoxicities against five human cancer cell lines.

  4. Elicitor and nitrogen applications to Garnacha, Graciano and Tempranillo vines: effect on grape amino acid composition.

    Science.gov (United States)

    Gutiérrez-Gamboa, Gastón; Portu, Javier; López, Rosa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2018-04-01

    Elicitors and nitrogen foliar applications to vineyards could regulate grape nitrogen composition, which has an important effect on grape and wine quality. Thus the aim of this research was to study the effect of foliar elicitor treatments, methyl jasmonate (MeJ) and yeast extract (YE), and foliar nitrogen applications, urea (Ur) and phenylalanine (Phe), to Garnacha, Graciano and Tempranillo vines on grape amino acid composition. The results showed that elicitor and nitrogen foliar applications to Garnacha and Tempranillo grapevines decreased the must amino acid concentration. However, Phe application to these two grapevines increased the must Phe content. The treatments applied to Graciano grapevines barely effected the grape amino acid content. According to the percentage of variance attributable, the variety had a higher impact on the must amino acid composition than the treatments and their interaction, except in certain amino acids such as Phe. The influence of elicitor and nitrogen foliar applications to grapevines on grape amino acid concentration was strongly conditioned by the variety. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Bioactivity-guided isolation of anti-hepatitis B virus active sesquiterpenoids from the traditional Chinese medicine: Rhizomes of Cyperus rotundus.

    Science.gov (United States)

    Xu, Hong-Bo; Ma, Yun-Bao; Huang, Xiao-Yan; Geng, Chang-An; Wang, Hao; Zhao, Yong; Yang, Tong-Hua; Chen, Xing-Long; Yang, Cai-Yan; Zhang, Xue-Mei; Chen, Ji-Jun

    2015-08-02

    The rhizome of Cyperus rotundus (C. rotundus) is a well-known traditional Chinese medicine to cure hepatitis in many formulae, but the active components responsible for hepatitis have not been elucidated. According to our bioassay on HepG2.2.15 cell line in vitro, the ethanol extract of C. rotundus demonstrated potent anti-HBV activity. This current study was designed to isolate and identify the anti-HBV active constituents from the rhizomes of C. rotundus. Bioactivity and LC-MS guided fractionation on the extract of C. rotundus using various chromatographic techniques including open-column, Sephadex LH-20 and semi-preparative high performance liquid chromatography led to the isolation and identification of thirty-seven sesquiterpenoids. Structural elucidation of the isolates was carried out by extensive spectroscopic analyses (UV, IR, HRMS, 1D- and 2D -NMR). The anti-HBV activity and cytotoxicity were evaluated on the HBV-transfected HepG2.2.15 cell line in vitro. The cytotoxicity effects of the isolates were assessed by a MTT assay. The secretions of HBsAg and HBeAg in the culture medium were detected by ELISA method, and the load of HBV DNA was quantified by real-time fluorescent PCR technique. Five new patchoulane-type sesquiterpenoids, namely cyperene-3, 8-dione (1), 14-hydroxy cyperotundone (2), 14-acetoxy cyperotundone (3), 3β-hydroxycyperenoic acid (4) and sugetriol-3, 9-diacetate (5), along with 32 known sesquiterpenoids were isolated from the active fractions of C. rotundus. Compounds 2 and 3 were the first cyperotundone-type sesquiterpenoids with a hydroxyl group at C-14 position. Nine eudesmane-type sesquiterpenoids (15-21 and 23-24) significantly inhibited the HBV DNA replication with IC50 values of 42.7±5.9, 22.5±1.9, 13.2±1.2, 10.1±0.7, 14.1±1.1, 15.3±2.7, 13.8±0.9, 19.7±2.1 and 11.9±0.6 μM, respectively, of which, compounds 17, 21, 23 and 24 possessed high SI values of 250.4, 125.5,>259.6 and 127.5, respectively. Two patchoulane

  6. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content

    OpenAIRE

    Farag, Mohamed A.; Al-Mahdy, Dalia A.; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A.

    2017-01-01

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl2, glutathione and ?-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggestin...

  7. Application of radiation processing to produce biotic elicitor for sugarcane in Vietnam

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien; Tran, Tich Canh; Truong, Thi Hanh; Vo, Thi Kim Lang; Dang, Van Phu; Cao, Anh Duong

    2007-01-01

    Sugarcane is the main raw material for production of sugar and ethanol. In Vietnam, it was reported in 1998 that the area for sugarcane growth was about 257,000ha. Up to now, the biotic elicitor, oligosaccharide has not been used for sugarcane yet. This study has been carried out to investigate the elicitation and the growth promotion effect of irradiated chitosan (oligochitosan) for sugarcane. The field test results indicated that alpha chitosan (shrimp shell) and beta chitosan (squid pen) samples with the content of water soluble oligomer of about 70% were the most effective. The disease ratio of sugarcane tree-trunk treated with irradiated chitosan before harvesting time decreased to 30-40% compared to non-treated one (100%). In addition, the productivity of sugarcane increased to about 20%. The combination of metal ion (Zn ++ , Cu ++ ) with oligochitosan did not show the synergic elicitation effect. The results revealed that biotic elicitor made from chitosan by radiation degradation method is very promising for field application not only for protection of disease infection but also for growth promotion of plants. It is believed that this biotic elicitor could be largely used for safe and sustainable development of agriculture. (author)

  8. Synthesis and biological evaluation of a backbone-modified phytoalexin elicitor

    NARCIS (Netherlands)

    Timmers, CM; Turner, JJ; Ward, CM; vanderMarel, GA; Kouwijzer, MLCE; Grootenhuis, PDJ; vanBoom, JH

    Two suitably protected building blocks (11 and 33) for the preparation of amide-linked heptaglucoside mimetic 2, an analogue of the naturally occurring phytoalexin elicitor 1a, were readily accessible by glycal chemistry. Sequential elongation of terminal glucuronide 21 with laminaribiosyl

  9. Discovery of methylfarnesoate as the annelid brain hormone reveals an ancient role of sesquiterpenoids in reproduction.

    Science.gov (United States)

    Schenk, Sven; Krauditsch, Christian; Frühauf, Peter; Gerner, Christopher; Raible, Florian

    2016-11-29

    Animals require molecular signals to determine when to divert resources from somatic functions to reproduction. This decision is vital in animals that reproduce in an all-or-nothing mode, such as bristle worms: females committed to reproduction spend roughly half their body mass for yolk and egg production; following mass spawning, the parents die. An enigmatic brain hormone activity suppresses reproduction. We now identify this hormone as the sesquiterpenoid methylfarnesoate. Methylfarnesoate suppresses transcript levels of the yolk precursor Vitellogenin both in cell culture and in vivo , directly inhibiting a central energy-costly step of reproductive maturation. We reveal that contrary to common assumptions, sesquiterpenoids are ancient animal hormones present in marine and terrestrial lophotrochozoans. In turn, insecticides targeting this pathway suppress vitellogenesis in cultured worm cells. These findings challenge current views of animal hormone evolution, and indicate that non-target species and marine ecosystems are susceptible to commonly used insect larvicides.

  10. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54

    OpenAIRE

    Liuming Qiu; Pei Wang; Ge Liao; Yanbo Zeng; Caihong Cai; Fandong Kong; Zhikai Guo; Peter Proksch; Haofu Dai; Wenli Mei

    2018-01-01

    Four new eudesmane-type sesquiterpenoids, penicieudesmol A–D (1–4), were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher’s method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  11. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54.

    Science.gov (United States)

    Qiu, Liuming; Wang, Pei; Liao, Ge; Zeng, Yanbo; Cai, Caihong; Kong, Fandong; Guo, Zhikai; Proksch, Peter; Dai, Haofu; Mei, Wenli

    2018-03-28

    Four new eudesmane-type sesquiterpenoids, penicieudesmol A-D ( 1 - 4 ), were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher's method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  12. Roadmap Towards Registration and Technology Transfer of Radiation Processed Plant Growth Promoters/Elicitors: The Philippine Experience. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L. V.; Aranilla, C. T. [Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines); Magsino, G. L. [National Crop Protection Center, UP Los Baños College, Laguna (Philippines); Asis, C. A. [Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija (Philippines)

    2014-07-15

    Pot experiments to test the effectivity of radiation-processed oligocarrageenans as a plant growth promoter/elicitor have been done on rice, soybean, tomatoes, and corn. Though many data from IAEA RCA and CRP participating countries have proven the efficacy of radiation modified oligomers as bio-stimulants and elicitor, certain R & D gaps need to be addressed in order that these products can reach the commercialization stage. A more integrated and systematic study of each crop with the following components need to be conducted: a) timing of application (plant growth stages such as seedling, active, vegetative, and reproductive stages); b) dosage (concentration of oligomers and volume of spray); c) effect in different seasons of the year (dry or wet); d) efficacy in photosynthetic activities (greening of leaves); and e) induction of resistance to pests and diseases (sturdiness, color of leaves, plant height, enzyme systems etc.). Some R & D work on the effect of radiation processed oligocarrageenans as plant growth promoter/elicitor are discussed. It also discusses R & D gaps that need to be addressed to make these oligomers reach the market. The Fertilizer and Pesticide Authority of the Philippines categorizes plant growth promoters and elicitors as fertilizers, requiring very stringent regulations for its registration. The paper proposes a roadmap towards the commercialization of plant growth promoter/elicitors. (author)

  13. ANALYSIS OF ARTEMISININ AND RELATED SESQUITERPENOIDS FROM ARTEMISIA-ANNUA L BY COMBINED GAS-CHROMATOGRAPHY MASS-SPECTROMETRY

    NARCIS (Netherlands)

    WOERDENBAG, HJ; PRAS, N; BOS, R; VISSER, JF; HENDRIKS, H; MALINGRE, TM

    1991-01-01

    The sesquiterpenoid artemisinin (3) and its biosynthetic precursors arteannuic acid (1), arteannuin B (2) and artemisitene (4) can be separated and identified by combined gas chromatography/mass spectrometry both as a mixture of reference standards as well as in extracts of Artemisia annua L. From

  14. Methyl valerenate, a new sesquiterpenoid in the essential oil from underground parts of Valeriana officinalis L. sl

    NARCIS (Netherlands)

    Bos, R; Woerdenbag, HJ; Hendriks, H; Kruizinga, WH; Herrema, JK; Scheffer, J.J C

    1997-01-01

    A new valerenane sesquiterpenoid, methyl valerenate (1), was found in the essential oil from underground parts of Valeriana officinalis L. s.l. Spectral data of methyl valerenate, which was synthesized from valerenic acid (2), are given in this paper.

  15. Rumphellaones B and C, New 4,5-Seco-Caryophyllane Sesquiterpenoids from Rumphella

    Directory of Open Access Journals (Sweden)

    Hsu-Ming Chung

    2014-08-01

    Full Text Available Two new 4,5-seco-caryophyllane sesquiterpenoids, rumphellaones B (1 and C (2, which were found to possess unprecedented γ-lactone moieties, were obtained from the gorgonian coral Rumphella antipathies. The structures of 1 and 2 were elucidated by spectroscopic methods and compound 2 was found to display modest inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils at a concentration of 10 μg/mL

  16. New Eudesmane-Type Sesquiterpenoids from the Mangrove-Derived Endophytic Fungus Penicillium sp. J-54

    Directory of Open Access Journals (Sweden)

    Liuming Qiu

    2018-03-01

    Full Text Available Four new eudesmane-type sesquiterpenoids, penicieudesmol A–D (1–4, were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher’s method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.

  17. Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae.

    Science.gov (United States)

    Wang, Zhenzhen; Han, Qiang; Zi, Qian; Lv, Shun; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    Exogenous application of the protein elicitors MoHrip1 and MoHrip2, which were isolated from the pathogenic fungus Magnaporthe oryzae (M. oryzae), was previously shown to induce a hypersensitive response in tobacco and to enhance resistance to rice blast. In this work, we successfully transformed rice with the mohrip1 and mohrip2 genes separately. The MoHrip1 and MoHrip2 transgenic rice plants displayed higher resistance to rice blast and stronger tolerance to drought stress than wild-type (WT) rice and the vector-control pCXUN rice. The expression of salicylic acid (SA)- and abscisic acid (ABA)-related genes was also increased, suggesting that these two elicitors may trigger SA signaling to protect the rice from damage during pathogen infection and regulate the ABA content to increase drought tolerance in transgenic rice. Trypan blue staining indicated that expressing MoHrip1 and MoHrip2 in rice plants inhibited hyphal growth of the rice blast fungus. Relative water content (RWC), water usage efficiency (WUE) and water loss rate (WLR) were measured to confirm the high capacity for water retention in transgenic rice. The MoHrip1 and MoHrip2 transgenic rice also exhibited enhanced agronomic traits such as increased plant height and tiller number.

  18. A New Sesquiterpenoid Derivative from the Coastal Saline Soil Fungus Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2016-05-01

    Full Text Available A new sesquiterpenoid derivative, named aspergiketone (1, along with seven known compounds (2-8 were isolated from the coastal saline soil fungus Aspergillus fumigatus. Their structures were elucidated by spectroscopic analysis, and by comparison of experimental and reported data. The absolute configuration of compound 1 was defined by X-ray diffraction analysis. Compound 1 was cytotoxic towards HL-60 and A549 cell lines with IC 50 values of 12.4 and 22.1 μ M , respectively.

  19. Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2014-02-01

    The present study involved strategies for enhancement in in vitro azadirachtin (commercially used biopesticide) production by hairy root cultivation of Azadirachta indica. Improvement in the azadirachtin production via triggering its biosynthetic pathway in plant cells was carried out by the exogenous addition of precursors and elicitors in the growth medium. Among the different abiotic stress inducers (Ag(+), Hg(+2), Co(+2), Cu(+2)) and signal molecules (methyl jasmonate and salicylic acid) tested, salicylic acid at 15 mg l(-1) of concentration was found to enhance the azadirachtin yield in the hairy roots to the maximum (up to 4.95 mg g(-1)). Similarly, among the different biotic elicitors tested (filter-sterilized fungal culture filtrates of Phoma herbarium, Alternaria alternata, Myrothecium sp., Fusarium solani, Curvularia lunata, and Sclerotium rolfsii; yeast extract; and yeast extract carbohydrate fraction), addition of filter-sterilized fungal culture filtrate of C. lunata (1 % v/v) resulted in maximum azadirachtin yield enhancement in hairy root biomass (up to 7.1 mg g(-1)) with respect to the control (3.3 mg g(-1)). Among all the biosynthetic precursors studied (sodium acetate, cholesterol, squalene, isopentynyl pyrophosphate, mavalonic acid lactone, and geranyl pyrophosphate), the overall azadirachtin production (70.42 mg l(-1) in 25 days) was found to be the highest with cholesterol (50 mg l(-1)) addition as an indirect precursor in the medium.

  20. Studies towards the Intrinsic Function of the AVR4 and AVR9 Elicitors of the Fungal Tomato Pathogen Cladosporium fulvum

    NARCIS (Netherlands)

    Burg, van den H.A.

    2003-01-01

    Recognition of the extracellular race-specific elicitor proteins AVR4 and AVR9 produced by the pathogenic fungus Cladosporium fulvum is mediated by the tomato resistance genes Cf-4 and Cf-9 , respectively. Recognition of these elicitors triggers host defense responses

  1. Comparison of the chemical composition of three species of smartweed (genus Persicaria) with a focus on drimane sesquiterpenoids

    NARCIS (Netherlands)

    Prota, N.; Mumm, R.; Bouwmeester, H.J.; Jongsma, M.A.

    2014-01-01

    The genus Persicaria is known to include species accumulating drimane sesquiterpenoids, but a comparative analysis highlighting the compositional differences has not been done. In this study, the secondary metabolites of both flowers and leaves of Persicaria hydropiper, Persicaria maculosa and

  2. The specifics of elicitor effect on Triticum aestivum macromorphogenesis under simultaneous lesion by Septoria tritici and Puccinia recondita

    Directory of Open Access Journals (Sweden)

    I.V. Zhuk

    2016-06-01

    Full Text Available Phytopathogenic fungi interrupt the macromorphogenesis of wheat (Triticum aestivum but biotic elicitors stimulate the nonspecific tolerance, growth and development of plant stems. It is shown that oxalic acid as a biotic elicitor and donor of nitric oxide signal molecule (sodium nitroprusside stimulate stem growth in height and last leaves length, as well as grain quantity and productivity both in cv. ‘Poliska 90’ and cv. ‘Stolychna’ under Septoria tritici and Puccinia recondita infection in field trials. It is detected that the degree of infected leaf area decreased in both treated cultivars under Saari-Prescott scale. Cv. ‘Poliska 90’ is more sensitive to both fungal pathogens than cv. ‘Stolychna’, but elicitor influence on its architectonics was no less than on cv. ‘Stolychna’.

  3. The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells

    OpenAIRE

    Takahashi, Hideyuki; Matsumura, Hideo; Kawai-Yamada, Maki; Uchimiya, Hirofumi

    2008-01-01

    An elicitor derived from the cell wall of rice blast fungus (Magnaporthe grisea) causes cell death in suspension cultured cells of rice (Oryza sativa L.). To elucidate the role of M. grisea elicitor on metabolic pathway of rice cells, we performed metabolite profiling using capillary electrophoresis-mass spectrometry (CE/MS). Treatment with M. grisea elicitor increased the amounts of antioxidants and free amino acids and decreased the amount of metabolites in the tricarboxylic acid (TCA) cycl...

  4. Novel Rosaceae plant elicitor peptides as sustainable tools to control Xanthomonas arboricola pv. pruni in Prunus spp.

    Science.gov (United States)

    Ruiz, Cristina; Nadal, Anna; Montesinos, Emilio; Pla, Maria

    2018-02-01

    Fruit crops are regarded as important health promoters and constitute a major part of global agricultural production, and Rosaceae species are of high economic impact. Their culture is threatened by bacterial diseases, whose control is based on preventative treatments using compounds of limited efficacy and negative environmental impact. One of the most economically relevant examples is the pathogen Xanthomonas arboricola pv. pruni (Xap) affecting Prunus spp. The plant immune response against pathogens can be triggered and amplified by plant elicitor peptides (Peps), perceived by specific receptors (PEPRs). Although they have been described in various angiosperms, scarce information is available on Rosaceae species. Here, we identified the Pep precursor (PROPEP), Pep and PEPR orthologues of 10 Rosaceae species and confirmed the presence of the Pep/PEPR system in this family. We showed the perception and elicitor activity of Rosaceae Peps using the Prunus-Xap pathosystem as proof-of-concept. Treatment with nanomolar doses of Peps induced the corresponding PROPEP and a set of defence-related genes in Prunus leaves, and enhanced resistance against Xap. Peps from the same species had the highest efficiencies. Rosaceae Peps could potentially be used to develop natural, targeted and environmentally friendly strategies to enhance the resistance of Prunus species against biotic attackers. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves

    Directory of Open Access Journals (Sweden)

    VanDoorn Arjen

    2010-08-01

    Full Text Available Abstract Background Some plants distinguish mechanical wounding from herbivore attack by recognizing specific constituents of larval oral secretions (OS which are introduced into plant wounds during feeding. Fatty acid-amino acid conjugates (FACs are major constituents of Manduca sexta OS and strong elicitors of herbivore-induced defense responses in Nicotiana attenuata plants. Results The metabolism of one of the major FACs in M. sexta OS, N-linolenoyl-glutamic acid (18:3-Glu, was analyzed on N. attenuata wounded leaf surfaces. Between 50 to 70% of the 18:3-Glu in the OS or of synthetic 18:3-Glu were metabolized within 30 seconds of application to leaf wounds. This heat-labile process did not result in free α-linolenic acid (18:3 and glutamate but in the biogenesis of metabolites both more and less polar than 18:3-Glu. Identification of the major modified forms of this FAC showed that they corresponded to 13-hydroxy-18:3-Glu, 13-hydroperoxy-18:3-Glu and 13-oxo-13:2-Glu. The formation of these metabolites occurred on the wounded leaf surface and it was dependent on lipoxygenase (LOX activity; plants silenced in the expression of NaLOX2 and NaLOX3 genes showed more than 50% reduced rates of 18:3-Glu conversion and accumulated smaller amounts of the oxygenated derivatives compared to wild-type plants. Similar to 18:3-Glu, 13-oxo-13:2-Glu activated the enhanced accumulation of jasmonic acid (JA in N. attenuata leaves whereas 13-hydroxy-18:3-Glu did not. Moreover, compared to 18:3-Glu elicitation, 13-oxo-13:2-Glu induced the differential emission of two monoterpene volatiles (β-pinene and an unidentified monoterpene in irlox2 plants. Conclusions The metabolism of one of the major elicitors of herbivore-specific responses in N. attenuata plants, 18:3-Glu, results in the formation of oxidized forms of this FAC by a LOX-dependent mechanism. One of these derivatives, 13-oxo-13:2-Glu, is an active elicitor of JA biosynthesis and differential

  6. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  7. Controle de Bipolaris sorokiniana e rendimento de grãos em cevada após aplicação de elicitores e fungicida = Bipolaris sorokiniana control and grain yield in barley after application of elicitors and fungicide

    Directory of Open Access Journals (Sweden)

    Noemir Antoniazzi

    2007-12-01

    Full Text Available A mancha marrom causada pelo fungo Bipolaris sorokiniana é considerada um dos problemas fitossanitários mais importantes na cevada provocando reduções na produtividade e prejuízos na qualidade cervejeira. O objetivo deste trabalho foi avaliar o efeito dos elicitores goma xantana e alicina e do fungicida epoxiconazole + piraclostrobina no controle da mancha marrom em cevada cervejeira, cultivar BRS 195 em dois ciclos de cultivo. O experimento foi conduzido na Fundação Agrária de Pesquisa Agropecuária (FAPA, em Guarapuava, Estado do Paraná, em delineamento de blocos ao acaso, comquatro repetições. A aplicação de elicitores e fungicida resultou em maior peso de mil sementes, sem interferir no teor de proteínas e na classificação comercial. O rendimento de grãos foi superior após duas ou três aplicações de alicina. A incidência e severidade de B.sorokiniana nas folhas de plantas tratadas com elicitores foram semelhantes àquelas com fungicida.The disease spot blotch, caused by the fungi Bipolaris sorokiniana, is considered one of the most important phytosanitary problems ofbarley crop resulting on low productivity and damage on beer quality. The objective of this work was to evaluate the effect of the elicitors xanthan gum and alicin and fungicide epoxiconazole + pyraclostrobin on spot blotch control of barley cultivar BRS 195 during two cultivation cycles. The experiment was carried out at Fundação Agrária de Pesquisa Agropecuária (FAPA, Guarapuava, state of Paraná. The experimental design was in completely randomized blocks, with four replications. Treatment of barley plants withelicitors and fungicide resulted in higher thousand-seed weight without interfering on protein content and commercial classification. The grain yield increased after two or three alicin treatments. Bipolaris sorokiniana incidence and severety on the leaves of plants treated with elicitors were similar to those treated with fungicide.

  8. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  9. Pyrenophoric acid, a phytotoxic sesquiterpenoid penta-2,4-dienoic acid produced by a potential mycoherbicide, Pyrenophora semeniperda

    Science.gov (United States)

    Marco Masi; Susan Meyer; Alessio Cimmino; Anna Andolfi; Antonio Evidente

    2014-01-01

    A new phytotoxic sesquiterpenoid penta-2,4- dienoic acid, named pyrenophoric acid, was isolated from solid wheat seed culture of Pyrenophora semeniperda, a fungal pathogen proposed as a mycoherbicide for biocontrol of cheatgrass (Bromus tectorum) and other annual bromes. These bromes are serious weeds in winter cereals and also on temperate semiarid rangelands....

  10. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae in Four Crop Plants.

    Directory of Open Access Journals (Sweden)

    John W Gordy

    Full Text Available Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA, benzothiadiazole (BTH, gibberellic acid (GA, harpin, and jasmonic acid (JA are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith (FAW (Lepidoptera: Noctuidae larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  11. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants.

    Science.gov (United States)

    Gordy, John W; Leonard, B Rogers; Blouin, David; Davis, Jeffrey A; Stout, Michael J

    2015-01-01

    Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  12. HPTLC and reverse phase HPLC methods for the simultaneous quantification and in vitro screening of antioxidant potential of isolated sesquiterpenoids from the rhizomes of Cyperus rotundus.

    Science.gov (United States)

    Priya Rani, M; Padmakumari, K P

    2012-09-01

    Three sesquiterpenoids solavetivone, aristolone and nootkatone were isolated from the acetone extract of Cyperus rotundus by silica gel column chromatography and identified by spectral studies. Solavetivone has been isolated for the first time from the species. Simple, sensitive and selective HPTLC and HPLC methods with ultraviolet detection (245 nm) were developed and validated for the simultaneous quantification. HPTLC method was validated in terms of their linearity, LOD, LOQ, precision, accuracy and compared with RP-HPLC-UV method. Among the three sesquiterpenoids isolated, nootkatone possessed the highest radical scavenging potential (IC(50) 4.81 μg/ml) followed by aristolone (IC(50) 5.28 μg/ml) and solavetivone (IC(50) 6.82 μg/ml) by DPPH radical scavenging assay. Total antioxidant activity against phosphomolybdenum reagent was also studied. The methods described in this paper were able to identify and quantify sesquiterpenoids from the complex mixtures of phytochemicals and could be extended to the marker based standardization of polyherbal formulations containing C. rotundus. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Emotion elicitor or emotion messenger? Subliminal priming reveals two faces of facial expressions.

    Science.gov (United States)

    Ruys, Kirsten I; Stapel, Diederik A

    2008-06-01

    Facial emotional expressions can serve both as emotional stimuli and as communicative signals. The research reported here was conducted to illustrate how responses to both roles of facial emotional expressions unfold over time. As an emotion elicitor, a facial emotional expression (e.g., a disgusted face) activates a response that is similar to responses to other emotional stimuli of the same valence (e.g., a dirty, nonflushed toilet). As an emotion messenger, the same facial expression (e.g., a disgusted face) serves as a communicative signal by also activating the knowledge that the sender is experiencing a specific emotion (e.g., the sender feels disgusted). By varying the duration of exposure to disgusted, fearful, angry, and neutral faces in two subliminal-priming studies, we demonstrated that responses to faces as emotion elicitors occur prior to responses to faces as emotion messengers, and that both types of responses may unfold unconsciously.

  14. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    International Nuclear Information System (INIS)

    Lim, Hyoun-Sub; Nam, Jiryun; Seo, Eun-Young; Nam, Moon; Vaira, Anna Maria; Bae, Hanhong; Jang, Chan-Yong; Lee, Cheol Ho; Kim, Hong Gi; Roh, Mark; Hammond, John

    2014-01-01

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP SP ) with that from AltMV-Po (CP Po ) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP Po [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP SP but not CP Po interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP SP than CP Po in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein

  15. Effect of Different Elicitors and Preharvest Day Application on the Content of Phytochemicals and Antioxidant Activity of Butterhead Lettuce (Lactuca sativa var. capitata) Produced under Hydroponic Conditions.

    Science.gov (United States)

    Moreno-Escamilla, Jesús Omar; Alvarez-Parrilla, Emilio; de la Rosa, Laura A; Núñez-Gastélum, José Alberto; González-Aguilar, Gustavo A; Rodrigo-García, Joaquín

    2017-07-05

    The effect of four elicitors on phytochemical content in two varieties of lettuce was evaluated. The best preharvest day for application of each elicitor was chosen. Solutions of arachidonic acid (AA), salicylic acid (SA), methyl jasmonate (MJ), and Harpin protein (HP) were applied by foliar aspersion on lettuce leaves while cultivating under hydroponic conditions. Application of elicitors was done at 15, 7, 5, 3, or 1 day before harvest. Green lettuce showed the highest increase in phytochemical content when elicitors (AA, SA, and HP) were applied on day 7 before harvest. Similarly, antioxidant activity rose in all treatments on day 7. In red lettuce, the highest content of bioactive molecules occurred in samples treated on day 15. AA, SA, and HP were the elicitors with the highest effect on phytochemical content for both varieties, mainly on polyphenol content. Antioxidant activity also increased in response to elicitation. HPLC-MS showed an increase in the content of phenolic acids in green and red lettuce, especially after elicitation with SA, suggesting activation of the caffeic acid pathway due to elicitation.

  16. Punctaporonins H–M: Caryophyllene-Type Sesquiterpenoids from the Sponge-Associated Fungus Hansfordia sinuosae

    Directory of Open Access Journals (Sweden)

    Zehong Wu

    2014-06-01

    Full Text Available Six new caryophyllene-based sesquiterpenoids named punctaporonins H–M (1–6, together with punctaporonin B (7 and humulane (8 were isolated from the fermentation broth of the sponge-derived fungus Hansfordia sinuosae. Their structures were determined by the extensive HRESIMS and NMR spectroscopic analysis, including the X-ray crystallographic data for the assignment of the absolute configurations of punctaporonins H–I (1–2. The isolated compounds were evaluated for antihyperlipidemic, cytotoxic and antimicrobial activities, and punctaporonin K (4 exhibited potent effects to reduce the triglycerides and total cholesterol in the intracellular levels.

  17. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp. (MSX 51320).

    Science.gov (United States)

    Sy-Cordero, Arlene A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H

    2011-10-28

    Two new cyclodepsipeptides (1 and 2), two new sesquiterpenoids (3 and 4), and the known compounds guangomide A (5), roseotoxin S, and three simple trichothecenes were isolated from the cytotoxic organic extract of a terrestrial filamentous fungus, Trichothecium sp. The structures were determined using NMR spectroscopy and mass spectrometry. Absolute configurations of the cyclodepsipeptides were established by employing chiral HPLC, while the relative configurations of 3 and 4 were determined via NOESY data. The isolation of guangomide A was of particular interest, since it was reported previously from a marine-derived fungus.

  18. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  19. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard.

    Science.gov (United States)

    Delaunois, Bertrand; Farace, Giovanni; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-04-01

    Development and optimisation of alternative strategies to reduce the use of classic chemical inputs for protection against diseases in vineyard is becoming a necessity. Among these strategies, one of the most promising consists in the stimulation and/or potentiation of the grapevine defence responses by the means of elicitors. Elicitors are highly diverse molecules both in nature and origins. This review aims at providing an overview of the current knowledge on these molecules and will highlight their potential efficacy from the laboratory in controlled conditions to vineyards. Recent findings and concepts (especially on plant innate immunity) and the new terminology (microbe-associated molecular patterns, effectors, etc.) are also discussed in this context. Other objectives of this review are to highlight the difficulty of transferring elicitors use and results from the controlled conditions to the vineyard, to determine their practical and effective use in viticulture and to propose ideas for improving their efficacy in non-controlled conditions.

  20. Calcitox-aging counterbalanced by endogenous farnesol-like sesquiterpenoids: An undervalued evolutionarily ancient key signaling pathway.

    Science.gov (United States)

    De Loof, Arnold

    2017-01-01

    Cells are powerful miniature electrophoresis chambers, at least during part of their life cycle. They die at the moment the voltage gradient over their plasma membrane, and their ability to drive a self-generated electric current carried by inorganic ions through themselves irreversibly collapses. Senescence is likely due to the progressive, multifactorial damage to the cell's electrical system. This is the essence of the "Fading electricity theory of aging" (De Loof et al., Aging Res. Rev. 2013;12:58-66). "Biologic electric current" is not carried by electrons, but by inorganic ions. The major ones are H + , Na + , K + , Ca 2+ , Mg 2+ , Cl - and HCO 3 - . Ca 2+ and H + in particular are toxic to cells. At rising concentrations, they can alter the 3D-conformation of chromatin and some (e.g. cytoskeletal) proteins: Calcitox and Protontox. This paper only focuses on Calcitox and endogenous sesquiterpenoids. pH-control and Ca 2+ -homeostasis have been shaped to near perfection during billions of years of evolution. The role of Ca 2+ in some aspects of aging, e.g., as causal to neurodegenerative diseases is still debated. The main anti-Calcitox mechanism is to keep free cytoplasmic Ca 2+ as low as possible. This can be achieved by restricting the passive influx of Ca 2+ through channels in the plasma membrane, and by maximizing the active extrusion of excess Ca 2+ e.g., by means of different types of Ca 2+ -ATPases. Like there are mechanisms that antagonize the toxic effects of Reactive Oxygen Species (ROS), there must also exist endogenous tools to counteract Calcitox. During a re-evaluation of which mechanism(s) exactly initiates the fast aging that accompanies induction of metamorphosis in insects, a causal relationship between absence of an endogenous sesquiterpenoid, namely the farnesol ester named "juvenile hormone," and disturbed Ca 2+ -homeostasis was suggested. In this paper, this line of thinking is further explored and extended to vertebrate physiology. A

  1. A Novel Protein Elicitor BAR11 From Saccharothrix yanglingensis Hhs.015 Improves Plant Resistance to Pathogens and Interacts With Catalases as Targets

    OpenAIRE

    Yanan Zhang; Yanan Zhang; Xia Yan; Xia Yan; Hongmei Guo; Hongmei Guo; Feiyang Zhao; Feiyang Zhao; Lili Huang; Lili Huang

    2018-01-01

    Previously, we reported the biocontrol effects of Saccharothrix yanglingensis strain Hhs.015 on Valsa mali. Here, we report a novel protein elicitor BAR11 from the biocontrol strain Hhs.015 and its functions in plant defense responses. Functional analysis showed that the elicitor BAR11 significantly stimulated plant systemic resistance in Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. In addition, systemic tissues accumulated reactive oxygen species and deposited callose in a...

  2. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G.; Tobe, Stephen S.; Hui, Jerome Ho Lam

    2015-01-01

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the “Broad-Complex” was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor (“Methoprene-tolerant”). Furthermore, the gain of “Phantom” differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. PMID:26112967

  3. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions

    Directory of Open Access Journals (Sweden)

    Andrea eNesler

    2015-09-01

    Full Text Available Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB, against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  4. A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions.

    Science.gov (United States)

    Nesler, Andrea; Perazzolli, Michele; Puopolo, Gerardo; Giovannini, Oscar; Elad, Yigal; Pertot, Ilaria

    2015-01-01

    Powdery mildew caused by Erysiphe necator is one of the most important grapevine diseases in several viticulture areas, and high fungicide input is required to control it. However, numerous synthetic chemical pesticides are under scrutiny due to concerns about their impact on human health and the environment. Biopesticides, such as biogenic elicitors, are a promising alternative to chemical fungicides. Although several studies have reported on effective elicitors against grapevine diseases, their efficacy under field conditions has not been investigated extensively or has occurred at rather limited levels. Our goal was to examine the efficacy of a protein-based composition, namely nutrient broth (NB), against powdery mildew under field conditions and to characterize its mechanism of action. Weekly treatments with NB was highly effective in controlling powdery mildew on grapevine across seasons with different disease pressures. The level of disease control achieved with NB was comparable to standard fungicide treatments both on leaves and bunches across three different years. NB has no direct toxic effect on the germination of E. necator conidia, and it activates plant resistance with both systemic and translaminar effect in experiments with artificial inoculation under controlled conditions. NB induced the expression of defense-related genes in grapevine, demonstrating stimulation of plant defense mechanisms, prior to and in the early stages of pathogen infection. NB is a natural derivative from meat and yeast, substances that tend not to raise concerns about toxicological and ecotoxicological properties. NB represents a valid control tool for integrated plant protection programs against powdery mildew, to reduce the use of synthetic pesticides on grapevine.

  5. Efecto de la aplicación de elicitores sobre la producción de 4b-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L

    Directory of Open Access Journals (Sweden)

    Yineth Piñeros-Castro

    2009-04-01

    Full Text Available Effect of elicitor application on the production of 4-b-hydroxy withanolide E by hairy roots of Physalis peruviana. Objectives: Tostudy the metabolite 4-b-hydroxy withanolide E production by the in vitro culture of golden berry (Physalis peruviana L. transformedroots, and to evaluate the effect of different elicitors on the metabolite production. Materials and methods: Hairy roots of Physalisperuviana L were obtained through infection with Agrobacterium rhizogenes C106. Hairy roots were cultured on Murashige & Skoogliquid medium for four weeks, before being exposed to different concentrations of copper sulfate, salicylic acid and jasmonic acid during24 hours. Metabolite contents were quantified using High Performance Liquid Chromatography. Results: The highest amount of 4-b-hydroxy withanolide E in hairy root tissues (0.323 mg/g of dry roots was obtained after exposing the tissues to 10 mM salicylic acid aselicitor. Conclusions: 4-b-hydroxy withanolide E production in hairy roots was improved by using elicitors such as salicylic acid andcopper sulphate. The highest concentration of the metabolite in hairy roots treated with elicitors was 1.538 times the control concentration(without elicitor treatment.

  6. How Did Arthropod Sesquiterpenoids and Ecdysteroids Arise? Comparison of Hormonal Pathway Genes in Noninsect Arthropod Genomes.

