WorldWideScience

Sample records for elevates intracellular calcium

  1. ERK1/2 mediates sperm acrosome reaction through elevation of intracellular calcium concentration.

    Science.gov (United States)

    Jaldety, Yael; Breitbart, Haim

    2015-10-01

    Mammalian sperm acquire fertilization capacity after residing in the female reproductive tract for a few hours in a process called capacitation. Only capacitated sperm can bind the zona pellucida (ZP) of the egg and undergo the acrosome reaction, a process that allows penetration and fertilization. Extracellular signal regulated kinase (ERK1/2) mediates signalling in many cell types, however its role in sperm function is largely unknown. Here we show that ERK1/2 is highly phosphorylated/activated after a short incubation of mouse sperm under capacitation conditions and that this phosphorylation is reduced after longer incubation. Further phosphorylation was observed upon addition of crude extract of egg ZP or epidermal growth factor (EGF). The mitogen-activated ERK-kinase (MEK) inhibitor U0126 abolished ERK1/2 phosphorylation, in vitro fertilization rate and the acrosome reaction induced by ZP or EGF but not by the Ca2+-ionophore A23187. Moreover, inhibition of ERK1/2 along the capacitation process diminished almost completely the sperm's ability to go through the acrosome reaction, while inhibition at the end of capacitation attenuated the acrosome reaction rate by only 45%. The fact that the acrosome reaction, induced by the Ca2+ -ionophore A23187, was not inhibited by U0126 suggests that ERK1/2 mediates the acrosome reaction by activating Ca2+ transport into the cell. Direct determination of intracellular [Ca2+] revealed that Ca2+ influx induced by EGF or ZP was completely blocked by U0126. Thus, it has been established that the increase in ERK1/2 phosphorylation/activation in response to ZP or by activation of the EGF receptor (EGFR) by EGF, is a key event for intracellular Ca2+ elevation and the subsequent occurrence of the acrosome reaction.

  2. Differential enhancement of leukaemia cell differentiation without elevation of intracellular calcium by plant-derived sesquiterpene lactone compounds

    Science.gov (United States)

    Kim, S H; Danilenko, M; Kim, T S

    2008-01-01

    Background and purpose: All-trans retinoic acid (ATRA) induces complete remission in a majority of acute promyelocytic leukaemia patients, but resistance of leukaemic cells to ATRA and its toxicity, such as hypercalcaemia, lead to a limitation of treatment. Therefore, combination therapies with differentiation-enhancing agents at non-toxic concentrations of ATRA may overcome its side effects. Here, we investigated the effect of plant-derived sesquiterpene lactone compounds and their underlying mechanisms in ATRA-induced differentiation of human leukaemia HL-60 cells. Experimental approach: HL-60 cells were treated with four sesquiterpene lactones (helenalin, costunolide, parthenolide and sclareolide) and cell differentiation was determined by NBT reduction, Giemsa and cytofluorometric analyses. Signalling pathways were assessed by western blotting, gel-shift assay and kinase activity determinations and intracellular calcium levels were determined using a calcium-specific fluorescent probe. Key results: Helenalin, costunolide and parthenolide, but not sclareolide, increased ATRA-induced HL-60 cell differentiation into a granulocytic lineage. Signalling kinases PKC and ERK were involved in the ATRA-induced differentiation enhanced by all of the effective sesquiterpene lactones, but JNK and PI3-K were involved in the ATRA-induced differentiation enhanced by costunolide and parthenolide. Enhancement of cell differentiation closely correlated with inhibition of NF-κB DNA-binding activity by all three effective compounds. Importantly, enhancement of differentiation induced by 50 nM ATRA by the sesquiterpene lactones was not accompanied by elevation of basal intracellular calcium concentrations. Conclusions and implications: These results indicate that plant-derived sesquiterpene lactones may enhance ATRA-mediated cell differentiation through distinct pathways. PMID:18724384

  3. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  4. Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration ([ca2+]I) in mcf-7 breast cancer cells.

    Science.gov (United States)

    Varghese, Elizabeth; Büsselberg, Dietrich

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = -0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  5. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Varghese

    2014-11-01

    Full Text Available Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i in breast cancer cells (MCF-7. Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM with a strong negative correlation (r = −0.713 to viability. Pharmacological modulators 2-APB (50 μM, Nimodipine (10 μM, Caffeine (10 mM, SKF 96365(20 μM were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  6. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)

    2014-11-06

    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  7. Intracellular sphingosine releases calcium from lysosomes

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-01-01

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC. DOI: http://dx.doi.org/10.7554/eLife.10616.001 PMID:26613410

  8. Ca2+ Content and Expression of an Acidocalcisomal Calcium Pump Are Elevated in Intracellular Forms of Trypanosoma cruzi

    OpenAIRE

    Lu, Hong-Gang; Zhong, Li; Souza,Wanderley de; Benchimol, Marlene; Moreno, Silvia; Docampo, Roberto

    1998-01-01

    The survival of a eukaryotic protozoan as an obligate parasite in the interior of a eukaryotic host cell implies its adaptation to an environment with a very different ionic composition from that of its extracellular habitat. This is particularly important in the case of Ca2+, the intracellular concentration of which is 3 orders of magnitude lower than the extracellular value. Ca2+ entry across the plasma membrane is a widely recognized mechanism for Ca2+ signaling, needed for a number of int...

  9. Extracellular and Intracellular Regulation of Calcium Homeostasis

    Directory of Open Access Journals (Sweden)

    Felix Bronner

    2001-01-01

    Full Text Available An organism with an internal skeleton must accumulate calcium while maintaining body fluids at a well-regulated, constant calcium concentration. Neither calcium absorption nor excretion plays a significant regulatory role. Instead, isoionic calcium uptake and release by bone surfaces causes plasma calcium to be well regulated. Very rapid shape changes of osteoblasts and osteoclasts, in response to hormonal signals, modulate the available bone surfaces so that plasma calcium can increase when more low-affinity bone calcium binding sites are made available and can decrease when more high-affinity binding sites are exposed. The intracellular free calcium concentration of body cells is also regulated, but because cells are bathed by fluids with vastly higher calcium concentration, their major regulatory mechanism is severe entry restriction. All cells have a calcium-sensing receptor that modulates cell function via its response to extracellular calcium. In duodenal cells, the apical calcium entry structure functions as both transporter and a vitamin D–responsive channel. The channel upregulates calcium entry, with intracellular transport mediated by the mobile, vitamin D–dependent buffer, calbindin D9K, which binds and transports more than 90% of the transcellular calcium flux. Fixed intracellular calcium binding sites can, like the body's skeleton, take up and release calcium that has entered the cell, but the principal regulatory tool of the cell is restricted entry.

  10. (Z)3,4,5,4‧-trans-tetramethoxystilbene, a new analogue of resveratrol, inhibits gefitinb-resistant non-small cell lung cancer via selectively elevating intracellular calcium level

    Science.gov (United States)

    Fan, Xing-Xing; Yao, Xiao-Jun; Xu, Su Wei; Wong, Vincent Kam-Wai; He, Jian-Xing; Ding, Jian; Xue, Wei-Wei; Mujtaba, Tahira; Michelangeli, Francesco; Huang, Min; Huang, Jun; Xiao, Da-Kai; Jiang, Ze-Bo; Zhou, Yan-Ling; Kin-Ting Kam, Richard; Liu, Liang; Lai-Han Leung, Elaine

    2015-11-01

    Calcium is a second messenger which is required for regulation of many cellular processes. However, excessive elevation or prolonged activation of calcium signaling would lead to cell death. As such, selectively regulating calcium signaling could be an alternative approach for anti-cancer therapy. Recently, we have identified an effective analogue of resveratrol, (Z)3,4,5,4‧-trans-tetramethoxystilbene (TMS) which selectively elevated the intracellular calcium level in gefitinib-resistant (G-R) non-small-cell lung cancer (NSCLC) cells. TMS exhibited significant inhibitory effect on G-R NSCLC cells, but not other NSCLC cells and normal lung epithelial cells. The phosphorylation and activation of EGFR were inhibited by TMS in G-R cells. TMS induced caspase-independent apoptosis and autophagy by directly binding to SERCA and causing endoplasmic reticulum (ER) stress and AMPK activation. Proteomics analysis also further confirmed that mTOR pathway, which is the downstream of AMPK, was significantly suppressed by TMS. JNK, the cross-linker of ER stress and mTOR pathway was significantly activated by TMS. In addition, the inhibition of JNK activation can partially block the effect of TMS. Taken together, TMS showed promising anti-cancer activity by mediating calcium signaling pathway and inducing apoptosis as well as autophagy in G-R NSCLC cells, providing strategy in designing multi-targeting drug for treating G-R patients.

  11. Spatiotemporal intracellular calcium dynamics during cardiac alternans

    Science.gov (United States)

    Restrepo, Juan G.; Karma, Alain

    2009-09-01

    Cellular calcium transient alternans are beat-to-beat alternations in the peak cytosolic calcium concentration exhibited by cardiac cells during rapid electrical stimulation or under pathological conditions. Calcium transient alternans promote action potential duration alternans, which have been linked to the onset of life-threatening ventricular arrhythmias. Here we use a recently developed physiologically detailed mathematical model of ventricular myocytes to investigate both stochastic and deterministic aspects of intracellular calcium dynamics during alternans. The model combines a spatially distributed description of intracellular calcium cycling, where a large number of calcium release units are spatially distributed throughout the cell, with a full set of ionic membrane currents. The results demonstrate that ion channel stochasticity at the level of single calcium release units can influence the whole-cell alternans dynamics by causing phase reversals over many beats during fixed frequency pacing close to the alternans bifurcation. They also demonstrate the existence of a wide range of dynamical states. Depending on the sign and magnitude of calcium-voltage coupling, calcium alternans can be spatially synchronized or desynchronized, in or out of phase with action potential duration alternans, and the node separating out-of-phase regions of calcium alternans can be expelled from or trapped inside the cell. This range of states is found to be larger than previously anticipated by including a robust global attractor where calcium alternans can be spatially synchronized but out of phase with action potential duration alternans. The results are explained by a combined theoretical analysis of alternans stability and node motion using general iterative maps of the beat-to-beat dynamics and amplitude equations.

  12. The influence of extracellular and intracellular calcium on the secretion of renin

    Science.gov (United States)

    Atchison, Douglas K.; Beierwaltes, William H.

    2012-01-01

    Changes in plasma, extracellular and intracellular calcium can affect renin secretion from the renal juxtaglomerular (JG) cells. Elevated intracellular calcium directly inhibits renin release from JG cells by decreasing the dominant second messenger intracellular cyclic adenosine monophosphate (cAMP) via actions on calcium-inhibitable adenylyl cyclases and calcium-activated phosphodiesterases. Increased extracellular calcium also directly inhibits renin release by stimulating the calcium-sensing receptor (CaSR) on JG cells, resulting in parallel changes in the intracellular environment and decreasing intracellular cAMP. In vivo, acutely elevated plasma calcium inhibits plasma renin activity (PRA) via parathyroid hormone-mediated elevations in renal cortical interstitial calcium that stimulate the JG cell CaSR. However, chronically elevated plasma calcium or CaSR activation may actually stimulate PRA. This elevation in PRA may be a compensatory mechanism resulting from calcium-mediated polyuria. Thus, changing the extracellular calcium in vitro or in vivo results in inversely related acute changes in cAMP, and therefore renin release, but chronic changes in calcium may result in more complex interactions dependent upon the duration of changes and the integration of the body’s response to these changes. PMID:22538344

  13. Non-specific inhibition of ischemia- and acidosis-induced intracellular calcium elevations and membrane currents by α-phenyl-N-tert-butylnitrone, butylated hydroxytoluene and trolox.

    Science.gov (United States)

    Katnik, Christopher; Cuevas, Javier

    2014-02-27

    Ischemia, and subsequent acidosis, induces neuronal death following brain injury. Oxidative stress is believed to be a key component of this neuronal degeneration. Acute chemical ischemia (azide in the absence of external glucose) and acidosis (external media buffered to pH 6.0) produce increases in intracellular calcium concentration ([Ca2+]i) and inward membrane currents in cultured rat cortical neurons. Two α-tocopherol analogues, trolox and butylated hydroxytoluene (BHT), and the spin trapping molecule α-Phenyl-N-tert-butylnitrone (PBN) were used to determine the role of free radicals in these responses. PBN and BHT inhibited the initial transient increases in [Ca2+]i, produced by ischemia, acidosis and acidic ischemia and increased steady state levels in response to acidosis and the acidic ischemia. BHT and PBN also potentiated the rate at which [Ca2+]i increased after the initial transients during acidic ischemia. Trolox inhibited peak and sustained increases in [Ca2+]i during ischemia. BHT inhibited ischemia induced initial inward currents and trolox inhibited initial inward currents activated by acidosis and acidic ischemia. Given the inconsistent results obtained using these antioxidants, it is unlikely their effects were due to elimination of free radicals. Instead, it appears these compounds have non-specific effects on the ion channels and exchangers responsible for these responses.

  14. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots.

    Science.gov (United States)

    Vadassery, Jyothilakshmi; Ranf, Stefanie; Drzewiecki, Corinna; Mithöfer, Axel; Mazars, Christian; Scheel, Dierk; Lee, Justin; Oelmüller, Ralf

    2009-07-01

    Calcium (Ca2+), as a second messenger, is crucial for signal transduction processes during many biotic interactions. We demonstrate that cellular [Ca2+] elevations are early events in the interaction between the plant growth-promoting fungus Piriformospora indica and Arabidopsis thaliana. A cell wall extract (CWE) from the fungus promotes the growth of wild-type seedlings but not of seedlings from P. indica-insensitive mutants. The extract and the fungus also induce a similar set of genes in Arabidopsis roots, among them genes with Ca2+ signalling-related functions. The CWE induces a transient cytosolic Ca2+ ([Ca2+](cyt)) elevation in the roots of Arabidopsis and tobacco (Nicotiana tabacum) plants, as well as in BY-2 suspension cultures expressing the Ca2+ bioluminescent indicator aequorin. Nuclear Ca2+ transients were also observed in tobacco BY-2 cells. The Ca2+ response was more pronounced in roots than in shoots and involved Ca2+ uptake from the extracellular space as revealed by inhibitor studies. Inhibition of the Ca2+ response by staurosporine and the refractory nature of the Ca2+ elevation suggest that a receptor may be involved. The CWE does not stimulate H2O2 production and the activation of defence gene expression, although it led to phosphorylation of mitogen-activated protein kinases (MAPKs) in a Ca2+-dependent manner. The involvement of MAPK6 in the mutualistic interaction was shown for an mpk6 line, which did not respond to P. indica. Thus, Ca2+ is likely to be an early signalling component in the mutualistic interaction between P. indica and Arabidopsis or tobacco.

  15. FLIPR assays of intracellular calcium in GPCR drug discovery

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Bräuner-Osborne, Hans

    2009-01-01

    -Galpha(q)-coupled GPCRs can be tweaked to modulate intracellular calcium by co-transfection with promiscuous or chimeric/mutated G proteins making the calcium assays broadly applicable in GPCR research. Third, the price of instruments capable of measuring fluorescent-based calcium indicators has become significantly less...

  16. Cadmium induces transcription independently of intracellular calcium mobilization.

    Directory of Open Access Journals (Sweden)

    Brooke E Tvermoes

    Full Text Available BACKGROUND: Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca(2+](i and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. METHODOLOGY/PRINCIPAL FINDING: In the present report, the effects of cadmium on [Ca(2+](i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60, which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca(2+](i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. CONCLUSIONS/SIGNIFICANCE: These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription.

  17. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients

    Directory of Open Access Journals (Sweden)

    García Juan F

    2009-02-01

    Full Text Available Abstract Background Asthenozoospermia is one of the most common findings present in infertile males characterized by reduced or absent sperm motility, but its aetiology remains unknown in most cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study we have investigated the progesterone-evoked intracellular calcium signal in ejaculated spermatozoa from men with normospermia or asthenozoospermia. Methods Human ejaculates were obtained from healthy volunteers and asthenospermic men by masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2. Results Treatment of spermatozoa from normospermic men with 20 micromolar progesterone plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in cytosolic free calcium concentration due to calcium release from internal stores. Similar results were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition of calcium to the external medium evoked a sustained elevation in cytosolic free calcium concentration indicative of capacitative calcium entry. However, when progesterone plus thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium signal and subsequent calcium entry was much smaller compared to normospermic patients. As expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide decreased the calcium entry evoked by depletion of internal calcium stores in normospermic patients, whereas these treatments proved to be ineffective at modifying the calcium entry in patients with asthenozoospermia. Conclusion Our results suggest

  18. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism.

    Science.gov (United States)

    Rassner, Michael P; Moser, Andreas; Follo, Marie; Joseph, Kevin; van Velthoven-Wurster, Vera; Feuerstein, Thomas J

    2016-04-01

    In epilepsy, the GABA and glutamate balance may be disrupted and a transient decrease in extracellular calcium occurs before and during a seizure. Flow Cytometry based fluorescence activated particle sorting experiments quantified synaptosomes from human neocortical tissue, from both epileptic and non-epileptic patients (27.7% vs. 36.9% GABAergic synaptosomes, respectively). Transporter-mediated release of GABA in human and rat neocortical synaptosomes was measured using the superfusion technique for the measurement of endogenous GABA. GABA release was evoked by either a sodium channel activator or a sodium/potassium-ATPase inhibitor when exocytosis was possible or prevented, and when the sodium/calcium exchanger was active or inhibited. The transporter-mediated release of GABA is because of elevated intracellular sodium. A reduction in the extracellular calcium increased this release (in both non-epileptic and epileptic, except Rasmussen encephalitis, synaptosomes). The inverse was seen during calcium doubling. In humans, GABA release was not affected by exocytosis inhibition, that is, it was solely transporter-mediated. However, in rat synaptosomes, an increase in GABA release at zero calcium was only exhibited when the exocytosis was prevented. The absence of calcium amplified the sodium/calcium exchanger activity, leading to elevated intracellular sodium, which, together with the stimulation-evoked intracellular sodium increment, enhanced GABA transporter reversal. Sodium/calcium exchange inhibitors diminished GABA release. Thus, an important seizure-induced extracellular calcium reduction might trigger a transporter- and sodium/calcium exchanger-related anti-seizure mechanism by augmenting transporter-mediated GABA release, a mechanism absent in rats. Uniquely, the additional increase in GABA release because of calcium-withdrawal dwindled during the course of illness in Rasmussen encephalitis. Seizures cause high Na(+) influx through action potentials. A

  19. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    Science.gov (United States)

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  20. The mechanical environment modulates intracellular calcium oscillation activities of myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Charles Godbout

    Full Text Available Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

  1. CALCIUM RELEASE FROM INTRACELLULAR STORES IS NECESSARY FOR THE PHOTOPHOBIC RESPONSE IN THE BENTHIC DIATOM NAVICULA PERMINUTA (BACILLARIOPHYCEAE)(1).

    Science.gov (United States)

    McLachlan, Deirdre H; Underwood, Graham J C; Taylor, Alison R; Brownlee, Colin

    2012-06-01

    Complex photoreceptor pathways exist in algae to exploit light as a sensory stimulus. Previous studies have implicated calcium in blue-light signaling in plants and algae. A photophobic response to high-intensity blue light was characterized in the marine benthic diatom Navicula perminuta (Grunow) in van Heurck. Calcium modulators were used to determine the involvement of calcium in the signaling of this response, and the fluorescent calcium indicator Calcium Crimson was used to image changes in intracellular [Ca(2+) ] during a response. A localized, transient elevation of Calcium Crimson fluorescence was seen at the cell tip at the time of cell reversal. Intracellular calcium release inhibitors produced a significant decrease in the population photophobic response. Treatments known to decrease influx of extracellular calcium had no effect on the population photophobic response but did cause a significant decrease in average cell speed. As the increase in intracellular [Ca(2+) ] at the cell tip corresponded to the time of direction change rather than the onset of the light stimulus, it would appear that Ca(2+) constitutes a component of the switching mechanism that leads to reversal of the locomotion machinery. Our current evidence suggests that the source of this Ca(2+) is intracellular. © 2012 Phycological Society of America.

  2. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells.

    Directory of Open Access Journals (Sweden)

    Nurdan Ozkucur

    Full Text Available BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm and weak (< or = 5 V/cm dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological

  3. Abnormal intracellular calcium homeostasis associated with vulnerability in the nerve cells from heroin-dependent rat.

    Science.gov (United States)

    Liu, Xiaoshan; Wang, Guangyong; Pu, Hongwei; Jing, Hualan

    2014-07-14

    The cellular mechanisms by which opiate addiction develops with repetitive use remain largely unresolved. Intercellular calcium homeostasis is one of the most critical elements to determine neuroadaptive changes and neuronal fate. Heroin, one of the most addictive opiates, may induce neurotoxicity potentially inducing brain impairment, especially for those chronic users who get an overdose. Here we examined changes in intracellular calcium concentration ([Ca2+]i) after repeated exposure to heroin using cultured cerebral cortical neurons. Dynamic changes in [Ca2+]i indicated by fluo-3-AM were monitored using confocal laser scan microscopy, followed by cytotoxicity assessments. It showed that the cells dissociated from heroin-dependent rats had a smaller depolarization-induced [Ca2+]i responses, and a higher elevation in [Ca2+]i when challenged with a high concentration of heroin (500 μM). The restoration ability to remove calcium after washout of these stimulants was impaired. Calcium channel blocker verapamil inhibited the heroin-induced [Ca2+]i elevations as well as the heroin-induced cell damage. The relative [Ca2+]i of the nerve cells closely correlated with the number of damaged cells induced by heroin. These results demonstrate that nerve cells from heroin-dependent rats manifest abnormal [Ca2+]i homeostasis, as well as vulnerability to heroin overdose, suggesting involvement of [Ca2+]i regulation mechanisms in heroin addiction and neurotoxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice

    Energy Technology Data Exchange (ETDEWEB)

    Zemel, M.B.; Kim, J.H. [Univ. of Tennessee, Knoxville, TN (United States); Woychik, R.P.; Michaud, E.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hadwell, S.H.; Patel, I.R.; Wilkison, W.O. [Research Institute, Research Triangle Park, NC (United States)

    1995-05-23

    Several dominant mutations at the agouti locus in the mouse cause a syndrome of marked obesity, hyperinsulinemia, and insulin resistance. Although it is known that the agouti gene is expressed in an ectopic manner in these mutants, the precise mechanism by which the agouti gene product mediates these effects is unclear. Since intracellular Ca{sup 2+} is believed to play a role in mediating insulin action and dysregulation of Ca{sup 2+} flux is observed in diabetic animals and humans, we examined the status of intracellular Ca{sup 2+} in mice carrying the dominant agouti allele, viable yellow (A{sup vy}). We show here that in mice carrying this mutation, the intracellular free calcium concentration ([Ca{sup 2+}]{sub i}) is elevated in skeletal muscle, and the degree of elevation is closely correlated with the degree to which the mutant traits are expressed in individual animals. Moreover, we demonstrate that the agouti gene product is capable of inducing increased [Ca{sup 2+}]{sub i} in cultured and freshly isolated skeletal muscle myocytes from wild-type mice. Based on these findings, we present a model in which we propose that the agouti polypeptide promotes insulin resistance in mutant animals through its ability to increase [Ca{sup 2+}]{sub i}. 36 refs., 3 figs., 2 tabs.

  5. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  6. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    Science.gov (United States)

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  7. Model of intracellular calcium cycling in ventricular myocytes.

    Science.gov (United States)

    Shiferaw, Y; Watanabe, M A; Garfinkel, A; Weiss, J N; Karma, A

    2003-12-01

    We present a mathematical model of calcium cycling that takes into account the spatially localized nature of release events that correspond to experimentally observed calcium sparks. This model naturally incorporates graded release by making the rate at which calcium sparks are recruited proportional to the whole cell L-type calcium current, with the total release of calcium from the sarcoplasmic reticulum (SR) being just the sum of local releases. The dynamics of calcium cycling is studied by pacing the model with a clamped action potential waveform. Experimentally observed calcium alternans are obtained at high pacing rates. The results show that the underlying mechanism for this phenomenon is a steep nonlinear dependence of the calcium released from the SR on the diastolic SR calcium concentration (SR load) and/or the diastolic calcium level in the cytosol, where the dependence on diastolic calcium is due to calcium-induced inactivation of the L-type calcium current. In addition, the results reveal that the calcium dynamics can become chaotic even though the voltage pacing is periodic. We reduce the equations of the model to a two-dimensional discrete map that relates the SR and cytosolic concentrations at one beat and the previous beat. From this map, we obtain a condition for the onset of calcium alternans in terms of the slopes of the release-versus-SR load and release-versus-diastolic-calcium curves. From an analysis of this map, we also obtain an understanding of the origin of chaotic dynamics.

  8. Azelnidipine prevents cardiac dysfunction in streptozotocin-diabetic rats by reducing intracellular calcium accumulation, oxidative stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Kain Vasundhara

    2011-11-01

    Full Text Available Abstract Background Numerous evidences suggest that diabetic heart is characterized by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including calcium accumulation, oxidative stress and apoptosis. Therapeutic interventions to prevent calcium accumulation and oxidative stress could be therefore helpful in improving the cardiac function under diabetic condition. Methods This study was designed to examine the effect of long-acting calcium channel blocker (CCB, Azelnidipine (AZL on contractile dysfunction, intracellular calcium (Ca2+ cycling proteins, stress-activated signaling molecules and apoptosis on cardiomyocytes in diabetes. Adult male Wistar rats were made diabetic by a single intraperitoneal (IP injection of streptozotocin (STZ. Contractile functions were traced from live diabetic rats to isolated individual cardiomyocytes including peak shortening (PS, time-to-PS (TPS, time-to-relengthening (TR90, maximal velocity of shortening/relengthening (± dL/dt and intracellular Ca2+ fluorescence. Results Diabetic heart showed significantly depressed PS, ± dL/dt, prolonged TPS, TR90 and intracellular Ca2+ clearing and showed an elevated resting intracellular Ca2+. AZL itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunction. Diabetes increased the levels of superoxide, enhanced expression of the cardiac damage markers like troponin I, p67phox NADPH oxidase subunit, restored the levels of the mitochondrial superoxide dismutase (Mn-SOD, calcium regulatory proteins RyR2 and SERCA2a, and suppressed the levels of the anti-apoptotic Bcl-2 protein. All of these STZ-induced alterations were reconciled by AZL treatment. Conclusion Collectively, the data suggest beneficial effect of AZL in diabetic cardiomyopathy via altering intracellular Ca2+ handling proteins and preventing apoptosis by its antioxidant property.

  9. A Thapsigargin-Resistant Intracellular Calcium Sequestering Compartment in Rat Brain

    Science.gov (United States)

    2000-03-31

    Inesi, G., Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin, J Bioi Chern, 267 (1992) 12606-13. 116 Salvador ...J.M. and Mata , A.M., Characterization of the intracellular and the plasma membrane Ca2+- ATPases in fractionated pig brain membranes using calcium

  10. Vitamin d deficiency is associated with insulin resistance independent of intracellular calcium, dietary calcium and serum levels of parathormone, calcitriol and calcium in premenopausal women.

    Science.gov (United States)

    Ferreira, Thaís da Silva; Rocha, Tatiana Martins; Klein, Márcia Regina Simas Torres; Sanjuliani, Antonio Felipe

    2015-04-01

    There is evidence that vitamin D deficiency is associated with increased risk of cardiovascular disease. However, it is not known if this association is independent of dietary calcium, intracellular calcium and serum levels of parathormone, calcitriol and calcium. To investigate the independent relationship of vitamin D deficiency with insulin resistance, lipid profile, inflammatory status, blood pressure and endothelial function. Cross-sectional study conducted with 73 healthy Brazilian premenopausal women aged 18 - 50 years. All participants were evaluated for: 25 hydroxyvitamin D serum levels, anthropometric parameters, body composition, calcium metabolism, insulin resistance, lipoprotein profile, inflammatory status, blood pressure and endothelial function. Endothelial function was assessed by reactive hyperemia index using Endo-PAT 2000®. Women were stratified in two groups: with vitamin D deficiency (25 hydroxyvitamin D independent of dietary calcium, intracellular calcium and serum levels of parathormone, calcitriol and calcium in healthy premenopausal women. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux.

    Science.gov (United States)

    Joseph, Noah; Reicher, Barak; Barda-Saad, Mira

    2014-02-01

    During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters

  12. Transport phenomena in intracellular calcium dynamics driven by non-Gaussian noises

    Science.gov (United States)

    Lin, Ling; Duan, Wei-Long

    2018-02-01

    The role of non-Gaussian noises on transport characteristic of Ca2+ in intracellular calcium oscillation system driven by non-Gaussian noises is studied by means of second-order stochastic Runge-Kutta type algorithm. The statistical properties of velocity of cytosolic and calcium store's Ca2+ concentration are simulated. The results exhibit, as parameter p(which is used to control the degree of the departure from the non-Gaussian noise and Gaussian noise.)increases, calcium in cytosol shows positive, zero, and negative transport, but in calcium store always hold positive value. As non-Gaussian noises increase, calcium in cytosol appears negative and zero transport, and in calcium store appears positive transport. As correlation time of non-Gaussian noises varies, calcium in both cytosol and calcium store occur negative, zero, and positive transport.

  13. Voltage-dependent mobilization of intracellular calcium in skeletal muscle.

    Science.gov (United States)

    Schneider, M F

    1986-01-01

    In skeletal muscle calcium is released from the sarcoplasmic reticulum (SR), an internal organelle, in response to changes in the voltage across the transverse tubule (T-tubule) membrane, an external membrane system that is distinct from the SR but in close proximity to it. For T-tubule voltage changes within the physiological range, calcium release can be turned on or off on a time scale of milliseconds. The control of calcium release from the SR appears to involve at least three functional components: a voltage sensor in the T-tubule membrane, a calcium channel in the SR, and a mechanism for coupling the voltage sensor to the channel. Movement of charged or dipolar molecules within the T-tubule membrane is thought to serve as the voltage sensor. Such intramembrane charge movement (Q) can be monitored electrically and can be compared with the rate of calcium release from the SR. Calcium release is calculated from cytosolic calcium transients measured with a metallochromic indicator. Comparison of Q and the rate of release in the same isolated muscle fibre indicates that this rate is directly proportional to the amount of charge displaced in excess of a 'threshold' amount. The nature of the coupling mechanism between T-tubules and SR remains to be established but present observations impose some restrictions on possible mechanisms.

  14. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  15. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    Science.gov (United States)

    Asmat, Tauseef M.; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial

  16. Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores.

    Science.gov (United States)

    Asmat, Tauseef M; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-05-20

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial

  17. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Science.gov (United States)

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook

    2015-01-01

    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  18. Effects of energy controllable steep pulses on intracellular calcium concentration and cell membrane potential.

    Science.gov (United States)

    Dong, X-J; Luo, X-D; Xiong, L; Mi, Y; Hu, L-N

    2014-01-01

    Our previous experiments showed that steep pulses could kill tumor cells, but the mechanism is unclear yet. This study was to probe the effects of different dosages of energy controllable steep pulses on intracellular concentration of dissociative calcium ion ([Ca2+]i) and cell membrane potential. The mammary carcinoma cells MDA-MB-231 were divided into control group and 5 different dosages of Energy Controllable Steep Pulses (ECSP) treatment groups. The calcium ion in each group was labeled by Fluo-3/AM individually and the cell membrane potential was labeled by DiBAC4 (3). The mean fluorescence intensity of fluorescent probe in mammary carcinoma cells was observed in quiet state by laser confocal microscopy after ECSP treatment The changes of calcium concentration and cell membrane potential in cells after ECSP treatment were analyzed. The changes of intracellular [Ca2+]i after ECSP treatment were also observed with and without calcium ion outside of the cells. The calcium ion outside of cells influx with lower dosage of pulse in quiet state. With the dosage increase, the intracellular calcium ion outflow. In real time kinetic detection, the mean fluorescence intensity of intracellular calcium ion was increased with the pulse electric field intensity raised in the lower ECSP. When the voltage was 285V, frequency was 100Hz, the [Ca2+]i decreased. The increase of intracellular calcium ion concentration was decreased without calcium ion than with calcium ion outside of cells, but still raised gradually. The lower dosage of ECSP could induce the fluorescence intensity of DiBAC4 (3) in cells increase, which showed that the lower dosage of ECSP could induce the depolarization of cells. With the dosage raised, the fluorescence intensity of DiBAC4 (3) in cells attenuated. This dosage of ECSP could induce the superpolarization of cell membrane. The lower dosage of ECSP can induce the depolarization of cell membrane and induce the inter flow of calcium ion outside of cell

  19. Atomic structure of intracellular amorphous calcium phosphate deposits.

    Science.gov (United States)

    Betts, F; Blumenthal, N C; Posner, A S; Becker, G L; Lehninger, A L

    1975-01-01

    The radial distribution function calculated from x-ray diffraction of mineralized cytoplasmic structures isolated from the hepatopancreas of the blue crab (Callinectes sapidus) is very similar to that previously found for synthetic amorphous calcium phosphate. Both types of mineral apparently have only short-range atomic order, represented as a neutral ion cluster of about 10 A in longest dimension, whose probable composition is expressed by the formula Ca9(PO4)6. The minor differences observed are attributed to the presence in the biological mineral of significant amounts of Mg-2+ and ATP. Synthetic amorphous calcium phosphate in contact with a solution containing an amount of ATP equivalent to that of the biological mineral failed to undergo conversion to the thermodynamically more stable hydroxyapatite. The amorphous calcium phosphate of the cytoplasmic mineral granules is similarly stable, and does not undergo conversion to hydroxyapatite, presumably owing to the presence of ATP and Mg-2+, known in inhibitors of the conversion process. The physiological implications of mineral deposits consisting of stabilized calcium phosphate ion clusters are discussed. PMID:1056015

  20. Intracellular calcium levels as screening tool for nanoparticle toxicity.

    Science.gov (United States)

    Meindl, Claudia; Kueznik, Tatjana; Bösch, Martina; Roblegg, Eva; Fröhlich, Eleonore

    2015-10-01

    The use of engineered nano-sized materials led to revolutionary developments in many industrial applications and in the medical field. These materials, however, also may cause cytotoxicity. In addition to size, surface properties and shape were identified as relevant parameters for cell damage. Cell damage may occur as disruption of membrane integrity, induction of apoptosis and by organelle damage. Generation of oxidative stress may serve as an indicator for cytotoxicity. Effects occurring upon short contact of particles with cells, for instance in the systemic blood circulation, could be identified according to increases of intracellular [Ca(2+) ] levels, which are caused by variety of toxic stimuli. Negatively charged, neutral and positively charged polystyrene particles of different sizes were used to study the role of size and surface properties on viability, membrane disruption, apoptosis, lysosome function, intracellular [Ca(2+) ] levels and generation of oxidative stress. Silica particles served to test this hypothesis. Twenty nm polystyrene particles as well as 12 nm and 40 nm silica particles caused membrane damage and apoptosis with no preference of the surface charge. Only 20 nm plain and amine functionalized polystyrene particles cause oxidative stress and only the plain particles lysosomal damage. A potential role of surface charge was identified for 200 nm polystyrene particles, where only the amidine particles caused lysosomal damage. Increases in intracellular [Ca(2+) ] levels and cytotoxicity after 24 h was often linked but determination of intracellular [Ca(2+) ] levels could serve to characterize further the type of membrane damage. © 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd.

  1. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    Full Text Available Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+ supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa, its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+ levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain in a dose-dependent manner. Phosphorylated FAK (p-FAK was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  2. The mechanoelectric feedback: a novel "calcium clamp" method, using tetanic contraction, for testing the role of the intracellular free calcium.

    Science.gov (United States)

    Yaniv, Yael; Levy, Carmit; Landesberg, Amir

    2006-10-01

    Mechanical perturbations affect the membrane action potential, a phenomenon denoted as the mechanoelectric feedback (MEF), and may elicit cardiac arrhythmias. Two plausible mechanisms were suggested to explain this phenomenon: (i) stretch-activated channels (SACs) within the cell membrane and (ii) modulation of the action potential by the intracellular Ca(2+) (the Calcium hypothesis). The intracellular Ca(2+) varies mainly due to the effects of the mechanical perturbations on the affinity of troponin for calcium. The present study concentrates on the unique experimental methods that allow differentiating between the effects of SAC and Ca(2+) on the action potential. This is achieved by controlling the sarcomere lengths (SLs) independently of the intracellular Ca(2+) concentration, in the intact fiber. A dedicated experimental setup allowed simultaneous measurements of the membrane potential and the mechanical performance (Force and SL). The action potential was measured by voltage-sensitive dye (Di-4-ANEPPS). The SL was measured by laser diffraction technique and was controlled by a fast servomotor. The intracellular Ca(2+) was controlled (calcium clamp) by imposing stable tetanic contractions at various extracellular calcium concentrations ([Ca(2+)](0)s). Tetanus was obtained by 8 Hz stimulation in the presence of cyclopiazonic acid (CPA) (30 muM). Isolated trabeculae from a rat's right ventricle were studied at different SLs and [Ca(2+)](0)s. The experimental data strongly support the calcium hypothesis. Although the action potential duration (APD) decreases at longer SL, the [Ca(2+)](0) has a significantly larger effect on the APD. The APD decreases as the [Ca(2+)](0) increases. Understanding the underlying mechanism opens new research avenues for the development of therapeutic modalities for cardiac arrhythmias.

  3. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic.

    Science.gov (United States)

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A; Gilk, Stacey D

    2017-02-28

    Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death.IMPORTANCE The intracellular Gram-negative bacterium Coxiella burnetii is a significant cause of culture-negative infectious

  4. Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release

    KAUST Repository

    Flegg, Mark B.

    2013-01-01

    The intracellular release of calcium from the endoplasmic reticulum is controlled by ion channels. The resulting calcium signals exhibit a rich spatio-temporal signature, which originates at least partly from microscopic fluctuations. While stochasticity in the gating transition of ion channels has been incorporated into many models, the distribution of calcium is usually described by deterministic reaction-diffusion equations. Here we test the validity of the latter modeling approach by using two different models to calculate the frequency of localized calcium signals (calcium puffs) from clustered IP3 receptor channels. The complexity of the full calcium system is here limited to the basic opening mechanism of the ion channels and, in the mathematical reduction simplifies to the calculation of a first passage time. Two models are then studied: (i) a hybrid model, where channel gating is treated stochastically, while calcium concentration is deterministic and (ii) a fully stochastic model with noisy channel gating and Brownian calcium ion motion. The second model utilises the recently developed two-regime method [M. B. Flegg, S. J. Chapman, and R. Erban, "The two-regime method for optimizing stochastic reaction-diffusion simulations," J. R. Soc., Interface 9, 859-868 (2012)] in order to simulate a large domain with precision required only near the Ca2+ absorbing channels. The expected time for a first channel opening that results in a calcium puff event is calculated. It is found that for a large diffusion constant, predictions of the interpuff time are significantly overestimated using the model (i) with a deterministic non-spatial calcium variable. It is thus demonstrated that the presence of diffusive noise in local concentrations of intracellular Ca2+ ions can substantially influence the occurrence of calcium signals. The presented approach and results may also be relevant for other cell-physiological first-passage time problems with small ligand concentration

  5. Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase.

    Science.gov (United States)

    Boo, Yong Chool; Sorescu, George P; Bauer, Philip M; Fulton, David; Kemp, Bruce E; Harrison, David G; Sessa, William C; Jo, Hanjoong

    2003-10-01

    Shear stress stimulates NO production involving the Ca2+-independent mechanisms in endothelial cells. We have shown that exposure of bovine aortic endothelial cells (BAEC) to shear stress stimulates phosphorylation of eNOS at S635 and S1179 by the protein kinase A- (PKA-) dependent mechanisms. We examined whether phosphorylation of S635 of eNOS induced by PKA stimulates NO production in a calcium-independent manner. Expression of a constitutively active catalytic subunit of PKA (Cqr) in BAEC induced phosphorylation of S635 and S1179 residues and dephosphorylation of T497. Additionally, Cqr expression stimulated NO production, which could not be prevented by treating cells with the intracellular calcium chelator BAPTA-AM. To determine the role of each eNOS phosphorylation site in NO production, HEK-293 cells transfected with eNOS point mutants whereby S116, T497, S635, and S1179 were mutated to either A or D. Maximum NO production from S635D-expressing cells was significantly higher than that of either wild type or S635A in both basal and elevated [Ca2+]i conditions. More interestingly, S635D cells produced NO even when [Ca2+]i was nearly depleted by BAPTA-AM. We confirmed these results obtained in HEK-293 cells in BAEC transfected with S635D, S635A, or wild-type eNOS vector. These findings suggest that, once phosphorylated at S635 residue, eNOS produces NO without requiring any changes in [Ca2+]i. PKA-dependent phosphorylation of eNOS S635 and subsequent basal NO production in a Ca2+-independent manner may play an important role in regulating vascular biology and pathophysiology.

  6. Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes

    Science.gov (United States)

    2005-01-01

    β-NAD+e (extracellular β-NAD+), present at nanomolar levels in human plasma, has been implicated in the regulation of [Ca2+]i (the intracellular calcium concentration) in various cell types, including blood cells, by means of different mechanisms. Here, we demonstrate that micromolar NAD+e (both the α and the β extracellular NAD+ forms) induces a sustained [Ca2+]i increase in human granulocytes by triggering the following cascade of causally related events: (i) activation of adenylate cyclase and overproduction of cAMP; (ii) activation of protein kinase A; (iii) stimulation of ADP-ribosyl cyclase activity and consequent overproduction of cADP-ribose, a universal Ca2+ mobilizer; and (iv) influx of extracellular Ca2+. The NAD+e-triggered [Ca2+]i elevation translates into granulocyte activation, i.e. superoxide and nitric oxide generation, and enhanced chemotaxis in response to 0.1–10 μM NAD+e. Thus extracellular β-NAD+e behaves as a novel pro-inflammatory cytokine, stimulating human granulocytes and potentially recruiting them at sites of inflammation. PMID:16225456

  7. Axotomy depletes intracellular calcium stores in primary sensory neurons.

    Science.gov (United States)

    Rigaud, Marcel; Gemes, Geza; Weyker, Paul D; Cruikshank, James M; Kawano, Takashi; Wu, Hsiang-En; Hogan, Quinn H

    2009-08-01

    The cellular mechanisms of neuropathic pain are inadequately understood. Previous investigations have revealed disrupted Ca signaling in primary sensory neurons after injury. The authors examined the effect of injury on intracellular Ca stores of the endoplasmic reticulum, which critically regulate the Ca signal and neuronal function. Intracellular Ca levels were measured with Fura-2 or mag-Fura-2 microfluorometry in axotomized fifth lumbar (L5) dorsal root ganglion neurons and adjacent L4 neurons isolated from hyperalgesic rats after L5 spinal nerve ligation, compared to neurons from control animals. Endoplasmic reticulum Ca stores released by the ryanodine-receptor agonist caffeine decreased by 46% in axotomized small neurons. This effect persisted in Ca-free bath solution, which removes the contribution of store-operated membrane Ca channels, and after blockade of the mitochondrial, sarco-endoplasmic Ca-ATPase and the plasma membrane Ca ATPase pathways. Ca released by the sarco-endoplasmic Ca-ATPase blocker thapsigargin and by the Ca-ionophore ionomycin was also diminished by 25% and 41%, respectively. In contrast to control neurons, Ca stores in axotomized neurons were not expanded by neuronal activation by K depolarization, and the proportionate rate of refilling by sarco-endoplasmic Ca-ATPase was normal. Luminal Ca concentration was also reduced by 38% in axotomized neurons in permeabilized neurons. The adjacent neurons of the L4 dorsal root ganglia showed modest and inconsistent changes after L5 spinal nerve ligation. Painful nerve injury leads to diminished releasable endoplasmic reticulum Ca stores and a reduced luminal Ca concentration. Depletion of Ca stores may contribute to the pathogenesis of neuropathic pain.

  8. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics.

    Directory of Open Access Journals (Sweden)

    An-a Kazuno

    2006-08-01

    Full Text Available Mitochondrial DNA (mtDNA is highly polymorphic, and its variations in humans may contribute to individual differences in function as well as susceptibility to various diseases such as Parkinson disease, Alzheimer disease, bipolar disorder, and cancer. However, it is unclear whether and how mtDNA polymorphisms affect intracellular function, such as calcium signaling or pH regulation. Here we searched for mtDNA polymorphisms that have intracellular functional significance using transmitochondrial hybrid cells (cybrids carrying ratiometric Pericam (RP, a fluorescent calcium indicator, targeted to the mitochondria and nucleus. By analyzing the entire mtDNA sequence in 35 cybrid lines, we found that two closely linked nonsynonymous polymorphisms, 8701A and 10398A, increased the basal fluorescence ratio of mitochondria-targeted RP. Mitochondrial matrix pH was lower in the cybrids with 8701A/10398A than it was in those with 8701G/10398G, suggesting that the difference observed by RP was mainly caused by alterations in mitochondrial calcium levels. Cytosolic calcium response to histamine also tended to be higher in the cybrids with 8701A/10398A. It has previously been reported that 10398A is associated with an increased risk of Parkinson disease, Alzheimer disease, bipolar disorder, and cancer, whereas 10398G associates with longevity. Our findings suggest that these mtDNA polymorphisms may play a role in the pathophysiology of these complex diseases by affecting mitochondrial matrix pH and intracellular calcium dynamics.

  9. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    Science.gov (United States)

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  10. Cardioprotection mechanism of mangiferin on doxorubicin-induced rats: Focus on intracellular calcium regulation.

    Science.gov (United States)

    Agustini, Femmi Dwinda; Arozal, Wawaimuli; Louisa, Melva; Siswanto, Soni; Soetikno, Vivian; Nafrialdi, Nafrialdi; Suyatna, Franciscus

    2016-07-01

    The molecular mechanism of doxorubicin (DOX) cardiotoxicity involves overproduction of free radicals that leads to intracellular calcium dysregulation and apoptosis. Mangiferin (MGR), a naturally occurring glucosylxanthone, has antioxidant and cardioprotective properties. However, its cardioprotection mechanism has yet to be revealed. This study determines whether the cardioprotective effect of MGR is caused by its effect on intracellular calcium regulation. Male Sprague-Dawley rats were induced by DOX intraperitoneally with a total dose of 15 mg/kg bw. MGR was given orally at the doses of 30 and 60 mg/kg bw/d for seven consecutive weeks. The parameters examined were mRNA expression levels of proinflammatory cytokine gene (TNF-α), calcium regulatory gene (SERCA2a) and proapoptotic genes (caspase-9 and caspase-12), as well as cytosolic and mitochondrial calcium levels. Treatment with MGR at 60 mg/kg bw/d significantly decreased the mRNA expression levels of TNF-α by 44.55% and caspase-9 by 52.79%, as well as the cytosolic calcium level by 24.15% (p  0.05). Meanwhile, MGR 30 mg/kg bw/d gave insignificant results in all parameters. MGR protected against DOX-induced cardiac inflammation and apoptosis via down-regulation of proapoptotic and proinflammatory gene expressions, upregulation of SERCA2a gene expression, and normalization of cytosolic calcium level. Thus, the cardioprotective effect of MGR is at least in part due to the regulation of intracellular calcium homeostasis.

  11. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    Science.gov (United States)

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  12. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles.

    Science.gov (United States)

    Hwang, Gyo-Seung; Hayashi, Hideki; Tang, Liang; Ogawa, Masahiro; Hernandez, Heidy; Tan, Alex Y; Li, Hongmei; Karagueuzian, Hrayr S; Weiss, James N; Lin, Shien-Fong; Chen, Peng-Sheng

    2006-12-12

    The role of intracellular calcium (Ca(i)) in defibrillation and vulnerability is unclear. We simultaneously mapped epicardial membrane potential and Ca(i) during shock on T-wave episodes (n=104) and attempted defibrillation episodes (n=173) in 17 Langendorff-perfused rabbit ventricles. Unsuccessful and type B successful defibrillation shocks were followed by heterogeneous distribution of Ca(i), including regions of low Ca(i) surrounded by elevated Ca(i) ("Ca(i) sinkholes") 31+/-12 ms after shock. The first postshock activation then originated from the Ca(i) sinkhole 53+/-14 ms after the shock. No sinkholes were present in type A successful defibrillation. A Ca(i) sinkhole also was present 39+/-32 ms after a shock on T that induced ventricular fibrillation, followed 22+/-15 ms later by propagated wave fronts that arose from the same site. This wave propagated to form a spiral wave and initiated ventricular fibrillation. Thapsigargin and ryanodine significantly decreased the upper limit of vulnerability and defibrillation threshold. We studied an additional 7 rabbits after left ventricular endocardial cryoablation, resulting in a thin layer of surviving epicardium. Ca(i) sinkholes occurred 31+/-12 ms after the shock, followed in 19+/-7 ms by first postshock activation in 63 episodes of unsuccessful defibrillation. At the Ca(i) sinkhole, the rise of Ca(i) preceded the rise of epicardial membrane potential in 5 episodes. There is a heterogeneous postshock distribution of Ca(i). The first postshock activation always occurs from a Ca(i) sinkhole. The Ca(i) prefluorescence at the first postshock early site suggests that reverse excitation-contraction coupling might be responsible for the initiation of postshock activations that lead to ventricular fibrillation.

  13. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels.

    Science.gov (United States)

    Jung, Hyungjin; Best, Makenzie; Akkus, Ozan

    2015-07-01

    Mechanisms by which bone microdamage triggers repair response are not completely understood. It has been shown that calcium efflux ([Ca(2+)]E) occurs from regions of bone undergoing microdamage. Such efflux has also been shown to trigger intracellular calcium signaling ([Ca(2+)]I) in MC3T3-E1 cells local to damaged regions. Voltage-gated calcium channels (VGCCs) are implicated in the entry of [Ca(2+)]E to the cytoplasm. We investigated the involvement of VGCC in the extracellular calcium induced intracellular calcium response (ECIICR). MC3T3-E1 cells were subjected to one dimensional calcium efflux from their basal aspect which results in an increase in [Ca(2+)]I. This increase was concomitant with membrane depolarization and it was significantly reduced in the presence of Bepridil, a non-selective VGCC inhibitor. To identify specific type(s) of VGCC in ECIICR, the cells were treated with selective inhibitors for different types of VGCC. Significant changes in the peak intensity and the number of [Ca(2+)]I oscillations were observed when L-type and T-type specific VGCC inhibitors (Verapamil and NNC55-0396, respectively) were used. So as to confirm the involvement of L- and T-type VGCC in the context of microdamage, cells were seeded on devitalized notched bone specimen, which were loaded to induce microdamage in the presence and absence of Verapamil and NNC55-0396. The results showed significant decrease in [Ca(2+)]I activity of cells in the microdamaged regions of bone when L- and T-type blockers were applied. This study demonstrated that extracellular calcium increase in association with damage depolarizes the cell membrane and the calcium ions enter the cell cytoplasm by L- and T-type VGCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  15. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  16. Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions.

    Science.gov (United States)

    Son, Donghee; Park, Sung Young; Kim, Byeongju; Koh, Jun Tae; Kim, Tae Hyun; An, Sangmin; Jang, Doyoung; Kim, Gyu Tae; Jhe, Wonho; Hong, Seunghun

    2011-05-24

    We developed a nanoneedle transistor-based sensor (NTS) for the selective detection of calcium ions inside a living cell. In this work, a single-walled carbon nanotube-based field effect transistor (swCNT-FET) was first fabricated at the end of a glass nanopipette and functionalized with Fluo-4-AM probe dye. The selective binding of calcium ions onto the dye molecules altered the charge state of the dye molecules, resulting in the change of the source-drain current of the swCNT-FET as well as the fluorescence intensity from the dye. We demonstrated the electrical and fluorescence detection of the concentration change of intracellular calcium ions inside a HeLa cell using the NTS.

  17. Ciliary neurotrophic factor-treated astrocyte-conditioned medium increases the intracellular free calcium concentration in rat cortical neurons.

    Science.gov (United States)

    Sun, Meiqun; Liu, Hongli; Min, Shengping; Wang, Hongtao; Wang, Xiaojing

    2016-04-01

    Ciliary neurotrophic factor (CNTF) is involved in the activation of astrocytes. A previous study showed that CNTF-treated astrocyte-conditioned medium (CNTF-ACM) contributed to the increase of the calcium current and the elevation of corresponding ion channels in cortical neurons. On this basis, it is reasonable to assume that CNTF-ACM may increase the intracellular free calcium concentration ([Ca 2+ ] i ) in neurons. In the present study, the effects of CNTF-ACM on [Ca 2+ ] i in rat cortical neurons were determined, and on this basis, the aim was to investigate the potential active ingredients in ACM that are responsible for this biological process. As expected, the data indicated that CNTF-ACM resulted in a clear elevation of [Ca 2+ ] i in neurons. Additionally, the fibroblast growth factor-2 (FGF-2) contained in the CNTF-ACM was found to participate in the upregulation of [Ca 2+ ] i . Taken together, CNTF induces the production of active factors (at least including FGF-2) released from astrocytes, which finally potentiate the increase of [Ca 2+ ] i in cortical neurons.

  18. Differences between negative inotropic and vasodilator effects of calcium antagonists acting on extra- and intracellular calcium movements in rat and guinea-pig cardiac preparations

    NARCIS (Netherlands)

    Hugtenburg, J.G.; Mathy, M.-J.; Boddeke, H.W.G.M.; Beckeringh, J.J.; Van Zwieten, P.A.

    1989-01-01

    In order to get more insight into the utilization of calcium in the mammalian heart and the influence of calcium antagonists on this process we have evaluated the negative inotropic and vasodilator effect of nifedipine, diltiazem, verapamil, bepridil and lidoflazine as well as of the intracellularly

  19. [Effects of energy controllable steep pulses on intracellular calcium concentration and cell membrane potential].

    Science.gov (United States)

    Dong, Xiao-Jing; Hu, Li-Na; Zhu, Yun-Shan; Hong, Chuan; Li, Cong; Luo, Xiao-Dong

    2009-09-01

    Our previous experiments showed that steep pulses could kill tumor cells, but the mechanism is unclear. This study was to probe the effects of different dosages of energy controllable steep pulses (ECSP) on intracellular concentration of dissociative calcium ion ([Ca2+]i) and cell membrane potential. The breast carcinoma MDA-MB-231 cells were divided into control group and five ECSP (different dosages) groups. Ca2+ was labeled by Fluo-3/AM and cell membrane potential was labeled by DiBAC4(3). The mean fluorescence intensity in MDA-MB-231 cells was observed by laser confocal microscopy after ECSP treatment. The changes of calcium concentration and cell membrane potential after ECSP treatment were analyzed. The changes of intracellular [Ca2+]i after ECSP treatment were also observed either with or without Ca2+ outside of the cells. Ca2+ outflow was observed when the cells were treated with lower dosage of pulse in quiet state; the outflow was enhanced with the dosage increase. In real-time kinetic detection, intracellular Ca2+ concentration was increased with the increase of pulse electric field intensity when cells were treated with lower dosages of ECSP. When the voltage was 285 V, frequency was 100 Hz, [Ca2+]i decreased obviously. The intracellular Ca2+ concentration was obviously lower in the cells without outside Ca2+ than in cells with outside Ca2+, but it still increased gradually. Low dosage of ECSP induced the increase of cell membrane potential, indicating the depolarization of cell membrane. With increase of the dosage, cell membrane potential was attenuated, indicating the superpolarization of cell membrane. Lower dosage of ECSP can induce the depolarization of cell membrane and the inflow of outside Ca2+; higher dosage of ECSP can directly destroy the cell membrane and induce the superpolarization of cell membrane, then induce the outflow of intracellular Ca2+ which causes the necrosis of tumor cells.

  20. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  1. Abortive and propagating intracellular calcium waves: analysis from a hybrid model.

    Directory of Open Access Journals (Sweden)

    Nara Guisoni

    Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.

  2. CatSper and the relationship of hyperactivated motility to intracellular calcium and pH kinetics in equine sperm.

    Science.gov (United States)

    Loux, Shavahn C; Crawford, Kristin R; Ing, Nancy H; González-Fernández, Lauro; Macías-García, Beatriz; Love, Charles C; Varner, Dickson D; Velez, Isabel C; Choi, Young Ho; Hinrichs, Katrin

    2013-11-01

    In vitro fertilization does not occur readily in the horse. This may be related to failure of equine sperm to initiate hyperactivated motility, as treating with procaine to induce hyperactivation increases fertilization rates. In mice, hyperactivated motility requires a sperm-specific pH-gated calcium channel (CatSper); therefore, we investigated this channel in equine sperm. Motility was assessed by computer-assisted sperm motility analysis and changes in intracellular pH and calcium were assessed using fluorescent probes. Increasing intracellular pH induced a rise in intracellular calcium, which was inhibited by the known CatSper blocker mibefradil, supporting the presence of a pH-gated calcium channel, presumably CatSper. Hyperactivation was associated with moderately increased intracellular pH, but appeared inversely related to increases in intracellular calcium. In calcium-deficient medium, high-pH treatment induced motility loss, consistent with influx of sodium through open CatSper channels in the absence of environmental calcium. However, sperm treated with procaine in calcium-deficient medium both maintained motility and underwent hyperactivation, suggesting that procaine did not act via opening of the CatSper channel. CATSPER1 mRNA was identified in equine sperm by PCR, and CATSPER1 protein was localized to the principal piece on immunocytochemistry. Analysis of the predicted equine CATSPER1 protein revealed species-specific differences in structure in the pH-sensor region. We conclude that the CatSper channel is present in equine sperm but that the relationship of hyperactivated motility to calcium influx is weak. Procaine does not appear to act via CatSper in equine sperm, and its initial hyperactivating action is not dependent upon external calcium influx.

  3. Fluoxetine suppresses calcium signaling in human T lymphocytes through depletion of intracellular calcium stores.

    Science.gov (United States)

    Gobin, V; De Bock, M; Broeckx, B J G; Kiselinova, M; De Spiegelaere, W; Vandekerckhove, L; Van Steendam, K; Leybaert, L; Deforce, D

    2015-09-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have recently been shown to exert anti-inflammatory and immunosuppressive effects. Although the effects on cytokine secretion, proliferation and viability of T lymphocytes have been extensively characterized, little is known about the mechanism behind these effects. It is well known that Ca(2+) signaling is an important step in the signaling transduction pathway following T cell receptor activation. Therefore, we investigated if fluoxetine interferes with Ca(2+) signaling in Jurkat T lymphocytes. Fluoxetine was found to suppress Ca(2+) signaling in response to T cell receptor activation. Moreover, fluoxetine was found to deplete intracellular Ca(2+) stores, thereby leaving less Ca(2+) available for release upon IP3- and ryanodine-receptor activation. The Ca(2+)-modifying effects of fluoxetine are not related to its capability to block the serotonin transporter, as even a large excess of 5HT did not abolish the effects. In conclusion, these data show that fluoxetine decreases IP3- and ryanodine-receptor mediated Ca(2+) release in Jurkat T lymphocytes, an effect likely to be at the basis of the observed immunosuppression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    Science.gov (United States)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  5. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.

    Directory of Open Access Journals (Sweden)

    Jin Hee Hong

    Full Text Available BACKGROUND: Circadian rhythms in spontaneous action potential (AP firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN. Also reported is the existence of "Ca(2+ spikes" (i.e., [Ca(2+](c transients having a bandwidth of 10 approximately 100 seconds in SCN neurons, but it is unclear if these SCN Ca(2+ spikes are related to the slow circadian rhythms. METHODOLOGY/PRINCIPAL FINDINGS: We addressed this issue based on a Ca(2+ indicator dye (fluo-4 and a protein Ca(2+ sensor (yellow cameleon. Using fluo-4 AM dye, we found spontaneous Ca(2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca(2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca(2+ spike was barely observed (<3%. When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca(2+ spikes was increased to 13 approximately 14%. CONCLUSIONS/SIGNIFICANCE: Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca(2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca(2+ spiking activity is caused by the Ca(2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca(2+](c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca(2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca(2+ spikes in the function of SCN.

  6. Permethrin potentiates adipogenesis via intracellular calcium and endoplasmic reticulum stress-mediated mechanisms in 3T3-L1 adipocytes.

    Science.gov (United States)

    Xiao, Xiao; Qi, Weipeng; Clark, John M; Park, Yeonhwa

    2017-11-01

    Permethrin, a pyrethroid insecticide, was previously reported to promote adipogenesis in vitro and weight gain in vivo. The mechanism by which permethrin promotes adipogenesis/obesity, however, has not been fully explored. Intracellular calcium and endoplasmic reticulum (ER) stress have been reported to be linked with adipogenesis and obesity. Because pyrethroid insecticides have been determined to influence intracellular calcium and ER stress in vitro, the purpose of this current study was to investigate whether permethrin potentiates adipogenesis via a change in intracellular calcium, leading to endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. 3T3-L1 cells were exposed to four different concentrations of permethrin (0.01, 0.1, 1 & 10 μM) for 6 days during differentiation. Treatment of permethrin increased intracellular calcium level in a concentration-dependent manner. Similarly, permethrin treatment increased protein levels of ER stress markers in a concentration-dependent manner. These data suggest that intracellular calcium and ER stress may be involved in permethrin-induced adipogenesis of 3T3-L1 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of elevated calcium on motor and exploratory activities of rats

    Directory of Open Access Journals (Sweden)

    Godinho A.F.

    2002-01-01

    Full Text Available The effects of serum and brain calcium concentration on rat behavior were tested by maintaining animals on either distilled water (N = 60 or water containing 1% calcium gluconate (N = 60 for 3 days. Animals that were maintained on high calcium drinking water presented increased serum calcium levels (control = 10.12 ± 0.46 vs calcium treated = 11.62 ± 0.51 µg/dl. Increase of brain calcium levels was not statistically significant. In the behavioral experiments each rat was used for only one test. Rats that were maintained on high calcium drinking water showed increased open-field behavior of ambulation (20.68% and rearing (64.57%. On the hole-board, calcium-supplemented animals showed increased head-dip (67% and head-dipping (126%, suggesting increased ambulatory and exploratory behavior. The time of social interaction was normal in animals maintained on drinking water containing added calcium. Rats supplemented with calcium and submitted to elevated plus-maze tests showed a normal status of anxiety and elevated locomotor activity. We conclude that elevated levels of calcium enhance motor and exploratory behavior of rats without inducing other behavioral alterations. These data suggest the need for a more detailed analysis of several current proposals for the use of calcium therapy in humans, for example in altered blood pressure states, bone mineral metabolism disorders in the elderly, hypocalcemic states, and athletic activities.

  8. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells

    Energy Technology Data Exchange (ETDEWEB)

    KoraMagazi, Arouna [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Wang, Dandan [Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Yousef, Bashir; Guerram, Mounia [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu (China); Yu, Feng, E-mail: yufengcpu14@yahoo.com [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu (China)

    2016-04-22

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.

  9. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels.

    Science.gov (United States)

    Yang, Xinhui; Jiang, Jiangtao; Yang, Xinyan; Han, Jichun; Zheng, Qiusheng

    2016-07-01

    Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be

  10. Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    peroxide (H2O2) has traditionally been regarded as toxic by-products of aerobic metabolism. However, recent findings indicate that H2O2 act as a signalling molecule. The aim of the present study was to monitor, in real time, the rates of ROS generation in order to directly determine their production......Release of intracellular Calcium increase production of mitochondrial reactive oxygen species in renal distal epithelial cells. Henning F. Bjerregaard, Roskilde University, Department of Science, Systems and Models , 4000 Roskilde, Denmark. HFB@ RUC.DK Reactive oxygen species (ROS) like, hydrogen...... to G-protein stimulation of phospholipase C and release of inositol -3 phosphate. Cd (0.4 mM) treatment of A6 cells enhanced the ROS production after one minutes incubation. The production rate was constant for at least 10 to 20 min. Experiments showed that the Cd induced increase in ROS production...

  11. Electrical slow waves in the mouse oviduct are dependent on extracellular and intracellular calcium sources

    Science.gov (United States)

    Dixon, Rose Ellen; Britton, Fiona C.; Baker, Salah A.; Hennig, Grant W.; Rollings, Christina M.; Sanders, Kenton M.

    2011-01-01

    Spontaneous contractions of the myosalpinx are critical for oocyte transport along the oviduct. Slow waves, the electrical events that underlie myosalpinx contractions, are generated by a specialized network of pacemaker cells called oviduct interstitial cells of Cajal (ICC-OVI). The ionic basis of oviduct pacemaker activity is unknown. Intracellular recordings and Ca2+ imaging were performed to examine the role of extracellular and intracellular Ca2+ sources in slow wave generation. RT-PCR was performed to determine the transcriptional expression of Ca2+ channels. Molecular studies revealed most isoforms of L- and T-type calcium channels (Cav1.2,1.3,1.4,3.1,3.2,3.3) were expressed in myosalpinx. Reduction of extracellular Ca2+ concentration ([Ca2+]o) resulted in the abolition of slow waves and myosalpinx contractions without significantly affecting resting membrane potential (RMP). Spontaneous Ca2+ waves spread through ICC-OVI cells at a similar frequency to slow waves and were inhibited by reduced [Ca2+]o. Nifedipine depolarized RMP and inhibited slow waves; however, pacemaker activity returned when the membrane was repolarized with reduced extracellular K+ concentration ([K+]o). Ni2+ also depolarized RMP but failed to block slow waves. The importance of ryanodine and inositol 1,4,5 trisphosphate-sensitive stores were examined using ryanodine, tetracaine, caffeine, and 2-aminoethyl diphenylborinate. Results suggest that although both stores are involved in regulation of slow wave frequency, neither are exclusively essential. The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor cyclopiazonic acid inhibited pacemaker activity and Ca2+ waves suggesting that a functional SERCA pump is necessary for pacemaker activity. In conclusion, results from this study suggest that slow wave generation in the oviduct is voltage dependent, occurs in a membrane potential window, and is dependent on extracellular calcium and functional SERCA pumps. PMID:21881003

  12. Electrical slow waves in the mouse oviduct are dependent on extracellular and intracellular calcium sources.

    Science.gov (United States)

    Dixon, Rose Ellen; Britton, Fiona C; Baker, Salah A; Hennig, Grant W; Rollings, Christina M; Sanders, Kenton M; Ward, Sean M

    2011-12-01

    Spontaneous contractions of the myosalpinx are critical for oocyte transport along the oviduct. Slow waves, the electrical events that underlie myosalpinx contractions, are generated by a specialized network of pacemaker cells called oviduct interstitial cells of Cajal (ICC-OVI). The ionic basis of oviduct pacemaker activity is unknown. Intracellular recordings and Ca(2+) imaging were performed to examine the role of extracellular and intracellular Ca(2+) sources in slow wave generation. RT-PCR was performed to determine the transcriptional expression of Ca(2+) channels. Molecular studies revealed most isoforms of L- and T-type calcium channels (Cav1.2,1.3,1.4,3.1,3.2,3.3) were expressed in myosalpinx. Reduction of extracellular Ca(2+) concentration ([Ca(2+)](o)) resulted in the abolition of slow waves and myosalpinx contractions without significantly affecting resting membrane potential (RMP). Spontaneous Ca(2+) waves spread through ICC-OVI cells at a similar frequency to slow waves and were inhibited by reduced [Ca(2+)](o). Nifedipine depolarized RMP and inhibited slow waves; however, pacemaker activity returned when the membrane was repolarized with reduced extracellular K(+) concentration ([K(+)](o)). Ni(2+) also depolarized RMP but failed to block slow waves. The importance of ryanodine and inositol 1,4,5 trisphosphate-sensitive stores were examined using ryanodine, tetracaine, caffeine, and 2-aminoethyl diphenylborinate. Results suggest that although both stores are involved in regulation of slow wave frequency, neither are exclusively essential. The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor cyclopiazonic acid inhibited pacemaker activity and Ca(2+) waves suggesting that a functional SERCA pump is necessary for pacemaker activity. In conclusion, results from this study suggest that slow wave generation in the oviduct is voltage dependent, occurs in a membrane potential window, and is dependent on extracellular calcium and functional

  13. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Herrera-Navarro

    2014-01-01

    Full Text Available This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i the detection of the cell’s nuclei and (ii the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  14. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells

    Science.gov (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei

    2012-05-01

    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  15. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  16. Propofol Affects Neurodegeneration and Neurogenesis by Regulation of Autophagy via Effects on Intracellular Calcium Homeostasis.

    Science.gov (United States)

    Qiao, Hui; Li, Yun; Xu, Zhendong; Li, Wenxian; Fu, Zhijian; Wang, Yuezhi; King, Alexander; Wei, Huafeng

    2017-09-01

    In human cortical neural progenitor cells, we investigated the effects of propofol on calcium homeostasis in both the ryanodine and inositol 1,4,5-trisphosphate calcium release channels. We also studied propofol-mediated effects on autophagy, cell survival, and neuro- and gliogenesis. The dose-response relationship between propofol concentration and duration was studied in neural progenitor cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays. The effects of propofol on cytosolic calcium concentration were evaluated using Fura-2, and autophagy activity was determined by LC3II expression levels with Western blot. Proliferation and differentiation were evaluated by bromodeoxyuridine incorporation and immunostaining with neuronal and glial markers. Propofol dose- and time-dependently induced cell damage and elevated LC3II expression, most robustly at 200 µM for 24 h (67 ± 11% of control, n = 12 to 19) and 6 h (2.4 ± 0.5 compared with 0.6 ± 0.1 of control, n = 7), respectively. Treatment with 200 μM propofol also increased cytosolic calcium concentration (346 ± 71% of control, n = 22 to 34). Propofol at 10 µM stimulated neural progenitor cell proliferation and promoted neuronal cell fate, whereas propofol at 200 µM impaired neuronal proliferation and promoted glial cell fate (n = 12 to 20). Cotreatment with ryanodine and inositol 1,4,5-trisphosphate receptor antagonists and inhibitors, cytosolic Ca chelators, or autophagy inhibitors mostly mitigated the propofol-mediated effects on survival, proliferation, and differentiation. These results suggest that propofol-mediated cell survival or neurogenesis is closely associated with propofol's effects on autophagy by activation of ryanodine and inositol 1,4,5-trisphosphate receptors.

  17. The effects of intracellular pH changes on resting cytosolic calcium in voltage-clamped snail neurones

    Science.gov (United States)

    Willoughby, Debbie; Thomas, Roger C; Schwiening, Christof J

    2001-01-01

    We have investigated the effects of changing intracellular pH on intracellular free calcium concentration ([Ca2+]i) in voltage-clamped neurones of the snail Helix aspersa. Intracellular pH (pHi) was measured using the fluorescent dye 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) and changed using weak acids and weak bases. Changes in [Ca2+]i were recorded using either fura-2 or calcium-sensitive microelectrodes. Acidification of the neurones with 5 mM or 20 mM propionate (∼0.2 or 0.3 pH units acidification, respectively) caused a small reduction in resting [Ca2+]i of 5 ± 2 nM (n = 4) and 7 ± 16 nM (n = 4), respectively. The removal of the 20 mM propionate after ∼40 min superfusion resulted in an alkalinization of ∼0.35 pH units and an accompanying rise in resting [Ca2+]i of 31 ± 9 nM (n = 4, P Helix neurones induced by superfusion with 3 mM concentrations of the weak bases trimethylamine (TMA), ammonium chloride (NH4Cl) and procaine were accompanied by significant (P < 0.05) increases in resting [Ca2+]i of 42 ± 4 nM (n = 26), 30 ± 7 nM (n = 5) and 36 ± 4 nM (n = 3), respectively. The effect of TMA (0.5-6 mM) on [Ca2+]i was dose dependent with an increase in [Ca2+]i during pHi increases of less than 0.1 pH units (0.5 mM TMA). Superfusion of neurones with zero calcium (1 mM EGTA) Ringer solution inhibited depolarization-induced calcium increases but not the calcium increase produced by the first exposure to TMA (3 mM). In the prolonged absence of extracellular calcium (∼50 min) TMA-induced calcium rises were decreased by 64 ± 10% compared to those seen in the presence of external calcium (P < 0.05). The calcium rise induced by TMA (3 mM) was reduced by 60 ± 5% following a 10 min period of superfusion with caffeine (10 mM) to deplete the endoplasmic reticulum (ER) stores of calcium (P < 0.05). Cyclopiazonic acid (10-30 μM CPA), an inhibitor of the ER calcium pump, inhibited the calcium rise produced by TMA (3 mM) and NH4Cl (3 mM) by 61 ± 4% compared

  18. Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium.

    Science.gov (United States)

    Chou, Chung-Chuan; Nihei, Motoki; Zhou, Shengmei; Tan, Alex; Kawase, Ayaka; Macias, Edgar S; Fishbein, Michael C; Lin, Shien-Fong; Chen, Peng-Sheng

    2005-06-07

    Rapid activations due to either focal discharge or reentry are often present during atrial fibrillation (AF) in the pulmonary veins (PVs). The mechanisms of these rapid activations are unclear. We studied 7 isolated, Langendorff-perfused canine left atrial (LA) and PV preparations and used 2 cameras to map membrane potential alone (Vm, n=3) or Vm and intracellular calcium simultaneously (Ca(i), n=4). Rapid atrial pacing induced 26 episodes of focal discharge from the proximal PVs in 5 dogs. The cycle lengths were 223+/-52 ms during ryanodine infusion (n=13) and 133+/-59 ms during ryanodine plus isoproterenol infusion (n=13). The rise of Ca(i) preceded Vm activation at the sites of focal discharge in 6 episodes of 2 preparations, compatible with voltage-independent spontaneous Ca(i) release. Phase singularities during pacing-induced reentry clustered specifically at the PV-LA junction. Periodic acid-Schiff (PAS) stain identified large cells with pale cytoplasm along the endocardium of PV muscle sleeves. There were abrupt changes in myocardial fiber orientation and increased interstitial fibrosis in the PV and at the PV-LA junction. PV muscle sleeves may develop voltage-independent Ca(i) release, resulting in focal discharge. Focal discharge may also be facilitated by the presence of PAS-positive cells that are compatible with node-like cells. During reentry, phase singularities clustered preferentially at sites of increased anisotropy such as the PV-LA junction. These findings suggest that focal discharge caused by spontaneous calcium release and anisotropic reentry both contribute to rapid activations in the PVs during AF.

  19. Biochemical and ultrastructural studies suggest that the effects of thapsigargin on human platelets are mediated by changes in intracellular calcium but not by intracellular histamine

    DEFF Research Database (Denmark)

    Saxena, S P; McNicol, A; Becker, A B

    1992-01-01

    was observed at 1 microM Tg. Preincubation of platelets with inhibitors of histamine metabolizing enzymes had little effect on intracellular histamine levels in platelets stimulated by 0.5 microM Tg. In addition, the inhibitors of histidine decarboxylase (HDC), alpha-methyl histidine (alpha-MH) and alpha......-fluoromethyl histidine (alpha-FMH) failed to inhibit Tg-induced aggregation. The intracellular histamine receptor antagonist, N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine. HCl (DPPE), inhibited Tg-induced aggregation but with IC50 values dependent on the concentration of agonist used. The inhibitory effects...... of DPPE on Tg-induced aggregation were not reversed by the addition of histamine to saponin-permeabilized platelets suggesting non-histamine mediated effects of DPPE on Tg-induced aggregation. Tg stimulated an increase in the cytosolic free calcium concentration which was unaffected by DPPE indicating...

  20. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    Science.gov (United States)

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.

  1. Effect of Tetrodotoxin from Crude Puffer Fish (Tetraodon fluviatilis Liver Extract on Intracellular Calcium Level and Apoptosis of HeLa Cell Culture

    Directory of Open Access Journals (Sweden)

    Natanael Untario

    2017-01-01

    Full Text Available Cervical cancer is the third most commonly diagnosed cancer and fourth leading cause of women death with 8% of total death caused by cancer in women in 2008. Tetrodotoxin (TTX is a potent neurotoxin found in inner organs puffer fish, with the specific mechanism of sodium channel blocking, and widely used for research purposes. Previous reports claimed that TTX has the capability of inhibiting the metastatic process of cancer and apoptotic effect. Studies also show that apoptosis is a process involving the increase of intracellular calcium level, yet the connection between TTX and increase of intracellular calcium level, therefore triggering apoptosis, has not been established. This is an experimental study with post test only control group design, carried out by exposing HeLa cell culture to a crude liver extract of a puffer fish species, Tetraodon fluviatilis. Crude puffer fish liver extract is administered into HeLa cell culture well in different concentrations 10-4, 10-2, and 10-1. Intracellular calcium level and apoptosis were then measured after 18 hours of incubation. Measurements of intracellular calcium level were done by using CLSM with Fura-2AM staining, and apoptosis by using flowcytometry with Annexin V/PI.  The result shows that there is a significant difference between samples both in intracellular calcium (p < 0.05 and apoptosis (p < 0,05. Both intracellular calcium and apoptosis levels are proportional to liver fish extract concentration. Pearson’s correlation test shows correlation between treatment and intracellular calcium levels (p = 0.000, between treatment and apoptosis (p = 0.002, but not between intracellular calcium and apoptosis (p = 0.05. These results suggest that TTX induces an increase in intracellular calcium level and apoptosis, but calcium pathway is not the sole cause of the apoptosis.

  2. Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

    Science.gov (United States)

    Fejzo, Marlena Schoenberg; Myhre, Ronny; Colodro-Conde, Lucía; MacGibbon, Kimber W; Sinsheimer, Janet S; Reddy, M V Prasad Linga; Pajukanta, Päivi; Nyholt, Dale R; Wright, Margaret J; Martin, Nicholas G; Engel, Stephanie M; Medland, Sarah E; Magnus, Per; Mullin, Patrick M

    2017-01-05

    Hyperemesis Gravidarum (HG), severe nausea/vomiting in pregnancy (NVP), can cause poor maternal/fetal outcomes. Genetic predisposition suggests the genetic component is essential in discovering an etiology. We performed whole-exome sequencing of 5 families followed by analysis of variants in 584 cases/431 controls. Variants in RYR2 segregated with disease in 2 families. The novel variant L3277R was not found in any case/control. The rare variant, G1886S was more common in cases (p = 0.046) and extreme cases (p = 0.023). Replication of G1886S using Norwegian/Australian data was supportive. Common variants rs790899 and rs1891246 were significantly associated with HG and weight loss. Copy-number analysis revealed a deletion in a patient. RYR2 encodes an intracellular calcium release channel involved in vomiting, cyclic-vomiting syndrome, and is a thyroid hormone target gene. Additionally, RYR2 is a downstream drug target of Inderal, used to treat HG and CVS. Thus, herein we provide genetic evidence for a pathway and therapy for HG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Application of fluorescent indicators to analyse intracellular calcium and morphology in filamentous fungi.

    Science.gov (United States)

    Nair, Rakesh; Raina, Sheetal; Keshavarz, Tajalli; Kerrigan, Mark J P

    2011-01-01

    A novel staining and quantification method to investigate changes in intracellular calcium levels [Ca(2+)](i) and morphology in filamentous fungus is presented. Using a simple protocol, two fluorescent dyes, Fluo-4-AM and Cell trace calcein red-orange-AM were loaded into the filamentous fungus Penicillium chrysogenum. The present study investigates the applicability of using Ca(2+)-sensitive dye to quantify and image [Ca(2+)](i) in P. chrysogenum cultures chosen for its potential as an experimental system to study Ca(2+) signalling in elicited cultures. The dye loading was optimised and investigated at different pH loading conditions. It was observed that the fluorophore was taken up throughout the hyphae, retaining cell membrane integrity and no dye compartmentalisation within organelles was observed. From the fluorescent plate-reader studies a significant rise (pmorphological analysis was also examined using the imaging software Filament Tracer (Bitplane). Essential quantitative mycelial information including the length and diameter of the segments and number of branch points was obtained using this application based on the three-dimensional data. Copyright © 2011 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. NecroX-5 prevents breast cancer metastasis by AKT inhibition via reducing intracellular calcium levels.

    Science.gov (United States)

    Park, Jin-Hee; Kim, Hyoung Kyu; Jung, Hana; Kim, Ki Hyang; Kang, Mi Seon; Hong, Jun Hyuk; Yu, Byeng Chul; Park, Sungjae; Seo, Su-Kil; Choi, Il Whan; Kim, Soon Ha; Kim, Nari; Han, Jin; Park, Sae Gwang

    2017-01-01

    A major goal of breast cancer research is to prevent the molecular events that lead to tumour metastasis. It is well-established that both cytoplasmic and mitochondrial reactive oxygen species (ROS) play important roles in cell migration and metastasis. Accordingly, this study examined the molecular mechanisms of the anti-metastatic effects of NecroX-5, a mitochondrial ROS scavenger. NecroX-5 inhibited lung cancer metastasis by ameliorating migration in a mouse model. In human cancer cells, the inhibition of migration by NecroX-5 is cell type-dependent. We observed that the effect of NecroX-5 correlated with a reduction in mitochondrial ROS, but mitochondrial ROS reduction by MitoQ did not inhibit cell migration. NecroX-5 decreased intracellular calcium concentration by blocking Ca2+ influx, which mediated the inhibition of cell migration, AKT downregulation and the reduction of mitochondrial ROS levels. However, the reduction of mitochondrial ROS was not associated with supressed migration and AKT downregulation. Our study demonstrates the potential of NecroX-5 as an inhibitor of breast cancer metastasis.

  5. The influence of statins on the free intracellular calcium concentration in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Figulla Hans R

    2004-05-01

    Full Text Available Abstract Background Statins are cholesterol-lowering drugs that are widely used to reduce the risk of cardiac infarction. Their beneficial clinical effects, however, are not restricted to their influence on cholesterol production. As several studies have shown that they have a potency of relaxing blood vessels. Methods We measured the effects of statins on the intracellular free calcium concentration ([Ca2+]i in human umbilical vein endothelial cells (HUVEC after acute application and 24-h-preincubation of statins. Results Incubation of the cells for 24 h with cerivastatin or fluvastatin significantly increased the resting [Ca2+]i. For cerivastatin this effect manifested at a concentration of 1 μM. Increase of resting [Ca2+]i in the presence of cerivastatin also occurred when the nitric oxide synthase was inhibited. Transient Ca2+ release induced by histamine was not affected. Conclusions The increase of resting [Ca2+]i after incubation with cerivastatin or fluvastatin may provide an explanation for the direct effects of statins on the endothelial-dependent vasodilatation and restoration of endothelial activity in vivo.

  6. Changes in intracellular calcium concentration in crustacean (Callinectes sapidus) Y-organs: relation to the hemolymphatic ecdysteroid titer.

    Science.gov (United States)

    Chen, Hsiang-Yin; Watson, R Douglas

    2011-01-01

    Secretion of ecdysteroid molting hormones by crustacean Y-organs is negatively regulated (inhibited) by molt-inhibiting hormone (MIH), a neuropeptide produced by neurosecretory cells in eyestalk ganglia. The inhibitory effect of MIH is mediated by one or more cyclic nucleotide second messengers. In addition, available data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular calcium. However, despite the apparent critical role of calcium in regulating ecdysteroidogenesis, the level of Ca(2+) in Y-organs cells has not been previously determined. In studies reported here, eyestalks were ablated from blue crabs (Callinectes sapidus) to remove the endogenous source of MIH and activate Y-organs. At 0, 3, 6, and 9 days after eyestalk ablation (D0, D3, D6, and D9, respectively), the level of Ca(2+) in Y-organ cells was determined using a fluorescent calcium indicator (Fluo-4), and the hemolymphatic ecdysteroid titer was determined by radioimmunoassay. Calcium fluorescence in D6 Y-organs was 3.5-fold higher than that in D0 controls; calcium fluorescence in D9 Y-organs was 3.9-fold higher than in D0 controls (P<0.05). Measurement of fluorescence along a transect drawn through representative cells indicated that the calcium fluorescence was localized to cytoplasm and not to nuclei. Associated with the increase in intracellular Ca(2+) was a significant increase in the hemolymphatic ecdysteroid titer: The level of ecdysteroids in hemolymph rose from 5.5 ng/mL on D0 to 49.6 ng/mL on D6 and 87.2 ng/mL on D9 (P<0.05). The results are consistent with the hypothesis that ecdysteroidogenesis is stimulated by an increase in intracellular Ca(2+).

  7. Alpha 1B-receptors and intracellular calcium mediate sympathetic nerve induced constriction of rat irideal blood vessels.

    Science.gov (United States)

    Gould, D J; Hill, C E

    1994-12-15

    The present study has investigated the receptors involved in the non-cholinergic nerve mediated constriction of the larger blood vessels (30-50 microns) within the rat iris. This response was blocked by the alpha-adrenoceptor antagonist, benextramine (10(5) M). Furthermore, the response was more sensitive to blockade by the alpha 1 antagonist, prazosin (IC50 9 x 10(-10) M), than to blockade by the alpha 2 antagonist, yohimbine (IC50 2 x 10(-7) M), or the adrenergic antagonist, WB4101 (IC50 2 x 10(-8) M), and was abolished by chloroethylclonidine (10(-5) M). These results suggest the involvement of alpha 1B-adrenoceptors. The nerve mediated constriction was not blocked by the voltage-dependent calcium channel blocking drugs, nifedipine (10(-6) M), verapamil (10(-6) M) or diltiazem (10(-6) M), but was completely abolished by the intracellular calcium mobilizer, caffeine (10(-3) M), supporting the hypothesis that alpha 1B-adrenoceptors are activated following nerve stimulation. Dantrolene (10(-4) M), which interferes with calcium release from the sarcoplasmic reticulum, reduced the nerve mediated constriction by 40% as did thapsigargin (2 x 10(-6) M), which inhibits the calcium ATPase responsible for uptake of calcium into intracellular stores. When influx of calcium was blocked by verapamil (10(-6) M), thapsigargin, but not dantrolene, completely abolished the response. Noradrenaline (10(-5) M) produced a vasoconstriction in the presence or absence of external calcium although the latter response was significantly smaller than the former. Vasoconstriction produced by a submaximal concentration of noradrenaline (10(-6) M), was completely prevented by pretreatment with chloroethylclonidine. The data indicate that noradrenaline released from sympathetic nerves causes a constriction of arterioles in the iris by activating alpha 1B-adrenoceptors and releasing calcium from dantrolene sensitive and insensitive intracellular stores, followed by inflow of calcium through

  8. 31P NMR study of intracellular pH during the calcium paradox

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Kirkels, J.H.; Echteld, C.J.A. van; Borst, C.; Meijler, F.L.

    1987-01-01

    Reperfusion of an isolated mammalian heart with a calcium-containing solution after a brief calcium-free perfusion results in irreversible cell damage: the calcium paradox. It has been suggested that acidification of the cytosol, as a result of hydrolysis of ATP and accumulation of calcium by

  9. Effect of intracellular pH on ferret pulmonary arterial smooth muscle cell calcium homeostasis and pressure.

    Science.gov (United States)

    Farrukh, I S; Hoidal, J R; Barry, W H

    1996-02-01

    In this study, we investigated the role of Na+/H+ antiport in regulating cytosolic (intracellular) pH (pHi) in isolated and cultured ferret pulmonary arterial smooth muscle cells (PSMC). We also studied the effects of modulating pHi on the cytosolic (intracellular) calcium concentration ([Ca2+]i) in the PSMC and on the pulmonary arterial pressure (Ppa) of isolated ferret lungs. pHi was modulated by the NH4Cl washout method. To eliminate the contribution of Cl-/HCO3- exchangers, the PSMC and isolated lungs were perfused in HCO3- free buffer. Blocking the Na+/H+ antiporter decreased baseline pHi and prevented the recovery from NH4Cl washout-induced intracellular acidosis. Intracellular alkalinization caused an initial transient increase in both [Ca2+]i and Ppa that were dependent on extracellular Ca2+ entry. Maintaining cytosolic alkalinization caused another increase in Ppa that was not associated with an increase in [Ca2+]i. Intracellular acidosis also caused an increase in [Ca2+]i and Ppa. The cytosolic acidosis-induced increase in [Ca2+]i and Ppa were mediated by both extracellular Ca2+ influx and release of stored intracellular Ca2+. Cytosolic acidosis also appears to have a direct effect on the smooth muscle contractile elements. Both cytosolic alkalosis and acidosis increased vascular reactivity.

  10. Intracellular calcium oscillations and activation in horse oocytes injected with stallion sperm extracts or spermatozoa.

    Science.gov (United States)

    Bedford, S J; Kurokawa, M; Hinrichs, K; Fissore, R A

    2003-10-01

    In oocytes from all mammalian species studied to date, fertilization by a spermatozoon induces intracellular calcium ([Ca(2+)](i)) oscillations that are crucial for appropriate oocyte activation and embryonic development. Such patterns are species-specific and have not yet been elucidated in horses; it is also not known whether equine oocytes respond with transient [Ca(2+)](i) oscillations when fertilized or treated with parthenogenetic agents. Therefore, the aims of this study were: (i) to characterize the activity of equine sperm extracts microinjected into mouse oocytes; (ii) to ascertain in horse oocytes the [Ca(2+)](i)-releasing activity and activating capacity of equine sperm extracts corresponding to the activity present in a single stallion spermatozoon; and (iii) to determine whether equine oocytes respond with [Ca(2+)](i) transients and activation when fertilized using the intracytoplasmic sperm injection (ICSI) procedure. The results of this study indicate that equine sperm extracts are able to induce [Ca(2+)](i) oscillations, activation and embryo development in mouse oocytes. Furthermore, in horse oocytes, injection of sperm extracts induced persistent [Ca(2+)](i) oscillations that lasted for >60 min and initiated oocyte activation. Nevertheless, injection of a single stallion spermatozoon did not consistently initiate [Ca(2+)](i) oscillations in horse oocytes. It is concluded that stallion sperm extracts can efficiently induce [Ca(2+)](i) responses and parthenogenesis in horse oocytes, and can be used to elucidate the signalling mechanism of fertilization in horses. Conversely, the inconsistent [Ca(2+)](i) responses obtained with sperm injection in horse oocytes may explain, at least in part, the low developmental success obtained using ICSI in large animal species.

  11. Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts

    Science.gov (United States)

    Bushinsky, David A.

    2010-01-01

    In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO3−])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco2)] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Cai). To determine whether Resp increases Cai, as does Met, we imaged Cai in primary cultures of bone cells. pH for Met = 7.07 ([HCO3−] = 11.8 mM) and for Resp = 7.13 (Pco2 = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Cai in individual bone cells; however, Met stimulated Cai to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Cai in Met than Resp. Both Met and Resp induced a marked, transient increase in Cai in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Cai by Met in primary bone cells is not a function of OGR1 alone, but must involve H+ receptors other than OGR1, or pathways sensitive to Pco2, HCO3−, or total CO2 that modify the effect of H+ in primary bone cells. PMID:20504884

  12. Y1 receptors for neuropeptide Y are coupled to mobilization of intracellular calcium and inhibition of adenylate cyclase

    DEFF Research Database (Denmark)

    Aakerlund, L; Gether, U; Fuhlendorff, J

    1990-01-01

    a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response....... The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close...... relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded...

  13. Calcium metabolism and cardiovascular function after spaceflight

    Science.gov (United States)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P platelet free calcium (intracellular calcium concentration) were also reduced (P metabolism (P metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  14. Magnesium lithospermate B extracted from Salvia miltiorrhiza elevates intracellular Ca(2+) level in SH-SY5Y cells.

    Science.gov (United States)

    Chen, Yi-Ching; Jinn, Tzyy-Rong; Chung, Tse-Yu; Li, Feng-Yin; Fan, Ruey-Jane; Tzen, Jason Tc

    2010-08-01

    To examine if magnesium lithospermate B (MLB), a potent inhibitor of Na(+)/K(+)-ATPase, leads to the elevation of intracellular Ca(2+) level as observed in cells treated with cardiac glycosides. Viability of SH-SY5Y neuroblastoma cells treated with various concentrations of ouabain or MLB was measured. Intracellular Ca(2+) levels were visualized using Fluo4-AM (fluorescent dye) when cells were treated with ouabain or MLB in the presence or absence of KB-R7943 (Na(+)/Ca(2+) exchanger inhibitor) and 2-APB (IP(3) receptor antagonist). Molecular modeling was conducted for the docking of ouabain or MLB to Na(+)/K(+)-ATPase. Changes of cell body and dendrite morphology were monitored under a microscope. severe toxicity was observed in cells treated with ouabain of concentration higher than 1 micromol/L for 24 h while no apparent toxicity was observed in those treated with MLB. Intracellular Ca(2+) levels were substantially elevated by MLB (1 micromol/L) and ouabain (1 micromol/L) in similar patterns, and significantly reduced in the presence of KB-R7943 (10 micromol/L) or 2-APB (100 micromol/L). Equivalent interaction with the binding cavity of Na(+)/K(+)-ATPase was simulated for ouabain and MLB by forming five hydrogen bonds, respectively. Treatment of ouabain (1 micromol/L), but not MLB (1 mumol/L), induced dendritic shrink of SH-SY5Y cells. Comparable to ouabain, MLB leads to the elevation of intracellular Ca(2+) level presumably via the same mechanism by inhibiting Na(+)/K(+)-ATPase. The elevated Ca(2+) levels seem to be supplied by Ca(2+) influx through the reversed mode of the Na(+)/Ca(2+) exchanger and intracellular release from endoplasmic reticulum.

  15. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca(2+)) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca(2+)) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca(2+) concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca(2+) concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca(2+) could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  16. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    Science.gov (United States)

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  17. Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells.

    Science.gov (United States)

    Buckler, K J; Vaughan-Jones, R D

    1994-01-01

    1. An acid-induced rise in the intracellular calcium concentration ([Ca2+]i) of type I cells is thought to play a vital role in pH/PCO2 chemoreception by the carotid body. In this present study we have investigated the cause of this rise in [Ca2+]i in enzymatically isolated, neonatal rat type I cells. 2. The rise in [Ca2+]i induced by a hypercapnic acidosis was inhibited in Ca(2+)-free media, and by 2 mM Ni2+. Acidosis also increased Mn2+ permeability. The rise in [Ca2+]i is dependent, therefore, upon a Ca2+ influx from the external medium. 3. The acid-induced rise in [Ca2+]i was attenuated by both nicardipine and methoxyverapamil (D600), suggesting a role for L-type Ca2+ channels. 4. Acidosis depolarized type I cells and often (approximately 50% of cells) induced action potentials. These effects coincided with a rise in [Ca2+]i. When membrane depolarization was prevented by a voltage clamp, acidosis failed to evoke a rise in [Ca2+]i. The acid-induced rise in [Ca2+]i is a consequence, therefore, of membrane depolarization. 5. Acidosis decreased the resting membrane conductance of type I cells. The reversal potential of the acid-sensitive current was about -75 mV. 6. A depolarization (30 mM [K+]o)-induced rise in [Ca2+]i was blocked by either the removal of extracellular Ca2+ or the presence of 2 mM Ni2+, and was also substantially inhibited by nicardipine. Under voltage-clamp conditions, [Ca2+]i displayed a bell-shaped dependence on membrane potential. Depolarization raises [Ca2+]i, therefore, through voltage-operated Ca2+ channels. 7. Caffeine (10 mM) induced only a small rise in [Ca2+]i (effect upon the resting [Ca2+]i, and only slowed [Ca2+]i recovery slightly following repolarization from 0 to -60 mV. Therefore, if present, Na(+)-Ca2+ exchange plays only a minor role in [Ca2+]i homeostasis. 10. In summary, in the neonatal rat type I cell, hypercapnic acidosis raises [Ca2+]i through membrane depolarization and voltage-gated Ca2+ entry. Images Figure 1 Figure 3

  18. Changes in Intracellular Calcium Concentration and pH of Target Cells During the Cytotoxic Process: A Quantitative Study at the Single Cell Level

    NARCIS (Netherlands)

    de Grooth, B.G.; Radosevic, Katarina; Greve, Jan; Radosevic, K.

    1995-01-01

    This study reports on the changes in intracellular calcium concentration ([Ca2+]in) and intracellular pH ([pH]in) that occur in K562 target cells during interaction with human Natural Killer (NK) cells. The data were obtained using a quantitative fluorescence microscope and fluorescent ratio probes

  19. Flavopiridol causes early mitochondrial damage in chronic lymphocytic leukemia cells with impaired oxygen consumption and mobilization of intracellular calcium.

    Science.gov (United States)

    Hussain, Syed-Rehan A; Lucas, David M; Johnson, Amy J; Lin, Thomas S; Bakaletz, Alan P; Dang, Vinh X; Viatchenko-Karpinski, Serge; Ruppert, Amy S; Byrd, John C; Kuppusamy, Periannan; Crouser, Elliott D; Grever, Michael R

    2008-03-15

    Effective administration of flavopiridol in advanced-stage chronic lymphocytic leukemia (CLL) is often associated with early biochemical evidence of tumor cell lysis. Previous work using other cell types showed that flavopiridol impacts mitochondria, and in CLL cells flavopiridol down-regulates the mitochondrial protein Mcl-1. We therefore investigated mitochondrial structure and function in flavopiridol-treated CLL patient cells and in the lymphoblastic cell line 697 using concentrations and times at which tumor lysis is observed in treated patients. Mitochondrial membrane depolarization was detected in flavopiridol-treated CLL cells by 6 hours, well before the onset of cell death. Flavopiridol-induced mitochondrial depolarization was not blocked by caspase inhibitors or by the calcium chelator EGTA, but was reduced by Bcl-2 overexpression. Intracellular calcium mobilization was noted at early time points using fluorescence microscopy. Furthermore, electron paramagnetic resonance oximetry showed a gradual but significant reduction in cellular oxygen consumption rate by 6 hours, corresponding with ultrastructural mitochondrial damage detected by electron microscopy. These observations suggest that in CLL and 697 cells, flavopiridol mediates its cytotoxic effects via induction of the mitochondrial permeability transition and changes in intracellular calcium.