    Science.gov (United States)

    Qu, Zhe; Kenny, Nathan James; Lam, Hon Ming; Chan, Ting Fung; Chu, Ka Hou; Bendena, William G; Tobe, Stephen S; Hui, Jerome Ho Lam

    2015-06-25

    The phylum Arthropoda contains the largest number of described living animal species, with insects and crustaceans dominating the terrestrial and aquatic environments, respectively. Their successful radiations have long been linked to their rigid exoskeleton in conjunction with their specialized endocrine systems. In order to understand how hormones can contribute to the evolution of these animals, here, we have categorized the sesquiterpenoid and ecdysteroid pathway genes in the noninsect arthropod genomes, which are known to play important roles in the regulation of molting and metamorphosis in insects. In our analyses, the majority of gene homologs involved in the biosynthetic, degradative, and signaling pathways of sesquiterpenoids and ecdysteroids can be identified, implying these two hormonal systems were present in the last common ancestor of arthropods. Moreover, we found that the "Broad-Complex" was specifically gained in the Pancrustacea, and the innovation of juvenile hormone (JH) in the insect linage correlates with the gain of the JH epoxidase (CYP15A1/C1) and the key residue changes in the binding domain of JH receptor ("Methoprene-tolerant"). Furthermore, the gain of "Phantom" differentiates chelicerates from the other arthropods in using ponasterone A rather than 20-hydroxyecdysone as molting hormone. This study establishes a comprehensive framework for interpreting the evolution of these vital hormonal pathways in these most successful animals, the arthropods, for the first time. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. A novel role for the TIR domain in association with pathogen-derived elicitors.

    Directory of Open Access Journals (Sweden)

    Tessa M Burch-Smith

    2007-03-01

    Full Text Available Plant innate immunity is mediated by Resistance (R proteins, which bear a striking resemblance to animal molecules of similar function. Tobacco N is a TIR-NB-LRR R gene that confers resistance to Tobacco mosaic virus, specifically the p50 helicase domain. An intriguing question is how plant R proteins recognize the presence of pathogen-derived Avirulence (Avr elicitor proteins. We have used biochemical cell fraction and immunoprecipitation in addition to confocal fluorescence microscopy of living tissue to examine the association between N and p50. Surprisingly, both N and p50 are cytoplasmic and nuclear proteins, and N's nuclear localization is required for its function. We also demonstrate an in planta association between N and p50. Further, we show that N's TIR domain is critical for this association, and indeed, it alone can associate with p50. Our results differ from current models for plant innate immunity that propose detection is mediated solely through the LRR domains of these molecules. The data we present support an intricate process of pathogen elicitor recognition by R proteins involving multiple subcellular compartments and the formation of multiple protein complexes.

  8. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  9. Local mechanical stimulation induces components of the pathogen defense response in parsley

    Science.gov (United States)

    Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon

    1998-01-01

    Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198

  10. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  11. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp.

    KAUST Repository

    Li, Dan; Xu, Ying; Shao, Chang-Lun; Yang, Rui-Yun; Zheng, Cai-Juan; Chen, Yi-Yan; Fu, Xiu-Mei; Qian, Pei-Yuan; She, Zhi-Gang; de Voogd, Nicole J.; Wang, Chang-Yun

    2012-01-01

    Four new bisabolane-type sesquiterpenoids, aspergiterpenoid A (1), (-)-sydonol (2), (-)-sydonic acid (3), and (-)-5-(hydroxymethyl)-2-(2′, 6′,6′-trimethyltetrahydro-2Hpyran-2-yl)phenol (4) together with one known fungal metabolite (5) were isolated from the fermentation broth of a marine-derived fungus Aspergillus sp., which was isolated from the sponge Xestospongia testudinaria collected from the South China Sea. Four of them (1-4) are optically active compounds. Their structures and absolute configurations were elucidated by using NMR spectroscopic techniques and mass spectrometric analysis, and by comparing their optical rotations with those related known analogues. Compounds 1-5 showed selective antibacterial activity against eight bacterial strains with the MIC (minimum inhibiting concentrations) values between 1.25 and 20.0 μM. The cytotoxic, antifouling, and acetylcholinesterase inhibitory activities of these compounds were also examined. © 2012 by the authors; licensee MDPI.

  12. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp.

    Directory of Open Access Journals (Sweden)

    Chang-Yun Wang

    2012-01-01

    Full Text Available Four new bisabolane-type sesquiterpenoids, aspergiterpenoid A (1, (−-sydonol (2, (−-sydonic acid (3, and (−-5-(hydroxymethyl-2-(2′,6′,6′-trimethyltetrahydro-2H- pyran-2-ylphenol (4 together with one known fungal metabolite (5 were isolated from the fermentation broth of a marine-derived fungus Aspergillus sp., which was isolated from the sponge Xestospongia testudinaria collected from the South China Sea. Four of them (1–4 are optically active compounds. Their structures and absolute configurations were elucidated by using NMR spectroscopic techniques and mass spectrometric analysis, and by comparing their optical rotations with those related known analogues. Compounds 1–5 showed selective antibacterial activity against eight bacterial strains with the MIC (minimum inhibiting concentrations values between 1.25 and 20.0 µM. The cytotoxic, antifouling, and acetylcholinesterase inhibitory activities of these compounds were also examined.

  13. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus Aspergillus sp.

    KAUST Repository

    Li, Dan

    2012-01-19

    Four new bisabolane-type sesquiterpenoids, aspergiterpenoid A (1), (-)-sydonol (2), (-)-sydonic acid (3), and (-)-5-(hydroxymethyl)-2-(2′, 6′,6′-trimethyltetrahydro-2Hpyran-2-yl)phenol (4) together with one known fungal metabolite (5) were isolated from the fermentation broth of a marine-derived fungus Aspergillus sp., which was isolated from the sponge Xestospongia testudinaria collected from the South China Sea. Four of them (1-4) are optically active compounds. Their structures and absolute configurations were elucidated by using NMR spectroscopic techniques and mass spectrometric analysis, and by comparing their optical rotations with those related known analogues. Compounds 1-5 showed selective antibacterial activity against eight bacterial strains with the MIC (minimum inhibiting concentrations) values between 1.25 and 20.0 μM. The cytotoxic, antifouling, and acetylcholinesterase inhibitory activities of these compounds were also examined. © 2012 by the authors; licensee MDPI.

  14. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes

    International Nuclear Information System (INIS)

    Logemann, E.; Wu ShengCheng; Schröder, J.; Schmelzer, E.; Somssich, I.E.; Hahlbrock, K.

    1995-01-01

    The effects of UV light or fungal elicitors on plant cells have so far been studied mostly with respect to defense-related gene activation. Here, an inverse correlation of these stimulatory effects with the activities of several cell cycle-related genes is demonstrated. Concomitant with the induction of flavonoid biosynthetic enzymes in UV-irradiated cell suspension cultures of parsley (Petroselinum crispum), total histone synthesis declined to about half the initial rate. A subclass of the histone H3 gene family was selected to demonstrate the close correlation of its expression with cell division, both in intact plants and cultured cells. Using RNA-blot and run-on transcription assays, it was shown that one arbitrarily selected subclass of each of the histone H2A, H2B, H3 and H4 gene families and of the genes encoding a p34cdc2 protein kinase and a mitotic cyclin were transcriptionally repressed in UV-irradiated as well as fungal elicitor-treated parsley cells. The timing and extent of repression differed between the two stimuli; the response to light was more transient and smaller in magnitude. These differential responses to light and elicitor were inversely correlated with the induction of phenylalanine ammonia-lyase, a key enzyme of phenylpropanoid metabolism. Essentially the same result was obtained with a defined oligopeptide elicitor, indicating that the same signaling pathway is responsible for defense-related gene activation and cell cycle-related gene repression. A temporary (UV light) or long-lasting (fungal elicitor) cessation of cell culture growth is most likely due to an arrest of cell division which may be a prerequisite for full commitment of the cells to transcriptional activation of full commitment of the cells to transcriptional activation of pathways involved in UV protection or pathogen defense. This conclusion is corroborated by the observation that the histone H3 mRNA level greatly declined around fungal infection sites in young parsley

  15. Partial purification of elicitors from Lentinula edodes basidiocarps protecting cucumber seedlings against Colletotrichum lagenarium

    Directory of Open Access Journals (Sweden)

    Di Piero Robson M.

    2006-01-01

    Full Text Available The shiitake mushroom (Lentinula edodes has been used in research involving the prevention and the control of human and plant diseases. In cucumber plants, treated with aqueous extracts from mushroom basidiocarps, there was a reduction in anthracnose severity caused by Colletotrichum lagenarium, and an increase in peroxidase activity in the leaves. With the aim of obtaining molecules of agronomic interest, the crude aqueous extract from L. edodes basidiocarp was fractioned with ammonium sulfate. The fraction corresponding to 40-80% of saturation (p40-80, the most effective in reducing anthracnose on cucumber cotyledons, was submitted to anion exchange chromatography (AEC. After AEC, six protein peaks were obtained and the peak V, containing 34% of the proteins present in p40-80, induced peroxidase increase in the cucumber cotyledons besides reducing anthracnose severity. Separation of peak V proteins by SDS-gel electrophoresis revealed the presence of more than one band in the gel. Thus, a partial purification of elicitors present in the L. edodes basidiocarp was achieved.

  16. [Effects of elicitors on growth of adventitious roots and contents of secondary metabolites in Tripterygium wilfordii Hook. f].

    Science.gov (United States)

    Li, Yan; Zhao, Lei; Cui, Lei; Lei, Jiamin; Zhang, Xing

    2015-05-01

    To study the effects of the extract of fungal elicitor, AgNO3, MeJA and yeast on the growth and content of secondary metabolites of adventitious roots in Tripterygium wilfordii. The above elicitors were supplemented to the medium, the growth and the content of secondary metabolites were measured. When the medium was supplemented with the elicitor Glomerella cingulata or Collectotrichum gloeosporioides, the content of triptolide was increased by 2.24 and 1.93-fold, the alkaloids content was increased by 2.02 and 2.07-fold, respectively. The optimal concentration of G. cingulata was 50 μg/mL for accumulation of triptolide, alkaloids and for the growth of adventitious roots. AgNO3 inhibited the growth of adventitious roots and the accumulation of the alkaloids, whereas it (at 25 μmol/L) increased the accumulation of triptolide by 1.71-fold compared to the control. The growth of adventitious roots, the contents of triptolide and alkaloids were increased 1.04, 1.64 and 2.12-folds, respectively when MeJA was at 50 μmol/L. When the concentration of yeast reached 2 g/L, the content of triptolide increased 1.48-folds. This research demonstrated that supplementation of AgNO3 and yeast enhanced the biosynthesis of triptolide in adventitious roots and the synergism of G. cingulata and MeJA could promote the biosynthesis of both triptolide and alkaloids.

  17. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    Science.gov (United States)

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.

  18. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium.

    Science.gov (United States)

    Yoon, Jeong Hoon; Lim, Hyo Jin; Lee, Hwa Jin; Kim, Hee-Doo; Jeon, Raok; Ryu, Jae-Ha

    2008-03-15

    Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia.

  19. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  20. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    Science.gov (United States)

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis. © 2014 Scandinavian Plant Physiology Society.

  1. Azadirachtin biosynthesis induction in Azadirachta indica A. Juss cotyledonary calli with elicitor agents

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-04-01

    Full Text Available The use of cell and plant tissues culture techniques to produce economically important active metabolites has been growing. Among these substances, azadirachtin (AZA, produced by the neem tree (Azadirachta indica, has received considerable attention due to its bioinsecticide action. The main goal of this work was to analyze the AZA levels in neem cotyledonary calli. The calli were grown in agitated Woody Plant Medium (WPM liquid medium, supplemented with glucose (Gl, hydrolyzed casein (HC and methyl jasmonate (MeJ as elicitor agent. An interaction was observed between these substances, depending on in vitro cultivation time with orbital agitation. The highest concentrations (average of 0.2470 µg g-1 of AZA were produced in the first and second weeks of culture when the cell mass was grown in a medium with 2% Gl v/v, 500 mg L-1 HC and 100 µM of MeJ. This corresponded to approximately 57% of the AZA content stored in the donor plants seeds, used as a source of explants to induce in vitro callus formation. It was concluded that the nutrition, as well as the concentration of MeJ as signal transduction of secondary metabolism in neem cells, might influence the AZA content produced in vitro.

  2. Bio-based resistance inducers for sustainable plant protection against pathogens

    Czech Academy of Sciences Publication Activity Database

    Burketová, Lenka; Trdá, Lucie; Ott, P.G.; Valentová, O.

    2015-01-01

    Roč. 33, č. 6 (2015), s. 994-1004 ISSN 0734-9750 R&D Projects: GA MŠk(CZ) LD14056 Institutional support: RVO:61389030 Keywords : Induced resistance * Elicitor * Chitosan Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 9.848, year: 2015

  3. Transcriptional profiling of rice treated with MoHrip1 reveal the function of protein elicitor in enhancement of disease resistance and plant growth

    Directory of Open Access Journals (Sweden)

    Shun Lv

    2016-12-01

    Full Text Available MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS-based digital gene expression (DGE profiling was performed to collect the transcriptional data of differentially expressed genes induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA pathway, phytoalexin, transcription factors and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA pathway were activated, while the jasmonic acid (JA signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  4. Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth.

    Science.gov (United States)

    Lv, Shun; Wang, Zhenzhen; Yang, Xiufen; Guo, Lihua; Qiu, Dewen; Zeng, Hongmei

    2016-01-01

    MoHrip1 is a protein elicitor isolated from Magnaporthe oryzae and was found to induce blast-resistance in rice. To investigate the comprehensive functions of MoHrip1, next-generation sequencing (NGS)-based digital gene expression (DGE) profiling was performed to collect the transcriptional data of differentially expressed genes (DEGs) induced by MoHrip1. A total of 308 genes were identified with differential expression, and 80 genes were predicted to be induced specifically by MoHrip1. Among these 308 genes, a series of genes associated with the salicylic acid (SA) pathway, phytoalexin, transcription factors, and pathogen-related proteins were identified. Both the SA signaling pathway and the gibberellin (GA) pathway were activated, while the jasmonic acid (JA) signaling pathway was repressed. The contents of endogenous SA and GA and the morphological characteristics of the rice after treatment were measured to provide evidence supporting the predictions made based on the DGE data. The 80 genes mentioned above might be candidate genes for studying interactions with MoHrip1. The transcriptional data provided global effect information in rice induced by MoHrip1, and all the results demonstrated that MoHrip1 could induce pathogen resistance and promote plant growth by regulating the contents of SA and GA directly or indirectly.

  5. Diversity of plant defense elicitor peptides within the Rosaceae.

    Science.gov (United States)

    Ruiz, Cristina; Nadal, Anna; Foix, Laura; Montesinos, Laura; Montesinos, Emilio; Pla, Maria

    2018-01-23

    Plant elicitor peptides (Peps) are endogenous molecules that induce and amplify the first line of inducible plant defense, known as pattern-triggered immunity, contributing to protect plants against attack by bacteria, fungi and herbivores. Pep topic application and transgenic expression have been found to enhance disease resistance in a small number of model plant-pathogen systems. The action of Peps relies on perception by specific receptors, so displaying a family-specific activity. Recently, the presence and activity of Peps within the Rosaceae has been demonstrated. Here we characterized the population of Pep sequences within the economically important plant family of Rosaceae, with special emphasis on the Amygdaleae and Pyreae tribes, which include the most relevant edible species such as apple, pear and peach, and numerous ornamental and wild species (e.g. photinia, firethorn and hawthorn). The systematic experimental search for Pep and the corresponding precursor PROPEP sequences within 36 Amygdaleae and Pyreae species, and 100 cultivars had a highly homogeneous pattern, with two tribe-specific Pep types per plant, i.e. Pep1 and Pep2 (Amygdaleae) or Pep3 and Pep4 (Pyreae). Pep2 and Pep3 are highly conserved, reaching identity percentages similar to those of genes used in plant phylogenetic analyses, while Pep1 and Pep4 are somewhat more variable, with similar values to the corresponding PROPEPs. In contrast to Pep3 and Pep4, Pep1 and Pep2 sequences of different species paralleled their phylogenetic relationships, and putative ancestor sequences were identified. The large amount of sequences allowed refining of a C-terminal consensus sequence that would support the protective activity of Pep1-4 in a Prunus spp. and Xanthomonas arboricola pv. pruni system. Moreover, tribe-specific consensus sequences were deduced at the center and C-terminal regions of Peps, which might explain the higher protection efficiencies described upon topic treatments with Peps from

  6. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content.

    Science.gov (United States)

    Farag, Mohamed A; Al-Mahdy, Dalia A; Meyer, Achim; Westphal, Hildegard; Wessjohann, Ludger A

    2017-04-05

    The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl 2 , glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl 2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl 2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl 2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl 2 , whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.

  7. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  8. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  9. Qualidade de uva ‘Isabel’ tratada na pré-colheita com CaCl2 e elicitor à base de biomassa cítrica

    Directory of Open Access Journals (Sweden)

    Leonardo da Silva Santos

    2017-10-01

    Full Text Available O alto índice de degrana e podridão das bagas reduzem a qualidade e elevam as perdas pós-colheita em uvas ‘Isabel’, demandando técnicas de manejo na pré e pós-colheita acessíveis ao pequeno produtor, que mantenham a qualidade e ampliem a vida útil pós-colheita dos cachos. Assim, este trabalho teve por objetivo avaliar o efeito da aplicação na pré-colheita de CaCl2 e elicitor à base de biomassa cítrica em uvas ‘Isabel’ na manutenção da qualidade durante o armazenamento na condição ambiente sob atmosferas ambiente e modificada. O experimento foi conduzido em blocos casualizados a campo, no município de São Vicente Férrer-PE com 8 repetições. Videiras ‘Isabel’ foram tratadas, 28 dias antes da colheita, com: elicitor de Biomassa Cítrica (BC, elicitor de Biomassa Cítrica + CaCl2 (BC+C, CaCl2 (C e Testemunha (T - sem aplicação. Cachos colhidos na maturação comercial foram armazenados em arranjo fatorial 4×2×7, sendo 4 tratamentos (aplicados no campo, 2 condições de armazenamento, atmosferas ambiente (AA e modificada (AM, sob condição ambiente (25±2°C e 75±2% de UR e 7 períodos de avaliação em quatro repetições. A aplicação de CaCl2 e do elicitor BC reduziu o índice de degrana (55 e 75%, respectivamente, a podridão e a perda de massa dos cachos de uva ‘Isabel’. Estes tratamentos, associados ou não, aumentaram a eficiência da AM em manter a qualidade dos cachos. O índice de degrana de uva ‘Isabel’ foi influenciado diretamente pela relação SS/AT, pH e índice de podridão das bagas.

  10. Aspergoterpenins A–D: Four New Antimicrobial Bisabolane Sesquiterpenoid Derivatives from an Endophytic Fungus Aspergillus versicolor

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Guo

    2018-05-01

    Full Text Available Aspergoterpenins A–D (1–4, four new bisabolane sesquiterpenoid derivatives, were obtained from the endophytic fungus, Aspergillus versicolor, together with eight known compounds (5–12, and their structures were elucidated by a comprehensive analysis of their NMR (Nuclear Magnetic Resonance, MS (Mass Spectrum and CD (Circular Dichroism spectra. Aspergoterpenin A (1 was the first example with a characteristic ketal bridged-ring part in the degraded natural bisabolane-type sesquiterpene structures. The compounds 1–12 displayed no significant activities against four cancer cell lines (A549, Caski, HepG2 and MCF-7. Further, the antimicrobial activities to Erwinia carotovora sub sp. Carotovora were evaluated, and the results showed that compounds 1–12 displayed antimicrobial activities with MIC values ranging from 15.2 to 85.2 μg/mL.

  11. fektivitas Penambahan Elisitor Asam Jasmonik dalam Peningkatan Sintesis Senyawa Bioaktif Andrografolid pada Kultur Suspensi Sel Sambiloto (Effectiveness of Jasmonic Acid Elicitor Addition for Andrographolide Synthesis Induction of Sambiloto Culture

    Directory of Open Access Journals (Sweden)

    Noor Aini Habibah

    2009-03-01

    Full Text Available In this research, we have studied synthesis of improvement of andrographolid bioactive compound on cell culture of sambiloto by addition of jasmonic acid. The essential problems in this research are firstly, the effects of addition of jasmonic acid either can induce or not andrographolide synthesis improvement of cell culture of sambiloto and secondly, to observe the largest content of andrographolide in jasmonic acid concentrations. Meanwhile, the purpose of this research are to observe the functions of jasmonic acid elicitor for induction of andrographolide synthesis improvement of cell culture of sambiloto and to optimize jasmonic acid concentrations which can produce the largest andrographolide content. The independent variable is concentration of addition of jasmonic acid on cell culture and the dependent variable are the growth of cell suspension culture and andrographolide bioactive content. Experiment result show that the optimum medium of sambiloto cell consist of Murashige & Skoog (1962 medium supplemented by 0,5 ppm kinetin and 2,4-D 5 ppm. The cell growth phases are the followings : lag phase at age of 0-5 days, exponential phase of 5-15 days, and stationary phase at age of longer than 15 days. The highest andrographolide was 4,66 x 10-2 reached in cell culture was supplemented with 10 µM jasmonic acid. Keywords : andrographolide, sambiloto cell suspension culture, jasmonic acid elicitor.

  12. Efecto de la aplicación de elicitores sobre la producción de 4-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.

    OpenAIRE

    Piñeros-Castro, Yineth; Programa de Ingeniería de Alimentos, Facultad de Ciencias Naturales, Universidad Jorge Tadeo Lozano. Carrera 4 # 22-60. Bogotá; Otálvaro-Álvarez, Ángela; Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia. Carrera 30 # 45-03. Bogotá; Velásquez-Lozano, Mario; Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia. Carrera 30 # 45-03. Bogotá

    2009-01-01

    Efecto de la aplicación de elicitores sobre la producción de 4b- hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.  Objetivo: Estudiar la producción del metabolito  4b-hidroxiwithanólido E,  mediante el cultivo in vitro de raíces transformadas de uchuva (Physalis peruviana L.) y evaluar el efecto de la influencia de la aplicación de diferentes elicitores sobre la producción de dicho metabolito.  Materiales y métodos: Se obtuvieron raíces transformadas de Physalis peruvian...

  13. Isolation and biological activity of a novel cadinane-type sesquiterpenoid from the essential oil of Alangium salviifolium.

    Science.gov (United States)

    Yagi, Nobuo; Nakahashi, Hiroshi; Kashima, Yusei; Miyazawa, Mitsuo

    2014-01-01

    The components of the essential oil from the roots of Alangium salviifolium were analyzed by capillary gas chromatography-mass spectrometry (GC-MS). Ninety compounds, representing 74.5% of the total oil, were identified; the main components of the oil were epi-α-cadinol, followed by trans-2-hydroxycalamenene, cadalene, and cadina-4,10(15)-dien-3-one. A further unknown component comprised 5.5% of the oil. Therefore, the essential oil was purified by flash column chromatography to isolate this component. Its structure was established using extensive spectroscopic data analyses, including NMR, HR-EI-MS, and IR. The results showed that this isolated compound was (-)-7, 8-dihydroxycalamenal, which is a novel cadinane-type sesquiterpenoid. This compound was tested for its antioxidant activity and inhibition of tyrosinase, and showed particularly strong inhibition effects.

  14. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene

    Directory of Open Access Journals (Sweden)

    Xin eZhan

    2014-11-01

    Full Text Available The moss Physcomitrella patens, has been genetically engineered to produce patchoulol and β-santalene, two valuable sesquiterpenoid ingredients in the fragrance industry. The highest yield of patchoulol achieved was 1.34 mg/g dry weight. This was achieved by non-targeted transformation of the patchoulol synthase and either a yeast or P. patens HMGR gene under the control of a 35S promoter. Santalene synthase targeted to the plastids yielded 0.039 mg/g dry weight of α/β santalene; cytosolic santalene synthase and 35S controlled HMGR afforded 0.022 mg/g dry weight. It has been observed that the final yield of the fragrance molecules is dependent on the expression of the synthase. This is the first report of heterologous production of sesquiterpenes in moss and it opens up a promising source for light-driven production of valuable fragrance ingredients.

  15. Toxin- and cadmium-induced cell death events in tomato suspension cells resemble features of hypersensitive response

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Yordanova, Z.P.

    2007-01-01

    Elicitors of different origin (fumonisin B1, fungal toxin), camptothecin (alkaloid from Camptotheca acuminata), mastoparan (wasp venom) and the heavy metal (cadmium) were tested for their ability to induce programmed cell death (PCD) in a model system of tomato cell culture, line MsK8. By employing

  16. When a Plant Resistance Inducer Leaves the Lab for the Field: Integrating ASM into Routine Apple Protection Practices.

    Science.gov (United States)

    Marolleau, Brice; Gaucher, Matthieu; Heintz, Christelle; Degrave, Alexandre; Warneys, Romain; Orain, Gilles; Lemarquand, Arnaud; Brisset, Marie-Noëlle

    2017-01-01

    Plant resistance inducers, also called elicitors, could be useful to reduce the use of pesticides. However, their performance in controlling diseases in the field remains unsatisfactory due to lack of specific knowledge of how they can integrate crop protection practices. In this work, we focused on apple crop and acibenzolar- S -methyl (ASM), a well-known SAR (systemic acquired resistance) inducer of numerous plant species. We provide a protocol for orchard-effective control of apple scab due to the ascomycete fungus Venturia inaequalis , by applying ASM in combination with a light integrated pest management program. Besides we pave the way for future optimization levers by demonstrating in controlled conditions (i) the high influence of apple genotypes, (ii) the ability of ASM to prime defenses in newly formed leaves, (iii) the positive effect of repeated elicitor applications, (iv) the additive effect of a thinning fruit agent.

  17. Análise de crescimento de duas cultivares de cevada após tratamentos com elicitores e fungicidas

    Directory of Open Access Journals (Sweden)

    Antoniazzi Noemir

    2006-01-01

    Full Text Available Para o controle da mancha marrom da cevada, causada pelo fungo Bipolaris sorokiniana, têm sido utilizados fungicidas e mais recentemente foi proposto o uso de elicitores. O objetivo deste trabalho foi avaliar o desenvolvimento de duas cultivares de cevada cervejeira, "BRS 195" e "BRS 225", em resposta à aplicação de elicitores goma xantana e alicina e do fungicida epoxiconazole + pyraclostrobin, comparativamente a plantas não tratadas. O experimento foi conduzido na Fundação Agrária de Pesquisa Agropecuária (FAPA, Guarapuava - PR, no delineamento de blocos completos casualizados. Na análise de crescimento, foram determinados o índice de área foliar (IAF, a taxa de crescimento relativo (TCR e a taxa assimilatória líquida (TAL. Observou-se desenvolvimento semelhante das cultivares em todos os tratamentos. A cultivar "BRS 225" registrou maior acúmulo de matéria seca no período de avaliação por apresentar um ciclo vegetativo mais curto. O IAF aumentou até a fase de emborrachamento das plantas, com posterior decréscimo. A TCR diminuiu da primeira para a última coleta. A TAL diminuiu até 57 dias após a emergência, seguindo aumento no decorrer das avaliações.

  18. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    Science.gov (United States)

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    Science.gov (United States)

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Comparison of the Biological Properties of Several Marine Sponge-Derived Sesquiterpenoid Quinones

    Directory of Open Access Journals (Sweden)

    Ping Yin

    2007-07-01

    Full Text Available Eight naturally occurring marine-sponge derived sesquiterpenoid quinones wereevaluated as potential inhibitors of pyruvate phosphate dikinase (PPDK, a C4 plantregulatory enzyme. Of these, the hydroxyquinones ilimaquinone, ethylsmenoquinone andsmenoquinone inhibited PPDK activity with IC50’s (reported with 95% confidenceintervals of 285.4 (256.4 – 317.7, 316.2 (279.2 – 358.1 and 556.0 (505.9 – 611.0 μM,respectively, as well as being phytotoxic to the C4 plant Digitaria ciliaris. The potentialanti-inflammatory activity of these compounds, using bee venom phospholipase A2(PLA2, was also evaluated. Ethylsmenoquinone, smenospongiarine, smenospongidine andilimaquinone inhibited PLA2 activity (% inhibition of 73.2 + 4.8 at 269 μM, 61.5 + 6.1 at242 μM, 41.0 + 0.6 at 224 μM and 36.4 + 8.2 at 279 μM, respectively. SAR analysesindicate that a hydroxyquinone functionality and a short, hydroxide/alkoxide side-chain atC-20 is preferred for inhibition of PPDK activity, and that a larger amine side-chain at C-20 is tolerated for PLA2 inhibitory activity.

  1. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses.

    Science.gov (United States)

    Yang, Ming-Hua; Lin, Yi-Ju; Kuo, Chang-Hsin; Ku, Kuo-Lung

    2010-09-08

    Phytoalexins t-resveratrol and t-piceatannol, the well-known health-promoting active components in plants, are secondary metabolites generated upon biotic or abiotic stresses. We have reported UV-irradiated peanut callus is a potent means to produce these compounds (J. Agric. Food Chem. 2005, 53, 3877). In this work, the effects of fungi and chemical elicitors on induction of t-resveratrol and t-piceatannol were examined. Results showed the investigated fungi Botryodiplodia theobromae and Reishi Ganoderma lucidum were generally more effective than chemical stress methyl jasmonate, salicylic acid, and sucrose. As high as 15.46+/-9.85 microg of t-resveratrol and 6.93+/-2.03 microg of t-piceatannol could be elicited in each gram of callus by sterilized G. lucidum mycelium (80 mg). Although much more sterilized G. ludicum mycelia was required to induce similar level of t-resveratrol and t-piceatannol in comparison to the sterilized B. theobromae mycelia (1 mg), uptake of the G. ludicum mycelium may provide a variety of health-promoting effects. Our findings suggest G. ludicum mycelium-treated peanut callus is a good source of bioactive components.

  2. Biochemical and morphological responses to abiotc elicitor chitin in suspension-cultured sugarcane cells

    Directory of Open Access Journals (Sweden)

    Maria Izabel Gallão

    2010-04-01

    Full Text Available Cells of Saccharum officinarum submitted to hydrolyzated chitin for 1 to 8h produced phenolic compounds. These alterations were observed through cytochemical methods using Toluidine Blue and Phloroglucinol/HCl. After 4 h, besides cell wall change, there was a change in nuclear pattern of chitin treated cells. There was a 96% increase in nuclear area in 6 h chitin treated material, as observed by Feulgen reaction. The treated cells showed chromatin compacted regions and a degeneration process of nucleoli. In the outer areas of cell wall, there was a polysaccharide desagregation, confirming results obtained for different plants with the use of other elicitors. Peroxidase activity was maximal after 4 h and decreased progressively. PAL activity started to increase at 4 h of incubation. These results showed that chitin hydrolyzate stimulated a defense response in sugarcane cells.Células de Saccharum officinarum quando submetidas a quitina hidrolisada por 1 a 8h produziram material fenólico. Essas alterações foram observadas por meio de métodos citoquímicos como o Azul de Toluidina e Floroglucinol/HCl. Após 4 h, além das mudanças nas paredes celulares houve uma mudança no padrão nuclear das células tratadas com quitina. Por observação da reação de Feulgen, houve um aumento de 96% na área nuclear no material em 6h. Para as células tratadas foram observadas regiões de cromatina compactada e um processo de degeneração do nucléolo. Nas áreas externas da parede celular existia uma desagregação dos polisacarídios confirmando os resultados obtidos para diferentes plantas com o uso de outros elicitores. A atividade da peroxidase foi maxima após 4 h e então decresceu progressivamente. A atividade da PAL aumentou a partir de 4 h de incubação. Estes resultados mostram que o hidrolisado de quitina estimula as respostas de defesa em células de cana.

  3. Quantifying key parameters as elicitors for alternate fruit bearing in cv. 'Elstar' apple trees.

    Science.gov (United States)

    Krasniqi, Anne-Lena; Damerow, Lutz; Kunz, Achim; Blanke, Michael M

    2013-11-01

    The commonly known alternate bearing, i.e. year-to-year change of large and small yields of fruit tree crops worldwide, is often induced by abiotic stress such as late frost, which will eliminate flowers or fruitlets. This study presents an alternative form, biotic biennial bearing, i.e. change of large and small yields of the same trees within the same tree row in the same year. Three methods were developed or modified for the analysis of the number of flower clusters and yield of 2086 apple (Malus domestica Borkh.) cv. 'Elstar' trees. The first method, i.e., based on intersect between yield in year x and year x+1 and flower clusters in year x, yielded 91-106 flower clusters, whereas the second method, i.e., mean yield in year x and year x+1, resulted in a range of 72-133 flower clusters, or 9.6kg/tree necessary for sustainable cultivation of apple cv. 'Elstar'. The third 'biennial bearing index' (BBI), was calculated in three ways as the ratio of differences in tree yields to cumulative tree yield, for individual trees (rather than orchard average) to demonstrate the tree-to-tree alternation. A scheme for the possible underlying regulatory mechanisms was developed, which includes potential elicitors such as light deprivation and subsequent lack of flower initiation, are discussed as a possible result of polar basipetal GA7 transport, cytokinin level in the xylem and phloem and down-regulation of the gene expression of the flowering gene. Suggested countermeasures included early chemical or mechanical thinning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Study of Chemical Treatment Combined with Radiation to Prepare Biotic Elicitor for Utilization in Agriculture

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien

    2010-01-01

    Chitosan was prepared from shrimp shell (alpha chitosan) and from squid pen (beta chitosan) with degree of deacetylation of about 70%. Degradation of chitosan in flake form by combined treatment with H 2 O 2 and gamma Co-60 radiation was carried out. Results showed that combined treatment was highly effective for degradation of chitosan to obtain low molecular weight of 1-2 × 10 5 . Oligochitosan was prepared by irradiation of chitosan solution of 50g/l (5%, w/v). The dose required for oligochitosan with water soluble content of more than 70% was of 32kGy and 48kGy for beta and alpha chitosan, respectively. Synergic effect of degradation of chitosan in solution with H 2 O 2 and gamma Co-60 radiation was also investigated. The dose to obtain oligochitosan was reduced from 32kGy to 4kGy for beta chitosan and from 48kGy to 8kGy for alpha chitosan. The elicitation and growth promotion effect of oligochiotsan for sugarcane and rice were investigated. Results showed that oligochitosan with water soluble content of 70-80% (Mw~5,000-10,000) exhibited the most effective elicitation and growth promotion for plant. The optimum oligochitosan concentration by spraying was of 30 and 15ppm for sugarcane and rice, respectively. The disease index of Ustilgo scitaminea and Collectotrichum falcatum on sugarcane were reduced to 44.5 and 72.3% compared to control (100%). The productivity of sugarcane was increased about 13% (8tons/ha). The disease index of Pyricularia grisea on rice was reduced to 53.0% for leaf and 34.1% for neck of bloom compared to control (100%). The productivity of rice was increased for 11-26% (0.6-1.4 tons/ha). The obtained results indicated that oligochitosan is promising to use as a biotic elicitor for plant particularly for sugarcane and rice. The procedure for production of oligochitosan elicitor by γ- irradiation method was described. (author)

  5. Recognition of Cladosporium fulvum Ecp2 elicitor by non-host Nicotiana spp. is mediated by a single dominant gene that is not homologous to known Cf-genes

    NARCIS (Netherlands)

    Kock, de M.J.D.; Iskandar, H.M.; Brandwagt, B.F.; Laugé, R.; Wit, de P.J.G.M.; Lindhout, W.H.

    2004-01-01

    Cladosporium fulvum is a fungal pathogen of tomato that grows exclusively in the intercellular spaces of leaves. Ecp2 is one of the elicitor proteins that is secreted by C. fulvum and is specifically recognized by tomato plants containing the resistance gene Cf-Ecp2. Recognition is followed by a

  6. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    Directory of Open Access Journals (Sweden)

    Msizi I Mhlongo

    Full Text Available Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP molecules, namely lipopolysaccharides (LPS, chitosan (CHT and flagellin-22 (FLG22. Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids, shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA, methyljasmonic acid (MJ and abscisic acid (ABA resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.

  7. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  8. Síntese de trans-resveratrol e controle de podridão em maçãs com uso de elicitores em pós-colheita Synthesis of trans-resveratrol and rotting control in apples with use of elicitors in post-harvest

    Directory of Open Access Journals (Sweden)

    Cláudia Kaehler Sautter

    2008-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação de elicitores abióticos na biossíntese de resveratrol e na indução de resistência à podridão póscolheita de maçãs 'Gala' e 'Fuji'. Foram realizados os tratamentos: radiação ultravioleta, fosfito e acibenzolar-Smetil - aplicados antes do armazenamento - e ozônio - aplicado intermitente durante o armazenamento. As condições de armazenamento foram: 'Gala', 1,5 kPa de O2 e 2,5 kPa de CO2, a 0,5±0,1ºC, por oito meses, e 'Fuji', 1,0 kPa de O2 e fosfito> irradiação UV-C> ozônio. Na maçã 'Gala', o fosfito reduz a ocorrência de podridão, porém, em ambas as cultivares, não há correlação entre síntese de trans-resveratrol e controle de podridão.The objective of this study was evaluate the effect of the application of abiotic elicitors of resveratrol in 'Gala' and 'Fuji' apples, and rotting control. The treatment was with ultraviolet irradiation, phosphite and acibenzolar-Smethyl, applied before controlled atmosphere storage and ozone, applied so intermittently during storage. The storage conditions were: 'Gala' (1.5 kPa O2 and 2.5 kPa CO2, at 0.5±0.1°C by eight months and 'Fuji' (1.0 kPa O2 and phosphite>UV-C irradiation>ozone. There isn't correlation between synthesis of trans-resveratrol and rotting control, but the phosphite controlled rot in 'Gala'.