  20. Intracellular calcium modulates basolateral K(+)-permeability in frog skin epithelium

    DEFF Research Database (Denmark)

    Brodin, Birger; Rytved, K A; Nielsen, R

    1994-01-01

    Cytosolic calcium ([Ca2+]i) has been suggested as a key modulator in the regulation of active sodium transport across electrically "tight" (high resistance) epithelia. In this study we investigated the effects of calcium on cellular electrophysiological parameters in a classical model tissue, the......, the frog skin. [Ca2+]i was measured with fura-2 in an epifluorescence microscope setup. An inhibition of basolateral potassium permeability was observed when cytosolic calcium was increased. This inhibition was reversible upon removal of calcium from the serosal solution....

  1. Modification of bursting in a Helix neuron by drugs influencing intracellular regulation of calcium level.

    Science.gov (United States)

    Salánki, J; Budai, D; Véró, M

    1983-01-01

    The effect of ruthenium red, caffein and EGTA (ethyleneglycol tetraacetic acid) influencing intracellular Ca2+ level as well as that of pH-lowering was investigated on identified RPal neuron of Helix pomatia characterized by bimodal pacemaker (bursting) activity. Drugs were applied both extracellularly and intracellularly. Intracellular injection was performed from micropipettes by pressure. It was found that intracellular injection of ruthenium red, caffein, EGTA and pH-lowering caused immediate short hyperpolarization and suspension of bursting. The effect of caffein and lowering of pH was biphasic, hyperpolarization was followed by an increase of spiking. Following EGTA injection the amplitudes of interburst hyperpolarizing waves decreased, and prolongation of spikes occurred. Extracellular application of ruthenium red caused slight depolarization, while caffein produced mainly effects that were similar to those of the intracellular injection. Adding EGTA into the bath resulted in cessation of bursting, and later on also spike generation was blocked. All these effects could be eliminated by washing. It is concluded that Ca-influx during spiking cannot be considered as a single factor in maintaining bursting activity, nevertheless, intracellular binding and liberation of Ca depending on the cell metabolism should also be taken into consideration as a possible mechanism of burst regulation.

  2. Effects of Anandamide and Noxious Heat on Intracellular Calcium Concentration in Nociceptive DRG Neurons of Rats

    National Research Council Canada - National Science Library

    Tilo Fischbach; Wolfgang Greffrath; Hermann Nawrath; Rolf-Detlef Treede

    2007-01-01

    ...+-free extracellular solution. Neither exclusion of voltage-gated sodium channels nor additional blockade of voltage-gated calcium channels of the L-, N-, and/or T-type, significantly reduced the anandamide...

  3. The Appetite-Inducing Peptide, Ghrelin, Induces Intracellular Store-Mediated Rises in Calcium in Addiction and Arousal-Related Laterodorsal Tegmental Neurons in Mouse Brain Slices

    DEFF Research Database (Denmark)

    Hauberg, Katrine; Kohlmeier, Kristi Anne

    2015-01-01

    Ghrelin, a gut and brain peptide, has recently been shown to be involved in motivated behavior and regulation of the sleep and wakefulness cycle. The laterodorsal tegmental nucleus (LDT) is involved in appetitive behavior and control of the arousal state of an organism, and accordingly, behavioral...... actions of ghrelin could be mediated by direct cellular actions within this nucleus. Consistent with this interpretation, postsynaptically mediated depolarizing membrane actions of ghrelin on LDT neurons have been reported. Direct actions were ascribed solely to closure of a potassium conductance however...... this peptide has been shown in other cell types to lead to rises in calcium via release of calcium from intracellular stores. To determine whether ghrelin induced intracellular calcium rises in mouse LDT neurons, we conducted calcium imaging studies in LDT brain slices loaded with the calcium binding dye, Fura...

  4. Effect of chronic elevation of plasma calcium concentration by PTH or vitamin D3on blood pressure and hypotensive activity of nifedipine in rats

    NARCIS (Netherlands)

    Jonkman, F.A.M.; Thoolen, M.J.M.C.; Wilffert, B.

    1984-01-01

    The influence of a chronically elevated total plasma calcium concentration on blood pressure and heart rate was investigated in conscious normotensive rats. The plasma calcium concentration was elevated by continuous subcutaneous infusion with parathormone (PTH) after parathyreoidectomy, and by oral

  5. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship.

    Directory of Open Access Journals (Sweden)

    Kyle T Beggs

    Full Text Available BACKGROUND: Three dopamine receptor genes have been identified that are highly conserved among arthropod species. One of these genes, referred to in honey bees as Amdop2, shows a close phylogenetic relationship to the a-adrenergic-like octopamine receptor family. In this study we examined in parallel the functional and pharmacological properties of AmDOP2 and the honey bee octopamine receptor, AmOA1. For comparison, pharmacological properties of the honey bee dopamine receptors AmDOP1 and AmDOP3, and the tyramine receptor AmTYR1, were also examined. METHODOLOGY/PRINCIPAL FINDINGS: Using HEK293 cells heterologously expressing honey bee biogenic amine receptors, we found that activation of AmDOP2 receptors, like AmOA1 receptors, initiates a rapid increase in intracellular calcium levels. We found no evidence of calcium signaling via AmDOP1, AmDOP3 or AmTYR1 receptors. AmDOP2- and AmOA1-mediated increases in intracellular calcium were inhibited by 10 µM edelfosine indicating a requirement for phospholipase C-β activity in this signaling pathway. Edelfosine treatment had no effect on AmDOP2- or AmOA1-mediated increases in intracellular cAMP. The synthetic compounds mianserin and epinastine, like cis-(Z-flupentixol and spiperone, were found to have significant antagonist activity on AmDOP2 receptors. All 4 compounds were effective antagonists also on AmOA1 receptors. Analysis of putative ligand binding sites offers a possible explanation for why epinastine acts as an antagonist at AmDOP2 receptors, but fails to block responses mediated via AmDOP1. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AmDOP2, like AmOA1, is coupled not only to cAMP, but also to calcium-signalling and moreover, that the two signalling pathways are independent upstream of phospholipase C-β activity. The striking similarity between the pharmacological properties of these 2 receptors suggests an underlying conservation of structural properties related to receptor

  6. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells

    KAUST Repository

    Ren, Jian

    2012-03-06

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E 2) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E 2 elevated [Ca 2+] i and increased Ca 2+ oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E 2 mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E 2 activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E 2 induces the non-genomic responses Ca 2+ release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E 2 responses. © 2012 Springer Science+Business Media, LLC.

  7. 17β-estradiol rapidly activates calcium release from intracellular stores via the GPR30 pathway and MAPK phosphorylation in osteocyte-like MLO-Y4 cells.

    Science.gov (United States)

    Ren, Jian; Wu, Jun Hua

    2012-05-01

    Estrogen regulates critical cellular functions, and its deficiency initiates bone turnover and the development of bone mass loss in menopausal females. Recent studies have demonstrated that 17β-estradiol (E(2)) induces rapid non-genomic responses that activate downstream signaling molecules, thus providing a new perspective to understand the relationship between estrogen and bone metabolism. In this study, we investigated rapid estrogen responses, including calcium release and MAPK phosphorylation, in osteocyte-like MLO-Y4 cells. E(2) elevated [Ca(2+)]( i ) and increased Ca(2+) oscillation frequency in a dose-dependent manner. Immunolabeling confirmed the expression of three estrogen receptors (ERα, ERβ, and G protein-coupled receptor 30 [GPR30]) in MLO-Y4 cells and localized GPR30 predominantly to the plasma membrane. E(2) mobilized calcium from intracellular stores, and the use of selective agonist(s) for each ER showed that this was mediated mainly through the GPR30 pathway. MAPK phosphorylation increased in a biphasic manner, with peaks occurring after 7 and 60 min. GPR30 and classical ERs showed different temporal effects on MAPK phosphorylation and contributed to MAPK phosphorylation sequentially. ICI182,780 inhibited E(2) activation of MAPK at 7 min, while the GPR30 agonist G-1 and antagonist G-15 failed to affect MAPK phosphorylation levels. G-1-mediated MAPK phosphorylation at 60 min was prevented by prior depletion of calcium stores. Our data suggest that E(2) induces the non-genomic responses Ca(2+) release and MAPK phosphorylation to regulate osteocyte function and indicate that multiple receptors mediate rapid E(2) responses.

  8. An atmospheric-pressure cold plasma leads to apoptosis in Saccharomyces cerevisiae by accumulating intracellular reactive oxygen species and calcium

    Science.gov (United States)

    Ma, R. N.; Feng, H. Q.; Liang, Y. D.; Zhang, Q.; Tian, Y.; Su, B.; Zhang, J.; Fang, J.

    2013-07-01

    A non-thermal plasma is known to induce apoptosis of various cells but the mechanism is not yet clear. A eukaryotic model organism Saccharomyces cerevisiaewas used to investigate the cellular and biochemical regulations of cell apoptosis and cell cycle after an atmospheric-pressure cold plasma treatment. More importantly, intracellular calcium (Ca2+) was first involved in monitoring the process of plasma-induced apoptosis in this study. We analysed the cell apoptosis and cell cycle by flow cytometry and observed the changes in intracellular reactive oxygen species (ROS) and Ca2+ concentration, cell mitochondrial membrane potential (Δψm) as well as nuclear DNA morphology via fluorescence staining assay. All experimental results indicated that plasma-generated ROS leads to the accumulation of intracellular ROS and Ca2+ that ultimately contribute to apoptosis associated with cell cycle arrest at G1 phase through depolarization of Δψm and fragmenting nuclear DNA. This work provides a novel insight into the physical and biological mechanism of apoptosis induced by a plasma which could benefit for promoting the development of plasmas applied to cancer therapy.

  9. Effect of Cu2+ and pH on intracellular calcium content and lipid peroxidation in winter wheat roots

    Directory of Open Access Journals (Sweden)

    M. E. Riazanova

    2015-06-01

    Full Text Available The study investigates the effect of copper ions and pH of external solution on intracellular calcium homeostasis and lipid peroxidation in winter wheat roots. Experiment was carried out with winter wheat. Sterile seeds were germinated in Petri dishes on the filter paper soaked with acetic buffer (pH 4.7 and 6.2 at 20 °Cin the dark for 48 hours. Copper was added as CuSO4. It’s concentrations varied from 0 to 50 µM. The Ca2+-fluorescent dye Fluo-3/AM ester was loaded on 60 hour. Root fluorescence with Fluo-3 loading was detected using X-Cite Series 120 Q unit attached to microscope Olympus BX53 with camera Olympus DP72. Imaging of root cells was achieved after exciting with 488 nm laser and collection of emission signals above 512 nm. Preliminary analysis of the images was performed using software LabSens; brightness (fluorescence intensity analysis was carried out by means of ImageJ. Peroxidation of lipids was determined according to Kumar and Knowles method. It was found that pH of solution had effect on release of calcium from intracellular stores. Low pH provokes an increase of [Ca2+]cyt which may be reaction of roots to acidic medium. Copper induces increase in non-selective permeability of plasma membrane and leads to its faster depolarization. This probably initiates Ca-dependent depolarization channels which are responsible for the influx of calcium from apoplast into the cell. Changing of the membrane permeability may occur due to interaction between Cu2+ ions and Ca-binding sites on plasma membrane or may be due to binding of copper with sulfhydryl groups and increasing of POL. Copper may also damage lipid bilayer and change the activity of some non-selective channels and transporters. Reactive oxygen species which are formed under some types of stress factors, especially the effect of heavy metals, can be activators of Ca-channels. Cu2+ ions rise MDA content and promote the oxidative stress. Low medium pH also induces its

  10. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  11. Differential effects of thapsigargin analogues on apoptosis of prostate cancer cells: complex regulation by intracellular calcium.

    Science.gov (United States)

    Dubois, Charlotte; Vanden Abeele, Fabien; Sehgal, Pankaj; Olesen, Claus; Junker, Steffen; Christensen, Søren B; Prevarskaya, Natalia; Møller, Jesper V

    2013-11-01

    The inhibition of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) by thapsigargin (Tg) and Tg-type analogues is considered to trigger cell death by activation of apoptotic pathways. Some of these analogues may be useful as antineoplastic agents after appropriate targeting as peptide conjugated prodrugs to cancer cells. With this in mind, this study evaluates the effect on LNCaP androgen-sensitive cancer cells of thapsigargin substituted with 12-aminododecanoyl linkers and Leu (Leu-8ADT), aspartate (Asp-8ADT) or Boc-8ADT. Our results show that both Leu-8ADT and Asp-8ADT result in rapid ER calcium depletion and an influx of calcium across the plasma membrane by activation of store-operated calcium entry. By contrast, ER Ca(2+) depletion by Boc-8ADT is a very slow process that does not perceptibly increase cytosolic Ca(2+) and activate store-operated calcium entry, because the inhibition of SERCA with this compound is very slow. Nevertheless, we find that Boc-8ADT is a more efficient inducer of apoptosis than both Tg and Leu-8ADT. Compared with Tg and the other analogues, apoptosis induced by Asp-8ADT is very modest, although this compound also activates store-operated calcium entry and at high concentrations (1 μm) causes severe morphological changes, reflecting decreased cell viability. We conclude that many factors need to be considered for optimization of these compounds in antineoplastic drug design. Among these ER stress induced by Ca(2+) endoplasmic reticulum mobilization seems particularly important, whereas the early cytosolic increase of Ca(2+) concentration preceding the executive phase of apoptosis appears to be of no, or little, consequence for a subsequent apoptotic effect. © 2013 FEBS.

  12. Activation of Intracellular Calcium by Multiple Wnt Ligands and Translocation of β-Catenin into the Nucleus

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-01-01

    Ca2+ and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca2+ and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca2+]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca2+ and Wnt/β-catenin pathways act in a coordinated manner and that [Ca2+]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca2+]i but Wnt11 did not. Based upon dwell time (range = 15–30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca2+]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca2+]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca2+]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca2+ and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner. PMID:24158438

  13. Spinorphin inhibits membrane depolarization- and capsaicin-induced intracellular calcium signals in rat primary nociceptive dorsal root ganglion neurons in culture.

    Science.gov (United States)

    Ayar, Ahmet; Ozcan, Mete; Kuzgun, Kemal Tuğrul; Kalkan, Omer Faruk

    2015-01-01

    Spinorphin is a potential endogenous antinociceptive agent although the mechanism(s) of its analgesic effect remain unknown. We conducted this study to investigate, by considering intracellular calcium concentrations as a key signal for nociceptive transmission, the effects of spinorphin on cytoplasmic Ca(2+) ([Ca(2+)]i) transients, evoked by high-K(+) (30 mM) depolariasation or capsaicin, and to determine whether there were any differences in the effects of spinorphin among subpopulation of cultured rat dorsal root ganglion (DRG) neurons. DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium sensitive dye fura-2 AM (1 µM). Intracellular calcium responses in individual DRG neurons were quantified using standard fura-2 based ratiometric calcium imaging technique. All data were analyzed by using unpaired t test, p nociceptive subtypes of this primary sensory neurons suggesting that peripheral site is involved in the pain modulating effect of this endogenous agent.

  14. Two types of coherence resonance in an intracellular calcium oscillation system

    Science.gov (United States)

    Ma, Juan; Gao, Qingyu

    2017-09-01

    Two types of noise induced oscillations (NIOs) near Hopf bifurcation and coherence resonance (CR) have been studied analytically in a calcium system. One is NIOs with small amplitude and internal signal stochastic resonance (CR type I) occurs, and the other is noise induced spike and the regularity of which reaches a maximum at an optimal noise level (CR type II). For the first type, stochastic normal form theory is employed to analyze the signal to noise ratio of the NIOs depending on the noise intensity. For the second type, based on the independent assumption, activation time and excursion time have been split, and the sum of which reach a minimum with the variation of noise intensity. The theoretical evidence is also explained in detail. Numerical simulations show good agreements with the theoretical results. It may indicate some kind of transmit mechanism involved in stochastic calcium dynamics.

  15. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Bjerrum, Poul J; Jessen, Torben E

    2011-01-01

    motility and acrosome reaction. All men delivered samples for routine semen analysis and blood for measurements of follicle stimulating hormone, Inhibin B, 25-hydroxy-VD, albumin, alkaline phosphatase, calcium and parathyroid hormone (PTH). RESULTS In the association study, 44% were VD insufficient (75 n...... concentration, sperm motility and induced the acrosome reaction in mature spermatozoa, and VD serum levels were positively associated with sperm motility, suggesting a role for VD in human sperm function....

  16. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction

    Science.gov (United States)

    Lygate, Craig A.; Bohl, Steffen; ten Hove, Michiel; Faller, Kiterie M.E.; Ostrowski, Philip J.; Zervou, Sevasti; Medway, Debra J.; Aksentijevic, Dunja; Sebag-Montefiore, Liam; Wallis, Julie; Clarke, Kieran; Watkins, Hugh; Schneider, Jürgen E.; Neubauer, Stefan

    2012-01-01

    Aims Increasing energy storage capacity by elevating creatine and phosphocreatine (PCr) levels to increase ATP availability is an attractive concept for protecting against ischaemia and heart failure. However, testing this hypothesis has not been possible since oral creatine supplementation is ineffectual at elevating myocardial creatine levels. We therefore used mice overexpressing creatine transporter in the heart (CrT-OE) to test for the first time whether elevated creatine is beneficial in clinically relevant disease models of heart failure and ischaemia/reperfusion (I/R) injury. Methods and results CrT-OE mice were selected for left ventricular (LV) creatine 20–100% above wild-type values and subjected to acute and chronic coronary artery ligation. Increasing myocardial creatine up to 100% was not detrimental even in ageing CrT-OE. In chronic heart failure, creatine elevation was neither beneficial nor detrimental, with no effect on survival, LV remodelling or dysfunction. However, CrT-OE hearts were protected against I/R injury in vivo in a dose-dependent manner (average 27% less myocardial necrosis) and exhibited greatly improved functional recovery following ex vivo I/R (59% of baseline vs. 29%). Mechanisms contributing to ischaemic protection in CrT-OE hearts include elevated PCr and glycogen levels and improved energy reserve. Furthermore, creatine loading in HL-1 cells did not alter antioxidant defences, but delayed mitochondrial permeability transition pore opening in response to oxidative stress, suggesting an additional mechanism to prevent reperfusion injury. Conclusion Elevation of myocardial creatine by 20–100% reduced myocardial stunning and I/R injury via pleiotropic mechanisms, suggesting CrT activation as a novel, potentially translatable target for cardiac protection from ischaemia. PMID:22915766

  17. Targeting Intracellular Calcium Signaling ([Ca2+]i to Overcome Acquired Multidrug Resistance of Cancer Cells: A Mini-Overview

    Directory of Open Access Journals (Sweden)

    Dietrich Büsselberg

    2017-05-01

    Full Text Available Cancer is a main public health problem all over the world. It affects millions of humans no matter their age, gender, education, or social status. Although chemotherapy is the main strategy for the treatment of cancer, a major problem limiting its success is the intrinsic or acquired drug resistance. Therefore, cancer drug resistance is a major impediment in medical oncology resulting in a failure of a successful cancer treatment. This mini-overview focuses on the interdependent relationship between intracellular calcium ([Ca2+]i signaling and multidrug resistance of cancer cells, acquired upon treatment of tumors with anticancer drugs. We propose that [Ca2+]i signaling modulates gene expression of multidrug resistant (MDR genes which in turn can be modulated by epigenetic factors which in turn leads to modified protein expression in drug resistant tumor cells. A precise knowledge of these mechanisms will help to develop new therapeutic strategies for drug resistant tumors and will improve current chemotherapy.

  18. Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Zhenghang Zhao

    Full Text Available Recent studies have suggested that mitochondria may play important roles in the Ca(2+ homeostasis of cardiac myocytes. However, it is still unclear if mitochondrial Ca(2+ flux can regulate the generation of Ca(2+ waves (CaWs and triggered activities in cardiac myocytes. In the present study, intracellular/cytosolic Ca(2+ (Cai (2+ was imaged in Fluo-4-AM loaded mouse ventricular myocytes. Spontaneous sarcoplasmic reticulum (SR Ca(2+ release and CaWs were induced in the presence of high (4 mM external Ca(2+ (Cao (2+. The protonophore carbonyl cyanide p-(trifluoromethoxyphenylhydrazone (FCCP reversibly raised basal Cai (2+ levels even after depletion of SR Ca(2+ in the absence of Cao (2+ , suggesting Ca(2+ release from mitochondria. FCCP at 0.01 - 0.1 µM partially depolarized the mitochondrial membrane potential (Δψ m and increased the frequency and amplitude of CaWs in a dose-dependent manner. Simultaneous recording of cell membrane potentials showed the augmentation of delayed afterdepolarization amplitudes and frequencies, and induction of triggered action potentials. The effect of FCCP on CaWs was mimicked by antimycin A (an electron transport chain inhibitor disrupting Δψ m or Ru360 (a mitochondrial Ca(2+ uniporter inhibitor, but not by oligomycin (an ATP synthase inhibitor or iodoacetic acid (a glycolytic inhibitor, excluding the contribution of intracellular ATP levels. The effects of FCCP on CaWs were counteracted by the mitochondrial permeability transition pore blocker cyclosporine A, or the mitochondrial Ca(2+ uniporter activator kaempferol. Our results suggest that mitochondrial Ca(2+ release and uptake exquisitely control the local Ca(2+ level in the micro-domain near SR ryanodine receptors and play an important role in regulation of intracellular CaWs and arrhythmogenesis.

  19. Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes.

    Science.gov (United States)

    Makitani, Kouki; Nakagawa, Shota; Izumi, Yasuhiko; Akaike, Akinori; Kume, Toshiaki

    2017-05-01

    Donepezil is a potent and selective acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease. In the present study, we investigated the responses of astrocytes to bradykinin, an inflammatory mediator, and the effect of donepezil on these responses using cultured cortical astrocytes. Bradykinin induced a transient increase of intracellular calcium concentration ([Ca(2+)]i) in cultured astrocytes. Bradykinin-induced [Ca(2+)]i increase was inhibited by the exposure to thapsigargin, which depletes Ca(2+) stores on endoplasmic reticulum, but not by the exclusion of extracellular Ca(2+). Twenty four hours pretreatment of donepezil reduced the bradykinin-induced [Ca(2+)]i increase. This reduction was inhibited not only by mecamylamine, a nAChR antagonist, but also by PI3K and Akt inhibitors. In addition, donepezil inhibited bradykinin-induced increase of the intracellular reactive oxygen species level in astrocytes. These results suggest that donepezil inhibits the inflammatory response induced by bradykinin via nAChR and PI3K-Akt pathway in astrocytes. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  20. Inhibitory effect of donepezil on bradykinin-induced increase in the intracellular calcium concentration in cultured cortical astrocytes

    Directory of Open Access Journals (Sweden)

    Kouki Makitani

    2017-05-01

    Full Text Available Donepezil is a potent and selective acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease. In the present study, we investigated the responses of astrocytes to bradykinin, an inflammatory mediator, and the effect of donepezil on these responses using cultured cortical astrocytes. Bradykinin induced a transient increase of intracellular calcium concentration ([Ca2+]i in cultured astrocytes. Bradykinin-induced [Ca2+]i increase was inhibited by the exposure to thapsigargin, which depletes Ca2+ stores on endoplasmic reticulum, but not by the exclusion of extracellular Ca2+. Twenty four hours pretreatment of donepezil reduced the bradykinin-induced [Ca2+]i increase. This reduction was inhibited not only by mecamylamine, a nAChR antagonist, but also by PI3K and Akt inhibitors. In addition, donepezil inhibited bradykinin-induced increase of the intracellular reactive oxygen species level in astrocytes. These results suggest that donepezil inhibits the inflammatory response induced by bradykinin via nAChR and PI3K-Akt pathway in astrocytes.

  1. Evidence for a role of intracellular stored parathyroid hormone in producing hysteresis of the PTH-calcium relationship in normal humans

    DEFF Research Database (Denmark)

    Schwarz, Peter; Madsen, J C; Rasmussen, A Q

    1998-01-01

    OBJECTIVE: Despite the clear recognition that extracellular ionized calcium controls PTH secretion, there have been suggestions of hysteresis in the relationship between extracellular ionized calcium and PTH during recovery from induced hypo- and hypercalcaemia in vivo in humans. In this study, we...... examined the possibility that release of intracellular stored PTH during induced hypocalcaemia may explain hysteresis. VOLUNTEERS: Eleven volunteers, five women and six men, were recruited to participate in the study. DESIGN: A series of three protocols of repeated induction of hypocalcaemia or sequential...... depot PTH can explain, at least in part, the observed hysteretic PTH-calcium relationship in normal humans....

  2. Developmental Axon Stretch Stimulates Neuron Growth While Maintaining Normal Electrical Activity, Intracellular Calcium Flux, and Somatic Morphology

    Directory of Open Access Journals (Sweden)

    Joseph R Loverde

    2015-08-01

    Full Text Available Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18 % applied over 5 minutes. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25 % strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  3. Developmental axon stretch stimulates neuron growth while maintaining normal electrical activity, intracellular calcium flux, and somatic morphology.

    Science.gov (United States)

    Loverde, Joseph R; Pfister, Bryan J

    2015-01-01

    Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury.

  4. Triggered intracellular calcium waves in dog and human left atrial myocytes from normal and failing hearts.

    Science.gov (United States)

    Aistrup, Gary L; Arora, Rishi; Grubb, Søren; Yoo, Shin; Toren, Benjamin; Kumar, Manvinder; Kunamalla, Aaron; Marszalec, William; Motiwala, Tej; Tai, Shannon; Yamakawa, Sean; Yerrabolu, Satya; Alvarado, Francisco J; Valdivia, Hector H; Cordeiro, Jonathan M; Shiferaw, Yohannes; Wasserstrom, John Andrew

    2017-11-01

    Abnormal intracellular Ca2+ cycling contributes to triggered activity and arrhythmias in the heart. We investigated the properties and underlying mechanisms for systolic triggered Ca2+ waves in left atria from normal and failing dog hearts. Intracellular Ca2+ cycling was studied using confocal microscopy during rapid pacing of atrial myocytes (36 °C) isolated from normal and failing canine hearts (ventricular tachypacing model). In normal atrial myocytes (NAMs), Ca2+ waves developed during rapid pacing at rates ≥ 3.3 Hz and immediately disappeared upon cessation of pacing despite high sarcoplasmic reticulum (SR) load. In heart failure atrial myocytes (HFAMs), triggered Ca2+ waves (TCWs) developed at a higher incidence at slower rates. Because of their timing, TCW development relies upon action potential (AP)-evoked Ca2+ entry. The distribution of Ca2+ wave latencies indicated two populations of waves, with early events representing TCWs and late events representing conventional spontaneous Ca2+ waves. Latency analysis also demonstrated that TCWs arise after junctional Ca2+ release has occurred and spread to non-junctional (cell core) SR. TCWs also occurred in intact dog atrium and in myocytes from humans and pigs. β-adrenergic stimulation increased Ca2+ release and abolished TCWs in NAMs but was ineffective in HFAMs making this a potentially effective adaptive mechanism in normals but potentially arrhythmogenic in HF. Block of Ca-calmodulin kinase II also abolished TCWs, suggesting a role in TCW formation. Pharmacological manoeuvres that increased Ca2+ release suppressed TCWs as did interventions that decreased Ca2+ release but these also severely reduced excitation-contraction coupling. TCWs develop during the atrial AP and thus could affect AP duration, producing repolarization gradients and creating a substrate for reentry, particularly in HF where they develop at slower rates and a higher incidence. TCWs may represent a mechanism for the initiation

  5. Differential contribution of extracellular and intracellular calcium sources to basal transmission and long-term potentiation in the sympathetic ganglion of the rat.

    Science.gov (United States)

    Vargas, R; Cifuentes, F; Morales, M A

    2007-04-01

    Calcium involved in basal ganglionic transmission and long-term potentiation (LTP) can arise either by influx from the extracellular medium or release from intracellular stores. No attempts have yet been made to concurrently explore the contributions of extracellular and intracellular Ca2+ to basal ganglionic transmission or LTP. Here, we investigate this subject using the superior cervical ganglion of the rat. To explore the extracellular Ca2+ contribution, we evaluated basal transmission and LTP at different extracellular Ca2+ concentrations. To assess intracellular Ca2+ release, we explored the contribution of the calcium-induced calcium release process by overactivation or blockade of ryanodine-sensitive Ca2+ receptor channel with caffeine, and also by blocking either IP3R with Xestospongin C or the sarco(endo)plasmic reticulum Ca2+-ATPase pump with thapsigargin. Extracellular Ca2+ affected ganglionic basal transmission and LTP to different extents. While 25% of the physiological Ca2+ concentration supported 80% of basal transmission, 50% of normal Ca2+ was required to achieve 80% of LTP. Notably, disruption of intracellular Ca2+ release by all the drugs tested apparently did not affect basal ganglionic transmission but impaired LTP. We conclude that basal transmission requires only a small level of Ca2+ entry, while LTP expression not only requires more Ca2+ entry but is also dependent on Ca2+ release from intracellular stores. Copyright (c) 2007 Wiley Periodicals, Inc.

  6. Reactive Astrocytes Protect Melanoma Cells from Chemotherapy by Sequestering Intracellular Calcium through Gap Junction Communication Channels

    Directory of Open Access Journals (Sweden)

    Qingtang Lin

    2010-09-01

    Full Text Available Brain metastases are highly resistant to chemotherapy. Metastatic tumor cells are known to exploit the host microenvironment for their growth and survival. We report here that melanoma brain metastases are surrounded and infiltrated by activated astrocytes, and we hypothesized that these astrocytes can play a role similar to their established ability to protect neurons from apoptosis. In coculture experiments, astrocytes, but not fibroblasts, reduced apoptosis in human melanoma cells treated with various chemotherapeutic drugs. This chemoprotective effect was dependent on physical contact and gap junctional communication between astrocytes and tumor cells. Moreover, the protective effect of astrocytes resulted from their sequestering calcium from the cytoplasm of tumor cells. These data suggest that brain tumors can, in principle, harness the neuroprotective effects of reactive astrocytes for their own survival and implicate a heretofore unrecognized mechanism for resistance in brain metastasis that might be of relevance in the clinic.

  7. Inflammation and insulin resistance induced by trans-10, cis-12 conjugated linoleic acid depend on intracellular calcium levels in primary cultures of human adipocytes

    DEFF Research Database (Denmark)

    Kennedy, Arion; Martinez, Kristina; Chung, Soonkyu

    2010-01-01

    that the initial increase in intracellular calcium ([Ca2+]i) mediated by 10,12 CLA was attenuated by TMB-8, an inhibitor of calcium release from the endoplasmic reticulum (ER), by BAPTA, an intracellular calcium chelator, and by D609, a phospholipase C (PLC) inhibitor. Moreover, BAPTA, TMB-8, and D609 attenuated......-calmodulin kinase II (CaMKII) beta were attenuated by TMB-8. KN-62, a CaMKII inhibitor, also suppressed 10,12 CLA-mediated ROS production and ERK1/2 and JNK activation. Additionally, KN-62 attenuated 10,12 CLA induction of inflammatory and integrated stress response genes, increase in prostaglandin F2alpha...

  8. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  9. Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals

    CERN Document Server

    Maltsev, Anna; Stern, Michael

    2016-01-01

    Intracellular Ca signals represent a universal mechanism of cell function. Messages carried by Ca are local, rapid, and powerful enough to be delivered over the thermal noise. A higher signal to noise ratio is achieved by a cooperative action of Ca release channels such as IP3 receptors or ryanodine receptors arranged in clusters or release units containing a few to several hundred release channels. The release channels synchronize their openings via Ca-induced-Ca-release, generating high-amplitude local Ca signals known as puffs in neurons or sparks in muscle cells. Despite the high release amplitude and positive feedback nature of the activation, Ca signals are strictly confined in time and space by an unexplained termination mechanism. Here we show that the collective transition of release channels from an open to a closed state is identical to the phase transition associated with the reversal of magnetic field in an Ising ferromagnet. We demonstrate this mechanism using numerical model simulations of Ca s...

  10. Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals.

    Science.gov (United States)

    Maltsev, Anna V; Maltsev, Victor A; Stern, Michael D

    2017-07-18

    Intracellular Ca signals represent a universal mechanism of cell function. Messages carried by Ca are local, rapid, and powerful enough to be delivered over the thermal noise. A higher signal-to-noise ratio is achieved by a cooperative action of Ca release channels such as IP3 receptors or ryanodine receptors arranged in clusters (release units) containing a few to several hundred release channels. The channels synchronize their openings via Ca-induced Ca release, generating high-amplitude local Ca signals known as puffs in neurons and sparks in muscle cells. Despite the positive feedback nature of the activation, Ca signals are strictly confined in time and space by an unexplained termination mechanism. Here we show that the collective transition of release channels from an open to a closed state is identical to the phase transition associated with the reversal of magnetic field in an Ising ferromagnet. Our simple quantitative criterion closely predicts the Ca store depletion level required for spark termination for each cluster size. We further formulate exact requirements that a cluster of release channels should satisfy in any cell type for our mapping to the Ising model and the associated formula to remain valid. Thus, we describe deterministically the behavior of a system on a coarser scale (release unit) that is random on a finer scale (release channels), bridging the gap between scales. Our results provide exact mapping of a nanoscale biological signaling model to an interacting particle system in statistical physics, making the extensive mathematical apparatus available to quantitative biology.

  11. Use of multiple singular value decompositions to analyze complex intracellular calcium ion signals

    KAUST Repository

    Martinez, Josue G.

    2009-12-01

    We compare calcium ion signaling (Ca(2+)) between two exposures; the data are present as movies, or, more prosaically, time series of images. This paper describes novel uses of singular value decompositions (SVD) and weighted versions of them (WSVD) to extract the signals from such movies, in a way that is semi-automatic and tuned closely to the actual data and their many complexities. These complexities include the following. First, the images themselves are of no interest: all interest focuses on the behavior of individual cells across time, and thus, the cells need to be segmented in an automated manner. Second, the cells themselves have 100+ pixels, so that they form 100+ curves measured over time, so that data compression is required to extract the features of these curves. Third, some of the pixels in some of the cells are subject to image saturation due to bit depth limits, and this saturation needs to be accounted for if one is to normalize the images in a reasonably un-biased manner. Finally, the Ca(2+) signals have oscillations or waves that vary with time and these signals need to be extracted. Thus, our aim is to show how to use multiple weighted and standard singular value decompositions to detect, extract and clarify the Ca(2+) signals. Our signal extraction methods then lead to simple although finely focused statistical methods to compare Ca(2+) signals across experimental conditions.

  12. Nutritional and endocrine modulation of intracellular calcium: implications in obesity, insulin resistance and hypertension.

    Science.gov (United States)

    Zemel, M B

    1998-11-01

    Regulation of intracellular Ca2+ ([Ca2+]i) plays a key role in obesity, insulin resistance and hypertension, and [Ca2+]i disorders may represent a fundamental factor linking these three conditions. We have shown insulin to be a direct vasodilator, attenuating voltage-gated Ca2+ influx and stimulating Ca(2+)-ATPase transcription via a glucose-6-phosphate response element. These result in a net decrease in [Ca2+]i and thereby decrease vascular resistance, while these effects are blunted in insulin resistance, leading to increased vascular resistance. Consistent with this concept, pharmacological amplification of peripheral insulin sensitivity results in reduced arterial pressure. While insulin regulates [Ca2+]i, Ca2+ also regulates insulin signaling, as increasing [Ca2+]i impairs insulin signaling in some systems, possibly due to Ca2+ inhibition of insulin-regulated dephosphorylation. Finally, in recent studies of the mouse agouti gene, we have also demonstrated increased [Ca2+]i to play a key role in adipocyte lipogenesis, as follows. We have found dominant agouti mutants to exhibit increased [Ca2+]i in most tissues, leading to increased vascular reactivity and insulin resistance in vascular smooth muscle and skeletal muscle cells, respectively. Further, we have found recombinant agouti protein to directly increase [Ca2+]i in a variety of cells, including murine and human adipocytes, and to stimulate both the expression and activity of adipocyte fatty acid synthase and increase triglyceride accumulation in a Ca(2+)-dependent manner. These effects can be mimicked by stimulation of Ca2+ influx and blocked by Ca2+ channel inhibition, while treatment of mice with a Ca2+ antagonist attenuates agouti-induced obesity. Since humans express agouti in adipose tissue, it may similarly exert paracrine effects on [Ca2+]i and thereby stimulate de novo lipogenesis and promote obesity. Thus, Ca2+ signaling represents a target for therapeutic intervention in obesity as well as

  13. Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis.

    Science.gov (United States)

    Krieger, Nancy S; Bushinsky, David A

    2017-10-01

    Serum fibroblast growth factor 23 (FGF23) increases progressively in chronic kidney disease (CKD) and is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the factors regulating its production are not clear. Patients with CKD have decreased renal acid excretion leading to metabolic acidosis (MET). During MET, acid is buffered by bone with release of mineral calcium (Ca) and phosphate (P). MET increases intracellular Ca signaling and cyclooxygenase 2 (COX2)-induced prostaglandin production in the osteoblast, leading to decreased bone formation and increased bone resorption. We found that MET directly stimulates FGF23 in mouse bone organ cultures and primary osteoblasts. We hypothesized that MET increases FGF23 through similar pathways that lead to bone resorption. Neonatal mouse calvariae were incubated in neutral (NTL, pH = 7.44, Pco2 = 38 mmHg, [HCO3-] = 27 mM) or acid (MET, pH = 7.18, Pco2 = 37 mmHg, [HCO3-] = 13 mM) medium without or with 2-APB (50 μM), an inhibitor of intracellular Ca signaling or NS-398 (1 μM), an inhibitor of COX2. Each agent significantly inhibited MET stimulation of medium FGF23 protein and calvarial FGF23 RNA as well as bone resorption at 48 h. To exclude the potential contribution of MET-induced bone P release, we utilized primary calvarial osteoblasts. In these cells each agent inhibited MET stimulation of FGF23 RNA expression at 6 h. Thus stimulation of FGF23 by MET in mouse osteoblasts utilizes the same initial signaling pathways as MET-induced bone resorption. Therapeutic interventions directed toward correction of MET, especially in CKD, have the potential to not only prevent bone resorption but also lower FGF23 and perhaps decrease mortality. Copyright © 2017 the American Physiological Society.

  14. Oral calcium supplementation ambulatory blood pressure and relation to changes in intracellular ions and sodium-hydrogen exchange.

    Science.gov (United States)

    Pikilidou, Maria I; Befani, Christina D; Sarafidis, Pantelis A; Nilsson, Peter M; Koliakos, George G; Tziolas, Ioannis M; Kazakos, Kiriakos A; Yovos, John G; Lasaridis, Anastasios N

    2009-12-01

    Calcium (Ca2+) supplementation has been shown paradoxically to reduce intracellular Ca2+ and induce vascular relaxation. The aim of the study was to assess 24-h blood pressure (BP) change after Ca2+ supplementation and to investigate its relation to changes in intracellular ions and the activity of the first isoform of sodium-hydrogen exchange (NHE-1) in subjects with hypertension and type 2 diabetes. This parallel, randomized controlled, single-blinded trial, consisted of 31 patients with type 2 diabetes, and hypertension who were allocated to receive 1,500 mg of Ca2+ per day (n = 15) or no treatment (n = 16) for 8 weeks. In the Ca2+ group a decrease of 1.7 +/- 2.7 mm Hg (mean +/- SE) P = 0.52 for mean 24-h systolic BP (SBP) and 2.1 +/- 1.5 mm Hg, P = 0.19 for mean 24-h diastolic BP (DBP) was recorded. Whereas in the control group an increase of 1.4 +/- 2.7 mm Hg, P = 0.59 for mean 24-h SBP and 1.2 +/- 2.8 mm Hg, P = 0.83 for mean 24-h DBP was observed. Intraplatelet Ca2+ decreased whereas intraplatelet magnesium (Mg2+) and erythrocyte K+ increased in the intervention group. Change in mean 24-h SBP in the pooled group correlated with both change in intraplatelet Ca2+ (r = 0.49, P < 0.05) and NHE-1 activity (r = 0.6, P < 0.001). The contribution of intraplatelet Ca2+ was attenuated when both parameters were entered in a multivariate regression model. The present study shows a weak, statistically nonsignificant trend towards association of Ca2+ supplementation on 24-h BP in hypertensive subjects with type 2 diabetes. However, our results indicated an interrelation of [Ca2+]i levels and NHE-1 activity on BP in patients with hypertension and type 2 diabetes.

  15. Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase.

    Science.gov (United States)

    Malek, A M; Jiang, L; Lee, I; Sessa, W C; Izumo, S; Alper, S L

    1999-01-08

    We have investigated the signaling pathways by which shear stress induces accumulation of endothelial nitric oxide synthase (eNOS) mRNA in bovine aortic endothelial cells (BAEC). Steady laminar fluid shear stress (20 dyn/cm2) induced a time-dependent increase in eNOS mRNA levels that did not require de novo protein synthesis and was in part transcriptional. Shear responsiveness was conferred on a luciferase reporter by a portion of the eNOS gene promoter encoding the 5'-flanking region between nt -1600 and -779. Shear-mediated induction of eNOS mRNA was abolished by chelation of intracellular calcium ([Ca2+]i) with BAPTA-AM, and inhibited by blockade of calcium entry with SKF96535. In contrast, eNOS mRNA upregulation by shear was potentiated by thapsigargin-mediated depletion of Ca2+i stores. Pertussis toxin (PTX) inhibited both the shear-induced elevation in [Ca2+]i and the subsequent increase in eNOS mRNA, implicating a PTX-sensitive G-protein in both responses. Shear-induced upregulation of eNOS mRNA was unaffected by the calmodulin inhibitor W-7 and by the tyrosine kinase inhibitor herbimycin A, suggesting that neither calmodulin nor tyrosine kinases are required. However, eNOS mRNA upregulation was potentiated by the PI 3-kinase inhibitors wortmannin and LY294002, suggesting that PI 3-kinase inhibits the shear response. Although microtubule integrity is required for the shear-induced regulation of endothelin-1 mRNA and the morphological and cytoskeletal responses to flow, neither microtubule dissolution with nocodazole nor microtubule stabilization with taxol altered shear-induced [Ca2+]i elevation or upregulation of eNOS mRNA. In conclusion, shear stress of BAEC increases eNOS transcriptional rate and upregulates eNOS mRNA levels by a process that requires calmodulin-independent [Ca2+]i signaling and a PTX-sensitive G-protein, is inhibited by PI 3-kinase, and is independent of microtubule integrity and tyrosine kinase activity. Copyright 1999 Academic Press.

  16. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda

    2012-01-01

    after stroke. Here, we evaluate changes of ET(B) and 5-HT(1B) receptors, intracellular calcium levels, and calcium channel expression in rat middle cerebral artery (MCA) after focal cerebral ischemia and in vitro organ culture, a proposed model of vasoconstrictor receptor changes after stroke. Rats were...... subjected to 2 h MCA occlusion followed by reperfusion for 1 or 24 h. Alternatively, MCAs from naïve rats were cultured for 1 or 24 h. ET(B) and 5-HT(1B) receptor-mediated contractions were evaluated by wire myography. Receptor and channel expressions were measured by real-time PCR and immunohistochemistry....... Intracellular calcium was measured by FURA-2. Expression and contractile functions of ET(B) and 5-HT(1B) receptors were strongly upregulated and slightly downregulated, respectively, 24 h after experimental stroke or organ culture. ET(B) receptor-mediated contraction was mediated by calcium from intracellular...

  17. Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permeability.

    Science.gov (United States)

    Kooiman, Klazina; van der Steen, Antonius F W; de Jong, Nico

    2013-09-01

    Drugs will be delivered to diseased tissue more efficiently if the vascular endothelial permeability is increased. Ultrasound in combination with an ultrasound contrast agent is known to increase the permeability of the endothelial layer, but the mechanism is not known. The goal of this study was to elucidate whether intracellular calcium ions, [Ca(2+)]i, and reactive oxygen species (ROS) are part of the mechanism that leads to an increased endothelial layer permeability following ultrasound and microbubble treatment. Human umbilical vein endothelial cells (HUVECs) treated for 2 min with ultrasound-activated microbubbles (1 MHz, 210 kPa, 10 000 cycles, 20 Hz repetition rate) had an increased permeability that lasted up to 12 h. Recovery of permeability after 2 h was only found when HUVECs were preincubated with the [Ca(2+)]i chelator BAPTA-AM or the antioxidant butylated hydroxytoluene (BHT). This suggests that both [Ca(2+)]i and ROS play an important role in the mechanism of increased permeability following ultrasound in combination with microbubble treatment.

  18. [Effects of emodin on the intracellular calcium concentration ([Ca2+]i) and L-type calcium current of the single ventricular mytocytes from guinea pig].

    Science.gov (United States)

    Liu, Ying; Shan, Hong-li; Sun, Hong-li; He, Shu-zhuang; Yang, Bao-feng

    2004-01-01

    To study the effects of emodin on intracellular calcium concentration ([Ca2+]i) and L-type calcium current of the single ventricular myocytes from guinea pig. Enzymatic dissociation was used to isolate single ventricular myocytes from adult guinea pig. They were loaded with Ca2(+)-sensitive fluorecent indicator Fluo-3/AM. [Ca2+]i represented by fluorescent intensity (FI) was measured by laser scanning confocal microscope. Whole cell patch clamp technique was used to record ICa-L. At resting status, [Ca2+]i was not affected by emodin (1-100 mumol.L-1). Emodin at the concentration of 1 mumol.L-1 was shown to increase the [Ca2+]i induced by 60 mmol.L-1 KCl. The peak value of fluorescent intensity was increased from 1,877 +/- 551 to 2,905 +/- 739 (n = 8, P < 0.05). Emodin at the concentration of 10 mumol.L-1 had no effect on the increase of [Ca2+]i induced by 60 mmol.L-1 KCl. However, the increase of [Ca2+]i induced by KCl was reduced to 1,214 +/- 335 (n = 8, P < 0.05) by 100 mumol.L-1 emodin. The density of ICa-L was increased from (-6.2 +/- 1.3) pA/pF to (-8.3 +/- 0.3) pA/pF (n = 6, P < 0.05) by 1 mumol.L-1 emodin at the test pulse of 0 mV. The current was not altered by 10 mumol.L-1 emodin. But it was inhibited from (-6.6 +/- 1.0) pA/pF to (-3.80 +/- 0.16) pA/pF (n = 6, P < 0.05) by 100 mumol.L-1 emodin at the test pulse of +10 mV. Emodin has two-way regulation on [Ca2+]i and ICa-L of cardiomyocytes in guinea pig.

  19. Buffering effects of calcium salts in kimchi: lowering acidity, elevating lactic acid bacterial population and dextransucrase activity.

    Science.gov (United States)

    Chae, Seo Eun; Moon, Jin Seok; Jung, Jee Yun; Kim, Ji-Sun; Eom, Hyun-Ju; Kim, So-Young; Yoon, Hyang Sik; Han, Nam Soo

    2009-12-01

    This study investigates the buffering effects of calcium salts in kimchi on total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added in dongchimi-kimchi, a watery-radish kimchi, and their effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts.

  20. Calcium

    Science.gov (United States)

    ... Turn to calcium-fortified (or "calcium-set") tofu, soy milk, tempeh, soy yogurt, and cooked soybeans (edamame). Calcium-fortified foods. Look for calcium-fortified orange juice, soy or rice milk, breads, and cereal. Beans. You can get decent ...

  1. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  2. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    Science.gov (United States)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  3. Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

    Science.gov (United States)

    Yadav, Vishal R; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min; Wang, Yong-Xiao

    2013-02-01

    An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

  4. Elevated NT-proBNP and coronary calcium score in relation to coronary artery disease in asymptomatic type 2 diabetic patients with elevated urinary albumin excretion rate

    DEFF Research Database (Denmark)

    Reinhard, Henrik; Hansen, Peter R; Persson, Frederik

    2011-01-01

    Elevated plasma N-terminal (NT)-proBNP levels and coronary calcium score (CCS) not only predicts myocardial ischaemia and coronary artery stenosis but also adverse cardiovascular events and mortality in type 2 diabetic patients with an increased urinary albumin excretion rate (UAER), whereas low...... levels are associated with low frequency of coronary artery disease (CAD) and good prognosis. The underlying causes of poor prognosis in patients with elevated NT-proBNP are not known; thus, we investigated the role of putative asymptomatic CAD in type 2 diabetic patients with UAER >30 mg/24 h...

  5. Evaluation of elevated temperature properties of asphalt cement modified with aluminum oxide and calcium carbonate nanoparticles

    Science.gov (United States)

    Albrka Ali, Shaban Ismael; Ismail, Amiruddin; AlMansob, Ramez A.; Alhmali, Dhawo Ibrahim

    2017-09-01

    Higher temperature properties of the asphalt cement have been characterized before and after modification using dynamic shear rheometer (DSR) and viscosity testing. In this study, calcium carbonate nanoparticles (CaCO3) and aluminum oxide nanoparticles (Al2O3) have been added to the base asphalt cement with concentrations of 3, 5 and 7%.wt by the weight of the asphalt cement. The increase of CaCO3 and Al2O3 content has significant effect on the properties of asphalt cement. The viscosity of the modified asphalt cement increased up to 90 and 108% respectively compared to the base asphalt cement. In addition, the results showed that both modifiers have great storage stability and compatibility at elevated temperature. The evaluation of the rheological properties of asphalt cements revealed that the stiffness of the modified samples improved with additional increase of the modifier concentration of up to 5%, which indicates better resistance to rutting parameter. The enhancement was up to 388.89% for Al2O3 and 74.07% for CaCO3. As a result, the usage of CaCO3 and Al2O3 nanoparticles can be considered as appropriate alternative materials to modify asphalt cement.

  6. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Siripong Palee

    2016-06-01

    Full Text Available Background/Aims: Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2 treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Methods: Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. Results: H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker and mecamylamine (a nicotinic acetylcholine receptor blocker significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. Conclusion: ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors.

  7. Intracellular calcium level is an important factor influencing ion channel modulations by PLC-coupled metabotropic receptors in hippocampal neurons.

    Science.gov (United States)

    Sugawara, Yuto; Echigo, Ryousuke; Kashima, Kousuke; Minami, Hanae; Watanabe, Megumi; Nishikawa, Yuiko; Muranishi, Miho; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2013-05-28

    Signaling pathways involving phospholipase C (PLC) are involved in various neural functions. Understanding how these pathways are regulated will lead to a better understanding of their roles in neural functions. Previous studies demonstrated that receptor-driven PLCβ activation depends on intracellular Ca(2+) concentration ([Ca(2+)]i), suggesting the possibility that PLCβ-dependent cellular responses are basically Ca(2+) dependent. To test this possibility, we examined whether modulations of ion channels driven by PLC-coupled metabotropic receptors are sensitive to [Ca(2+)]i using cultured hippocampal neurons. Muscarinic activation triggered an inward current at -100 mV (the equilibrium potential for K(+)) in a subpopulation of neurons. This current response was suppressed by pirenzepine (an M1-preferring antagonist), PLC inhibitor, non-selective cation channel blocker, and lowering [Ca(2+)]i. Using the neurons showing no response at -100 mV, effects of muscarinic activation on K(+) channels were examined at -40 mV. Muscarinic activation induced a transient decrease of the holding outward current. This current response was mimicked and occluded by XE991, an M-current K(+) channel blocker, suppressed by pirenzepine, PLC inhibitor and lowering [Ca(2+)]i, and enhanced by elevating [Ca(2+)]i. Similar results were obtained when group I metabotropic glutamate receptors were activated instead of muscarinic receptors. These results clearly show that ion channel modulations driven by PLC-coupled metabotropic receptors are dependent on [Ca(2+)]i, supporting the hypothesis that cellular responses induced by receptor-driven PLCβ activation are basically Ca(2+) dependent. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion.

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L

    2010-12-01

    Hypochlorhydria during Helicobacter pylori infection inhibits gastric Sonic Hedgehog (Shh) expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through intracellular calcium (Ca2(+)(i))-dependent protein kinase C (PKC) or cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation. We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1, a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) + 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), PKC-overexpressing adenoviruses, and PKC inhibitors were used to modulate Ca(2+)(i)-release, PKC activity, and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H(+)/K(+)-β-cholera-toxin-overexpressing mice. Mice that expressed secreted hedgehog-interacting protein-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression also was repressed in the hyperchlorhydric H(+)/K(+)-β-cholera-toxin model with increased cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca(2+)(i) release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin-, and carbachol-mediated release of Ca(2+)(i) induced Shh expression. Ca(2+)-chelation with BAPTA + EGTA reduced Shh expression. Overexpression of PKC-α, -β, and -δ (but not PKC-ϵ) induced an Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Secretagogues that stimulate

  9. Neurosteroids block the increase in intracellular calcium level induced by Alzheimer’s β-amyloid protein in long-term cultured rat hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Midori Kato-Negishi

    2008-03-01

    Full Text Available Midori Kato-Negishi1, Masahiro Kawahara21Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183- 8526, Japan; 2Department of Analytical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-cho, Nobeoka-shi, Miyazaki 882-8508, JapanAbstract: The neurotoxicity of β-amyloid protein (AβP is implicated in the etiology of Alzheimer’s disease. We previously have demonstrated that AβP forms Ca2+-permeable pores on neuronal membranes, causes a marked increase in intracellular calcium level, and leads to neuronal death. Here, we investigated in detail the features of AβP-induced changes in intracellular Ca2+ level in primary cultured rat hippocampal neurons using a multisite Ca2+- imaging system with fura-2 as a fluorescent probe. Only a small fraction of short-term cultured hippocampal neurons (ca 1 week in vitro exhibited changes in intracellular Ca2+ level after AβP exposure. However, AβP caused an acute increase in intracellular Ca2+ level in long-term cultured neurons (ca 1 month in vitro. The responses to AβP were highly heterogeneous, and immunohistochemical analysis using an antibody to AβP revealed that AβP is deposited on some but not all neurons. Considering that the disruption of Ca2+ homeostasis is the primary event in AβP neurotoxicity, substances that protect neurons from an AβP-induced intracellular Ca2+ level increase may be candidates as therapeutic drugs for Alzheimer’s disease. In line with the search for such protective substances, we found that the preadministration of neurosteroids including dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone significantly inhibits the increase in intracellular calcium level induced by AβP. Our results suggest the possible significance of neurosteroids, whose levels are reduced in the elderly, in preventing AβP neurotoxicity

  10. Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets.

    Directory of Open Access Journals (Sweden)

    Emily R Wendt

    Full Text Available Calcium flux is a rapid and sensitive measure of cell activation whose utility could be enhanced with better techniques for data extraction. We describe a technique to monitor calcium flux by flow cytometry, measuring Fura Red calcium dye by ratiometric analysis. This technique has several advantages: 1 using a single calcium dye provides an additional channel for surface marker characterization, 2 allows robust detection of calcium flux by minority cell populations within a heterogeneous population of primary T cells and monocytes 3 can measure total calcium flux and additionally, the proportion of responding cells, 4 can be applied to studying the effects of drug treatment, simultaneously stimulating and monitoring untreated and drug treated cells. Using chemokine receptor activation as an example, we highlight the utility of this assay, demonstrating that only cells expressing a specific chemokine receptor are activated by cognate chemokine ligand. Furthermore, we describe a technique for simultaneously stimulating and monitoring calcium flux in vehicle and drug treated cells, demonstrating the effects of the Gαi inhibitor, pertussis toxin (PTX, on chemokine stimulated calcium flux. The described real time calcium flux assay provides a robust platform for characterizing cell activation within primary cells, and offers a more accurate technique for studying the effect of drug treatment on receptor activation in a heterogeneous population of primary cells.

  11. Surgical treatment of patients with mildly elevated parathormone and calcium levels.

    Science.gov (United States)

    Parikh, Punam P; Allan, Bassan J; Lew, John I

    2014-06-01

    Patients with mildly elevated parathormone (PTH) and calcium levels consistent for primary hyperparathyroidism (pHPT) may present with more underlying multiglandular disease (MGD) and higher operative failure and recurrence rates than those with conventional, or "classic" pHPT. This study compared the clinical characteristics and surgical outcomes of patients with biochemically mild versus conventional pHPT. A series of 707 consecutive patients underwent initial targeted parathyroidectomy with intraoperative parathormone monitoring (IPM) at a single institution. Biochemically mild (BM) pHPT was defined as PTH > 65 and 10.4 and operative indication, preoperative laboratory values, imaging, IPM dynamics, and postoperative laboratory values were retrospectively reviewed. Additional assessments included presence of MGD, bilateral neck exploration (BNE), single-gland volume, and operative failure or success, and recurrence. Of 60 patients with BM-pHPT, 46 reported preoperative bone pain, kidney stones, fatigue, and/or mental disturbances. The remaining 14 BM-pHPT patients underwent parathyroidectomy based on published asymptomatic guidelines. Patients with BM-pHPT had significantly more kidney stones, MGD, and BNE. Average single-gland volume and postoperative PTH levels were significantly lower in BM-pHPT patients. There were no significant differences between groups regarding preoperative localization accuracy, IPM dynamics, or operative success/failure, recurrence rates. BM-pHPT patients had more MGD requiring BNE but achieved operative success rates similar to those of patients with conventional disease. IPM successfully identifies MGD in BM-pHPT patients, who should be counseled regarding more extensive operations than limited parathyroidectomy.

  12. Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Kurylenko, Olena O; Sibirny, Vladimir A; Ubiyvovk, Vira M; Penninckx, Michel; Sibirny, Andriy A

    2011-11-01

    The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.

  13. Calcium

    Science.gov (United States)

    ... and blood vessels contract and expand, to secrete hormones and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with ...

  14. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  15. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  16. Simultaneous Quantification of Spatially Discordant Alternans in Voltage and Intracellular Calcium in Langendorff-Perfused Rabbit Hearts and Inconsistencies with Models of Cardiac Action Potentials and Ca Transients

    Directory of Open Access Journals (Sweden)

    Ilija Uzelac

    2017-10-01

    Full Text Available Rationale: Discordant alternans, a phenomenon in which the action potential duration (APDs and/or intracellular calcium transient durations (CaDs in different spatial regions of cardiac tissue are out of phase, present a dynamical instability for complex spatial dispersion that can be associated with long-QT syndrome (LQTS and the initiation of reentrant arrhythmias. Because the use of numerical simulations to investigate arrhythmic effects, such as acquired LQTS by drugs is beginning to be studied by the FDA, it is crucial to validate mathematical models that may be used during this process.Objective: In this study, we characterized with high spatio-temporal resolution the development of discordant alternans patterns in transmembrane voltage (Vm and intracellular calcium concentration ([Cai]+2 as a function of pacing period in rabbit hearts. Then we compared the dynamics to that of the latest state-of-the-art model for ventricular action potentials and calcium transients to better understand the underlying mechanisms of discordant alternans and compared the experimental data to the mathematical models representing Vm and [Cai]+2 dynamics.Methods and Results: We performed simultaneous dual optical mapping imaging of Vm and [Cai]+2 in Langendorff-perfused rabbit hearts with higher spatial resolutions compared with previous studies. The rabbit hearts developed discordant alternans through decreased pacing period protocols and we quantified the presence of multiple nodal points along the direction of wave propagation, both in APD and CaD, and compared these findings with results from theoretical models. In experiments, the nodal lines of CaD alternans have a steeper slope than those of APD alternans, but not as steep as predicted by numerical simulations in rabbit models. We further quantified several additional discrepancies between models and experiments.Conclusions: Alternans in CaD have nodal lines that are about an order of magnitude steeper

  17. Calcium

    Science.gov (United States)

    ... from dietary supplements are linked to a greater risk of kidney stones, especially among older adults. But calcium from foods does not appear to cause kidney stones. For most people, other factors (such as not drinking enough fluids) probably have ...

  18. Is Increased Intracellular Calcium in Red Blood Cells a Common Component in the Molecular Mechanism Causing Anemia?

    Directory of Open Access Journals (Sweden)

    Laura Hertz

    2017-09-01

    Full Text Available For many hereditary disorders, although the underlying genetic mutation may be known, the molecular mechanism leading to hemolytic anemia is still unclear and needs further investigation. Previous studies revealed an increased intracellular Ca2+ in red blood cells (RBCs from patients with sickle cell disease, thalassemia, or Gardos channelopathy. Therefore we analyzed RBCs' Ca2+ content from 35 patients with different types of anemia (16 patients with hereditary spherocytosis, 11 patients with hereditary xerocytosis, 5 patients with enzymopathies, and 3 patients with hemolytic anemia of unknown cause. Intracellular Ca2+ in RBCs was measured by fluorescence microscopy using the fluorescent Ca2+ indicator Fluo-4 and subsequent single cell analysis. We found that in RBCs from patients with hereditary spherocytosis and hereditary xerocytosis the intracellular Ca2+ levels were significantly increased compared to healthy control samples. For enzymopathies and hemolytic anemia of unknown cause the intracellular Ca2+ levels in RBCs were not significantly different. These results lead us to the hypothesis that increased Ca2+ levels in RBCs are a shared component in the mechanism causing an accelerated clearance of RBCs from the blood stream in channelopathies such as hereditary xerocytosis and in diseases involving defects of cytoskeletal components like hereditary spherocytosis. Future drug developments should benefit from targeting Ca2+ entry mediating molecular players leading to better therapies for patients.

  19. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment

    DEFF Research Database (Denmark)

    Jensen, Helle; Hagemann-Jensen, Michael Henrik; Lauridsen, Felicia Kathrine Bratt

    2013-01-01

    cell surface expression on melanoma cells and Jurkat T-cells. A NKG2D-dependent cytolytic assay and staining with a recombinant NKG2D-Fc fusion protein showed that calcium chelation impaired the functional ability of NKG2D-ligands induced by HDAC-inhibitor treatment. The HDAC-inhibitor induced cell......-cells. We further show that secretion and cell surface binding of the calcium-regulating protein galectin-1 is enhanced upon HDAC-inhibitor treatment of melanoma cells. However, binding of galectin-1 to cell surface glycoproteins was not critical for constitutive or HDAC-inhibitor induced MICA/B and ULBP2...

  20. Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices

    Science.gov (United States)

    Sasaki, Takuya; Ishikawa, Tomoe; Abe, Reimi; Nakayama, Ryota; Asada, Akiko; Matsuki, Norio; Ikegaya, Yuji

    2014-01-01

    Astrocytes are thought to detect neuronal activity in the form of intracellular calcium elevations; thereby, astrocytes can regulate neuronal excitability and synaptic transmission. Little is known, however, about how the astrocyte calcium signal regulates the activity of neuronal populations. In this study, we addressed this issue using functional multineuron calcium imaging in hippocampal slice cultures. Under normal conditions, CA3 neuronal networks exhibited temporally correlated activity patterns, occasionally generating large synchronization among a subset of cells. The synchronized neuronal activity was correlated with astrocyte calcium events. Calcium buffering by an intracellular injection of a calcium chelator into multiple astrocytes reduced the synaptic strength of unitary transmission between pairs of surrounding pyramidal cells and caused desynchronization of the neuronal networks. Uncaging the calcium in the astrocytes increased the frequency of neuronal synchronization. These data suggest an essential role of the astrocyte calcium signal in the maintenance of basal neuronal function at the circuit level. PMID:24710057

  1. High extracellular magnesium inhibits mineralized matrix deposition and modulates intracellular calcium signaling in human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Li; Yang, Chunxi; Li, Jiao; Zhu, Yuchang; Zhang, Xiaoling

    2014-08-08

    Mesenchymal stem cells (MSCs) have the potential to differentiate into several cell types and provide an attractive source of autologous cells for regenerative medicine. However, their cellular biology is not fully understood. Similar to Ca(2+), extracellular Mg(2+) plays an important role in the functions of the skeletal system. Here, we examined the effects of extracellular Mg(2+) on the deposition of calcium phosphate matrix and Ca(2+) signaling with or without ATP stimulation in human bone marrow-derived mesenchymal stem cells (hBMSCs). We found that high extracellular Mg(2+) concentration ([Mg(2+)]e) inhibited extracellular matrix mineralization in hBMSCs in vitro. hBMSCs also produced a dose-dependent decrease in the frequency of calcium oscillations during [Mg(2+)]e elevation with a slight suppression on oscillation amplitude. In addition, spontaneous ATP release was inhibited under high [Mg(2+)]e levels and exogenous ATP addition stimulated oscillation reappear. Taken together, our results indicate that high [Mg(2+)]e modulates calcium oscillations via suppression of spontaneous ATP release and inactivates purinergic receptors, resulting in decreased extracellular mineralized matrix deposition in hBMSCs. Therefore, the high magnesium environment created by the rapid corrosion of Mg alloys may result in the dysfunction of calcium-dependent physiology processes and be disadvantageous to hBMSCs physiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ca analysis: An Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis☆

    Science.gov (United States)

    Greensmith, David J.

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908

  3. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    Science.gov (United States)

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Calcium transients during early development in single starfish (Asterias forbesi) oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Eisen, A.; Reynolds, G.T.

    1984-11-01

    Maturation and fertilization of the starfish oocyte are putative calcium-dependent events. The authors have investigated the spatial distribution and temporal dynamics of this calcium dependence in single oocytes of Asterias forbesi. They used the calcium photoprotein, aequorin, in conjunction with a microscope-photomultiplier and microscope-image intensifier. Surprisingly, in contrast to earlier work with Marasthenias glacialis, there is no detectable increase in intracellular-free calcium in the oocyte of A. forbesi in response to the maturation hormone 1-methyl adenine. During fertilization of the same, matured, A. forbesi oocyte there is a large increase in intracellular-free calcium. The calcium concentration increases to approx.1 ..mu..M at the point of insemination and the region of elevated free calcium expands across the oocyte in approx.20 s (17-19/sup 0/C). After the entire oocyte reaches an elevated concentration of free calcium, the concentration decreases uniformly throughout the oocyte over the next several minutes.

  5. The effect of tetraethylammonium on intracellular calcium concentration in Alzheimer's disease fibroblasts with APP, S182 and E5-1 missense mutations.

    Science.gov (United States)

    Failli, P; Tesco, G; Ruocco, C; Ginestroni, A; Amaducci, L; Giotti, A; Sorbi, S

    1996-04-26

    It has been proposed that the lack of intracellular calcium concentration ([Ca2+]i) increase induced by the potassium channel blocker tetraethylammonium (TEA) in skin fibroblast cell lines identifies patients with both sporadic and familial Alzheimer's disease (AD). In order to verify this hypothesis, the effect of TEA on [Ca2+]i was studied in single fura-2-loaded skin fibroblast cell lines available in the Tissue Bank of the Italian Research Council. Four out of eight familial AD patients (one patient with S182 mutation, one patient with E5-1 mutation and two patients with 717 Val-->Ile APP mutation) and two out of five sporadic AD patients showed a positive response to TEA, whereas five out of 11 control lines were unresponsive. Our data suggest that the absence of the TEA-induced increase in [Ca2+]i in skin fibroblast cell lines does not identify all AD patients.

  6. High-Yield Method for Isolation and Culture of Endothelial Cells from Rat Coronary Blood Vessels Suitable for Analysis of Intracellular Calcium and Nitric Oxide Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Nistri Silvia

    2002-01-01

    Full Text Available We describe here a method for isolating endothelial cells from rat heart blood vessels by means of coronary microperfusion with collagenase. This methods makes it possible to obtain high amounts of endothelial cells in culture which retain the functional properties of their in vivo counterparts, including the ability to uptake fluorescently-labeled acetylated low-density lipoproteins and to respond to vasoactive agents by modulating intracellular calcium and by upregulating intrinsic nitric oxide generation. The main advantages of our technique are: (i good reproducibility, (ii accurate sterility that can be maintained throughout the isolation procedure and (iii high yield of pure endothelial cells, mainly due to microperfusion and temperature-controlled incubation with collagenase which allow an optimal distribution of this enzyme within the coronary vascular bed.

  7. A novel role of the L-type calcium channel α1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave.

    Directory of Open Access Journals (Sweden)

    Satoru Yamasaki

    Full Text Available Recent studies have shown that zinc ion (Zn can behave as an intracellular signaling molecule. We previously demonstrated that mast cells stimulated through the high-affinity IgE receptor (FcεRI rapidly release intracellular Zn from the endoplasmic reticulum (ER, and we named this phenomenon the "Zn wave". However, the molecules responsible for releasing Zn and the roles of the Zn wave were elusive. Here we identified the pore-forming α(1 subunit of the Cav1.3 (α(1D L-type calcium channel (LTCC as the gatekeeper for the Zn wave. LTCC antagonists inhibited the Zn wave, and an agonist was sufficient to induce it. Notably, α(1D was mainly localized to the ER rather than the plasma membrane in mast cells, and the Zn wave was impaired by α(1D knockdown. We further found that the LTCC-mediated Zn wave positively controlled cytokine gene induction by enhancing the DNA-binding activity of NF-κB. Consistent with this finding, LTCC antagonists inhibited the cytokine-mediated delayed-type allergic reaction in mice without affecting the immediate-type allergic reaction. These findings indicated that the LTCC α(1D subunit located on the ER membrane has a novel function as a gatekeeper for the Zn wave, which is involved in regulating NF-κB signaling and the delayed-type allergic reaction.

  8. Comparison of plate reader-based methods with fluorescence microscopy for measurements of intracellular calcium levels for the assessment of in vitro neurotoxicity.

    Science.gov (United States)

    Meijer, Marieke; Hendriks, Hester S; Heusinkveld, Harm J; Langeveld, Wendy T; Westerink, Remco H S

    2014-12-01

    The intracellular calcium concentration ([Ca(2+)]i) is an important readout for in vitro neurotoxicity since calcium is critically involved in many essential neurobiological processes, including neurotransmission, neurodegeneration and neurodevelopment. [Ca(2+)]i is often measured with considerable throughput at the level of cell populations with plate reader-based assays or with lower throughput at the level of individual cells with fluorescence microscopy. However, these methodologies yield different quantitative and qualitative results. In recent years, we demonstrated that the resolution and sensitivity of fluorescence microscopy is superior compared to plate reader-based assays. However, it is currently unclear if the use of plate reader-based assays results in more 'false negatives' or 'false positives' in neurotoxicity screening studies. In the present study, we therefore compared a plate reader-based assay with fluorescence microscopy using a small test set of environmental pollutants consisting of dieldrin, lindane, polychlorinated biphenyl 53 (PCB53) and tetrabromobisphenol-A (TBBPA). Using single-cell fluorescence microscopy, we demonstrate that all test chemicals reduce the depolarization-evoked increase in [Ca(2+)]i, whereas lindane, PCB53 and TBBPA also increase basal [Ca(2+)]i, though via different mechanisms. Importantly, none of these effects were confirmed with the plate reader-based assay. We therefore conclude that standard plate reader-based methods are not sufficiently sensitive and reliable to measure the highly dynamic and transient changes in [Ca(2+)]i that occur during chemical exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Extra and intracellular calcium signaling pathway(s) differentially regulate histamine-induced myometrial contractions during early and mid-pregnancy stages in buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Sharma, Abhishek; Nakade, Udayraj P; Choudhury, Soumen; Yadav, Rajkumar Singh; Garg, Satish Kumar

    2017-04-01

    This study examines the differential role of calcium signaling pathway(s) in histamine-induced uterotonic action during early and mid-pregnancy stages in buffaloes. Compared to mid pregnancy, tonic contraction, amplitude and mean-integral tension were significantly increased by histamine to produce myometrial contraction during early pregnancy with small effects on phasic contraction and frequency. Although uterotonic action of histamine during both stages of pregnancy is sensitive to nifedipine (a L-type Ca2+ channels blocker) and NNC55-0396 (T-type Ca2+ channels blocker), the role of extracellular calcium seems to be more significant during mid-pregnancy as in this stage histamine produced only 9.38±0.96% contraction in Ca2+ free-RLS compared to 21.60±1.45% in uteri of early pregnancy stage. Intracellular calcium plays major role in histamine-induced myometrial contraction during early pregnancy as compared to mid pregnancy, as in the presence of cyclopiazonic acid (CPA) Ca2+-free RLS, histamine produced significantly higher contraction in myometrial strips of early-pregancy in comparison to mid-pregnancy (10.59±1.58% and 3.13±0.46%, respectively). In the presence of U-73122, the DRC of histamine was significantly shifted towards right with decrease in maximal effect (Emax) only in early pregnancy suggesting the predominant role of phospholipase-C (PL-C) in this stage of pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Contribution of the late sodium current to intracellular sodium and calcium overload in rabbit ventricular myocytes treated by anemone toxin.

    Science.gov (United States)

    Kornyeyev, Dmytro; El-Bizri, Nesrine; Hirakawa, Ryoko; Nguyen, Steven; Viatchenko-Karpinski, Serge; Yao, Lina; Rajamani, Sridharan; Belardinelli, Luiz

    2016-02-01

    Pathological enhancement of late Na(+) current (INa) can potentially modify intracellular ion homeostasis and contribute to cardiac dysfunction. We tested the hypothesis that modulation of late INa can be a source of intracellular Na(+) ([Na(+)]i) overload. Late INa was enhanced by exposing rabbit ventricular myocytes to Anemonia sulcata toxin II (ATX-II) and measured using whole cell patch-clamp technique. [Na(+)]i was determined with fluorescent dye Asante NaTRIUM Green-2 AM. Pacing-induced changes in the dye fluorescence measured at 37°C were more pronounced in ATX-II-treated cells than in control (dye washout prevented calibration). At 22-24°C, resting [Na(+)]i was 6.6 ± 0.8 mM. Treatment with 5 nM ATX-II increased late INa 8.7-fold. [Na(+)]i measured after 2 min of electrical stimulation (1 Hz) was 10.8 ± 1.5 mM and 22.1 ± 1.6 mM (P < 0.001) in the absence and presence of 5 nM ATX-II, respectively. Inhibition of late INa with GS-967 (1 μM) prevented Na(+) i accumulation. A strong positive correlation was observed between the late INa and the pacing-induced increase of [Na(+)]i (R(2) = 0.88) and between the rise in [Na(+)]i and the increases in cytosolic Ca(2+) (R(2) = 0.96). ATX-II, tetrodotoxin, or GS-967 did not affect [Na(+)]i in quiescent myocytes suggesting that late INa was solely responsible for triggering the ATX-II effect on [Na(+)]i. Experiments with pinacidil and E4031 indicate that prolongation of the action potential contributes to as much as 50% of the [Na(+)]i overload associated with the increase in late INa caused by ATX-II. Enhancement of late INa can cause intracellular Na(+) overload in ventricular myocytes. Copyright © 2016 the American Physiological Society.

  11. Amelioration of boron toxicity in sweet pepper as affected by calcium management under an elevated CO2 concentration.

    Science.gov (United States)

    Piñero, María Carmen; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2017-04-01

    We investigated B tolerance in sweet pepper plants (Capsicum annuun L.) under an elevated CO2 concentration, combined with the application of calcium as a nutrient management amelioration technique. The data show that high B affected the roots more than the aerial parts, since there was an increase in the shoot/root ratio, when plants were grown with high B levels; however, the impact was lessened when the plants were grown at elevated CO2, since the root FW reduction caused by excess B was less marked at the high CO2 concentration (30.9% less). Additionally, the high B concentration affected the membrane permeability of roots, which increased from 39 to 54% at ambient CO2 concentration, and from 38 to 51% at elevated CO2 concentration, producing a cation imbalance in plants, which was differentially affected by the CO2 supply. The Ca surplus in the nutrient solution reduced the nutritional imbalance in sweet pepper plants produced by the high B concentration, at both CO2 concentrations. The medium B concentration treatment (toxic according to the literature) did not result in any toxic effect. Hence, there is a need to review the literature on critical and toxic B levels taking into account increases in atmospheric CO2.

  12. The human megakaryocytic cell line UT-7/TPO responds to platelet agonists with intracellular Ca2+ elevation and P-selectin expression.

    Science.gov (United States)

    Kawaguchi, Tatsuya; Hashimoto, Ryuji; Nawa, Katsuhiko; Yokota, Hiroshi

    2011-05-01

    Megakaryocytes have several signal transduction cascades that are similar, but not identical to platelet activation signals. In order to understand platelet signals in detail, it is useful to compare the similarities and/or differences between platelets and megakaryocytes. We evaluated platelet activation signals related to three kinds of Gq protein-coupled receptors using the megakaryocytic cell line UT-7/TPO. It was found that UT-7/TPO responded to thrombin, resulting in a continuous elevation of the [Ca2+]i (intracellular Ca2+) and P-selectin expression on the surface of the cells. Activation of integrin αIIbβ3 and thromboxane generation was not detected by any of the three stimulations. Taken together, although strong [Ca2+]i elevation by thrombin stimulation caused further P-selection expression, we could detect [Ca2+]i elevation, which is thought to be the individual signals through the thrombin, thromboxane A2 or ADP receptor, without considering the secondary signalling caused by αIIbβ3 activation and the arachidonic acid cascade using UT-7/TPO.

  13. Stress-Relaxation Behavior of Magnesium-3Gadolinium-2Calcium-Based Alloys at Elevated Temperatures

    Science.gov (United States)

    Mo, Ning; Tan, Qiyang; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2017-11-01

    Based on previously published work on binary Mg alloys by Abaspour et al. and on the magnesium (Mg)-6gadolinium (Gd)-2zinc (Zn)-0.6zirconium (Zr) (wt pct) alloy reported by Nie et al., a number of new lower-cost Mg-3Gd-2calcium (Ca) (wt pct)-based creep-resistant magnesium alloys were developed by replacing part of the Gd with Ca. After solution treatment at 793 K (520 °C), the Ca-containing alloys exhibited an increased strength and a reduced stress relaxation at 453 K (180 °C) compared with the Mg-6Gd-2Zn-0.6Zr (wt pct) alloy. This work indicates that the replacement of Gd with Ca is a promising approach to develop lower-cost Mg alloys with an improved creep resistance. The results support the hypothesis that the short-range order of solutes governs the creep behavior of magnesium alloys.

  14. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.

    Science.gov (United States)

    Brodribb, Timothy J; McAdam, Scott A M

    2013-01-01

    Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca(2+)-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca(2+)-dependent stomatal signalling. We conclude that the evolution of Ca(2+)-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2.

  15. Sympathetic regulation of vascular tone via noradrenaline and serotonin in the rat carotid body as revealed by intracellular calcium imaging.

    Science.gov (United States)

    Yokoyama, Takuya; Nakamuta, Nobuaki; Kusakabe, Tatsumi; Yamamoto, Yoshio

    2015-01-30

    Hypoxia-induced chemosensory activity in the carotid body (CB) may be enhanced by the sympathetic regulation of vascular tone in the CB. In the present study, we recorded cervical sympathetic nerve activity in rats exposed to hypoxia, and examined noradrenaline (NA)- and serotonin (5-HT)-induced intracellular Ca(2+) ([Ca(2+)]i) responses in smooth muscle cells and pericytes in isolated blood vessels from the CB. Multifiber electrical activity recorded from the cervical sympathetic trunk was increased during the inhalation of hypoxic gas. NA induced [Ca(2+)]i increases in smooth muscle cells in arteriole specimens, whereas 5-HT did not cause any [Ca(2+)]i responses. However, NA did not induce [Ca(2+)]i increases in pericytes in capillaries, whereas 5-HT did and this response was inhibited by the 5-HT2 receptor antagonist, ketanserin. In conclusion, cervical sympathetic nerves enhanced by hypoxia may reduce blood flow in the CB in order to increase chemosensitivity. Thus, hypoxic chemosensitivity in the CB may involve a positive feedback mechanism via sympathetic nerves. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores.

    Science.gov (United States)

    Maggio, N; Vlachos, A

    2014-12-05

    Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor

    Directory of Open Access Journals (Sweden)

    Thiel Gerald

    2009-05-01

    Full Text Available Abstract Background The serine protease thrombin catalyzes fibrin clot formation by converting fibrinogen into fibrin. Additionally, thrombin stimulation leads to an activation of stimulus-responsive transcription factors in different cell types, indicating that the gene expression pattern is changed in thrombin-stimulated cells. The objective of this study was to analyze the signaling cascade leading to the expression of the zinc finger transcription factor Egr-1 in thrombin-stimulated lung fibroblasts. Results Stimulation of 39M1-81 fibroblasts with thrombin induced a robust and transient biosynthesis of Egr-1. Reporter gene analysis revealed that the newly synthesized Egr-1 was biologically active. The signaling cascade connecting thrombin stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca2+, the activation of diacylgycerol-dependent protein kinase C isoenzymes, and the activation of extracellular signal-regulated protein kinase (ERK. Stimulation of the cells with thrombin triggered the phosphorylation of the transcription factor Elk-1. Expression of a dominant-negative mutant of Elk-1 completely prevented Egr-1 expression in stimulated 39M1-81 cells, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of protease-activated receptors with transcription of the Egr-1 gene. Lentiviral-mediated expression of MAP kinase phosphatase-1, a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, prevented Elk-1 phosphorylation and Egr-1 biosynthesis in thrombin stimulated 39M1-81 cells, confirming the importance of nuclear ERK and Elk-1 for the upregulation of Egr-1 expression in thrombin-stimulated lung fibroblasts. 39M1-81 cells additionally express M1 muscarinic acetylcholine receptors. A comparison between the signaling cascades induced by thrombin or carbachol showed no differences, except that signal transduction via M

  18. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion

    DEFF Research Database (Denmark)

    Thastrup, Ole; Foder, B; Scharff, O

    1987-01-01

    stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation...... that the tumor promoting activity of Tg is attributable to its ability to stabilize [Ca2+]i on a new elevated steady state level....

  19. Anti-Epileptic Effect of Ganoderma Lucidum Polysaccharides by Inhibition of Intracellular Calcium Accumulation and Stimulation of Expression of CaMKII α in Epileptic Hippocampal Neurons

    Science.gov (United States)

    Wang, Shu-Qiu; Li, Xiao-Jie; Qiu, Hong-Bin; Jiang, Zhi-Mei; Simon, Maria; Ma, Xiao-Ru; Liu, Lei; Liu, Jun-Xing; Wang, Fang-Fang; Liang, Yan-Feng; Wu, Jia-Mei; Di, Wei-Hua; Zhou, Shaobo

    2014-01-01

    Purpose To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated. Method Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons. PMID:25010576

  20. Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII α in epileptic hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Shu-Qiu Wang

    Full Text Available To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP, the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated.Primary hippocampal neurons were divided into: 1 Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2 Model group I: neurons were incubated with Mg(2+ free medium for 3 hours; 3 Model group II: neurons were incubated with Mg(2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4 GLP group I: neurons were incubated with Mg(2+ free medium containing GLP (0.375 mg/ml for 3 hours; 5 GLP group II: neurons were incubated with Mg(2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca(2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca(2+ turnover was observed under a laser scanning confocal microscope.The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca(2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes.GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons.

  1. Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling.

    Directory of Open Access Journals (Sweden)

    Timothy J Brodribb

    Full Text Available Angiosperm and conifer tree species respond differently when exposed to elevated CO2, with angiosperms found to dynamically reduce water loss while conifers appear insensitive. Such distinct responses are likely to affect competition between these tree groups as atmospheric CO2 concentration rises. Seeking the mechanism behind this globally important phenomenon we targeted the Ca(2+-dependent signalling pathway, a mediator of stomatal closure in response to elevated CO2, as a possible explanation for the differentiation of stomatal behaviours. Sampling across the diversity of vascular plants including lycophytes, ferns, gymnosperms and angiosperms we show that only angiosperms possess the stomatal behaviour and prerequisite genetic coding, linked to Ca(2+-dependent stomatal signalling. We conclude that the evolution of Ca(2+-dependent stomatal signalling gives angiosperms adaptive benefits in terms of highly efficient water use, but that stomatal sensitivity to high CO2 may penalise angiosperm productivity relative to other plant groups in the current era of soaring atmospheric CO2.

  2. Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers.

    Science.gov (United States)

    Boni, R; Gallo, A; Cecchini, S

    2017-01-01

    Owing to the progressive decline of sperm motility during storage there is a need to find substances capable of enhancing sperm energy metabolism and motility and/or preserving it from oxidative damage. The aim of this study was to evaluate in frozen/thawed bovine spermatozoa the effect of several compounds, such as myo-inositol, pentoxifylline, penicillamine + hypotaurine + epinephrine mixture (PHE), caffeine and coenzyme Q10+ zinc + d-aspartate mixture (CZA), on either kinetic or metabolic parameters. Sperm kinetics was evaluated by Sperm Class Analyser whereas specific fluorochromes were used to evaluated mitochondrial membrane potential (MMP), intracellular pH, intracellular calcium concentration and lipid peroxidation. Lipid peroxidation was also evaluated by TBARS analysis. Treatments significantly affected total and progressive motility with different dynamics in relation to the incubation time. After the first hour of incubation, CZA treatment produced the best performance in total and progressive sperm motility as well as in curvilinear velocity, average path velocity and amplitude of head displacement, whereas pentoxifylline stimulated the highest straight-line velocity. MMP showed higher values (p lipid peroxidation were significantly (p < 0.05) affected by the incubation time rather than the treatments. Intracellular pH varied significantly (p < 0.01) in relation to either the incubation time or treatments. In particular, it showed a progressive increase throughout incubation with values in control group significantly higher than in myo-inositol, PHE, caffeine, pentoxifylline and CZA groups (7.37 ± 0.03 vs. 7.29 ± 0.03, 7.28 ± 0.03, 7.26 ± 0.03, 7.22 ± 0.03 and 7.00 ± 0.03, respectively; p < 0.01).; however, among treatments, CZA displayed the lowest values. Significant correlations were found between sperm kinetic and metabolic parameters. These findings provide new comparative information on the effects of putative metabolic

  3. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: the extracellular calcium receptor and an innovative medical approach to control secondary hyperparathyroidism by calcimimetics.

    Science.gov (United States)

    Nagano, Nobuo; Nemeth, Edward F

    2005-03-01

    Circulating levels of calcium ion (Ca(2+)) are maintained within a narrow physiological range mainly by the action of parathyroid hormone (PTH) secreted from parathyroid cells. Parathyroid cells can sense small fluctuations in plasma Ca(2+) levels by virtue of a cell surface Ca(2+) receptor (CaR) that belongs to the superfamily of G-protein-coupled receptors. Calcimimetics are positive allosteric modulators that activate the CaR on parathyroid cells and thereby immediately suppress PTH secretion. Pre-clinical studies with NPS R-568, a first generation calcimimetic compound, have demonstrated that daily oral administration inhibits the elevation of plasma PTH levels and parathyroid gland hyperplasia and ameliorates impaired bone qualities in rats with chronic renal insufficiency. The results of clinical trials with cinacalcet hydrochloride, a second generation calcimimetic compound, have shown that calcimimetics possess lowering effects not only on serum PTH levels but also on serum calcium x phosphorus product levels, a hallmark of an increased risk for cardiovascular death in dialysis patients with end-stage renal disease (ESRD). Thus, calcimimetics have considerable potential as an innovative medical approach to manage secondary hyperparathyroidism associated with ESRD. Indeed, cinacalcet hydrochloride has been approved in several countries and is the first positive allosteric modulator of any G protein-coupled receptor to reach the market.

  4. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion

    DEFF Research Database (Denmark)

    Thastrup, Ole; Foder, B; Scharff, O

    1987-01-01

    The ability of the platelet agonists thapsigargin (Tg) and thrombin to elevate the cytoplasmic free calcium level ([Ca2+]i) was examined. Both agonists induced a transient increase of [Ca2+]i with a different time-course, however. Thus, the maximal [Ca2+]i was reached 15 sec and 2 min after...... stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation...... of a pronounced peak. The decline in [Ca2+]i observed after thrombin stimulation was not impaired by the calmodulin binding drug trifluoperazine but it was strongly reduced by vanadate, which suggests the active calcium transport systems to be insensitive to calmodulin. We put forward the hypothesis...

  5. Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells.

    Science.gov (United States)

    Mayati, Abdullah; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Fardel, Olivier

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P. We demonstrated that, in addition to B(a)P, various PAHs, including pyrene and benzo(e)pyrene, known to not or only very poorly interact with AhR, similarly up-regulated [Ca(2+)](i) in human endothelial HMEC-1 cells. Moreover, α-naphthoflavone, a flavonoïd antagonist of AhR, was also able to induce [Ca(2+)](i). Knocking-down AhR expression in HMEC-1 cells through transfection of siRNAs, was finally demonstrated to not prevent B(a)P-mediated induction of [Ca(2+)](i), whereas it efficiently counteracted B(a)P-mediated induction of the referent AhR target gene cytochrome P-450 1B1. Taken together, these data demonstrate that environmental PAHs trigger [Ca(2+)](i) induction in an AhR-independent manner.

  6. Effect of lithium on superoxide production and intracellular free calcium mobilization in elastin peptide (kappa-elastin) and FMLP stimulated human PMNS. Effect of age.

    Science.gov (United States)

    Fülöp, T; Varga, Z s; Jacob, M P; Robert, L

    1997-01-01

    The effect of lithium pretreatment on superoxide anion production and intracellular free calcium levels was investigated in polymorphonuclear leukocytes (PMN) from middle-aged and old individuals after stimulation by elastin peptides or FMLP. K-elastin (KE) significantly stimulated the production of superoxide anion by PMNs from middle-aged subjects, while this stimulation decreased with age and was absent in PMNs of elderly arteriosclerotic patients. Li pretreatment slightly increased this stimulating effect of KE in PMNs from middle-aged subjects and elderly arteriosclerotic patients, while slightly decreased in healthy elderly subjects. Moreover, Li was able to increase superoxide anion production even in the absence of KE, but this effect decreased also in PMNs of healthy and arteriosclerotic elderly patients. FMLP significantly increased superoxide anion production in all age-groups, but this effect was further amplified by Li only in PMNs of middle-aged subjects. In aged individuals Li pretreatment slightly decreased the effect of FMLP and had no effect in arteriosclerotic patients. Ca-mobilization induced by KE was inhibited by Li pretreatement in each age group. This inhibition by Li was much weaker in FMLP-stimulated PMNs. Li pretreatment did however modify the shape of the Ca-transient curves in FMLP stimulated leukocytes suggesting a qualitative modification of ion channel regulation. No such shape change of Ca-transient curves was observed after KE stimulation of Li pretreated PMNs. It appears that the regulation of these two receptors is differently affected by Li treatment.

  7. Intracellular calcium-release and protein kinase C-activation stimulate sonic hedgehog gene expression during gastric acid secretion

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L.

    2010-01-01

    Introduction Hypochlorhydria during Helicobacter pylori infection inhibits gastric Shh expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through Ca2+i-dependent protein kinase C (PKC) or cAMP-dependent protein kinase A (PKA)-activation. Method We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1 (sHip-1), a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, EGTA+BAPTA, PKC-overexpressing adenoviruses, and PKC-inhibitors were used to modulate Ca2+i-release, PKC-activity and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H+/K+-β-cholera-toxin overexpressing mice (Ctox). Results Mice that expressed sHip-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression was also repressed in the hyperchlorhydric Ctox model with elevated cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca2+i-release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin- and carbachol-mediated release of Ca2+i induced Shh expression. Ca2+-chelation with BAPTA+EGTA reduced Shh expression. Overexpression of PKC-α, -β and -δ (but not PKC-ε) induced Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Conclusion Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca2+i-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin. PMID:20816837

  8. Cytosolic calcium elevation induced by orexin/hypocretin in granule cell domain cells of the rat cochlear nucleus in vitro.

    Science.gov (United States)

    Nakamura, Yuki; Miura, Shinya; Yoshida, Takashi; Kim, Juhyon; Sasaki, Kazuo

    2010-08-01

    Using rat brain slice preparations, we examined the effect of orexin on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in the granule cell domain (GCD) cells of the cochlear nucleus that carry non-auditory information to the dorsal cochlear nucleus. Application of orexin concentration-dependently increased [Ca(2+)](i), and in two thirds of GCD cells these increases persisted in the presence of tetrodotoxin. There was no significant difference between the dose-response curve for orexin-A and that for orexin-B. Extracellular Ca(2+) removal abolished the [Ca(2+)](i) elevation induced by orexin-B, whereas depletion of intracellular Ca(2+) stores had no effect. The orexin-B-induced elevation of [Ca(2+)](i) was not blocked by inhibitors of reverse-mode Na(+)/Ca(2+) exchanger (NCX) and nonselective cation channel, whereas it was blocked by lowering the extracellular Na(+) or by applying inhibitors of forward-mode NCX and voltage-gated R- and T-type Ca(2+) channels. The ORX-B-induced increase in [Ca(2+)](i) was also blocked by inhibitors of adenylcyclase (AC) and protein kinase A (PKA), but not by inhibitors of phosphatidylcholine-specific and phosphatidylinositol-specific phospholipase C. In electrophysiological experiments using whole-cell patch clamp recordings, half of GCD cells were depolarized by orexin-B, and the depolarization was abolished by a forward-mode NCX inhibitor. These results suggest that orexin increases [Ca(2+)](i) postsynaptically via orexin 2 receptors, and the increase in [Ca(2+)](i) is induced via the AC-PKA-forward-mode NCX-membrane depolarization-mediated activation of voltage-gated R- and T-type Ca(2+) channels. The results further support the hypothesis that the orexin system participates in integrating neural systems that are involved in arousal, sensory processing, energy homeostasis and autonomic function. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Giriraj Sahu

    Full Text Available Ischemia is known to inhibit gap junction (GJ mediated intercellular communication. However the detail mechanisms of this inhibition are largely unknown. In the present study, we determined the vulnerability of different cardiac GJ channels formed of connexins (Cxs 43, 40, and 45 to simulated ischemia, by creating oxygen glucose deprived (OGD condition. 5 minutes of OGD decreased the junctional conductance (Gj of Cx43, Cx40 and Cx45 by 53±3%, 64±1% and 85±2% respectively. Reduction of Gj was prevented completely by restricting the change of both intracellular calcium ([Ca(2+]i and pH (pHi with potassium phosphate buffer. Clamping of either [Ca(2+]i or pHi, through BAPTA (2 mM or HEPES (80 mM respectively, offered partial resistance to ischemic uncoupling. Anti-calmodulin antibody attenuated the uncoupling of Cx43 and Cx45 significantly but not of Cx40. Furthermore, OGD could reduce only 26±2% of Gj in C-terminus (CT truncated Cx43 (Cx43-Δ257. Tethering CT of Cx43 to the CT-truncated Cx40 (Cx40-Δ249, and Cx45 (Cx45-Δ272 helped to resist OGD mediated uncoupling. Moreover, CT domain played a significant role in determining the junction current density and plaque diameter. Our results suggest; OGD mediated uncoupling of GJ channels is primarily due to elevated [Ca(2+]i and acidic pHi, though the latter contributes more. Among Cx43, Cx40 and Cx45, Cx43 is the most resistant to OGD while Cx45 is the most sensitive one. CT of Cx43 has major necessary elements for OGD induced uncoupling and it can complement CT of Cx40 and Cx45.

  10. Associations between elevated resting heart rate and subclinical atherosclerosis in asymptomatic Korean adults undergoing coronary artery calcium scoring.

    Science.gov (United States)

    Han, Donghee; Lee, Ji Hyun; Rizvi, Asim; Baskaran, Lohendran; Park, Hyo Eun; Choi, Su-Yeon; Chun, Eun Ju; Sung, Jidong; Park, Sung Hak; Han, Hae-Won; Min, James K; Chang, Hyuk-Jae; Ó Hartaigh, Bríain

    2016-10-01

    Elevated resting heart rate (RHR) and the presence of coronary artery calcium (CAC) are closely related with inflammatory activity and cardiovascular disease outcomes. To date, however, the relationship between a high RHR and CAC has not been well studied, especially in non-western populations. We therefore aimed to examine the cross-sectional relationship between high RHR and the burden of subclinical atherosclerosis as measured by CAC score in a large sample of Korean adults. A total 26,018 subjects were enrolled and underwent CAC screening as part of a broader general health examination. RHR was categorized into four groups as: 0, >100, or >400 based on RHR. Mean age of the study population was 53.9 ± 8.2 years, and 79.7 % were male. After adjustment, each 10 beat per minute increment in RHR was associated with greater odds of having a CAC score above 100 (OR 1.13, 95 % CI 1.08-1.18) or 400 (OR 1.22, 95 % CI 1.13-1.31). Likewise, following adjustment, the odds of having a CAC >100 or >400 for those with a RHR ≥80 beats per minute were 1.42 (95 % CI 1.19-1.69) and 1.86 (95 % CI 1.42-2.47), respectively, compared with those who had a RHR <60 beats per minute. In a large cohort of Korean adults, elevations in the RHR, particularly above 80 beats per minute, were found to be independently associated with the presence of subclinical atherosclerosis as measured by CAC scoring.

  11. Creatine loading elevates the intracellular phosphorylation potential and alters adaptive responses of rat fast-twitch muscle to chronic low-frequency stimulation.