  9. The cinnamyl alcohol dehydrogenase (CAD gene family in flax (Linum usitatissimum L.: Insight from expression profiling of cads induced by elicitors in cultured flax cells

    Directory of Open Access Journals (Sweden)

    Eom Hee Seung

    2016-01-01

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD is a key enzyme in the biosynthesis of lignin and lignans as it catalyzes the final step of monolignol biosynthesis, using NADPH as a cofactor. In higher plants, CAD is encoded by a multigene family consisting of three major classes. Based on the recently released flax (Linum usitatissimum L. whole-genome sequences, in this study we identified six CAD family genes that contain an ADH_N domain and an ADH_zinc_N domain, which suggests that the putative flax CADs (LuCADs are zinc-dependent alcohol dehydrogenases and members of the plant CAD family. In addition, expression analysis using quantitative real-time PCR revealed spatial variations in the expression of LuCADs in different organs. Comparative analysis between LuCAD enzymatic activity and LuCAD transcripts indicates that the variation of LuCAD enzymatic activities by elicitors is reflected by transcription of LuCADs in flax suspension-cultured cells. Taken together, our genome-wide analysis of CAD genes and the expression profiling of these genes provide valuable information for understanding the function of CADs, and will assist future studies on the physiological role of monolignols associated with plant defense.

  10. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Science.gov (United States)

    Röder, Gregory; Rahier, Martine; Naisbit, Russell E

    2011-05-04

    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  11. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    2011-05-01

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  12. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  13. Seasonal variation of mono- and sesquiterpenoid components in the essential oil of Dracocephalum kotschyi Boiss.

    Directory of Open Access Journals (Sweden)

    G. Asghari

    2014-10-01

    Full Text Available Background and objectives: Dracocephalum kotschyi is a plant which belongs to the Lamiaceae family and exists mostly in south-west Asian countries, including Iran. This plant is used as antispasmodic, analgesic and anti-inflammatory to treat rheumatoid diseases. Methods: In order to investigate the impact of the harvesting time changes on the quantity and quality of mono- and sesquiterpenoid components of D. kotschyi aerial parts, ten samples were collected from cultivated plants from 19 April to 27 August 2013. Also samples of flower and root were harvested in order to investigate their essential oil components. The essential oils were obtained through hydrodistillation method. The components were studied and identified by GC and GC ⁄ MS systems. Results: The highest yield of the essential oil was obtained on 3 May (1.10% V.W and the lowest on 28 July (0.29% V.W. Totally 55 compounds were identified in the essential oil while the highest percentage belonged to monoterpenes especially the oxygenated ones. Most variations were observed in geraniol (1.40-15.34%, geranyl acetate (trace-14.41% and neryl acetate (0.62-17.51%. The major value in most cases belonged to geranial. Conclusion: the results of this study indicate that the harvesting time of plant is an effective factor in the quality and quantity of theessential oil of Dracocephalum kotschyi.

  14. Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of jatropha (Jatropha curcas L.)

    International Nuclear Information System (INIS)

    Alvero-Bascos, E.M.; Ungson, L.B.

    2012-01-01

    Callus cultures of jatropha (Jatropha curcas L.) grown in Murashige and Skoog's (MS) medium supplemented with naphthalene-acetic acid (NAA, 20 microM) and 6-furfurylaminopurine (kinetin, 20 microM) were exposed to ultraviolet-B (UV-B) radiation to investigate its potential as an abiotic elicitor of flavonoid production. Prior to irradiation, the levels of the flavonoids, apigenin, vitexin and isovitexin in the leaf and callus extracts were determined through high performance liquid chromatography (HPLC). Results showed that vitexin and isovitexin were the dominant flavonoids in the leaves while only apigenin was detected in the calli, suggesting a correlation between the degree of differentiation and biosynthesis of flavonoids in plant tissues. Irradiation of callus cultures for 7 d using two UV-B doses (12.6 and 25.3 kJ/sq m) induced synthesis of all three flavonoids (up to 780 micro g/g dw increase) to levels similar to or higher than those found in whole leaves. The combined levels of the three flavonoids in the cultures treated with the higher UV-B dose were 20-fold higher than the control and were comparable to concentrations found in leaves while a 10-fold increase in combined flavonoid levels was observed in calli irradiated with the lower UV-B dose. Furthermore, random amplified polymorphic DNA (RAPD) analyses of DNA extracts from the leaves and calli revealed that UV-B irradiation enhanced flavonoid synthesis without altering DNA sequence. These results further support the supposed involvement of UV-B in the transcriptional regulation of the expression of flavonoid biosysnthetic genes. Overall, the findings showed that elicitation through UV-B irradiation is an effective strategy to induce flavonoid production in dedifferentiated J. curcas cultures that have lost their capacity to produce the flavonoids normally synthesized in intact organs. (author)

  15. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    OpenAIRE

    Pengyong Zhou; Xiaochang Mo; Wanwan Wang; Xia Chen; Yonggen Lou

    2018-01-01

    Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA), jasmonoyl-isoleucine conjugate (JA-Ile), ethylene and H2O2 but not salicylic acid. These activated signaling pathways ...

  16. Elicitor and fusarium-induced expression of NPR-1 like genes in banana

    CSIR Research Space (South Africa)

    Endah, R

    2008-11-01

    Full Text Available NPR1 is an essential positive regulator of salicylic acid-induced PR gene expression and systemic acquired resistance. Two novel full-length NPR1-like genes; MNPR1A and MNPR1B, were isolated by application of the PCR and RACE techniques. The two...

  17. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection.

    Science.gov (United States)

    Showalter, A M; Bell, J N; Cramer, C L; Bailey, J A; Varner, J E; Lamb, C J

    1985-10-01

    Hydroxyproline-rich glycoproteins (HRGPs) are important structural components of plant cell walls and also accumulate in response to infection as an apparent defense mechanism. Accumulation of HRGP mRNA in biologically stressed bean (Phaseolus vulgaris L.) cells was monitored by blot hybridization with (32)P-labeled tomato genomic HRGP sequences. Elicitor treatment of suspension-cultured cells caused a marked increase in hybridizable HRGP mRNA. The response was less rapid but more prolonged than that observed for mRNAs encoding enzymes of phytoalexin biosynthesis. HRGP mRNA also accumulated during race:cultivar-specific interactions between bean hypocotyls and the partially biotrophic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose. In an incompatible interaction (host resistant) there was an early increase in HRGP mRNA correlated with expression of hypersensitive resistance; whereas, in a compatible interaction (host susceptible), marked accumulation of HRGP mRNA occurred as a delayed response at the onset of lesion formation. In both interactions, mRNA accumulation was observed in uninfected cells distant from the site of fungal inoculation, indicating intercellular transmission of an elicitation signal.

  18. Substituted N-Phenylpyrazine-2-carboxamides, Their Synthesis and Evaluation as Herbicides and Abiotic Elicitors

    Directory of Open Access Journals (Sweden)

    Katarína Kráľová

    2007-12-01

    Full Text Available The condensation of substituted pyrazine-2-carboxylic acid chlorides with ring-substituted anilines yielded five substituted pyrazine-2-carboxylic acid amides. Thesynthesis, and analytical, lipophilicity and biological data of the newly synthesizedcompounds are presented in this paper. The photosynthesis inhibition, antialgal activityand the effect of a series of pyrazine derivatives as abiotic elicitors on the accumulation offlavonoids in a callus culture of Ononis arvensis (L. were investigated. The most activeinhibitor of the oxygen evolution rate in spinach chloroplasts was 6-chloro-pyrazine-2-carboxylic acid (3-iodo-4-methylphenyl-amide (2, IC50 = 51.0 μmol·L-1. The highestreduction of chlorophyll content in Chlorella vulgaris was found for 5-tert-butyl-N-(4-chloro-3-methylphenyl-pyrazine-2-carboxamide (3, IC50 = 44.0 μmol·L-1. The maximalflavonoid production (about 900% was reached after a twelve-hour elicitation processwith 6-chloropyrazine-2-carboxylic acid (3-iodo-4-methylphenyl-amide (2.

  19. Induction of phenolics, lignin and key defense enzymes in eggplant ...

    African Journals Online (AJOL)

    Elicitors are capable of mimicking the perception of a pathogen by a plant, thereby triggering induction of a sophisticated defense response in plants. In this study, we investigated an induced resistance in eggplant in respect to cell wall strengthening and defense enzyme activation affected by four elicitors such as, chitosan ...

  20. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.

    Science.gov (United States)

    Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H

    2017-09-01

    Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.

  1. Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling

    KAUST Repository

    Lori, M.

    2015-05-22

    Plant elicitor peptides (Peps) are potent inducers of pattern-triggered immunity and amplify the immune response against diverse pathogens. Peps have been discovered and studied extensively in Arabidopsis and only recently orthologs in maize were also identified and characterized in more detail. Here, the presence of PROPEPs, the Pep precursors, and PEPRs, the Pep receptors, was investigated within the plant kingdom. PROPEPs and PEPRs were identified in most sequenced species of the angiosperms. The conservation and compatibility of the Pep-PEPR-system was analysed by using plants of two distantly related dicot families, Brassicaceae and Solanaceae, and a representative family of monocot plants, the Poaceae. All three plant families contain important crop plants, including maize, rice, tomato, potato, and canola. Peps were not recognized by species outside of their plant family of origin, apparently because of a divergence of the Pep sequences. Three family-specific Pep motifs were defined and the integration of such a motif into the Pep sequence of an unrelated Pep enabled its perception. Transient transformation of Nicotiana benthamiana with the coding sequences of the AtPEPR1 and ZmPEPR1a led to the recognition of Pep peptides of Brassicaceae or Poaceae origin, respectively, and to the proper activation of downstream signalling. It was concluded that signalling machinery downstream of the PEPRs is highly conserved whereas the leucine-rich repeat domains of the PEPRs co-evolved with the Peps, leading to distinct motifs and, with it, interfamily incompatibility.

  2. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  3. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  4. Preharvest Application of Methyl Jasmonate as an Elicitor Improves the Yield and Phenolic Content of Artichoke.

    Science.gov (United States)

    Martínez-Esplá, Alejandra; Valero, Daniel; Martínez-Romero, Domingo; Castillo, Salvador; Giménez, María José; García-Pastor, Maria Emma; Serrano, María; Zapata, Pedro Javier

    2017-10-25

    The effects of methyl jasmonate (MeJa) treatment as an elicitor of artichoke plants [Cynara cardunculus var. scolymus (L.) Fiori] on the yield and quality attributes of artichokes, especially those related to individual phenolic content and antioxidant activity, at two harvest dates and along storage were analyzed in this research. Plants treated gave a higher yield of artichokes in comparison to control plants, with 0.55 kg more per plant. MeJa treatment also increased artichoke quality and phenolic content in the edible fraction at harvest and during storage at 2 °C for 28 days as a result of the accumulation of hydroxycinnamic acids and luteolin derivatives. In addition, antioxidant activity was enhanced by MeJa treatment and correlated with the total phenolic content. Results suggest that MeJa foliar application could be a simple and practical tool to improve the yield and phytochemical content on artichokes, with elicitation being a cheap and environmentally friendly procedure to improve the health-beneficial effects of artichoke consumption.

  5. Surfactin Protects Wheat against Zymoseptoria tritici and Activates Both Salicylic Acid- and Jasmonic Acid-Dependent Defense Responses

    Directory of Open Access Journals (Sweden)

    Geraldine Le Mire

    2018-01-01

    Full Text Available Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Surfactin protected wheat by 70% against Z. tritici, similarly to the chemical reference elicitor Bion®50WG. In vitro biocidal assays revealed no antifungal activities of surfactin towards the pathogen. A biomolecular RT-qPCR based low-density microarray tool was used to study the relative expression of 23 wheat defense genes. Surfactin significantly induced wheat natural defenses by stimulating both salicylic acid- and jasmonic acid-dependent signaling pathways. Surfactin was successfully tested as an elicitor on the pathosystem wheat–Z. tritici. These results promote further sustainable agricultural practices and the reduction of chemical inputs.

  6. Indução de resistência à podridão-parda em pêssegos pelo uso de eliciadores em pós-colheita Induction of resistance to brown-rot on peaches by elicitors use in post-harvest

    Directory of Open Access Journals (Sweden)

    Moeses Andrigo Danner

    2008-07-01

    aqueous solution containing the treatments and, after 12 hours, the inoculation of Monilinia fructicola was carried out (0.2 mL of spore suspension with 10(5 spores mL-1, in each side of the fruit. Sixty hours past inoculation, the size of lesions, esporulation and percentage of control were evaluated. The contents of total protein, total phenol, total and reducing sugar, besides activity of phenylalanine ammonia-lyase (PAL, were determined. The elicitors induce resistance to M. fructicola, with reduction in fungal development. Elicitor's increased the evaluated biochemical parameters and the activity of PAL, which was related to the size reduction of lesions in peaches. The elicitors could be used in integrated management of brown-rot, in post-harvest applications.

  7. Improved health-relevant functionality in dark germinated Mucuna pruriens sprouts by elicitation with peptide and phytochemical elicitors.

    Science.gov (United States)

    Randhir, Reena; Kwon, Young-In; Shetty, Kalidas

    2009-10-01

    The health-relevant functionality of Mucuna pruriens was improved by priming the seeds with elicitors of the pentose phosphate pathway (PPP) such as fish protein hydrolysates (FPHs), lactoferrin (LF) and oregano extract (OE) followed by dark germination. FPH elicited the highest phenolic content of 19 mg/g FW on day 1, which was 38% higher than control sprouts. OE enhanced Parkinson's disease-relevant L-DOPA content by 33% on day 1 compared to control sprouts. Anti-diabetes-relevant alpha-amylase inhibition percent (AIP) and alpha-glucosidase inhibition percent (GIP) were high in the cotyledons and decreased following elicitation and sprouting. For potential anti-diabetic applications, low AIP and high GIP with moderate L-DOPA content on day 4 of dark germination could be optimal. Improved L-DOPA concentrations in a soluble phenolic and antioxidant-rich M. pruriens background on day 1 sprouts have potential for Parkinson's disease management.

  8. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy

    OpenAIRE

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2016-01-01

    Background Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. Objectives This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunizat...

  9. Effects on grape amino acid concentration through foliar application of three different elicitors.

    Science.gov (United States)

    Gutiérrez-Gamboa, G; Portu, J; Santamaría, P; López, R; Garde-Cerdán, T

    2017-09-01

    Elicitors play an important role in the defense against pathogens as an alternative to chemical pesticides by increasing secondary metabolites. Their effect on grape amino acid has been little investigated. Thus, the aim of this research was to study the influence of methyl jasmonate (MeJ), chitosan (CHT), and a yeast extract (YE) on grape amino acid composition, through foliar applications to grapevines. The must amino acid concentration was analyzed by HPLC. The results showed that CHT and YE treatments decreased the must concentration of several amino acids, affecting total amino acid content (from 2364 to 1961, and 1818mg/L, respectively). However, MeJ treatment had a slight effect on grape amino acid content, increasing the concentration of Met (from 8.95 to 12.13mg/L) and Phe (from 7.96 to 9.29mg/L). It seems to be that, the resistance induction through CHT and YE treatments results in physiological costs to grapevines associated with a decrease on grape amino acid concentration. Consequently, MeJ applications, as a viticultural practice, could be a better tool than CHT and YE treatments, because did not affect grape amino acid concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ergosterol-induced sesquiterpenoid synthesis in tobacco Cells

    CSIR Research Space (South Africa)

    Tugizimana, F

    2012-02-01

    Full Text Available below [46,47]. 2.2.1. HPTLC Fractionation of Extracts and Initial Characterisation HPTLC analysis of the chloroform extracts allowed partial characterisation of the multi-component cell extracts. The image of the HPTLC plate (Figure 3) shows the six.... The corrected empirical formula is thus C15H22O; and searching in databases (structural correlation to MS spectrum), the compound was putatively identified as solavetivone (C15H22O, 218.340 Da). Molecules 2012, 17 1706 Figure 5. The identification...

  11. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures.

    Science.gov (United States)

    Facchini, P J; Johnson, A G; Poupart, J; de Luca, V

    1996-01-01

    Treatment of opium poppy (Papaver somniferum L.) cell cultures with autoclaved mycelial homogenates of Botrytis sp. resulted in the accumulation of sanguinarine. Elicitor treatment also caused a rapid and transient induction in the activity of tyrosine/dopa decarboxylase (TYDC, EC 4.1.1.25), which catalyzes the conversion of L-tyrosine and L-dopa to tyramine and dopamine, respectively, the first steps in sanguinarine biosynthesis. TYDC genes were differentially expressed in response to elicitor treatment. TYDC1-like mRNA levels were induced rapidly but declined to near baseline levels within 5 h. In contrast, TYDC2-like transcript levels increased more slowly but were sustained for an extended period. Induction of TYDC mRNAs preceded that of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) mRNAs. An elicitor preparation from Pythium aphanidermatum was less effective in the induction of TYDC mRNA levels and alkaloid accumulation; however, both elicitors equally induced accumulation of PAL transcripts. In contrast, treatment with methyl jasmonate resulted in an induction of TYDC but not PAL mRNAs. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and the protein kinase inhibitor staurosporine partially blocked the fungal elicitor-induced accumulation of sanguinarine. However, only staurosporine and okadaic acid, an inhibitor of protein phosphatases 1 and 2A, blocked the induction of TYDC1-like transcript levels, but they did not block the induction of TYDC2-like or PAL transcript levels. These data suggest that activation mechanisms for PAL, TYDC, and some later sanguinarine biosynthetic enzymes are uncoupled. PMID:8754678

  12. INDUCING RESISTANCE IN COTTON AGAINST COLLETOTRICHUM GOSSYPII VAR. CEPHALOSPORIOIDES WITH ESSENTIAL OILS

    Directory of Open Access Journals (Sweden)

    B. T. Santos

    2016-11-01

    Full Text Available This study aimed to evaluate the potential of essential oils of rosemary (Rosmarinus officinalis, baccharis (Baccharis trimera, lemon grass (Cymbopogon citratus, basil (Ocimum basilicum and eucalyptus (Corymbia citriodora in inducing resistance in cotton plants against C. gossypii var. cephalosporioides. The inductive effect of the essential oils was evaluated in plants growing in pots in the environment, which were treated with 1% essential oil at 47 days of age. 24 hours after elicitor treatment the plants were inoculated with a suspension of 1.5 x 105 conidia mL-1 of C. gossypii var. cephalosporioides. Five evaluations were performed disease and calculated the area under the disease progress curve. All essential oils showed potential for inducing resistance against cotton C. gossypii var. cephalosporioides.

  13. Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses

    OpenAIRE

    Le Mire, Géraldine; Siah, Ali; Brisset, Marie-Noëlle; Gaucher, Matthieu; Deleu, Magali; Jijakli, Haissam

    2018-01-01

    Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Su...

  14. Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses.

    Science.gov (United States)

    Durrant, Matthew; Boyer, Justin; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2017-08-01

    Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Elicitation: A Tool for Enriching the Bioactive Composition of Foods

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2014-09-01

    Full Text Available Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin, abiotic (chemical or physical origin elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.

  16. Elicitation: a tool for enriching the bioactive composition of foods.

    Science.gov (United States)

    Baenas, Nieves; García-Viguera, Cristina; Moreno, Diego A

    2014-09-01

    Elicitation is a good strategy to induce physiological changes and stimulate defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been widely investigated as bioactive compounds responsible of plant cell adaptation to the environment, specific organoleptic properties of foods, and protective effects in human cells against oxidative processes in the development of neurodegenerative and cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic (chemical or physical origin) elicitors and phytohormones have been applied alone or in combinations, in hydroponic solutions or sprays, and in different selected time points of the plant growth or during post-harvest. Understanding how plant tissues and their specific secondary metabolic pathways respond to specific treatments with elicitors would be the basis for designing protocols to enhance the production of secondary metabolites, in order to produce quality and healthy fresh foods.

  17. Relevance of trichothecenes in fungal physiology: Disruption of tri5 in Trichoderma arundinaceum

    Science.gov (United States)

    Trichothecenes are sesquiterpenoid mycotoxins produced mainly by Fusarium species. Harzianum A (HA), a non-phytotoxic trichothecene produced by Trichoderma arundinaceum, has recently been found to have antagonistic activity against fungal plant pathogens and to induce plant genes involved in defense...

  18. Application of Osthol Induces a Resistance Response Against Powdery Mildew in Pumpkin Leave

    Directory of Open Access Journals (Sweden)

    Yong Jian Fan

    2007-09-01

    Full Text Available Plants can defend themselves against fungal infection by natural means inducedby biotic and abiotic elicitors. Osthol is a natural compound extracted from dried fruits ofCnidii Monnieri Fructus. In this study, it has been shown to not only be a fungicide withacceptable curative properties (control efficacy of 68.72, but it also showed a significantprophylactic effect (with control efficacy of 77.36 against pumpkin powdery mildew at aconcentration of 100 μg·mL-1. In pumpkin leaves with/or without inoculation ofSphaerotheca fuliginea, osthol treatment induced the accumulation of chitinase andperoxidase and enhanced the transcription of chitinase gene in non-inoculated leaves. Thepotentiation of phenylalanine amonia-lyase activity in leaves by osthol application andfollowing inoculation was absent in that with inoculation or osthol treatment, indicatingthat induced PAL in osthol-pretreated plants was inoculation-mediated. In conclusion, thisnatural compound could induce resistance response in the plant against powdery mildew.

  19. Efecto de la aplicación de elicitores sobre la producción de 4β-hidroxiwithanólido E, en raíces transformadas de Physalis peruviana L.

    OpenAIRE

    Piñeros-Castro, Yineth; Otálvaro-Álvarez, Ángela; Velásquez-Lozano, Mario

    2009-01-01

    Objetivo: Estudiar la producción del metabolito 4β-hidroxiwithanólido E, mediante el cultivo in vitro de raíces transformadas de uchuva (Physalis peruviana L.) y evaluar el efecto de la influencia de la aplicación de diferentes elicitores sobre la producción de dicho metabolito. Materiales y métodos: Se obtuvieron raíces transformadas de Physalis peruviana L. mediante infección con Agrobacterium rhizogenes C106. Se cultivaron las raíces transformadas en medio líquido Murashige & Skoog, durant...

  20. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    Science.gov (United States)

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  1. The Commonly Used Bactericide Bismerthiazol Promotes Rice Defenses against Herbivores

    Directory of Open Access Journals (Sweden)

    Pengyong Zhou

    2018-04-01

    Full Text Available Chemical elicitors that enhance plant resistance to pathogens have been extensively studied, however, chemical elicitors that induce plant defenses against insect pests have received little attention. Here, we found that the exogenous application of a commonly used bactericide, bismerthiazol, on rice induced the biosynthesis of constitutive and/or elicited jasmonic acid (JA, jasmonoyl-isoleucine conjugate (JA-Ile, ethylene and H2O2 but not salicylic acid. These activated signaling pathways altered the volatile profile of rice plants. White-backed planthopper (WBPH, Sogatella furcifera nymphs and gravid females showed a preference for feeding and/or oviposition on control plants: survival rates were better and more eggs were laid than on bismerthiazol-treated plants. Moreover, bismerthiazol treatment also increased both the parasitism rate of WBPH eggs laid on plants in the field by Anagrus nilaparvatae, and also the resistance of rice to the brown planthopper (BPH Nilaparvata lugens and the striped stem borer (SSB Chilo suppressalis. These findings suggest that the bactericide bismerthiazol can induce the direct and/or indirect resistance of rice to multiple insect pests, and so can be used as a broad-spectrum chemical elicitor.

  2. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): distribution, (13)C NMR spectral data and biological properties.

    Science.gov (United States)

    Bruno, Maurizio; Bancheva, Svetlana; Rosselli, Sergio; Maggio, Antonella

    2013-11-01

    Asteraceae Bercht. & J. Presl is one of the biggest and most economically important plant families. The taxonomy and phylogeny of Asteraceae is rather complex and according to the latest and most reliable taxonomic classification of Panero & Funk, based on the analysis of nine chloroplast regions, the family is divided into 12 subfamilies and 35 tribes. One of the largest tribes of Asteraceae is Cardueae Cass. with four subtribes (Carlininae, Echinopinae, Carduinae and Centaureinae) and more than 2500 species. Susanna & Garcia-Jacas have organized the genera of Centaureinae (about 800 species) into seven informal groups, which recent molecular studies have confirmed: 1. Basal genera; 2. Volutaria group; 3. Rhaponticum group; 4. Serratula group; 5. Carthamus group; 6. Crocodylium group; 7. Centaurea group. This review summarizes reports on sesquiterpenoids from the Centaureinae subtribe of the Asteraceae family, as well as the (13)C NMR spectral data described in the literature. It further reviews studies concerning the biological activities of these metabolites. For this work, literature data on sesquiterpenes from the Centaureinae subtribe were retrieved with the help of the SciFinder database and other similar data banks. All entries from 1958 until the end of 2011 were considered. This review is addressed to scientists working in the metabolomics field such as chemists, botanists, etc., the spectroscopic data reported make this work a good tool for structural elucidation, the biological section gives useful information to those who wish to study the structure activity relationships. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Evaluation of disease resistance in cotton plants with reduced levels of methylated phytoalexins

    Science.gov (United States)

    The production of sesquiterpenoids in cotton tissues contribute to the plant’s constitutive and inducible defense against pathogens. In roots, gossypol (G), desoxyhemigossypol (dHG), hemigossypol (HG), and their methylated derivatives MG, DMG, dMHG, and MHG are the main defense compounds. dHG is ...

  4. Molecular And Radiation Studies On Improving The Ajmalicine Production In Catharanthus roseus

    International Nuclear Information System (INIS)

    EL-SAYED, I.M.S.

    2013-01-01

    Elicitations are considered to be an important strategy towards improve in vitro production of secondary metabolites. In seedling cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cultures to low dose of Gamma irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (TDC) and strictosidine synthase (STR). In the present study, the signaling pathway mediating Gamma irradiation -induced catharanthine accumulation in C. roseus seedling cultures were investigated. Catharanthus roseus seedling cultures were exposed to different low dose of Gamma irradiation in order to induce alkaloid metabolism. The exposure to Gamma irradiation elicitors resulted in the transcriptional activation of tryptophan decarboxylase and in the accumulation of the monoterpenoid indole alkaloids ajmalicine and catharanthine but not of vindoline. The inability of the seedling cultures to produce vindoline was related to a lack of expression of the tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes.

  5. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    Science.gov (United States)

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  6. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  7. Host induced changes in plasmid profile of Xanthomonas ...

    African Journals Online (AJOL)

    Based on known facts about genome rearrangement, we speculate this as an adaptation strategy for Xam to increase copy number of genes involved in pathogen aggressiveness which are otherwise present as single copy in bacterial chromosome and this possibly occurred by induction from host elicitors present in leaf ...

  8. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  9. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea

    Science.gov (United States)

    Chen, Fei; Ren, Cheng-Gang; Zhou, Tong; Wei, Yu-Jia; Dai, Chuan-Chao

    2016-10-01

    Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26-42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.

  10. Sesquiterpene volatile organic compounds (VOCs are markers of elicitation by sulfated laminarine in grapevine

    Directory of Open Access Journals (Sweden)

    Malik eChalal

    2015-05-01

    Full Text Available Inducing resistance in plants by application of elicitors of defense reactions is an attractive plant protection strategy, especially for grapevine (Vitis vinifera which is susceptible to severe fungal diseases. Though induced resistance (IR can be successful in controlled conditions, under outdoor conditions IR is in most cases not effective enough for practical disease control. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers in order to identify factors (physiological, environmental… that can impact IR in the vineyard.Volatile organic compounds (VOCs are well-known plant defenses compounds that have only received little or no attention in the case of grape-pathogen interactions to date. This prompted us to investigate whether an elicitor, the sulfated laminarin (PS3, actually induces the production of VOCs in grapevine. Online analysis (PTR-QMS of VOC emissions in dynamic cuvettes and passive sampling in gas tight bags with solid phase micro extraction (SPME-GC-MS under greenhouse conditions showed that PS3 elicited emission of VOCs. Some of them (as (E,E-α-farnesene might be good candidates as biomarkers of elicitor-IR whereas methyl salicylate appears to be rather a biomarker of downy mildew infection. A negative correlation between VOC emission and disease severity suggests a positive role of VOCs in grape defense against diseases.

  11. INDUCCIÓN DE LA ACTIVIDAD DE LA ENZIMA FENILALANINA AMONIO LIASA EN CLAVEL (Dianthus caryophyllus L POR ELICITORES DEL HONGO Fusarium oxysporum f. sp. Dianthi raza 2

    Directory of Open Access Journals (Sweden)

    Harold Ardila

    2008-04-01

    Full Text Available Con el fin de evaluar el comportamiento a nivel del tallo de la enzima fenilalanina amonio liasa (PAL, por su nombre en inglés phenylalanine ammonia liase, durante la interacción clavel-Fusarium oxysporum f. sp. dianthi raza 2, se seleccionaron las condiciones para su extracción y cuantificación de la actividad. Para la extracción a partir de tallos y raíces se seleccionó un tratamiento previo del material vegetal con acetona y posterior extracción con buffer borato pH 8,8 con EDTA 2mMy -mercaptoetanol 18 mM. Para su cuantificación a nivel del tallo se debe realizar un ensayo discontinuo por 10 min, a 37 oC, pH 8,0 y a una concentración de sustrato de 35 mM. Adicionalmente se muestra mediante un ensayo in vivo el efecto que tiene, como inductor de esta enzima, la aplicación de un extracto crudo del patógeno. Los resultados observados indican que esta enzima se induce significativamente en tallos de claveles de la variedad tolerante “Kiss” durante el tratamiento por aspersión con el extracto crudo del patógeno, mientras que dicha inducción fue inexistente para la infección directamente con el patógeno. La inducción en esta variedad indica que en este extracto del patógeno se presentan elicitores potenciales para la inducción de esta enzima y por ende de la ruta fenilpropanoide.

  12. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 5 ... Miocene; western India; sesquiterpenoids; geochemistry; geology; biogeosciences. ... These sesquiterpenoids which are commonly detected in many SE Asian crude ...

  14. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  15. Estudio por HPLC de la acción de dos elicitores bióticos sobre la producción in vitro de metabolitos secundarios en células de clavel (Dianthus canophyilus L

    Directory of Open Access Journals (Sweden)

    Blanca Ligia Higuera M.

    2010-09-01

    Full Text Available Como parte de la investigación que busca contribuir al estudio de los mecanismos de defensa que operan en la interacción clavel (Dianthus caryophyllus L. - Fusarium oxysporum f. sp. dianthi, se evaluó la producción in vitro de metabolitos secundarios asociados con resistencia del clavel. Para ello se usaron cultivos de células en suspensión de variedades de clavel resistente (var. Candy y susceptible (var. Rosana, elicitadas durante 3 y 15 días con dos elicitores bióticos, ácido fusárico y filtrado de medio de cultivo del hongo.

  16. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana.

    Science.gov (United States)

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.

  17. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  18. Embryotoxicity Caused by DON-Induced Oxidative Stress Mediated by Nrf2/HO-1 Pathway

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-06-01

    Full Text Available Deoxynivalenol (DON belongs to the type B group of trichothecenes family, which is composed of sesquiterpenoid metabolites produced by Fusarium and other fungi in grain. DON may cause various toxicities, such as cytotoxicity, immunotoxicity, genotoxicity as well as teratogenicity and carcinogenicity. In the present study, we focus on a hypothesis that DON alters the expressions of Nrf2/HO-1 pathway by inducing embryotoxicity in C57BL/6 mouse (5.0, 2.5, 1.0, and 0 mg/kg/day and BeWo cell lines (0 and 50 nM; 3 h, 12 h and 24 h. Our results indicate that DON treatment in mice during pregnancy leads to ROS accumulation in the placenta, which results in embryotoxicity. At the same time Nrf2/HO-1 pathway is up-regulated by ROS to protect placenta cells from oxidative damage. In DON-treated BeWo cells, the level of ROS has time–effect and dose–effect relationships with HO-1 expression. Moderate increase in HO-1 protects the cell from oxidative damage, while excessive increase in HO-1 aggravates the oxidative damage, which is called in some studies the “threshold effect”. Therefore, oxidative stress may be the critical molecular mechanism for DON-induced embryotoxicity. Besides, Nrf2/HO-1 pathway accompanied by the “threshold effect” also plays an important role against DON-induced oxidative damage in this process.

  19. Appa Rao Podile | Speakers | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In the past decade, domain shuf- fling/swapping of recombinant bacterial chitinases, bioprocess development for production of chitooligosaccharides by enzymatic methods, mechanism of elicitor (harpin) induced cell death, nanotechnology for crop protection, and non-host resistance have been his major areas of research ...

  20. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds.

    Science.gov (United States)

    Wason, Elizabeth L; Agrawal, Anurag A; Hunter, Mark D

    2013-08-01

    The existence of predictable latitudinal variation in plant defense against herbivores remains controversial. A prevailing view holds that higher levels of plant defense evolve at low latitudes compared to high latitudes as an adaptive plant response to higher herbivore pressure on low-latitude plants. To date, this prediction has not been examined with respect to volatile organic compounds (VOCs) that many plants emit, often thus attracting the natural enemies of herbivores. Here, we compared genetically-based constitutive and herbivore-induced aboveground vegetative VOC emissions from plants originating across a gradient of more than 10° of latitude (>1,500 km). We collected headspace VOCs from Asclepias syriaca (common milkweed) originating from 20 populations across its natural range and grown in a common garden near the range center. Feeding by specialist Danaus plexippus (monarch) larvae induced VOCs, and field environmental conditions (temperature, light, and humidity) also influenced emissions. Monarch damage increased plant VOC concentrations and altered VOC blends. We found that genetically-based induced VOC emissions varied with the latitude of plant population origin, although the pattern followed the reverse of that predicted-induced VOC concentration increased with increasing latitude. This pattern appeared to be driven by a greater induction of sesquiterpenoids at higher latitudes. In contrast, constitutive VOC emission did not vary systematically with latitude, and the induction of green leafy volatiles declined with latitude. Our results do not support the prevailing view that plant defense is greater at lower than at higher latitudes. That the pattern holds only for herbivore-induced VOC emission, and not constitutive emission, suggests that latitudinal variation in VOCs is not a simple adaptive response to climatic factors.

  1. Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis

    Science.gov (United States)

    Wen, Di; Rivera-Perez, Crisalejandra; Abdou, Mohamed; Jia, Qiangqiang; He, Qianyu; Liu, Xi; Zyaan, Ola; Xu, Jingjing; Bendena, William G.; Tobe, Stephen S.; Noriega, Fernando G.; Palli, Subba R.; Wang, Jian; Li, Sheng

    2015-01-01

    Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce. PMID:25774983

  2. The chills as a psychological construct: content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences.

    Science.gov (United States)

    Maruskin, Laura A; Thrash, Todd M; Elliot, Andrew J

    2012-07-01

    We examined the content universe, factor structure, affective composition, elicitors, trait antecedents, and consequences of "the chills." In Study 1, participants described what it means to get the chills. A second sample sorted all references to physical sensations based on similarity. Cluster analysis identified 4 lower order clusters (goosebumps, tingling, coldness, shivers) and 2 higher order clusters ("goosetingles," "coldshivers"). In Study 2, factor analysis of questionnaire data supported a model with lower and higher order factors that corresponded to the Study 1 clusters. Goosetingles and coldshivers were predicted by approach-related traits (e.g., extraversion) and avoidance-related traits (e.g., neuroticism), respectively. In Study 3, analysis of narrative data replicated the goosetingles-coldshivers structure. Relative to coldshivers, goosetingles involved greater awe, surprise, and enjoyment and less disgust, fear, and sadness. In Study 4, analysis of diary data extended the goosetingles-coldshivers structure to between- and within-person levels of analysis. Goosetingles involved positive affects and was elicited by approach-related stimuli, whereas coldshivers involved negative affects and was elicited by avoidance-related stimuli. In Study 5, manipulation of exposure to self-actualization and self-annihilation elicited goosetingles and coldshivers, respectively. Goosetingles and coldshivers had positive and negative effects, respectively, on interpersonal closeness. In sum, diverse forms of evidence converge to indicate that the chills encompasses distinct approach- and avoidance-related constructs. Failure to distinguish these constructs explains null and inconsistent findings in the nascent literature. Goosetingles and coldshivers are posited to serve the function of signaling that an event in the environment is pertinent to one's most deep-seated hopes or fears. PsycINFO Database Record (c) 2012 APA, all rights reserved

  3. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Mattinen, Laura; Tshuikina, Marina; Mäe, Andres; Pirhonen, Minna

    2004-12-01

    Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.