    Science.gov (United States)

    Putman, Charles T; Gallo, Maria; Martins, Karen J B; MacLean, Ian M; Jendral, Michelle J; Gordon, Tessa; Syrotuik, Daniel G; Dixon, Walter T

    2015-07-01

    This study tested the hypothesis that elevating the intracellular phosphorylation potential (IPP = [ATP]/[ADP]free) within rat fast-twitch tibialis anterior muscles by creatine (Cr) loading would prevent fast-to-slow fibre transitions induced by chronic low-frequency electrical stimulation (CLFS, 10 Hz, 12 h/day). Creatine-control and creatine-CLFS groups drank a solution of 1% Cr + 5% dextrose, ad libitum, for 10 days before and during 10 days of CLFS; dextrose-control and dextrose-CLFS groups drank 5% dextrose. Cr loading increased total Cr (P creatine-CLFS than in dextrose-CLFS. Higher IPP was confirmed by a 58% reduction in phospho-AMP-activated protein kinase α (Thr172) (P creatine-CLFS, MyHC-I and MyHC-IIa mRNA were unchanged and MyHC-IIb mRNA decreased by 75% (P creatine-CLFS, but reciprocal reductions in glycolytic reference enzymes occurred only in dextrose-CLFS (P creatine-CLFS coincided with prolonged time to peak tension and half-rise time (P < 0.01). These results highlight the IPP as an important physiological regulator of muscle fibre plasticity and demonstrate that training-induced changes typically associated with improvements in muscular endurance or increased power output are not mutually exclusive in Cr-loaded muscles.

  12. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration.

    Science.gov (United States)

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L; Han, Xu-Guang; Song, Hui; Tang, Xin

    2015-01-01

    Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

  13. Activation of endogenous c-Src or a related tyrosine kinase by intracellular (pY)EEI peptide increases voltage-operated calcium channel currents in rabbit ear artery cells.

    Science.gov (United States)

    Wijetunge, S; Hughes, A D

    1996-12-09

    The effect of activation of endogenous c-Src tyrosine kinase by (pY)EEI peptide was examined on voltage-operated calcium channel (VOC) currents in arterial smooth muscle cells. In single rabbit ear artery cells intracellular application of (pY)EEI peptide increased calcium channel currents. Inactive, non-phosphorylated YEEI peptide had no effect on currents. Peptide-A, a 21 amino acid inhibitor of c-Src inhibited currents and prevented the effect of (pY)EEI peptide on calcium channel currents. These results indicate that activation of intrinsic c-Src increases VOC and support a role for c-Src in the regulation of VOC in vascular smooth muscle cells.

  14. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor.

    Science.gov (United States)

    Liu, Junjun; Maller, James L

    2005-08-23

    Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.

  15. Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in Chlamydomonas.

    Science.gov (United States)

    Wu, Qiong; Gao, Kang; Zheng, Shuzhi; Zhu, Xin; Liang, Yinwen; Pan, Junmin

    2018-01-29

    Calcium has been implicated in the motility, assembly, disassembly, and deflagellation of the eukaryotic flagellum or cilium (exchangeable terms). Calmodulin (CaM) is known to be critical for flagellar motility; however, it is unknown whether and how CaM is involved in other flagella-related activities. We have studied CaM in Chlamydomonas, a widely used organism for ciliary studies. CaM is present in the cell body and the flagellum, with enrichment in the basal body region. Loss of CaM causes shortening of the nucleus basal body connector and impairs flagellar motility and assembly but not flagellar disassembly. Moreover, the cam mutant is defective in pH shock-induced deflagellation. The mutant deflagellates, however, upon mechanical shearing and treatment with mastoparan or detergent undergo permeabilization in the presence of calcium, indicating the cam mutant is defective in elevations of cytosolic calcium induced by pH shock, rather than by the deflagellation machinery. Indeed, the cam mutant fails to produce inositol 1,4,5-trisphosphate. Biochemical and genetic analysis showed that CaM does not directly activate PLC. Furthermore, CaM interacts with ADF1, a transient receptor channel that functions in acid-induced calcium entry. Thus, CaM is a critical regulator of flagellar activities especially those involved in modulating calcium homeostasis during acidic stress.-Wu, Q., Gao, K., Zheng, S., Zhu, X., Liang, Y., Pan, J. Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in Chlamydomonas.

  16. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol

    Directory of Open Access Journals (Sweden)

    Honorio-França AC

    2016-02-01

    Full Text Available Adenilda Cristina Honorio-França,1 Gabriel Triches Nunes,1 Danny Laura Gomes Fagundes,1 Patrícia Gelli Feres de Marchi,1 Rubian Trindade da Silva Fernandes,1 Juliana Luzia França,1,2 Aline do Carmo França-Botelho,2 Lucélia Campelo Albuquerque Moraes,1 Fernando de Pilla Varotti,3 Eduardo Luzía França1,3 1Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, Mato Grosso, Brazil; 2Institute of Health Sciences, University Center of Planalto de Araxá, Araxá, Minas Gerais, Brazil; 3Campus Centro Oeste Dona Lindu – Federal University of São João Del Rei, Divinópolis, Minas Gerais, Brazil Purpose: Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG microspheres with adsorbed SIgA on MCF-7 human breast cancer cells.  Methods: The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL, PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL. Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry.  Results: Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca2+ levels. In the presence of SIgA, an increase in the

  17. Calcium, Magnesium, and Phosphorus Metabolism, and Parathyroid- Calcitonin Function during Prolonged Exposure to Elevated CO2 Concentrations on Submarines

    Science.gov (United States)

    1975-12-01

    de sous-marins. Undersea Biomed. Res. Sub. Suppl.: S57-S70.—On a etudie le metabolisme du calcium et du phosphore et I’equilibre acido -basique chez...du calcium soit regie par la consomma- tion et l’elimination osseuses de COj. L’equtlibre acido -basique serait regie par les phases de tamponnage

  18. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium.

    Science.gov (United States)

    Palumbo, Dora Rita; Occhiuto, Francesco; Spadaro, Federica; Circosta, Clara

    2012-06-01

    The aim of this study was to investigate the neuroprotective effects of a titolated extract from Rhodiola rosea L. (RrE) and of salidroside (Sa), one of the major biologically active compounds extracted from this medicinal plant, against oxidative stressor hydrogen peroxide (H₂O₂) and glutamate (GLU)-induced cell apoptosis in a human cortical cell line (HCN 1-A) maintained in culture. The results obtained indicate that exposure of differentiated HCN 1-A neurons to GLU or H₂O₂ resulted in concentration-dependent cell death. A 24 h pre-treatment with RrE significantly increased cell survival and significantly prevented the plasma membrane damage and the morphological disruption caused by GLU or H₂O₂, indicating that neurons treated with RrE were protected from the neurotoxicity induced by the oxidative stressor used. In addition, RrE significantly reduced H₂O₂ or GLU-induced elevation of intracellular free Ca²⁺ concentration. The results obtained have also shown that Sa caused similar effects in all experimental models used; however, the potency of the action was lower than that of the extract containing corresponding quantities of Sa. These findings indicate that RrE has a neuroprotective effect in cortical neurons and suggest that the antioxidant activity of the RrE, due to the structural features of the synergic active principles they contain, may be responsible for its ability to stabilize cellular Ca²⁺ homeostasis. Copyright © 2011 John Wiley & Sons, Ltd.

  19. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells.

    Science.gov (United States)

    Mahdi, Shah H A; Cheng, Huanyi; Li, Jinfeng; Feng, Renqing

    2015-10-01

    The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel.

    Science.gov (United States)

    Sakallı Çetin, Esin; Nazıroğlu, Mustafa; Çiğ, Bilal; Övey, İshak Suat; Aslan Koşar, Pınar

    2017-02-01

    In breast cancers, calcium signaling is a main cause of proliferation and apoptosis of breast cancer cells. Although previous studies have implicated the transient receptor potential vanilloid 1 (TRPV1) cation channel, the synergistic inhibition effects of selenium (Se) and cisplatin in cancer and the suppression of ongoing apoptosis have not yet been investigated in MCF-7 breast cancer cells. This study investigates the anticancer properties of Se through TRPV1 channel activity in MCF-7 breast cancer cell line cultures when given alone or in combination with cisplatin. The MCF-7 cells were divided into four groups: the control group, the Se-treated group (200 nM), the cisplatin-treated group (40 μM) and the Se + cisplatin-treated group. The intracellular free calcium ion concentration and current densities increased with TRPV1 channel activator capsaicin (0.01 mM), but they decreased with the TRPV1 blocker capsazepine (0.1 mM), Se, cisplatin, and Se + cisplatin incubations. However, mitochondrial membrane depolarization, apoptosis, and the caspase 3, and caspase 9 values increased in the Se-treated group and the cisplatin-treated group, although Western blot (procaspase 3 and 9) results and the cell viability levels decreased with the Se and Se + cisplatin treatments. Apoptosis and caspase-3 were further increased with the Se + cisplatin treatment. Intracellular reactive oxygen species production increased with the cisplatin treatment, but not with the Se treatment. This study's results report, for the first time, that at a cellular level, Se and cisplatin interact on the same intracellular toxic cascade, and the combination of these two drugs can result in a remarkable anticancer effect through modulation of the TRPV1.

  1. Calcium-regulated import of myosin IC into the nucleus.

    Science.gov (United States)

    Maly, Ivan V; Hofmann, Wilma A

    2016-06-01

    Myosin IC is a molecular motor involved in intracellular transport, cell motility, and transcription. Its mechanical properties are regulated by calcium via calmodulin binding, and its functions in the nucleus depend on import from the cytoplasm. The import has recently been shown to be mediated by the nuclear localization signal located within the calmodulin-binding domain. In the present paper, it is demonstrated that mutations in the calmodulin-binding sequence shift the intracellular distribution of myosin IC to the nucleus. The redistribution is displayed by isoform B, described originally as the "nuclear myosin," but is particularly pronounced with isoform C, the normally cytoplasmic isoform. Furthermore, experimental elevation of the intracellular calcium concentration induces a rapid import of myosin into the nucleus. The import is blocked by the importin β inhibitor importazole. These findings are consistent with a mechanism whereby calmodulin binding prevents recognition of the nuclear localization sequence by importin β, and the steric inhibition of import is released by cell signaling leading to the intracellular calcium elevation. The results establish a mechanistic connection between the calcium regulation of the motor function of myosin IC in the cytoplasm and the induction of its import into the nucleus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. N-type calcium channel/syntaxin/SNAP-25 complex probed by antibodies to II-III intracellular loop of the {alpha}{sub 1B} subunit

    Energy Technology Data Exchange (ETDEWEB)

    Vance, C.L.; Begg, C.M.; Lee, W.-L.; Dubel, S.J. [Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue Cleveland, OH (United States); Copeland, T.D. [ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD (United States); Soennichsen, F.D.; McEnery, M.W. [Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH (United States)

    1999-02-22

    Neuronal voltage-dependent calcium channels are integral components of cellular excitation and neurosecretion. In addition to mediating the entry of calcium across the plasma membrane, both N-type and P/Q-type voltage-dependent calcium channels have been shown to form stable complexes with synaptic vesicle and presynaptic membrane proteins, indicating a structural role for the voltage-dependent calcium channels in secretion. Recently, detailed structural analyses of N-type calcium channels have identified residues amino acids 718-963 as the site in the rat {alpha}{sub 1B} subunit that mediates binding to syntaxin, synaptosome-associated protein of 25andpuncsp; omitted000 mol. wt and synaptotagmin [Sheng et al. (1996) Nature 379, 451-454]. The purpose of this study was to employ site-directed antibodies to target domains within and outside of the interaction site on the rat {alpha}{sub 1B} to probe potential binding sites for syntaxin/SNAP-25/synaptotagmin.Our results demonstrate that both antibodies employed in this study have access to their epitopes on the {alpha}{sub 1B} as evidenced by equivalent immunoprecipitation of native [{sup 125}I]omega-conotoxin GVIA-labeled {alpha}{sub 1B} protein from CHAPS-solubilized preparations. The N-type voltage-dependent calcium channel immunoprecipitated by Ab CW14, the antibody directed to a domain outside of the synprint site, is associated with syntaxin and SNAP-25 with the recovery of these proteins, increasing in parallel to the recovery of {alpha}{sub 1B}. However, when we used the antibody raised to an epitope within the synprint site (Ab CW8) to immunoprecipitate N-type calcium channels, the {alpha}{sub 1B} was depleted of more than 65% of syntaxin and 80% of SNAP-25 when compared to the recovery of these proteins using Ab CW14. This is the first report of a defined epitope on the {alpha}{sub 1B} subunit II-III loop (amino acids 863-875) whose perturbation by a site-directed antibody influences the dissociation of SNAP

  4. Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways.

    Science.gov (United States)

    Thrasivoulou, Christopher; Millar, Michael; Ahmed, Aamir

    2013-12-13

    Ca(2+) and β-catenin, a 92-kDa negatively charged transcription factor, transduce Wnt signaling via the non-canonical, Wnt/Ca(2+) and canonical, Wnt/β-catenin pathways independently. The nuclear envelope is a barrier to large protein entry, and this process is regulated by intracellular calcium [Ca(2+)]i and trans-nuclear potential. How β-catenin traverses the nuclear envelope is not well known. We hypothesized that Wnt/Ca(2+) and Wnt/β-catenin pathways act in a coordinated manner and that [Ca(2+)]i release facilitates β-catenin entry into the nucleus in mammalian cells. In a live assay using calcium dyes in PC3 prostate cancer cells, six Wnt peptides (3A, 4, 5A, 7A, 9B, and 10B) mobilized [Ca(2+)]i but Wnt11 did not. Based upon dwell time (range = 15-30 s) of the calcium waveform, these Wnts could be classified into three classes: short, 3A and 5A; long, 7A and 10B; and very long, 4 and 9B. Wnt-activated [Ca(2+)]i release was followed by an increase in intranuclear calcium and the depolarization of both the cell and nuclear membranes, determined by using FM4-64. In cells treated with Wnts 5A, 9B, and 10B, paradigm substrates for each Wnt class, increased [Ca(2+)]i was followed by β-catenin translocation into the nucleus in PC3, MCF7, and 253J, prostate, breast, and bladder cancer cell lines; both the increase in Wnt 5A, 9B, and 10B induced [Ca(2+)]i release and β-catenin translocation are suppressed by thapsigargin in PC3 cell line. We propose a convergent model of Wnt signaling network where Ca(2+) and β-catenin pathways may act in a coordinated, interdependent, rather than independent, manner.

  5. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells.

    Science.gov (United States)

    Tomizawa, Motohiro; Casida, John E

    2002-11-01

    Imidacloprid (IMI) is the principal neonicotinoid (the only major new class of synthetic insecticides of the past three decades). The excellent safety profile of IMI is not shared with a metabolite, desnitro-IMI (DNIMI), which displays high toxicity to mammals associated with agonist action at the alpha4beta2 nicotinic acetylcholine receptor (nAChR) in brain. This study examines the hypothesis that IMI, DNIMI, and (-)-nicotine activate the extracellular signal-regulated kinase (ERK) cascade via primary interaction with the alpha4beta2 nAChR in mouse neuroblastoma N1E-115 cells. These three nicotinic agonists induce phosphorylation of ERK (p44/p42) in a concentration-dependent manner with an optimal incubation period of 30 min. DNIMI (1 microM)-induced ERK activation is blocked by nicotinic antagonist mecamylamine but not by alpha-bungarotoxin and muscarinic antagonist atropine. This activation is prevented by intracellular Ca(2+) chelator BAPTA-AM but not by removal of external Ca(2+) using EGTA and Ca(2+)-free medium. 2-Aminoethoxy-diphenylborate, a blocker for inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release from intracellular stores, inhibits DNIMI-induced ERK activation but a high level of ryanodine (to block ryanodine receptor-mediated Ca(2+) release) does not. The inhibitor U-73122 for phospholipase C (to suppress IP(3) production) prevents ERK activation evoked by DNIMI. Inhibitors for protein kinase C (PKC) (GF109203X) and ERK kinase (PD98059) block this activation whereas an inhibitor (H-89) for cyclic AMP-dependent protein kinase does not. Thus, neonicotinoids activate the ERK cascade triggered by primary action at the alpha4beta2 nAChR with an involvement of intracellular Ca(2+) mobilization possibly mediated by IP(3). It is further suggested that intracellular Ca(2+) activates a sequential pathway from PKC to ERK.

  6. Intracellular calcium plays a role as the second messenger of hypotonic stress in gene regulation of SGK1 and ENaC in renal epithelial A6 cells.

    Science.gov (United States)

    Taruno, Akiyuki; Niisato, Naomi; Marunaka, Yoshinori

    2008-01-01

    In A6 cells, a renal cell line derived from Xenopus laevis, hypotonic stress stimulates the amiloride-sensitive Na(+) transport. Hypotonic action on Na(+) transport consists of two phases, a nongenomic early phase and a genomic delayed phase. Although it has been reported that, during the genomic phase, hypotonic stress stimulates transcription of Na(+) transport-related genes, such as serum- and glucocorticoid-inducible kinase 1 (SGK1) and subunits of the epithelial Na(+) channel (ENaC), increasing Na(+) transport, the mechanism remains unknown. We focused the present study on the role of intracellular Ca(2+) in hypotonicity-induced SGK1 and ENaC subunit transcription. Since hypotonic stress raises intracellular Ca(2+) concentration in A6 cells, we hypothesized that Ca(2+)-dependent signals participate in the genomic action. Using real-time quantitative RT-PCR and Western blot techniques and measuring short-circuit currents, we observed that 1) BAPTA-AM and W7 blunted the hypotonicity-induced expression of SGK1 mRNA and protein, 2) ionomycin dose dependently stimulated expression of SGK1 mRNA and protein under an isotonic condition and the time course of the stimulatory effect of ionomycin on SGK1 mRNA was remarkably similar to that of hypotonic action on SGK1 mRNA, 3) hypotonic stress stimulated transcription of three ENaC subunits in an intracellular Ca(2+)-dependent manner, and 4) BAPTA-AM retarded the delayed phase of hypotonic stress-induced Na(+) transport but had no effect on the early phase. These observations indicate for the first time that intracellular Ca(2+) plays a role as the second messenger in hypotonic stress-induced Na(+) transport by stimulating transcription of SGK1 and ENaC subunits.

  7. Simultaneous measurement of intracellular nitric oxide and free calcium levels in chordate eggs demonstrates that nitric oxide has no role at fertilization.

    Science.gov (United States)

    Hyslop, L A; Carroll, M; Nixon, V L; McDougall, A; Jones, K T

    2001-06-01

    At fertilization in sea urchin, the free radical nitric oxide (NO) has recently been suggested to cause the intracellular Ca(2+) rise responsible for egg activation. The authors suggested that NO could be a universal activator of eggs and the present study was set up to test this hypothesis. Intracellular NO and Ca(2+) levels were monitored simultaneously in eggs of the mouse or the urochordate ascidian Ascidiella aspersa. Eggs were either fertilized or sperm extracts microinjected. Sperm-induced Ca(2+) rises were not associated with any global, or local, change in intracellular NO, although we were able to detect NO produced by the addition of a NO donor. Furthermore, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester had no effect on sperm-induced Ca(2+) release but did block completely ionomycin-induced NO synthase activation. Therefore, we suggest that the current data provide evidence that NO has no role in the fertilization of these two chordate eggs. Copyright 2001 Academic Press.

  8. Calcium regulation of androgen receptor expression in the human prostate cancer cell line LNCaP

    NARCIS (Netherlands)

    L.J. Blok (Leen); J.E. Perry; J.K. Lindzey; D.J. Tindall; Y. Gong (Yuewen)

    1995-01-01

    textabstractElevation of intracellular calcium levels in the presence of normal androgen levels has been implicated in apoptotic prostate cell death. Since the androgen receptor (AR) plays a critical role in the regulation of growth and differentiation of the prostate, it was of

  9. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Daniel X Keller

    2008-04-01

    Full Text Available The entry of calcium into dendritic spines can trigger a sequence of biochemical reactions that begins with the activation of calmodulin (CaM and ends with long-term changes to synaptic strengths. The degree of activation of CaM can depend on highly local elevations in the concentration of calcium and the duration of transient increases in calcium concentration. Accurate measurement of these local changes in calcium is difficult because the spaces are so small and the numbers of molecules are so low. We have therefore developed a Monte Carlo model of intracellular calcium dynamics within the spine that included calcium binding proteins, calcium transporters and ion channels activated by voltage and glutamate binding. The model reproduced optical recordings using calcium indicator dyes and showed that without the dye the free intracellular calcium concentration transient was much higher than predicted from the fluorescent signal. Excitatory postsynaptic potentials induced large, long-lasting calcium gradients across the postsynaptic density, which activated CaM. When glutamate was released at the synapse 10 ms before an action potential occurred, simulating activity patterns that strengthen hippocampal synapses, the calcium gradient and activation of CaM in the postsynaptic density were much greater than when the order was reversed, a condition that decreases synaptic strengths, suggesting a possible mechanism underlying the induction of long-term changes in synaptic strength. The spatial and temporal mechanisms for selectivity in CaM activation demonstrated here could be used in other signaling pathways.

  10. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroyuki [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Kanaya, Sousuke; Hamaji, Nozomu; Sato, Hisae; Shimauchi, Hidetoshi [Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2010-04-16

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stability of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.

  11. Angiopoietin-like 4 Protein Elevates the Prosurvival Intracellular O-2(-):H2O2 Ratio and Confers Anoikis Resistance to Tumors

    NARCIS (Netherlands)

    Zhu, P.C.; Tan, M.J.; Huang, R.L.; Tan, C.K.; Chong, H.C.; Pal, M.; Lam, C.R.I.; Boukamp, P.; Pan, J.Y.; Tan, S.H.; Kersten, A.H.; Li, H.Y.; Ding, J.L.; Tan, N.S.

    2011-01-01

    Cancer is a leading cause of death worldwide. Tumor cells exploit various signaling pathways to promote their growth and metastasis. To our knowledge, the role of angiopoietin-like 4 protein (ANGPTL4) in cancer remains undefined. Here, we found that elevated ANGPTL4 expression is widespread in

  12. Blood Vessel Formation and Bone Regeneration Potential of the Stromal Vascular Fraction Seeded on a Calcium Phosphate Scaffold in the Human Maxillary Sinus Floor Elevation Model

    Directory of Open Access Journals (Sweden)

    Elisabet Farré-Guasch

    2018-01-01

    Full Text Available Bone substitutes are used as alternatives for autologous bone grafts in patients undergoing maxillary sinus floor elevation (MSFE for dental implant placement. However, bone substitutes lack osteoinductive and angiogenic potential. Addition of adipose stem cells (ASCs may stimulate osteogenesis and osteoinduction, as well as angiogenesis. We aimed to evaluate the vascularization in relation to bone formation potential of the ASC-containing stromal vascular fraction (SVF of adipose tissue, seeded on two types of calcium phosphate carriers, within the human MSFE model, in a phase I study. Autologous SVF was obtained from ten patients and seeded on β-tricalcium phosphate (n = 5 or biphasic calcium phosphate carriers (n = 5, and used for MSFE in a one-step surgical procedure. After six months, biopsies were obtained during dental implant placement, and the quantification of the number of blood vessels was performed using histomorphometric analysis and immunohistochemical stainings for blood vessel markers, i.e., CD34 and alpha-smooth muscle actin. Bone percentages seemed to correlate with blood vessel formation and were higher in study versus control biopsies in the cranial area, in particular in β-tricalcium phosphate-treated patients. This study shows the safety, feasibility, and efficiency of the use of ASCs in the human MSFE, and indicates a pro-angiogenic effect of SVF.

  13. The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita.

    Science.gov (United States)

    Moscatiello, Roberto; Sello, Simone; Novero, Mara; Negro, Alessandro; Bonfante, Paola; Navazio, Lorella

    2014-08-01

    Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation.

    Science.gov (United States)

    Makhro, Asya; Hänggi, Pascal; Goede, Jeroen S; Wang, Jue; Brüggemann, Andrea; Gassmann, Max; Schmugge, Markus; Kaestner, Lars; Speer, Oliver; Bogdanova, Anna

    2013-12-01

    The presence of N-methyl-d-aspartate receptor (NMDAR) was previously shown in rat red blood cells (RBCs) and in a UT-7/Epo human myeloid cell line differentiating into erythroid lineage. Here we have characterized the subunit composition of the NMDAR and monitored its function during human erythropoiesis and in circulating RBCs. Expression of the NMDARs subunits was assessed in erythroid progenitors during ex vivo erythropoiesis and in circulating human RBCs using quantitative PCR and flow cytometry. Receptor activity was monitored using a radiolabeled antagonist binding assay, live imaging of Ca(2+) uptake, patch clamp, and monitoring of cell volume changes. The receptor tetramers in erythroid precursor cells are composed of the NR1, NR2A, 2C, 2D, NR3A, and 3B subunits of which the glycine-binding NR3A and 3B and glutamate-binding NR2C and 2D subunits prevailed. Functional receptor is required for survival of erythroid precursors. Circulating RBCs retain a low number of the receptor copies that is higher in young cells compared with mature and senescent RBC populations. In circulating RBCs the receptor activity is controlled by plasma glutamate and glycine. Modulation of the NMDAR activity in RBCs by agonists or antagonists is associated with the alterations in whole cell ion currents. Activation of the receptor results in the transient Ca(2+) accumulation, cell shrinkage, and alteration in the intracellular pH, which is associated with the change in hemoglobin oxygen affinity. Thus functional NMDARs are present in erythroid precursor cells and in circulating RBCs. These receptors contribute to intracellular Ca(2+) homeostasis and modulate oxygen delivery to peripheral tissues.

  15. Calcium regulation of EGF-induced ERK5 activation: role of Lad1-MEKK2 interaction.

    Directory of Open Access Journals (Sweden)

    Zhong Yao

    Full Text Available The ERK5 cascade is a MAPK pathway that transmits both mitogenic and stress signals, yet its mechanism of activation is not fully understood. Using intracellular calcium modifiers, we found that ERK5 activation by EGF is inhibited both by the depletion and elevation of intracellular calcium levels. This calcium effect was found to occur upstream of MEKK2, which is the MAP3K of the ERK5 cascade. Co-immunoprecipitation revealed that EGF increases MEKK2 binding to the adaptor protein Lad1, and this interaction was reduced by the intracellular calcium modifiers, indicating that a proper calcium concentration is required for the interactions and transmission of EGF signals to ERK5. In vitro binding assays revealed that the proper calcium concentration is required for a direct binding of MEKK2 to Lad1. The binding of these proteins is not affected by c-Src-mediated phosphorylation on Lad1, but slightly affects the Tyr phosphorylation of MEKK2, suggesting that the interaction with Lad1 is necessary for full Tyr phosphorylation of MEKK2. In addition, we found that changes in calcium levels affect the EGF-induced nuclear translocation of MEKK2 and thereby its effect on the nuclear ERK5 activity. Taken together, these findings suggest that calcium is required for EGF-induced ERK5 activation, and this effect is probably mediated by securing proper interaction of MEKK2 with the upstream adaptor protein Lad1.

  16. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.

    Science.gov (United States)

    Luo, Fen-Lan; Yang, Nian; He, Chao; Li, Hong-Li; Li, Chao; Chen, Fang; Xiong, Jia-Xiang; Hu, Zhi-An; Zhang, Jun

    2014-11-01

    Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents. Next, we specifically isolate the high-voltage activated (HVA) and low-voltage activated (LVA) calcium channels-induced currents. Similarly, the activation and inactivation characteristics of these membrane calcium channels are also not influenced by ELF-EMF. Importantly, ELF-EMF exposure reduces the maximum amplitude of the high-K(+)-evoked calcium elevation in EC neurons, which is abolished by thapsigargin, a Ca(2+) ATPase inhibitor, to empty the intracellular calcium stores of EC neurons. Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of cultural EC neurons via a calcium channel-independent mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    Science.gov (United States)

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cellular Hypertrophy and Increased Susceptibility to Spontaneous Calcium-Release of Rat Left Atrial Myocytes Due to Elevated Afterload.

    Directory of Open Access Journals (Sweden)

    Haifei Zhang

    Full Text Available Atrial remodeling due to elevated arterial pressure predisposes the heart to atrial fibrillation (AF. Although abnormal sarcoplasmic reticulum (SR function has been associated with AF, there is little information on the effects of elevated afterload on atrial Ca2+-handling. We investigated the effects of ascending aortic banding (AoB on Ca2+-handling in rat isolated atrial myocytes in comparison to age-matched sham-operated animals (Sham. Myocytes were either labelled for ryanodine receptor (RyR or loaded with fluo-3-AM and imaged by confocal microscopy. AoB myocytes were hypertrophied in comparison to Sham controls (P<0.0001. RyR labeling was localized to the z-lines and to the cell edge. There were no differences between AoB and Sham in the intensity or pattern of RyR-staining. In both AoB and Sham, electrical stimulation evoked robust SR Ca2+-release at the cell edge whereas Ca2+ transients at the cell center were much smaller. Western blotting showed a decreased L-type Ca channel expression but no significant changes in RyR or RyR phosphorylation or in expression of Na+/Ca2+ exchanger, SR Ca2+ ATPase or phospholamban. Mathematical modeling indicated that [Ca2+]i transients at the cell center were accounted for by simple centripetal diffusion of Ca2+ released at the cell edge. In contrast, caffeine (10 mM induced Ca2+ release was uniform across the cell. The caffeine-induced transient was smaller in AoB than in Sham, suggesting a reduced SR Ca2+-load in hypertrophied cells. There were no significant differences between AoB and Sham cells in the rate of Ca2+ extrusion during recovery of electrically-stimulated or caffeine-induced transients. The incidence and frequency of spontaneous Ca2+-transients following rapid-pacing (4 Hz was greater in AoB than in Sham myocytes. In conclusion, elevated afterload causes cellular hypertrophy and remodeling of atrial SR Ca2+-release.

  19. Lanthanum chloride suppresses oxysterol-induced ECV-304 cell apoptosis via inhibition of intracellular Ca(2+) concentration elevation, oxidative stress, and activation of ERK and NF-κB signaling pathways.

    Science.gov (United States)

    Liu, Hongmei; Zhang, Congcong; Huang, Kaixun

    2011-06-01

    Experimental studies have demonstrated that oral administration of lanthanum chloride (LaCl(3)) inhibits the development of atherosclerosis, but the related mechanism has not been fully elucidated. Oxysterols are toxic to the vascular endothelial cells which are important in preventing the formation and progression of atheromatous plaque. In this study, we examined the effect of LaCl(3) on oxysterol cholestane-3β,5α,6β-triol (Triol)-induced apoptosis and the related mechanisms in ECV-304 cells, a presumptive endothelial cell line. Incubation with Triol resulted in apoptosis of ECV-304 cells, as determined by Hoechst 33342 staining, fluorescein isothiocyanate labeled annexin V/propidium iodide double staining, and the loss of mitochondrial membrane potential. Triol activated extracellular-signal-regulated kinase (ERK) and nuclear factor κB (NF-κB), and inhibition of Triol-activated ERK and NF-κB signaling by specific inhibitors attenuated apoptosis induction by Triol in ECV-304 cells. Pretreatment with LaCl(3) (1 μM) for 12 h before exposure to Triol decreased Triol-mediated apoptosis as well as activation of ERK and NF-κB. In addition, Triol induced oxidative stress in ECV-304 cells, manifested by the increase of intracellular reactive oxygen species generation and malondialdehyde level, and the reduction of the content of total protein thiols and the activity of antioxidant glutathione peroxidases; LaCl(3) pretreatment significantly reversed these effects. Finally, LaCl(3) pretreatment significantly inhibited the increases of intracellular Ca(2+) concentration induced by Triol. Our study suggests that Triol induced ECV-304 cell apoptosis, and LaCl(3) could suppress this effect probably by inhibiting intracellular Ca(2+) concentration elevation, oxidative stress, as well as activation of ERK and NF-κB signaling pathways.

  20. Preeclampsia serum-induced collagen I expression and intracellular calcium levels in arterial smooth muscle cells are mediated by the PLC-γ1 pathway.

    Science.gov (United States)

    Jiang, Rongzhen; Teng, Yincheng; Huang, Yajuan; Gu, Jinghong; Ma, Li; Li, Ming; Zhou, Yuedi

    2014-09-26

    In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca(2+) concentrations ([Ca(2+)]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (PPLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca(2+)]i in cocultured HUASMCs (PPLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (PPLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia-ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca(2+)]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.

  1. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  2. The Analysis of Intracellular and Intercellular Calcium Signaling in Human Anterior Lens Capsule Epithelial Cells with Regard to Different Types and Stages of the Cataract

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Fajmut, Aleš; Marhl, Marko; Hawlina, Marko; Andjelić, Sofija

    2015-01-01

    In this work we investigated how modifications of the Ca2+ homeostasis in anterior lens epithelial cells (LECs) are associated with different types of cataract (cortical or nuclear) and how the progression of the cataract (mild or moderate) affects the Ca2+ signaling. We systematically analyzed different aspects of intra- and inter-cellular Ca2+ signaling in the human LECs, which are attached to surgically isolated lens capsule (LC), obtained during cataract surgery. We monitored the temporal and spatial changes in intracellular Ca2+ concentration after stimulation with acetylcholine by means of Fura-2 fluorescence captured with an inverted microscope. In our analysis we compared the features of Ca2+ signals in individual cells, synchronized activations, spatio-temporal grouping and the nature of intercellular communication between LECs. The latter was assessed by using the methodologies of the complex network theory. Our results point out that at the level of individual cells there are no significant differences when comparing the features of the signals with regard either to the type or the stage of the cataract. On the other hand, noticeable differences are observed at the multicellular level, despite inter-capsule variability. LCs associated with more developed cataracts were found to exhibit a slower collective response to stimulation, a less pronounced spatio-temporal clustering of LECs with similar signaling characteristics. The reconstructed intercellular networks were found to be sparser and more segregated than in LCs associated with mild cataracts. Moreover, we show that spontaneously active LECs often operate in localized groups with quite well aligned Ca2+ activity. The presence of spontaneous activity was also found to affect the stimulated Ca2+ responses of individual cells. Our findings indicate that the cataract progression entails the impairment of intercellular signaling thereby suggesting the functional importance of altered Ca2+ signaling of

  3. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    Science.gov (United States)

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse.

    Science.gov (United States)

    Bedford, Sylvia J; Kurokawa, Manabu; Hinrichs, Katrin; Fissore, Rafael A

    2004-04-01

    In all species studied, fertilization induces intracellular Ca2+ ([Ca2+]i) oscillations required for oocyte activation and embryonic development. This species-specific pattern has not been studied in the equine, partly due to the difficulties linked to in vitro fertilization in this species. Therefore, the objective of this study was to use intracytoplasmic sperm injection (ICSI) to investigate fertilization-induced [Ca2+]i signaling and, possibly, ascertain problems linked to the success of this technology in the horse. In vivo- and in vitro-matured mare oocytes were injected with a single motile stallion sperm. Few oocytes displayed [Ca2+]i responses regardless of oocyte source and we hypothesized that this may result from insufficient release of the sperm-borne active molecule (sperm factor) into the oocyte. However, permeabilization of sperm membranes with Triton-X or by sonication did not alleviate the deficient [Ca2+]i responses in mare oocytes. Thus, we hypothesized that a step downstream of release, possibly required for sperm factor function, is not appropriately accomplished in horse oocytes. To test this, ICSI-fertilized horse oocytes were fused to unfertilized mouse oocytes, which are known to respond with [Ca2+]i oscillations to injection of stallion sperm, and [Ca2+]i monitoring was performed. Such pairs consistently displayed [Ca2+]i responses demonstrating that the sperm factor is appropriately released into the ooplasm of horse oocytes, but that these are unable to activate and/or provide the appropriate substrate that is required for the sperm factor delivered by ICSI to initiate oscillations. These findings may have implications to improve the success of ICSI in the equine and other livestock species.

  5. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism.

    Science.gov (United States)

    Taurin, Sebastien; Dulin, Nickolai O; Pchejetski, Dimitri; Grygorczyk, Ryszard; Tremblay, Johanne; Hamet, Pavel; Orlov, Sergei N

    2002-09-15

    In this study, we examined the effect of Na(+)-K(+) pump inhibition on the expression of early response genes in vascular smooth muscle cells (VSMC) as possible intermediates of the massive RNA synthesis and protection against apoptosis seen in ouabain-treated VSMC in our previous experiments. Incubation of VSMC with ouabain resulted in rapid induction of c-Fos protein expression with an approximately sixfold elevation after 2 h of incubation. c-Jun expression was increased by approximately fourfold after 12 h, whereas expression of activating transcription factor 2, cAMP/Ca(2+) response element binding protein (CREB)-1 and c-Myc was not altered. Markedly augmented c-Fos expression was also observed under Na(+)-K(+) pump inhibition in potassium-depleted medium. Na(+)-K(+) pump inhibition triggered c-Fos expression via elevation of the [Na(+)](i)/[K(+)](i) ratio. This conclusion follows from experiments showing the lack of effect of ouabain on c-Fos expression in high-potassium-low-sodium medium and from the comparison of dose responses of Na(+)-K(+) pump activity, [Na(+)](i) and [K(+)](i) content and c-Fos expression to ouabain. A fourfold increment of c-Fos mRNA was revealed 30 min following addition of ouabain to the incubation medium. At this time point, treatment with ouabain resulted in an approximately fourfold elevation of [Na(+)](i) but did not affect [K(+)](i). Augmented c-Fos expression was also observed under VSMC depolarization in high-potassium medium. Increments in both c-Fos expression and (45)Ca uptake in depolarized VSMC were abolished under inhibition of L-type Ca(2+) channels with 0.1 microM nicardipine. Ouabain did not affect the free [Ca(2+)](i) or the content of exchangeable [Ca(2+)](i). Ouabain-induced c-Fos expression was also insensitive to the presence of nicardipine and [Ca(2+)](o), as well as chelators of [Ca(2+)](o) (EGTA) and [Ca(2+)](i) (BAPTA). The effect of ouabain and serum on c-Fos expression was additive. In contrast to serum

  6. Maxillary sinus floor elevation with a tissue-engineered bone composite of deciduous tooth stem cells and calcium phosphate cement in goats.

    Science.gov (United States)

    Zhao, Wei; Lu, Jia-Yu; Hao, Yong-Ming; Cao, Chun-Hua; Zou, De-Rong

    2017-01-01

    The study aimed to assess the effect of maxillary sinus floor elevation with tissue-engineered bone constructed from deciduous tooth stem cells (DTSCs) and calcium phosphate cement (CPC). The stem cells from goat deciduous teeth (SGDs) were isolated and transfected by means of the adenovirus with an enhanced green fluorescent protein gene (AdEGFP). As many as 18 bilateral maxillary sinuses of nine goats were randomly allocated into three groups (n = 6/group): group A (SGDs-CPC compound), group B (CPC alone) and group C (autogenous bone obtained from an iliac crest). All the samples were evaluated by computed tomography (CT), histology and histomorphometric analysis. Furthermore, the fate of implanted SGDs was traced using an immunohistochemical staining method in the decalcified samples. SGDs might be differentiated into osteoblasts in an osteogenic medium. In the present study, three-dimensional CT analysis showed that the volume of newly formed bone in group A was greater than that in the other two groups. After a healing period of 3 months, sequential analyses of triad-colour fluorescence labelling, histology and histomorphology indicated that the SGDs-CPC compound primarily promoted bone formation and mineralization at 2 and 3 months after the operation. Moreover, the areas of new bone formation in elevated sinuses were 41.82 ± 6.24% in the SGDs-CPC group, which was significantly higher than the 30.11 ± 8.05% in the CPC-alone group or the 23.07 ± 10.21% in the autogenous bone group. Immunohistochemical staining revealed that GFP and OCN were both expressed in the new bone tissue for the samples with eGFP, which suggested that the implanted SGDs might have contributed to new bone formation on the elevated sinus floor. SGDs can promote new bone formation and maturation in the goat maxillary sinus, and the tissue-engineered bone composite of SGDs and CPC might be a potential substitute for existing maxillary sinus floor elevation methods

  7. Intracellular amyloid-β accumulation in calcium-binding protein-deficient neurons leads to amyloid-β plaque formation in animal model of Alzheimer's disease.

    Science.gov (United States)

    Moon, Minho; Hong, Hyun-Seok; Nam, Dong Woo; Baik, Sung Hoon; Song, Hyundong; Kook, Sun-Young; Kim, Yong Soo; Lee, Jeewoo; Mook-Jung, Inhee

    2012-01-01

    One of the major hallmarks of Alzheimer's disease (AD) is the extracellular deposition of amyloid-β (Aβ) as senile plaques in specific brain regions. Clearly, an understanding of the cellular processes underlying Aβ deposition is a crucial issue in the field of AD research. Recent studies have found that accumulation of intraneuronal Aβ (iAβ) is associated with synaptic deficits, neuronal death, and cognitive dysfunction in AD patients. In this study, we found that Aβ deposits had several shapes and sizes, and that iAβ occurred before the formation of extracellular amyloid plaques in the subiculum of 5XFAD mice, an animal model of AD. We also observed pyroglutamate-modified Aβ (N3pE-Aβ), which has been suggested to be a seeding molecule for senile plaques, inside the Aβ plaques only after iAβ accumulation, which argues against its seeding role. In addition, we found that iAβ accumulates in calcium-binding protein (CBP)-free neurons, induces neuronal death, and then develops into senile plaques in 2-4-month-old 5XFAD mice. These findings suggest that N3pE-Aβ-independent accumulation of Aβ in CBP-free neurons might be an early process that triggers neuronal damage and senile plaque formation in AD patients. Our results provide new insights into several long-standing gaps in AD research, namely how Aβ plaques are formed, what happens to iAβ and how Aβ causes selective neuronal loss in AD patients.

  8. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    Science.gov (United States)

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  9. Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA.

    Science.gov (United States)

    Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng

    2017-11-01

    Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content <10wt%). Further studies demonstrated that the Sr-induced enhancement of bioactivity of rhBMP-2 was related to an elevated recognition of bone morphogenetic protein receptor-IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 17beta-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC-PKA-Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3.

    LENUS (Irish Health Repository)

    Muchekehu, Ruth W

    2008-09-01

    We describe a novel rapid non-genomic effect of 17beta-estradiol (E2) on intracellular Ca2+ ([Ca2+]i) signalling in the eccrine sweat gland epithelial cell line NCL-SG3. E2 had no observable effect on basal [Ca2+]i, however exposure of cells to E2 in the presence of the microsomal Ca2+ ATPase pump inhibitor, thapsigargin, produced a secondary, sustained increase in [Ca2+]i compared to thapsigargin treatment alone, where cells responded with a transient single spike-like increase in [Ca2+]i. The E2-induced increase in [Ca2+]i was not dependent on the presence of extracellular calcium and was completely abolished by ryanodine (100 microM). The estrogen receptor antagonist ICI 182,780 (1 microM) prevented the E2-induced effects suggesting a role for the estrogen receptor in the release of [Ca2+]i from ryanodine-receptor-gated stores. The E2-induced effect on [Ca2+]i could also be prevented by the protein kinase C delta (PKCdelta)-specific inhibitor rottlerin (10 microM), the protein kinase A (PKA) inhibitor Rp-adenosine 3\\

  11. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Faculty of Medicine, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada)

    2007-02-15

    Human peripheral lymphocytes from whole blood cultures were exposed to either soluble form of nickel carbonate hydroxide (NiCH) (0-60 {mu}M), or of nickel subsulfide (Ni{sub 3}S{sub 2}) (0-120 {mu}M), or of nickel oxide (NiO) (0-120 {mu}M), or nickel sulfate (NiSO{sub 4}) (0-120 {mu}M) for a short duration of 2 h. The treatments occurred 46 h after the beginning of the cultures. The cultures were harvested after a total incubation of 72 h, and sister-chromatid exchange (SCE), replication index (RI), and mitotic index (MI) were measured for each nickel compound. The soluble form of NiCH at 30 {mu}M but those of Ni{sub 3}S{sub 2} and NiO at 120 {mu}M produced significant increase in the SCE per cell compared to the control value, whereas NiSO{sub 4} failed to produce any such significant increase. Except NiSO{sub 4}, the soluble forms of NiCH, Ni{sub 3}S{sub 2}, and NiO produced significant cell-cycle delay (as measured by the inhibition of RI) as well as significant inhibition of the MI at respective similar concentrations as mentioned above. Pretreatment of human blood lymphocytes with catalase (H{sub 2}O{sub 2} scavenger), or superoxide dismutase (superoxide anion scavenger), or dimethylthiourea (hydroxyl radical scavenger), or deferoxamine (iron chelator), or N-acetylcysteine (general antioxidant) inhibited NiCH-induced SCE, and changes in RI and MI. This suggests the participation of oxidative stress involving H{sub 2}O{sub 2}, the superoxide anion radical, the hydroxyl radical, and iron in the NiCH-induced genotoxic responses. Cotreatment of NiCH with either verapamil (inhibitor of intracellular calcium ion ([Ca{sup 2+}]{sub i}) movement through plasma membranes), or dantrolene (inhibitor of [Ca{sup 2+}]{sub i} release from sarcoplasmic reticulum), or BAPTA (Ca{sup 2+} chelator) also inhibited the NiCH-induced responses. These results suggest that [Ca{sup 2+}]{sub i} is also implicated in the genotoxicity of NiCH. Overall these data indicate that various types

  12. One-Year Outcomes After Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction With Varying Quantities of Coronary Artery Calcium (from a 13-Year Registry).

    Science.gov (United States)

    Vaduganathan, Muthiah; Kornowski, Ran; Qamar, Arman; Greenberg, Gabriel; Bental, Tamir; Rechavia, Eldad; Lev, Eli I; Vaknin-Assa, Hana; Assali, Abid R

    2016-10-15

    Coronary artery calcium (CAC) is associated with poor angiographic results and higher rates of complications after percutaneous coronary intervention (PCI). Limited data are available regarding the impact of angiographically evident CAC on long-term outcomes after primary PCI in patients presenting with ST-segment elevation myocardial infarction (STEMI). In this single-center, registry-based retrospective cohort analysis, we analyzed 2,143 consecutive patients presenting with STEMI who underwent primary PCI within 12 hours of symptom onset. Patients were divided based on degree of CAC (determined by visual inspection of angiograms) as follows: (1) moderate-to-severe CAC (n = 306; 14.3%) and (2) minimal-to-none CAC (n = 1,837; 85.7%). The primary end point was all-cause mortality at 1-year after PCI. Patients with moderate-to-severe CAC were older, women, and had higher rates of hypertension, chronic kidney disease, and peripheral vascular disease. Moderate-to-severe CAC was associated with higher rates of anterior myocardial infarction, advanced Killip class, and poor final angiographic results. At 1-year follow-up, rates of all-cause mortality were higher in the moderate-to-severe CAC cohort than those in the minimal-to-none CAC cohort (8.5% vs 4.7%; p = 0.008). However, after accounting for major clinical and angiographic characteristics, moderate-to-severe CAC on presenting STEMI angiogram was no longer predictive of 1-year all-cause mortality. In conclusion, advanced CAC burden occurs in ∼15% of patients undergoing primary PCI for STEMI and reflects a marker of adverse prognosis late into follow-up after PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Intracellular ion channels and cancer

    OpenAIRE

    Luigi eLeanza; Lucia eBiasutto; Antonella eManago; Erich eGulbins; Mario eZoratti; Ildikò eSzabò

    2013-01-01

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channel...

  14. Clinically relevant concentration of pregabalin has no acute inhibitory effect on excitation of dorsal horn neurons under normal or neuropathic pain conditions: An intracellular calcium-imaging study in spinal cord slices from adult rats.