  4. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7.

    Directory of Open Access Journals (Sweden)

    Shuguo Hou

    2014-09-01

    Full Text Available In plants, innate immune responses are initiated by plasma membrane-located pattern recognition receptors (PRRs upon recognition of elicitors, including exogenous pathogen-associated molecular patterns (PAMPs and endogenous damage-associated molecular patterns (DAMPs. Arabidopsis thaliana produces more than 1000 secreted peptide candidates, but it has yet to be established whether any of these act as elicitors. Here we identified an A. thaliana gene family encoding precursors of PAMP-induced secreted peptides (prePIPs through an in-silico approach. The expression of some members of the family, including prePIP1 and prePIP2, is induced by a variety of pathogens and elicitors. Subcellular localization and proteolytic processing analyses demonstrated that the prePIP1 product is secreted into extracellular spaces where it is cleaved at the C-terminus. Overexpression of prePIP1 and prePIP2, or exogenous application of PIP1 and PIP2 synthetic peptides corresponding to the C-terminal conserved regions in prePIP1 and prePIP2, enhanced immune responses and pathogen resistance in A. thaliana. Genetic and biochemical analyses suggested that the receptor-like kinase 7 (RLK7 functions as a receptor of PIP1. Once perceived by RLK7, PIP1 initiates overlapping and distinct immune signaling responses together with the DAMP PEP1. PIP1 and PEP1 cooperate in amplifying the immune responses triggered by the PAMP flagellin. Collectively, these studies provide significant insights into immune modulation by Arabidopsis endogenous secreted peptides.

  5. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    Science.gov (United States)

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  6. A novel type of pathogen defense-related cinnamyl alcohol dehydrogenase.

    Science.gov (United States)

    Logemann, E; Reinold, S; Somssich, I E; Hahlbrock, K

    1997-08-01

    We describe an aromatic alcohol dehydrogenase with properties indicating a novel type of function in the defense response of plants to pathogens. To obtain the enzyme free of contamination with possible isoforms, a parsley (Petroselinum crispum) cDNA comprising the entire coding region of the elicitor-responsive gene, ELI3, was expressed in Escherichia coli. In accord with large amino acid sequence similarities with established cinnamyl and benzyl alcohol dehydrogenases from other plants, the enzyme efficiently reduced various cinnamyl and benzyl aldehydes using NADPH as a co-substrate. Highest substrate affinities were observed for cinnamaldehyde, 4-coumaraldehyde and coniferaldehyde, whereas sinapaldehyde, one of the most efficient substrates of several previously analyzed cinnamyl alcohol dehydrogenases and a characteristic precursor molecule of angiosperm lignin, was not converted. A single form of ELI3 mRNA was strongly and rapidly induced in fungal elicitor-treated parsley cells. These results, together with earlier findings that the ELI3 gene is strongly activated both in elicitor-treated parsley cells and at fungal infection sites in parsley leaves, but not in lignifying tissue, suggest a specific role of this enzyme in pathogen defense-related phenylpropanoid metabolism.

  7. Chemical Elicitors of Antibiotic Biosynthesis in Actinomycetes

    Directory of Open Access Journals (Sweden)

    Anton P. Tyurin

    2018-06-01

    Full Text Available Whole genome sequencing of actinomycetes has uncovered a new immense realm of microbial chemistry and biology. Most biosynthetic gene clusters present in genomes were found to remain “silent” under standard cultivation conditions. Some small molecules—chemical elicitors—can be used to induce the biosynthesis of antibiotics in actinobacteria and to expand the chemical diversity of secondary metabolites. Here, we outline a brief account of the basic principles of the search for regulators of this type and their application.

  8. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  9. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability.

    NARCIS (Netherlands)

    Burg, van den H.A.; Westerink, N.; Francoijs, C.J.J.; Roth, R.; Woestenenk, E.A.; Boeren, J.A.; Wit, de P.J.G.M.; Joosten, M.H.A.J.; Vervoort, J.J.M.

    2003-01-01

    The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine

  10. Insights from Zebrafish and Mouse Models on the Activity and Safety of Ar-Turmerone as a Potential Drug Candidate for the Treatment of Epilepsy

    OpenAIRE

    Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter; Esguerra, Camila

    2013-01-01

    In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, ?-, ?-turmerone and ?-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic ef...

  11. Grape marc extract acts as elicitor of plant defence responses.

    Science.gov (United States)

    Goupil, Pascale; Benouaret, Razik; Charrier, Olivia; Ter Halle, Alexandra; Richard, Claire; Eyheraguibel, Boris; Thiery, Denis; Ledoigt, Gérard

    2012-07-01

    Plant protection based on novel alternative strategies is a major concern in agriculture to sustain pest management. The marc extract of red grape cultivars reveals plant defence inducer properties. Treatment with grape marc extract efficiently induced hypersensitive reaction-like lesions with cell death evidenced by Evans Blue staining of tobacco leaves. Examination of the infiltration zone and the surrounding areas under UV light revealed the accumulation of autofluorescent compounds. Both leaf infiltration and a foliar spray of the red grape extract on tobacco leaves induced defence gene expression. The PR1 and PR2 target genes were upregulated locally and systemically in tobacco plants following grape marc extract treatment. The grape extract elicited an array of plant defence responses making this natural compound a potential phytosanitary product with a challenging issue and a rather attractive option for sustainable agriculture and environmentally friendly practices.

  12. DAF-fluorescence without NO: elicitor treated tobacco cells produce fluorescing DAF-derivatives not related to DAF-2 triazol.

    Science.gov (United States)

    Rümer, Stefan; Krischke, Markus; Fekete, Agnes; Mueller, Martin J; Kaiser, Werner M

    2012-08-15

    Diaminofluorescein-dyes (DAFs) are widely used for visualizing NO· production in biological systems. Here it was examined whether DAF-fluorescence could be evoked by other means than nitrosation. Tobacco (Nicotiana tabacum) suspension cells treated with the fungal elicitor cryptogein released compound(s) which gave a fluorescence increase in the cell-free filtrate after addition of DAF-2 or DAF-FM or DAR-4M. DAF-reactive compounds were relatively stable and identified as reaction products of H(2)O(2) plus apoplastic peroxidase (PO). CPTIO prevented formation of these products. Horseradish-peroxidase (HR-PO) plus H(2)O(2) also generated DAF-fluorescence in vitro. Using RP-HPLC with fluorescence detection, DAF derivatives were further analyzed. In filtrates from cryptogein-treated cells, fluorescence originated from two novel DAF-derivatives also obtained in vitro with DAF-2+HR-PO+H(2)O(2). DAF-2T was only detected when an NO donor (DEA-NO) was present. Using high resolution mass spectrometry, the two above-described novel DAF-reaction products were tentatively identified as dimers. In cells preloaded with DAF-2 DA and incubated with or without cryptogein, DAF-fluorescence originated from a complex pattern of multiple products different from those obtained in vitro. One specific peak was responsive to exogenous H(2)O(2), and another, minor peak eluted at or close to DAF-2T. Thus, in contrast to the prevailing opinion, DAF-2 can be enzymatically converted into a variety of highly fluorescing derivatives, both inside and outside cells, of which none (outside) or only a minor part (inside) appeared NO· dependent. Accordingly, DAF-fluorescence and its prevention by cPTIO do not necessarily indicate NO· production. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Thrombosis, systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles, and the effect of nootkatone thereon.

    Science.gov (United States)

    Nemmar, Abderrahim; Al-Salam, Suhail; Beegam, Sumaya; Yuvaraju, Priya; Ali, Badreldin H

    2018-01-05

    Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particles-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1h before intratracheal (i.t.) instillation of DEP (30 μg/mouse). Twenty-four h following the i.t. administration of DEP various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEP in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEP. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6 and lipid peroxidation induced by DEP. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 (Nrf2) expression by cardiac myocytes and endothelial cells following DEP exposure, and these effects were enhanced in mice treated with nootkatone+DEP. Likewise, heme oxygenase-1 (HO-1) was increased in mice treated with nootkatone+DEP compared with those treated with DEP or nootkatone+saline. The DNA damage caused by DEP was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through Nrf2 and HO-1 activation.

  14. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products

    Directory of Open Access Journals (Sweden)

    Mohidul Hasan

    2017-02-01

    Full Text Available Resveratrol is the most important stilbene phytoalexin synthesized naturally or induced in plants, as a part of their defense mechanism. Grapes and their derivative products, including juice and wine, are the most important natural sources of resveratrol, consisting of notably higher amounts than other natural sources like peanuts. Consumption of red wine with its presence of resveratrol explained the “French Paradox”. Hence, the demand of resveratrol from grapes is increasing. Moreover, as a natural source of resveratrol, grapes became very important in the nutraceutical industry for their benefits to human health. The accumulation of resveratrol in grape skin, juice, and wine has been found to be induced by the external stimuli: microbial infection, ultrasonication (US treatment, light-emitting diode (LED, ultra violet (UV irradiation, elicitors or signaling compounds, macronutrients, and fungicides. Phenylalanine ammonia lyase, cinnamate-4-hydroxylase, coumaroyl-CoA ligase, and stilbene synthase play a key role in the synthesis of resveratrol. The up-regulation of those genes have the positive relationship with the elicited accumulation of resveratrol. In this review, we encapsulate the effect of different external stimuli (biotic and abiotic stresses or signaling compounds in order to obtain the maximum accumulation of resveratrol in grape skin, leaves, juice, wine, and cell cultures.

  15. Infection of corn ears by Fusarium spp. induces the emission of volatile sesquiterpenes.

    Science.gov (United States)

    Becker, Eva-Maria; Herrfurth, Cornelia; Irmisch, Sandra; Köllner, Tobias G; Feussner, Ivo; Karlovsky, Petr; Splivallo, Richard

    2014-06-04

    Infection of corn (Zea mays L.) ears with fungal pathogens of the Fusarium genus might result in yield losses and in the accumulation of mycotoxins. The aim of this study was to investigate whether volatile profiles could be used to identify Fusarium-infected corn ears. The volatiles released by corn ears infected by Fusarium graminearum, Fusarium verticillioides, and Fusarium subglutinans were studied. Volatile emission was recorded at 24 days postinoculation (dpi) and in a time series (from 4 to 24 dpi). Twenty-two volatiles were differentially emitted from Fusarium-infected versus healthy corn ears. These included C6-C8 compounds and sesquiterpenoids. All volatiles indicative of Fusarium infection were detectable as early as 4-8 dpi and continued to be produced to the final sampling time (early milk maturity stage). The induced emission of β-macrocarpene and β-bisabolene correlated with an increased transcript accumulation of corn terpene synthase 6/11 (tps6/11). Additionally, the modification of volatile profiles after Fusarium infection was accompanied by the induction of plant defense compounds such as zealexins and oxylipins. Together, these results reveal a broad metabolic response of the plant to pathogen attack. Volatile biomarkers of Fusarium infection are promising indicators for the early detection of fungal infection before disease symptoms become visible.

  16. Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and Mucuna prurita H.

    Science.gov (United States)

    Raghavendra, S; Kumar, V; Ramesh, C K; Khan, M H Moinuddin

    2012-01-01

    A comparative study on the production of 3,4-dihydroxyphenylalanine (L-DOPA) was carried out in cell cultures of two Mucuna species by elicitor treatment and precursor feeding. The influence of elicitors and the precursor molecule on L-DOPA production, polyphenol oxidase (PPO) and tyrosinase activities was also studied. Callus cultures were initiated in Mucuna pruriens L. and Mucuna prurita H. on MS medium supplemented with BAP and IAA at different concentrations. Suspension cultures were established in MS liquid medium supplemented with BAP, IAA, the elicitors methyl jasmonate, chitin and pectin or the precursor L-tyrosine at different concentrations for L-DOPA production. Compared to the controls, several-fold increases in L-DOPA concentration were observed in elicitor-treated and precursor-fed suspension cultures of both plant species. L-DOPA concentrations were comparatively higher in precursor-fed cultures than those receiving elicitor treatments. A parallel increase in tyrosinase and PPO levels was also observed. Loss of cell viability was observed at high concentrations of elicitor-treated cultures, whereas L-tyrosine did not cause any cell death. Compared to elicitor treatments, precursor feeding resulted in higher concentrations of L-DOPA production and tyrosinase activity. The efficacy of L-DOPA production was found to be higher for suspension cultures of M. pruriens compared to M. prurita in all treatments.

  17. An S-type anion channel SLAC1 is involved in cryptogein-induced ion fluxes and modulates hypersensitive responses in tobacco BY-2 cells.

    Science.gov (United States)

    Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki

    2013-01-01

    Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.

  18. Stress responses in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Kessmann, H.; Edwards, R.; Dixon, R.A.; Geno, P.W.

    1990-01-01

    The isoflavonoid conjugates medicarpin-3-O-glucoside-6 double-prime-O-malonate (MGM), afrormosin-7-O-glucoside (AG), and afrormosin-7-O-glucoside-6 double-prime-O-malonate (AGM) were isolated and characterized from cell suspension cultures of alfalfa (Medicago sativa L.), where they were the major constitutive secondary metabolites. They were also found in alfalfa roots but not in other parts of the plant. The phytoalexin medicarpin accumulated rapidly in suspension cultured cells treated with elicitor from Colletotrichum lindemuthianum, and this was subsequently accompanied by an increase in the levels of MGM. In contrast, net accumulation of afrormosin conjugates was not affected by elicitor treatment. Labeling studies with [ 14 C]phenylalanine indicated that afrormosin conjugates were the major de novo synthesized isoflavonoid products in unelicited cells. During elicitation, [ 14 C]phenylalanine was incorporated predominantly into medicarpin, although a significant proportion of the newly synthesized medicarpin was also conjugated. Treatment of 14 C-labeled, elicited cells with L-α-aminooxy-β-phenylpropionic acid, a potent inhibitor of PAL activity in vivo, resulted in the initial appearance of labeled medicarpin of very low specific activity, suggesting that the phytoalexin could be released from a preformed conjugate under these conditions. Our data draw attention to the involvement of isoflavone hydroxylases during the constitutive and elicitor-induced accumulation of isoflavonoids and their conjugates in alfalfa cell cultures

  19. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Złotek, Urszula; Świeca, Michał; Jakubczyk, Anna

    2014-04-01

    The study presents changes in the phytochemical levels, antiradical activity and quality of lettuce caused by different chemical elicitors: arachidonic acid (AA), jasmonic acid (JA), and abscisic acid (ABA). The application of 1 μM and 100 μM JA induced an increase in the concentration of phenolic compounds, including flavonoids and phenolic acids. Flavonoid levels were also increased after treatment with 100 μM AA and ABA. Some of the elicitor concentrations used also caused an increase in the levels of other phytochemicals, such as chlorophyll a (1 μM and 100 μM AA, 50 μM ABA); chlorophyll b (100 μM AA); carotenoids (100 μM AA, 1 μM JA and 100 μM ABA) and vitamin C (100 μM AA, 100 μM JA). The highest antiradical activity was noted after treatment with 100 μM AA, 100 μM JA. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging ability was positively and significantly correlated with flavonoid, chlorophyll and carotenoid levels. These results may suggest that the antiradical activity of lettuce was determined not only by phenolics, but also by other bioactive compounds. Elicitation did not change the sensory quality of lettuce. Therefore, treatment with elicitors could be a useful tool for improving the health-promoting qualities of lettuce without the loss of sensory quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects.

    Science.gov (United States)

    Yoshinaga, Naoko

    2016-07-01

    In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant-microbe interaction system. Fatty acid-amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.

  1. Vitamins for enhancing plant resistance.

    Science.gov (United States)

    Boubakri, Hatem; Gargouri, Mahmoud; Mliki, Ahmed; Brini, Faiçal; Chong, Julie; Jbara, Moez

    2016-09-01

    This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors. Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

  2. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise

    2015-02-01

    The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. © 2014 INRA New Phytologist © 2014 New Phytologist Trust.

  3. Chemical and visual sensory systems in feeding behaviour of the Antarctic fish Ophthalmolycus amberensis (Zoarcidae

    Directory of Open Access Journals (Sweden)

    Edith Fanta

    2001-03-01

    Full Text Available The Antarctic eelpout Ophthalmolycus amberensis occurs in Admiralty Bay (King George Island, South Shetlands, at 140-200m depth, where light intensity is low. To assess behavioural and sensory adaptations for feeding under these conditions, laboratory tests were undertaken. Dead krill, fish fillet, and live amphipods were the preferred food items. Feeding responses were mainly induced by chemical stimuli. Visual stimuli were weak elicitors, leading to a long delay in the initiation of feeding behaviour. These fishes present a large olfactory epithelium, a high density of taste buds on the snout and close to the nostrils, and a retina that contained long rods, but no cones. Food selection was observed. Varied types of taste buds were present on the lips and in the oro-pharyngeal cavity. The capacity to use a chemo-sensory system as first elicitor for food detection, either in the absence or presence of light, allows O. amberensis to efficiently exploit different habitats at the sea bottom, in all Antarctic seasons.

  4. Potential biochemical markers for selection of disease resistance in Vigna radiata

    International Nuclear Information System (INIS)

    Badere, R.S.; Koche, D.K.; Choudhary, A.D.; Pawar, S.E.

    2001-01-01

    The Vigna radiata (L.) Wilczek (Green gram), a major pulse crop is prone to damaging diseases caused by Erysiphe polygoni, Cercospora canescens and Rhizoctonia sp. Therefore, the development of multiple resistance is a major breeding objective in green gram. Resistance to powdery mildew has already been developed, however, there are no reports on the development of resistance to Cercospora in green gram. Owing to limitation of conventional screening methods, the improvement for multiple disease resistance is inadequate, in this crop. It needs an efficient and quick selection method, for screening the plant population at an early stage. It is well established that the resistant interaction, in plants, involves accumulation of antibiotic compound phytoalexin (Genestein in Vigna radiata) and induction of enzymes such as β-1,3 gulcanase and Chitinases. These compounds are not only induced by pathogens but also pathogen-derived elicitors. These biochemical compounds can be used as resistance indicative biochemical markers for screening the natural or mutagen induced genetic diversity in populations of Vigna radiata in non-destructive manner. It, however, needs a systematic study of plant defense response. This paper deals with the response of resistant and susceptible cultivars of vigna radiata to Cercospora elicitor and development of non-destructive selection method for disease resistance. (author)

  5. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola.

    Directory of Open Access Journals (Sweden)

    Adrien Gauthier

    Full Text Available Grapevine (Vitis vinifera is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam and its sulfated derivative (PS3 have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola. However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i PS3 was unable to elicit reactive oxygen species (ROS production, cytosolic Ca(2+ concentration variations, mitogen-activated protein kinase (MAPK activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA and jasmonate-(JA-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.

  6. Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge

    DEFF Research Database (Denmark)

    Aslam, Shazia N.; Erbs, Gitte; Morrissey, Kate L.

    2009-01-01

    Triggering of defences by microbes has mainly been investigated using single elicitors or microbe-associated molecular patterns (MAMPs), but MAMPs are released in planta as complex mixtures together with endogenous oligogalacturonan (OGA) elicitor. We investigated the early responses in Arabidops...

  7. Fungitoxicidade, atividade elicitora de fitoalexinas e proteção de alface em sistema de cultivo orgânico contra Sclerotinia sclerotiorum pelo extrato de gengibre Fungitoxicity, phytoalexins elicitor activity and protection of grown against Sclerotinia sclerotiorum by ginger extract

    Directory of Open Access Journals (Sweden)

    Edvirgem Rodrigues

    2007-06-01

    .Sclerotinia sclerotiorum is a soilborne fungus and causes white mold, sclerotinia cottony rot in lettuce (Lactuca sativa and other crops. The control of this disease is very difficult, since that fungus produces resistance structures, the sclerodia. In the search of new methods for disease control, the plant extracts with therapeutical properties arise as a new option. The effect of aqueous crude extract (ACE of ginger (Zingiber officinalis was evaluated in vitro at concentrations of 1, 5, 10, 15, 20 and 25% on S. sclerotiorum mycelial growth and sclerodia production. The efficiency of ginger on the production of lettuce plants was also verified in plants and inoculated with the pathogen. Disease incidence, crop yield and peroxidase activity were analyzed in plant tissue. Water and the resistance inducer agent acibenzolar-S-methyl were used as control. Additionally, the ability of ACE in inducing accumulation of phytoalexins 3-deoxyanthocyanidin and glyceollin was evaluated in sorghum and soybean bioassays, respectively. The results showed the antimicrobial activity of ginger on the inhibition of mycelial growth and sclerodia production. In the lettuce crop, it was observed that the application of ginger mass on the soil close to plants basis increased of peroxidase activity and reduced disease incidence. The presence of elicitor compounds in the ACE was detected by the production of phytoalexins in sorghum and soybean, with dose-dependent responses. These results showed the potential of Z. officinalis on the control of S. sclerotiorum in lettuce that can occur by antimicrobial activity and defense mechanisms induction.

  8. Terpenoids from the Octocoral Sinularia gaweli

    Directory of Open Access Journals (Sweden)

    Wun-Jie Lin

    2015-08-01

    Full Text Available Two eudesmane sesquiterpenoids, verticillatol (1 and 5α-acetoxy-4(14-eudesmene-1β-ol (2 and two cembrane diterpenoids, (–-leptodiol acetate (3 and sinulacembranolide A (4 were isolated from the octocoral Sinularia gaweli and compounds 2–4 are new isolates. The structures of new terpenoids 2–4 were elucidated by spectroscopic methods and by comparison the spectral data with those of known analogues. Terpenoid 4 was found to inhibit the accumulation of the pro-inflammatory inducible nitric oxide synthase (iNOS protein of the lipopolysaccharide (LPS-stimulated RAW264.7 marcophage cells.

  9. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis.

    Science.gov (United States)

    Larroque, Mathieu; Belmas, Elodie; Martinez, Thomas; Vergnes, Sophie; Ladouce, Nathalie; Lafitte, Claude; Gaulin, Elodie; Dumas, Bernard

    2013-09-01

    The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regulator of basal immunity in Arabidopsis, and the production of a reactive oxygen burst mediated by respiratory burst oxidases homologues (RBOH). Screening of a core collection of 48 Arabidopsis ecotypes using CBEL uncovered a large variability in CBEL-induced necrotic responses. Analysis of non-responsive CBEL lines Ws-4, Oy-0, and Bla-1 revealed that Ws-4 and Oy-0 were also impaired in the production of the oxidative burst and expression of defence genes, whereas Bla-1 was partially affected in these responses. Infection tests using two Phytophthora parasitica strains, Pp310 and Ppn0, virulent and avirulent, respectively, on the Col-0 line showed that BAK1 and RBOH mutants were susceptible to Ppn0, suggesting that some immune responses controlled by these genes, but not CBEL-induced cell death, are required for Phytophthora parasitica resistance. However, Ws-4, Oy-0, and Bla-1 lines were not affected in Ppn0 resistance, showing that natural variability in CBEL responsiveness is not correlated to Phytophthora susceptibility. Overall, the results uncover a BAK1- and RBOH-dependent CBEL-triggered immunity essential for Phytophthora resistance and suggest that natural quantitative variation of basal immunity triggered by conserved general elicitors such as CBEL does not correlate to Phytophthora susceptibility.

  10. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  11. Effect of washing on the plasma membrane and on stress reactions of cultured rose cells

    International Nuclear Information System (INIS)

    Qian, Y.C.; Nguyen, T.; Murphy, T.M.

    1993-01-01

    Cultured cells of Rosa damascena have been used as a model for studies of responses of plant cells to various stresses, including UV radiation, protein-synthesis inhibitors, and elicitors from pathogens. Many of the responses involve reactions at the plasma membrane: efflux of K + , changes in the acid balance between cytoplasm and external medium, synthesis of H 2 O 2 , and inhibition of ferricyanide reduction. In previous studies, the cells have typically been washed with a solution of low ionic strength. We now show that this washing procedure results in changes in the protein composition of the plasma membrane, in the labeling of the proteins in the plasma membrane, and in the specific activity of ATPase in purified plasma membrane vesicles. Also, compared to the unwashed cells, the washed cells show less net K + efflux after UV-C and Phytophthora elicitor treatments; more synthesis of H 2 O 2 after UV-C and a pattern of accumulation of H 2 O 2 after elicitor treatment that shows a delayed but higher peak; and more inhibition of ferricyanide reduction after UV-C, but not after elicitor treatment. The results suggest that washing has differential effects on the mechanisms by which cultured plant cells perceive or respond to two stresses, UV-C and elicitor

  12. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  13. Trichothecenes induce accumulation of glucosylceramide in neural cells by interfering with lactosylceramide synthase activity

    International Nuclear Information System (INIS)

    Kralj, Ana; Gurgui, Mihaela; Koenig, Gabriele M.; Echten-Deckert, Gerhild van

    2007-01-01

    Trichothecenes are sesquiterpenoid metabolites produced by several fungal strains that impair human and animal health. Since sphingolipids were connected with fungal toxicity the aim of the present study was to test the influence of fungal metabolites on sphingolipid metabolism in neural cells. The crude extract of fungal strain Spicellum roseum induced accumulation of glucosylceramide (GlcCer), and simultaneous reduction of the formation of lactosylceramide (LacCer) and complex gangliosides in primary cultured neurons. Following a bioassay-guided fractionation of the respective fungal extract we could demonstrate that the two isolated trichothecene derivatives, 8-deoxy-trichothecin (8-dT) and trichodermol (Td-ol) were responsible for this effect. Thus, incubation of primary cultured neurons as well as of neuroblastoma B104 cells for 24 h with 30 μM of either of the two fungal metabolites resulted in uncoupling of sphingolipid biosynthesis at the level of LacCer. For the observed reduction of LacCer synthase activity by about 90% cell integrity was crucial in both cell types. In neuroblastoma cells the amount of LacCer synthase mRNA was reduced in the presence of trichothecenes, whereas in primary cultured neurons this was not the case, suggesting a post-transcriptional mechanism of action in the latter cell type. The data also show that the compounds did not interfere with the translocation of GlcCer in neuroblastoma cells. Collectively, our results demonstrate that trichodermol and 8-deoxy-trichothecin inhibit LacCer synthase activity in a cell-type-specific manner

  14. Hedonic "adaptation"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2008-02-01

    Full Text Available People live in a world in which they are surrounded by potential disgust elicitors such as ``used'' chairs, air, silverware, and money as well as excretory activities. People function in this world by ignoring most of these, by active avoidance, reframing, or adaptation. The issue is particularly striking for professions, such as morticians, surgeons, or sanitation workers, in which there is frequent contact with major disgust elicitors. In this study, we study the ``adaptation'' process to dead bodies as disgust elicitors, by measuring specific types of disgust sensitivity in medical students before and after they have spent a few months dissecting a cadaver. Using the Disgust Scale, we find a significant reduction in disgust responses to death and body envelope violation elicitors, but no significant change in any other specific type of disgust. There is a clear reduction in discomfort at touching a cold dead body, but not in touching a human body which is still warm after death.

  15. The insula is not specifically involved in disgust processing: an fMRI study.

    Science.gov (United States)

    Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D

    2002-11-15

    fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.

  16. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    OpenAIRE

    Gomes, Eriston V.; Ulhoa, Cirano J.; Cardoza, Rosa E.; Silva, Roberto N.; Guti?rrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum stra...

  17. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  18. Chitosan application in maize ( Zea mays ) to counteract the effects ...

    African Journals Online (AJOL)

    There are several strategies for managing the problem, but in the future, people will prefer the cleaner and cheaper technology. The use of elicitors for protection of corn can be considered a cheap and clean technology. Chitosan elicitor is a linear polysaccharide produced commercially by deacetylation of chitin. It has been ...

  19. Transcriptional profile of sweet orange in response to chitosan and salicylic acid.

    Science.gov (United States)

    Coqueiro, Danila Souza Oliveira; de Souza, Alessandra Alves; Takita, Marco Aurélio; Rodrigues, Carolina Munari; Kishi, Luciano Takeshi; Machado, Marcos Antonio

    2015-04-12

    Resistance inducers have been used in annual crops as an alternative for disease control. Wood perennial fruit trees, such as those of the citrus species, are candidates for treatment with resistance inducers, such as salicylic acid (SA) and chitosan (CHI). However, the involved mechanisms in resistance induced by elicitors in citrus are currently few known. In the present manuscript, we report information regarding the transcriptional changes observed in sweet orange in response to exogenous applications of SA and CHI using RNA-seq technology. More genes were induced by SA treatment than by CHI treatment. In total, 1,425 differentially expressed genes (DEGs) were identified following treatment with SA, including the important genes WRKY50, PR2, and PR9, which are known to participate in the salicylic acid signaling pathway, and genes involved in ethylene/Jasmonic acid biosynthesis (ACS12, AP2 domain-containing transcription factor, and OPR3). In addition, SA treatment promoted the induction of a subset of genes involved in several metabolic processes, such as redox states and secondary metabolism, which are associated with biotic stress. For CHI treatment, there were 640 DEGs, many of them involved in secondary metabolism. For both SA and CHI treatments, the auxin pathway genes were repressed, but SA treatment promoted induction in the ethylene and jasmonate acid pathway genes, in addition to repressing the abscisic acid pathway genes. Chitosan treatment altered some hormone metabolism pathways. The DEGs were validated by quantitative Real-Time PCR (qRT-PCR), and the results were consistent with the RNA-seq data, with a high correlation between the two analyses. We expanded the available information regarding induced defense by elicitors in a species of Citrus that is susceptible to various diseases and identified the molecular mechanisms by which this defense might be mediated.

  20. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    Science.gov (United States)

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    Science.gov (United States)

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  2. Utilization of polysaccharides by radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  3. Utilization of polysaccharides by radiation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  4. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  5. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    Science.gov (United States)

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  6. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  7. Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani

    Directory of Open Access Journals (Sweden)

    Suchi eSrivastava

    2016-05-01

    Full Text Available Rhizoctonia solani (RS is a necrotrophic fungi causing sheath blight in rice leading to substantial loss in yield. Excessive and persistent use of preventive chemicals raises human health and environment safety concerns. As an alternative, use of biocontrol agents is highly recommended. In the present study an abiotic stress tolerant, plant growth promoting rhizobacteria Bacillus amyloliquefaciens (SN13 is demonstrated to act as a biocontrol agent and enhance immune response against RS in rice by modulating various physiological, metabolic and molecular functions. A sustained tolerance by SN13 primed plant over a longer period of time, post RS infection may be attributed to several unconventional aspects of the plants’ physiological status. The prolonged stress tolerance observed in presence of SN13 is characterized by (a involvement of bacterial mycolytic enzymes, (b sustained maintenance of elicitors to keep the immune system induced involving non-metabolizable sugars such as turanose besides the known elicitors, (c a delicate balance of ROS and ROS scavengers through production of proline, mannitol and arabitol and rare sugars like fructopyranose, β-d glucopyranose and myoinositol and expression of ferric reductases and hypoxia induced proteins, (d production of metabolites like quinozoline and expression of terpene synthase and (e hormonal cross talk. As the novel aspect of biological control this study highlights the role of rare sugars, maintenance of hypoxic conditions, and sucrose and starch metabolism in Bacillus amyloliquifaciens (SN13 mediated sustained biotic stress tolerance in rice.

  8. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata.

    Science.gov (United States)

    Hettenhausen, Christian; Heinrich, Maria; Baldwin, Ian T; Wu, Jianqiang

    2014-11-28

    Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.

  9. Biochemical Plant Responses to Ozone (IV. Cross-Induction of Defensive Pathways in Parsley (Petroselinum crispum L.) Plants).

    Science.gov (United States)

    Eckey-Kaltenbach, H.; Ernst, D.; Heller, W.; Sandermann, H.

    1994-01-01

    Parsley (Petroselinum crispum L.) is known to respond to ultraviolet irradiation by the synthesis of flavone glycosides, whereas fungal or elicitor stress leads to the synthesis of furanocoumarin phytoalexins. We tested how these defensive pathways are affected by a single ozone treatment (200 nL L-1; 10 h). Assays were performed at the levels of transcripts, for enzyme activities, and for secondary products. The most rapid transcript accumulation was maximal at 3 h, whereas flavone glycosides and furanocoumarins were maximally induced at 12 and 24 h, respectively, after the start of ozone treatment. Ozone acted as a cross-inducer because the two distinct pathways were simultaneously induced. These results are consistent with the previously observed ozone induction of fungal and viral defense reactions in tobacco, spruce, and pine. PMID:12232062

  10. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Directory of Open Access Journals (Sweden)

    Yun Sun Lee

    Full Text Available Aloe vera (Asphodeloideae is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  11. Identification of a Potential ISR Determinant from Pseudomonas aeruginosa PM12 against Fusarium Wilt in Tomato

    Directory of Open Access Journals (Sweden)

    Sabin Fatima

    2017-05-01

    Full Text Available Biocontrol of plant diseases through induction of systemic resistance is an environmental friendly substitute to chemicals in crop protection measures. Different biotic and abiotic elicitors can trigger the plant for induced resistance. Present study was designed to explore the potential of Pseudomonas aeruginosa PM12 in inducing systemic resistance in tomato against Fusarium wilt. Initially the bioactive compound, responsible for ISR, was separated and identified from extracellular filtrate of P. aeruginosa PM12. After that purification and characterization of the bacterial crude extracts was carried out through a series of organic solvents. The fractions exhibiting ISR activity were further divided into sub-fractions through column chromatography. Sub fraction showing maximum ISR activity was subjected to Gas chromatography/mass spectrometry for the identification of compounds. Analytical result showed three compounds in the ISR active sub-fraction viz: 3-hydroxy-5-methoxy benzene methanol (HMB, eugenol and tyrosine. Subsequent bioassays proved that HMB is the potential ISR determinant that significantly ameliorated Fusarium wilt of tomato when applied as soil drench method at the rate of 10 mM. In the next step of this study, GC-MS analysis was performed to detect changes induced in primary and secondary metabolites of tomato plants by the ISR determinant. Plants were treated with HMB and Fusarium oxysporum in different combinations showing intensive re- modulations in defense related pathways. This work concludes that HMB is the potential elicitor involved in dynamic reprogramming of plant pathways which functionally contributes in defense responses. Furthermore the use of biocontrol agents as natural enemies of soil borne pathogens besides enhancing production potential of crop can provide a complementary tactic for sustainable integrated pest management.

  12. Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation.

    Science.gov (United States)

    Lee, Yun Sun; Ju, Hyun Kyoung; Kim, Yeon Jeong; Lim, Tae-Gyu; Uddin, Md Romij; Kim, Yeon Bok; Baek, Jin Hong; Kwon, Sung Won; Lee, Ki Won; Seo, Hak Soo; Park, Sang Un; Yang, Tae-Jin

    2013-01-01

    Aloe vera (Asphodeloideae) is a medicinal plant in which useful secondary metabolites are plentiful. Among the representative secondary metabolites of Aloe vera are the anthraquinones including aloe emodin and chrysophanol, which are tricyclic aromatic quinones synthesized via a plant-specific type III polyketide biosynthesis pathway. However, it is not yet clear which cellular responses can induce the pathway, leading to production of tricyclic aromatic quinones. In this study, we examined the effect of endogenous elicitors on the type III polyketide biosynthesis pathway and identified the metabolic changes induced in elicitor-treated Aloe vera adventitious roots. Salicylic acid, methyl jasmonate, and ethephon were used to treat Aloe vera adventitious roots cultured on MS liquid media with 0.3 mg/L IBA for 35 days. Aloe emodin and chrysophanol were remarkably increased by the SA treatment, more than 10-11 and 5-13 fold as compared with untreated control, respectively. Ultra-performance liquid chromatography-electrospray ionization mass spectrometry analysis identified a total of 37 SA-induced compounds, including aloe emodin and chrysophanol, and 3 of the compounds were tentatively identified as tricyclic aromatic quinones. Transcript accumulation analysis of polyketide synthase genes and gas chromatography mass spectrometry showed that these secondary metabolic changes resulted from increased expression of octaketide synthase genes and decreases in malonyl-CoA, which is the precursor for the tricyclic aromatic quinone biosynthesis pathway. In addition, anti-inflammatory activity was enhanced in extracts of SA-treated adventitious roots. Our results suggest that SA has an important role in activation of the plant specific-type III polyketide biosynthetic pathway, and therefore that the efficacy of Aloe vera as medicinal agent can be improved through SA treatment.

  13. Las defensas inducidas en trigos comerciales

    OpenAIRE

    Càrdenas, David; Giménez, Daniel O.; Castro, Ana María

    2015-01-01

    Las plantas presentan múltiples tipos de estrategias de defensas ante sus patógenos y plagas y frente a estreses ambientales. En muchos casos las defensas constitutivas acarrean costos metabólicos altos que provocan mermas del rendimiento cuando no ocurren en el ciclo de cultivo ataquesde plagas o patógenos. Las defensas inducibles en cambio sólo se activan ante elicitores específicos producidos por la interacción con los agresores bióticos, si bien conllevan gastos energéticos sólo ocurre an...