    Science.gov (United States)

    Baba, Hiroshi; Petrenko, Andrey B; Fujiwara, Naoshi

    2016-10-01

    Pregabalin is thought to exert its therapeutic effect in neuropathic pain via binding to α2δ-1 subunits of voltage-gated calcium (Ca(2+)) channels. However, the exact analgesic mechanism after its binding to α2δ-1 subunits remains largely unknown. Whether a clinical concentration of pregabalin (≈10μM) can cause acute inhibition of dorsal horn neurons in the spinal cord is controversial. To address this issue, we undertook intracellular Ca(2+)-imaging studies using spinal cord slices with an intact attached L5 dorsal root, and examined if pregabalin acutely inhibits the primary afferent stimulation-evoked excitation of dorsal horn neurons in normal rats and in rats with streptozotocin-induced painful diabetic neuropathy. Under normal conditions, stimulation of a dorsal root evoked Ca(2+) signals predominantly in the superficial dorsal horn. Clinically relevant (10μM) and a very high concentration of pregabalin (100μM) did not affect the intensity or spread of dorsal root stimulation-evoked Ca(2+) signals, whereas an extremely high dose of pregabalin (300μM) slightly but significantly attenuated Ca(2+) signals in normal rats and in diabetic neuropathic (DN) rats. There was no difference between normal rats and DN rats with regard to the extent of signal attenuation at all concentrations tested. These results suggest that the activity of dorsal horn neurons in the spinal cord is not inhibited acutely by clinical doses of pregabalin under normal or DN conditions. It is very unlikely that an acute inhibitory action in the dorsal horn is the main analgesic mechanism of pregabalin in neuropathic pain states. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quantitative changes in intracellular calcium and extracellular-regulated kinase activation measured in parallel in CHO cells stably expressing serotonin (5-HT 5-HT2A or 5-HT2C receptors

    Directory of Open Access Journals (Sweden)

    Seitz Patricia K

    2012-03-01

    Full Text Available Abstract Background The serotonin (5-HT 2A and 2C receptors (5-HT2AR and 5-HT2CR are involved in a wide range of physiological and behavioral processes in the mammalian central and peripheral nervous systems. These receptors share a high degree of homology, have overlapping pharmacological profiles, and utilize many of the same and richly diverse second messenger signaling systems. We have developed quantitative assays for cells stably expressing these two receptors involving minimal cell sample manipulations that dramatically improve parallel assessments of two signaling responses: intracellular calcium (Cai++ changes and activation (phosphorylation of downstream kinases. Such profiles are needed to begin to understand the simultaneous contributions from the multiplicity of signaling cascades likely to be initiated by serotonergic ligands. Results We optimized the Cai++ assay for stable cell lines expressing either 5-HT2AR or 5-HT2CR (including dye use and measurement parameters; cell density and serum requirements. We adapted a quantitative 96-well plate immunoassay for pERK in the same cell lines. Similar cell density optima and time courses were observed for 5-HT2AR- and 5-HT2CR-expressing cells in generating both types of signaling. Both cell lines also require serum-free preincubation for maximal agonist responses in the pERK assay. However, 5-HT2AR-expressing cells showed significant release of Cai++ in response to 5-HT stimulation even when preincubated in serum-replete medium, while the response was completely eliminated by serum in 5-HT2CR-expressing cells. Response to another serotonergic ligand (DOI was eliminated by serum-replete preincubation in both cells lines. Conclusions These data expand our knowledge of differences in ligand-stimulated signaling cascades between 5-HT2AR and 5-HT2CR. Our parallel assays can be applied to other cell and receptor systems for monitoring and dissecting concurrent signaling responses.

  16. Association of admission serum calcium levels and in-hospital mortality in patients with acute ST-elevated myocardial infarction: an eight-year, single-center study in China.

    Directory of Open Access Journals (Sweden)

    Xin Lu

    Full Text Available OBJECTIVE: The relationship between admission serum calcium levels and in-hospital mortality in patients with acute ST-segment elevation myocardial infarction (STEMI has not been well definitively explored. The objective was to assess the predictive value of serum calcium levels on in-hospital mortality in STEMI patients. METHODS: From 2003 to 2010, 1431 consecutive STEMI patients admitted to the First Affiliated Hospital of Nanjing Medical University were enrolled in the present study. Patients were stratified according to quartiles of serum calcium from the blood samples collected in the emergency room after admission. Between the aforementioned groups,the baseline characteristics, in-hospital management, and in-hospital mortality were analyzed. The association of serum calcium level with in-hospital mortality was calculated by a multivariable Cox regression analysis. RESULTS: Among 1431 included patients, 79% were male and the median age was 65 years (range, 55-74. Patients in the lower quartiles of serum calcium, as compared to the upper quartiles of serum calcium, were older, had more cardiovascular risk factors, lower rate of emergency revascularization,and higher in-hospital mortality. According to univariate Cox proportional analysis, patients with lower serum calcium level (hazard ratio 0.267, 95% confidence interval 0.164-0.433, p<0.001 was associated with higher in-hospital mortality. The result of multivariable Cox proportional hazard regression analyses showed that the Killip's class≥3 (HR = 2.192, p = 0.026, aspartate aminotransferase (HR = 1.001, p<0.001, neutrophil count (HR = 1.123, p<0.001, serum calcium level (HR = 0.255, p = 0.001, and emergency revascularization (HR = 0.122, p<0.001 were significantly and independently associated with in-hospital mortality in STEMI patients. CONCLUSIONS: Serum calcium was an independent predictor for in-hospital mortality in patients with STEMI. This widely

  17. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload

    Science.gov (United States)

    Egnatchik, Robert A.; Leamy, Alexandra K.; Jacobson, David A.; Shiota, Masakazu; Young, Jamey D.

    2014-01-01

    Palmitate overload induces hepatic cell dysfunction characterized by enhanced apoptosis and altered citric acid cycle (CAC) metabolism; however, the mechanism of how this occurs is incompletely understood. We hypothesize that elevated doses of palmitate disrupt intracellular calcium homeostasis resulting in a net flux of calcium from the ER to mitochondria, activating aberrant oxidative metabolism. We treated primary hepatocytes and H4IIEC3 cells with palmitate and calcium chelators to identify the roles of intracellular calcium flux in lipotoxicity. We then applied 13C metabolic flux analysis (MFA) to determine the impact of calcium in promoting palmitate-stimulated mitochondrial alterations. Co-treatment with the calcium-specific chelator BAPTA resulted in a suppression of markers for apoptosis and oxygen consumption. Additionally, 13C MFA revealed that BAPTA co-treated cells had reduced CAC fluxes compared to cells treated with palmitate alone. Our results demonstrate that palmitate-induced lipoapoptosis is dependent on calcium-stimulated mitochondrial activation, which induces oxidative stress. PMID:25061559

  18. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.

    Science.gov (United States)

    Jędrzejewska-Szmek, Joanna; Damodaran, Sriraman; Dorman, Daniel B; Blackwell, Kim T

    2017-04-01

    The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Effects of infrasound at 8 Hz 90 dB/130 dB on NMDAR1 expression and changes in intracellular calcium ion concentration in the hippocampus of rats.

    Science.gov (United States)

    Liu, Zhao-Hui; Chen, Jing-Zao; Ye, Lin; Liu, Jing; Qiu, Jian-Yong; Xu, Jian; Lu, Rui; Yuan, Xiao-Chao; Zhang, Wen-Dong; Li, Xiao-Fang; Li, Gong

    2010-01-01

    In the present study, we investigated the effect of infrasound on the expression of N-methyl-D-aspartate (NMDAR)1 as well as changes in intracellular calcium ion concentration ([Ca2+]i) in the hippocampus of rats. Sprague-Dawley (SD) rats were exposed for 2 h daily to infrasound at 8 Hz 90 dB or 130 dB, and NMDAR1 expression was examined on days 1, 7, 14, 21 and 28. The expression of NMDAR1 in the rat hippocampus upon exposure to infrasound at 8 Hz 90 dB sound pressure level (SPL) showed an initial decrease on day 1, an increase on days 7 and 14, a further decrease on day 21, and a return to normal levels on day 28. The peak level was observed on day 14 in every examined subregion of the hippocampus. By contrast, exposure to infrasound at 8 Hz 130 dB SPL had opposite effects, showing an increase on day 1, a decrease on day 7, a decrease to the lowest point on days 14, another increase on day 21 and a return to normal levels on day 28. The lowest expression of NMDAR1 was found in the CA1 and CA3 regions on day 14 and in the DG region on day 7 with exposure at 130 dB. There were significant differences in [Ca2+]i concentration on days 14 and 21 with infrasonic exposure at both 8 Hz 90 dB and 130 dB, but no significant differences in [Ca2+]i concentration on days 1, 7 and 28 compared to the control group. The highest [Ca2+]i level was noted on day 14 with infrasound exposure at 8 Hz 130 dB. These changes suggest that 8 Hz 90 dB/130 dB infrasound exposure induced certain reversible changes in NMDAR1 expression and [Ca2+]i concentration in hippocampal cells, which may influence mnemonic functions related to the hippocampus.

  20. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    Neurotransmitters, neuropeptides and hormones are released through regulated exocytosis of synaptic vesicles and large dense core vesicles. This complex and highly regulated process is orchestrated by SNAREs and their associated proteins. The triggering signal for regulated exocytosis is usually...... an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...

  1. Modularized study of human calcium signalling pathway

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    When there is an extracellular change, cells get the message either by introduction of calcium ions into ... as it precipitates phosphate, the established energy currency of cells. Prolonged high intracellular calcium ... trigger proteins upon binding with free calcium ion(s) change their confirmation to modulate enzymes and ion ...

  2. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the ...

  3. Calcium - urine

    Science.gov (United States)

    Urinary Ca+2; Kidney stones - calcium in urine; Renal calculi - calcium in your urine; Parathyroid - calcium in urine ... Urine calcium level can help your provider: Decide on the best treatment for the most common type of kidney ...

  4. Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated.

    Science.gov (United States)

    Xiao, Z; Zhang, Z; Ranjan, V; Diamond, S L

    1997-05-01

    Arterial levels of shear stress (25 dynes/cm2) can elevate constitutive endothelial nitric oxide synthase (eNOS) gene expression in cultured endothelial cells (Ranjan et al., 1995). By PhosphorImaging of Northern blots, we report that the eNOS/glyceraldehyde 3-phosphate dehydrogenase (GAPDH) messenger RNA (mRNA) ratio in bovine aortic endothelial cells (BAEC) increased by 4.8- and 7.95-fold after 6-hr shear stress exposure of 4 and 25 dynes/cm2, respectively. Incubation of BAEC with dexamethasone (1 microM) had no effect on shear stress induction of eNOS mRNA. Buffering of intracellular calcium in BAEC with bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester (BAPTA/AM) reduced shear stress induction of eNOS mRNA by 70%. Yet, stimulation of BAEC with ionomycin (0.1-1.0 microM) for 6-24 hr to elevate intracellular calcium had no effect on eNOS mRNA. These studies indicated that the shear stress induction of eNOS mRNA was a calcium-dependent, but not calcium-activated, process. Shear stress was a very potent and rapid inducer of the eNOS mRNA, which could not be mimicked with phorbol myristrate acetate or endotoxin. Inhibition of tyrosine kinases with genistein (10 microM) or tyrphostin B46 (10 microM) or inhibition of G-protein signaling with guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) (600 microM, 6-hr preincubation) did not block the shear stress elevation of eNOS mRNA.

  5. Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells.

    Science.gov (United States)

    Eichstaedt, Stefanie; Gäbler, Karoline; Below, Sabine; Müller, Christian; Kohler, Christian; Engelmann, Susanne; Hildebrandt, Petra; Völker, Uwe; Hecker, Michael; Hildebrandt, Jan-Peter

    2009-02-01

    Part of the innate defence of bronchial epithelia against bacterial colonization is secretion of salt and water which generally depends on coordinated actions of receptor-mediated cAMP- and calcium signalling. The hypothesis that Staphylococcus aureus-virulence factors interfere with endogenous signals in host cells was tested by measuring agonist-mediated changes in [Ca(2+)](i) in S9 cells upon pre-incubation with bacterial secretory products. S9 cells responded to mAChR-activation with calcium release from intracellular stores and capacitative calcium influx. Treatment of cells with culture supernatants of S. aureus (COL) or with recombinant alpha-hemolysin (Hla) resulted in time- and concentration-dependent changes in [Ca(2+)](i). High concentrations of Hla (2000 ng/ml) resulted in elevations in [Ca(2+)](i) elicited by accelerated calcium influx. A general Hla-mediated permeabilization of S9 cell membranes to small molecules, however, did not occur. Lower concentrations of Hla (200 ng/ml) induced a reduction in [Ca(2+)](i)-levels during the sustained plateau phase of receptor-mediated calcium signalling which was abolished by pre-incubation of cells with carboxyeosin, an inhibitor of the plasma membrane calcium-ATPase. This indicates that low concentrations of Hla change calcium signalling by accelerating pump-driven extrusion of Ca(2+) ions. In vivo, such a mechanism may result in attenuation of calcium-mediated cellular defence functions and facilitation of bacterial adherence to the bronchial epithelium.

  6. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin

    2015-01-01

    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  7. Defective Store-Operated Calcium Entry Causes Partial Nephrogenic Diabetes Insipidus.

    Science.gov (United States)

    Mamenko, Mykola; Dhande, Isha; Tomilin, Viktor; Zaika, Oleg; Boukelmoune, Nabila; Zhu, Yaming; Gonzalez-Garay, Manuel L; Pochynyuk, Oleh; Doris, Peter A

    2016-07-01

    Store-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca(2+)) sensor that triggers SOCE. Balance studies revealed increased urine volume, hypertonic plasma, polydipsia, and impaired urinary concentrating ability accompanied by elevated circulating arginine vasopressin (AVP) levels in SHR-A3 compared with SHR-B2. Isolated, split-open collecting ducts (CD) from SHR-A3 displayed decreased basal intracellular Ca(2+) levels and a major defect in SOCE. Consequently, AVP failed to induce the sustained intracellular Ca(2+) mobilization that requires SOCE in CD cells from SHR-A3. This effect decreased the abundance of aquaporin 2 and enhanced its intracellular retention, suggesting impaired sensitivity of the CD to AVP in SHR-A3. Stim1 knockdown in cultured mpkCCDc14 cells reduced SOCE and basal intracellular Ca(2+) levels and prevented AVP-induced translocation of aquaporin 2, further suggesting the effects in SHR-A3 result from the expression of truncated STIM1. Overall, these results identify a novel mechanism of nephrogenic diabetes insipidus and uncover a role of SOCE in renal water handling. Copyright © 2016 by the American Society of Nephrology.

  8. CALCIUM PYROPHOSPHATE DIHYDRATE CRYSTAL DEPOSITION DISEASE - A REVIEW OF THE LITERATURE AND A LIGHT AND ELECTRON-MICROSCOPIC STUDY OF A CASE OF THE TEMPOROMANDIBULAR-JOINT WITH NUMEROUS INTRACELLULAR CRYSTALS IN THE CHONDROCYTES

    NARCIS (Netherlands)

    DIJKGRAAF, LC; LIEM, RSB; DEBONT, LGM; BOERING, G

    The pathogenesis of calcium pyrophosphate dihydrate (CPPD) crystal deposition disease of synovial joints is still unclear, although overproduction of extracellular pyrophosphate (PPi) is thought to play a key role. We studied the light and electron microscopic appearances of a case of CPPD crystal

  9. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    Science.gov (United States)

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  10. Calcium Carbonate

    Science.gov (United States)

    Calcium carbonate is a dietary supplement used when the amount of calcium taken in the diet is not ... for healthy bones, muscles, nervous system, and heart. Calcium carbonate also is used as an antacid to relieve ...

  11. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  12. Divergent action of calcium channel blockers on ATP-binding cassette protein expression.

    Science.gov (United States)

    Hasegawa, Kazuhiro; Wakino, Shu; Kanda, Takeshi; Yoshioka, Kyoko; Tatematsu, Satoru; Homma, Koichiro; Takamatsu, Ichiro; Sugano, Naoki; Hayashi, Koichi

    2005-12-01

    Calcium channel blockers (CCBs) are widely used in clinical practice, and have been reported to be effective in preventing the progression of atherosclerosis. We examined whether various types of calcium channel blockers affected the expression of ATP binding cassette transporter A1 (ABCA1), a factor contributing to anti-atherogenesis. Undifferentiated monocytic cell line, THP-1 cells were maintained in RPMI 1640 medium and treated with different kinds of calcium channel blockers. Among the calcium channel blockers tested, aranidipine and efonidipine increased ABCA1 protein expression without an increase in ABCA1 mRNA expression, whereas other calcium channel blockers (eg, nifedipine, amlodipine, and nicardipine) or T-type calcium channel blockers (eg, mibefradil and nickel chloride) failed to upregulate ABCA1 expression. H89, a protein kinase A inhibitor inhibited the aranidipine-induced ABCA1 protein expression, whereas genistein (a tyrosine kinase inhibitor), or AG490 (a JAK-2 inhibitor) had no effects. Neither of these inhibitors suppressed the efonidipine-induced ABCA1 protein expression. Intracellular cAMP levels were elevated only by aranidipine, but not by efonidipine. In conclusion, aranidipine and efonidipine have the ability to induce ABCA1 protein by distinct mechanisms; protein kinase A is involved in the aranidipine-induced ABCA1 upregulation. This non-class effect of calcium channel blockers may potentially offer beneficial action in the treatment of hypertensive subjects with atherosclerosis.

  13. Imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 also target cGMP-dependent protein kinase and heat shock protein 90 to kill the parasite at different stages of intracellular development.

    OpenAIRE

    Green, JL; Moon, RW; Whalley, D; Bowyer, PW; Wallace, C.; Rochani, A; Nageshan, RK; Howell, SA; Grainger, M.; Jones, HM; Ansell, KH; Chapman, TM; Taylor, DL; Osborne, SA; Baker, DA

    2015-01-01

    : Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in...

  14. Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ogawa Yuzo

    2006-08-01

    Full Text Available Abstract Background It was reported that elevation of the intracellular concentration of free Ca2+ ([Ca2+]i by a calcium ionophore increased the release of herpes simplex virus type 1 (HSV-1. Freely diffusible hydrogen peroxide (H2O2 is implied to alter Ca2+ homeostasis, which further enhances abnormal cellular activity, causing changes in signal transduction, and cellular dysfunction. Whether H2O2 could affect [Ca2+]i in HSV-1-infected cells had not been investigated. Results H2O2 treatment increased the amount of cell-free virus and decreased the proportion of viable cells. After the treatment, an elevation in [Ca2+]i was observed and the increase in [Ca2+]i was suppressed when intracellular and cytosolic Ca2+ were buffered by Ca2+ chelators. In the presence of Ca2+ chelators, H2O2-mediated increases of cell-free virus and cell death were also diminished. Electron microscopic analysis revealed enlarged cell junctions and a focal disintegration of the plasma membrane in H2O2-treated cells. Conclusion These results indicate that H2O2 can elevate [Ca2+]i and induces non-apoptotic cell death with membrane lesions, which is responsible for the increased release of HSV-1 from epithelial cells.

  15. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants.

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2014-03-01

    Full Text Available The fine-tuning of neuronal excitability relies on a tight control of Ca2+ homeostasis. The low voltage-activated T-type calcium channels (Cav3.1, Cav3.2 and Cav3.3 isoforms play a critical role in regulating these processes. Despite their wide expression throughout the central nervous system, the implication of T-type Cav3.2 isoform in brain functions is still poorly characterized. Here we investigate the effect of genetic ablation of this isoform in affective disorders, including anxiety, cognitive functions as well as sensitivity to drugs of abuse. Using a wide range of behavioral assays we show that genetic ablation of the cacna1h gene results in an anxiety-like phenotype, whereas novelty-induced locomotor activity is unaffected. Deletion of the T-type channel Cav3.2 also triggers impairment of hippocampus-dependent recognition memories. Acute and sensitized hyperlocomotion induced by d-amphetamine and cocaine are dramatically reduced in T-type Cav3.2 deficient mice. In addition, the administration of the T-type blocker TTA-A2 prevented the expression of locomotor sensitization observed in wildtype mice. In conclusion, our data reveal that physiological activity of this specific Ca2+ channel is required for affective and cognitive behaviors. Moreover, our work highlights the interest of T-type channel blockers as therapeutic strategies to reverse drug-associated alterations.

  16. Discovery and Development of Calcium Channel Blockers

    Directory of Open Access Journals (Sweden)

    Théophile Godfraind

    2017-05-01

    Full Text Available In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan and Heibrunn (USA experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are

  17. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  18. Subcellular distribution of calcium during spermatogenesis of zebrafish, Danio rerio.

    Science.gov (United States)

    Golpour, Amin; Pšenička, Martin; Niksirat, Hamid

    2017-08-01

    Calcium plays a variety of vital regulatory functions in many physiological and biochemical events in the cell. The aim of this study was to describe the ultrastructural distribution of calcium during different developmental stages of spermatogenesis in a model organism, the zebrafish (Danio rerio), using a combined oxalate-pyroantimonate technique. Samples were treated by potassium oxalate and potassium pyroantimonate during two fixation stages and examined using transmission electron microscopy to detect electron dense intracellular calcium. The subcellular distribution of intracellular calcium was characterized in spermatogonium, spermatocyte, spermatid, and spermatozoon stages. The area which is covered by intracellular calcium in different stages was quantified and compared using software. Isolated calcium deposits were mainly detectable in the cytoplasm and the nucleus of the spermatogonium and spermatocyte. In the spermatid, calcium was partially localized in the cytoplasm as isolated deposits. However, most calcium was transformed from isolated deposits into an unbound pool (free calcium) within the nucleus of the spermatid and the spermatozoon. Interestingly, in the spermatozoon, calcium was mainly localized in a form of an unbound pool which was detectable as an electron-dense mass within the nucleus. Also, sporadic calcium deposits were scattered in the midpiece and flagellum. The proportional area which was covered by intracellular calcium increased significantly from early to late stages of spermatogenesis. The extent of the area which was covered by intracellular calcium in the spermatozoon was the highest compared to earlier stages. Calcium deposits were also observed in the somatic cells (Sertoli, myoid, Leydig) of zebrafish testis. The notable changes in the distribution of intracellular calcium of germ cells during different developmental stages of zebrafish spermatogenesis suggest its different homeostasis and physiological functions during the

  19. Intracellular ion channels and cancer.

    Science.gov (United States)

    Leanza, Luigi; Biasutto, Lucia; Managò, Antonella; Gulbins, Erich; Zoratti, Mario; Szabò, Ildikò

    2013-09-03

    Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K(+) channels (Ca(2+)-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K(+) channel-3 (TASK-3)), Ca(2+) uniporter MCU, Mg(2+)-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca(2+) depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca(2+) channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  20. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  1. Presynaptic calcium dynamics of learning neurons

    OpenAIRE

    Meyer-Hermann, Michael; Erler, Frido; Soff, Gerhard

    2002-01-01

    We present a new model for the dynamics of the presynaptic intracellular calcium concentration in neurons evoked by various stimulation protocols. The aim of the model is twofold: We want to discuss the calcium transients during and after specific stimulation protocols as they are used to induce long-term-depression and long-term-potentiation. In addition we would like to provide a general tool which allows the comparison of different calcium experiments. This may help to draw conclusions on ...

  2. Different characteristics of cell volume and intracellular calcium ion concentration dynamics between the hippocampal CA1 and lateral cerebral cortex of male mouse brain slices during exposure to hypotonic stress.

    Science.gov (United States)

    Takahashi, Nanae; Omi, Akibumi; Uchino, Hiroyuki; Kudo, Yoshihisa

    2018-01-01

    The mechanism of brain edema is complex and still remains unclear. Our aim was to investigate the regional differences of cell volume and intracellular Ca 2+ concentration ([Ca 2+ ] i ) dynamics during hypotonic stress in male mouse hemi-brain slices. Brain slices were loaded with the fluorescence Ca 2+ indicator fura-2, and cell volume and [Ca 2+ ] i in the lateral cerebral cortex (LCC) and hippocampal CA1 (CA1) region were measured simultaneously during exposure to hypotonic stress using Ca 2+ insensitive (F360) and Ca 2+ sensitive fluorescence (F380), respectively. Brain cell swelling induced by hypotonic stress was followed by a regulatory volume change that coincided with an increase in [Ca 2+ ] i . The degrees of change in cell volume and [Ca 2+ ] i were significantly different between the LCC and CA1. The increase in cell volume and [Ca 2+ ] i in the LCC, but not in the CA1, was decreased by the transient receptor potential channel blockers LaCl 3 and GdCl 3 . The increase in [Ca 2+ ] i in both the LCC and CA1, was significantly decreased by the intracellular Ca 2+ modulators thapsigargin and xestospongin C. The K + channel activator isoflurane and Cl - channel blocker NPPB significantly decreased [Ca 2+ ] i in the LCC. This study demonstrated that, between cells located in the LCC and in the CA1, the characteristics of brain edema induced by hypotonic stress are different. This can be ascribed to the different contribution of volume sensitive G-protein coupled receptor and stretch sensitive Ca 2+ channels. © 2017 Wiley Periodicals, Inc.

  3. Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts.

    Science.gov (United States)

    Zhang, Ying; Zhang, KaiQiang; Ma, Lin; Gu, HeFeng; Li, Jian; Lei, Shuang

    2016-09-01

    The aim of the study was to evaluate the involvement of endoplasmic reticulum stress and intracellular calcium overload on the development of dental fluorosis. We cultured and exposed rat ameloblast HAT-7 cells to various concentrations of fluoride and measured apoptosis with flow cytometry and intracellular Ca2+ changes using confocal microscopy, investigated the protein levels of GRP78, calreticulin, XBP1 and CHOP by western blotting, and their transcriptional levels with RT-PCR. We also created an in vivo model of dental fluorosis by exposing animals to various concentrations of fluoride. Subsequently, thin dental tissue slices were analyzed with H&E staining, immunohistochemical staining, and transmission electron microscopy, TUNEL assay was also performed on dental tissue slices for assessment of apoptosis. High fluoride concentration was associated with decreased ameloblast proliferation, elevated ameloblast apoptosis, and increased intracellular Ca2+ in vitro. The translation and transcription of the proteins associated with endoplasmic reticulum stress were significantly elevated with high concentrations of fluoride. Based on immunohistochemical staining, these proteins were also highly expressed in animals exposed to high fluoride concentrations. Histologically, we found significant fluorosis-like changes in tissues from animals exposed to high fluoride concentrations. Transmission electron microscopy cytology indicated significant apoptotic changes in tissues exposed to high concentrations of fluoride. These results indicate that exposure to high levels of fluoride led to endoplasmic reticulum stress which induced apoptosis in cultured ameloblasts and in vivo rat model, suggesting an important role of calcium overload and endoplasmic reticulum stress triggered by high concentrations of fluoride in the development of dental fluorosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    Science.gov (United States)

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  5. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L. Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    Directory of Open Access Journals (Sweden)

    Zsolt Pónya

    2014-12-01

    Full Text Available During in vitro fertilization of wheat (Triticum aestivum, L. in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.

  6. Block of CDK1-dependent polyadenosine elongation of Cyclin B mRNA in metaphase-i-arrested starfish oocytes is released by intracellular pH elevation upon spawning.

    Science.gov (United States)

    Ochi, Hiroe; Aoto, Saki; Tachibana, Kazunori; Hara, Masatoshi; Chiba, Kazuyoshi

    2016-01-01

    Meiotic progression requires the translation of maternal mRNAs in a strict temporal order. In isolated animal oocytes, translation of maternal mRNAs containing a cytoplasmic polyadenylation element (CPE), such as cyclin B, is activated by in vitro stimulation of meiotic resumption which induces phosphorylation of CPEB (CPE-binding protein) and elongation of their polyadenosine (poly(A)) tails; whether or not this model can be applied in vivo to oocytes arrested at metaphase of meiosis I in ovaries is unknown. In this study, we found that active CDK1 (cyclin-dependent kinase 1) phosphorylated CPEB in ovarian oocytes arrested at metphase I in the starfish body cavity, but phosphorylation of CPEB was not sufficient for elongation of cyclin B poly(A) tails. Immediately after spawning, however, mRNA was polyadenylated, suggesting that an increase in intracellular pH (pHi ) upon spawning triggers the elongation of poly(A) tails. Using a cell-free system made from maturing oocytes at metaphase I, we demonstrated that polyadenylation was indeed suppressed at pH below 7.0. These results suggest that a pH-sensitive process, functioning after CPEB phosphorylation, is blocked under physiologically low pHi (7.0) that occurs after spawning triggers polyadenylation of cyclin B mRNA and progression into meiosis II. © 2015 Wiley Periodicals, Inc.

  7. Calcium metabolism and cardiovascular function after spaceflight

    Science.gov (United States)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P parathyroid hormone levels (P animals (P = 0.057). However, mean arterial pressure was elevated (P animals fed low- compared with high-calcium diets (P parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  8. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  9. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease

    Directory of Open Access Journals (Sweden)

    Zippelius Annette

    2009-06-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons (MN in the brain stem and spinal cord. Intracellular disruptions of cytosolic and mitochondrial calcium have been associated with selective MN degeneration, but the underlying mechanisms are not well understood. The present evidence supports a hypothesis that mitochondria are a target of mutant SOD1-mediated toxicity in familial amyotrophic lateral sclerosis (fALS and intracellular alterations of cytosolic and mitochondrial calcium might aggravate the course of this neurodegenerative disease. In this study, we used a fluorescence charged cool device (CCD imaging system to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations in individual cells in an established cellular model of ALS. Results To gain insights into the molecular mechanisms of SOD1G93A associated motor neuron disease, we simultaneously monitored cytosolic and mitochondrial calcium concentrations in individual cells. Voltage – dependent cytosolic Ca2+ elevations and mitochondria – controlled calcium release mechanisms were monitored after loading cells with fluorescent dyes fura-2 and rhod-2. Interestingly, comparable voltage-dependent cytosolic Ca2+ elevations in WT (SH-SY5YWT and G93A (SH-SY5YG93A expressing cells were observed. In contrast, mitochondrial intracellular Ca2+ release responses evoked by bath application of the mitochondrial toxin FCCP were significantly smaller in G93A expressing cells, suggesting impaired calcium stores. Pharmacological experiments further supported the concept that the presence of G93A severely disrupts mitochondrial Ca2+ regulation. Conclusion In this study, by fluorescence measurement of cytosolic calcium and using simultaneous [Ca2+]i and [Ca2+]mito measurements, we are able to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations

  10. Ca2+ Binding/Permeation via Calcium Channel, CaV1.1, Regulates the Intracellular Distribution of the Fatty Acid Transport Protein, CD36, and Fatty Acid Metabolism.

    Science.gov (United States)

    Georgiou, Dimitra K; Dagnino-Acosta, Adan; Lee, Chang Seok; Griffin, Deric M; Wang, Hui; Lagor, William R; Pautler, Robia G; Dirksen, Robert T; Hamilton, Susan L

    2015-09-25

    Ca(2+) permeation and/or binding to the skeletal muscle L-type Ca(2+) channel (CaV1.1) facilitates activation of Ca(2+)/calmodulin kinase type II (CaMKII) and Ca(2+) store refilling to reduce muscle fatigue and atrophy (Lee, C. S., Dagnino-Acosta, A., Yarotskyy, V., Hanna, A., Lyfenko, A., Knoblauch, M., Georgiou, D. K., Poché, R. A., Swank, M. W., Long, C., Ismailov, I. I., Lanner, J., Tran, T., Dong, K., Rodney, G. G., Dickinson, M. E., Beeton, C., Zhang, P., Dirksen, R. T., and Hamilton, S. L. (2015) Skelet. Muscle 5, 4). Mice with a mutation (E1014K) in the Cacna1s (α1 subunit of CaV1.1) gene that abolishes Ca(2+) binding within the CaV1.1 pore gain more body weight and fat on a chow diet than control mice, without changes in food intake or activity, suggesting that CaV1.1-mediated CaMKII activation impacts muscle energy expenditure. We delineate a pathway (Cav1.1→ CaMKII→ NOS) in normal skeletal muscle that regulates the intracellular distribution of the fatty acid transport protein, CD36, altering fatty acid metabolism. The consequences of blocking this pathway are decreased mitochondrial β-oxidation and decreased energy expenditure. This study delineates a previously uncharacterized CaV1.1-mediated pathway that regulates energy utilization in skeletal muscle. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Alcoholism and carcinoma change the intracellular pH and activate platelet Na+/H+-exchange in men.

    Science.gov (United States)

    Spies, C D; Spies, K P; Zinke, S; Runkel, N; Berger, G; Marks, C; Helling, K; Blum, S; Müller, C; Rommelspacher, H; Schaffartzik, W

    1997-12-01

    The occurrence of carcinoma in chronic alcoholics exceeds that of the general population. Cytoplasmic alkalinization, due to the influence of different factors on the transmembrane Na+/H+ exchange (NHE), has been put forward as a triggering event in cell growth and division. In accordance with these findings, the carcinogenic potential of NHE deficient cell types is reported to be diminished. The aim of this study was to investigate whether the intracellular pH and the NHE activity is altered in chronic alcoholics. Seventy-two Caucasian males were assigned to one of four groups: non-alcoholics without carcinoma, chronic alcoholics without carcinoma, non-alcoholics with carcinoma and chronic alcoholics with carcinoma. Alcoholism was diagnosed according to DSM-III-R. The groups did not differ in relation to basic patient characteristics, such as age and blood pressure. Intracellular calcium, pH and NHE in platelets were determined by spectrofluorometry before and after thrombin stimulation. In chronic alcoholics with carcinoma, the intracellular pH was significantly more alkaline and the NHE activity was elevated. In contrast, a decrease in intracellular pH associated with an increased activity of NHE and a more acidic set point was found in chronic alcoholics without carcinoma. Basal and thrombin stimulated intracellular Ca2+ did not differ between groups except in chronic alcoholics with carcinoma in whom a thrombin-induced increase of Ca2+ due to liberation of Ca2+ from intracellular stores was demonstrated. In chronic alcoholics with carcinoma, cytoplasmic alkalinization was observed and this may be an indication of an increase in cell proliferation. The possibility that the increased incidence of carcinomas in chronic alcoholics is related to the increased activity of NHE and whether this may be prevented by NHE inhibitors requires further investigation.

  12. Modulation of L-type calcium channels by sodium ions.

    OpenAIRE

    Balke, C W; Wier, W G

    1992-01-01

    It is universally believed that the removal of external sodium ions is without effect on calcium current. We now report that in enzymatically isolated guinea pig ventricular cells, the replacement of external sodium ions with certain other cations causes a 3- to 6-fold increase in peak L-type calcium current. The increase in current is reversibly blocked by L-type calcium-channel antagonists, not mediated by changes in internal calcium, and is inhibited by intracellular 5'-adenylyl imidodipho...

  13. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes.

    Science.gov (United States)

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno

    2012-12-01

    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells.

    Science.gov (United States)

    Kim, Tae Hwan; Kim, Ju Sung; Kim, Zoo Haye; Huang, Ren Bin; Chae, Young Lye; Wang, Ren Sheng

    2014-07-10

    Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an

  15. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release.

    Science.gov (United States)

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-06-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa ) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca(2+) level, but it significantly elevated the intracellular Ca(2+) level evoked by the high K(+) stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca(2+) influx-induced Ca(2+) release. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na+ currents through intracellular Ca2+ release

    Science.gov (United States)

    Liu, Dong-Dong; Ren, Zhen; Yang, Guang; Zhao, Qian-Ru; Mei, Yan-Ai

    2014-01-01

    Although melatonin (MT) has been reported to protect cells against oxidative damage induced by electromagnetic radiation, few reports have addressed whether there are other protective mechanisms. Here, we investigated the effects of MT on extremely low-frequency electromagnetic field (ELF-EMF)-induced Nav activity in rat cerebellar granule cells (GCs). Exposing cerebellar GCs to ELF-EMF for 60 min. significantly increased the Nav current (INa) densities by 62.5%. MT (5 μM) inhibited the ELF-EMF-induced INa increase. This inhibitory effect of MT is mimicked by an MT2 receptor agonist and was eliminated by an MT2 receptor antagonist. The Nav channel steady-state activation curve was significantly shifted towards hyperpolarization by ELF-EMF stimulation but remained unchanged by MT in cerebellar GC that were either exposed or not exposed to ELF-EMF. ELF-EMF exposure significantly increased the intracellular levels of phosphorylated PKA in cerebellar GCs, and both MT and IIK-7 did not reduce the ELF-EMF-induced increase in phosphorylated PKA. The inhibitory effects of MT on ELF-EMF-induced Nav activity was greatly reduced by the calmodulin inhibitor KN93. Calcium imaging showed that MT did not increase the basal intracellular Ca2+ level, but it significantly elevated the intracellular Ca2+ level evoked by the high K+ stimulation in cerebellar GC that were either exposed or not exposed to ELF-EMF. In the presence of ruthenium red, a ryanodine-sensitive receptor blocker, the MT-induced increase in intracellular calcium levels was reduced. Our data show for the first time that MT protects against neuronal INa that result from ELF-EMF exposure through Ca2+ influx-induced Ca2+ release. PMID:24548607

  17. Inhibition of calcium/calmodulin-dependent protein kinase kinase β and calcium/calmodulin-dependent protein kinase IV is detrimental in cerebral ischemia.

    Science.gov (United States)

    McCullough, Louise D; Tarabishy, Sami; Liu, Lin; Benashski, Sharon; Xu, Yan; Ribar, Thomas; Means, Anthony; Li, Jun

    2013-09-01

    Elevation of intracellular calcium was traditionally thought to be detrimental in stroke pathology. However, clinical trials testing treatments that block calcium signaling have failed to improve outcomes in ischemic stroke. Emerging data suggest that calcium may also trigger endogenous protective pathways after stroke. Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is a major kinase activated by rising intracellular calcium. Compelling evidence has suggested that CaMKK and its downstream kinase CaMK IV are critical in neuronal survival when cells are under ischemic stress. We examined the functional role of CaMKK/CaMK IV signaling in stroke. We used a middle cerebral artery occlusion model in mice. Our data demonstrated that pharmacological and genetic inhibition of CaMKK aggravated stroke injury. Additionally, deletion of CaMKK β, one of the 2 CaMKK isoforms, reduced CaMK IV activation, and CaMK IV deletion in mice worsened stroke outcome. Finally, CaMKK β or CaMK IV knockout mice had exacerbated blood-brain barrier disruption evidenced by increased hemorrhagic transformation and activation of matrix metalloproteinase. We observed transcriptional inactivation including reduced levels of histone deacetylase 4 phosphorylation in mice with CaMKK β or CaMK IV deletion after stroke. Our data have established that the CaMKK/CaMK IV pathway is a key endogenous protective mechanism in ischemia. Our results suggest that this pathway serves as an important regulator of blood-brain barrier integrity and transcriptional activation of neuroprotective molecules in stroke.

  18. Voltage sensitive calcium channels (VSCC) in cultured neuronal hybrid cells

    Energy Technology Data Exchange (ETDEWEB)

    Richard, C.L.; U' Prichard, D.C.; Noronha-Blob, L.

    1986-03-01

    Calcium entry via VSCC has been identified in selected, neuronal clonal cell lines using /sup 45/Ca uptake and the fluorescent calcium indicator, quin 2. VSCC in NG108-15 hybrid cells, differentiated with dibutyryl cyclic AMP (1 mM, 4 days) have been further characterized. Depolarization (50 mM K/sup +/, dp) resulted in a rapid (15 sec) influx of Ca/sup 2 +/. Intracellular calcium concentrations were elevated approx. 3 fold from 223 +- 68 nM to 666 +- 74 nM. Dp-sensitive calcium entry was voltage dependent, independent of Na/sup +/, stimulated (40%) by the agonist Bay K 8644 (1..mu..M) and blocked by divalent cations (..mu..M range) and organic calcium channel antagonists (nM range) Bay K 8644, in the absence of KCl, failed to stimulate Ca/sup 2 +/ influx. Tetrodotoxin (TTX) and tetraethylammonium had no effect on VSCC activity. Blockage of VSCC by nimodipine was reversed by increasing Ca/sup 2 +/ ions. IC/sub 50/ values were right shifted from 6.5 nM (1mM/sup 0/Ca/sup 2 +/) to 840 nM (10 mM Ca/sup 2 +/). Ca/sup 2 +/ entry was also stimulated by veratridine (VE), in a Na/sup +//sub 0/-sensitive manner. VE-induced Ca/sup 2 +/ entry was voltage-independent, TTX-sensitive, and was only 25% of dp-sensitive Ca/sup 2 +/ entry. These results together indicate that VSCC in neuronal cells offer a useful system for studying ion channel regulation.

  19. An early-branching microbialite cyanobacterium forms intracellular carbonates.

    Science.gov (United States)

    Couradeau, Estelle; Benzerara, Karim; Gérard, Emmanuelle; Moreira, David; Bernard, Sylvain; Brown, Gordon E; López-García, Purificación

    2012-04-27

    Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.

  20. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy

    Directory of Open Access Journals (Sweden)

    Bodvaël Fraysse

    2016-11-01

    Full Text Available Autosomal dominant centronuclear myopathy (CNM is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2, a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content.

  1. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    Science.gov (United States)

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  3. Paclitaxel induces apoptosis in breast cancer cells through different calcium--regulating mechanisms depending on external calcium conditions.

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-02-17

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an "Enhanced Calcium Efflux" mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel's stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  4. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  5. Understanding calcium dynamics experiments and theory

    CERN Document Server

    Malchow, Dieter

    2003-01-01

    Intracellular Calcium is an important messenger in living cells. Calcium dynamics display complex temporal and spatial structures created by the concentration patterns which are characteristic for a nonlinear system operating far from thermodynamic equilibrium. Written as a set of tutorial reviews on both experimental facts and theoretical modelling, this volume is intended as an introduction and modern reference in the field for graduate students and researchers in biophysics, biochemistry and applied mathematics.

  6. Tuning local calcium availability: cell-type-specific immobile calcium buffer capacity in hippocampal neurons.

    Science.gov (United States)

    Matthews, Elizabeth A; Schoch, Susanne; Dietrich, Dirk

    2013-09-04

    It has remained difficult to ascribe a specific functional role to immobile or fixed intracellular calcium buffers in central neurons because the amount of these buffers is unknown. Here, we explicitly isolated the fixed buffer fraction by prolonged whole-cell patch-clamp dialysis and quantified its buffering capacity in murine hippocampal slices using confocal calcium imaging and the "added-buffer" approach. In dentate granule cells, the calcium binding ratio (κ) after complete washout of calbindin D28k (Cb), κfixed, displayed a substantial value of ∼100. In contrast, in CA1 oriens lacunosum moleculare (OLM) interneurons, which do not contain any known calcium-binding protein(s), κfixed amounted to only ∼30. Based on these values, a theoretical analysis of dendritic spread of calcium after local entry showed that fixed buffers, in the absence of mobile species, decrease intracellular calcium mobility 100- and 30-fold in granule cells and OLM cells, respectively, and thereby strongly slow calcium signals. Although the large κfixed alone strongly delays the spread of calcium in granule cells, this value optimizes the benefits of additionally expressing the mobile calcium binding protein Cb. With such high κfixed, Cb effectively increases the propagation velocity to levels seen in OLM cells and, contrary to expectation, does not affect the peak calcium concentration close to the source but sharpens the spatial and temporal calcium gradients. The data suggest that the amount of fixed buffers determines the temporal availability of calcium for calcium-binding partners and plays a pivotal role in setting the repertoire of cellular calcium signaling regimens.

  7. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions.

    Science.gov (United States)

    Cam, N; Benzerara, K; Georgelin, T; Jaber, M; Lambert, J-F; Poinsot, M; Skouri-Panet, F; Moreira, D; López-García, P; Raimbault, E; Cordier, L; Jézéquel, D

    2018-01-01

    Cyanobacteria have long been thought to induce the formation of Ca-carbonates as secondary by-products of their metabolic activity, by shifting the chemical composition of their extracellular environment to conditions favoring mineral precipitation. Some cyanobacterial species forming Ca-carbonates intracellularly were recently discovered. However, the environmental conditions under which this intracellular biomineralization process can occur and the impact of cyanobacterial species forming Ca-carbonates intracellularly on extracellular carbonatogenesis are not known. Here, we show that these cyanobacteria can form Ca-carbonates intracellularly while growing in extracellular solutions undersaturated with respect to all Ca-carbonate phases, that is, conditions thermodynamically unfavorable to mineral precipitation. This shows that intracellular Ca-carbonate biomineralization is an active process; that is, it costs energy provided by the cells. The cost of energy may be due to the active accumulation of Ca intracellularly. Moreover, unlike cyanobacterial strains that have been usually considered before by studies on Ca-carbonate biomineralization, cyanobacteria forming intracellular carbonates may slow down or hamper extracellular carbonatogenesis, by decreasing the saturation index of their extracellular solution following the buffering of the concentration of extracellular calcium to low levels. © 2017 John Wiley & Sons Ltd.

  8. Assessment of membrane protection by /sup 31/P-NMR effects of lidocaine on calcium-paradox in myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hirosumi; Yoshiyama, Minoru; Teragaki, Masakazu; Takeuchi, Kazuhide; Takeda, Takeda; Ikata, Mari; Ishikawa, Makoto; Miura, Iwao

    1989-01-01

    In studying calcium paradox, perfused rat hearts were used to investigate the myocardial protective effects of lidocaine. Intracellular contents of phosphates were measured using the /sup 31/P-NMR method. In hearts reexposed to calcium, following 3 minute calcium-free perfusion, a rapid contracture occurred, followed by rapid and complete disappearance of intracellular phosphates with no resumption of cardiac function. In hearts where lidocaine was administered from the onset of the calcium-free perfusion until 2 minutes following the onset of reexposure to calcium, both intracellular phosphates and cardiac contractility were maintained. Therefore, it can be said that cell membranes were protected by lidocaine.

  9. [Regulatory mechanism of calcium metabolism.

    Science.gov (United States)

    Ozono, Keiichi

    It is often difficult for terrestrial animals to take enough calcium. To maintain serum or extracellular calcium levels is very important for muscle and nerve function. Two major regulators to increase the serum calcium levels are parathyroid hormone(PTH)and vitamin D. PTH binds to the G protein coupling receptor, PTH1R, and increases intracellular cAMP levels. Impirement in the PTH signalling causes many diseases such as pseudohypoparathyroidism and acrodysostosis with hormone resistance. Vitamin D is activated to 1,25-dihydroxyvitamin D[1,25(OH)2D]by two steps of hydroxylation which occurs in the Liver and Kidney. Then, 1,25(OH)2D binds to vitamin D receptor(VDR), which works as a ligand-dependent transcription factor. Hypocalcemia and hypercalcemia are caused by various disorders including abnormal regulation of PTH and vitamin D production and their signal transduction.

  10. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  11. Coupled dynamics of voltage and calcium in paced cardiac cells

    Science.gov (United States)

    Shiferaw, Yohannes; Sato, Daisuke; Karma, Alain

    2005-02-01

    We investigate numerically and analytically the coupled dynamics of transmembrane voltage and intracellular calcium cycling in paced cardiac cells using a detailed physiological model, and its reduction to a three-dimensional discrete map. The results provide a theoretical framework to interpret various experimentally observed modes of instability ranging from electromechanically concordant and discordant alternans to quasiperiodic oscillations of voltage and calcium.

  12. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. ATP Releasing Connexin 30 Hemichannels Mediate Flow-Induced Calcium Signaling in the Collecting Duct

    Directory of Open Access Journals (Sweden)

    Per eSvenningsen

    2013-10-01

    Full Text Available ATP in the renal tubular fluid is an important regulator of salt and water reabsorption via purinergic calcium signaling that involves the P2Y2 receptor, ENaC and AQP2. Recently, we have shown that connexin (Cx 30 hemichannels are localized to the non-junctional apical membrane of cells in the distal nephron-collecting duct (CD and release ATP into the tubular fluid upon mechanical stimuli, leading to reduced salt and water reabsorption. Cx30-/- mice show salt-dependent elevations in BP and impaired pressure-natriuresis. Thus, we hypothesized that increased tubular flow rate leads to Cx30-dependent purinergic intracellular calcium ([Ca2+]i signaling in the CD. Cortical CDs (CCDs from wild type and Cx30-/- mice were freshly dissected and microperfused in vitro. Using confocal fluorescence imaging and the calcium-sensitive fluorophore pair Fluo-4 and Fura Red, we found that increasing tubular flow rate from 2 to 20 nl/min caused a significant 2.1-fold elevation in [Ca2+]i in wild type CCDs. This response was blunted in Cx30-/- CCDs ([Ca2+]i increased only 1.2-fold, p

  14. Calcium Signaling Is Required for Erythroid Enucleation.

    Directory of Open Access Journals (Sweden)

    Christina B Wölwer

    Full Text Available Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation.

  15. Regulation of Intracellular Free Calcium in Neuronal Cells by Opioids

    Science.gov (United States)

    1995-06-19

    neurons was measured using a graticule eye-piece (no obvious cell shrinkage was observed after fixation) . The expression of SP-LI ( shaded bar) was...Jiang Q ., Takemori A. E., Sultana M., Portoghese P. S., Bowen W. D., Mosberg H. I., and Porreca F. Differential antagonism of opioid delta

  16. Intracellular calcium signaling in the fertilized eggs of Annelida.

    Science.gov (United States)

    Nakano, Takeshi; Deguchi, Ryusaku; Kyozuka, Keiichiro

    2014-08-01

    Fertilization is such a universal and indispensable step in sexual reproduction, but a high degree of variability exists in the way it takes place in the animal kingdom. As discussed in other reviews in this issue, recent works on this subject clarified many points. However, important results on the mechanisms of fertilization are obtained mainly from a few restricted model organisms. In this sense, it is utterly important to collect more information from various phyla. In this review, we have re-introduced Annelida as one of the most suitable models for the analysis of fertilization process. We have briefly reviewed the historical works on the fertilization of Annelida. Then, we have described recent findings on the two independent Ca(2+) increases in the fertilized eggs of Annelida, which arise from two different mechanisms and may have distinct physiological roles toward sperm entry and egg activation. We propose that the Ca(2+) increase in the fertilized eggs reflect the specific needs of the zygote in a given species. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells.

    Directory of Open Access Journals (Sweden)

    Kazuya Kusama

    Full Text Available Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP, but the role of intracellular calcium ion (Ca2+ on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP1 in human endometrial stromal cells (ESCs, and cyclooxygenase 2 (COX2 and prostaglandin E2 (PGE2 and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC, nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells.