  14. AJBR 9_1_ 67- 68new

    African Journals Online (AJOL)

    Dr. S.B. OLALEYE

    Indian Institute of Chemical Technology,. Hyderabad 500 007, India. ABSTRACT. Different concentrations of Spilanthes acmella flower head extract were evaluated for .... this, non-volatile sesquiterpenoids and saponins are also reported.

  15. Terpenoids for medicine

    NARCIS (Netherlands)

    Fischedick, Justin

    2013-01-01

    This thesis is concerns research on monoterpenoids, sesquiterpenoids, and diterpenoids with medicinal properties. Terpenoids from commond herbs as well as Cannabis sativa, Inula britannica, Tanacetum parthenium, and Salvia officinalis were investigated

  16. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  17. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.

    Science.gov (United States)

    Gallegos-Monterrosa, Ramses; Kankel, Stefanie; Götze, Sebastian; Barnett, Robert; Stallforth, Pierre; Kovács, Ákos T

    2017-11-15

    In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death. IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they

  18. Antibacterial activities of some constituents from oleo-gum-resin of Commiphora mukul.

    Science.gov (United States)

    Saeed, M Asif; Sabir, A W

    2004-03-01

    The essential oil, chloroform extract and seven sesquiterpenoids compounds newly isolated from the oleo-gum-resin of Commiphora mukul showed a wide range of inhibiting activity against both Gram (+) and Gram (-) bacteria.

  19. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Animals as disgust elicitors

    DEFF Research Database (Denmark)

    Kasperbauer, Tyler Joshua

    2015-01-01

    This paper attempts to explain how and why nonhuman animals elicit disgust in human beings. I argue that animals elicit disgust in two ways. One is by triggering disease–protection mechanisms, and the other is by eliciting mortality salience, or thoughts of death. I discuss how these two types...... of disgust operate and defend their conceptual and theoretical coherence against common objections. I also outline an explanatory challenge for disgust researchers. Both types of disgust indicate that a wide variety of animals produce aversive and avoidant reactions in human beings. This seems somewhat odd......, given the prominence of animals in human lives. The challenge, then, is explaining how humans cope with the presence of animals. I propose, as a hypothesis for further exploration, that we cope with animals, and our disgust responses to them, by attributing mental states that mark them as inferior...

  2. Perspectives de lutte contre les maladies des arbres fruitiers à pépins au moyen de substances naturelles inductrices d'une résistance systémique

    Directory of Open Access Journals (Sweden)

    Lateur M.

    2002-01-01

    Full Text Available Natural compounds used as elicitors of systemic induced resistance offer new prospects to control pome fruit tree diseases. This review presents a new way of plant protection for pome fruit tree diseases as a potential response to the very high use of pesticides in commercial production with the view to reduce their negative side-effects on environment and human health. Work is focused on examples of use of elicitors from natural origin which induce systemic resistance for controlling two important diseases as apple scab (Venturia inaequalis and fire blight (Erwinia amylovora. Many factors limit today their practical use: their efficacy is only partial and in interaction with plants and environment; much work has to be done to improve the formulation and to determine doses and rates of application, the right phenologic application times, and finally they are often submitted to the normal high standards of Plant Protection Products Regulations which are long, very expensive and not adapted to compounds which can have a very complex composition. In other hands, this new way of plant protection presents many potential advantages: using relatively simple, not expensive, non toxic natural compounds with a good image; polyvalent and broad field of action; non-specific and multi-side action which offer a good durability of action; systemic action in the plants during a relative long period of time and the possibility to control difficult bacterial diseases and more surprisingly viral diseases. The multiple advantages presented offer valuable prospects for a better friend-environmentally way to control pome fruit diseases in the next future.

  3. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    Science.gov (United States)

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Structure-Activity Relationship Studies on Derivatives of Eudesmanolides from Inula Helenium as Toxicants against Aedes Aegypti Larvae and Adults

    Science.gov (United States)

    2010-01-01

    bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids ... flavonoids , sesquiterpenoids, and triterpenoids, among others, were CHEMISTRY & BIODIVERSITY – Vol. 7 (2010)1682 Table 1. Larvicidal Activities of Various

  5. Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense.

    Science.gov (United States)

    Rowen, Elizabeth; Gutensohn, Michael; Dudareva, Natalia; Kaplan, Ian

    2017-06-01

    Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure's effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/- MeSA, +/- herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm- damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.

  6. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily

    DEFF Research Database (Denmark)

    Hansen, Nikolaj Lervad; Heskes, Allison Maree; Hamberger, Britta

    2017-01-01

    Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-ep...

  7. Enhancement of β-Glucan Content in the Cultivation of Cauliflower Mushroom (Sparassis latifolia) by Elicitation.

    Science.gov (United States)

    Park, Hyun; Ka, Kang-Hyeon; Ryu, Sung-Ryul

    2014-03-01

    The effectiveness of three kinds of enzymes (chitinase, β-glucuronidase, and lysing enzyme complex), employed as elicitors to enhance the β-glucan content in the sawdust-based cultivation of cauliflower mushroom (Sparassis latifolia), was examined. The elicitors were applied to the cauliflower mushroom after primordium formation, by spraying the enzyme solutions at three different levels on the sawdust-based medium. Mycelial growth was fully accomplished by the treatments, but the metabolic process during the growth of fruiting bodies was affected. The application of a lysing enzyme resulted in an increase in the β-glucan concentration by up to 31% compared to that of the control. However, the treatment resulted in a decrease in mushroom yield, which necessitated the need to evaluate its economic efficiency. Although we still need to develop a more efficient way for using elicitors to enhance functional metabolites in mushroom cultivation, the results indicate that the elicitation technique can be applied in the cultivation of medicinal/edible mushrooms.

  8. The gram-negative sensing receptor PGRP-LC contributes to grooming induction in Drosophila.

    Science.gov (United States)

    Yanagawa, Aya; Neyen, Claudine; Lemaitre, Bruno; Marion-Poll, Frédéric

    2017-01-01

    Behavioral resistance protects insects from microbial infection. However, signals inducing insect hygiene behavior are still relatively unexplored. Our previous study demonstrated that olfactory signals from microbes enhance insect hygiene behavior, and gustatory signals even induce the behavior. In this paper, we postulated a cross-talk between behavioral resistance and innate immunity. To examine this hypothesis, we employed a previously validated behavioral test to examine the function of taste signals in inducing a grooming reflex in decapitated flies. Microbes, which activate different pattern recognition systems upstream of immune pathways, were applied to see if there was any correlation between microbial perception and grooming reflex. To narrow down candidate elicitors, the grooming induction tests were conducted with highly purified bacterial components. Lastly, the role of DAP-type peptidoglycan in grooming induction was confirmed. Our results demonstrate that cleaning behavior can be triggered through recognition of DAP-type PGN by its receptor PGRP-LC.

  9. Sesquiterpenoids and phenolics from Taraxacum hondoense.

    Science.gov (United States)

    Kisiel, Wanda; Michalska, Klaudia

    2005-09-01

    Eleven sesquiterpene lactones, including the new guaianolide 11beta-hydroxydeacetylmatricarin-8-O-beta-glucopyranoside, along with four known phenolic glucosides were isolated from Taraxacum hondoense. The compounds were characterized by spectral methods.

  10. Effect of trichothecene production on the plant defense response and fungal physiology: overexpression of Trichoderma arundinaceum tri4 gene in T. harzianum

    Science.gov (United States)

    Trichothecenes are fungal sesquiterpenoid compounds, the majority of which have phytotoxic activity. They contaminate food and feed stocks, resulting in potential harm to animals and human beings. Trichoderma brevicompactum and T. arundinaceum produce trichodermin and harzianum A (HA), respectively,...

  11. Ligand binding pocket function of drosophila USP is necessary for metamorphosis

    Science.gov (United States)

    The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...

  12. Potency of Gamma ray, Electric Current and Elicitor Application, as a Novel Practical Technique, to Improve Biomass Production and Glycoside Quality for Digitalis purpurea L. Grown in Sandy Soil Irrigated with Brackish Water

    International Nuclear Information System (INIS)

    Bosila, H.A.; Afifi, L.M.A.; Ahmed, T.E.S.

    2012-01-01

    Digitalis purpurea L seeds were treated before sowing with gamma ray (G:0, 2.5, 5, 7.5 KR, and electric current (E:O, 100, 150, 200 mA) then grown in sandy soil irrigated with brackish water (900 ppm) , in splite-splite plot design for 3 replicat (R) at two subsequent seasons , through surface drip irrigation system. Plants at 4- month old and monthly until before flowering were foliar sprayed with MnSO 4 as abiotic elicitor (M :O, 3 ppm). Biomass/ Feddan, percentage of total glycosides and percentage of bioactive glycosides, digitoxin and gitoxin were quantitated. Statistical analysis for the obtained data revealed that G, E and M achieved significant in biomass yield and its quality traits. Moreover, interactions ; GE, GM, EM and GEM achieved synergistic and significant increment for this traits. At such G dose the trait was increased by increasing E dose and M concentration. Hence, G 2.5, 5,7.5 KR E200 mA M3 ppm achieved significant increment, as percent over that of control, in biomass production / Feddan by 22, 29, 32%, total glycoside by 27, 40, 30%, digitoxin 27, 40, 30% for both first and second seasons, respectively. Whereas, increment for gitoxin were 27, 41, 30% at first season and 26, 38, 30% at second season, respectively. Overall, these finding strongly confirm the reliability of GEM as a novel practical technique for overproduction biomass/Fed. and quality improvement bioactive cardiac glycosides, digitoxin and gitoxin in Digitalis purpurea L.

  13. Recent advances in marine drug research

    Digital Repository Service at National Institute of Oceanography (India)

    Vinothkumar, S.; Parameswaran, P.S.

    metabolite, Ikarugamycin was found to be moderately active against A549, HT29, and MDA-MB-231 cancer cell lines (Perez et al. , 2009). A new metabolite cryptosphaerolide (114), an eremophilane-type sesquiterpenoid skeleton esterified to a C11 acid...

  14. Eliciting Patients’ Health Concerns in Consulting Rooms and Wards in Vietnamese Public Hospitals

    Directory of Open Access Journals (Sweden)

    Huong Thi Linh Nguyen

    2018-03-01

    Full Text Available This article examines the doctor’s elicitation of the patient’s presenting health concern in two clinical settings in the Vietnamese public hospital system: the consulting room and the ward. The data were taken from 66 audio-recorded consultations. Our analysis shows that the elicitors used by the doctor in the consulting room often communicate a weak epistemic stance towards the patient’s health issue, while those used in the ward tend to signal a strong epistemic stance. In addition, this contrast between the elicitors employed in the consulting room and the ward is evident in our data regardless of whether the consultation is a first visit or a same follow-up (in which the doctor is the same one that treated the patient on their last visit, though the contrast is less clear for different follow-ups (in which the doctor has not treated the patient before. An additional finding is that the clinical setting has some bearing on the use of inappropriate elicitation formats (in which the doctor opens the visit with an elicitor which is more appropriate for another type of visit. The precise way in which each of the consulting room and the ward operates is, of course, a feature of the Vietnamese public hospital system itself. Hence, the overall contrast between the elicitors and elicitation formats used in these two settings illustrates how, on a more general level, the institutional context can have an impact on doctor-patient communication.

  15. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities.

    Science.gov (United States)

    Ma, Jiang-Hao; Wang, Ying; Liu, Yue; Gao, Su-Yu; Ding, Li-Qin; Zhao, Feng; Chen, Li-Xia; Qiu, Feng

    2015-05-01

    Three new guaiane-type sesquiterpenes named phaeocaulisins K-M (1-3), and one germacrane-type sesquiterpenoid with new ring system of 1,5- and 1,8-ether groups named phagermadiol (4), were isolated from rhizomes of Curcuma phaeocaulis. Their structures were established based on extensive spectroscopic analysis. Compound 1, the first example of norsesquiterpene with tropone backbone, and compound 3 with a novel 1,2-dioxolane sesquiterpene alcohol were isolated from the genus Curcuma. All of the isolated compounds were tested for inhibitory activity against lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compound 3 inhibited NO production with IC50 value of 6.05 ± 0.43 μM. The plausible biosynthetic pathway for compounds 3 and 4 in C. phaeocaulis was also discussed.

  16. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    Science.gov (United States)

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  17. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.

    Science.gov (United States)

    Desgagné-Penix, Isabel; Khan, Morgan F; Schriemer, David C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2010-11-18

    Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates

  18. Heterologous expression of tri5 gene in Trichoderma harzianum: Effect of trichodiene production on Trichoderma environmental interactions

    Science.gov (United States)

    Terpenes form a large class of compounds that have a variety of roles in mediating antagonistic and beneficial interactions among organisms. The trichothecenes are phytotoxic sesquiterpenoid compounds that have been extensively studied, mainly in the genus Fusarium, that can act as virulence factors...

  19. Phytoalexins of the Pyrinae: Biphenyls and dibenzofurans

    Directory of Open Access Journals (Sweden)

    Cornelia Chizzali

    2012-04-01

    Full Text Available Biphenyls and dibenzofurans are the phytoalexins of the Pyrinae, a subtribe of the plant family Rosaceae. The Pyrinae correspond to the long-recognized Maloideae. Economically valuable species of the Pyrinae are apples and pears. Biphenyls and dibenzofurans are formed de novo in response to infection by bacterial and fungal pathogens. The inducible defense compounds were also produced in cell suspension cultures after treatment with biotic and abiotic elicitors. The antimicrobial activity of the phytoalexins was demonstrated. To date, 10 biphenyls and 17 dibenzofurans were isolated from 14 of the 30 Pyrinae genera. The most widely distributed compounds are the biphenyl aucuparin and the dibenzofuran γ-cotonefuran. The biosynthesis of the two classes of defense compounds is not well understood, despite the importance of the fruit crops. More recent studies have revealed simultaneous accumulation of biphenyls and dibenzofurans, suggesting sequential, rather than the previously proposed parallel, biosynthetic pathways. Elicitor-treated cell cultures of Sorbus aucuparia served as a model system for studying phytoalexin metabolism. The key enzyme that forms the carbon skeleton is biphenyl synthase. The starter substrate for this type-III polyketide synthase is benzoyl-CoA. In apples, biphenyl synthase is encoded by a gene family, members of which are differentially regulated. Metabolism of the phytoalexins may provide new tools for designing disease control strategies for fruit trees of the Pyrinae subtribe.

  20. ß-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps.

    NARCIS (Netherlands)

    Mattiacci, L.; Dicke, M.; Posthumus, M.A.

    1995-01-01

    Cabbage plants respond to caterpillar (Pieris brassicae) herbivory by releasing a mixture of volatiles that makes them highly attractive to parasitic wasps (Cotesia glomerata) that attack the herbivores. Cabbage leaves that are artificially damaged and subsequently treated with gut regurgitant of P.

  1. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis.

    Science.gov (United States)

    De Loof, Arnold; De Haes, Wouter; Janssen, Tom; Schoofs, Liliane

    2014-04-01

    In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi

    Science.gov (United States)

    Trichothecenes are phytotoxic sesquiterpenoid compounds of fungal origin which can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in the biosynthesis of HA is the conversion of farnesyl diphosphate t...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Dihydro-ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during ...

  4. Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns

    NARCIS (Netherlands)

    Yang, T.; Stoopen, G.; Yalpani, N.; Vervoort, J.J.M.; Vos, de R.; Voster, A.; Verstappen, F.W.A.; Bouwmeester, H.J.; Jongsma, M.A.

    2011-01-01

    Many terpenoids are known to have antifungal properties and overexpression of these compounds in crops is a potential tool in disease control. In this study, 15 different mono- and sesquiterpenoids were tested in vitro against two major pathogenic fungi of maize (Zea mays), Colletotrichum

  5. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.

    Science.gov (United States)

    Baccelli, Ivan; Lombardi, Lara; Luti, Simone; Bernardi, Rodolfo; Picciarelli, Piero; Scala, Aniello; Pazzagli, Luigia

    2014-01-01

    Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

  6. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Ivan Baccelli

    Full Text Available Microbe-associated molecular patterns (MAMPs lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP family seem to possess these features. Cerato-platanin (CP is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.. On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA- and ethylene (ET-signalling pathways, but not the jasmonic acid (JA-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

  7. New Gallotannin and other Phytochemicals from Sycamore Maple (Acer pseudoplatanus) Leaves.

    Science.gov (United States)

    Zhang, Lu; Tu, Zong-cai; Yuan, Tao; Ma, Hang; Niesen, Daniel B; Wang, Hui; Seeram, Navindra P

    2015-11-01

    The maple (Acer) genus is a reported source of bioactive (poly)phenols, including gallotannins, but several of its members, such as the sycamore maple (A. pseudoplatanus), remain uninvestigated. Herein, thirty-nine compounds, including a new gallotannin, 1,2,3-tri-O-galloyl-6-O-(p-hydroxybenzoyl)-β-D- glucopyranoside (1), and thirty-eight (2-39) known compounds, consisting of four gallotannins, one ellagitannin, thirteen flavonoids, eight hydroxycinnamic acids, ten benzoic acid derivatives, and two sesquiterpenoids, were isolated from sycamore maple leaves. Their structures were determined based on NMR and mass spectral analyses. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Among the isolates, the gallotannins were the most potent α-glucosidase inhibitors with thirteen-fold more potent activity compared with the clinical drug, acarbose (IC50 = 16-31 vs. 218 µM). Similarly, the gallotannins showed the highest antioxidant activities, followed by the other phenolic sub-classes, while the sesquiterpenoids were inactive.

  8. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  9. The effect of isabelin, a sesquiterpene lactone from Ambrosia artemisiifolia on soil microorganisms and human pathogens

    NARCIS (Netherlands)

    Molinaro, F.; Tyc, O.; Beekwilder, J.; Cankar, Katarina; Bertea, C.M.; Negre, M.; Garbeva, P.V.

    2018-01-01

    Ambrosia artemisiifolia L. (common ragweed) is an invasive weed, well-known for the strong allergenic effect of its pollen, as well as for its invasiveness and impact in crop fields (e.g. causing yield losses). This species produces a broad range of sesquiterpenoids. In recent years, new bioactive

  10. Accumulation of cell wall-bound phenolic metabolites and their upliftment in hairy root cultures of tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Mandal, Sudhamoy; Mitra, Adinpunya

    2008-07-01

    Alkaline hydrolysis of cell wall material of tomato hairy roots yielded ferulic acid as the major phenolic compound. Other phenolics were 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin and 4-coumaric acid. The content of phenolics was much higher at the early stage of hairy root growth. The ferulic acid content decreased up to 30 days and then sharply increased to 360 microg/g at 60 days of growth. Elicitation of hairy root cultures with Fusarium mat extract (FME) increased ferulic acid content 4-fold after 24 h. As the pathogen-derived elicitors have specific receptors in plants, FME may thus be used for inducing resistance against Fusarium oxysporum f. sp. lycopersici.

  11. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling

    Science.gov (United States)

    Padmanabhan, Meenu S; Dinesh-Kumar, Savithramma P

    2014-01-01

    Plant innate immune response against viruses utilizes intracellular Nucleotide Binding domain Leucine Rich Repeat (NLR) class of receptors. NLRs recognize different viral proteins termed elicitors and initiate diverse signaling processes that induce programmed cell death (PCD) in infected cells and restrict virus spread. In this review we describe the recent advances made in the study of plant NLRs that detect viruses. We describe some of the physical and functional interactions these NLRs undertake. We elaborate on the intra-molecular and homotypic association of NLRs that function in self-regulation and activation. Nuclear role for some viral NLRs is discussed as well as the emerging importance of the RNAi pathway in regulating the NLR family. PMID:24906192

  12. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    Science.gov (United States)

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  13. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth

    Science.gov (United States)

    Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoids harzianum A (HA) and botrydial (BOT), respectively. Ta'Tri5, an HA non-producer mutant, produces high levels of the polyketide compounds aspinolides (Asp) B and C. We analyzed the role of HA and Asp in the B. ...

  14. Highly Efficient Synthesis of the Natural Spiro-Terpenoid ( ± )-Andirolactone via RCM Reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; YANG Li-Ting; LIU Hua-Wei; LI Yu-Lin

    2003-01-01

    @@ Andirolactone 1 as the dextro enantiomer is a sesquiterpenoid with structure of spirocyclic butenolide, isolated from the wood of cedar ( Cedrus libanotica ), which is a needle-leaf tree that grows in southern Turkey and Libanon.The tar, which is obtained from its wood, is used to cure various diseases. [1

  15. Irritant potential of some constituents from oleo-gum-resin of Commiphora myrrha.

    Science.gov (United States)

    Saeed, M Asif; Sabir, A W

    2004-01-01

    The irritant potentials of essential oil and seven sesquiterpenoids compounds newly isolated from the oleo-gum-resin of Commiphora myrrha were investigated by open mouse ear assay. The essential oil, curzerenone, furanodiene-6-one and furanoeudesma-1,3-diene showed potent and persistent irritant effects while others possess least irritant potentials.

  16. Allelochemical, Eudesmane-Type Sesquiterpenoids from Inula falconeri

    Directory of Open Access Journals (Sweden)

    Kazuo N. Watanabe

    2010-03-01

    Full Text Available We have identified through bioassay guided isolation an allelochemical, eudesmane-type sesquiterpeniod, 3β-caffeoxyl-β1,8α-dihydroxyeudesm-4(15-ene(1,from an endemic plant species growing in the Himalayas. In our search for the bioactive subfraction, the hexane one was highly significant, showing 100% inhibition of lettuce seed growth at 100 ppm while other subfractions (chloroform, ethyl acetate, butanol and water exhibited inhibitory to stimulatory allelopathic effects. The bioactive hexane subfraction was subjected to chromatographic techniques, using lettuce seeds (Lactuca sativa as indicator species to reveal the bioactive allelopathic fraction. This resulted in the isolation of compound 1, whose structure was elucidated through NMR techniques. The compound presented 92.34% inhibitory effect on the growth of lettuce at 500 ppm. Further field level experiments may help develop an environmentally friendly herbicide from this lead.

  17. Further sesquiterpenoids and phenolics from Taraxacum officinale.

    Science.gov (United States)

    Kisiel, W; Barszcz, B

    2000-06-01

    Five germacrane- and guaiane-type sesquiterpene lactones, including two previously described taraxinic acid derivatives, were isolated from the roots of Taraxacum officinale, together with benzyl glucoside, dihydroconiferin, syringin and dihydrosyringin. The other three lactones were identified as 11beta, 13-dihydrolactucin, ixerin D and ainslioside. Moreover, the stereochemistry at C-11 in dihydrotaraxinic acid was assigned.

  18. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.

    Science.gov (United States)

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

  19. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  20. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshu, F.

    1999-01-01

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  1. Quality Control of Valerianae Radix by Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Arth, Katharina; Klatte-Asselmeyer, Valerie; Bressler, Sabine; Saukel, Johannes; Reznicek, Gottfried; Dobeš, Christoph

    2018-04-01

    (Acetoxy-)valerenic acid and total essential oil content are important quality attributes of pharmacy grade valerian root (Valerianae radix). Traditional analysis of these quantities is time-consuming and necessitates (harmful) solvents. Here we investigated an application of attenuated total reflection Fourier transform infrared spectroscopy for extractionless analysis of these quality attributes on a representative sample comprising 260 wild-crafted individuals covering the Central European taxonomic diversity of the Valeriana officinalis L. s. l. species aggregate with its three major ploidy cytotypes (i.e., di-, tetra- and octoploid). Calibration models were built by orthogonal partial least squares regression for quantitative analysis of (acetoxy-)valerenic acid and total essential oil content. For the latter, we propose a simplistic protocol involving apolar extraction followed by gas chromatography as a reference method for multivariate calibration in order to handle the analysis of samples taken from individual plants. We found good predictive ability of chemometric models for quantification of valerenic acid, acetoxyvalerenic acid, total sesquiterpenoid acid, and essential oil content with a root mean squared error of cross-validation of 0.064, 0.043, and 0.09 and root mean squared error of prediction of 0.066, 0.057, and 0.09 (% content), respectively. Orthogonal partial least squares discriminant analysis revealed good discriminability between the most productive phenotype (i.e., the octoploid cytotype) in terms of sesquiterpenoid acids, and the less productive ones (i.e., di- and tetraploid). All in all, our results demonstrate the application of attenuated total reflection Fourier transform infrared spectroscopy for rapid, extractionless estimation of the most important quality attributes of valerian root and minimally invasive identification of the most productive phenotype in terms of sesquiterpenoid acids. Georg Thieme Verlag KG Stuttgart · New

  2. New megastigmane glycoside and aromadendrane derivative from the aerial part of Piper elongatum.

    Science.gov (United States)

    Masuoka, Chikako; Ono, Masateru; Ito, Yasuyuki; Okawa, Masafumi; Nohara, Toshihiro

    2002-10-01

    A new megastigmane glycoside, called pipeloside A, and a new aromadendrane type sesquiterpenoid, pipelol A, were isolated from the MeOH extract of the aerial part of Piper elongatum VAHL. along with a known megastigmane glycoside, byzantionoside B. The structures of these compounds were elucidated on the basis of spectroscopic data and chemical evidence.

  3. The intensely sweet herb, Lippia dulcis Trev.: historical uses, field inquiries, and constituents.

    Science.gov (United States)

    Compadre, C M; Robbins, E F; Kinghorn, A D

    1986-01-01

    Lippia dulcis Trev. (Verbenaceae) is the source of hernandulcin, the first known intensely sweet sesquiterpenoid, a compound which is a volatile oil constituent. The literature on the uses of this species, dating back to early colonial times in Mexico, has been examined. This plant began to be used as an official drug in the late 19th century for the treatment of coughs and bronchitis, and at that time preliminary phytochemical investigations were undertaken. Field work carried out in Mexico in 1981 and 1982 has indicated that there is still an active trade involving L. dulcis, which is sold primarily in market places for its alleged abortifacient activity. We have obtained no evidence, either from the literature or from field inquiries, that L. dulcis has ever been used for sweetening foods or beverages. Fourteen L. dulcis volatile oil constituents, mainly mono- and sesquiterpenoids, were identified by gas chromatography/mass spectrometry. The toxic compound, camphor, was found to constitute 53% w/w of the volatile oil of this species. The potential use of L. dulcis for the extraction of hernandulcin is discussed.

  4. Terpenoid Compositions and Botanical Origins of Late Cretaceous and Miocene Amber from China

    Science.gov (United States)

    Shi, Gongle; Dutta, Suryendu; Paul, Swagata; Wang, Bo; Jacques, Frédéric M. B.

    2014-01-01

    The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS) to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia. PMID:25354364

  5. Biologically Important Eremophilane Sesquiterpenes from Alaska Cedar Heartwood Essential Oil and Their Semi-Synthetic Derivatives

    Directory of Open Access Journals (Sweden)

    Joe J. Karchesy

    2011-06-01

    Full Text Available The essential oil of Alaska cedar heartwood is known to contain compounds which contribute to the remarkable durability of this species. While previous research has identified several compounds, a complete description of this oil has not been undertaken. In this research a profile of the oil is given in which the major components are identified by GC, isolation and spectroscopic techniques. The major components of the steam distilled essential oil were identified as nootkatin, nootkatone, valencene, nootaktene, carvacrol, methyl carvacrol, nootkatol (2, and eremophil-1(10,11-dien-13-ol (3. The last two compounds were isolated for the first time from Alaska cedar in this research. The absolute stereochemistry at C-2 of nootkatol was shown to have the (S configuration using the Mosher ester method. Assignment of stereochemistry for valencene-13-ol (3 was established by synthesis from valencene (6. Finally, two related sesquiterpenoids were synthesized from nootkatone and valencene. These sesquiterpenoids were nootkatone-1,10-11,12-diepoxide (5 and valencene-13-aldehyde (4, respectively.

  6. Biologically important eremophilane sesquiterpenes from alaska cedar heartwood essential oil and their semi-synthetic derivatives.

    Science.gov (United States)

    Khasawneh, Mohammad A; Xiong, Yeping; Peralta-Cruz, Javier; Karchesy, Joe J

    2011-06-08

    The essential oil of Alaska cedar heartwood is known to contain compounds which contribute to the remarkable durability of this species. While previous research has identified several compounds, a complete description of this oil has not been undertaken. In this research a profile of the oil is given in which the major components are identified by GC, isolation and spectroscopic techniques. The major components of the steam distilled essential oil were identified as nootkatin, nootkatone, valencene, nootaktene, carvacrol, methyl carvacrol, nootkatol (2), and eremophil-1(10),11-dien-13-ol (3). The last two compounds were isolated for the first time from Alaska cedar in this research. The absolute stereochemistry at C-2 of nootkatol was shown to have the (S) configuration using the Mosher ester method. Assignment of stereochemistry for valencene-13-ol (3) was established by synthesis from valencene (6). Finally, two related sesquiterpenoids were synthesized from nootkatone and valencene. These sesquiterpenoids were nootkatone-1,10-11,12-diepoxide (5) and valencene-13-aldehyde (4), respectively.

  7. The effects of cellulase on capsaicin production in freely suspended cells and immobilized cell cultures of capsicum annuum

    International Nuclear Information System (INIS)

    Islek, C.

    2014-01-01

    The effect of different concentrations of cellulase on the production of capsaicin in freely suspended cell and immobilized cell cultures of Kahramanmara pepper seeds (Capsicum annuum L.) were studied. Calluses were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from these calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using cell suspensions. Elicitor such as cellulase (5-30 micro g/ml), was applied both for the free and immobilized cell suspensions and control group without elicitor was prepared. The concentration of capsaicin in freely suspended cells, immobilized cells and their filtrates were identified by HPLC after extraction with ethyl acetate. It was found that the immobilization process had an increasing effect on the capsaicin accumulation. The concentration of capsaicin in the immobilized cells for both control groups and elicitor added samples was higher than the free cells. In general, capsaicin concentration in the filtrate for free cells was higher than the immobilized cells. When all the cellulase and the sampling hours were compared, the highest capsaicin concentration for the immobilized cells was determined as 362,91 micro g/ml f.w. at the 24th hour for 30 micro g/ml cellulase applied samples. (author)

  8. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice.

    Science.gov (United States)

    Chiu, Chai Hao; Choi, Jeongmin; Paszkowski, Uta

    2018-01-01

    Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Elicitation Based Enhancement of Secondary Metabolites in Rauwolfia serpentina and Solanum khasianum Hairy Root Cultures.

    Science.gov (United States)

    Srivastava, Mrinalini; Sharma, Swati; Misra, Pratibha

    2016-05-01

    Rauwolfia serpentina and Solanum khasianum are well-known medicinally important plants contained important alkaloids in their different parts. Elicitation of these alkaloids is important because of associated pharmaceutical properties. Targeted metabolites were ajmaline and ajmalicine in R. serpentina; solasodine and α-solanine in S. khasianum. Enhancement of secondary metabolites through biotic and abiotic elicitors in hairy root cultures of R. serpentina and S. khasianum. In this report, hairy root cultures of these two plants were established through Agrobacterium rhizogenes mediated transformation by optimizing various parameters as age of explants, duration of preculture, and co-cultivation period. NaCl was used as abiotic elicitors in these two plants. Cellulase from Aspergillus niger was used as biotic elicitor in S. khasianum and mannan from Saccharomyces cerevisiae was used in R. serpentina. First time we have reported the effect of biotic and abiotic elicitors on the production of important metabolites in hairy root cultures of these two plants. Ajmalicine production was stimulated up to 14.8-fold at 100 mM concentration of NaCl after 1 week of treatment. Ajmaline concentration was also increased 2.9-fold at 100 mg/l dose of mannan after 1 week. Solasodine content was enhanced up to 4.0-fold and 3.6-fold at 100 mM and 200 mM NaCl, respectively, after 6 days of treatments. This study explored the potential of the elicitation strategy in A. rhizogenes transformed cell cultures and this potential further used for commercial production of these pharmaceutically important secondary metabolites. Hairy roots of Rauwolfia serpentina were subjected to salt (abiotic stress) and mannan (biotic stress) treatment for 1 week. Ajmaline and ajmalicine secondary metabolites were quantified before and after stress treatmentAjmalicine yield was enhanced up to 14.8-fold at 100 mM concentration of NaCl. Ajmaline content was also stimulated 2.9-fold at 100 mg/l dose of mannan

  10. Novel Synthesis of 1-Oxo-10-epi-α-cyperone

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-Chun; ZHENG Guo-Jun; FANG Li-Jing; LI Yu-Lin

    2003-01-01

    @@ In the sesquiterpenic family, β-dihydroagarofuran and a large number of eudesmanes have an oxygenated func tional group at C1. [1] Although considerable efforts have been devoted to the total synthesis of eudesmane β-dihydroagarofuran and some germacrane sesquiterpenoids starting from the corresponding eudesmane over the pastdecades, the introduction of C1 oxygenated functional group still represents significant challenge.

  11. Essential oil from leaves of Lippia dulcis grown in Colombia.

    Science.gov (United States)

    Moreno-Murillo, Bárbara; Quijano-Célis, Clara; Romero, Arturo R; Pino, Jorge A

    2010-04-01

    The chemical composition of the volatile compounds from the leaves of Lippia dulcis Trev. (Verbenaceae) from Colombia was studied by GC and GC/MS. Forty volatile compounds were identified, of which the major ones were alpha-copaene (18.0%), beta-caryophyllene (17.8%), and delta-cadinene (14.7%). The sweet bisabolane sesquiterpenoid, hernandulcin, formed only 1.1% of the leaf oil.

  12. Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor.

    NARCIS (Netherlands)

    Dicke, M.; Baarlen, van P.; Wessels, R.; Dijkman, H.

    1993-01-01

    It was previously shown that in response to infestation by spider mites (Tetranychus urticae), lima bean plants produce a volatile herbivoreinduced synomone that attracts phytoseiid mites (Phytoseiulus persimilis) that are predators of the spider mites. The production of predator-attracting

  13. Enhanced Mulberroside A Production from Cell Suspension and Root Cultures of Morus alba Using Elicitation.

    Science.gov (United States)

    Komaikul, Jukrapun; Kitisripanya, Tharita; Tanaka, Hiroyuki; Sritularak, Boonchoo; Putalun, Waraporn

    2015-07-01

    Morus alba L. has been used in Asian traditional medicine as an anti-inflammatory, anti-asthmatic, anthelmintic and as a whitening agent in cosmetic products. Mulberroside A is the major active compound from M. alba root bark. In this study, cell suspension and root cultures of M. alba were established, and the effect of the elicitors on the enhancement of mulberroside A production in M. alba was investigated. The cell suspension and root cultures of M. alba were exposed to elicitors and then mulberroside A contents were determined by an indirect competitive ELISA method. High levels of mulberroside A were obtained by addition of 100 and 200 μM salicylic acid with 24 h exposure time in cell suspension cultures (37.9 ± 1.5 and 34.0 ± 4.7 mg/g dry wt., respectively). Furthermore, addition of yeast extract at 2 mg/mL with 24 h exposure time can significantly increase mulberroside A contents from both cell suspension (3.2-fold) and root cultures (6.6-fold). Mulberroside A contents from both cell suspension and root cultures after treatment with elicitors are similar or higher than those found in the intact root and root bark of several years old M. alba. These results indicate that mulberry tissue cultures using the elicitation method are interesting alternative sources for mulberroside A production.

  14. Assessment of the sensitizing potential of processed peanut proteins in Brown Norway rats: roasting does not enhance allergenicity.

    Directory of Open Access Journals (Sweden)

    Stine Kroghsbo

    Full Text Available BACKGROUND: IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. OBJECTIVES: The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. METHODS: Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-, heated (H- or heat glycated (G-Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL cell assay. RESULTS: In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. CONCLUSIONS: Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose.

  15. Sesquiterpenoids and phenolics from roots of Taraxacum udum.

    Science.gov (United States)

    Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda

    2010-07-01

    From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  17. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation.