  18. Store-operated calcium entry is essential for glial calcium signalling in CNS white matter.

    Science.gov (United States)

    Papanikolaou, M; Lewis, A; Butt, A M

    2017-02-28

    'Calcium signalling' is the ubiquitous response of glial cells to multiple extracellular stimuli. The primary mechanism of glial calcium signalling is by release of calcium from intracellular stores of the endoplasmic reticulum (ER). Replenishment of ER Ca(2+) stores relies on store-operated calcium entry (SOCE). However, despite the importance of calcium signalling in glial cells, little is known about their mechanisms of SOCE. Here, we investigated SOCE in glia of the mouse optic nerve, a typical CNS white matter tract that comprises bundles of myelinated axons and the oligodendrocytes and astrocytes that support them. Using quantitative RT-PCR, we identified Orai1 channels, both Stim1 and Stim2, and the transient receptor potential M3 channel (TRPM3) as the primary channels for SOCE in the optic nerve, and their expression in both astrocytes and oligodendrocytes was demonstrated by immunolabelling of optic nerve sections and cultures. The functional importance of SOCE was demonstrated by fluo-4 calcium imaging on isolated intact optic nerves and optic nerve cultures. Removal of extracellular calcium ([Ca(2+)]o) resulted in a marked depletion of glial cytosolic calcium ([Ca(2+)]i), which recovered rapidly on restoration of [Ca(2+)]o via SOCE. 2-aminoethoxydiphenylborane (2APB) significantly decreased SOCE and severely attenuated ATP-mediated calcium signalling. The results provide evidence that Orai/Stim and TRPM3 are important components of the 'calcium toolkit' that underpins SOCE and the sustainability of calcium signalling in white matter glia.

  19. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  20. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S

    2006-01-01

    -evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium...

  1. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  2. In vivo calcium imaging of evoked calcium waves in the embryonic cortex

    Directory of Open Access Journals (Sweden)

    Mikhail eYuryev

    2016-01-01

    Full Text Available The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this approach we demonstrate induction of calcium waves by laser stimulation. These waves are sensitive to ATP-receptor blockade and are significantly increased by pharmacological facilitation of intracellular-calcium release. This approach is the closest to physiological conditions yet achieved for imaging of calcium in the embryonic brain and as such opens new avenues for the study of prenatal brain development. Furthermore, the developed method could open the possibilities of preclinical translational studies in embryos particularly important for developmentally related diseases such as schizophrenia and autism.

  3. Data Elevator

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-29

    Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destination in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.

  4. Calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum in skeletal muscle fibers.

    Science.gov (United States)

    Simon, B J; Klein, M G; Schneider, M F

    1991-03-01

    The steady-state calcium dependence of inactivation of calcium release from the sarcoplasmic reticulum was studied in voltage-clamped, cut segments of frog skeletal muscle fibers containing two calcium indicators, fura-2 and anti-pyrylazo III (AP III). Fura-2 fluorescence was used to monitor resting calcium and relatively small calcium transients during small depolarizations. AP III absorbance signals were used to monitor larger calcium transients during larger depolarizations. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from the calcium transients. The equilibrium calcium dependence of inactivation of calcium release was determined using 200-ms prepulses of various amplitudes to elevate [Ca2+] to various steady levels. Each prepulse was followed by a constant test pulse. The suppression of peak Rrel during the test pulse provided a measure of the extent of inactivation of release at the end of the prepulse. The [Ca2+] dependence of inactivation indicated that binding of more than one calcium ion was required to inactivate each release channel. Half-maximal inactivation was produced at a [Ca2+] of approximately 0.3 microM. Variation of the prepulse duration and amplitude showed that the suppression of peak release was consistent with calcium-dependent inactivation of calcium release but not with calcium depletion. The same calcium dependence of inactivation was obtained using different amplitude test pulses to determine the degree of inactivation. Prepulses that produced near maximal inactivation of release during the following test pulse produced no suppression of intramembrane charge movement during the test pulse, indicating that inactivation occurred at a step beyond the voltage sensor for calcium release. Three alternative set of properties that were assumed for the rapidly equilibrating calcium-binding sites intrinsic to the fibers gave somewhat different Rrel records, but gave very similar calcium dependence of

  5. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  6. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Some products that contain calcium carbonate are certain: ... and mineral supplements Other products may also contain calcium ...

  7. Asante Calcium Green and Asante Calcium Red--novel calcium indicators for two-photon fluorescence lifetime imaging.

    Directory of Open Access Journals (Sweden)

    Karolina Jahn

    Full Text Available For a comprehensive understanding of cellular processes and potential dysfunctions therein, an analysis of the ubiquitous intracellular second messenger calcium is of particular interest. This study examined the suitability of the novel Ca2+-sensitive fluorescent dyes Asante Calcium Red (ACR and Asante Calcium Green (ACG for two-photon (2P-excited time-resolved fluorescence measurements. Both dyes displayed sufficient 2P fluorescence excitation in a range of 720-900 nm. In vitro, ACR and ACG exhibited a biexponential fluorescence decay behavior and the two decay time components in the ns-range could be attributed to the Ca(2+-free and Ca(2+-bound dye species. The amplitude-weighted average fluorescence decay time changed in a Ca(2+-dependent way, unraveling in vitro dissociation constants K(D of 114 nM and 15 nM for ACR and ACG, respectively. In the presence of bovine serum albumin, the absorption and steady-state fluorescence behavior of ACR was altered and its biexponential fluorescence decay showed about 5-times longer decay time components indicating dye-protein interactions. Since no ester derivative of ACG was commercially available, only ACR was evaluated for 2P-excited fluorescence lifetime imaging microscopy (2P-FLIM in living cells of American cockroach salivary glands. In living cells, ACR also exhibited a biexponential fluorescence decay with clearly resolvable short (0.56 ns and long (2.44 ns decay time components attributable to the Ca(2+-free and Ca(2+-bound ACR species. From the amplitude-weighted average fluorescence decay times, an in situ K(D of 180 nM was determined. Thus, quantitative [Ca(2+]i recordings were realized, unraveling a reversible dopamine-induced [Ca(2+]i elevation from 21 nM to 590 nM in salivary duct cells. It was concluded that ACR is a promising new Ca(2+ indicator dye for 2P-FLIM recordings applicable in diverse biological systems.

  8. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway.

    Directory of Open Access Journals (Sweden)

    Jinxiang Wang

    Full Text Available Calcium ion (Ca2+ is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether-N,N,N',N'-tetraacetic acid (EGTA, Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway.

  9. Sources of calcium in agonist-induced contraction of rat distal colon smooth muscle in vitro.

    Science.gov (United States)

    Zhou, Hua; Kong, De-Hu; Pan, Qun-Wan; Wang, Hai-Hua

    2008-02-21

    To study the origin of calcium necessary for agonist-induced contraction of the distal colon in rats. The change in intracellular calcium concentration ([Ca2+]i) evoked by elevating external Ca2+ was detected by fura 2/AM fluorescence. Contractile activity was measured with a force displacement transducer. Tension was continuously monitored and recorded using a Powerlab 4/25T data acquisition system with an ML110 bridge bioelectric physiographic amplifier. Store depletion induced Ca2+ influx had an effect on [Ca2+]i. In nominally Ca2+-free medium, the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1 mumol/L) increased [Ca2+]i from 68 to 241 nmol/L, and to 458 (P source of activator Ca2+ for the contractile response to agonist is extracellular Ca2+, and intracellular Ca2+ has little role to play in mediating excitation-contraction coupling by agonists in rat distal colon smooth muscle in vitro. The influx of extracellular Ca2+ is mainly mediated through voltage-, receptor- and store-operated Ca2+ channels, which can be used as an alternative to develop new drugs targeted on the dysfunction of digestive tract motility.

  10. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing

    Directory of Open Access Journals (Sweden)

    Yi-Hsing Hsiao

    2016-07-01

    Full Text Available The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca2+ concentration. However, glucose evoked a rapid elevation of intracellular Ca2+ followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.

  11. Plasma membrane calcium pump and sodium-calcium exchanger in maintenance and control of calcium concentrations in platelets.

    Science.gov (United States)

    Juska, Alfonsas

    2010-01-29

    The purpose of this research was to elucidate the activity of the mechanisms responsible for control of cytosolic calcium concentration in platelets by modeling the time-course of the concentration changing in response to discharge of the intracellular stores or store-operated calcium entry (SOCE). The parameters estimated as a result of model fitting to experimental data are related to physiological or pathological state of the cells. It has been shown that: (a) the time-course is determined by the passive calcium fluxes and activities of the corresponding mechanisms; (b) the decline in the concentration (after its rise) develops due to activity of plasma membrane calcium ATPase (PMCA) both in the case of discharge of the stores of platelets contained in calcium-free medium and in the case of SOCE; (c) impulsive extrusion of calcium in response to its sudden influx, presumably, is the main function of PMCA; (d) the function of sodium-calcium exchanger (NCX) is to extrude calcium excess by permanent counteracting its influx. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells.

    Science.gov (United States)

    Anghileri, L J; Marcha, C; Crone-Escanyé, M C; Robert, J

    1985-08-01

    The effects of different concentrations of extracellular ion calcium on the transport of calcium by tumor cells have been studied by means of the uptake of radiocalcium. Tumor cells incubated at 45 degrees C take up 4-10 times the amount of radioactivity incorporated by cells incubated at 37 degrees C. The difference is still greater (up to 100 times) for the intracellular incorporation as assessed by elimination of the membrane-bound calcium by EGTA treatment. The possible mechanisms involved in this differential behavior are discussed.

  13. Voltage-gated calcium flux mediatesEscherichia colimechanosensation.

    Science.gov (United States)

    Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M

    2017-08-29

    Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.

  14. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    Science.gov (United States)

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

  15. High calcium and dobutamine positive inotropy in the perfused mouse heart: myofilament calcium responsiveness, energetic economy, and effects of protein kinase C inhibition

    Directory of Open Access Journals (Sweden)

    Du Congwu

    2001-08-01

    Full Text Available Abstract Background In perfused hearts, high calcium-induced inotropy results in less developed pressure relative to myocardial oxygen consumption compared to the β-adrenergic agonist dobutamine. Calcium handling is an important determinant of myocardial oxygen consumption. Therefore, we hypothesized that this phenomenon was due to reduced myofilament responsiveness to calcium, related to protein kinase C activation. Results Developed pressure was significantly higher with dobutamine compared to high perfusate calcium of 3.5 mM (73 ± 10 vs 63 ± 10 mmHg, p Conclusions By measuring intracellular calcium, developed pressures and myocardial oxygen consumption in perfused mouse hearts, these results demonstrate that high perfusate calcium positive inotropy compared to dobutamine results in reduced myofilament responsiveness to intracellular calcium, which is associated with energetic inefficiency and evidence of protein kinase C activation.

  16. Aroclor 1254 inhibits cell viability and induces apoptosis of human A549 lung cancer cells by modulating the intracellular Ca(2+) level and ROS production through the mitochondrial pathway.

    Science.gov (United States)

    Zhong, Yufang; Guo, Panpan; Wang, Xiu; An, Jing

    2015-01-01

    To study the acute toxic effects of PCBs on airway exposure, the cell viability, apoptosis and mitochondrial functions of human lung cancer cell line A549 were measured and compared after Aroclor 1254 exposure for different time. The results showed that Aroclor 1254 could inhibit cell viability and increase cell apoptosis in a concentration- and time-dependent manner. The mitochondrial apoptosis pathway was confirmed playing an important role. ROS elevation was an early response within 1h treatment of Aroclor 1254. Then after 4 h of Aroclor 1254 exposure, the intracellular calcium level increased and mitochondrial transmembrane potential (ΔΨm) collapsed, accompanying with Cytochrome c (Cyt-c) leakage, boosting expression of Bax, Apaf-1 and miRNA155, which were involved in the mitochondrial apoptosis pathway. After 24 h of Aroclor 1254 exposure, ROS returned to normal level, but cell apoptosis rate was higher than that at 4 h with ΔΨm continued collapsing and intracellular calcium increased. In conclusion, Aroclor 1254 could suppress cell viability and induce apoptosis in A549 cells, which was associated with ROS over-production and elevated cellular Ca(2+) level, which may result in mitochondrial dysfunction, inducing expression of Bax/Cyt-c/Apaf-1 and miRNA155.

  17. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  18. Intracellular renin disrupts chemical communication between heart cells. Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Walmor eDe Mello

    2015-01-01

    Full Text Available The influence of intracellular renin on the process of chemical communication between cardiac cells was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. The enzyme together with Lucifer yellow CH was dialyzed into one cell of the pair using the whole cell clamp technique. The diffusion of the dye in the dialyzed and in non-dialyzed cell was followed by measuring the intensity of fluorescence in both cells as a function of time. The results indicated that; 1 under normal conditions, Lucifer Yellow flows from cell-to-cell through gap junctions; 2 the intracellular dialysis of renin (100nM disrupts chemical communication-an effect enhanced by simultaneous administration of angiotensinogen (100nM; 3 enalaprilat (10-9M administered to the cytosol together with renin reduced drastically the uncoupling action of the enzyme; 4 aliskiren (10-8M inhibited the effect of renin on chemical communication;5 the possible role of intracellular renin independently of angiotensin II (Ang II was evaluated including the increase of the inward calcium current elicited by the enzyme and the possible role of oxidative stress on the disruption of cell communication; 6 the possible harmful versus the beneficial effect of intracellular renin during myocardial infarction was discussed;7 the present results indicate that intracellular renin due to internalization or in situ synthesis, causes a severe impairment of chemical communication in the heart resulting in derangement of metabolic cooperation with serious consequences for heart function.

  19. Elevated CO

    NARCIS (Netherlands)

    Hoosbeek, Marcel R.

    2016-01-01

    Sustained increased productivity of trees growing in elevated CO2 depends in part on their stoichiometric flexibility, i.e., increasing their nutrient use efficiency, or on increased nutrient uptake from the soil. Phosphorus (P) may be a nutrient as limiting as nitrogen (N) in

  20. Intracellular and intraluminal aspects of renal calculosis in the marine mollusc Macrocallista nimbosa.

    Science.gov (United States)

    Tiffany, W J; Luer, W H; Watkins, M A

    1980-09-01

    The intracellular and intraluminal development of renal calculi in the bivalved mollusc Macrocallista nimbosa was investigated by histologic techniques. The origin of calculi is within the renal tubule cell. Early events involve the formation of a stone precursor into which are incorporated calcium salts, heavy metals, and mucopolysaccharides. The stone is eventually extruded into the tubule lumen where it continues to grow by epitaxy and aggregation. Various forms of calcium phosphate calculi were identified, including hydroxylapatite, whitlockite, brushite, and chlorapatite.

  1. Calcium dependence of the rate of exocytosis in a synaptic terminal.

    Science.gov (United States)

    Heidelberger, R; Heinemann, C; Neher, E; Matthews, G

    1994-10-06

    Rapid calcium-dependent exocytosis underlies neurotransmitter release from nerve terminals. Despite the fundamental importance of this process, neither the relationship between presynaptic intracellular calcium ion concentration ([Ca2+]i) and rate of exocytosis, nor the maximal rate of secretion is known quantitatively. To provide this information, we have used flash photolysis of caged Ca2+ to elevate [Ca2+]i rapidly and uniformly in synaptic terminals, while measuring membrane capacitance as an index of exocytosis and monitoring [Ca2+]i with a Ca(2+)-indicator dye. When [Ca2+]i was abruptly increased to > 10 microM, capacitance rose at a rate that increased steeply with [Ca2+]i. The steepness suggested that at least four calcium ions must bind to activate synaptic vesicle fusion. Half-saturation was at 194 microM, and the maximal rate constant was 2,000-3,000 s-1. A given synaptic vesicle can exocytose with high probability within a few hundred microseconds, if [Ca2+]i rises above 100 microM. These properties provide for the extremely rapid signalling required for neuronal communication.

  2. Calcium's Role in Mechanotransduction during Muscle Development

    Directory of Open Access Journals (Sweden)

    Tatiana Benavides Damm

    2014-01-01

    Full Text Available Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, electric and magnetic stimulation, shear stress, and altered gravity exposure. The response, mainly involving changes in intracellular calcium concentration then leads to a cascade of events by the activation of downstream signaling pathways. The key calcium-dependent pathways described here include the nuclear factor of activated T cells (NFAT and mitogen-activated protein kinase (MAPK activation. The subsequent effects in cellular homeostasis consist of cytoskeletal remodeling, cell cycle progression, growth, differentiation, and apoptosis, all necessary for healthy muscle development, repair, and regeneration. A deregulation from the normal process due to disuse, trauma, or disease can result in a clinical condition such as muscle atrophy, which entails a significant loss of muscle mass. In order to develop therapies against such diseased states, we need to better understand the relevance of calcium signaling and the downstream responses to mechanical forces in skeletal muscle. The purpose of this review is to discuss in detail how diverse mechanical stimuli cause changes in calcium homeostasis by affecting membrane channels and the intracellular stores, which in turn regulate multiple pathways that impart these effects and control the fate of muscle tissue.

  3. Coronary Calcium Scan

    Science.gov (United States)

    ... Back To Health Topics / Coronary Calcium Scan Coronary Calcium Scan Also known as Calcium Scan Test A coronary calcium scan is a CT scan of your heart that detects and measures the amount of calcium in the walls of your coronary arteries. Overview ...

  4. Functional genomics of intracellular bacteria.

    Science.gov (United States)

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  5. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Jensen, Boye L.; Andreasen, D

    2001-01-01

    a significant increase of calcium in response to K(+) (100 mmol/L) in isolated afferent arterioles (140+/-25%) and in juxtamedullary efferent arterioles (118+/-21%). These calcium responses were attenuated by the L-type antagonist calciseptine and by the T-type antagonist mibefradil. Intracellular calcium...

  6. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  7. In vitro antioxidant properties of calcium dobesilate.

    Science.gov (United States)

    Brunet, J; Farine, J C; Garay, R P; Hannaert, P

    1998-01-01

    Calcium dobesilate, a vascular protective agent, was tested in vitro for its scavenging action against oxygen free radicals. Calcium dobesilate was as potent as rutin to scavenge hydroxyl radicals (IC50 = 1.1 vs 0.7 microM, respectively). It was also able to scavenge superoxide radicals, but with 23 times less potency than rutin (IC50 = 682 vs 30 microM, respectively). Calcium dobesilate significantly reduced platelet activating factor (PAF)-induced chemiluminescence in human PMN cells and lipid peroxidation by oxygen free radicals in human erythrocyte membranes, although these actions required calcium dobesilate concentrations > or = 50 microM. Finally, in cultured bovine aortic endothelial cells, magnesium dobesilate reduced the increase in cytosolic free calcium induced by hydrogen peroxide and inhibited phenazine methosulfate-induced cell potassium loss. In conclusion, calcium dobesilate was effective in scavenging hydroxyl radicals in vitro, at therapeutically relevant concentrations. Conversely, higher concentrations of the compound were required to scavenge superoxide radicals or to protect the cells against the deleterious effects of intracellular reactive oxygen species. Further studies in vivo are required to determine if these antioxidant properties of calcium dobesilate can play a role in its vascular protective mechanisms.

  8. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes.

    Science.gov (United States)

    Martignier, A; Pacton, M; Filella, M; Jaquet, J-M; Barja, F; Pollok, K; Langenhorst, F; Lavigne, S; Guagliardo, P; Kilburn, M R; Thomas, C; Martini, R; Ariztegui, D

    2017-03-01

    Until now, descriptions of intracellular biomineralization of amorphous inclusions involving alkaline-earth metal (AEM) carbonates other than calcium have been confined exclusively to cyanobacteria (Couradeau et al., 2012). Here, we report the first evidence of the presence of intracellular amorphous granules of AEM carbonates (calcium, strontium, and barium) in unicellular eukaryotes. These inclusions, which we have named micropearls, show concentric and oscillatory zoning on a nanometric scale. They are widespread in certain eukaryote phytoplankters of Lake Geneva (Switzerland) and represent a previously unknown type of non-skeletal biomineralization, revealing an unexpected pathway in the geochemical cycle of AEMs. We have identified Tetraselmis cf. cordiformis (Chlorophyta, Prasinophyceae) as being responsible for the formation of one micropearl type containing strontium ([Ca,Sr]CO3 ), which we also found in a cultured strain of Tetraselmis cordiformis. A different flagellated eukaryotic cell forms barium-rich micropearls [(Ca,Ba)CO3 ]. The strontium and barium concentrations of both micropearl types are extremely high compared with the undersaturated water of Lake Geneva (the Ba/Ca ratio of the micropearls is up to 800,000 times higher than in the water). This can only be explained by a high biological pre-concentration of these elements. The particular characteristics of the micropearls, along with the presence of organic sulfur-containing compounds-associated with and surrounding the micropearls-strongly suggest the existence of a yet-unreported intracellular biomineralization pathway in eukaryotic micro-organisms. © 2016 John Wiley & Sons Ltd.

  9. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  10. Cadmium Induces Apoptosis in Freshwater Crab Sinopotamon henanense through Activating Calcium Signal Transduction Pathway: e0144392

    National Research Council Canada - National Science Library

    Jinxiang Wang; Pingping Zhang; Na Liu; Qian Wang; Jixian Luo; Lan Wang

    2015-01-01

      Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd...

  11. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  12. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  13. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  14. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  15. Calcium blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003477.htm Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  16. Yeast respond to hypotonic shock with a calcium pulse

    Science.gov (United States)

    Batiza, A. F.; Schulz, T.; Masson, P. H.

    1996-01-01

    We have used the transgenic AEQUORIN calcium reporter system to monitor the cytosolic calcium ([Ca2+]cyt) response of Saccharomyces cerevisiae to hypotonic shock. Such a shock generates an almost immediate and transient rise in [Ca2+]cyt which is eliminated by gadolinium, a blocker of stretch-activated channels. In addition, this transient rise in [Ca2+]cyt is initially insensitive to 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), an extracellular calcium chelator. However, BAPTA abruptly attenuates the maintenance of that transient rise. These data show that hypotonic shock generates a stretch-activated channel-dependent calcium pulse in yeast. They also suggest that the immediate calcium influx is primarily generated from intracellular stores, and that a sustained increase in [Ca2+]cyt depends upon extracellular calcium.

  17. The differential effect of calcium antagonists on the positive inotropic effects induced by calcium and monensin in cardiac preparations of rats and guinea-pigs

    NARCIS (Netherlands)

    Hugtenburg, J. G.; Mathy, M. J.; Beckeringh, J. J.; van Zwieten, P. A.

    1989-01-01

    It was the aim of the present study to gain more insight into the role of extracellular calcium and of calcium from intracellular sources in the development of contractile force in the mammalian heart. In rat Langendorff hearts the effect of nifedipine, verapamil, diltiazem, bepridil and lidoflazine

  18. Relationship of calcium absorption with 25(OH)D and calcium intake in children with rickets.

    Science.gov (United States)

    Thacher, Tom D; Abrams, Steven A

    2010-11-01

    Nutritional rickets has long been considered a disease caused by vitamin D deficiency, but recent data indicate that inadequate dietary calcium intake is an important cause of rickets, particularly in tropical countries. Children with rickets due to calcium deficiency do not have very low 25(OH)D concentrations, and serum 1,25(OH)(2) D values are markedly elevated. Studies of Nigerian children with rickets demonstrated they have high fractional calcium absorption. A high-phytate diet was demonstrated to increase calcium absorption compared with the fasting state, and enzymatic dephytinization did not significantly improve calcium absorption. When given vitamin D, children with rickets have a marked increase in 1,25(OH)(2) D concentrations without any change in fractional calcium absorption. No positive relationship was found between fractional calcium absorption and serum 25(OH)D concentrations in children on low-calcium diets. More research is needed to understand the interaction between calcium and vitamin D and the role of vitamin D in calcium absorption. © 2010 International Life Sciences Institute.

  19. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... showed muscle damage and subsequent regeneration. Electrotransfer of isotonic CaCl(2) terminates transgenic protein expression in muscles and may be used for contingency elimination of transgene expression....

  20. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  1. Expression of the gene for large subunit of m-calpain is elevated in ...

    Indian Academy of Sciences (India)

    Calpain is an intracellular nonlysosomal protease involved in essential regulatory or processing functions of the cell, mediated by physiological concentrations of Ca2З. However, in an environment of abnormal intracellular calcium, such as that seen in Duchenne muscular dystrophy (DMD), calpain is suggested to cause ...

  2. Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*

    Science.gov (United States)

    Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar

    2015-01-01

    Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212

  3. CCN3 and calcium signaling

    Directory of Open Access Journals (Sweden)

    Li Chang Long

    2003-08-01

    Full Text Available Abstract The CCN family of genes consists presently of six members in human (CCN1-6 also known as Cyr61 (Cystein rich 61, CTGF (Connective Tissue Growth Factor, NOV (Nephroblastoma Overexpressed gene, WISP-1, 2 and 3 (Wnt-1 Induced Secreted Proteins. Results obtained over the past decade have indicated that CCN proteins are matricellular proteins, which are involved in the regulation of various cellular functions, such as proliferation, differentiation, survival, adhesion and migration. The CCN proteins have recently emerged as regulatory factors involved in both internal and external cell signaling. CCN3 was reported to physically interact with fibulin-1C, integrins, Notch and S100A4. Considering that, the conformation and biological activity of these proteins are dependent upon calcium binding, we hypothesized that CCN3 might be involved in signaling pathways mediated by calcium ions. In this article, we review the data showing that CCN3 regulates the levels of intracellular calcium and discuss potential models that may account for the biological effects of CCN3.

  4. Role of calcium in selenium cataract.

    Science.gov (United States)

    Shearer, T R; David, L L

    The purpose of this research was to test the role of certain minerals in the formation of cataract caused by an overdose of selenium. Several pieces of information indicated that lenticular calcium may play an important role in selenite cataractogenesis: 1) Lens calcium concentrations in selenite treated rats were increased more than 5-fold, and the increase in lens calcium was localized in the nucleus. 2) Lens calcium concentrations were elevated at least one full day before actual formation of nuclear cataract, but serum calcium levels were not changed. 3) In older rats not susceptible to selenite cataract, lens calcium was not significantly increased. 4) No evidence was found for a generalized disruption in lens permeability, since no major changes in lens water, sodium, and potassium levels were observed, and 5) when levels of calcium observed in selenite cataract were added to solutions of soluble proteins from rat lenses, light scattering was increased. Selenium-overdose cataracts may provide an important model for studies on the role of calcium in cataractogenesis.

  5. Calcium Impact on Milk Gels Formation

    DEFF Research Database (Denmark)

    Koutina, Glykeria

    salts. The perturbation of calcium equilibria by these factors will affect the final properties of acid, calcium and rennet milk gels. By decreasing the pH from 6.0 to 5.2 (acid gels), the calcium equilibrium was significantly affected by temperature (4, 20, 30, 40 oC), and different combinations...... of temperature and pH may result in different final structure properties in dairy products such as cheese. A significant amount of calcium remained in the micelles between pH 4.8 and 4.6, this can contribute to the final strength of acid milk gels, such as in yogurt or in cream cheeses. After the gelation point......, a sudden solubilization of micellar calcium was observed at 50 oC and 60 oC, which revealed an interesting role of calcium during acidification at elevated temperatures. After enrichment of milk with calcium D-lactobionate, the added calcium was distributed between the micellar and serum milk phase at pH 6...

  6. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells.

    Science.gov (United States)

    Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst

    2014-01-01

    The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.

  7. Impact of calcium signaling during infection of Neisseria meningitidis to human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Tauseef M Asmat

    Full Text Available The pili and outer membrane proteins of Neisseria meningitidis (meningococci facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.

  8. Calcium content of different compositions of gallstones and pathogenesis of calcium carbonate gallstones.

    Science.gov (United States)

    Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun

    2013-01-01

    Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.

  9. Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel.

    Science.gov (United States)

    Liburdy, R P

    1992-04-13

    Calcium influx increased during mitogen-activated signal transduction in thymic lymphocytes exposed to a 22 mT, 60 Hz magnetic field (E induced = 1.7 mV/cm, 37 degrees C, 60 min). To distinguish between an electric or a magnetic field dependence a special multi-ring annular cell culture plate based on Faraday's Law of Induction was employed. Studies show a dependence on the strength of the induced electric field at constant magnetic flux density. Moreover, exposure to a pure 60 Hz electric field or to a magnetically-induced electric field of identical strength resulted in similar changes in calcium transport. The first real-time monitoring of [Ca2+]i during application of a 60 Hz electric field revealed an increase in [Ca2+]i observed 100 s after mitogen stimulation; this suggests that the plateau phase rather than the early phase of calcium signaling was influenced. The hypothesis was tested by separating, in time, the early release of calcium from intracellular stores from the influx of extracellular calcium. In calcium-free buffer, 60 Hz field exerted little influence on the early release of calcium from intracellular stores. In contrast, addition of extracellular calcium during exposure enhanced calcium influx through the plasma membrane. Alteration of the plateau phase of calcium signaling implicates the calcium channel as a site of field interaction. In addition, an electric field exposure metric is mechanistically consistent with a cell-surface interaction site.

  10. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.

    Science.gov (United States)

    Davis, F M; Azimi, I; Faville, R A; Peters, A A; Jalink, K; Putney, J W; Goodhill, G J; Thompson, E W; Roberts-Thomson, S J; Monteith, G R

    2014-05-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of

  11. Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells.

    Science.gov (United States)

    Roberts, W M

    1994-05-01

    A recent study (Roberts, 1993) of saccular hair cells from grass frogs (Rana pipiens) has suggested a mechanism by which the unusually high concentrations of calcium-binding proteins found in certain sensory receptors and neurons, particularly in the auditory system, can influence short-range intracellular calcium signaling. In frog saccular hair cells, the mechanism operates within arrays of calcium channels and calcium-activated potassium channels that are involved in the cells' electrical resonance and synaptic transmission. The present study tests the hypothesis that calbindin-D28k, one of the most abundant proteins in these cells, can serve as a mobile calcium buffer that reduces and localizes changes in the intracellular free-calcium concentration ([Ca2+]i) by shuttling calcium away from the channel arrays. Based upon theoretical analysis and computer modeling, it is shown that [Ca2+]i near one or more open channels quickly reaches a steady-state level determined primarily by two properties of the buffer, the mean time (tau c) before it captures a free-calcium ion and a replenishment factor (R), which are related to the buffer's diffusional mobility (DBu), association rate constant (kon), and concentration (Bo) by tau c = (konB0)-1 and R = B0DBu. Simulation of calcium entry through a channel array showed that approximately 1.5 mM of a molecule with the diffusional and binding properties expected for calbindin-D28k (Bo approximately 8 mM calcium-binding sites) is needed to reproduce the previous experimental results. A lower concentration (B0 = 2 mM) was almost completely depleted within the channel array by a modest calcium current (8 pA = 12% of calcium channels open), but still had two important effects: it caused [Ca2+]i to fall steeply with distance outside the array (space constant < 50 nm), and returned [Ca2+]i quickly to the resting level after the channels closed. A high concentration of calbindin-D28k can thus influence the cell's electrical

  12. Calcium pathway machinery at fertilization in echinoderms.

    Science.gov (United States)

    Ramos, Isabela; Wessel, Gary M

    2013-01-01

    Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca(2+) mobilizing messengers - IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca(2+) mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca(2+) release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated. Copyright © 2012. Published by Elsevier India Pvt Ltd.

  13. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  14. Calcium signals and oocyte maturation in marine invertebrates.

    Science.gov (United States)

    Deguchi, Ryusaku; Takeda, Noriyo; Stricker, Stephen A

    2015-01-01

    In various oocytes and eggs of animals, transient elevations in cytoplasmic calcium ion concentrations are known to regulate key processes during fertilization and the completion of meiosis. However, whether or not calcium transients also help to reinitiate meiotic progression at the onset of oocyte maturation remains controversial. This article summarizes reports of calcium signals playing essential roles during maturation onset (=germinal vesicle breakdown, GVBD) in several kinds of marine invertebrate oocytes. Conversely, other data from the literature, as well as previously unpublished findings for jellyfish oocytes, fail to support the view that calcium signals are required for GVBD. In addition to assessing the effects of calcium transients on GVBD in marine invertebrate oocytes, the ability of maturing oocytes to enhance their calcium-releasing capabilities after GVBD is also reviewed. Furthermore, possible explanations are proposed for the contradictory results that have been obtained regarding calcium signals during oocyte maturation in marine invertebrates.

  15. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  16. Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions

    OpenAIRE

    Xiao-Hong Wei; Shan-Dong Yu; Lu Ren; Si-Hui Huang; Qiao-Mei Yang; Ping Wang; Yan-Peng Chu; Wei Yang; Yan-Sheng Ding; Yong Huo; Lin Wu

    2017-01-01

    Cardiac arrhythmias associated with intracellular calcium inhomeostasis are refractory to antiarrhythmic therapy. We hypothesized that late sodium current (I Na) contributed to the calcium-related arrhythmias. Monophasic action potential duration at 90% completion of repolarization (MAPD90) was significantly increased and ventricular arrhythmias were observed in hearts with increased intracellular calcium concentration ([Ca2+]i) by using Bay K 8644, and the increase became greater in hearts t...

  17. Intracellular origin and ultrastructure of platelet-derived microparticles.

    Science.gov (United States)

    Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W

    2017-08-01

    Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific

  18. The Relationship of Blood Pressure with Intra- Or extracellular and Bone Calcium Merabolisms in the Elderly

    OpenAIRE

    Sugihara, Nobuyuki; Matsuzaki, Masunori

    1994-01-01

    We investigated the correlations of blood pressure with intra- or extracellular and bone calcium matabolisms in the elderly. We measured serum calcium (Ca), inorganic phosphorus (Pi), C-terminal parathyroid hormone fragment (PTH-C), and calcitonin. Intracellular free calcium ([Ca2+]I) in platelet and erythrocyte was measured by fura- 2/AM from dual excitation wavelength using a fluorescence spectrophotometer. We calculated bone mineral content (BMC) of lumbar vertebral body using a calibratio...

  19. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function

    Science.gov (United States)

    Joseph, Leroy C.; Valenti, Mesele-Christina; Kim, Grace J.; Barca, Emanuele; Hoffman, Nicholas E.; Subramanyam, Prakash; Colecraft, Henry M.; Hirano, Michio; Madesh, Muniswamy; Morrow, John P.

    2017-01-01

    Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy. PMID:28878116

  20. Prevention of calcium-induced membrane structural alterations in erythrocyte membranes by flunarizine

    NARCIS (Netherlands)

    Thomas, Peter G.; Zimmermann, A.G.; Verkleij, A.J.

    1988-01-01

    The calcium antagonist flunarizine is shown to be able to prevent particle aggregation, membrane aggregation and blebbing resulting from elevated calcium concentrations. The anti-ischemic effects of flunarizine may therefore result in part from its ability to directly interfere with calcium-membrane

  1. Modeling motoneuron firing properties: dependency on size and calcium dynamics

    NARCIS (Netherlands)

    van der Heyden, M. J.; Hilgevoord, A. A.; Bour, L. J.; Ongerboer de Visser, B. W.

    1994-01-01

    The origin of functional differences between motoneurons of varying size was investigated by employing a one-compartmental motoneuron model containing a slow K+ conductance dependent on the intracellular calcium concentration. The size of the cell was included as an explicit parameter. Simulations

  2. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    Science.gov (United States)

    Tokmakov, Alexander A.; Stefanov, Vasily E.; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2014-01-01

    Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation. PMID:25322156

  3. FM dyes enter via a store-operated calcium channel and modify calcium signaling of cultured astrocytes

    Science.gov (United States)

    Li, Dongdong; Hérault, Karine; Oheim, Martin; Ropert, Nicole

    2009-01-01

    The amphiphilic fluorescent styryl pyridinium dyes FM1-43 and FM4-64 are used to probe activity-dependent synaptic vesicle cycling in neurons. Cultured astrocytes can internalize FM1-43 and FM4-64 inside vesicles but their uptake is insensitive to the elevation of cytosolic calcium (Ca2+) concentration and the underlying mechanism remains unclear. Here we used total internal reflection fluorescence microscopy and pharmacological tools to study the mechanisms of FM4-64 uptake into cultured astrocytes from mouse neocortex. Our data show that: (i) endocytosis is not a major route for FM4-64 uptake into astrocytes; (ii) FM4-64 enters astrocytes through an aqueous pore and strongly affects Ca2+ homeostasis; (iii) partitioning of FM4-64 into the outer leaflet of the plasma membrane results in a facilitation of store-operated Ca2+ entry (SOCE) channel gating; (iv) FM4-64 permeates and competes with Ca2+ for entry through a SOCE channel; (v) intracellular FM4-64 mobilizes Ca2+ from the endoplasmic reticulum stores, conveying a positive feedback to activate SOCE and to sustain dye uptake into astrocytes. Our study demonstrates that FM dyes are not markers of cycling vesicles in astrocytes and calls for a careful interpretation of FM fluorescence. PMID:20007370

  4. Substitutions in Calcium Aluminates and Calcium Aluminoferrites.

    Science.gov (United States)

    ALUMINUM COMPOUNDS, *CEMENTS, * CALCIUM COMPOUNDS, * FERRITES , *SCIENTIFIC RESEARCH, INFRARED SPECTROSCOPY, X RAY DIFFRACTION, CHEMICAL COMPOSITION, SUBSTITUTES, CHEMICAL ANALYSIS, ALKALI METAL COMPOUNDS.

  5. The central role of calcium in the effects of cytokines on beta-cell function: implications for type 1 and type 2 diabetes.

    Science.gov (United States)

    Ramadan, James W; Steiner, Stephen R; O'Neill, Christina M; Nunemaker, Craig S

    2011-12-01

    The appropriate regulation of intracellular calcium is a requirement for proper cell function and survival. This review focuses on the effects of proinflammatory cytokines on calcium regulation in the insulin-producing pancreatic beta-cell and how normal stimulus-secretion coupling, organelle function, and overall beta-cell viability are impacted. Proinflammatory cytokines are increasingly thought to contribute to beta-cell dysfunction not only in type 1 diabetes (T1D), but also in the progression of type 2 diabetes (T2D). Cytokine-induced disruptions in calcium handling result in reduced insulin release in response to glucose stimulation. Cytokines can alter intracellular calcium levels by depleting calcium from the endoplasmic reticulum (ER) and by increasing calcium influx from the extracellular space. Depleting ER calcium leads to protein misfolding and activation of the ER stress response. Disrupting intracellular calcium may also affect organelles, including the mitochondria and the nucleus. As a chronic condition, cytokine-induced calcium disruptions may lead to beta-cell death in T1D and T2D, although possible protective effects are also discussed. Calcium is thus central to both normal and pathological cell processes. Because the tight regulation of intracellular calcium is crucial to homeostasis, measuring the dynamics of calcium may serve as a good indicator of overall beta-cell function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Stochastic models of intracellular transport

    Science.gov (United States)

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures.

  7. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  8. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder.

    Science.gov (United States)

    Machado-Vieira, Rodrigo; Pivovarova, Natalia B; Stanika, Ruslan I; Yuan, Peixiong; Wang, Yun; Zhou, Rulun; Zarate, Carlos A; Drevets, Wayne C; Brantner, Christine A; Baum, Amber; Laje, Gonzalo; McMahon, Francis J; Chen, Guang; Du, Jing; Manji, Husseini K; Andrews, S Brian

    2011-02-15

    Bipolar disorder (BPD) is characterized by altered intracellular calcium (Ca(2+)) homeostasis. Underlying mechanisms involve dysfunctions in endoplasmic reticulum (ER) and mitochondrial Ca(2+) handling, potentially mediated by B-cell lymphoma 2 (Bcl-2), a key protein that regulates Ca(2+) signaling by interacting directly with these organelles, and which has been implicated in the pathophysiology of BPD. Here, we examined the effects of the Bcl-2 gene single nucleotide polymorphism (SNP) rs956572 on intracellular Ca(2+) dynamics in patients with BPD. Live cell fluorescence imaging and electron probe microanalysis were used to measure intracellular and intra-organelle free and total calcium in lymphoblasts from 18 subjects with BPD carrying the AA, AG, or GG variants of the rs956572 SNP. Analyses were carried out under basal conditions and in the presence of agents that affect Ca(2+) dynamics. Compared with GG homozygotes, variant AA-which expresses significantly reduced Bcl-2 messenger RNA and protein-exhibited elevated basal cytosolic Ca(2+) and larger increases in inositol 1,4,5-trisphosphate receptor-mediated cytosolic Ca(2+) elevations, the latter in parallel with enhanced depletion of the ER Ca(2+) pool. The aberrant behavior of AA cells was reversed by chronic lithium treatment and mimicked in variant GG by a Bcl-2 inhibitor. In contrast, no differences between SNP variants were found in ER or mitochondrial total Ca(2+) content or in basal store-operated Ca(2+) entry. These results demonstrate that, in patients with BPD, abnormal Bcl-2 gene expression in the AA variant contributes to dysfunctional Ca(2+) homeostasis through a specific ER inositol 1,4,5-trisphosphate receptor-dependent mechanism. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. The Regulatory Functions of Calcium and the Potential Role of Calcium in Mediating Gravitational Responses in Cells and Tissues

    Science.gov (United States)

    Roux, S. J. (Editor)

    1983-01-01

    The hypothesis that calcium plays an important part in regulating cellular response to gravity and to other environmental stimuli is explored. Topics covered include the role of calmodulin and other proteins, gravitropic responses, bone demineralization during space flight, and intracellular communication.

  10. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  11. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength.

    Science.gov (United States)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania; Frandsen, Stine Krog; Vernier, P Thomas; Gehl, Julie

    2015-01-01

    Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, 1.2, 1.4 or 1.6 kV/cm. Fitting analysis was applied to quantify the cell-killing efficacy in presence of calcium. Post-treatment intracellular ATP was measured in H69 and SW780 cells. Post-treatment intracellular ATP was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (pcalcium (lower EC50 for higher calcium concentrations). Quinacrine fluorescence intensity of calcium-electroporated U937 cells was one third lower than in controls (pCalcium electroporation dose-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials.

  12. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Directory of Open Access Journals (Sweden)

    Zhi Pan

    2014-02-01

    Full Text Available Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  13. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  14. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz

    2013-09-01

    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  15. Calcium versus strontium handling by the heart muscle.

    Science.gov (United States)

    Hendrych, Michal; Olejnickova, Veronika; Novakova, Marie

    2016-01-01

    Calcium plays a crucial role in numerous processes in living systems, from both intracellular and intercellular signalling to blood clotting. Calcium can be replaced by strontium in various intracellular processes due to high level of their similarity and strontium thus may serve as a valuable tool for different experimental studies. On the other hand, strontium is also used in clinical medicine and is commonly taken to the human body with food and water. The negative cardiac side effects of strontium therapy of osteoporosis and bone metastases are well known, but still not fully explained. This fact explains enhanced interest in this element and its impact on human body. This article reviews effects of calcium and strontium on several biochemical and physiological processes, with special emphasis on cardiac muscle.

  16. Effects of shear on endothelial cell calcium in the presence and absence of ATP.

    Science.gov (United States)

    James, N L; Harrison, D G; Nerem, R M

    1995-07-01

    The purpose of this study was to characterize the effect of various shear conditions on endothelial cell intracellular calcium ([Ca2+]i). Bovine aortic endothelial cells (BAEC) were loaded with Fluo-3 and exposed to flow in a parallel plate flow chamber designed for confocal microscopy. The flow medium was medium 199 (M-199), which was prepared with and without adenosine triphosphate (ATP). In the presence of ATP, initiation of flow at a shear stress of 2.5 dyn/cm2 evoked a strong, sustained elevation of [Ca2+]i that gradually returned to baseline levels over 10 to 15 min. By contrast, in the absence of ATP, initiation of flow at 2.5 dyn/cm2 produced only transient increases in [Ca2+]i in a small proportion of the cells. As shear rate was increased from 2.5 to 15 dyn/cm2 in this medium, both the relative fluorescence of the monolayer and the proportion of cells across the monolayer that displayed calcium transients increased in a dose-dependent fashion. In conclusion, the response of an endothelial cell monolayer to increasing levels of shear is not only to increase [Ca2+]i within individual cells, but to increase the duration of response and the number of cells responding at the onset of shear. This recruitment of larger numbers of cells at higher levels of shear may represent a novel signaling mechanism within the endothelium.

  17. Calcium signalling silencing in atrial fibrillation.

    Science.gov (United States)

    Greiser, Maura

    2017-06-15

    Subcellular calcium signalling silencing is a novel and distinct cellular and molecular adaptive response to rapid cardiac activation. Calcium signalling silencing develops during short-term sustained rapid atrial activation as seen clinically during paroxysmal atrial fibrillation (AF). It is the first 'anti-arrhythmic' adaptive response in the setting of AF and appears to counteract the maladaptive changes that lead to intracellular Ca(2+) signalling instability and Ca(2+) -based arrhythmogenicity. Calcium signalling silencing results in a failed propagation of the [Ca(2+) ]i signal to the myocyte centre both in patients with AF and in a rabbit model. This adaptive mechanism leads to a substantial reduction in the expression levels of calcium release channels (ryanodine receptors, RyR2) in the sarcoplasmic reticulum, and the frequency of Ca(2+) sparks and arrhythmogenic Ca(2+) waves remains low. Less Ca(2+) release per [Ca(2+) ]i transient, increased fast Ca(2+) buffering strength, shortened action potentials and reduced L-type Ca(2+) current contribute to a substantial reduction of intracellular [Na(+) ]. These features of Ca(2+) signalling silencing are distinct and in contrast to the changes attributed to Ca(2+) -based arrhythmogenicity. Some features of Ca(2+) signalling silencing prevail in human AF suggesting that the Ca(2+) signalling 'phenotype' in AF is a sum of Ca(2+) stabilizing (Ca(2+) signalling silencing) and Ca(2+) destabilizing (arrhythmogenic unstable Ca(2+) signalling) factors. Calcium signalling silencing is a part of the mechanisms that contribute to the natural progression of AF and may limit the role of Ca(2+) -based arrhythmogenicity after the onset of AF. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  18. Calcium channel blocker overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used to ...

  19. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  20. Calcium nutrition and extracellular calcium sensing: relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases.

    Science.gov (United States)

    Peterlik, Meinrad; Kállay, Enikoe; Cross, Heide S

    2013-01-22

    Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR). This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a "first messenger" for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR)-activated pathways (i) promotes osteoblast differentiation and formation of mineralized bone; (ii) targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii) evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP(3)-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease.

  1. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures.

    OpenAIRE

    Lenzoni, G.; Liu, J.; Knight, M.R.

    2018-01-01

    Calcium plays a key role in determining the specificity of a vast array of signalling pathways in plants. Cellular calcium elevations with different characteristics (calcium signatures) carry information on the identity of the primary stimulus, ensuring appropriate downstream responses. However, the mechanism for decoding calcium signatures is unknown. To determine this, decoding of the salicylic acid (SA)-mediated plant immunity signalling network controlling gene expression was examined. ...

  2. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  3. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of

  4. Minimal model for calcium alternans due to SR release refractoriness

    Science.gov (United States)

    Cantalapiedra, Inma R.; Alvarez-Lacalle, Enrique; Peñaranda, Angelina; Echebarria, Blas

    2017-09-01

    In the heart, rapid pacing rates may induce alternations in the strength of cardiac contraction, termed pulsus alternans. Often, this is due to an instability in the dynamics of the intracellular calcium concentration, whose transients become larger and smaller at consecutive beats. This alternation has been linked experimentally and theoretically to two different mechanisms: an instability due to (1) a strong dependence of calcium release on sarcoplasmic reticulum (SR) load, together with a slow calcium reuptake into the SR or (2) to SR release refractoriness, due to a slow recovery of the ryanodine receptors (RyR2) from inactivation. The relationship between calcium alternans and refractoriness of the RyR2 has been more elusive than the corresponding SR Ca load mechanism. To study the former, we reduce a general calcium model, which mimics the deterministic evolution of a calcium release unit, to its most basic elements. We show that calcium alternans can be understood using a simple nonlinear equation for calcium concentration at the dyadic space, coupled to a relaxation equation for the number of recovered RyR2s. Depending on the number of RyR2s that are recovered at the beginning of a stimulation, the increase in calcium concentration may pass, or not, over an excitability threshold that limits the occurrence of a large calcium transient. When the recovery of the RyR2 is slow, this produces naturally a period doubling bifurcation, resulting in calcium alternans. We then study the effects of inactivation, calcium diffusion, and release conductance for the onset of alternans. We find that the development of alternans requires a well-defined value of diffusion while it is less sensitive to the values of inactivation or release conductance.