    Science.gov (United States)

    Ma, Chunquan; Zhou, Dong; Wang, Haitao; Han, Dongming; Wang, Yang; Yan, Xiufeng

    2017-01-01

    Plant cell suspension cultures have emerged as a potential source of secondary metabolites for food additives and pharmaceuticals. In this study inulin accumulation and its degree of polymerisation (DP) in the treated cells in the same medium were investigated after treatment with six types of elicitors. An in vitro cell suspension culture of Jerusalem artichoke (Helianthus tuberosus L.) was optimised by adding an extra nitrogen source. According to the growth kinetics, a maximum biomass of 5.48 g L -1 was obtained from the optimal cell suspension medium consisted of Murashige and Skoog basic medium (MS) + 1.0 mg L -1 α-naphthalene acetic acid (NAA) + 1.0 mg L -1 6-benzylaminopurine (6-BA) + 0.5 mg L -1 proline + 1.0 mg L -1 glutamine. Methyl jasmonate (MeJA, 250 µmol L -1 ) treatment for 15 days led to the highest levels of inulin (2955.27 ± 9.81 mg L -1 compared to control of 1217.46 ± 0.26 mg L -1 ). The elicited effect of five elicitors to the suspension cells of Jerusalem artichoke is as follows: AgNO 3 (Ag, 10 µmol L -1 ), salicylic acid (SA, 75 µmol L -1 ), chitosan (KJT, 40 mg L -1 ), Trichoderma viride (Tv, 90 mg L -1 ), yeast extract (YE, 0.25 mg L -1 ), and the corresponding content of inulin is increased by 2.05-, 1.93-, 1.76-, 1.44- and 1.18-fold compared to control, respectively. The obvious effect on the percentage of lower DP in inulin was observed in cells treated with 40 mg L -1 KJT, 0.25 mg L -1 YE and 10 µmol L -1 Ag. Among the six types of elicitors, the descending order of inulin content is MeJA > Ag > SA > KJT > Tv > YE. For the purpose inulin with lower DP and its application to prebiotic food, three elicitors, including KJT, YE and Ag, can be used for the elicitation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  19. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  20. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains

    Science.gov (United States)

    Martin, Diane M.; Toub, Omid; Chiang, Angela; Lo, Bernard C.; Ohse, Sebastian; Lund, Steven T.; Bohlmann, Jörg

    2009-01-01

    Terpenoid volatiles are important information molecules that enable pollinators to locate flowers and may protect reproductive tissues against pathogens or herbivores. Inflorescences of grapevine (Vitis vinifera L.) are composed of tiny green flowers that produce an abundance of sesquiterpenoid volatiles. We demonstrate that male flower parts of grapevines are responsible for sesquiterpenoid floral scent formation. We describe temporal and spatial patterns of biosynthesis and release of floral volatiles throughout the blooming of V. vinifera L. cv. Cabernet Sauvignon. The biosynthesis of sesquiterpene volatiles, which are emitted with a light-dependent diurnal pattern early in the morning at prebloom and bloom, is localized to anthers and, more specifically, within the developing pollen grains. Valencene synthase (VvValCS) enzyme activity, which produces the major sesquiterpene volatiles of grapevine flowers, is present in anthers. VvValCS transcripts are most abundant in flowers at prebloom stages. Western blot analysis identified VvValCS protein in anthers, and in situ immunolabeling located VvValCS protein in pollen grains during bloom. Histochemical staining, as well as immunolabeling analysis by fluorescent microscopy and transmission electron microscopy, indicated that VvValCS localizes close to lipid bodies within the maturing microspore. PMID:19359488

  1. Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells.

    Science.gov (United States)

    Ishida, Takashi

    2005-05-01

    This review article summarizes our knowledge of the metabolism of mono- and sesquiterpenoids in mammals, microorganisms, cloned-insect enzymes, and plant-cultured cells. A number of unusual enzymatic reactions and products are reported such as the stereoselective formation of primary alcohols from sterically congested Me2C groups. Such enzymatic processes, including unknown chemical transformations under abiotic conditions, could lead to the discovery of new chemical reactions and might be helpful in the design of new drugs. The transformations of the following mono- and sesquiterpenoids (in alphabetical order) are discussed: (+)-(1R)-aromadendrene (61), (-)-allo-aromadendrene (62), (+/-)-camphene (21), (-)-cis-carane (20), (+)-3-carene (17), (+/-)-carvone (27), (-)-beta-caryophyllene (43), (+)-cedrol (35), cuminaldehyde (25), (+)-curdione (69), (-)-cyclocolorenone (60), (-)-elemol (51), (2E,6E)-farnesol (31), germacrone (67), ginsenol (40), (-)-globulol (63), isoprobotryan-9alpha-ol (82a), juvenile hormone III (33), (+)-ledol (65), (+)-longifolene (46), myrcene (3), (-)-myrtenal (23), (+)-nootkatone (48), patchouli alcohol (37), (-)-perillaldehyde (24), (-)-alpha- and beta-pinene (8 and 9), alpha-santalol (28), (-)-6beta-santonin (83a), 6beta-tetrahydrosantonin (83b), beta-selinene (57), alpha-thujone (26a), beta-thujone (26b), T-2 toxin (87), and valerianol (53).

  2. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Matsuhashi, S.

    2000-01-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48 V and 62 Zn. (author)

  3. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    Science.gov (United States)

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  4. Cadmium Disrupts Subcellular Organelles, Including Chloroplasts, Resulting in Melatonin Induction in Plants

    Directory of Open Access Journals (Sweden)

    Hyoung-Yool Lee

    2017-10-01

    Full Text Available Cadmium is a well-known elicitor of melatonin synthesis in plants, including rice. However, the mechanisms by which cadmium induces melatonin induction remain elusive. To investigate whether cadmium influences physical integrities in subcellular organelles, we treated tobacco leaves with either CdCl2 or AlCl3 and monitored the structures of subcellular organelles—such as chloroplasts, mitochondria, and the endoplasmic reticulum (ER—using confocal microscopic analysis. Unlike AlCl3 treatment, CdCl2 (0.5 mM treatment significantly disrupted chloroplasts, mitochondria, and ER. In theory, the disruption of chloroplasts enabled chloroplast-expressed serotonin N-acetyltransferase (SNAT to encounter serotonin in the cytoplasm, leading to the synthesis of N-acetylserotonin followed by melatonin synthesis. In fact, the disruption of chloroplasts by cadmium, not by aluminum, gave rise to a huge induction of melatonin in rice leaves, which suggests that cadmium-treated chloroplast disruption plays an important role in inducing melatonin in plants by removing physical barriers, such as chloroplast double membranes, allowing SNAT to gain access to the serotonin substrate enriched in the cytoplasm.

  5. Revelation and cloning of valinomycin synthetase genes in Streptomyces lavendulae ACR-DA1 and their expression analysis under different fermentation and elicitation conditions.

    Science.gov (United States)

    Sharma, Richa; Jamwal, Vijaylakshmi; Singh, Varun P; Wazir, Priya; Awasthi, Praveen; Singh, Deepika; Vishwakarma, Ram A; Gandhi, Sumit G; Chaubey, Asha

    2017-07-10

    Streptomyces species are amongst the most exploited microorganisms due to their ability to produce a plethora of secondary metabolites with bioactive potential, including several well known drugs. They are endowed with immense unexplored potential and substantial efforts are required for their isolation as well as characterization for their bioactive potential. Unexplored niches and extreme environments are host to diverse microbial species. In this study, we report Streptomyces lavendulae ACR-DA1, isolated from extreme cold deserts of the North Western Himalayas, which produces a macrolactone antibiotic, valinomycin. Valinomycin is a K + ionophoric non-ribosomal cyclodepsipeptide with a broad range of bioactivities including antibacterial, antifungal, antiviral and cytotoxic/anticancer activities. Production of valinomycin by the strain S. lavendulae ACR-DA1 was studied under different fermentation conditions like fermentation medium, temperature and addition of biosynthetic precursors. Synthetic medium at 10°C in the presence of precursors i.e. valine and pyruvate showed enhanced valinomycin production. In order to assess the impact of various elicitors, expression of the two genes viz. vlm1 and vlm2 that encode components of heterodimeric valinomycin synthetase, was analyzed using RT-PCR and correlated with quantity of valinomycin using LC-MS/MS. Annelid, bacterial and yeast elicitors increased valinomycin production whereas addition of fungal and plant elicitors down regulated the biosynthetic genes and reduced valinomycin production. This study is also the first report of valinomycin biosynthesis by Streptomyces lavendulae. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    Science.gov (United States)

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  7. Methyl jasmonate-induction of cotton: a field test of the “attract and reward” strategy of conservation biological control

    Science.gov (United States)

    Natural or synthetic elicitors can affect plant physiology by stimulating direct and indirect defense responses to herbivores. For example, increased production of plant secondary metabolites, a direct response, can negatively impact herbivore survival, development, and fecundity. Indirect respons...

  8. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  9. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Xanthanolides and xanthane epoxide derivatives from Xanthium strumarium.

    Science.gov (United States)

    Mahmoud, A A

    1998-12-01

    From the aerial parts of Xanthium strumarium, three new xanthanolide and xanthane-type sesquiterpenoids, 11alpha,13-dihydroxanthatin, 4beta,5beta-epoxyxanthatin-1alpha,4alpha-endoperoxide, and 1beta,4beta,4alpha,5alpha-diepoxyxanth-11(13)-en-12-oic acid have been isolated, together with seven known compounds. The structures were determined by spectroscopic methods, particularly high resolution 1D, 2D NMR spectroscopy and NOE experiments.

  11. Three new diterpenoids from the fruit of Vitex agnus-castus.

    Science.gov (United States)

    Ono, Masateru; Nagasawa, Yumiko; Ikeda, Tsuyoshi; Tsuchihashi, Ryota; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2009-10-01

    Three new labdane-type diterpenoids, viteagnusins F, G, and H, were isolated from the hexane extract of fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with seven known compounds including four labdane-type diterpenoids, one norlabdane-type diterpenoid, one aromadendrane-type sesquiterpenoid, and one flavonoid. The chemical structures of the three new labdane-type diterpenoids were determined on the basis of spectroscopic data as well as chemical evidence.

  12. Microbial transformation of sesquitepenoid ketone, (+) Nootkatone by Macrophomia phaseolina

    OpenAIRE

    Vajira P. Bulugahapitiya; Syed Ghulam Musharaff

    2009-01-01

    Microbial transformation is an effective tool for the structural modification of bioactive natural and synthetic compounds leading to synthesis of more potent derivatives. Its application in asymmetric synthesis is increasing due to its versatility and ease. This article presents biotransformation of sesquiterpenoid ketone, (+)-Nootkatone (1) by M. phaseolina, a plant pathogenic fungus. The transformation afforded four main compounds. They were determined to be 1:6 stereoisomeric mixture of 1...

  13. Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits.

    Science.gov (United States)

    Asakawa, Y; Ishida, T; Toyota, M; Takemoto, T

    1986-08-01

    The metabolism of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid was studied in rabbits. Each of these sesquiterpenoids was converted to primary, secondary or tertiary alcohols, among which the primary alcohol was predominant. A vinylic methyl group and an exomethylene group were easily hydroxylated and converted to a glycol via an epoxide in many cases. Eight new metabolites were determined by chemical and spectroscopic methods.

  14. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease

    NARCIS (Netherlands)

    Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J.

    2012-01-01

    Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes

  15. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    Science.gov (United States)

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  16. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis

    KAUST Repository

    Liu, Peng; Zhang, Huoming; Yu, Boying; Xiong, Liming; Xia, Yiji

    2015-01-01

    in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional

  17. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph

    2017-01-01

    BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors...

  18. Volatile compounds in cryptic species of the Aneura pinguis complex and Aneura maxima (Marchantiophyta, Metzgeriidae).

    Science.gov (United States)

    Wawrzyniak, Rafał; Wasiak, Wiesław; Bączkiewicz, Alina; Buczkowska, Katarzyna

    2014-09-01

    Aneura pinguis is one of the liverwort species complexes that consist of several cryptic species. Ten samples collected from different regions in Poland are in the focus of our research. Eight of the A. pinguis complex belonging to four cryptic species (A, B, C, E) and two samples of closely related species Aneura maxima were tested for the composition of volatile compounds. The HS-SPME technique coupled to GC/FID and GC/MS analysis has been applied. The fiber coated with DVB/CAR/PDMS has been used. The results of the present study, revealed the qualitative and quantitative differences in the composition of the volatile compounds between the studied species. Mainly they are from the group of sesquiterpenoids, oxygenated sesquiterpenoids and aliphatic hydrocarbons. The statistical methods (CA and PCA) showed that detected volatile compounds allow to distinguish cryptic species of A. pinguis. All examined cryptic species of the A. pinguis complex differ from A. maxima. Species A and E of A. pinguis, in CA and PCA, form separate clusters remote from two remaining cryptic species of A. pinguis (B and C) and A. maxima. Relationship between the cryptic species appeared from the chemical studies are in accordance with that revealed on the basis of DNA sequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. PHYTOCHEMICAL PROFILE AND INSECTICIDAL ACTIVITY OF ESSENTIAL OIL FROM FRESH AND DRIED LEAVES OF NIGERIAN GROWN Citrus meyerii

    Directory of Open Access Journals (Sweden)

    Lamidi Ajao Usman

    2016-07-01

    Full Text Available Leaves of Citrus meyerii harvested fresh and dried for four consecutive days were separately hydro-distilled and yielded 0.11 – 0.24 %(w/w of essential oils. Characterisation of the oils using Gas chromatography - mass spectrometry (GC-MS revealed the predominance of hydrocarbon monoterpenoids 51.1 – 68.3%. Oxygenated monoterpenoids, hydrocarbon sesquiterpenoids and oxygenated sesquiterpenoids constituted (17.4 - 24.9%, (12.2 - 19.8% and (0.0 – 2.5% of the oils respectively. Principal constituents of the oils were; 3-carene (10.1-30.7%, α-pinene (1.0%-18.7%, d-limonene (5.2-6.4%, cis-β-ocimene (5.8-14.2%, citronellal (5.4-6.8%, and β-elemene (3.0-5.8%. The oils were of 3-carene and α-pinene chemotypes. Oils that were of 3-carene chemotype were those from fresh and the leaves dried for one and four days while the oils from leaves dried for two and three days were of α-pinene chemotype.  Insecticidal activities of the oils were determined using contact toxicity test on Callosobruchus maculatus. Regardless of whether the leaves were fresh or dried, the oils were active against the insect. Interestingly, there was no significant difference in the activities of the oils against the insect.

  20. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, Rebecca; Hansen, A.H.; Haunsø, S.

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  1. Vigna radiata as a New Source for Biotransformation of Hydroquinone to Arbutin

    Directory of Open Access Journals (Sweden)

    Zahra Tofighi, Mohsen Amini, Mahzad Shirzadi, Hamideh Mirhabibi, Negar Ghazi Saeedi, Narguess Yassa

    2016-06-01

    Full Text Available Background: The suspension culture of Vigna radiata was selected for biotransformation of hydroquinone to its β-D-glucoside form (arbutin as an important therapeutic and cosmetic compound. Methods: The biotransformation efficiency of a Vigna radiata cell culture in addition to different concentrations of hydroquinone (6-20 mg/100 ml was investigated after 24 hours in comparison to an Echinacea purpurea cell culture and attempts were made to increase the efficacy of the process by adding elicitors. Results: Arbutin was accumulated in cells and found in the media only in insignificant amounts. The arbutin content of the biomass extracts of V. radiata and E. purpurea was different, ranging from 0.78 to 1.89% and 2.00 to 3.55% of dry weight, respectively. V. radiata demonstrated a bioconversion efficiency of 55.82% after adding 8 mg/100 ml precursor, which was comparable with result of 69.53% for E. purpurea cells after adding 10 mg/100 ml hydroquinone (P>0.05. In both cultures, adding hydroquinone in two portions with a 24-hour interval increased the biotransformation efficiency. Different concentrations of methyl jasmonate (25, 50, and 100 µM and chitosan (50 and 100 µg/ml as elicitors increased the bio-efficiency percentage of the V. radiata culture in comparison with the flask containing only hydroquinone. Conclusion: This is the first report of the biotransformation possibility of V. radiata cultures. It was observed the bioconversion capacity increased by adding hydroquinone in two portions, which was comparable to adding an elicitor.

  2. Improving phenolic bioactive-linked anti-hyperglycemic functions of dark germinated barley sprouts (Hordeum vulgare L.) using seed elicitation strategy.

    Science.gov (United States)

    Ramakrishna, Ramnarain; Sarkar, Dipayan; Manduri, Avani; Iyer, Shreyas Ganesan; Shetty, Kalidas

    2017-10-01

    Sprouts of cereal grains, such as barley ( Hordeum vulgare L.), are a good source of beneficial phenolic bioactives. Such health relevant phenolic bioactives of cereal sprouts can be targeted to manage chronic hyperglycemia and oxidative stress commonly associated with type 2 diabetes (T2D). Therefore improving phenolic bioactives by stimulating plant endogenous defense responses such as protective pentose phosphate pathway (PPP) during sprouting has significant merit. Based on this metabolic rationale, this study aimed to enhance phenolic bioactives and associated antioxidant and anti-hyperglycemic functions in dark germinated barley sprouts using exogenous elicitor treatments. Dark-germinated sprouts of two malting barley cultivars (Pinnacle and Celebration), treated with chitosan oligosaccharide (COS) and marine protein hydrolysate (GP), were evaluated. Total soluble phenolic content (TSP), phenolic acid profiles, total antioxidant activity (TA) and in vitro inhibitory activities of hyperglycemia relevant α-amylase and α-glucosidase enzymes of the dark germinated barley sprouts were evaluated at day 2, 4, and 6 post elicitor treatments. Overall, TSP content, TA, and α-amylase inhibitory activity of dark germinated barley sprouts decreased, while α-glucosidase inhibitory activity and gallic acid content increased from day 2 to day 6. Among barley cultivars, high phenolic antioxidant-linked anti-hyperglycemic bioactives were observed in Celebration. Furthermore, GP and COS seed elicitor treatments in selective doses improved T2D relevant phenolic-linked anti-hyperglycemic bioactives of barley spouts at day 6. Therefore, such seed elicitation approach can be strategically used to develop bioactive enriched functional food ingredients from cereal sprouts targeting chronic hyperglycemia and oxidative stress linked to T2D.

  3. Differential Signaling and Sugar Exchanges in Response to Avirulent Pathogen- and Symbiont-Derived Molecules in Tobacco Cells

    Directory of Open Access Journals (Sweden)

    Carole Pfister

    2017-11-01

    Full Text Available Plants interact with microbes whose ultimate aim is to exploit plant carbohydrates for their reproduction. Plant–microbe interactions (PMIs are classified according to the nature of their trophic exchanges: while mutualistic microbes trade nutrients with plants, pathogens unilaterally divert carbohydrates. The early responses following microbe recognition and the subsequent control of plant sugar distribution are still poorly understood. To further decipher PMI functionality, we used tobacco cells treated with microbial molecules mimicking pathogenic or mutualistic PMIs, namely cryptogein, a defense elicitor, and chitotetrasaccharide (CO4, which is secreted by mycorrhizal fungi. CO4 was perceived by tobacco cells and triggered widespread transient signaling components such as a sharp cytosolic Ca2+ elevation, NtrbohD-dependent H2O2 production, and MAP kinase activation. These CO4-induced events differed from those induced by cryptogein, i.e., sustained events leading to cell death. Furthermore, cryptogein treatment inhibited glucose and sucrose uptake but not fructose uptake, and promoted the expression of NtSUT and NtSWEET sugar transporters, whereas CO4 had no effect on sugar uptake and only a slight effect on NtSWEET2B expression. Our results suggest that microbial molecules induce different signaling responses that reflect microbial lifestyle and the subsequent outcome of the interaction.

  4. Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum.

    Science.gov (United States)

    Asgari-Targhi, Ghasem; Iranbakhsh, Alireza; Ardebili, Zahra Oraghi

    2018-06-01

    Concerning environmental issues of metal based-nanomaterials and increasing demand for nano-based products; various strategies have been employed to find eco-friendly natural nano-compounds, among which nano-polymer chitosan is mostly considered. Herein, the various aspects of the way in which bulk or nano-chitosan may modify growth, morphogenesis, micropropagation, and physiology of Capsicum annuum L. were considered. Culture medium was manipulated with different concentrations of bulk chitosan or synthesized chitosan/tripolyphosphate (TPP) nano-particle. The supplementations of culture media led to changes in morphology (especially, the root architecture) and differentiation. Toxic doses of bulk (100 mgL -1 ) or nano-chitosan (5, 10, and 20 mgL -1 ) dramatically provoked cessation of plant growth and development. Plant growth and biomass accumulations were increased along with the suitable levels of bulk or nano-chitosan. Peroxidase and catalase activities in a dose and organ-dependent manners were significantly modified by the supplements. Phenylalanine ammonia lyase was induced by the mentioned supplements. Also, the contents of soluble phenols, proline, and alkaloid were found to be significantly increased by the elicitors, over the control. The nano-chitosan of 1 mgL -1 was found to be the most effective elicitor to trigger organogenesis via micropropagation. The huge differences between triggering and toxic concentrations of the supplements would be due to the physicochemical modifications of nano-polymeric. Furthermore, the results highlight the potential benefits (hormone-like activity) and phytotoxic impacts of nano-chitosan/TPP for in vitro manipulations. This is the first report on both the favorable and adverse effects of nano-chitosan/TPP, representing requirements for further investigation on such formulations for future applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Dipto

    2012-05-01

    Full Text Available Abstract Background Podophyllotoxin (PTOX, the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA elicitation. High-resolution two-dimensional gel electrophoresis (2-DE followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome. Result The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. Conclusions Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level.

  6. Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-like protein

    NARCIS (Netherlands)

    Luberacki, B.; Weyand, M.; Seitz, H.U.; Koch, W.; Oecking, C.; Ottmann, C.

    2008-01-01

    The elicitor protein Nep1-like protein from the plant pathogen Pythium aphanidermatum was purified and crystallized using the hanging-drop vapour-diffusion method. A native data set was collected to 1.35 angstrom resolution at 100 K using synchrotron radiation. Since selenomethionine-labelled

  7. Effect of foliar application of salicylic acid, hydrogen peroxide and a ...

    Indian Academy of Sciences (India)

    A Y Zunun-Pérez

    2017-04-20

    Apr 20, 2017 ... Keywords. Capsinoids; elicitors; gene regulation; nutraceuticals; secondary metabolites ... nificantly increased production of capsiate and gene expression associated .... of capsiate in fruits ofC. .... rats. J. Nutr. Sci. Vitaminol. 50 351–355. Tierranegra-Garcia N, Salinas-Soto P, Torres-Pacheco I, Ocampo-.

  8. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    Science.gov (United States)

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  9. Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely

    International Nuclear Information System (INIS)

    Koopmann, E.; Hahlbrock, K.

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H

  10. Accumulation of New Polypeptides in Ri T-DNA-Transformed Roots of Tomato (Lycopersicon esculentum) during the Development of Vesicular-Arbuscular Mycorrhizae.

    Science.gov (United States)

    Simoneau, P; Louisy-Louis, N; Plenchette, C; Strullu, D G

    1994-06-01

    Root-inducing transferred-DNA (Ri T-DNA)-transformed roots of tomato (Lycopersicon esculentum) were in vitro inoculated with surface-sterilized vesicular-arbuscular mycorrhizal leek root pieces. About 1 week after inoculation, the infection of the transformed root culture by the fungal endophyte was confirmed by photonic microscopy. Total proteins were extracted from the mycorrhizal roots and analyzed by two-dimensional polyacrylamide gel electrophoresis. Control gels were run with proteins extracted from noninoculated roots mixed with purified intraradical vesicles and extraradical hyphae. Comparison of the resulting patterns revealed the presence of two polypeptides with estimated apparent masses of 24 and 39 kDa that were detected only in infected roots. Polypeptides with similar migration parameters were not detected in roots challenged with spore extracts, suggesting that the accumulation of the polypeptides was directly linked to root colonization by the fungus rather than to induction by fungus-derived elicitors.

  11. AcEST: DK949268 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 7|CEBIP_ORYSJ Chitin elicitor-binding protein OS=Oryza s... 52 2e-06 sp|Q9P403|CIH1_COLLN Intracellular hyphae...03|CIH1_COLLN Intracellular hyphae protein 1 OS=Colletotrichum lindemuthianum GN=CIH1 PE=1 SV=1 Length = 230

  12. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom

    DEFF Research Database (Denmark)

    Schiener, Maximilian; Hilger, Christiane; Eberlein, Bernadette

    2018-01-01

    Hymenoptera venom allergy can cause severe anaphylaxis in untreated patients. Polistes dominula is an important elicitor of venom allergy in Southern Europe as well as in the United States. Due to its increased spreading to more moderate climate zones, Polistes venom allergy is likely to gain imp...

  13. Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum

    DEFF Research Database (Denmark)

    Yin, Heng; Yan, Li; HongYan, Zhang

    2013-01-01

    Chitosan oligosaccharides (collectively, oligochitosan, or COS) are considered to be potent plant immunity elicitors. In this article, the induction of resistance to Sclerotinia sclerotiorum in Brassica napus L. var. Huyou 15 by COS is studied. Even though COS (50 mg mL1) did not affect radial...

  14. Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatin-like protein

    NARCIS (Netherlands)

    Bublin, Merima; Radauer, Christian; Knulst, Andre; Wagner, Stefan; Scheiner, Otto; Mackie, Alan R.; Mills, E. N. Clare; Breiteneder, Heimo

    2008-01-01

    Kiwifruit is a significant elicitor of allergy both in children and adults. Digestibility of two kiwifruit allergens, actinidin (Act d 1) and thaumatin-like protein (Act d 2), was assessed using an in vitro digestion system that approximates physiological conditions with respect to the passage of

  15. Hepatic protection and anticancer activity of curcuma: A potential chemopreventive strategy against hepatocellular carcinoma

    OpenAIRE

    LI, YAN; SHI, XUE; ZHANG, JINGWEN; ZHANG, XIANG; MARTIN, ROBERT C.G.

    2013-01-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed anti-oxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanava...

  16. Terpenoids from Tripterygium doianum (Celastraceae).

    Science.gov (United States)

    Tanaka, Naonobu; Duan, Hongquan; Takaishi, Yoshihisa; Kawazoe, Kazuyoshi; Goto, Satoru

    2002-09-01

    The extract of Tripterygium doianum (Celastraceae) afforded three triterpenoids [3beta-acetoxy-11-ursen-13alpha,30-olide, 25-chloro-24-hydroxytirucall-7-en-3-one and tirucall-7-en-3,24-dione], two sesquiterpenoids [5alpha-acetoxy-1beta,8alpha-bis-cinnamoyl-4alpha-hydroxydihydroagarofuran and 5alpha-acetoxy-1beta-benzoyl-8alpha-cinnamoyl-4alpha-hydroxydihydroagarofuran] and nine known triterpenoids. Their structures were established based on spectroscopic studies. Copyright 2002 Elsevier Science Ltd.

  17. Root constituents of Lactuca sibirica and a comparison of metabolite profiles of L. sibirica and L. tatarica

    Directory of Open Access Journals (Sweden)

    Wanda Kisiel

    2011-01-01

    Full Text Available Nine known sesquiterpene lactones, including four lactucin-type guaianolides, four costuslactone-type guaianolides and one germacranolide, were isolated from roots of Lactuca sibirica (Asteraceae, six of which were glycoside derivatives. The chemosystematic significance of the compounds is discussed in the context of sesquiterpenoids present in roots of the closely related species Lactuca tatarica. A comparison of sesquiterpene lactone profiles indicate that the species can be differentiated on the basis of their germacranolide glycoside compositions.

  18. Composition of the volatile compounds from Aniba canelilla (H. B. K. Mez. extracted by CO2 in the supercritical state

    Directory of Open Access Journals (Sweden)

    Janete H. Y. Vilegas

    Full Text Available The volatile compounds obtained by SFE-CO2 (supercritical fluid extraction utilizing CO2 from the barks of Aniba canelilla (H. B. K. Mez. (Lauraceae were analyzed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography -mass spectrometry. Phenylpropanoids and lower amounts of sesquiterpenoids, representing ca. 97% of the total oil, were identified. The main compound, 2-phenylnitroethane, corresponds to 71,12% of the total oil.

  19. Development and Evaluation of Monoclonal Antibodies for the Glucoside of T-2 Toxin (T2-Glc)

    OpenAIRE

    Maragos, Chris M.; Kurtzman, Cletus; Busman, Mark; Price, Neil; McCormick, Susan

    2013-01-01

    The interactions between fungi and plants can yield metabolites that are toxic in animal systems. Certain fungi are known to produce sesquiterpenoid trichothecenes, such as T-2 toxin, that are biotransformed by several mechanisms including glucosylation. The glucosylated forms have been found in grain and are of interest as potential reservoirs of T-2 toxin that are not detected by many analytical methods. Hence the glucosides of trichothecenes are often termed “masked” mycotoxins. The glucos...

  20. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.

    Science.gov (United States)

    Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2016-07-15

    Over the last few years, considerable attention has been paid to the application of elicitors to vineyard. However, research about the effect of elicitors on grape amino acid content is scarce. Therefore, the aim of this study was to evaluate the influence of foliar application of methyl jasmonate on must amino acid content. Results revealed that total amino acid content was not modified by the application of methyl jasmonate. However, the individual content of certain amino acids was increased as consequence of methyl jasmonate foliar application, i.e., histidine, serine, tryptophan, phenylalanine, tyrosine, asparagine, methionine, and lysine. Among them, phenylalanine content was considerably increased; this amino acid is precursor of phenolic and aromatic compounds. In conclusion, foliar application of methyl jasmonate improved must nitrogen composition. This finding suggests that methyl jasmonate treatment might be conducive to obtain wines of higher quality since must amino acid composition could affect the wine volatile composition and the fermentation kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato[C][W][OA

    Science.gov (United States)

    El Oirdi, Mohamed; El Rahman, Taha Abd; Rigano, Luciano; El Hadrami, Abdelbasset; Rodriguez, María Cecilia; Daayf, Fouad; Vojnov, Adrian; Bouarab, Kamal

    2011-01-01

    Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host. PMID:21665999

  2. Teor e composição química do óleo essencial de Hyptis marrubioides Epl., Lamiaceae em função da sazonalidade = Content and chemical composition of Hyptis marrubioides essential oil in function of seasons

    Directory of Open Access Journals (Sweden)

    Suzan Kelly Vilela Bertolucci

    2010-07-01

    Full Text Available Os oleos essenciais sao principios odoriferos armazenados em celulas especiais da planta. O oleo essencial no genero Hyptis e usado como anestesico, antiespasmodico, antiinflamatorio e pode induzir aborto em doses elevadas. O objetivo deste trabalho foi avaliar a influencia da sazonalidade no teor e composicao do oleo essencial de Hyptis marrubioides. O delineamento experimental foi inteiramente casualizado, com quatro tratamentos (inverno, primavera, verao e outono e seis repeticoes, totalizando 60 plantas. O oleo essencial foi extraido por hidrodestilacao, em aparelho de Clevenger. A analise qualitativa do oleo essencial foi por cromatografia em fase gasosa (CG/EM. Na estacao do verao, as folhas das plantas de H. marrubiodes apresentaram os maiores teores de oleo essencial. Nas demais estacoes, os teores de oleo essencial obtidos foram semelhantes entre si. Os componentes majoritarios no oleo essencial foram os monoterpenoides α-tujona e β-tujona. As concentracoes relativas dos picos correspondentes a β-tujona nao apresentaram diferencas consideraveis nas quatro estacoes. Os sesquiterpenoides oxigenados (cedrol e cariofilenol e nao-oxigenados (α-copaeno, β-cariofileno, germacreno D e cadaleno foram encontrados em menores quantidades no oleo essencial, entretanto observam-se diferencas quantitativas ao longo das estacoes.Essential oils are odorous principles stored in special plant cells. The essential oil in the Hyptis genus is traditionally used as an anesthetic, antispasmodic, antiinflammatory, and can induce abortion in high doses. The purpose of this work was to evaluate the influence of seasons in essential oil content and chemical composition of species H. marrubioides. A completely randomized complete design was used with four treatments (winter, spring, summer and autumn and six replications, totaling 60 plants. The essential oil was obtained by hydrodistillation with a Clevenger apparatus. The qualitative analysis of the

  3. Utilization of bio-resources through nuclear technology

    International Nuclear Information System (INIS)

    Tamikazu Kume

    2002-01-01

    Nuclear technology such as gamma-ray, eb and ion beams is widely use for the utilization of bio-resources. Irradiation using gamma ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural uses. Ion beams have also been applied for mutation breeding for medical and agricultural use. Ion beams have also been applied for mutation breeding and the production of positron-emitting isotopes such as 11 C, 13 N, etc. It was succeeded to induce several kinds of flower-color and flower-form mutants in chrysanthemum and carnation by ion beams that have never produced by gamma-ray. The positron emitting tracer imaging system (PETIS) has been developed to obtain a dynamic image of plant transport in situ. (Author)

  4. Children's Physical Attractiveness and Sex as Determinants of Adult Punitiveness

    Science.gov (United States)

    Dion, Karen K.

    1974-01-01

    Two studies investigated the influence of a child's physical attractiveness and sex as potential elicitors of differential adult punitiveness. Assessed were the reactions of 40 women and 44 men. Results reveal differences in men's and women's reactions and suggest differences in their orientation towards children's task behavior. (Author/SDH)

  5. Against the odds : Human values arising in unfavourable circumstances elicit the feeling of being moved

    NARCIS (Netherlands)

    Strick, M.A.; Van Soolingen, Jantine

    2017-01-01

    People sometimes say they are ‘moved’ or ‘touched’ by something. Although the experience is familiar to most, systematic research on being moved has just begun. The current research aims to advance our understanding of the prototypical elicitors of being moved. We tested the hypothesis that being

  6. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks

    NARCIS (Netherlands)

    Gadermaier, Gabriele; Egger, Matthias; Girbl, Tamara; Erler, Anja; Harrer, Andrea; Vejvar, Eva; Liso, Marina; Richter, Klaus; Zuidmeer, Laurian; Mari, Adriano; Ferreira, Fatima

    2011-01-01

    Celery represents a relevant cross-reactive food allergen source in the adult population. As the currently known allergens are not typical elicitors of severe symptoms, we aimed to identify and characterize a non-specific lipid transfer protein (nsLTP). MS and cDNA cloning were applied to obtain the

  7. Elicitation of Valerenic Acid in the Hairy Root Cultures of Valeriana ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of magnesium and calcium as abiotic elicitors on Valeriana officinalis hairy roots for scale-up production of valerenic acid. Methods: Hairy roots were established in different explants of Valeriana officinalis via a mikimopine type strain of Agrobacterium rhizogenes 'A13'. Transgenic status of ...

  8. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Directory of Open Access Journals (Sweden)

    Vibha Pandey

    2017-08-01

    Full Text Available Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc. or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.

  9. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors

    NARCIS (Netherlands)

    van Verk, Marcel C|info:eu-repo/dai/nl/327618671; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of

  10. A new diterpenoid glucoside and two new diterpenoids from the fruit of Vitex agnus-castus.

    Science.gov (United States)

    Ono, Masateru; Eguchi, Keisuke; Konoshita, Masatarou; Furusawa, Chisato; Sakamoto, Junich; Yasuda, Shin; Ikeda, Tsuyoshi; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2011-01-01

    A new labdane-type diterpenoid glucoside and two new labdane-type diterpenoids were isolated from the fruit (chasteberry) of Vitex agnus-castus L. (Verbenaceae) along with 14 known compounds comprising seven labdane-type diterpenoids, one halimane-type diterpenoid, two oleanane-type triterpenoids, two ursane-type triterpenoids, one aromadendrane-type sesquiterpenoid, and one flavonoid. Their structures were characterized on the basis of spectroscopic data as well as chemical evidence. Furthermore, the antioxidative activities of the flavonoid were evaluated using five different analyses.

  11. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Hála, Michal; Kulich, I.; Kocourková, Daniela; Drdová, Edita; Fendrych, Matyáš; Toupalová, Hana; Žárský, Viktor

    2011-01-01

    Roč. 62, č. 6 (2011), s. 2107-2116 ISSN 0022-0957 R&D Projects: GA ČR GAP501/10/2081; GA AV ČR KJB600380802 Institutional research plan: CEZ:AV0Z50380511 Keywords : elicitor * exocyst * immunity Subject RIV: EF - Botanics Impact factor: 5.364, year: 2011

  12. Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits.

    Directory of Open Access Journals (Sweden)

    Sangkyu Park

    Full Text Available Sesquiterpenoid capsidiol, exhibiting antifungal activity against pathogenic fungus, is accumulated in infected ripe pepper fruits. In this study, we found a negative relation between the capsidiol level and lesion size in fruits infected with Colletotrichum gloeosporioides, depending on the stage of ripening. To understand the developmental regulation of capsidiol biosynthesis, fungal-induced gene expressions in the isoprenoid biosynthetic pathways were examined in unripe and ripe pepper fruits. The sterol biosynthetic pathway was almost shut down in healthy ripe fruits, showing very low expression of hydroxymethyl glutaryl CoA reductase (HMGR and squalene synthase (SS genes. In contrast, genes in the carotenoid pathway were highly expressed in ripe fruits. In the sesquiterpene pathway, 5-epi-aristolochene synthase (EAS, belonging to a sesquiterpene cyclase (STC family, was significantly induced in the ripe fruits upon fungal infection. Immunoblot and enzyme activity analyses showed that the STCs were induced both in the infected unripe and ripe fruits, while capsidiol was synthesized discriminatively in the ripe fruits, implying diverse enzymatic specificity of multiple STCs. Thereby, to divert sterol biosynthesis into sesquiterpene production, infected fruits were pretreated with an SS inhibitor, zaragozic acid (ZA, resulting in increased levels of capsidiol by more than 2-fold in the ripe fruits, with concurrent reduction of phytosterols. Taken together, the present results suggest that the enhanced expression and activity of EAS in the ripe fruits play an important role in capsidiol production, contributing to the incompatibility between the anthracnose fungus and the ripe pepper fruits.

  13. Feelings of disgust and disgust-induced avoidance weaken following induced sexual arousal in women.

    Directory of Open Access Journals (Sweden)

    Charmaine Borg

    Full Text Available BACKGROUND: Sex and disgust are basic, evolutionary relevant functions that are often construed as paradoxical. In general the stimuli involved in sexual encounters are, at least out of context strongly perceived to hold high disgust qualities. Saliva, sweat, semen and body odours are among the strongest disgust elicitors. This results in the intriguing question of how people succeed in having pleasurable sex at all. One possible explanation could be that sexual engagement temporarily reduces the disgust eliciting properties of particular stimuli or that sexual engagement might weaken the hesitation to actually approach these stimuli. METHODOLOGY: Participants were healthy women (n = 90 randomly allocated to one of three groups: the sexual arousal, the non-sexual positive arousal, or the neutral control group. Film clips were used to elicit the relevant mood state. Participants engaged in 16 behavioural tasks, involving sex related (e.g., lubricate the vibrator and non-sex related (e.g., take a sip of juice with a large insect in the cup stimuli, to measure the impact of sexual arousal on feelings of disgust and actual avoidance behaviour. PRINCIPAL FINDINGS: The sexual arousal group rated the sex related stimuli as less disgusting compared to the other groups. A similar tendency was evident for the non-sex disgusting stimuli. For both the sex and non-sex related behavioural tasks the sexual arousal group showed less avoidance behaviour (i.e., they conducted the highest percentage of tasks compared to the other groups. SIGNIFICANCE: This study has investigated how sexual arousal interplays with disgust and disgust eliciting properties in women, and has demonstrated that this relationship goes beyond subjective report by affecting the actual approach to disgusting stimuli. Hence, this could explain how we still manage to engage in pleasurable sexual activity. Moreover, these findings suggest that low sexual arousal might be a key feature in the

  14. fMRI responses to pictures of mutilation and contamination.

    Science.gov (United States)

    Schienle, Anne; Schäfer, Axel; Hermann, Andrea; Walter, Bertram; Stark, Rudolf; Vaitl, Dieter

    2006-01-30

    Findings from several functional magnetic resonance imaging (fMRI) studies implicate the existence of a distinct neural disgust substrate, whereas others support the idea of distributed and integrative brain systems involved in emotional processing. In the present fMRI experiment 12 healthy females viewed pictures from four emotion categories. Two categories were disgust-relevant and depicted contamination or mutilation. The other scenes showed attacks (fear) or were affectively neutral. The two types of disgust elicitors received comparable ratings for disgust, fear and arousal. Both were associated with activation of the occipitotemporal cortex, the amygdala, and the orbitofrontal cortex; insula activity was nonsignificant in the two disgust conditions. Mutilation scenes induced greater inferior parietal activity than contamination scenes, which might mirror their greater capacity to capture attention. Our results are in disagreement with the idea of selective disgust processing at the insula. They point to a network of brain regions involved in the decoding of stimulus salience and the regulation of attention.

  15. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Science.gov (United States)

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture

    Directory of Open Access Journals (Sweden)

    Thu V. Vuong

    2014-06-01

    Full Text Available Bioprocesses capable of producing large scales of resveratrol at nutraceutical grade are in demand. This study herein investigated treatment strategies to induce the production of resveratrol in Vitis vinifera L. cell suspension cultures. Among seven investigated elicitors, jasmonic acid (JA, salicylic acid, β-glucan (GLU, and chitosan enhanced the production of intracellular resveratrol manyfold. The combined treatment of JA and GLU increased extracellular resveratrol production by up to tenfold. The application of Amberlite XAD-7 resin for in situ removal and artificial storage of secreted resveratrol further increased resveratrol production by up to four orders of magnitude. The level of resveratrol produced in response to the combined treatment with 200 g/L XAD-7, 10 μM JA and 1 mg/mL GLU was approximately 2400 mg/L, allowing the production of resveratrol at an industrial scale. The high yield of resveratrol is due to the involvement of a number of mechanisms working in concert.

  17. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana.

    Science.gov (United States)

    Vie, Ane Kjersti; Najafi, Javad; Winge, Per; Cattan, Ester; Wrzaczek, Michael; Kangasjärvi, Jaakko; Miller, Gad; Brembu, Tore; Bones, Atle M

    2017-06-15

    Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction

    International Nuclear Information System (INIS)

    Koes, R.E.; Spelt, C.E.; Mol, J.N.M.

    1989-01-01

    We have analysed the expression of the 8-10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences. (author)

  19. Host-Pathogen Interactions : XXXII. A Fungal Glucan Preparation Protects Nicotianae against Infection by Viruses.

    Science.gov (United States)

    Kopp, M; Rouster, J; Fritig, B; Darvill, A; Albersheim, P

    1989-05-01

    A glucan preparation obtained from the mycelial walls of the fungus Phytophthora megasperma f.sp. glycinea and known as an elicitor of phytoalexins in soybean was shown to be a very efficient inducer of resistance against viruses in tobacco. The glucan preparation protected against mechanically transmitted viral infections on the upper and lower leaf surfaces. Whether the glucan preparation was applied by injection, inoculation, or spraying, it protected the plants if applied before, at the same time as, or not later than 8 hours after virus inoculation. At concentrations ranging from 0.1 to 10 micrograms per milliliter, the glucan preparation induced protection ranging from 50 to 100% against both symptom production (necrotic local lesions, necrotic rings, or systemic mosaic) and virus accumulation in all Nicotiana-virus combinations examined. However, no significant protection against some of the same viruses was observed in bean or turnip. The host plants successfully protected included N. tabacum (9 different cultivars), N. sylvestris, N. glutinosa, and N. clevelandii. The viruses belonged to several taxonomic groups including tobacco mosaic virus, alfalfa mosaic virus, and tomato black ring virus. The glucan preparation did not act directly on the virus and did not interfere with virus disassembly; rather, it appeared to induce changes in the host plant that prevented infections from being initiated or recently established infections from enlarging. The induced resistance does not depend on induction of pathogenesis-related proteins, the phenylpropanoid pathway, lignin-like substances, or callose-like materials. We believe the induced resistance results from a mechanism that has yet to be described.

  20. Light Quality Dependent Changes in Morphology, Antioxidant Capacity, and Volatile Production in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Carvalho, Sofia D; Schwieterman, Michael L; Abrahan, Carolina E; Colquhoun, Thomas A; Folta, Kevin M

    2016-01-01

    Narrow-bandwidth light treatments may be used to manipulate plant growth, development and metabolism. In this report LED-based light treatments were used to affect yield and metabolic content of sweet basil (Ocimum basilicum L. cv "Ceasar") grown in controlled environments. This culinary herb produces an aroma highly appreciated by consumers, primarily composed of terpenes/terpenoids, phenylpropanoids, and fatty-acid- derived volatile molecules. Basil plants were grown under narrow-bandwidth light conditions, and leaf area, height, mass, antioxidant capacity and volatile emissions were measured at various time points. The results indicate reproducible significant differences in specific volatiles, and in biochemical classes of volatiles, compared to greenhouse grown plants. For example, basil plants grown under blue/red/yellow or blue/red/green wavelengths emit higher levels of a subset of monoterpenoid volatiles, while a blue/red/far-red treatment leads to higher levels of most sesquiterpenoid volatile molecules. Specific light treatments increase volatile content, mass, and antioxidant capacity. The results show that narrow-bandwidth illumination can induce discrete suites of volatile classes that affect sensory quality in commercial herbs, and may be a useful tool in improving commercial production.

  1. Study on the interaction of tussilagone with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng; Liu, Yu-Feng; Sang, Yu-Li

    2017-12-01

    Tussilagone is a sesquiterpenoid which exhibits a variety of pharmacological activities. The interaction of tussilagone with human serum albumin (HSA) was investigated using fluorescence spectroscopy, UV-vis absorption, fluorescence probe experiments, synchronous fluorescence, circular dichroism (CD) spectra, three-dimensional spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by tussilagone was a static quenching process as a result of HSA-tussilagone (1:1) complex. Tussilagone spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = -13.89 kJ mol-1, ΔS° = 16.39 J mol-1 K-1). The binding constant was calculated to be 2.182 × 103 L mol-1 and the binding distance was estimated to be 2.07 nm at 291 K, showing the occurrence of fluorescence energy transfer. The results of CD, synchronous and three-dimensional fluorescence spectra all revealed that tussilagone induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that tussilagone could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.

  2. Cell Wall Components of Leptosphaeria maculans Enhance Resistance of Brassica napus

    Czech Academy of Sciences Publication Activity Database

    Kim, P.D.; Šašek, Vladimír; Burketová, Lenka; Čopíková, J.; Synytsya, A.; Jindřichová, Barbora; Valentová, O.

    2013-01-01

    Roč. 61, č. 22 (2013), s. 5207-5214 ISSN 0021-8561 R&D Projects: GA ČR GA522/08/1581; GA MZe QH81201 Institutional research plan: CEZ:AV0Z50380511 Keywords : elicitor * oligosaccharide * Leptosphaeria maculans Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 3.107, year: 2013

  3. Cloning and expression analysis of chalcone synthase gene from ...

    Indian Academy of Sciences (India)

    Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate ... Journal of Genetics, DOI 10.1007/s12041-016-0680-8, Vol. 95, No. ... leaf of C. forskohlii. Quantitative real time RT-PCR was used ..... SGG acknowledges the financial support for this work from CSIR. 12th FYP project ...

  4. Establishment and characterization of American elm cell suspension cultures

    Science.gov (United States)

    Steven M. Eshita; Joseph C. Kamalay; Vicki M. Gingas; Daniel A. Yaussy

    2000-01-01

    Cell suspension cultures of Dutch elm disease (DED)-tolerant and DED-susceptible American elms clones have been established and characterized as prerequisites for contrasts of cellular responses to pathogen-derived elicitors. Characteristics of cultured elm cell growth were monitored by A700 and media conductivity. Combined cell growth data for all experiments within a...

  5. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  6. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata.

    Science.gov (United States)

    Gandi, Suryakala; Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Giri, Archana

    2012-12-01

    Andrographis paniculata belonging to the family Acanthaceae produces a group of diterpene lactones, one of which is the pharmaceutically important-andrographolide. It is known to possess various important biological properties like anticancer, anti-HIV, anti-inflammatory, etc. This is the first report on the production of andrographolide in the cell suspension cultures of Andrographis paniculata by 'elicitation'. Elicitation was attempted to enhance the andrographolide content in the suspension cultures of Andrographis paniculata and also to ascertain its stimulation under stress conditions or in response to pathogen attack. The maximum andrographolide production was found to be 1.53 mg/g dry cell weight (DCW) at the end of stationary phase during the growth curve. The biotic elicitors (yeast, Escherichia coli, Bacillus subtilis, Agrobacterium rhizogenes 532 and Agrobacterium tumefaciens C 58) were more effective in eliciting the response when compared to the abiotic elicitors (CdCl(2), AgNO(3), CuCl(2) and HgCl(2)). Yeast has shown to stimulate maximum accumulation of 13.5 mg/g DCW andrographolide, which was found to be 8.82-fold higher than the untreated cultures.

  7. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    Directory of Open Access Journals (Sweden)

    Heli Salmela

    2015-07-01

    Full Text Available Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

  8. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2016-12-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

  9. Antiproliferative Compounds of Cyphostemma greveana from a Madagascar Dry Forest[1

    OpenAIRE

    Cao, Shugeng; Hou, Yanpeng; Brodie, Peggy; Miller, James S.; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Kingston, David G. I.

    2011-01-01

    Bioassay-guided fractionation of the EtOH extracts obtained from a plant identified as Cyphostemma greveana Desc. (Vitaceae) led to the identification of one macrolide, lasiodiplodin (1), three sesquiterpenoids, 12-hydroxy-15-oxo-selina-4,1l-diene (2), 1β,6α-dihydroxyeudesm-4(15)-ene (3), and (7R*)-opposit-4(15)-ene-1β,7-diol (5), and the new diterpenoid, 16,18-dihydroxykolavenic acid lactone (4). All the isolates were tested against the A2780 human ovarian cancer cell line, and compound 4 an...

  10. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    Directory of Open Access Journals (Sweden)

    Peter eMoffett

    2015-08-01

    Full Text Available Potato cyst nematodes (PCNs, including Globodera rostochiensis (Woll., are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC family. SPRYSEC proteins are unique to members of the genera Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense response in N. tabacum, and tobacco was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  11. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat

    2015-08-11

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  12. Induced Abortion

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  13. SOYBEAN AND CASEIN HYDROLYSATES INDUCE GRAPEVINE IMMUNE RESPONSES AND RESISTANCE AGAINST PLASMOPARA VITICOLA

    Directory of Open Access Journals (Sweden)

    Nihed eLachhab

    2014-12-01

    Full Text Available Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy and casein (cas to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defence responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signalling events were followed by transcriptome reprogramming, including the up-regulation of defence genes encoding pathogenesis-related (PR proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas one. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.

  14. The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection.

    Science.gov (United States)

    Zarattini, Marco; Launay, Alban; Farjad, Mahsa; Wénès, Estelle; Taconnat, Ludivine; Boutet, Stéphanie; Bernacchia, Giovanni; Fagard, Mathilde

    2017-05-01

    Disease has an effect on crop yields, causing significant losses. As the worldwide demand for agricultural products increases, there is a need to pursue the development of new methods to protect crops from disease. One mechanism of plant protection is through the activation of the plant immune system. By exogenous application, 'plant activator molecules' with elicitor properties can be used to activate the plant immune system. These defence-inducing molecules represent a powerful and often environmentally friendly tool to fight pathogens. We show that the secondary bile acid deoxycholic acid (DCA) induces defence in Arabidopsis and reduces the proliferation of two bacterial phytopathogens: Erwinia amylovora and Pseudomonas syringae pv. tomato. We describe the global defence response triggered by this new plant activator in Arabidopsis at the transcriptional level. Several induced genes were selected for further analysis by quantitative reverse transcription-polymerase chain reaction. We describe the kinetics of their induction and show that abiotic stress, such as moderate drought or nitrogen limitation, does not impede DCA induction of defence. Finally, we investigate the role in the activation of defence by this bile acid of the salicylic acid biosynthesis gene SID2, of the receptor-like kinase family genes WAK1-3 and of the NADPH oxidase-encoding RbohD gene. Altogether, we show that DCA constitutes a promising molecule for plant protection which can induce complementary lines of defence, such as callose deposition, reactive oxygen species accumulation and the jasmonic acid and salicylic acid signalling pathways. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  15. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids.

    Science.gov (United States)

    Zhu, Feng; Cusumano, Antonino; Bloem, Janneke; Weldegergis, Berhane T; Villela, Alexandre; Fatouros, Nina E; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Vogel, Heiko; Poelman, Erik H

    2018-05-15

    Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.

  16. Structure and function of complex carbohydrates active in regulating plant-microbe interactions

    Energy Technology Data Exchange (ETDEWEB)

    Albersheim, P; Darvill, A G; McNeil, M

    1981-01-01

    A key regulatory role of complex carbohydrates in the interactions between plants and microbes has been established. The complex carbohydrates act as regulatory molecules or hormones in that the carbohydrates induce de novo protein synthesis in receptive cells. The first complex carbohydrate recognized to possess such regulatory properties is a polysaccharide (PS) present in the walls of fungi. Hormonal concentrations of this PS elicit plant cells to accumulate phytoalexins (antibiotics). More recently we have recognized that a PS in the walls of growing plant cells also elicits phytoalexin accumulation; microbes and viruses may cause the release of active fragments of this endogenous elicitor. Another PS in plant cell walls is the Proteinase Inhibitor Inducing Factor (PIIF). This hormone appears to protect plants by inducing synthesis in plants of proteins which specifically inhibit digestive enzymes of insects and bacteria. Glycoproteins secreted by incompatible races (races that do not infect the plant) of a fungal pathogen of soybeans protect seedlings from attack by compatible races. Glycoproteins from compatible races do not protect the seedlings. The acidic PS secreted by the nitrogen-fixing rhizobia appear to function in the infection of legumes by the rhizobia. W.D. Bauer and his co-workers have evidence that these PS are required for the development of root hairs capable of being infected by symbiont rhizobia. Current knowledge of the structures of these biologically active complex carbohydrates will be presented.

  17. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  19. Visual cue-specific craving is diminished in stressed smokers.

    Science.gov (United States)

    Cochran, Justinn R; Consedine, Nathan S; Lee, John M J; Pandit, Chinmay; Sollers, John J; Kydd, Robert R

    2017-09-01

    Craving among smokers is increased by stress and exposure to smoking-related visual cues. However, few experimental studies have tested both elicitors concurrently and considered how exposures may interact to influence craving. The current study examined craving in response to stress and visual cue exposure, separately and in succession, in order to better understand the relationship between craving elicitation and the elicitor. Thirty-nine smokers (21 males) who forwent smoking for 30 minutes were randomized to complete a stress task and a visual cue task in counterbalanced orders (creating the experimental groups); for the cue task, counterbalanced blocks of neutral, motivational control, and smoking images were presented. Self-reported craving was assessed after each block of visual stimuli and stress task, and after a recovery period following each task. As expected, the stress and smoking images generated greater craving than neutral or motivational control images (p smokers are stressed, visual cues have little additive effect on craving, and different types of visual cues elicit comparable craving. These findings may imply that once stressed, smokers will crave cigarettes comparably notwithstanding whether they are exposed to smoking image cues.

  20. Structured plant metabolomics for the simultaneous exploration of multiple factors.

    Science.gov (United States)

    Vasilev, Nikolay; Boccard, Julien; Lang, Gerhard; Grömping, Ulrike; Fischer, Rainer; Goepfert, Simon; Rudaz, Serge; Schillberg, Stefan

    2016-11-17

    Multiple factors act simultaneously on plants to establish complex interaction networks involving nutrients, elicitors and metabolites. Metabolomics offers a better understanding of complex biological systems, but evaluating the simultaneous impact of different parameters on metabolic pathways that have many components is a challenging task. We therefore developed a novel approach that combines experimental design, untargeted metabolic profiling based on multiple chromatography systems and ionization modes, and multiblock data analysis, facilitating the systematic analysis of metabolic changes in plants caused by different factors acting at the same time. Using this method, target geraniol compounds produced in transgenic tobacco cell cultures were grouped into clusters based on their response to different factors. We hypothesized that our novel approach may provide more robust data for process optimization in plant cell cultures producing any target secondary metabolite, based on the simultaneous exploration of multiple factors rather than varying one factor each time. The suitability of our approach was verified by confirming several previously reported examples of elicitor-metabolite crosstalk. However, unravelling all factor-metabolite networks remains challenging because it requires the identification of all biochemically significant metabolites in the metabolomics dataset.

  1. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2018-01-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803

  2. The sesquiterpenoid nootkatone and the absolute configuration of a dibromo derivative.

    Science.gov (United States)

    Sauer, Anne M; Fronczek, Frank R; Zhu, Betty C R; Crowe, William E; Henderson, Gregg; Laine, Roger A

    2003-05-01

    Nootkatone, or (4R,4aS,6R)-4,4a,5,6,7,8-hexahydro-4,4a-dimethyl-6-(1-methylethenyl)naphthalen-2(3H)-one, C(15)H(22)O, a sesquiterpene with strong repellent properties against Formosan subterranean termites and other insects, has the valencene skeleton. The dibromo derivative (1S,3R,4S,4aS,6R,8aR)-1,3-dibromo-6-isopropyl-4,4a-dimethyl-1,2,3,4,5,6,7,8-octahydronaphthalen-2-one, C(15)H(24)Br(2)O, has two independent molecules in the asymmetric unit, which differ in the rotation of the isopropyl group with respect to the main skeleton. The C-Br distances are in the range 1.950 (4)-1.960 (4) A. Both independent molecules form zigzag chains, with very short intermolecular carbonyl-carbonyl interactions, having the perpendicular motif and O...C distances of 2.886 (6) and 2.898 (6) A. These chains are flanked by intermolecular Br...Br interactions of distances in the range 4.067 (1)-4.218 (1) A. The absolute configuration of the dibromo derivative was determined, from which that of nootkatone was inferred.

  3. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  4. A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses

    Science.gov (United States)

    Katz, Vera A.; Thulke, Oliver U.; Conrath, Uwe

    1998-01-01

    Systemic acquired resistance is an important component of the disease-resistance arsenal of plants, and is associated with an enhanced potency for activating local defense responses upon pathogen attack. Here we demonstrate that pretreatment with benzothiadiazole (BTH), a synthetic activator of acquired resistance in plants, augmented the sensitivity for low-dose elicitation of coumarin phytoalexin secretion by cultured parsley (Petroselinum crispum L.) cells. Enhanced coumarin secretion was associated with potentiated activation of genes encoding Phe ammonia-lyase (PAL). The augmentation of PAL gene induction was proportional to the length of pretreatment with BTH, indicating time-dependent priming of the cells. In contrast to the PAL genes, those for anionic peroxidase were directly induced by BTH in the absence of elicitor, thus confirming a dual role for BTH in the activation of plant defenses. Strikingly, the ability of various chemicals to enhance plant disease resistance correlated with their capability to potentiate parsley PAL gene elicitation, emphasizing an important role for defense response potentiation in acquired plant disease resistance. PMID:9701589

  5. Growing technology earthy Tribulus terrestris (Tribulus terrestris L.) and its use

    OpenAIRE

    HUDSKÁ, Miluše

    2015-01-01

    This bachelor thesis deals with Puncturevine (Tribulus terrestris) as for planting, content substances, pharmacological use and with influences of planting technology or elicitors upon the active substance contents. Saponines, flavonoids, and phytosterols are the main active substances of Puncturevine. The saponines act as aphrodisiacs, the flavonoids treat with heart diseases and the phytosterols decrease the cholesterol concentration in blood plasma. The active substance contents depend on ...

  6. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  7. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Martin F Strube-Bloss

    Full Text Available To trigger innate behavior, sensory neural networks are pre-tuned to extract biologically relevant stimuli. Many male-female or insect-plant interactions depend on this phenomenon. Especially communication among individuals within social groups depends on innate behaviors. One example is the efficient recruitment of nest mates by successful bumblebee foragers. Returning foragers release a recruitment pheromone in the nest while they perform a 'dance' behavior to activate unemployed nest mates. A major component of this pheromone is the sesquiterpenoid farnesol. How farnesol is processed and perceived by the olfactory system, has not yet been identified. It is much likely that processing farnesol involves an innate mechanism for the extraction of relevant information to trigger a fast and reliable behavioral response. To test this hypothesis, we used population response analyses of 100 antennal lobe (AL neurons recorded in alive bumblebee workers under repeated stimulation with four behaviorally different, but chemically related odorants (geraniol, citronellol, citronellal and farnesol. The analysis identified a unique neural representation of the recruitment pheromone component compared to the other odorants that are predominantly emitted by flowers. The farnesol induced population activity in the AL allowed a reliable separation of farnesol from all other chemically related odor stimuli we tested. We conclude that the farnesol induced population activity may reflect a predetermined representation within the AL-neural network allowing efficient and fast extraction of a behaviorally relevant stimulus. Furthermore, the results show that population response analyses of multiple single AL-units may provide a powerful tool to identify distinct representations of behaviorally relevant odors.

  8. The Effects of Plant Growth Regulators on Cell Growth, Protein, Carotenoid, PUFAs and Lipid Production of Chlorella pyrenoidosa ZF Strain

    Directory of Open Access Journals (Sweden)

    Huanmin Du

    2017-10-01

    Full Text Available In the present study, eight kinds plant growth regulators—salicylic acid (SA, 1-naphthaleneacetic acid (NAA, gibberellic acid (GA3, 6-benzylaminopurine (6-BA, 2, 4-epi-brassinolide (EBR, abscisic acid (ABA, ethephon (ETH, and spermidine (SPD—were used to investigate the impact on microalgal biomass, lipid, total soluble protein, carotenoids, and polyunsaturated fatty acids (PUFAS production of Chlorella pyrenoidosa ZF strain. The results showed the quickest biomass enhancement was induced by 50 mg·L−1 NAA, with a 6.3-fold increase over the control; the highest protein content was increased by 0.005 mg·L−1 ETH, which produced 3.5-fold over the control; total carotenoids content was induced most effectively by 1 mg·L−1 NAA with 3.6-fold higher production than the control; the most efficient elicitor for lipid production was 5 mg·L−1 GA3 at 1.9-fold of the control; 0.2 mg·L−1 ETH induced the abundant production of 1.82 ± 0.23% linoleic acid; 0.65 ± 0.01% linolenic acid was induced by 1 mg·L−1 NAA; 2.53 ± 0.15% arachidonic acid and 0.44 ± 0.05% docosahexaenoic acid were induced by 5 mg·L−1 GA3. Transcriptional expression levels of seven lipid-related genes, including ACP, BC, FAD, FATA, KAS, MCTK, and SAD, were studied by real-time RT-q-PCR. 5 mg·L−1 GA3 was the most effective regulator for transcriptional expressions of these seven genes, producing 23-fold ACP, 31-fold BC, 25-fold FAD, 6-fold KAS, 12-fold MCTK compared with the controls, respectively.

  9. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  10. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Effects of salicylic acid elicitor against aphids on wheat and detection of infestation using infrared thermal imaging technique in Ismailia, Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud Farag Mahmoud

    2015-04-01

    Full Text Available Wheat (Triticum sativum L. is one of the most important cereal crops in Egypt. Insect pests, such as aphids, are major threats in terms of yield reduction. Induced resistance in wheat using salicylic acid as a foliar application was tested on the farm of the Faculty of Agriculture, Suez Canal University during 2012/2013 and 2013/2014 seasons. Three wheat cultivars, Gemeza 9, Sakha 93 and Giza 168, were sprayed three times with two concentrations of salicylic acid (SA, 200 mg/l and 100 mg/l, after early detection of aphid infestation by infrared thermal imaging. The infrared thermal imaging technique is based on significant differences in surface temperature between infested and healthy leaves. Imaging data are digital, and a computer program can be used to detect infestation rapidly. The results showed that aphid infestation raised the temperature of infested leaves, compared to healthy leaves. The range temperature difference between maximum and minimum temperatures (At was 1.1 ºC in healthy leaves and 3.9 ºC in infected leaves. The results of SA application showed significant differences in the mean number of aphids and in reduction of infestation among treatments and cultivars. The higher of the two SA rates (200 mg/l gave higher efficacy in the three cultivars than the lower rate (100 mg/l over the five weeks of trial. The highest efficacy against aphids was reached one week after application (86.28% for Giza, 85.89% for Gemesa and 70.54% for Sakha. Moreover, SA treatment enhanced the wheat yield of all three cultivars, compared with control plants. The three cultivars (Giza, Gemesa and Sakha produced higher yields than the control when sprayed with 200 mg/l SA. Their grain yield was 2,491.5, 2,455.0, and 2,327.25 kg/feddan (1 fed = 0.42 ha, respectively. In conclusion, infrared thermal imaging can be employed in identification of infected leaves. Also, the application of SA on wheat induced plant resistance to aphids.

  12. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    Science.gov (United States)

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Early transcriptome analyses of Z-3-Hexenol-treated zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles.

    Directory of Open Access Journals (Sweden)

    Jurgen Engelberth

    Full Text Available Green leaf volatiles (GLV, which are rapidly emitted by plants in response to insect herbivore damage, are now established as volatile defense signals. Receiving plants utilize these molecules to prime their defenses and respond faster and stronger when actually attacked. To further characterize the biological activity of these compounds we performed a microarray analysis of global gene expression. The focus of this project was to identify early transcriptional events elicited by Z-3-hexenol (Z-3-HOL as our model GLV in maize (Zea mays seedlings. The microarray results confirmed previous studies on Z-3-HOL -induced gene expression but also provided novel information about the complexity of Z-3-HOL -induced transcriptional networks. Besides identifying a distinct set of genes involved in direct and indirect defenses we also found significant expression of genes involved in transcriptional regulation, Ca(2+-and lipid-related signaling, and cell wall reinforcement. By comparing these results with those obtained by treatment of maize seedlings with insect elicitors we found a high degree of correlation between the two expression profiles at this early time point, in particular for those genes related to defense. We further analyzed defense gene expression induced by other volatile defense signals and found Z-3-HOL to be significantly more active than methyl jasmonate, methyl salicylate, and ethylene. The data presented herein provides important information on early genetic networks that are activated by Z-3-HOL and demonstrates the effectiveness of this compound in the regulation of typical plant defenses against insect herbivores in maize.

  14. Exercise-Induced Asthma

    Science.gov (United States)

    ... Videos for Educators Search English Español Exercise-Induced Asthma KidsHealth / For Parents / Exercise-Induced Asthma What's in ... Exercise-Induced Asthma Print What Is Exercise-Induced Asthma? Most kids and teens with asthma have symptoms ...

  15. Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mathews, Runcie P.; Saraswati, Pratul K.; Banerjee, Santanu [Department of Earth Sciences, Indian Institute of Technology Bombay (India); Singh, Bhagwan D.; Tripathi, Suryakant M.; Singh, Alpana [Birbal Sahni Institute of Palaeobotany, Lucknow (India); Mann, Ulrich [Forschungszentrum Juelich (Germany). Institut fuer chemie und Dynamik der Geosphaere

    2011-01-01

    Petrological, palynological and organic-geochemical investigations were undertaken to determine the source vegetation, depositional conditions and hydrocarbon source potential of Eocene Matanomadh lignites from Kutch Basin, western India. The maceral study reveals that studied lignites are rich in huminite (av. 63%) with sub-ordinate amount of liptinite (av. 19%) and low inertinite (av. 3%), along with low to moderately high associated mineral matters (av. 15%). The overall petrographic composition points to a lagoonal condition for the formation of these lignites. The mean huminite reflectance values (R{sub r}: 0.28-0.34%, av. 0.31%) as well as low Rock-Eval T{sub max} (av. 417 C) values for the seams, suggest brown coal or lignitic stage/rank for the studied lignites. The palynological assemblages, dominated by tropical angiospermic pollen, suggest prevalence of warm humid tropical climate during the deposition of these lignites. The total organic carbon (TOC) content of lignites ranges between 26 and 58 wt.%, whereas the TOC content of the associated carbonaceous shales is around 4 wt.%. The Hydrogen Index (HI) ranging from 23 to 452 mg HC/g TOC indicates that the lignite sequence has the potential to produce mixed oil and gaseous hydrocarbons on maturation. The major pyrolysis products of lignites, derived from Curie point pyrolysis-GC-MS, are straight chain aliphatics, phenols and cadalene-based C{sub 15} bicyclic sesquiterpenoids. The exclusive occurrence of C{sub 15} bicyclic sesquiterpenoids suggests that these compounds are derived from dammar resin of angiosperm plants, belonging to family Dipterocarpaceae. (author)

  16. EVALUATING THE ACCUMULATION TREND OF L-DOPA IN DARK-GERMINATED SEEDS AND SUSPENSION CULTURES OF Phaseolus vulgaris L. BY AN EFFICIENT UV-SPECTROPHOTOMETRIC METHOD

    Directory of Open Access Journals (Sweden)

    Samira Rahmani-Nezhad

    Full Text Available Seed germination and plant cell cultures provide an alternative mean for producing secondary metabolites. The present study is an attempt to evaluate the effect of seed dark germination and some elicitors and precursors on the production of L-DOPA in Phaseolus vulgaris L. Callus cultured on Murashige and Skoog medium supplemented with various concentrations of different plant growth regulators. L-DOPA produced was quantified by UV-spectrophotometric method. In this study, a user-friendly, quick, and economical UV-spectrophotometric method was described to determine L-DOPA content in extracts from 33 biotypes of Phaseolus vulgaris L. The method is based on the nitrosation of L-DOPA to form a yellow solution and then formation of a red solution by adding base which is measurable at 470 nm. According to our statistical studies, this method showed high efficiency and selectivity for quantitative determination of L-DOPA in herbal extracts from dried plant seeds, dark-germinated seeds and callus cultures. L-DOPA content in dark-germinated seeds and suspension cultures increased significantly to approximately several-fold compared to the control. The implication from this study is that elicitor treatment and precursor feeding of Phaseolus vulgaris L. can significantly improve the parkinson’s relevant L-DOPA content.

  17. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture

    Directory of Open Access Journals (Sweden)

    Xiaolin Song

    2017-05-01

    Full Text Available Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng. Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g−1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1. The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC50 value was 0.94 mg mL−1.

  18. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  19. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  20. Ganoderma pfeifferi--A European relative of Ganoderma lucidum.

    Science.gov (United States)

    Lindequist, Ulrike; Jülich, Wolf-Dieter; Witt, Sabine

    2015-06-01

    In contrast to well-studied and broadly used Ganoderma species, such as Ganoderma lucidum and Ganoderma applanatum, knowledge regarding Ganoderma pfeifferi is very limited. Herein is an overview of the phytochemistry, biological activities and possible applications of this mushroom species. In addition to triterpenoids and polysaccharides, G. pfeifferi contains unique sesquiterpenoids and other small molecular weight compounds. Some of these compounds exhibit remarkable antimicrobial activities in vitro and in vivo against multi-resistant bacteria, such as MRSA. Antiviral properties, UV-protection abilities and other activities are also known. Potential issues arising from the conversion of research results into practical applications are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Measuring aesthetic emotions: A review of the literature and a new assessment tool

    OpenAIRE

    Schindler, I.; Hosoya, G.; Menninghaus, W.; Beermann, U.; Wagner, V.; Eid, M.; Scherer, K.

    2017-01-01

    Aesthetic perception and judgement are not merely cognitive processes, but also involve feelings. Therefore, the empirical study of these experiences requires conceptualization and measurement of aesthetic emotions. Despite the long-standing interest in such emotions, we still lack an assessment tool to capture the broad range of emotions that occur in response to the perceived aesthetic appeal of stimuli. Elicitors of aesthetic emotions are not limited to the arts in the strict sense, but ex...

  2. Growth promotion and elicitor activity of salicylic acid in Achillea ...

    African Journals Online (AJOL)

    Usuario

    2016-04-20

    Apr 20, 2016 ... in the literature on the exogenous application of SA in. Achillea milefolium so far. Thus, the aim of this study was to evaluate the effect of different concentrations of SA in. A. millefolium in order to promote growth and simultaneously increase the synthesis of secondary compounds in this medicinal species.

  3. Growth promotion and elicitor activity of salicylic acid in Achillea ...

    African Journals Online (AJOL)

    The effect of SA on the metabolism of yarrow plants was evaluated through biometric parameters of growth and biochemical parameters. The SA at 0.50 mM resulted in linear increases in biomass accumulation of roots, total dry mass, ratio root/shoot and chlorophyll a and chlorophyll a+b content in yarrow plants.

  4. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    Science.gov (United States)

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  6. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    Science.gov (United States)

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  7. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, Gaurav; Das, Ram; Kumar, Ravindra; Agrawal, Veena

    2018-03-01

    In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89 d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO 3 ) 2 , As 2 O 3 , CuSO 4 , NaCl, and CdCl 2 ) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28 g  μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO 3 ) 2 > sucrose > NaCl > As 2 O 3 > casein hydrolysate > CdCl 2 > chitosan > proline > yeast extract > CuSO 4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1 H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC 50 and LC 90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine

  8. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma.

    Science.gov (United States)

    Li, Yan; Shi, Xue; Zhang, Jingwen; Zhang, Xiang; Martin, Robert C G

    2014-02-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed antioxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro.

  9. Exercise-Induced Bronchoconstriction (EIB)

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  10. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  11. UV-radiation and the flavonoid content in callus culture of Ononis arvensis L

    International Nuclear Information System (INIS)

    Tumowa, L.; Psotowa, R.

    1998-01-01

    The paper discussed a possible influence on the production of secondary metabolites - the flavonoids, by the method of elicitation in the callus cultures of Ononis arvensis L., the elicitor employed being the UV 254 and 366 nm and the sun-lamp. In some cases there was an increase in the production of flavonoids particularly 60, 120, 240 and 300 s after sun-lamp irradiation and in case of 15 and 30 min irradiation with UV-254 nm

  12. GERMINATION AND INITIAL GROWTH OF COWPEA CULTIVARS UNDER OSMOTIC STRESS AND SALICYLIC ACID

    OpenAIRE

    ARAÚJO, EDILENE DANIEL DE; MELO, ALBERTO SOARES DE; ROCHA, MARIA DO SOCORRO; CARNEIRO, REBECA FERREIRA; ROCHA, MAURISRAEL DE MOURA

    2018-01-01

    ABSTRACT Cowpea is one of the major food crops in Northeast Brazil, where it is commonly cultivated in the semi-arid regions with limited water availability. It is important to study the elicitors associated with cowpea to mitigate any deleterious effects of abiotic stress on the initial establishment of this crop. In this study, we aimed to evaluate the morphophysiological changes in cowpea cultivars under osmotic stress with seeds soaked in salicylic acid. The germination test was conducted...

  13. Wine Resveratrol: From the Ground Up

    Directory of Open Access Journals (Sweden)

    Luigi Bavaresco

    2016-04-01

    Full Text Available The ability of the grapevine to activate defense mechanisms against some pathogens has been shown to be linked to the synthesis of resveratrol and other stilbenes by the plant (inducible viniferins. Metabolized viniferins may also be produced or modified by extracellular enzymes released by the pathogen in an attempt to eliminate undesirable toxic compounds. Because of the important properties of resveratrol, there is increasing interest in producing wines with higher contents of this compound and a higher nutritional value. Many biotic and abiotic elicitors can trigger the resveratrol synthesis in the berries, and some examples are reported. Under the same elicitation pressure, viticultural and enological factors can substantially affect the resveratrol concentration in the wine. The production of high resveratrol-containing grapes and wines relies on quality-oriented viticulture (suitable terroirs and sustainable cultural practices and winemaking technologies that avoid degradation of the compound. In general, the oenological practices commonly used to stabilize wine after fermentation do not affect resveratrol concentration, which shows considerable stability. Finally the paper reports on two sirtuin genes (SIRT expressed in grapevine leaves and berries and the role of resveratrol on the deacetylation activity of the encoded enzymes.

  14. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Directory of Open Access Journals (Sweden)

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  15. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  16. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways.

    Science.gov (United States)

    Amelot, Nicolas; Dorlhac de Borne, François; San Clemente, Hélène; Mazars, Christian; Grima-Pettenati, Jacqueline; Brière, Christian

    2012-02-01

    Cryptogein is a proteinaceous elicitor secreted by the oomycete Phytophthora cryptogea, which induces a hypersensitive response in tobacco plants. We have previously reported that in tobacco BY-2 cells treated with cryptogein, most of the genes of the phenylpropanoid pathway were upregulated and cell wall-bound phenolics accumulated. Both events were Ca(2+) dependent. In this study, we designed a microarray covering a large proportion of the tobacco genome and monitored gene expression in cryptogein-elicited BY-2 cells to get a more complete view of the transcriptome changes and to assess their Ca(2+) dependence. The predominant functional gene categories affected by cryptogein included stress- and disease-related proteins, phenylpropanoid pathway, signaling components, transcription factors and cell wall reinforcement. Among the 3819 unigenes whose expression changed more than fourfold, 90% were Ca(2+) dependent, as determined by their sensitivity to lanthanum chloride. The most Ca(2+)-dependent transcripts upregulated by cryptogein were involved in defense responses or the oxylipin pathway. This genome-wide study strongly supports the importance of Ca(2+)-dependent transcriptional regulation of regulatory and defense-related genes contributing to cryptogein responses in tobacco. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Determinants of Plant Growth-promoting Ochrobactrum lupini KUDC1013 Involved in Induction of Systemic Resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Marilyn Sumayo

    2013-06-01

    Full Text Available The plant growth-promoting rhizobacterium Ochrobactrum lupini KUDC1013 elicited induced systemic resistance (ISR in tobacco against soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum. We investigated of its factors involved in ISR elicitation. To characterize the ISR determinants, KUDC1013 cell suspension, heat-treated cells, supernatant from a culture medium, crude bacterial lipopolysaccharide (LPS and flagella were tested for their ISR activities. Both LPS and flagella from KUDC1013 were effective in ISR elicitation. Crude cell free supernatant elicited ISR and factors with the highest ISR activity were retained in the n-butanol fraction. Analysis of the ISR-active fraction revealed the metabolites, phenylacetic acid (PAA, 1-hexadecene and linoleic acid (LA, as elicitors of ISR. Treatment of tobacco with these compounds significantly decreased the soft rot disease symptoms. This is the first report on the ISR determinants by plant growth-promoting rhizobacteria (PGPR KUDC1013 and identifying PAA, 1-hexadecene and LA as ISR-related compounds. This study shows that KUDC1013 has a great potential as biological control agent because of its multiple factors involved in induction of systemic resistance against phytopathogens.

  18. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  19. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Psychoneuropharmacological activities and chemical composition of essential oil of fresh fruits of Piper guineense (Piperaceae) in mice.

    Science.gov (United States)

    Oyemitan, Idris Ajayi; Olayera, Omotola Aanuoluwa; Alabi, Akeeb; Abass, Luqman Adewale; Elusiyan, Christianah Abimbola; Oyedeji, Adebola Omowumi; Akanmu, Moses Atanda

    2015-05-26

    Piper guineense Schum & Thonn (Piperaceae) is a medicinal plant used in the Southern States of Nigeria to treat fever, mental disorders and febrile convulsions. This study aims at determining the chemical composition and the central nervous system (CNS) activities of the essential oil obtained from the plant׳s fresh fruits in order to rationalize its folkloric use. Essential oil of P. guineense (EOPG) obtained by hydrodistillation was analysed by GC/MS. EOPG (50-200mg/kg, i.p.) was evaluated for behavioural, hypothermic, sedative, muscle relaxant, anti-psychotic and anticonvulsant activities using standard procedures. Analysis of the oil reveals 44 compounds of which 30 compounds constituting 84.7% were identified. The oil was characterized by sesquiterpenoids (64.4%) while only four monoterpeneoids (21.3%) were found present in the oil. Major compounds identified were β-sesquiphellandrene (20.9%), linalool (6.1%), limonene (5.8%), Z-β-bisabolene (5.4%) and α-pinene (5.3%). The EOPG (50-200mg/kg, i.p.) caused significant (p<0.01) inhibition on rearing {F(4,20)=43}, locomotor {F(4,20)=22} activity and decreased head dips in hole board {F(4,20)=7} indicating CNS depressant effect; decreased rectal temperature {F(4,20)=7-16}, signifying hypothermic activity; decreased ketamine-induced sleep latency {F(4,20)=7.8} and prolonged total sleeping time {F(4,20)=8.8}, indicating sedative effect; reduced muscular tone on the hind-limb grip test {F(4,20)=22}, inclined board {F(4,20)=4-49} and rota rod {F(4,20)=13-106}, implying muscle relaxant activity; induced catalepsy {F(4,20)=47-136}, inhibited apomorphine-induced climbing behaviour {F(4,20)=9} and inhibited apomorphine-induced locomotor {F(4,20)=16}, suggesting anti-psychotic effect; and protected mice against pentylenetetrazole-induced convulsions, indicating anticonvulsant potential. The most abundant component of the fresh fruits essential oil of P. guineense was β-sesquiphellandrene (20.9%); and the oil possesses

  1. In silico Analysis of osr40c1 Promoter Sequence Isolated from Indica Variety Pokkali

    Directory of Open Access Journals (Sweden)

    W.S.I. de Silva

    2017-07-01

    Full Text Available The promoter region of a drought and abscisic acid (ABA inducible gene, osr40c1, was isolated from a salt-tolerant indica rice variety Pokkali, which is 670 bp upstream of the putative translation start codon. In silico promoter analysis of resulted sequence showed that at least 15 types of putative motifs were distributed within the sequence, including two types of common promoter elements, TATA and CAAT boxes. Additionally, several putative cis-acing regulatory elements which may be involved in regulation of osr40c1 expression under different conditions were found in the 5′-upstream region of osr40c1. These are ABA-responsive element, light-responsive elements (ATCT-motif, Box I, G-box, GT1-motif, Gap-box and Sp1, myeloblastosis oncogene response element (CCAAT-box, auxin responsive element (TGA-element, gibberellin-responsive element (GARE-motif and fungal-elicitor responsive elements (Box E and Box-W1. A putative regulatory element, required for endosperm-specific pattern of gene expression designated as Skn-1 motif, was also detected in the Pokkali osr40c1 promoter region. In conclusion, the bioinformatic analysis of osr40c1 promoter region isolated from indica rice variety Pokkali led to the identification of several important stress-responsive cis-acting regulatory elements, and therefore, the isolated promoter sequence could be employed in rice genetic transformation to mediate expression of abiotic stress induced genes.

  2. Intraspecific variation in essential oil composition of the medicinal plant Lippia integrifolia (Verbenaceae). Evidence for five chemotypes.

    Science.gov (United States)

    Marcial, Guillermo; de Lampasona, Marina P; Vega, Marta I; Lizarraga, Emilio; Viturro, Carmen I; Slanis, Alberto; Juárez, Miguel A; Elechosa, Miguel A; Catalán, César A N

    2016-02-01

    The aerial parts of Lippia integrifolia (incayuyo) are widely used in northwestern and central Argentina for their medicinal and aromatic properties. The essential oil composition of thirty-one wild populations of L. integrifolia covering most of its natural range was analyzed by GC and GC-MS. A total of one hundred and fifty two terpenoids were identified in the essential oils. Sesquiterpenoids were the dominant components in all but one of the collections analyzed, the only exception being a sample collected in San Juan province where monoterpenoids amounted to 51%. Five clearly defined chemotypes were observed. One possessed an exquisite and delicate sweet aroma with trans-davanone as dominant component (usually above 80%). Another with an exotic floral odour was rich in oxygenated sesquiterpenoids based on the rare lippifoliane and africanane skeletons. The trans-davanone chemotype is the first report of an essential oil containing that sesquiterpene ketone as the main constituent. The absolute configuration of trans-davanone from L. integrifolia was established as 6S, 7S, 10S, the enantiomer of trans-davanone from 'davana oil' (Artemisia pallens). Wild plants belonging to trans-davanone and lippifolienone chemotypes were propagated and cultivated in the same parcel of land in Santa Maria, Catamarca. The essential oil compositions of the cultivated plants were essentially identical to the original plants in the wild, indicating that the essential oil composition is largely under genetic control. Specimens collected near the Bolivian border that initially were identified as L. boliviana Rusby yielded an essential oil practically identical to the trans-davanone chemotype of L. integrifolia supporting the recent view that L. integrifolia (Gris.) Hieron. and L. boliviana Rusby are synonymous. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Identification and comparison of the volatile constituents of fresh and dried leaves of Spondias mombin found in North-central Nigeria: in vitro evaluation of their cytotoxic and antioxidant activities.

    Science.gov (United States)

    Oladimeji, Abdulkabir Oladele; Aliyu, Medinat Bola; Ogundajo, Akintayo Lanre; Babatunde, Oluwatoyin; Adeniran, Oluremi Ishola; Balogun, Olaoye Solomon

    2016-11-01

    Various studies have shown that the leaf extracts of Spondias mombin Linn (Anacardiaceae) possess pharmacological properties such as antioxidant and antiviral effects. However, no biological activity from its essential oil has been reported in literature. To analyse the chemical constituents, cytotoxic activity and antioxidant capability of the essential oils from fresh and dried leaves of S. mombin. Hydrodistillation using Clevenger-type apparatus was employed to obtain the essential oil. Oil analysis was performed using an HP 6890 Gas Chromatograph coupled with an HP 5973 Mass Selective Detector. The cytotoxicity bioassay was carried out using the brine shrimp lethality test (10,000-0.01 μg/mL). Additionally, the reactive oxygen species scavenging potential of the two S. mombin oils (1000-200 μg/mL) were investigated using a hydroxyl radical scavenging and ferric iron reducing system. Chemical analysis of essential oils from S. mombin revealed the presence of 41 compounds, with predominance of monoterpenoids, sesquiterpenoids and non-terpenoids derivatives. In both fractions, the principal component was β-caryophellene (27.9-30.9%), followed by γ-cadinene (9.7-12.3%). There was an increase in the oxygenated monoterpenoid contents and a concomitant decrease in the amounts of sesquiterpenoids hydrocarbons observed on drying the leaves. The oil obtained from the fresh leaves was more active than that obtained from dried leaves, with LC 50 values (from the brine shrimp lethality assay) of 0.01 and 4.78 μg/mL, respectively. The two oils (from fresh and dried leaves) at 1.0 mg/mL scavenged hydroxyl radical by 83% and 99.8%, respectively. Moreover, they reduced ferric ion significantly and compared favourably with vitamin C. Essential oil derived from the leaves of S. mombin could hold promise for future application in the treatment of cancer-related diseases.

  4. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  5. Molecular dynamics in germinating, endophyte-colonized quinoa seeds

    Science.gov (United States)

    2017-01-01

    Aims The pseudo-cereal quinoa has an outstanding nutritional value. Seed germination is unusually fast, and plant tolerance to salt stress exceptionally high. Seemingly all seeds harbor bacterial endophytes. This work examines mitogen-activated protein kinase (MAPK) activities during early development. It evaluates possible contribution of endophytes to rapid germination and plant robustness. Methods MAPK activities were monitored in water- and NaCl-imbibed seeds over a 4-h-period using an immunoblot-based approach. Cellulolytic and pectinolytic abilities of bacteria were assessed biochemically, and cellular movement, biofilm, elicitor and antimicrobial compound synthesis genes sequenced. GyrA-based, cultivation-independent studies provided first insight into endophyte diversity. Results Quinoa seeds and seedlings exhibit remarkably complex and dynamic MAPK activity profiles. Depending on seed origin, variances exist in MAPK patterns and probably also in endophyte assemblages. Mucilage-degrading activities enable endophytes to colonize seed surfaces of a non-host species, chia, without apparent adverse effects. Conclusions Owing to their motility, cell wall-loosening and elicitor-generating abilities, quinoa endophytes have the potential to drive cell expansion, move across cell walls, generate damage-associated molecular patterns and activate MAPKs in their host. Bacteria may thus facilitate rapid germination and confer a primed state directly upon seed rehydration. Transfer into non-native crops appears both desirable and feasible. PMID:29416180

  6. Total Synthesis of (+)-Cytosporolide A via a Biomimetic Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Takao, Ken-Ichi; Noguchi, Shuji; Sakamoto, Shu; Kimura, Mizuki; Yoshida, Keisuke; Tadano, Kin-Ichi

    2015-12-23

    The first total synthesis of (+)-cytosporolide A was achieved by a biomimetic hetero-Diels-Alder reaction of (-)-fuscoatrol A with o-quinone methide generated from (+)-CJ-12,373. The dienophile, highly oxygenated caryophyllene sesquiterpenoid (-)-fuscoatrol A, was synthesized from the synthetic intermediate in our previous total synthesis of (+)-pestalotiopsin A. The o-quinone methide precursor, isochroman carboxylic acid (+)-CJ-12,373, was synthesized through a Kolbe-Schmitt reaction and an oxa-Pictet-Spengler reaction. The hetero-Diels-Alder reaction of these two compounds proceeded with complete chemo-, regio-, and stereoselectivity to produce the complicated pentacyclic ring system of the cytosporolide skeleton. This total synthesis unambiguously demonstrates that natural cytosporolide A has the structure previously suggested.

  7. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa [Department of Earth Sciences, Indian Institute of Technology-Bombay (India); Kumar, Kishor [Wadia Institute of Himalayan Geology, Uttarakhand (India); Mann, Ulrich [Forschungzentrum Juelich (Germany). Institut fuer Chemie und Dynamik der Geosphaere; Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemistry Centres (M090), University of Western Australia, Crawley (Australia)

    2011-01-01

    Fossil resins from the Cretaceous sediments of Meghalaya, India and Kachin, Myanmar (Burma) were analysed using Curie point pyrolysis-gas chromatography-mass spectrometry and thermochemolysis gas chromatography-mass spectrometry to help elucidate their botanical source. The major pyrolysis products and methyl-esterified thermochemolysis products of both the resins were abietane and labdane type diterpenoids with minor amount of sesquiterpenoids. The thermochemolysis products also included methyl-16,17-dinor callitrisate, methyl-16,17-dinor dehydroabietate and methyl-8-pimaren-18-oate - the latter two from just the Myanmarese resin. The exclusive presence of both labdane and abietane diterpenoids and the lack of phenolic terpenoids may suggest that the studied Cretaceous resins were derived from Pinaceae (pine family) conifers. (author)

  8. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  9. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  10. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  11. Diet-induced obesity attenuates fasting-induced hyperphagia.

    Science.gov (United States)

    Briggs, D I; Lemus, M B; Kua, E; Andrews, Z B

    2011-07-01

    Obesity impairs arcuate (ARC) neuropeptide Y (NPY)/agouti-releated peptide (AgRP) neuronal function and renders these homeostatic neurones unresponsive to the orexigenic hormone ghrelin. In the present study, we investigated the effect of diet-induced obesity (DIO) on feeding behaviour, ARC neuronal activation and mRNA expression following another orexigenic stimulus, an overnight fast. We show that 9 weeks of high-fat feeding attenuates fasting-induced hyperphagia by suppressing ARC neuronal activation and hypothalamic NPY/AgRP mRNA expression. Thus, the lack of appropriate feeding responses in DIO mice to a fast is caused by failure ARC neurones to recognise and/or respond to orexigenic cues. We propose that fasting-induced hyperphagia is regulated not by homeostatic control of appetite in DIO mice, but rather by changes in the reward circuitry. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  12. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    Science.gov (United States)

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    Besides Escherichia coli, Bacillus subtilis is an important bacterial species for the production of recombinant proteins. Recombinant genes are inserted into shuttle expression vectors which replicate in both E. coli and in B. subtilis. The ligation products are first transformed into E. coli cells, analyzed for correct insertions, and the correct recombinant plasmids are then transformed into B. subtilis. A major problem using E. coli cells can be the strong basal level of expression of the recombinant protein which may interfere with the stability of the cells. To minimize this problem, we developed strong expression vectors being repressed in E. coli and inducer-free in B. subtilis. In general, induction of IPTG-inducible expression vectors is determined by the regulatory lacI gene encoding the LacI repressor in combination with the lacO operator on the promoter. To investigate the inducer-free properties of the vectors, we constructed inducer-free expression plasmids by removing the lacI gene and characterized their properties. First, we examined the ability to repress a reporter gene in E. coli, which is a prominent property facilitating the construction of the expression vectors carrying a target gene. The β-galactosidase (bgaB gene) basal levels expressed from Pgrac01-bgaB could be repressed at least twice in the E. coli cloning strain. Second, the inducer-free production of BgaB from four different plasmids with the Pgrac01 promoter in B. subtilis was investigated. As expected, BgaB expression levels of inducer-free constructs are at least 37 times higher than that of the inducible constructs in the absence of IPTG, and comparable to those in the presence of the inducer. Third, using efficient IPTG-inducible expression vectors containing the strong promoter Pgrac100, we could convert them into inducer-free expression plasmids. The BgaB production levels from the inducer-free plasmid in the absence of the inducer were at least 4.5 times higher than that of

  13. Uterine contraction induced by Tanzanian plants used to induce abortion

    DEFF Research Database (Denmark)

    Nikolajsen, Tine; Nielsen, Frank; Rasch, Vibeke

    2011-01-01

    Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect.......Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect....

  14. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  15. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  16. New skeletal sesquiterpenoids, caprariolides A-D, from Capraria biflora and their insecticidal activity.

    Science.gov (United States)

    Collins, D O; Gallimore, W A; Reynolds, W F; Williams, L A; Reese, P B

    2000-11-01

    Four structurally novel isomeric sesquiterpenes have been isolated from the aerial parts of Capraria biflora. Caprariolides A (1), B (2), C (3), and D (4) have been determined by NMR spectroscopy experiments to be the (3S,5S,9R), (3R,5S,9R), (3R,5R,9R), and (3S,5R, 9R) isomers of 7-(furan-3'-yl)-3,9-dimethyl-1-oxaspiro[4. 5]dec-6-en-2-one, respectively. Both 1 and 2 were found to exhibit insecticidal activity against adult Cylas formicarius elegantulus, one of the most destructive insect pests of the sweet potato, Ipomoea sp.

  17. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    Science.gov (United States)

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  18. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  19. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  20. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  1. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  2. Chemical-induced Vitiligo

    Science.gov (United States)

    Harris, John E.

    2016-01-01

    Synopsis Chemical-induced depigmentation of the skin has been recognized for over 75 years, first as an occupational hazard but then extending to those using household commercial products as common as hair dyes. Since their discovery, these chemicals have been used therapeutically in patients with severe vitiligo to depigment their remaining skin and improve their appearance. The importance of recognizing this phenomenon was highlighted during an outbreak of vitiligo in Japan during the summer of 2013, when over 16,000 users of a new skin lightening cosmetic cream developed skin depigmentation at the site of contact with the cream and many in remote areas as well. Depigmenting chemicals appear to be analogs of the amino acid tyrosine that disrupt melanogenesis and result in autoimmunity and melanocyte destruction. Because chemical-induced depigmentation is clinically and histologically indistinguishable from non-chemically induced vitiligo, and because these chemicals appear to induce melanocyte autoimmunity, this phenomenon should be known as “chemical-induced vitiligo”, rather than less accurate terms that have been previously used. PMID:28317525

  3. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    Science.gov (United States)

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  4. Pump, sodium, inducer, intermediate size (ISIP) (impeller/inducer/diffuser retrofit)

    International Nuclear Information System (INIS)

    Paradise, D.R.

    1978-01-01

    This specification defines the requirements for the Intermediate-Size Inducer Pump (ISIP), which is to be made by replacing the impeller of the FFTF Prototype Pump with a new inducer, impeller, diffuser, seal, and necessary adapter hardware. Subsequent testing requirements of the complete pump assembly are included

  5. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  6. Drug-induced thrombocytopenia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1997-01-01

    induced by non-cytotoxic drugs is characterised by heterogeneous clinical picture and recovery is generally rapid. Although corticosteroids seem inefficient, we still recommend that severe symptomatic cases of drug-induced thrombocytopenia are treated as idiopathic thrombocytopenic purpura due...

  7. Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria

    Energy Technology Data Exchange (ETDEWEB)

    Murgu, Michael; Santos, Luiz F. Arruda; Souza, Gezimar D. de; Daolio, Cristina; Ferreira, Antonio Gilberto; Rodrigues-Filho, Edson [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Schneider, Bernd [Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena (Germany)

    2008-07-01

    During our screening of tropical plants for endophyte microorganisms, a Xylareaceous fungus was found living on the internal part of Sapindus saponaria fruits. The fruits of S. saponaria accumulate great amounts of triterpenoidal and sesquiterpenoidal saponins. The saponin 3-O-({beta}-D-xylopyranosyl)-(1{yields}3)-{alpha}-L -rhamnopyranosyl-(1{yields}2)-{alpha}-L-arabinopyranosyl-hederagenin was isolated using chromatographic methods, after alkaline hydrolysis of the crude extract obtained from S. saponaria fruits and added to the culture medium used to grows the fungus. A new saponin was isolated from this experiment by preparative scale HPLC and characterized as a 22{alpha}-hydroxy derivative. The structure of this hydroxylated saponin was elucidated based on interpretation of MS/MS data and NMR spectra. (author)

  8. Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria

    International Nuclear Information System (INIS)

    Murgu, Michael; Santos, Luiz F. Arruda; Souza, Gezimar D. de; Daolio, Cristina; Ferreira, Antonio Gilberto; Rodrigues-Filho, Edson

    2008-01-01

    During our screening of tropical plants for endophyte microorganisms, a Xylareaceous fungus was found living on the internal part of Sapindus saponaria fruits. The fruits of S. saponaria accumulate great amounts of triterpenoidal and sesquiterpenoidal saponins. The saponin 3-O-(β-D-xylopyranosyl)-(1→3)-α-L -rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl-hederagenin was isolated using chromatographic methods, after alkaline hydrolysis of the crude extract obtained from S. saponaria fruits and added to the culture medium used to grows the fungus. A new saponin was isolated from this experiment by preparative scale HPLC and characterized as a 22α-hydroxy derivative. The structure of this hydroxylated saponin was elucidated based on interpretation of MS/MS data and NMR spectra. (author)

  9. Search for β-Secretase Inhibitors from Natural Spices.

    Science.gov (United States)

    Matsumura, Shinichi; Murata, Kazuya; Yoshioka, Yuri; Matsuda, Hideaki

    2016-04-01

    The growing number of Alzheimer's disease (AD) patients prompted us to seek effective natural resources for the prevention of AD. We focused on the inhibition of β-secretase, which is known to catalyze the production of senile plaque. Sixteen spices used in Asian countries were selected for the screening. Among the extracts tested, hexane extracts obtained from turmeric, cardamom, long pepper, cinnamon, Sichuan pepper, betel, white turmeric and aromatic ginger showed potent inhibitory activities. Their active principles were identified as sesquiterpenoids, monoterpenoids, fatty acid derivatives and phenylpropanoids using GC-MS analyses. The chemical structures and IC50 values of the compounds are disclosed. The results suggest that long-term consumption'of aromatic compounds from spices could be effective in the prevention of AD.

  10. HPLC-MS and GC-MS analyses combined with orthogonal partial least squares to identify cytotoxic constituents from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Jiang, Jianlan; Zhang, Huan; Li, Zidan; Zhang, Xiaohang; Su, Xin; Li, Yan; Qiao, Bin; Yuan, Yingjin

    2013-08-01

    We investigated the fingerprints of 48 batches of turmeric total extracts (TTE) by HPLC-MS-MS and GC-MS analyses and 43 characteristic peaks (22 constituents from HPLC-MS-MS; 21 from GC-MS) were analyzed qualitatively and quantitatively. An MTT {3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide} assay was implemented to measure the cytotoxicity of the TTE against HeLa cells. Then we utilized orthogonal partial least squares analysis, which correlated the chemical composition of the TTE to its cytotoxic activity, to identify potential cytotoxic constituents from turmeric. The result showed that 19 constituents contributed significantly to the cytotoxicity. The obtained result was verified by canonical correlation analysis. Comparison with previous reports also indicated some interaction between the curcuminoids and sesquiterpenoids in turmeric.

  11. A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from South East Asia

    Science.gov (United States)

    Van Aarssen, B. G. K.; Cox, H. C.; Hoogendoorn, P.; De Leeuw, J. W.

    1990-11-01

    The chemical composition of a fossil resin from a Miocene outcrop in Brunei, South East Asia, is compared with its extant counterpart dammar, obtained from trees of the family Dipterocarpaceae, to establish the nature of the precursor of bicadinanes. The alcohol soluble fractions of the resins consist of functionalised triterpenoids and a small amount of sesquiterpenoids. None of the compounds present in this fraction bears any structural relation to bicadinanes. The alcohol insoluble fractions of the resins consist of a polymer based on cadinene. A structure for this polymer is proposed. Heating the polymer in dammar resin resulted in the formation of monomeric, dimeric, and trimeric cadinenes. It is thought that the naturally occurring bicadinanes result from dimeric cadinenes upon cyclisation.

  12. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator.

    Science.gov (United States)

    Balao, Francisco; Herrera, Javier; Talavera, Salvador; Dötterl, Stefan

    2011-05-01

    Scent emission is important in nocturnal pollination systems, and plant species pollinated by nocturnal insects often present characteristic odor compositions and temporal patterns of emission. We investigated the temporal (day/night; flower lifetime) and spatial (different flower parts, nectar) pattern of flower scent emission in nocturnally pollinated Dianthusinoxianus, and determined which compounds elicit physiological responses on the antennae of the sphingid pollinator Hyles livornica. The scent of D.inoxianus comprises 68 volatile compounds, but is dominated by aliphatic 2-ketones and sesquiterpenoids, which altogether make up 82% of collected volatiles. Several major and minor compounds elicit electrophysiological responses in the antennae of H. livornica. Total odor emission does not vary along day and night hours, and neither does along the life of the flower. However, the proportion of compounds eliciting physiological responses varies between day and night. All flower parts as well as nectar release volatiles. The scent of isolated flower parts is dominated by fatty acid derivatives, whereas nectar is dominated by benzenoids. Dissection (= damage) of flowers induced a ca. 20-fold increase in the rate of emission of EAD-active volatiles, especially aliphatic 2-ketones. We suggest that aliphatic 2-ketones might contribute to pollinator attraction in D. inoxianus, even though they have been attributed an insect repellent function in other plant species. We also hypothesize that the benzenoids in nectar may act as an honest signal ('nectar guide') for pollinators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy.

    Directory of Open Access Journals (Sweden)

    Adriana Monserrath Orellana-Paucar

    Full Text Available In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ. In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf] in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.

  14. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy.

    Science.gov (United States)

    Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter A M; Esguerra, Camila V

    2013-01-01

    In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.

  15. Diet induced thermogenesis

    NARCIS (Netherlands)

    Westerterp, K.R.

    2004-01-01

    OBJECTIVE: Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. METHODS: Measuring

  16. Bleomycin-induced pneumonitis

    NARCIS (Netherlands)

    S. Sleijfer (Stefan)

    2001-01-01

    textabstractThe cytotoxic agent bleomycin is feared for its induction of sometimes fatal pulmonary toxicity, also known as bleomycin-induced pneumonitis (BIP). The central event in the development of BIP is endothelial damage of the lung vasculature due to bleomycin-induced

  17. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Science.gov (United States)

    Gendrin, Mathilde; Welchman, David P.; Poidevin, Mickael; Hervé, Mireille; Lemaitre, Bruno

    2009-01-01

    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila. PMID:20019799

  18. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    Science.gov (United States)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near

  19. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.

    Directory of Open Access Journals (Sweden)

    Marta Berrocal-Lobo

    2010-12-01

    Full Text Available Pathogen associated molecular patterns (PAMPs are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA, jasmonic acid (JA and ethylene (ET signaling pathways. One of these genes is ATL9 ( = ATL2G, which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET, full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst.

  20. The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity

    Science.gov (United States)

    Kadota, Yasuhiro; Huang, Pin-Yao; Chien, Hsiao-Chiao; Chu, Po-Wei; Zimmerli, Laurent

    2016-01-01

    Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation. PMID:27317676

  1. WRKY71 and TGA1a physically interact and synergistically regulate the activity of a novel promoter isolated from Petunia vein-clearing virus.

    Science.gov (United States)

    Shrestha, Ankita; Khan, Ahamed; Mishra, Dipti Ranjan; Bhuyan, Kashyap; Sahoo, Bhabani; Maiti, Indu B; Dey, Nrisingha

    2018-02-01

    Caulimoviral promoters have become excellent tools for efficient transgene expression in plants. However, the transcriptional framework controlling their systematic regulation is poorly understood. To understand this regulatory mechanism, we extensively studied a novel caulimoviral promoter, PV8 (-163 to +138, 301 bp), isolated from Petunia vein-clearing virus (PVCV). PVCV was found to be Salicylic acid (SA)-inducible and 2.5-3.0 times stronger than the widely used CaMV35S promoter. In silico analysis of the PV8 sequence revealed a unique clustering of two stress-responsive cis-elements, namely, as-1 1 and W-box 1-2 , located within a span of 31 bp (-74 to -47) that bound to the TGA1a and WRKY71 plant transcription factors (TFs), respectively. We found that as-1 (TTACG) and W-box (TGAC) elements occupied both TGA1a and WRKY71 on the PV8 backbone. Mutational studies demonstrated that the combinatorial influence of as-1 (-57) and W-box 1-2 (-74 and -47) on the PV8 promoter sequence largely modulated its activity. TGA1a and WRKY71 physically interacted and cooperatively enhanced the transcriptional activity of the PV8 promoter. Biotic stress stimuli induced PV8 promoter activity by ~1.5 times. We also established the possible pathogen-elicitor function of AtWRKY71 and NtabWRKY71 TFs. Altogether, this study elucidates the interplay between TFs, biotic stress and caulimoviral promoter function. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Induced abortion in Taiwan.

    Science.gov (United States)

    Wang, P D; Lin, R S

    1995-04-01

    Induced abortion is widely practised in Taiwan; however, it had been illegal until 1985. It was of interest to investigate induced abortion practices in Taiwan after its legalization in 1985 in order to calculate the prevalence rate and ratio of induced abortion to live births and to pregnancies in Taiwan. A study using questionnaires through personal interviews was conducted on more than seventeen thousand women who attended a family planning service in Taipei metropolitan areas between 1991 and 1992. The reproductive history and sexual behaviour of the subjects were especially focused on during the interviews. Preliminary findings showed that 46% of the women had a history of having had an induced abortion. Among them, 54.8% had had one abortion, 29.7% had had two, and 15.5% had had three or more. The abortion ratio was 379 induced abortions per 1,000 live births and 255 per 1,000 pregnancies. The abortion ratio was highest for women younger than 20 years of age, for aboriginal women and for nulliparous women. When logistic regression was used to control for confounding variables, we found that the number of previous live births is the strongest predictor relating to women seeking induced abortion. In addition, a significant positive association exists between increasing number of induced abortions and cervical dysplasia.

  3. Surface Polar Lipids Differ in Male and Female Phlebotomus papatasi (Diptera: Psychodidae)

    Science.gov (United States)

    2014-11-01

    hereafter referred to as unfed females) were removed from a separate cage and placed in a glass vial. The ßies in each group were anesthetized with CO2 and...An elicitor of plant volatiles from beet armyworm oral secretion. Sci- ence 276: 945Ð949. Blomquist, G. J., and A.-G. Bagnères. 2010. Insect hydro...Jeanbourquin, P. M. Guerin, A. M. Hooper, S. Claude, R. Tabacchi, S. Sano, and K. Mori. 2005. (1S,3S,7R)-3- methyl -alpha-himachalene from the male

  4. The Reserpine Production and Callus Growth of Indian Snake Root (Rauvolfia serpentina (L.) Benth. Ex Kurz) Culture by Addition of Cu2+

    OpenAIRE

    NUNUNG NURCAHYANI; SOLICHATUN; ENDANG ANGGARWULAN

    2008-01-01

    The objectives of this research were to study the effects of Cu2+ addition on the reserpine production and callus growth from in vitro culture indian snake root (Rauvolfia serpentina (L.) Benth. Ex Kurz). This research frame work was based on the potency of snake root which was many exploited as anti-hypertension. The addition of elicitor Cu2+ in the form of CuCl2 would influence the ion transport of cell and changed of cytoplasm pH, and also has effects on synthesis and activity of enzymes w...

  5. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR.

    Science.gov (United States)

    Daems, Devin; Peeters, Bernd; Delport, Filip; Remans, Tony; Lammertyn, Jeroen; Spasic, Dragana

    2017-07-31

    Abstract : Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery ( Apium graveolens ) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd ). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement ( R ² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  6. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    KAUST Repository

    Meier, Stuart; Ruzvidzo, Oziniel; Morse, Monique; Donaldson, Lara; Kwezi, Lusisizwe; Gehring, Christoph A

    2010-01-01

    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  7. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    Science.gov (United States)

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  8. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  9. The arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes

    KAUST Repository

    Meier, Stuart

    2010-01-26

    Background: Second messengers have a key role in linking environmental stimuli to physiological responses. One such messenger, guanosine 3?,5?-cyclic monophosphate (cGMP), has long been known to be an essential signaling molecule in many different physiological processes in higher plants, including biotic stress responses. To date, however, the guanylyl cyclase (GC) enzymes that catalyze the formation of cGMP from GTP have largely remained elusive in higher plants. Principal Findings: We have identified an Arabidopsis receptor type wall associated kinase-like molecule (AtWAKL10) as a candidate GC and provide experimental evidence to show that the intracellular domain of AtWAKL10431-700 can generate cGMP in vitro. Further, we also demonstrate that the molecule has kinase activity indicating that AtWAKL10 is a twin-domain catalytic protein. A co-expression and stimulus-specific expression analysis revealed that AtWAKL10 is consistently coexpressed with well characterized pathogen defense related genes and along with these genes is induced early and sharply in response to a range of pathogens and their elicitors. Conclusions: We demonstrate that AtWAKL10 is a twin-domain, kinase-GC signaling molecule that may function in biotic stress responses that are critically dependent on the second messenger cGMP. © 2010 Meier et al.

  10. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  11. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  12. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    Science.gov (United States)

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host’s redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa’s immediate confrontation with “foreign” reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa’s microbiome to improve stress resistance in other plant species. PMID:26834724

  13. Paliperidone palmitate-induced sialorrhoea

    Directory of Open Access Journals (Sweden)

    Cengiz Cengisiz

    2016-03-01

    Full Text Available Extrapyramidal, metabolic, and cardiac side effects were reported for atypical antipsychotics; although a few resources show paliperidone-induced sialorrhea, there are no resources that show paliperidone palmitate-induced sialorrhea. In this paper, we present the paliperidone palmitate-induced sialorrhea side effects of a patient who applied on our clinic [Cukurova Med J 2016; 41(0.100: 8-13

  14. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence.

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2017-07-20

    Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  16. Second-order nonlinearity induced transparency.

    Science.gov (United States)

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  17. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  18. Inducible Laryngeal Obstruction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal Obstruction

    Science.gov (United States)

    2017-10-20

    REPORT TYPE 10/20/2017 Poster 4. TITLE AND SUBTITLE Inducible Laryngeal Obstrnction: Excessive Dynamic Airway Collapse vs. Inducible Laryngeal...REPORT b.ABSTRACT c. THIS PAGE ABSTRACT OF PAGES 3. DATES COVERED (From - To) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  19. Traffic forecasts ignoring induced demand

    DEFF Research Database (Denmark)

    Næss, Petter; Nicolaisen, Morten Skou; Strand, Arvid

    2012-01-01

    the model calculations included only a part of the induced traffic, the difference in cost-benefit results compared to the model excluding all induced traffic was substantial. The results show lower travel time savings, more adverse environmental impacts and a considerably lower benefitcost ratio when...... induced traffic is partly accounted for than when it is ignored. By exaggerating the economic benefits of road capacity increase and underestimating its negative effects, omission of induced traffic can result in over-allocation of public money on road construction and correspondingly less focus on other...... performance of a proposed road project in Copenhagen with and without short-term induced traffic included in the transport model. The available transport model was not able to include long-term induced traffic resulting from changes in land use and in the level of service of public transport. Even though...

  20. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Science.gov (United States)

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.