  5. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jorgensen, N R; Geist, S T; Civitelli, R

    1997-01-01

    stores. In one model, IP3 traverses gap junctions and initiates the release of intracellular calcium stores in neighboring cells. Alternatively, calcium waves may be mediated not by gap junctional communication, but rather by autocrine activity of secreted ATP on P2 purinergic receptors. We studied...... mechanically induced calcium waves in two rat osteosarcoma cell lines that differ in the gap junction proteins they express, in their ability to pass microinjected dye from cell to cell, and in their expression of P2Y2 (P2U) purinergic receptors. ROS 17/2.8 cells, which express the gap junction protein...... connexin43 (Cx43), are well dye coupled, and lack P2U receptors, transmitted slow gap junction-dependent calcium waves that did not require release of intracellular calcium stores. UMR 106-01 cells predominantly express the gap junction protein connexin 45 (Cx45), are poorly dye coupled, and express P2U...

  6. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  7. Intracellular polyamines enhance astrocytic coupling.

    Science.gov (United States)

    Benedikt, Jan; Inyushin, Mikhail; Kucheryavykh, Yuriy V; Rivera, Yomarie; Kucheryavykh, Lilia Y; Nichols, Colin G; Eaton, Misty J; Skatchkov, Serguei N

    2012-12-05

    Spermine (SPM) and spermidine, endogenous polyamines with the ability to modulate various ion channels and receptors in the brain, exert neuroprotective, antidepressant, antioxidant, and other effects in vivo such as increasing longevity. These polyamines are preferably accumulated in astrocytes, and we hypothesized that SPM increases glial intercellular communication by interacting with glial gap junctions. The results obtained in situ, using Lucifer yellow propagation in the astrocytic syncitium of 21-25-day-old rat CA1 hippocampal slices, showed reduced coupling when astrocytes were dialyzed with standard intracellular solutions without SPM. However, there was a robust increase in the spreading of Lucifer yellow through gap junctions to neighboring astrocytes when the cells were patched with intracellular solutions containing 1 mM SPM, a physiological concentration in glia. Lucifer yellow propagation was inhibited by gap junction blockers. Our findings show that the glial syncitium propagates SPM through gap junctions and further indicate a new role of polyamines in the regulation of the astroglial network under both normal and pathological conditions.

  8. Prostaglandin F2 alpha stimulates phosphatidylinositol 4,5-bisphosphate hydrolysis and mobilizes intracellular Ca2+ in bovine luteal cells

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.S.; Weakland, L.L.; Weiland, D.A.; Farese, R.V.; West, L.A.

    1987-06-01

    The present studies were conducted to determine whether prostaglandin F2 alpha (PGF2 alpha) stimulates the production of ''second messengers'' derived from inositol phospholipid hydrolysis and increases intracellular free Ca2+ ((Ca2+)i) in isolated bovine luteal cells. PGF2 alpha provoked rapid (10 sec) and sustained (up to 60 min) increases in the levels of inositol mono-, bis-, and trisphosphates (InsP, InsP2, and InsP3, respectively). InsP3 was formed more rapidly than InsP2 or InsP after PGF2 alpha treatment. In addition, PGF2 alpha increased inositol phospholipid turnover, as evidenced by increased /sup 32/PO/sub 4/ incorporation into phosphatidic acid and phosphatidylinositol. LiCl (1-20 mM) enhanced inositol phosphate accumulation in response to PGF2 alpha. Maximal increases in InsP3 occurred at 1 microM PGF2 alpha, with half-maximal stimulation occurring at 36 nM. The acute effects of PGF2 alpha on InsP3 levels were independent of reductions in extracellular calcium. Prostaglandins E1 and E2 also stimulated increases in inositol phosphate levels, albeit to a lesser extent. PGF2 alpha also induced rapid and concentration-dependent increases in (Ca2+)i as measured by quin-2 fluorescence. The PGF2 alpha-induced increases in (Ca2+)i were maximal within 30 sec (approximately 2- to 3-fold), and (Ca2+)i remained elevated for 8-10 min. The PGF2 alpha-induced increases in (Ca2+)i were also independent of extracellular calcium. These findings demonstrate that the action of PGF2 alpha is coupled to the phospholipase C-InsP3 and diacylglycerol second messenger system in the corpus luteum.

  9. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation?

    Science.gov (United States)

    Clusin, W T; Bristow, M R; Karagueuzian, H S; Katzung, B G; Schroeder, J S

    1982-02-18

    Calcium ions mediate the adverse effects of myocardial ischemia and have been implicated in the genesis of arrhythmias. Calcium influx blocking drugs protect against early ventricular arrhythmias during experimental coronary occlusion, and recent studies suggest that this effect is at least partly due to inhibition of myocardial cell calcium influx. Most of the pharmacologic maneuvers used to simulate acute ischemic arrhythmias in vivo also produce intracellular calcium overload. Production of calcium overload in small myocardial cell clusters causes fibrillatory electrical and mechanical activity similar to that recorded from fibrillating hearts. Fibrillation in these cell clusters is mediated not by reentrant conduction, but by the same subcellular processes that give rise to depolarizing afterpotentials and abnormal automaticity. Agents favoring calcium influx, such as beta adrenergic agonists, accentuate these processes, while agents that depress calcium influx inhibit them. Although the relation of these experimental models to clinical ischemic arrhythmias has not been fully delineated, calcium influx blocking drugs may prove useful in reducing the incidence of sudden cardiac death.

  10. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  11. National Elevation Dataset (NED)

    Data.gov (United States)

    Kansas Data Access and Support Center — The U.S. Geological Survey has developed a National Elevation Database (NED). The NED is a seamless mosaic of best-available elevation data. The 7.5-minute elevation...

  12. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  13. Role of calcium in gonadotropin releasing hormone-induced luteinizing hormone secretion from the bovine pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Kile, J.P.

    1986-01-01

    The hypothesis was tested that GnRH acts to release LH by increasing calcium uptake by gonadotroph which in turn stimulates calcium-calmodulin activity and results in LH release from bovine pituitary cells as it does in the rat. Pituitary glands of calves (4-10 months of age) were enzymatically dispersed (0.2% collagenase) and grown for 5 days to confluency in multiwell plates (3 x 10/sup 5//well). Cells treated with GnRH Ca/sup + +/ ionophore A23187, and ouabain all produced significant releases of LH release in a pronounced all or none fashion, while thorough washing of the cells with 0.5 mM EGTA in Ca/sup + +/-free media prevented the action of GnRH. GnRH caused a rapid efflux of /sup 45/Ca/sup + +/. Both GnRH-stimulated /sup 45/Ca efflux and LH release could be partially blocked by verapamil GnRH-induced LH release could also be blocked by nifedipine and tetrodotoxin, although these agents did not affect /sup 45/Ca efflux. The calmodulin antagonists calmidazolium and W7 were found to block GnRH induced LH release, as well as LH release induced by theophylline, KC PGE/sub 2/ and estradiol. These data indicated that: (1) calcium is required for GnRH action, but extracellular Ca/sup + +/ does not regulate LH release; (2) GnRH elevates intracellular Ca/sup + +/ by opening both voltage sensitive and receptor mediated Ca/sup + +/ channels; (3) activation of calmodulin is one mechanism involved in GnRH-induced LH release.

  14. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea.

    Science.gov (United States)

    Sasanuma, Izumi; Suzuki, Takuya

    2016-09-01

    Effective anti-Botrytis strategies leading to reduce pesticides on strawberries are examined to provide the protection that is harmless to humans, higher animals and plants. Calcium treatments significantly inhibited the spore germination and mycelial growth of B. cinerea. The intracellular polygalacturonase and CMCase showed low activities in B. cinerea cultivated by medium containing calcium. On the other hand, calcium-stimulated β-glucosidases production occurred. Our findings suggest that the calcium treatments keep CMCase activity low and cause low activities of cell-wall degrading enzymes of B. cinerea in the late stage of growth.

  15. Regulation of adiposity by dietary calcium.

    Science.gov (United States)

    Zemel, M B; Shi, H; Greer, B; Dirienzo, D; Zemel, P C

    2000-06-01

    Recent data from this laboratory demonstrate that increasing adipocyte intracellular Ca(2+) results in a coordinated stimulation of lipogenesis and inhibition of lipolysis. We have also noted that increasing dietary calcium of obese patients for 1 year resulted in a 4.9 kg loss of body fat (Pinhibition of lipolysis (EC(50) approximately 50 pM; Pagouti gene specifically in adipocytes on a low (0.4%) Ca/high fat/high sucrose diet either unsupplemented or with 25 or 50% of the protein replaced by non-fat dry milk or supplemented to 1.2% Ca with CaCO(3) for 6 wk. Weight gain and fat pad mass were reduced by 26-39% by the three high calcium diets (Pinhibition of adipocyte fatty acid synthase expression and activity (Pobesity risk.

  16. Stress enhanced calcium kinetics in a neuron.

    Science.gov (United States)

    Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V

    2018-02-01

    Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

  17. Anomalous dynamics in intracellular transport

    Science.gov (United States)

    Dinner, Aaron

    2013-03-01

    This talk will describe quantitative analyses of particle tracking data for systems with cytoskeletally associated molecular motors to better understand the motions contributing to intracellular transport and, more generally, means for characterizing systems far from equilibrium. In particular, we have studied the motions of insulin-containing vesicles (granules) in a pancreatic beta cell line. We find subdiffusive behavior with correlations in both space and time. These data can be modeled by subordinating an ergodic random walk process to a non-ergodic one. We relate the dynamics to the underlying microtubule structure by imaging in the presence of the drug vinblastine. Our results provide a simple physical mechanism for how diverse pools of insulin granules and, in turn, biphasic secretion could arise. Time permitting, these dynamics will be compared with those of actomyosin assemblies.

  18. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors

    DEFF Research Database (Denmark)

    Rossol, Manuela; Pierer, Matthias; Raulien, Nora

    2012-01-01

    Activation of the NLRP3 inflammasome enables monocytes and macrophages to release high levels of interleukin-1ß during inflammatory responses. Concentrations of extracellular calcium can increase at sites of infection, inflammation or cell activation. Here we show that increased extracellular...... calcium activates the NLRP3 inflammasome via stimulation of G protein-coupled calcium sensing receptors. Activation is mediated by signalling through the calcium-sensing receptor and GPRC6A via the phosphatidyl inositol/Ca(2+) pathway. The resulting increase in the intracellular calcium concentration...

  19. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 µl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...... showed muscle damage and subsequent regeneration. Electrotransfer of isotonic CaCl(2) terminates transgenic protein expression in muscles and may be used for contingency elimination of transgene expression....

  20. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  2. Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis.

    Science.gov (United States)

    Giegling, Ina; Genius, Just; Benninghoff, Jens; Rujescu, Dan

    2010-12-01

    There is a relatively high genetic heritability of schizophrenia as shown by family, twin and adoption studies. A large number of hypotheses on the causes of schizophrenia occurred over time. In this review we focus on genetic findings related to potential alterations of intracellular Ca-homeostasis in association with schizophrenia. First, we provide evidence for the NMDA/glutamatergic theory of schizophrenia including calcium processes. We mainly focus on genes including: DAO (D-amino acid oxidase), DAOA (D-amino acid oxidase activator), DTNBP1 (Dysbindin 1, dystrobrevin-binding protein 1), NRG1 (Neuregulin 1), ERBB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4, avian), NOS1 (nitric oxide synthase 1, neuronal) and NRGN (Neurogranin). Furthermore, a gene coding for a calcium channel subunit (CACNA1C: calcium channel, voltage-dependent, L type, alpha 1C subunit) is discussed in the light of schizophrenia whereas genetic findings related to alterations in the intracellular Ca-homeostasis associated specifically with dopaminergic and serotonergic neurotransmission in schizophrenia are not herein closer reviewed. Taken together there is converging evidence for the contribution of genes potentially related to alterations in intracellular Ca-homeostasis to the risk of schizophrenia. Replications and functional studies will hopefully provide further insight into these genetic variants and the underlying processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  4. [The role of intracellular electrolytes in the maintenance of erythrocyte deformability].

    Science.gov (United States)

    Matsumoto, N

    1996-09-01

    Regulation of intracellular cation concentration is critical for the maintenance of erythrocyte deformability. The cellular cation concentrations are the result of an equilibrium between passive diffusion and active transport (pump). In stomatocytosis, the pump hyperactivity is unable to counterbalance the leakage of sodium, leading to an increased cellular sodium and water content. The overhydrated stomatocytes become less deformable. In xerocytosis, the primary defect is an increased leakage of potassium from the erythrocytes. Pump activity is unable to fully compensate, and the net intracellular cation concentration and water are decreased, leading to dehydration. Increased intracellular calcium results in potassium loss, dehydration and cross-linking of skeletal proteins. These mechanisms are attractive for explaining erythrocyte senescence, though not entirely proven.

  5. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  6. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway.

    Science.gov (United States)

    Di, Jiehui; Huang, Hui; Qu, Debao; Tang, Juangjuan; Cao, Wenjia; Lu, Zheng; Cheng, Qian; Yang, Jing; Bai, Jin; Zhang, Yanping; Zheng, Junnian

    2015-07-23

    Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer.

  7. The association of calcium supplementation and incident cardiovascular events in the Multi-ethnic Study of Atherosclerosis (MESA)

    Science.gov (United States)

    Many US adults use calcium supplements to address inadequate dietary intake and improve bone health. However, recent reports have suggested that use of calcium supplements may elevate cardiovascular disease (CVD) risk. In this study, we examined associations between baseline calcium supplement use a...

  8. Towards a quantitative theory of epidermal calcium profile formation in unwounded skin.

    Directory of Open Access Journals (Sweden)

    Matthew P Adams

    Full Text Available We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm s-1 in human epidermis and less than 37 nm s-1 in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.

  9. Towards a quantitative theory of epidermal calcium profile formation in unwounded skin.

    Science.gov (United States)

    Adams, Matthew P; Mallet, Daniel G; Pettet, Graeme J

    2015-01-01

    We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm s-1 in human epidermis and less than 37 nm s-1 in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.

  10. Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus.

    Science.gov (United States)

    Enoki, Ryosuke; Kuroda, Shigeru; Ono, Daisuke; Hasan, Mazahir T; Ueda, Tetsuo; Honma, Sato; Honma, Ken-ichi

    2012-12-26

    The circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is a hierarchical multioscillator system in which neuronal networks play crucial roles in expressing coherent rhythms in physiology and behavior. However, our understanding of the neuronal network is still incomplete. Intracellular calcium mediates the input signals, such as phase-resetting stimuli, to the core molecular loop involving clock genes for circadian rhythm generation and the output signals from the loop to various cellular functions, including changes in neurotransmitter release. Using a unique large-scale calcium imaging method with genetically encoded calcium sensors, we visualized intracellular calcium from the entire surface of SCN slice in culture including the regions where autonomous clock gene expression was undetectable. We found circadian calcium rhythms at a single-cell level in the SCN, which were topologically specific with a larger amplitude and more delayed phase in the ventral region than the dorsal. The robustness of the rhythm was reduced but persisted even after blocking the neuronal firing with tetrodotoxin (TTX). Notably, TTX dissociated the circadian calcium rhythms between the dorsal and ventral SCN. In contrast, a blocker of gap junctions, carbenoxolone, had only a minor effect on the calcium rhythms at both the single-cell and network levels. These results reveal the topological specificity of the circadian calcium rhythm in the SCN and the presence of coupled regional pacemakers in the dorsal and ventral regions. Neuronal firings are not necessary for the persistence of the calcium rhythms but indispensable for the hierarchical organization of rhythmicity in the SCN.

  11. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging.

    Science.gov (United States)

    Rong, Guoxin; Kim, Eric H; Poskanzer, Kira E; Clark, Heather A

    2017-09-07

    Optical nanoparticle (NP)-based sensors have been widely implemented as tools for detection of targeted ions and biomolecules. The NP sensing platform offer a modular design that can incorporate different sensing components for greater target specificity and the ability to tune the dynamic range, as well as encapsulation of multiple dyes to generate a ratiometric signal with varying spectra. Despite these advantages, demonstrating quantitative ion imaging for intracellular measurement still possess a major challenge. Here, we describe fundamentals that enable intracellular validation of this approach using ion-selective nanosensors for investigating calcium (Ca2+) as a model ion. While conventional indicators can improve individual aspects of indicator performance such as Kd, wavelength, and ratiometric measurements, the use of NP sensors can achieve combined benefits of addressing these issues simultaneously. The nanosensor incorporates highly calcium-selective ionophores and two fluorescence indicators that act as signal transducers to facilitate quantitative ratiometric imaging. For intracellular Ca2+ application, the sensors are fine-tuned to physiological sensing range, and live-cell imaging and quantification are demonstrated in HeLa cells loaded with nanosensors and their responsiveness to carbachol-evoked store release (~400 nM). The current nanosensor design thus provides a promising sensing platform for real-time detection and optical determination of intracellular ions.

  12. Intracellular Ascorbate Prevents Endothelial Barrier Permeabilization by Thrombin*

    Science.gov (United States)

    Parker, William H.; Qu, Zhi-chao; May, James M.

    2015-01-01

    Intracellular ascorbate (vitamin C) has previously been shown to tighten the endothelial barrier and maintain barrier integrity during acute inflammation in vitro. However, the downstream effectors of ascorbate in the regulation of endothelial permeability remain unclear. In this study, we evaluated ascorbate as a mediator of thrombin-induced barrier permeabilization in human umbilical vein endothelial cells and their immortalized hybridoma line, EA.hy926. We found that the vitamin fully prevented increased permeability to the polysaccharide inulin by thrombin in a dose-dependent manner, and it took effect both before and after subjection to thrombin. Thrombin exposure consumed intracellular ascorbate but not the endogenous antioxidant GSH. Likewise, the antioxidants dithiothreitol and tempol did not reverse permeabilization. We identified a novel role for ascorbate in preserving cAMP during thrombin stimulation, resulting in two downstream effects. First, ascorbate maintained the cortical actin cytoskeleton in a Rap1- and Rac1-dependent manner, thus preserving stable adherens junctions between adjacent cells. Second, ascorbate prevented actin polymerization and formation of stress fibers by reducing the activation of RhoA and phosphorylation of myosin light chain. Although ascorbate and thrombin both required calcium for their respective effects, ascorbate did not prevent thrombin permeabilization by obstructing calcium influx. However, preservation of cAMP by ascorbate was found to depend on both the production of nitric oxide by endothelial nitric-oxide synthase, which ascorbate is known to activate, and the subsequent generation cGMP by guanylate cyclase. Together, these data implicate ascorbate in the prevention of inflammatory endothelial barrier permeabilization and explain the underlying signaling mechanism. PMID:26152729

  13. Elevated ammonium levels

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Novak, Ivana; MacAulay, Nanna

    2012-01-01

    was not enhanced. The ammonium-induced stimulation of EAAT3 increased with increasing extracellular pH, suggesting that the gaseous form NH(3) mediates the effect. An ammonium-induced intracellular alkalinization was excluded as the cause of the enhanced EAAT3 activity because 1) ammonium acidified the oocyte...... cytoplasm, 2) intracellular pH buffering with MOPS did not reduce the stimulation, and 3) ammonium enhanced pH-independent cysteine transport. Our data suggest that the ammonium-elicited uptake stimulation is not caused by intracellular alkalinization or changes in the concentrations of cotransported ions...

  14. Dynamics of intracellular information decoding.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  15. Dynamics of intracellular information decoding

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Kamimura, Atsushi

    2011-10-01

    A variety of cellular functions are robust even to substantial intrinsic and extrinsic noise in intracellular reactions and the environment that could be strong enough to impair or limit them. In particular, of substantial importance is cellular decision-making in which a cell chooses a fate or behavior on the basis of information conveyed in noisy external signals. For robust decoding, the crucial step is filtering out the noise inevitably added during information transmission. As a minimal and optimal implementation of such an information decoding process, the autocatalytic phosphorylation and autocatalytic dephosphorylation (aPadP) cycle was recently proposed. Here, we analyze the dynamical properties of the aPadP cycle in detail. We describe the dynamical roles of the stationary and short-term responses in determining the efficiency of information decoding and clarify the optimality of the threshold value of the stationary response and its information-theoretical meaning. Furthermore, we investigate the robustness of the aPadP cycle against the receptor inactivation time and intrinsic noise. Finally, we discuss the relationship among information decoding with information-dependent actions, bet-hedging and network modularity.

  16. Hypotonic stress-induced calcium signaling in Saccharomyces cerevisiae involves TRP-like transporters on the endoplasmic reticulum membrane.

    Science.gov (United States)

    Rigamonti, M; Groppi, S; Belotti, F; Ambrosini, R; Filippi, G; Martegani, E; Tisi, R

    2015-02-01

    Saccharomyces cerevisiae cells respond to hypotonic stress (HTS) by a cytosolic calcium rise, either generated by an influx of calcium from extracellular medium, when calcium is available, or by a release from intracellular stores in scarcity of extracellular calcium. Calcium release from intracellular compartments is peculiarly inhibited by external calcium in a calcineurin-independent and Cch1-, but not Mid1-, driven manner. HTS-induced calcium release is also negatively regulated by the ER protein Cls2 and involves a poorly characterized protein, FLC2/YAL053W gene product, previously proposed to be required for FAD transport in the ER, albeit, due to its molecular features, it was also previously classified as an ion transporter. A computational analysis revealed that this gene and its three homologs in S. cerevisiae, together with previously identified Schizosaccharomyces pombe pkd2 and Neurospora crassa calcium-related spray protein, belong to a fungal branch of TRP-like ion transporters related to human mucolipin and polycystin 2 calcium transporters. Moreover, disruption of FLC2 gene confers severe sensitivity to Calcofluor white and hyper-activation of the cell wall integrity MAPK cascade, suggesting a role in cell wall maintenance as previously suggested for the fission yeast homolog. Perturbation in cytosolic resting calcium concentration and hyper-activation of calcineurin in exponentially growing cells suggest a role for this transporter in calcium homeostasis in yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. BDI-modelling of complex intracellular dynamics.

    NARCIS (Netherlands)

    Jonker, C.M.; Snoep, J.L.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2008-01-01

    A BDI-based continuous-time modelling approach for intracellular dynamics is presented. It is shown how temporalised BDI-models make it possible to model intracellular biochemical processes as decision processes. By abstracting from some of the details of the biochemical pathways, the model achieves

  18. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.

    Science.gov (United States)

    Gota, Chie; Okabe, Kohki; Funatsu, Takashi; Harada, Yoshie; Uchiyama, Seiichi

    2009-03-04

    The first methodology to measure intracellular temperature is described. A highly hydrophilic fluorescent nanogel thermometer developed for this purpose stays in the cytoplasm and emits stronger fluorescence at a higher temperature. Thus, intracellular temperature variations associated with biological processes can be monitored by this novel thermometer with a temperature resolution of better than 0.5 degrees C.

  19. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    Science.gov (United States)

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  20. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2δ6

    Science.gov (United States)

    Chew, Catherine S.; Chen, Xunsheng; Zhang, Hanfang; Berg, Eric A.; Zhang, Han

    2008-01-01

    Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S136, that undergoes increased phosphorylation upon elevation of intracellular Ca2+ concentration. A phosphospecific antibody (pS136) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (Mr) of ∼50 kDa was identified with “in gel” assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)α cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT286/287) antibody when activated. Carbachol-stimulated phosphorylation of S136 was inhibited by the CAMK2 inhibitor KN93 (IC50 38 μM) and by the calmodulin antagonist W7 (IC50 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2δ6, which has the same domain structure and Mr as CAM2α, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2δ6 in the mediation of D52 phosphorylation. PMID:18832449

  1. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6.

    Science.gov (United States)

    Chew, Catherine S; Chen, Xunsheng; Zhang, Hanfang; Berg, Eric A; Zhang, Han

    2008-12-01

    Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.

  2. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  3. [A therapeutic Trojan horse: intracellular antibodies].

    Science.gov (United States)

    Teillaud, J L

    1999-10-01

    Intracellular immunization is a novel therapeutic approach based on intracellular expression of recombinant antibody fragments, either Fab or single chain Fv (scFv generated by the assembly of the VH with the VL region), targeted to the desired cell compartment (cytosol, nucleus, endoplasmic reticulum ...) using appropriate targeting sequences. Due to their exquisite specificity, these intracellular antibodies can be used to neutralize or modulate the functional activity of the target molecule. Intracellular immunization strategies currently under investigation in the field of oncology are directed against mutated oncogenic molecules such as ErbB-2, p21ras, and p53, as well as against apoptosis-inhibiting molecules such as Bcl-2. The first Phase I clinical trials on intracellular immunization are under way in the United States.

  4. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    Science.gov (United States)

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  5. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  6. Calcium and bones

    Science.gov (United States)

    ... eat in their diet. Vitamin D is the hormone that helps the gut absorb more calcium. Many older adults have common risks that make bone health worse. Calcium intake in the diet (milk, cheese, yogurt) is low. Vitamin D levels are ...

  7. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  8. Extracellular Calcium and Magnesium

    African Journals Online (AJOL)

    ABSTRACT. The cause of preeclampsia remains unknown and calcium and magnesium supplement are being suggested as means of prevention. The objective of this study was to assess magnesium and calcium in the plasma and cerebrospinal fluid of Nigerian women with preedamp sia and eclampsia. Setting was ...

  9. Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes

    Directory of Open Access Journals (Sweden)

    Michele Miragoli

    2016-01-01

    Full Text Available Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.

  10. Disseminated Mycobacterium intracellulare infection in a broad-snouted caiman Caiman latirostris

    NARCIS (Netherlands)

    Kik, Marja J L|info:eu-repo/dai/nl/080432565

    2013-01-01

    A 10 yr old broad-snouted caiman Caiman latirostris from a small Dutch animal park was presented with long-term variable periods of anorexia and weight loss. Blood chemistry showed slightly elevated uric acid levels and low ionised calcium concentration. Ultrasonographical thickening of the

  11. Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis

    OpenAIRE

    Pivovarova, Natalia B.; Andrews, S. Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the spe...

  12. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience

    OpenAIRE

    Hunsberger, Joshua G.; Machado-Vieira, Rodrigo; Austin, Daniel R.; Zarate, Carlos; Chuang, De-Maw; Chen, Guang; Reed, John C.; Manji, Husseini K.

    2011-01-01

    The endoplamic reticulum (ER) is a critical site for intracellular calcium storage as well as protein synthesis, folding, and trafficking. Disruption of these processes is gaining support for contributing to heritable vulnerability of certain diseases. Here, we investigated Bax inhibitor 1 (BI-1), an anti-apoptotic protein that primarily resides in the ER and associates with B-cell lymphoma 2 (Bcl-2) and Bcl-XL, as an affective resiliency factor through its modulation of calcium homeostasis. ...

  13. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    OpenAIRE

    Haseeb Zubair; Shafquat Azim; Husain Yar Khan; Mohammad Fahad Ullah; Daocheng Wu; Ajay Pratap Singh; Sheikh Mumtaz Hadi; Aamir Ahmad

    2016-01-01

    There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS) that ultimately serve as DNA cleaving agents. To furth...

  14. Iowa Bedrock Surface Elevation

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This Digital Elevation Model (DEM) of the bedrock surface elevation in Iowa was compiled using all available data, principally information from GEOSAM, supplemented...

  15. Decreased intracellular [Ca2+] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  16. Chronic vitamin E administration improves brachial reactivity and increases intracellular magnesium concentration in type II diabetic patients.

    Science.gov (United States)

    Paolisso, G; Tagliamonte, M R; Barbieri, M; Zito, G A; Gambardella, A; Varricchio, G; Ragno, E; Varricchio, M

    2000-01-01

    Vascular disease accounts for the majority of the clinical complications in diabetes mellitus. As an exaggerated oxidative stress degree has been postulated as the link between diabetes mellitus and endothelial function, a possible positive effect of plasma vitamin E (Vit.E) administration on brachial reactivity could be postulated. Our study aims at investigating the possible effect of chronic Vit.E administration on brachial reactivity, oxidative stress indexes, and intracellular magnesium and calcium content in type II diabetic patients free of diabetic complications. Forty adult, type II diabetic patients were enrolled in the study, which was deigned as a double blind, randomized vs. placebo trial. At baseline all patients underwent the following tests: 1) anthropometric and metabolic examinations, 2) evaluation of oxidative stress indexes, 3) intracellular magnesium and calcium measurements, and 4) determination of arterial compliance and distensibility. Then, all patients were randomly assigned to Vit.E treatment at a dose of 600 mg/day (Evion Forte; n = 20) or placebo (n = 20) over 8 weeks. At the end of this treatment period, a complete reevaluation of the patients was made. Vit.E treatment was associated with a significant improvement in the percent change in brachial artery diameter (Pmagnesium and calcium). After adjustment for age, sex, body mass index, and wait/hip ratio, all of these correlations remained significant (Preactivity in patients with type II diabetes mellitus. Such an effect seems mediated by a reduction in oxidative stress and a regulation of intracellular calcium and magnesium contents.

  17. Comparative Analysis of Spontaneous and Stimulus-Evoked Calcium Transients in Proliferating and Differentiating Human Midbrain-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Torben Johansen

    2017-01-01

    Full Text Available Spontaneous cytosolic calcium transients and oscillations have been reported in various tissues of nonhuman and human origin but not in human midbrain-derived stem cells. Using confocal microfluorimetry, we studied spontaneous calcium transients and calcium-regulating mechanisms in a human ventral mesencephalic stem cell line undergoing proliferation and neuronal differentiation. Spontaneous calcium transients were detected in a large fraction of both proliferating (>50% and differentiating (>55% cells. We provide evidence for the existence of intracellular calcium stores that respond to muscarinic activation of the cells, having sensitivity for ryanodine and thapsigargin possibly reflecting IP3 receptor activity and the presence of ryanodine receptors and calcium ATPase pumps. The observed calcium transient activity potentially supports the existence of a sodium-calcium antiporter and the existence of calcium influx induced by depletion of calcium stores. We conclude that the cells have developed the most important mechanisms governing cytosolic calcium homeostasis. This is the first comparative report of spontaneous calcium transients in proliferating and differentiating human midbrain-derived stem cells that provides evidence for the mechanisms that are likely to be involved. We propose that the observed spontaneous calcium transients may contribute to mechanisms involved in cell proliferation, phenotypic differentiation, and general cell maturation.

  18. Optogenetic monitoring identifies phosphatidylthreonine-regulated calcium homeostasis in Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Arunakar Kuchipudi

    2016-05-01

    Full Text Available Toxoplasma gondii is an obligate intracellular parasite, which inflicts acute as well as chronic infections in a wide range of warm-blooded vertebrates. Our recent work has demonstrated the natural occurrence and autonomous synthesis of an exclusive lipid phosphatidylthreonine in T. gondii. Targeted gene disruption of phosphatidylthreonine synthase impairs the parasite virulence due to unforeseen attenuation of the consecutive events of motility, egress and invasion. However, the underlying basis of such an intriguing phenotype in the parasite mutant remains unknown. Using an optogenetic sensor (gene-encoded calcium indicator, GCaMP6s, we show that loss of phosphatidylthreonine depletes calcium stores in intracellular tachyzoites, which leads to dysregulation of calcium release into the cytosol during the egress phase of the mutant. Consistently, the parasite motility and egress phenotypes in the mutant can be entirely restored by ionophore-induced mobilization of calcium. Collectively, our results suggest a novel regulatory function of phosphatidylthreonine in calcium signaling of a prevalent parasitic protist. Moreover, our application of an optogenetic sensor to monitor subcellular calcium in a model intracellular pathogen exemplifies its wider utility to other entwined systems.

  19. A threshold for low-protein-diet-induced elevations in parathyroid hormone

    DEFF Research Database (Denmark)

    Kerstetter, J E; Svastisalee, C M; Caseria, D M

    2000-01-01

    We reported previously that lowering dietary protein intake in young healthy women to 0.7 g/kg depressed intestinal calcium absorption and was accompanied by elevations in parathyroid hormone (PTH). Moderate amounts of dietary protein (1.0 g/kg) did not appear to perturb calcium homeostasis....

  20. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier

    2016-05-01

    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  1. Lead content in 70 brands of dietary calcium supplements.

    Science.gov (United States)

    Bourgoin, B P; Evans, D R; Cornett, J R; Lingard, S M; Quattrone, A J

    1993-01-01

    OBJECTIVES. Elevated lead levels in calcium supplements may pose a health risk, particularly to children with milk intolerance who rely on these products to meet their calcium requirement. Earlier reports chiefly focused on the lead content in supplements derived from bonemeal and dolomite. This study undertook to determine the lead levels in the major forms of calcium supplements currently available. METHODS. The lead content was measured in 70 brands of calcium supplements grouped in the following five categories: dolomite, bonemeal, refined and natural source calcium carbonate, and calcium chelates. RESULTS. The lead levels measured in the supplements ranged from 0.03 microgram/g to 8.83 micrograms/g. Daily lead ingestion rates revealed that about 25% of the products exceeded the US Food and Drug Administration's "provisional" total tolerable daily intake of lead for children aged 6 years and under. Less than 20% of the supplements had "normalized" lead levels comparable to or lower than that reported for cow's milk. CONCLUSIONS. Children are the most sensitive to the low-level effects of lead. If calcium supplements are to provide an alternate source of calcium to some of these individuals, they should also deliver concomitant lead dosages no greater than those obtained from milk products themselves. PMID:8342726

  2. Intracellular Accumulation of Gold Nanoparticles Leads to Inhibition of Macropinocytosis to Reduce the Endoplasmic Reticulum Stress

    Science.gov (United States)

    Gunduz, Nuray; Ceylan, Hakan; Guler, Mustafa O.; Tekinay, Ayse B.

    2017-02-01

    Understanding the toxicity of nanomaterials remains largely limited to acute cellular response, i.e., short-term in vitro cell-death based assays, and analyses of tissue- and organ-level accumulation and clearance patterns in animal models, which have produced very little information about how these materials (from the toxicity point of view) interact with the complex intracellular machinery. In particular, understanding the mechanism of toxicity caused by the gradual accumulation of nanomaterials due to prolonged exposure times is essential yet still continue to be a largely unexplored territory. Herein, we show intracellular accumulation and the associated toxicity of gold nanoparticles (AuNPs) for over two-months in the cultured vascular endothelial cells. We observed that steady exposure of AuNPs at low (non-lethal) dose leads to rapid intracellular accumulation without causing any detectable cell death while resulting in elevated endoplasmic reticulum (ER) stress. Above a certain intracellular AuNP threshold, inhibition of macropinocytosis mechanism ceases further nanoparticle uptake. Interestingly, the intracellular depletion of nanoparticles is irreversible. Once reaching the maximum achievable intracellular dose, a steady depletion is observed, while no cell death is observed at any stage of this overall process. This depletion is important for reducing the ER stress. To our knowledge, this is the first report suggesting active regulation of nanoparticle uptake by cells and the impact of long-term exposure to nanoparticles in vitro.

  3. Non-aqueous formation of the calcium carbonate polymorph vaterite: astrophysical implications

    OpenAIRE

    Day, Sarah J.; Thompson, Stephen P.; Parker, Julia E.; Evans, Aneurin

    2013-01-01

    We study the formation of calcium carbonate, through the solid-gas interaction of amorphous Ca-silicate with gaseous CO2, at elevated pressures, and link this to the possible presence of calcium carbonate in a number of circumstellar and planetary environments. We use in-situ synchrotron X-Ray powder diffraction to obtain detailed structural data pertaining to the formation of the crystalline calcium carbonate phase vaterite and its evolution with temperature. We found that the metastable cal...

  4. Intracellular and juxtacellular staining with biocytin.

    Science.gov (United States)

    Wilson, Charles J; Sachdev, R N S

    2004-05-01

    Many physiological studies require microscopic examination of the recorded neuron for identification. This unit describes how intracellular and extracellular recording can be combined with single-neuron staining to enable sequential physiological and morphological studies.

  5. Intracellular temperature measurements with fluorescent polymeric thermometers.

    Science.gov (United States)

    Uchiyama, Seiichi; Gota, Chie; Tsuji, Toshikazu; Inada, Noriko

    2017-10-05

    In 2003, we successfully created the first fluorescent polymeric thermometer by combining a thermo-responsive polymer and an environment-sensitive (polarity and hydrogen bonding-sensitive) fluorophore. Its high sensitivity to temperature variation and high hydrophilicity, even under conditions of high ionic strength, enabled intracellular temperature measurements. Along with the progress of our research projects, the development of new luminescent molecular thermometers and the establishment of novel methods for measuring intracellular temperature have matured in this field. In this Feature Article, we summarize the background and history of intracellular temperature measurements using fluorescent polymeric thermometers based on studies performed in our laboratory and the relationship between our methods and those of other eminent research groups. Future research directions regarding intracellular temperature measurements are also discussed.

  6. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells.

    Science.gov (United States)

    Schwarz, Eva C; Qu, Bin; Hoth, Markus

    2013-07-01

    Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. [Mobilization of Ca2+ from intracellular stores of spermatozoa of Bos taurus depending on their functional status].

    Science.gov (United States)

    Denisenko, V Yu; Boytseva, E N; Kuzmina, T I

    2015-01-01

    On the basis of inhibitory analysis by using a fluorescence probe chlortetracycline, calcium transduction pathway in spermatozoa of Bos taurus has been examined. Additional release of Ca2+ from intracellular stores of sperm was found after combiened action of prolactin and GTP, which took place under influence of protein kinase C inhibitor (compound Ro 31-8220); the combined effect of theophylline and GDP also stimulated additional release of Ca2+ from intracellular stores, which was missing when adding inhibitor of protein kinase A, compound H-89. Using chlortetracycline test (analysis localization of chlortetracycline fluorescence in spermatozoa), we have shown the combined action of prolactin and GTP increases the number of sperm with acrosome reaction, which is reduced after influence of Ro 31-8220; the combined effect of theophylline and GDP increases the percentage of capacitated spermatozoa, which was decreased in the presence of H-89. According with the data obtained, we propose the hypothesis that the transduction of Ca2+ between intracellular stores in bull spermatozoa stimulated by the combined action of prolactin and GTP, or theophylline and GDP, determines the functional status of the spermatozoa. Namely: the transduction of Ca2+ between intracellular stores in bull spermatozoa stimulated by the combined action of prolactin and GTP is involved in the regulation of acrosomal processes, while sperm capacitation is mediated by the transduction of calcium between intracellular stores activated by the combined influence of theophylline and GDP.

  8. Bone repair in calcium-deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium.

    Science.gov (United States)

    Hämäläinen, M M

    1994-06-01

    The potential value of xylitol in calcium therapy was evaluated by comparing the effect of dietary xylitol (50 g/kg diet) + calcium carbonate with the effects of calcium carbonate, calcium lactate and calcium citrate on bone repair of young male rats after the rats consumed for 3 wk a calcium-deficient diet (0.2 g Ca/kg diet). After this calcium-depletion period, the rats were fed for 2 wk one of four diets, each containing 5 g Ca/kg diet as one of the four dietary calcium sources. The diet of the control animals was supplemented with CaCO3 (5 g Ca/kg diet) throughout the study. The Ca-deficient rats showed low bone mass, low serum calcium and high serum 1,25-dihydroxycholecalciferol, parathyroid hormone (1-34 fraction) and osteocalcin concentrations. They also excreted magnesium, phosphate and hydroxyproline in the urine in high concentrations, and had high bone alkaline phosphatase and tartrate-resistant acid phosphatase activities. Most of these changes were reversed by the administered of the calcium salts. The highest recoveries of femoral dry weight, calcium, magnesium and phosphate were observed in the groups receiving xylitol+CaCO3 and calcium lactate. Calcium lactate and calcium citrate caused low serum phosphate concentration compared with rats receiving CaCO3 and with the age-matched Ca-replete controls. Xylitol-treated rats excreted more calcium and magnesium in urine than did the other rats, probably due to increased absorption of these minerals from the gut. These results suggest that dietary xylitol improves the bioavailability of calcium salts.

  9. Functional Implications of Intracellular Phase Transitions.

    Science.gov (United States)

    Holehouse, Alex S; Pappu, Rohit V

    2018-01-11

    Intracellular environments are heterogeneous milieus comprising of macromolecules, osmolytes, and a range of assemblies that include membrane-bound organelles and membraneless biomolecular condensates. The latter are non-stoichiometric assemblies of protein and RNA molecules. They represent distinct phases and form via intracellular phase transitions. Here, we present insights from recent studies and provide a perspective on how phase transitions that lead to biomolecular condensates might contribute to cellular functions.

  10. Radioprotective effect of calcium given with feed on exposure to tritium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kazbekova, D.A.; Kalistratova, V.S.; Kulyamin, V.A.

    1979-12-01

    A 1.5-fold increase in calcium content of the rat diet attenuates the symptoms of radiation sickness induced by tritium and prolongs survival time. Elevation of blood serum nonspecific cholinesterase level and stimulation of lymphopoiesis were observed. The possible mechanisms of radioprotective action of calcium are discussed.

  11. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    Science.gov (United States)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  12. Calcium – how and why?

    Indian Academy of Sciences (India)

    Unknown

    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears ...

  13. Calcium and Your Child

    Science.gov (United States)

    ... Milk Allergy Figuring Out Food Labels What's a Vegetarian? Osteoporosis Minerals Your Bones Mineral Chart Vitamin D ... Need to Drink Milk? Lactose Intolerance Becoming a Vegetarian Soy Foods and Health Calcium Bones, Muscles, and ...

  14. Stoichiometry of Calcium Medicines

    Science.gov (United States)

    Pinto, Gabriel

    2005-01-01

    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  15. Magnesium, calcium and cancer

    National Research Council Canada - National Science Library

    Anghileri, Leopoldo J

    2009-01-01

    Magnesium ion (Mg(2+)) and calcium ion (Ca(2+)) control a diverse and important range of cellular processes, such as gene transcription, cell proliferation, neoplastic transformation, immune response and therapeutic treatment...

  16. A toxin from the spider Phoneutria nigriventer that blocks calcium channels coupled to exocytosis

    Science.gov (United States)

    Guatimosim, C; Romano-Silva, M A; Cruz, J S; Beirão, P S L; Kalapothakis, E; Moraes-Santos, T; Cordeiro, M N; Diniz, C R; Gomez, M V; Prado, M A M

    1997-01-01

    The aim of the present experiments was to investigate the pharmacological action of a toxin from the spider Phoneutria nigriventer, Tx3-3, on the function of calcium channels that control exocytosis of synaptic vesicles. Tx3-3, in confirmation of previous work, diminished the intracellular calcium increase induced by membrane depolarization with KCl (25 mM) in rat cerebrocortical synaptosomes. The toxin was very potent (IC50 0.9 nM) at inhibiting calcium channels that regulate calcium entry in synaptosomes. In addition, Tx3-3 blocked the exocytosis of synaptic vesicles, as measured with the fluorescent dye FM1-43. Using ω-toxins that interact selectively with distinct neuronal calcium channels, we investigated whether the target of Tx3-3 overlaps with known channels that mediate exocytosis. The results indicate that the main population of voltage-sensitive calcium channels altered by Tx3-3 can also be inhibited by ω-agatoxin IVA, an antagonist of P/Q calcium channels. ω-conotoxin GVIA, which inhibits N type calcium channels did not decrease significantly the entry of calcium or exocytosis of synaptic vesicles in depolarized synaptosomes. It is concluded that Tx3-3 potently inhibits ω-agatoxin IVA-sensitive calcium channels, which are involved in controlling exocytosis in rat brain cortical synaptosomes. PMID:9351520

  17. VERDICT : The verapamil versus digoxin cardioversion trial: A randomized study on the role of calcium lowering for maintenance of sinus rhythm after cardioversion of persistent atrial fibrillation

    NARCIS (Netherlands)

    Van Noord, T; Van Gelder, IC; Tieleman, RG; Bosker, HA; Tuinenburg, AE; Volkers, C; Veeger, NJGM; Crijns, HJGM

    Introduction: Many relapses of atrial fibrillation (AF) occur, especially during the first week(s) after electrical cardioversion (ECV), The aim of the present study was to compare in a randomized design the efficacy of verapamil (intracellular calcium lowering) versus digoxin (calcium increasing)

  18. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops

    Science.gov (United States)

    Sharma, Divya; Jamra, Gautam; Singh, Uma M.; Sood, Salej; Kumar, Anil

    2017-01-01

    Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [Eleusine coracana (L.) Gaertn.], an orphan crop has an immense potential as a nutritional security crop due to its exceptionally high calcium content. Understanding the existing genetic variation as well as molecular mechanisms underlying the uptake, transport, accumulation of calcium ions (Ca2+) in grains is of utmost importance for development of calcium bio-fortified crops. In this review, we have discussed molecular mechanisms involved in calcium accumulation and transport thoroughly, emphasized the role of molecular breeding, functional genomics and transgenic approaches to understand the intricate mechanism of calcium nutrition in finger millet. The objective is to provide a comprehensive up to date account of molecular mechanisms regulating calcium nutrition and highlight the significance of bio-fortification through identification of potential candidate genes and regulatory elements from finger millet to alleviate calcium malnutrition. Hence, finger millet could be used as a model system for explaining the mechanism of elevated calcium (Ca2+) accumulation in its grains and could pave way for development of nutraceuticals or designer crops. PMID:28144246

  19. Elevated serum parathormone after Roux-en-Y gastric bypass.

    Science.gov (United States)

    Diniz, Maria de Fátima Haueisen Sander; Diniz, Marco Túlio Costa; Sanches, Soraya Rodrigues Almeida; Salgado, Patrícia Paz Cabral de Almeida; Valadão, Maristane Mendes Andrade; Araújo, Flávia Caldeira; Martins, Daniele Siríaco; Rocha, Alexandre Lages Savassi

    2004-10-01

    Abnormalities in calcium and vitamin D metabolism are observed early after gastric bypass, whereas clinical or biochemical evidence of metabolic bone disease might not be detected until many years after the procedure. The aim of the present study was to evaluate the impact of bariatric surgery on bone metabolism determined on the basis of postoperative laboratory changes in calcium, phosphorus, magnesium, alkaline phosphatase and parathormone (PTH) levels. 110 patients submitted to Roux-en-Y gastric bypass (RYGBP) were followed after surgery, and the following parameters were determined: intact PTH molecule (PTHi; chemiluminescence), alkaline phosphatase (colorimetric method), ionic calcium (selective electrode), phosphorus and magnesium (colorimetric method). Elevated serum PTHi levels were observed in 29% of the patients and hypocalcemia in 0.9% from the 3rd postoperative month and afterwards (3 to 80 months after surgery). There is a need for careful evaluation of bone metabolism and for routine calcium replacement after RYGBP.

  20. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  1. Effect of lipophilic ions on the intramembrane charge movement and intracellular Ca2+ release in fetal mouse skeletal muscle cells.

    Science.gov (United States)

    Inoue, I; Shimahara, T; Bournaud, R

    1997-12-01

    The effects of lipophilic ions on the intramembrane charge movement and intracellular calcium transient were studied using freshly dissociated skeletal muscle cells from mice fetuses. The lipophilic cations Rhodamine 6G and tetraphenylphosphonium (TPP) immobilized part of the intramembrane charge movement in a dose-dependent manner, and inhibited both calcium transient and contraction evoked by membrane depolarization. In contrast, the lipophilic anion 1-anilinonaphthalene-8-sulfonic acid (ANS) had no effect on intramembrane charge movement. We suggest that the lipophilic cations block the voltage-sensing mechanism for the excitation-contraction (E-C) coupling mechanism.

  2. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  3. Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology.

    Science.gov (United States)

    Cross, Brandie M; Breitwieser, Gerda E; Reinhardt, Timothy A; Rao, Rajini

    2014-03-15

    Breast cancer is the second leading cause of cancer mortality in women, estimated at nearly 40,000 deaths and more than 230,000 new cases diagnosed in the U.S. this year alone. One of the defining characteristics of breast cancer is the radiographic presence of microcalcifications. These palpable mineral precipitates are commonly found in the breast after formation of a tumor. Since free Ca(2+) plays a crucial role as a second messenger inside cells, we hypothesize that these chelated precipitates may be a result of dysregulated Ca(2+) secretion associated with tumorigenesis. Transient and sustained elevations of intracellular Ca(2+) regulate cell proliferation, apoptosis and cell migration, and offer numerous therapeutic possibilities in controlling tumor growth and metastasis. During lactation, a developmentally determined program of gene expression controls the massive transcellular mobilization of Ca(2+) from the blood into milk by the coordinated action of calcium transporters, including pumps, channels, sensors and buffers, in a functional module that we term CALTRANS. Here we assess the evidence implicating genes that regulate free and buffered Ca(2+) in normal breast epithelium and cancer cells and discuss mechanisms that are likely to contribute to the pathological characteristics of breast cancer.

  4. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  5. Excessive Signal Transduction of Gain-of-Function Variants of the Calcium-Sensing Receptor (CaSR) Are Associated with Increased ER to Cytosol Calcium Gradient

    Science.gov (United States)

    Di Mise, Annarita; Vezzoli, Giuseppe; Soldati, Laura; Svelto, Maria; Valenti, Giovanna

    2013-01-01

    In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormon