WorldWideScience

Sample records for elevated-temperature low-cycle fatigue

  1. Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Yeol; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Bae, Si Yeon; Chang, Sung Yong; Chang, Sung Ho [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2017-08-15

    GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, 760 °C, 870 °C, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and 760 °C; however, tests conducted at 870 °C showed cyclic softening response. Stress relaxation was observed at 870 °C because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

  2. Effect of strain wave shape on low-cycle fatigue crack propagation of SUS 304 stainless steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, M.; Hattori, I.; Koizwmi, T.; Shiraiwa, F.

    1983-08-01

    Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700/sup 0/C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, ..delta..J /SUB f/, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, ..delta..J /SUB c/ /..delta..J /SUB T/. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.

  3. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  4. Low cycle fatigue of 2.25Cr1Mo steel with tensile and compressed hold loading at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junfeng; Yu, Dunji; Zhao, Zizhen; Zhang, Zhe; Chen, Gang; Chen, Xu, E-mail: xchen@tju.edu.cn

    2016-06-14

    A series of uniaxial strain-controlled fatigue and creep-fatigue tests of the bainitic 2.25Cr1Mo steel forging were performed at 455 °C in air. Three different hold periods (30 s, 120 s, 300 s) were employed at maximum tensile strain and compressive strain under fully reversed strain cycling. Both tensile and compressive holds significantly reduce the fatigue life. Fatigue life with tensile hold is shorter than that with compressive hold. A close relationship is found between the reduction of fatigue life and the amount of stress relaxation. Microstructural examination by scanning electron microscope reveals that strain hold introduces more crack sources, which can be probably ascribed to the intensified oxidation and the peeling-off of oxide layers. A modified plastic strain energy approach considering stress relaxation effect is proposed to predict the creep-fatigue life, and the predicted lives are in superior agreement with the experimental results.

  5. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  6. Low-cycle fatigue of niobium

    Science.gov (United States)

    Meininger, J. M.; Gibeling, J. C.

    1992-11-01

    Commercially pure niobium (CPNb) and a niobium-1 pct zirconium (Nb-lZr) alloy were tested under low-cycle fatigue conditions at plastic strain amplitudes in the range of 0.02 pct ≤Δɛpl/2≤ 0.7 pct. At low temperatures, the cyclic deformation response of body-centered cubic (bcc) metals is strongly dependent on strain rate. Thus, it was necessary to test at slow (2 x 10su-4 s-1) and fast (2 x 10-2 s-1) strain rates in order to fully characterize the cyclic deformation at ambient temperature. Only cyclic hardening was observed for both metals under all testing conditions. As expected, higher cyclic stresses were recorded at the fast strain rate compared to the slow strain rate. The Nb-lZr alloy was always stronger than CPNb, although both metals had the same cyclic life at equal plastic strain amplitudes. Further, the strain rate had no effect on the cyclic life. At the fast strain rate, intergranular cracking occurred, and a microplastic plateau was observed in the cyclic stress-strain (CSS) curve for CPNb. At the slow strain rate, no definitely intergranular cracks were detected, and a microplastic plateau was not observed for CPNb. The results of these experiments are interpreted in terms of the influence of strain rate and solute content on the relative mobilities of edge and screw dislocations.

  7. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  8. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš

    2017-01-01

    Roč. 680, JAN (2017), s. 168-181 ISSN 0921-5093 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 * Z-phase * Low cycle fatigue * Low cycle fatigue * Transmission Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016

  9. Development of fatigue crack propagation models for engineering applications at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Tomkins, B.

    1975-05-01

    The value of modelling the fatigue crack propagation process is discussed and current models are examined in the light of increasing knowledge of crack tip deformation. Elevated temperature fatigue is examined in detail as an area in which models could contribute significantly to engineering design. A model is developed which examines the role of time-dependent creep cavitation on the failure process in an interactive creep-fatigue situation. (auth)

  10. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    Bhanu Sankara Rao, K.; Halford, G.R. (National Aeronautics Space Agency, Cleveland, OH (United States). Lewis Research Center); Schuster, H. (KFA, Juelich (Germany). Inst. for Reactor Materials)

    1994-08-15

    Alloys engineered for high-temperature application are frequently put into use in a thermodynamically unstable condition. Subsequent exposure to service temperatures may promote many thermally-assisted reactions such as formation, coarsening, and/or coalescence of precipitates. Superposition of cyclic straining may accelerate the kinetics of these reactions but also may cause reaction products having specific features not observed under simple thermal exposure. The influence of cyclic strain-induced microstructural changes on the fatigue behavior has to be considered in terms of their effects on both cyclic strength and life. The occurrence of massive (cellular) precipitation of M[sub 23]C[sub 6] on grain boundaries during elevated temperature low cycle fatigue testing has been reported in Type 304 stainless steel, Type 316 stainless steel, and Inconel 617 superalloy, and its presence has already been linked with reduction in high temperature ductility, an important engineering property on which low cycle fatigue (LCF) life depends to a large extent. Massive precipitation may render the austenitic engineering alloys susceptible to corrosion, which would have important bearing on the performance of these alloys in the oxidizing environments. Furthermore, the long term stability of massive M[sub 23]C[sub 6] particles is particularly important since the transformation of such a large structure into a brittle intermetallic phase (such as sigma) could produce a detrimental effect on the mechanical properties. The conditions and the mechanisms responsible for the occurrence of massive precipitation during LCF have not yet been established. This investigation is specifically aimed at understanding the influence of strain rate on massive precipitation and the mechanism responsible for the occurrence of massive M[sub 23]C[sub 6] precipitation in Alloy 800H during elevated temperature LCF testing.

  11. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  12. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  13. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  14. Effect of microstructure refinement on low cycle fatigue behavior of Alloy 718

    Directory of Open Access Journals (Sweden)

    Mukhtarov Shamil

    2014-01-01

    Full Text Available Microstructure refinement down to d ∼ 0.1–1 μm is known to enhance processing properties of hard-to-deform materials and particularly can be used for facilitating superplastic forming or roll-forming. However refined microstructure can compromise service properties, particularly fatigue properties. In the present work, the fatigue behavior of the fine-grained Alloy 718 has been investigated. A number of fine-grained conditions with a grain size ∼0.1–1 μm were produced using multiple forging with a graduate decrease of the forging temperature. Part of the forged fine-grained conditions was also subjected to conventional solution annealing and ageing. In this case a small grain size was controlled by precipitates of the δ phase located on grain boundaries. Low cycle fatigue tests of the fine-grained conditions were carried out at room and elevated temperatures. The obtained properties are compared with those of the Alloy 718 in the coarse-grained conditions. The effect of the grain size on the fatigue strength of the fine-grained Alloy 718 is discussed in terms of the microstructure evolution and fracture mode.

  15. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    Science.gov (United States)

    2016-09-01

    ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 18-08-2016 2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) September 2014 – September 2016 TITLE ... MECHANICAL PROPERTIES AND FATIGUE BEHAVIOR OF UNITIZED COMPOSITE AIRFRAME STRUCTURES AT ELEVATED...TEMPERATURE THESIS Mohamed Noomen, Lieutenant, TNAF AFIT-ENY-MS-16-S-66 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE

  16. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Guolei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China); Shi, Duoqi, E-mail: shdq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-engine(CICAAE), Beihang University, Beijing 100191 (China)

    2016-06-21

    Fatigue experiments were performed on a polycrystalline P/M processed nickel-based superalloy, FGH96 at 600 °C to investigate competing fatigue failure behaviors of the alloy. The experiments were performed at four levels of stress (from high cycle fatigue to low cycle fatigue) at stress ratio of 0.05. There was large variability in fatigue life at both high and low stresses. Scanning electron microscopy (SEM) was used to analyze the failure surfaces. Three types of competing failure modes were observed (surface, sub-surface and internal initiated failures). Crack initiation sites were gradually changed from the surface to the interior with the decreasing of stress level. Roles of microstructures in competing failure mechanism were analyzed. There were six kinds of fatigue crack initiation modes: (1) surface inclusion initiated; (2) surface facet initiated; (3) sub-surface inclusion initiated; (4) sub-surface facet initiated; (5) internal inclusion initiated; (6) internal facet initiated. Inclusions at surface were the life-limiting microstructures at higher stress levels. The probability of occurrence of inclusions initiated is gradually reduced with decreasing of stress level, simultaneously the probability of occurrence of facets initiated is increasing. The existence of the inclusions resulted in large life variability at higher stress levels, while heterogeneity of material caused by random combinations of grains was the main cause of fatigue variability at lower stress levels.

  17. Fatigue Hysteresis of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures

    Science.gov (United States)

    Li, Longbiao

    2016-02-01

    When the fiber-reinforced ceramic-matrix composites (CMCs) are first loading to fatigue peak stress, matrix multicracking and fiber/matrix interface debonding occur. Under fatigue loading, the stress-strain hysteresis loops appear as fiber slipping relative to matrix in the interface debonded region upon unloading/reloading. Due to interface wear at room temperature or interface oxidation at elevated temperature, the interface shear stress degredes with increase of the number of applied cycles, leading to the evolution of the shape, location and area of stress-strain hysteresis loops. The evolution characteristics of fatigue hysteresis loss energy in different types of fiber-reinforced CMCs, i.e., unidirectional, cross-ply, 2D and 2.5D woven, have been investigated. The relationships between the fatigue hysteresis loss energy, stress-strain hysteresis loops, interface frictional slip, interface shear stress and interface radial thermal residual stress, matrix stochastic cracking and fatigue peak stress of fiber-reinforced CMCs have been established.

  18. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  19. The role of elevated temperature exposure on structural evolution and fatigue strength of eutectic AlSi12 alloys

    Czech Academy of Sciences Publication Activity Database

    Konečná, R.; Nicoletto, G.; Kunz, Ludvík; Riva, E.

    2016-01-01

    Roč. 83, č. 1 (2016), s. 24-35 ISSN 0142-1123 Institutional support: RVO:68081723 Keywords : Piston * Al-Si alloy * Elevated temperature * Fatigue strength Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.899, year: 2016

  20. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable of describ...

  1. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  2. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo

    2000-01-01

    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model...

  3. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  4. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  5. Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jongdae; Cho, Pyungyeon; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cho, Pyungyeon [Khalifa Univ., Abu Dhabi (United Arab Emirates); Kim, Tae Soon; Lee, Yong Sung [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, environmental fatigue tests for these materials were performed and the new prediction model of fatigue life of Alloy 690 and weld in primary water condition was proposed. To evaluate the fatigue life of Alloy 690 and 52M in a PWR environment, low cycle fatigue tests were performed and revised fatigue life prediction models and environmental factor were proposed. With the revised Fen model for Alloy 690 and 52M, the reliability of the fatigue life prediction has been improved. The reduction of low cycle fatigue life of metallic materials in the primary coolant water environments has been the subject of debate between the utility and regulator since 1980s. It became the significant licensing problem since the issue of RG-1.207 by U. S. NRC. The statistical model for the environmental factor, Fen, specified in RG-1.207 was based on the extensive test results accumulated by the ANL and Japanese national program. Of the materials, the limited fatigue life data of Ni-Cr-Fe alloys were used to develop the Fen for the alloys. Furthermore, test data for Alloy 690 and its weld are limited. Considering that Alloy 690 will be extensively used in the new nuclear power plants, additional effort to validate or improve current Fen model is required.

  6. Fracture resistance of Zr-Nb alloys under low-cycle fatigue tests

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Gusev, A. Yu.; Nechaykina, T. A.; Rogachev, S. O.; Zadorozhnyy, M. Yu.

    2014-03-01

    Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  7. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  8. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  9. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    Science.gov (United States)

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  10. Effects of irradiation on low cycle fatigue properties for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: In materials life decision for a commercial blanket, thermal fatigue property of materials is a particularly important. The loading of structural materials in fusion reactor is, besides the plasma surface interactions, a combined effect of high heat fluxes and neutron irradiation. Depending on the pulse lengths, the operating conditions, and the thermal conductivity, these oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-) fatigue in structural first wall and blanket components. Especially, investigation of the fatigue property in Reduced Activation Ferritic/Martensitic (RAF/M) steel and establishment of the evaluation technology are demanded in particular immediately for design/manufacturing of ITER-TBM. And also, fatigue testing after irradiation will be carried out in hot cells with remote control system. Considering limited ability of specimen manipulation in the cells, the specimen and the test method need to be simple for operation. The existing data bases of RAF/M steel provide baseline data set including post-irradiation fatigue data. However, to perform the accurate fatigue lifetime assessment for ITER-TBM and beyond utilizing the existing data base, the mechanical understanding of fatigue fracture is mandatory. It has been previously reported by co-authors that dislocation cell structure was developed on low cycle fatigued RAF/M steel, and led the fatigue crack to develop along prior austenitic grain boundary. In this work, the effects of nuclear irradiation on low cycle fatigue properties for RAF/M steels and its fracture mechanisms were examined based on the flow stress analysis and detailed microstructure analysis. Fracture surfaces and crack initiation site were investigated by scanning electron microscope (SEM). Transmission electron microscopy (TEM) was also applied to clarify the microstructural features of fatigue behavior. It is also important to

  11. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  12. Low Cycle Fatigue Behavior of Alloy617 Weldment at 850°C

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Jun; Kim, Seon Jin [Pukyong Nat’l Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of 850℃, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

  13. A simple approximative procedure for taking into account low cycle fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Thomsen, K.

    1996-09-01

    In this paper a simple approximative algorithm for taking into account low cycle fatigue loads is presented. Traditionally, the fatigue life consumption of a wind turbine is estimated by considering a number of (independent) load cases and performing a rainflow counting analysis on each of those. These results are then subsequently synthesized into a total load spectrum by performing a weighed sum of the number of individual load case ranges. The fatigue life consumption is thus obtained by applying the Palmgren-Miner rule on the total load spectrum. However, due to the assumption of isolated basic load cases, the above procedure fail to represent the low-frequency contributions related to the transition between those load cases. The procedure to be described in the following aims at taking the fatigue contribution, related to the transitions between the defined load cases, into account in an approximative manner. (au)

  14. Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Mu, P. [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, F-59650 Villeneuve d’Ascq (France); CNRS, UMR 8107, UMR 8579 (France); Aubin, V., E-mail: veronique.aubin@ecp.fr [ECP, MSSMat, F-92295 Châtenay-Malabry (France); CNRS, UMR 8107, UMR 8579 (France); Alvarez-Armas, I.; Armas, A. [IFIR, CONICET, Universidad Nacional de Rosario (Argentina)

    2013-06-20

    Present study aims at analyzing the crack initiation in an austenitic stainless steel in low-cycle fatigue. A fatigue test was carried out using a polished specimen. The surface of the specimen was observed in situ during the fatigue test, in order to establish the time of slip activity or crack initiation. After a number of cycles sufficient to initiate small cracks, the test was stopped and the surface observed by scanning electron microscopy. The electron backscattered diffraction technique (EBSD) was used to identify the orientations of surface grains in the central zone of the fatigue specimen. Crack-initiation sites and slip systems associated to the initiated microcracks were identified. The criterion of the maximum Schmid factor explains two-thirds of the cracks initiated in slip systems; however if the favorably oriented slip band with respect to this criterion makes an angle of around 45° to the loading direction, a crack may initiate in another slip system.

  15. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    Science.gov (United States)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  16. Effect of Tantalum content on the low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xiangwei [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Zhao, Yanyun; Wang, Kun [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2017-01-15

    Highlights: • The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. • The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles. • The grain size and M{sub 23}C{sub 6} were closely associated with the Ta content. • The crack distribution was quite sensitive to the Ta content. - Abstract: The effect of tantalum (Ta) content on the low cycle fatigue (LCF) properties of CLAM steel at 823 K was investigated in this paper. Low cycle fatigue tests were carried out on four ingots of CLAM steel with Ta contents of 0.027 wt%, 0.078 wt%, 0.15 wt% and 0.18 wt%, respectively. The results showed that the fatigue life and softening behavior of CLAM steel were influenced by Ta content. The fatigue life initially decreased and then increased as the Ta content was increased from 0.027 wt% to 0.18 wt%. The softening rate had declined with Ta content increased and the reduced softening rate was attributed to the increased number of Ta-rich MX particles.

  17. Low cycle notched fatigue behavior and life predictions of A723 high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Troiano, E.; Underwood, J.H.; Crayon, D. [Army Armament Research, Development and Engineering Center, Watervliet, NY (United States). Benet Labs.

    1995-12-31

    Two types of ASTM A723 steels have been investigated for their low cycle fatigue behavior. Specimens were tested in four-point bending, both with and without notches, and the measured fatigue lives were compared with those predicted by Neubers notch analysis, and standard fracture mechanics life prediction techniques. Comparison of measured and predicted lives indicate that the elastic/plastic Neuber analysis under predicts the measured fatigue life by as much as 67% at large strains, and becomes a better predictor of life as the applied strains decrease. The elastic Neubers analysis also under predicts the measured fatigue lives by 45% at large applied strains, but seems to accurately predict lives at reversals to failure greater than 100. The fracture mechanics approach assumes elastic stresses at the crack tip, and predicts lives within 30% over the full range of strains investigated. The results show that the Neuber notch analysis is not as good an indicator of the low cycle fatigue behavior of A723 steels as is the fracture mechanics life prediction techniques. As the life cycles to failure decreases, the Neubers analysis predicts lives that are two to three times more conservative than those experimentally measured.

  18. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  19. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  20. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.

    Science.gov (United States)

    Kosmopoulos, Victor; Schizas, Constantin; Keller, Tony S

    2008-01-01

    Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, pfracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.

  1. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  2. The Effect of Elevated Temperature on the Fretting Fatigue Behavior of Nickel Alloy IN-100

    Science.gov (United States)

    2008-04-01

    Saladin S-N data points for plain fatigue 86 4.16 Comparison of Ownby and Saladin S-N data points for fretting fatigue 87 4.17 Comparison of Ownby...and Saladin S-N data for all tests 88 4.18 Plot comparing ΔQ vs Nf from Ownby, Saladin & Madhi data points 89 4.19 Plot from Kawagoishi et al. [21...in this study 93 4.3 Madhi fretting and plain fatigue testing data 94 4.4 Saladin fretting and plain fatigue testing data 94 4.5 Comparison of

  3. Investigation of Fatigue Behavior In Notched Cross-Ply Titanium Metal Matrix Composite at Elevated Temperature

    Science.gov (United States)

    1992-12-01

    tensile test at 427’C followed by fatigue testing performed under load control with a stress ratio of 0.1 at a frequency of 10 Hz. A crack was defined...these cracks became through-cracks and eventually developed into major cracks which caused the fracture. The applied stress (S) and fatigue lives (N...investigated the thermo-mechanical fatigue (TMF) characteristics of unnotched unidirectional SCS- 6/Ti-15-3 and found that the zero degree fiber stress is

  4. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  5. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Science.gov (United States)

    Spodniak, Miroslav; Klimko, Marek; Hocko, Marián; Žitek, Pavel

    This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  6. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  7. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  8. Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part I: Experimental Analysis

    Science.gov (United States)

    Longbiao, Li

    2016-04-01

    This paper presents an experimental analysis on the fatigue behavior in C/SiC ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply and 2.5D woven, at room and elevated temperatures in air atmosphere. The experimental fatigue life S - N curves of C/SiC composites corresponding to different stress levels and test conditions have been obtained. The damage evolution processes under fatigue loading have been analyzed using fatigue hysteresis modulus and fatigue hysteresis loss energy. By comparing the experimental fatigue hysteresis loss energy with theoretical computational values, the interface shear stress corresponding to different peak stress, fiber preforms and test conditions have been estimated. It was found that the degradation of interface shear stress and fibres strength caused by oxidation markedly decreases the fatigue life of C/SiC composites at elevated temperature.

  9. Characteristics of Non-Ferrous Metal Alloys as Determined by Low-Cycle Fatigue Test under Variable Loads

    Directory of Open Access Journals (Sweden)

    Maj M.

    2014-03-01

    Full Text Available The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried out using a proprietary, modified low cycle test (MLCF. Particular attention was paid to the fatigue strength exponent b and fatigue ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle fatigue test (MLCF can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable loads

  10. Evaluation of Interpolative Modeling Concepts for Fatigue Crack Growth at Elevated Temperature

    Science.gov (United States)

    1984-12-01

    are taken automatically and minimal human intervention is required. Figui~e 2 shows the two raw data items that were actually measured by the test set...Air Force Base, Ohio, Feb 1980. 7. Annual Book of ASTH Standards, Part 10 E647-81. "Standard Test , . Method for Conatant -Load-Amplitude Fatigue

  11. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R.I. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Jordon, J.B., E-mail: bjordon@eng.ua.edu [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Allison, P.G. [The University of Alabama, Department of Mechanical Engineering, Tuscaloosa, AL 35487 (United States); Rushing, T.; Garcia, L. [Engineering Research and Development Center, Army Corps of Engineers, Vicksburg, MS 39180 (United States)

    2016-01-27

    In this work, experiments were conducted to quantify structure-property relations of low-cycle fatigue behavior of dissimilar friction stir welding (FSW) of AA6061-to-AA7050 high strength aluminum alloys. In addition, a microstructure-sensitive fatigue model is employed to further elucidate cause-effect relationships. Experimental strain-controlled fatigue testing revealed an increase in the cyclic strain hardening and the number-of cycles to failure as the tool rotational speed was increased. At higher applied strain amplitudes (>0.3%), the corresponding stress amplitude increased and the plastic strain amplitude decreased, as the number of cycles increased. However, at 0.2% strain amplitude, the plastic strain decreased until it was almost negligible. Inspection of the hysteresis loops demonstrated that at low strain amplitudes, there was an initial stage of strain hardening that increased until it reached a maximum strain hardening level, afterwards a nearly perfect elastic behavior was observed. Under fully-reversed fatigue loading, all samples failed at the region between the heat-affected and thermomechanically-affected zones. Inspection of the fractured surfaces under scanning electron microscopy revealed that the cracks initiated at either the crown or the root surface of the weld, and from secondary intermetallic particles located near the free surface of the weld. Lastly, a microstructure-sensitive multistage fatigue model was employed to correlate the fatigue life of the dissimilar FSW of AA6061-to-AA7050 considering microstructural features such as grain size, intermetallic particles and mechanical properties.

  12. Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy

    Science.gov (United States)

    Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.

    2008-12-01

    To reduce fuel consumption and greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications due to their low density, high specific strength and stiffness, and other attractive traits. Structural applications of magnesium components require low-cycle fatigue (LCF) behavior, since cyclic loading or thermal stresses are often encountered. The aim of this article was to study the cyclic deformation characteristics and evaluate LCF behavior of a recently developed AM30 extruded magnesium alloy. This alloy exhibited a strong cyclic hardening characteristic, with a cyclic strain-hardening exponent of 0.33 compared to the monotonic strain-hardening exponent of 0.15. With increasing total strain amplitude, both plastic strain amplitude and mean stress increased and fatigue life decreased. A significant difference between the tensile and compressive yield stresses occurred, leading to asymmetric hysteresis loops at high strain amplitudes due to twinning in compression and subsequent detwinning in tension. A noticeable change in the modulus was observed due to the pseudoelastic behavior of this alloy. The Coffin-Manson law and Basquin equation could be used to describe the fatigue life. At low strain ratios the alloy showed strong cyclic hardening, which became less significant as the strain ratio increased. The lower the strain ratio, the lower the stress amplitude and mean stress but the higher the plastic strain amplitude, corresponding to a longer fatigue life. Fatigue life also increased with increasing strain rate. Fatigue crack initiation occurred from the specimen surface and crack propagation was mainly characterized by striation-like features. Multiple initiation sites at the specimen surface were observed at higher strain amplitudes.

  13. Fatigue Crack Propagation from Notched Specimens of 304 SS in elevated Temperature Aqueous Environment

    Energy Technology Data Exchange (ETDEWEB)

    Wire, G. L.; Mills, W. J.

    2002-08-01

    Fatigue crack propagation (FCP) rates for 304 stainless steel (304SS) were determined in 24 degree C and 288 degree C air and 288 degree C water using double-edged notch (DEN) specimens of 304 stainless steel (304 SS). Test performed at matched loading conditions in air and water at 288 degree C with 20-6- cc h[sub]2/kg h[sub]2O provided a direct comparison of the relative crack growth rates in air and water over a wide range of crack growth rates. The DEN crack extension ranged from short cracks (0.03-0.25 mm) to long cracks up to 4.06 mm, which are consistent with conventional deep crack tests. Crack growth rates of 304 SS in water were about 12 times the air rate. This 12X environmental enhancement persisted to crack extensions up to 4.06 mm, far outside the range associated with short crack effects. The large environmental degradation for 304 SS crack growth is consistent with the strong reduction of fatigue life in high hydrogen water. Further, very similar environmental effects w ere reported in fatigue crack growth tests in hydrogen water chemistry (HWC). Most literature data in high hydrogen water show only a mild environmental effect for 304 SS, of order 2.5 times air or less, but the tests were predominantly performed at high cyclic stress intensity or equivalently, high air rates. The environmental effect in low oxygen environments at low stress intensity depends strongly on both the stress ratio, R, and the load rise time, T[sub]r, as recently reported for austenitic stainless steel in BWR water. Fractography was performed for both tests in air and water. At 288 degree C in water, the fracture surfaces were crisply faceted with a crystallographic appearance, and showed striations under high magnification. The cleavage-like facets on the fracture surfaces suggest that hydrogen embrittlement is the primary cause of accelerated cracking.

  14. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    Science.gov (United States)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  15. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  16. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  17. Low Cycle Fatigue of Single Crystal Nickel-based Superalloy DD6 at 1100℃

    Directory of Open Access Journals (Sweden)

    ZHANG Shichao

    2018-02-01

    Full Text Available The total strain-controlled low cycle fatigue(LCF behaviors of a single crystal superalloy DD6 at 1100℃ for R=-1 and 0.05 were investigated. The results of LCF tests indicated that the cyclic hardening/softening behavior of the alloy not only has the relationship with the microstructure of the material, but also the loading status. The mean stress relaxation occurred under asymmetric straining. The rate of mean stress relaxation increased with the increasing of strain amplitude; when R=-1, the alloy shows tension-compression asymmetry behavior. All the LCF data obtain under various ratios were well correlated by three models for lifetime prediction, the precision rates predicted are fallen into the factor of±2 times scatter band.

  18. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  19. Fatigue behavior and microstructure of an Al-Mg-Sc alloy at an elevated temperature

    Science.gov (United States)

    Watanabe, C.; Monzen, R.

    2010-07-01

    Al-Mg-Sc alloy polycrystals bearing Al3Sc particles with different sizes, i.e. 4, 6 and 11 nm in diameter, have been cyclically deformed at 423 K under constant plastic-strain amplitudes, and the microstructural evolution has been investigated in relation to the stress-strain response. Cyclic softening after initial hardening is found in specimens with small particles of 4 and 6 nm, but no cyclic softening takes place in specimens with larger particles of 11 nm. These features of cyclic deformation behavior are similar to the results previously obtained at room temperature. Transmission electron microscopy observations reveal that dislocations are uniformly distributed under all applied strain amplitudes in the specimens containing large particles of 11 nm, whereas slip bands are formed in the cyclically softened specimens bearing smaller particles. The cyclic softening is explained by a loss of particle strength through particle shearing within strongly strained slip bands. The 6 and 11 nm Al3Sc particles have a stronger retardation effect on the formation of fatigue-induced stable dislocation structure than 4 nm particles at 423 K.

  20. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    Science.gov (United States)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  1. A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle.

    Science.gov (United States)

    Qi, Mingjing; Liu, Zhiwei; Yan, Xiaojun

    2014-10-01

    This paper reports a low-cycle fatigue test device for micro-cantilevers, which are widely used in micro scale structures. The working principle of the device is based on the phenomenon that a micro-cantilever can be set into self-excited vibration between two electrodes under DC voltage. Compared with previous devices, this simple device can produce large strain amplitude on non-notched specimens, and allows a batch of specimens to be tested simultaneously. Forty-two micro-cantilever specimens were tested and their fatigue fracture surfaces exhibit typical low cycle fatigue characteristics. As such, the device is very attractive for future fatigue investigation for micro scale structures.

  2. The Influence of Dwell Time on Low Cycle Fatigue Behavior of Ni-base Superalloy IC10

    Science.gov (United States)

    Wang, Anqiang; Liu, Lu; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng

    2017-09-01

    Low cycle fatigue and creep-fatigue experiments of IC10 Ni-base superalloy plate specimens with multiple holes were performed below 1,000 °C. The average fatigue life is 105.4 cycles, while the creep-fatigue life is 103.4 cycles, which shows that the life of creep-fatigue is reduced 1-2 times compared with low cycle fatigue life. After tests, the detailed fracture and microscopic structure evolution were observed by scanning electron microscopy (SEM); meanwhile, the constitutive model based on crystal plasticity theory was established and the fracture mechanism was analyzed. Three conclusions have been obtained: First, the load during dwell time leads to the damage accumulation caused by deformation and the interaction of fatigue and creep shortens the service life of materials seriously. Second, in order to maintain the macroscopic deformation, a new slip plane starts to makes the dislocation slide in reverse direction, which leads to fatigue damage and initial cracks. Third, the inner free surface creates opportunities for escape of the dislocation line, which is caused by the cavity. What's more, the cure dislocation generated by cyclic loading contributes to the formation and growth of cavities.

  3. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-10-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  4. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    Science.gov (United States)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  5. Forecasting Low-Cycle Fatigue Performance of Twinning-Induced Plasticity Steels: Difficulty and Attempt

    Science.gov (United States)

    Shao, C. W.; Zhang, P.; Zhang, Z. J.; Liu, R.; Zhang, Z. F.

    2017-12-01

    We find the existing empirical relations based on monotonic tensile properties and/or hardness cannot satisfactorily predict the low-cycle fatigue (LCF) performance of materials, especially for twinning-induced plasticity (TWIP) steels. Given this, we first identified the different deformation mechanisms under monotonic and cyclic deformation after a comprehensive study of stress-strain behaviors and microstructure evolutions for Fe-Mn-C alloys during tension and LCF, respectively. It is found that the good tensile properties of TWIP steel mainly originate from the large activation of multiple twinning systems, which may be attributed to the grain rotation during tensile deformation; while its LCF performance depends more on the dislocation slip mode, in addition to its strength and plasticity. Based on this, we further investigate the essential relations between microscopic damage mechanism (dislocation-dislocation interaction) and cyclic stress response, and propose a hysteresis loop model based on dislocation annihilation theory, trying to quickly assess the LCF resistance of Fe-Mn-C steels as well as other engineering materials. It is suggested that the hysteresis loop and its evolution can provide significant information on cyclic deformation behavior, e.g., (point) defect multiplication and vacancy aggregation, which may help estimate the LCF properties.

  6. Low cycle fatigue properties of CLAM steel at 450 °C and 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun; Zhai, Xiangwei; Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn

    2016-11-15

    Highlights: • Low cycle fatigue properties of CLAM steel were investigated at 450 °C and 550 °C. • CLAM steel showed the continuous softening up to fail failure under cyclic loading. The degree of softening increased with increasing temperature. • Dislocation density decrease and subgrain coarsening during the test process were the possible reasons for the cyclic softening of the CLAM steel. - Abstract: The low cycle fatigue behavior of China Low Activation Martensitic (CLAM) steel has been studied using a constant strain rate of 8 × 10{sup −3}/s with the strain amplitudes ranging from 0.3% to 0.8% at 450 °C and 550 °C. Cyclic stress response showed a gradual softening until complete failure. The fatigue life decreased with increasing test temperature, and the effect of temperature on fatigue life was more pronounced at lower strain amplitudes. The cyclic deformation behavior at different temperatures has been analyzed according to the hysteresis loop, and the mechanism of cyclic softening was interpreted in view of the changes taking place in dislocation density and lath structures. Evaluation of low cycle fatigue properties of CLAM steel at 450 °C and 550 °C can help in design of the Chinese Test Blanket Module (TBM) for the International Thermonuclear Experimental Reactor (ITER) and a future fusion power plant.

  7. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  8. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  9. Study of Persistent Slip Bands Formed by Low Cycle Fatigue on Nickel-based Superalloys at Room Temperature

    OpenAIRE

    Uprety, Anjola; Matsunaga, Sae; Titus, Michael S, Dr.; Sangid, Michael D.; Mello, Alberto W, Dr.

    2017-01-01

    The ability of Ni-based superalloys to withstand temperatures in excess of 11000C makes them useful for applications in the hottest components in jet engines, gas turbines, and thrust engines. Increasing the efficiency of these gas turbine engines helps to reduce the fossil fuel consumption and the production of greenhouse gasses. A common mode of failure in these Ni-based superalloys is low cycle fatigue, in which narrow regions of high dislocation density, which are known as persistent slip...

  10. Low cycle fatigue properties and an energy-based approach for as-extruded AZ31 magnesium alloy

    Science.gov (United States)

    Kwon, S. H.; Song, K. S.; Shin, K. S.; Kwun, S. I.

    2011-04-01

    Low cycle fatigue tests were conducted to investigate the cyclic deformation behavior and the energy-based criterion of AZ31 magnesium alloy. The alloy exhibited an asymmetric hysteresis loop due to the twinning and detwinning effect. The cyclic stress responses showed cyclic hardening at all total strain amplitudes. To evaluate the plastic strain energy, the Halford-Morrow equation and a modified equation for magnesium alloy were compared. The effect of twinning on the total plastic strain energy dissipated during fatigue life was discussed. The variations of the twin and dislocation densities were also investigated using optical microscopy and transmission electron microscopy, respectively.

  11. Low cycle fatigue properties and microstructure evolution at 760 °C of a single crystal superalloy

    Directory of Open Access Journals (Sweden)

    Zhenxue Shi

    2015-02-01

    Full Text Available Low cycle fatigue (LCF behavior of a single crystal superalloy was investigated at 760 °C. Microstructure evolution and fracture mechanism were studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM, respectively. The results show that the fatigue data fluctuation was small and the fatigue parameters of the alloy had been determined. On increasing the cyclic number, the alloy initially showed slight cyclic softening at the early two or three cycles and slowly hardened to some extent afterwards, then kept stable for the most of the remaining fatigue life. The LCF of the alloy at 760 °C can be attributed to the main elastic damage in fatigue processing. The initiation site of fatigue crack was at or near the surface of the samples. Crack propagated perpendicularly to the loading direction at first and then along {111} octahedral slip planes. The fatigue fracture mechanism was quasi-cleavage fracture. The γ′ phase morphology still maintained cubic shape after fracture. There were a number of slip bands shear the γ′ precipitates and γ matrix near the fracture surface of the specimen. The inhomogeneous deformation microstructure was developed by dislocation motion of cross-slip and a limited γ′ precipitate shearing by slip band, stacking faults or single dislocation was observed.

  12. Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation

    OpenAIRE

    Dan Liu; Dirk John Pons

    2017-01-01

    Background—Creep-fatigue behavior is identified as the incorporated effects of fatigue and creep. One class of constitutive-based models attempts to evaluate creep and fatigue separately, but the interaction of fatigue and creep is neglected. Other models treat the damage as a single component, but the complex numerical structures that result are inconvenient for engineering application. The models derived through a curve-fitting method avoid these problems. However, the method of curving fit...

  13. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    Science.gov (United States)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  14. Low-cycle fatigue behavior of 316 stainless steel at FBR temperature. Effects of strain rate and strain wave form

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, Isamu; Kitagawa, Masaki; Ohtomo, Akira (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1983-07-01

    The effects of strain rate and strain wave form on the low-cycle fatigue behavior of 316 stainless steel at FBR temperature were studied in order to clarify the controlling factor of fatigue strength and fracture mechanism. The following major results are obtained. (1) Under symmetrical and asymmetrical straining (slow-fast and fast-slow wave) with the strain rate between 10/sup 0/%/sec to 10/sup -3/%/sec, the fatigue life decreases with a decrease of strain rate in tension going period. The fatigue life is affected only by the strain rate in tension going period, and is not affected by the strain rate in compression going period. Slow-fast wave is most damaging, but the effect of saw-tooth wave is not significant. (2) The dependence of fatigue life on the strain rate in tension going period may not be due to the creep effect but due to the dynamic strain aging effect proper to FBR temperature (500/sup 0/C to 600/sup 0/C) (3) The fracture mode changes from transgranular cracking to intergranular cracking with a decrease of strain rate in tension going period. Slow-fast wave enhances the intergranular cracking, whereas fast-slow wave enhances the transgranular cracking. (4) Thermal aging increases the fatigue life under symmetrical and asymmetrical straining, and the life reduction with the strain rate reduction in tension going period is not so significant for the thermally aged condition.

  15. Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2017-09-01

    Full Text Available Background—Creep-fatigue behavior is identified as the incorporated effects of fatigue and creep. One class of constitutive-based models attempts to evaluate creep and fatigue separately, but the interaction of fatigue and creep is neglected. Other models treat the damage as a single component, but the complex numerical structures that result are inconvenient for engineering application. The models derived through a curve-fitting method avoid these problems. However, the method of curving fitting cannot translate the numerical formulation to underlying physical mechanisms. Need—Therefore, there is a need to develop a new creep-fatigue formulation for metal that accommodates all relevant variables and where the relationships between them are consistent with physical mechanisms of fatigue and creep. Method—In the present work, the main dependencies and relationships for the unified creep-fatigue equation were presented through exploring what the literature says about the mechanisms. Outcomes—This shows that temperature, cyclic time and grain size have significant influences on creep-fatigue behavior, and the relationships between them (such as linear relation, logarithmical relation and power-law relation are consistent with phenomena of diffusion creep and crack growth. Significantly, the numerical form of “1 − x” is presented to show the consumption of creep effect on fatigue capacity, and the introduction of the reference condition gives the threshold of creep effect. Originality—By this means, the unified creep-fatigue equation is linked to physical phenomena, where the influence of different dependencies on creep fatigue was explored and relationships shown in this equation were investigated in a microstructural level. Particularly, a physical explanation of the grain-size exponent via consideration of crack-growth planes was proposed.

  16. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    Science.gov (United States)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  17. Identification and analysis of slip systems activated during low-cycle fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    El Bartali, A.; Aubin, V.; Sabatier, L. [Laboratoire de Mecanique de Lille, LML, UMR CNRS 8107, Ecole Centrale de Lille, BP 48, 59651 Villeneuve d' Ascq Cedex (France); Villechaise, P. [Laboratoire de Mecanique et de Physique des Materiaux, LMPM, UMR CNRS 6617, Ecole Nationale Superieure de Mecanique et Aerotechnique, Teleport 2, 1 Avenue C. Ader, BP 40109, 86961 Futuroscope, Chasseneuil Cedex (France); Degallaix-Moreuil, S. [Laboratoire de Mecanique de Lille, LML, UMR CNRS 8107, Ecole Centrale de Lille, BP 48, 59651 Villeneuve d' Ascq Cedex (France)], E-mail: suzanne.degallaix@ec-lille.fr

    2008-12-15

    This paper focuses on the identification of activated slip systems in low-cycle fatigue ({delta}{epsilon}{sub t}/2 = 5 x 10{sup -3}) in a duplex stainless steel. From electron backscattered diffraction measurements and scanning electron microscopy observations, the slip systems and their associated Schmid factor are analyzed in both constitutive phases. In austenitic grains, one or two slip systems are activated with Schmid factors greater than 0.25. While in the ferritic grains, several slip systems are activated, with a variety of Schmid factors.

  18. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  19. Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit

    Science.gov (United States)

    Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao

    Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.

  20. Low cycle fatigue behaviour of neutron irradiated copper alloys at 250 and 350 deg. C

    DEFF Research Database (Denmark)

    Singh, B.N.; Stubbins, J.F.; Toft, P.

    2000-01-01

    The fatique behaviour of a dispersion strengthened and a precipitation hardened copper alloys was investigated with and without irradiation exposure. Fatigue specimens of these alloys were irradiated with fission neutrons in the DR-3 reactor at Risø witha flux of approx2.5 x 1017 n/m2s (E> 1 Me...

  1. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  2. The influence of inclusions on the low cycle fatigue properties of reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.H.; Kima, S.W. [Kyoto Univ., Graduate School of Energy Science (Japan); Tanigawa, H. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan); Hirose, T. [Blanket Engineering Group, Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Kohyama, A. [Kyoto Univ., lnstitute of Advanced Energy (Japan)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic (RAFM) steels, such as F82H, are the primary near-term candidate for the blanket structural material of nuclear fusion reactors. During operation, blanket structural materials will be subjected to cyclic loading caused by start-up and shut-down procedure or plasma disruption. Therefore, investigation of fatigue property is essential to reactor design. It is considered that fatigue properties depend on the material factor such as the inclusion distribution, surface morphology and so on. Especially, many experimental results show that inclusions become the fracture origin in a given volume of material subjected to cyclic stress, and fracture failure is most likely to initiate at the largest inclusion in the volume. Therefore, the prediction of the size of maximum inclusion and its impact on fatigue properties would be essential to the fusion reactor materials development and application. This paper examines the possible relation between fatigue life and inclusion parameters such as size, shape, distribution and composition. The low cycle fatigue behavior of F82H steel at room temperature in air condition under fully reversed push-pull triangular wave was studied using miniaturized hourglass-type specimens with 1.25 mm in diameter. Total strain range is selected from 0.8% to 2.4%, and the strain rate was 0.04%/s. To examine the size and composition of the inclusions, fracture surfaces and crack initiation region were investigated by a scanning electron microscope (SEM) and EDS. The inclusions such as TaO{sub x}, TaO{sub x}- Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3} with the size below 10 {mu}m are observed on specimen surface. The surface observation of the specimen which discontinued testing at 20 and 500 cycle tested at the strain range of 1.4% revealed that fatigue loading induced separation of inclusions from the matrix in initial stage, then micro-crack induced around the inclusions

  3. Strain Ratio Effects on Low-Cycle Fatigue Behavior of Gravity Cast Al-Si-Cu Alloys

    Science.gov (United States)

    Fan, K. L.; Liu, X. S.; He, G. Q.; Cheng, H.; Lv, S. Q.

    2015-10-01

    The strain-controlled low-cycle fatigue properties of gravity cast Al-Si-Cu alloys for engine cylinder heads were investigated. At strain ratios of R ɛ = -2, 0, and 0.1, the cyclic stress amplitude progressively increased from initiation to the 450th cycle, and then proceeded into a steady stage until failure. At a strain ratio of R ɛ = -∞, the material exhibited a continuous cyclic hardening. The hysteresis loops in this alloy for the 2nd and half-life cycle were tension/compression asymmetry, which also corresponded well to the evolution of peak/valley stress. Transmission electron microscopy analysis suggested that cyclic hardening was caused by the dislocations multiplication/tangles at strain ratios of R ɛ = -∞ and 0. Besides, the presence of dislocation cross slip contributed to cyclic stabilization observed at later stage of deformation at a strain ratio of R ɛ = 0. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain ratios. It showed that the fatigue cracks initiated basically at the internal defects in the samples. Meanwhile, at strain ratios of R = -∞ and 0, the fracture surface was rough with a large number of small unequiaxed dimples and some tear ridges. Moreover, the localized pores offered a preferential crack path in the samples, where they were surrounded by silicon particles. At a strain ratio of R ɛ = -∞, the fatigue cracks preferentially initiated at pores rather than α-Fe phases. At a strain ratio of R ɛ = 0, where fatigue crack initiation was observed at the interface between plate-like branch of α-Fe phase and aluminum matrix.

  4. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  5. Effect of tensile dwell on high-temperature low-cycle fatigue and fracture behaviour of cast superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel

    2017-01-01

    Roč. 185, NOV (2017), s. 92-100 ISSN 0013-7944. [ICMFM 2016 - International Colloquium on Mechanical Fatigue of Metals /18./. Gijón, 05.09.2016-07.09.2016] R&D Projects: GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : Nickel-based superalloy * High-temperature low-cycle fatigue * Tensile dwell * Fatigue life * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.151, year: 2016

  6. An Experimental Study on the Low Cycle Fatigue Behaviors of Domestic IP Rotor Steel for 1000MW Ultra-Supercritical Turbine

    Science.gov (United States)

    Wang, Yanfeng; Lin, Fusheng; Zhao, Shuangqun

    Due to the good combination of high temperature strength and manufacturing performance, 10%Cr steel has been widely used as the material of 1000MW ultra-supercritical turbine HP/IP rotors in China. In addition to creep strength, good low cycle fatigue resistance is needed for rotor's design and service safety because high cyclic stresses are often produced during start-stop and variable load operations of turbine. In this paper, low cycle fatigue experiments of 12Cr10Mo1W1NiVNbN steel, which is a domestic IP rotor steel used in ultra-supercritical turbines, were carried out under constant strain condition at room temperature and 873K. The cyclic stress-strain relationship and strain-life curve were established using Ramberg-Osgood and Manson-Coffin equations, respectively. The transition fatigue life of the material was also obtained, over which the elastic strain dominates the fatigue life and under which the plastic strain does. Finally, the low cycle fatigue property of the current steel is compared with that of the German rotor materials reported in the literatures.

  7. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  8. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    Science.gov (United States)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  9. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  10. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 1: Preliminary results for 12 alloys at 1000 F (538 C)

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.

  11. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.

    Science.gov (United States)

    Islam, Md Nurul; Arai, Yoshio; Araki, Wakako

    2015-02-01

    The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy. The present study also proposes a modified constant cumulative plastic strain method and a PSB damage evolution model to predict the onset of crack growth under block loads. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  13. Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G., E-mail: giacomo.facheris@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Pham, M.-S. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland); Janssens, K.G.F., E-mail: koen.janssens@psi.ch [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institute, Villigen PSI (Switzerland); Holdsworth, S.R. [High Temperature Integrity Group, Mechanics for Modelling and Simulation, Swiss Federal Laboratories for Materials Science and Technology, EMPA, Dübendorf (Switzerland)

    2013-12-10

    When subjected to controlled cyclic deformation, the response of austenitic stainless steel typically involves primary hardening followed by softening, and eventually cyclic stabilization with or without secondary hardening. If a continuously drifting mean strain is superposed to an alternating strain path (i.e. strain controlled ratcheting), the response in terms of mean stress and strain amplitude is significantly different. A series of low cycle fatigue and ratcheting experiments are performed at room temperature on round specimens extracted from a batch of AISI 316L hot rolled plate. The experiments are interrupted at cycle numbers selected to correspond with the different strain controlled cycle response stages. The as-received material and the fatigued specimens are analyzed by means of transmission electron microscopy to characterize the microstructure and its evolution with cyclic loading. The low cycle fatigue experiments, performed to establish a reference point for the zero mean strain loading condition, are in line with observations reported for AISI 316L stainless steel by other authors. The continuously increasing mean strain is found to induce higher dislocation densities in the channels of the evolving microstructure, being responsible for the macroscopically observed additional hardening. The observed polarized dislocation walls at least partially accommodate the continuously drifting mean strain and play a role in the non-zero mean stress response.

  14. High-Temperature, Low-Cycle Fatigue of Copper-Base Alloys for Rocket Nozzles. Part 1: Data Summary for Materials Tested in Prior Programs

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1975-01-01

    A more detailed analysis of the results obtained in 188 previously reported low-cycle fatigue tests of various candidate materials for regeneratively-cooled, reusable rocket nozzle liners was reported. Plots of load range versus cycles were reported for each test along with a stress-strain hysteresis loop near half-life. In addition, a summary table was provided to compare N5 (cycles to a five percent load range drop) and Nf (cycles to complete specimen separation) values for each test.

  15. Fracture morphologies of carbon-black-loaded SBR (styrene-butadiene rubber) subjected to low-cycle, high-stress fatigue. [Styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A.; Lesuer, D.R.; Patt, J.

    1988-02-01

    Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was found that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.

  16. Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel

    Science.gov (United States)

    Lee, Byung Ho; Kim, In Sup

    1995-10-01

    The effect of dynamic strain aging on cyclic stress response and fatigue resistance of ASME SA508 Cl.3 forging steel for nuclear reactor pressure vessels has been evaluated in the temperature range of room temperature to 500°C. Total strain ranges and strain rates were varied from 0.7 to 2.0% and from 4 × 10 -4 to 1 × 10 -2 s -1, respectively. The cyclic stress response depended on the testing temperature, strain rate, and range. Generally, the initial cyclic hardening was immediately followed by cyclic softening at all strain rates. However, at 300°C, the operating temperature of nuclear reactor pressure vessels, the variation of cyclic stress amplitude showed the primary and secondary hardening stages dependent on the strain rate and strain range. Dynamic strain aging was manifested by enhanced cyclic hardening, distinguished secondary hardening, and negative strain rate sensitivity. A modified cell shutting model was described for the onset of the secondary hardening due to the dynamic strain aging and it was in good agreement with the experimental results. Fatigue life increased in strain rate at all testing temperatures. Specifically the fatigue life was longer at the dynamic strain aging temperature. Further, the dynamic strain aging was easy to initiate the crack, while crack propagation was retarded by crack branching and suppression of plastic zone, hence the dynamic strain aging caused the improvement of fatigue resistance.

  17. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  18. Modified 9% Cr steel (grade P9. 1): Low cycle fatigue and crack propagation rate of base material and welds at room and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vanderschaeghe, A.; Gabrel-Cousaert, C.; Lecoq, J.

    1992-01-01

    The low-cycle fatigue properties of weldment have been studied at 550deg C. The base material behaves the best, the main difference between in three zones of the weldment lies in the behaviour in the plastic range. The authors have studied the threshold values and crack growth rates for weldment at 20deg C and 550deg C for R = 0,1. The results show an increase of the crack growth rate of a factor 3 between room temperature and 550deg C. Moreover at 550deg C the influence of the ratio R has been studied only for base material in the range of 0,05 to 0,7. For values of R up to 0,4 the threshold values are related to oxide induced closure theory. (orig.).

  19. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Tran Hung Tra

    2016-12-01

    Full Text Available A hybrid element has been fabricated by friction welding, joining two superalloys Inconel 718 and Mar-M247. The high cycle fatigue behavior of this welded element was investigated at 500 °C and 700 °C. The fabrication could obtain excellent fatigue strength in which the fracture is located in the base metal Mar-M247 side and takes place outside the welded zone. The behavior of the joint under loadings is discussed through a simulation by the numerical finite element method.

  20. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  1. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  2. A comparative evaluation of low-cycle fatigue behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joint

    Science.gov (United States)

    Valsan, M.; Sundararaman, D.; Rao, K. Bhanu Sankara; Mannan, S. L.

    1995-05-01

    A comparative evaluation of the low-cycle fatigue (LCF) behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joints was carried out at 773 and 873 K. Total strain-controlled LCF tests were conducted at a constant strain rate of 3 × 10-3 s-1 with strain amplitudes in the range ±0.20 to ±1.0 pct. Weld pads with single V and double V configuration were prepared by the shielded metal-arc welding (SMAW) process using 316 electrodes for weld-metal and weld-joint specimens. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of the untested and tested samples were carried out to elucidate the deformation and the fracture behavior. The cyclic stress response of the base metal shows a very rapid hardening to a maximum stress followed by a saturated stress response. Weld metal undergoes a relatively short initial hardening followed by a gradual softening regime. Weld joints exhibit an initial hardening and a subsequent softening regime at all strain amplitudes, except at low strain amplitudes where a saturation regime is noticed. The initial hardening observed in base metal has been attributed to interaction between dislocations and solute atoms/complexes and cyclic saturation to saturation in the number density of slip bands. From TEM, the cyclic softening in weld metal was ascribed to the annihilation of dislocations during LCF. Type 316LN base metal exhibits better fatigue resistance than weld metal at 773 K, whereas the reverse holds true at 873 K. The weld joint shows the lowest life at both temperatures. The better fatigue resistance of weld metal is related to the brittle transformed delta ferrite structure and the high density of dislocations at the interface, which inhibits the growth rate of cracks by deflecting the crack path. The lower fatigue endurance of the weld joint was ascribed to the shortening of the crack initiation phase caused by surface intergranular crack initiation and to the poor

  3. Crack Progression during Sustained-Peak Low-Cycle Fatigue in Single-Crystal Ni-Base Superalloy René N5

    Science.gov (United States)

    Suzuki, A.; Gigliotti, M. F. X.; Hazel, B. T.; Konitzer, D. G.; Pollock, T. M.

    2010-04-01

    Crack progression during compressive sustained-peak low-cycle fatigue (SPLCF) was examined in vapor phase aluminide coated single-crystal Ni-base superalloy René N5. Strain-controlled tests with a 120-second hold at compression were conducted at 1366 K (1093 °C) with A = -1 ( R = -∞) and 0.35 pct total strain range, and were terminated at selected fractions of predicted life. Crack lengths on the surface and crack depth in longitudinal sections were examined for each specimen. All cracks appeared to have initiated at the coating surface. Failed specimens showed that cracks initially grew on (001), perpendicular to the stress axis, and then deflected to other crystallographic planes. Interrupted test specimens showed crevices initiated on the coating surface at less than 10 pct of the predicted life. The depths of crevices into the coating increased with cyclic exposure, but they did not penetrate into the substrate through the interdiffusion zone (IDZ) until about 80 pct of predicted life. Stress relaxation during compressive hold results in residual tension upon unloading. These results suggest that improving creep resistance of the substrate alloy and developing a coating system that can delay crack penetration into the substrate are keys for improved SPLCF life.

  4. Combined Effect of Hydrogen and Dynamic Strain Aging on Low Cycle Fatigue Behaviors of SA508 Gr.1a Low Alloy Steels in 310 .deg. C Deoxygenated Water

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Kim, Jeong Hyeon; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of); Kim, Tae Soon [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2011-05-15

    Significant reduction of fatigue life of structural materials in nuclear power plants is one of the issues of considerable significance to maintain superior integrity throughout their service life. From extensive studies, hydrogen induced cracking (HIC) is widely accepted mechanisms for reduction of fatigue life of low alloy steels (LAS) used as structural materials. Some of authors reported that hydrogen content in reactor pressure vessel could reach 2 {approx} 5 ppm during reactor operation. Hydrogen was resulted from corrosion reaction at the metal surface or crack tip in water. In addition, it has been reported that LAS is susceptible material for dynamic strain aging (DSA) in PWR environment at specific strain rate. Therefore, it is possible that the synergism between DSA and hydrogen might induce more significant LCF damage in PWR environment. In this regard, combined effect of DSA and hydrogen was investigated in this study. For that, LCF tests of SA508 Gr.1a LAS in various environments and tensile tests of hydrogen charged (H charged) samples in DSA range were conducted

  5. ELEVATED TEMPERATURE EFFECTS ON THE ELECTRICAL ...

    African Journals Online (AJOL)

    The effects of elevated temperatures on the electrical properties of Bi metal probe to Si thin films had been investigated for electric field values 10-100V/m. Measurements of current (I) – voltage (V) characteristics were obtained at temperatures 300,320,340,360,380 and 400K respectively. The results indicated linear I–V ...

  6. Elevated-Temperature Tribology of Metallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2010-01-01

    The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known to be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.

  7. Description of a system for interlocking elevated temperature mechanical tests

    Science.gov (United States)

    Schmale, D. T.; Poulter, G. A.

    1995-07-01

    Long term mechanical creep and fatigue testing at elevated temperatures requires reliable systems with safeguards to prevent destruction of equipment, loss of data, and negative environmental impacts. Toward this goal, a computer controlled system has been developed and built for interlocking tests run on elevated temperature mechanical test facilities. Sensors for water flow, water pressure, water leakage, temperature, power, and hydraulic status are monitored to control specimen heating equipment through solid state relays and water solenoid valves. The system is designed to work with the default interlocks present in the RF generators and mechanical tests systems. Digital hardware consists of two National Instruments I/O boards mounted in a Macintosh IIci computer. Software is written in National Instruments LabVIEW. Systems interlocked include two MTS closed loop servo controlled hydraulic test frames, one with an RF generator and one with both an RF generator and a quartz lamp furnace. Control for individual test systems is modularized making the addition of more systems simple. If any of the supporting utilities fail during tests, heating systems, chill water, and hydraulics are powered down, minimizing specimen damage and eliminating equipment damage. The interlock control is powered by an uninterruptible power supply. Upon failure the cause is documented in an ASCII file.

  8. 49 CFR 172.325 - Elevated temperature materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be marked...

  9. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690; Apport de la fatigue oligocyclique sur alliages Ni-Cr-Fe d'ultra haute purete et sur monocristaux de Ni a la comprehension sous contrainte des alliages 600 et 69O

    Energy Technology Data Exchange (ETDEWEB)

    Renaudot, N

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  10. Elevated Temperature and Allelopathy Impact Coral Recruitment.

    Science.gov (United States)

    Ritson-Williams, Raphael; Ross, Cliff; Paul, Valerie J

    2016-01-01

    As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature) and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium) to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics.

  11. Elevated Temperature and Allelopathy Impact Coral Recruitment.

    Directory of Open Access Journals (Sweden)

    Raphael Ritson-Williams

    Full Text Available As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics.

  12. Fatigue

    Science.gov (United States)

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  13. The application of the finite element method for the low-cycle fatigue calculation of the elementsof the pipelines’ fixed support construction for the areas of above-ground routing of the oil pipeline «Zapolyarye — NPS „Pur-Pe“»

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-02-01

    Full Text Available The present article studies the order of performing low-cycle fatigue strength calculation of the elements of the full-scale specimen construction of the fixed support DN 1000 of the above-ground oil pipeline “Zapolyarye — Purpe” during rig-testing. The calculation is performed with the aim of optimizing the quantity of testing and, accordingly, cost cutting for expensive experiments. The order of performing the calculation consists of two stages. At the first stage the calculation is performed by the finite element method of the full-scale specimen construction’s stressed-deformed state in the calculation complex ANSYS. Thearticle describes the main creation stages of the finite element calculation model for the full-scale specimen in ANSYS. The calculation model is developed in accordance with a three-dimensional model of the full-scale specimen, adapted for rig-testing by cyclic loads. The article provides the description of the full-scale specimen construction of the support and loading modes in rig-testing. Cyclic loads are accepted as calculation ones, which influence the support for the 50 years of the oil pipeline operation and simulate the composite impact in the process of the loads’ operation connected to the changes in the pumping pressure, operational bending moment. They also simulate preloading in the case of sagging of the neighboring free support. For the determination of the unobservable for the diagnostic devices defects impact on the reliability of the fixed support and welding joints of the fixed support with the oil pipeline by analogy with the full-scale specimen, artificial defects were embedded in the calculation model. The defects were performed in the form of cuts of the definite form, located in a special way in the spool and welding joints. At the second stage of calculation for low-cycle fatigue strength, the evaluation of the cyclic strength of the full-scale specimen construction’s elements of the

  14. Fatigue

    Science.gov (United States)

    ... as systemic lupus erythematosus Cancer Heart failure Diabetes Fibromyalgia Infection, especially one that takes a long time ... Bennett RM. Fibromyalgia, chronic fatigue syndrome, and ... Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, ...

  15. Experiment and calculation of reinforced concrete at elevated temperatures

    CERN Document Server

    Guo, Zhenhai

    2011-01-01

    Concrete as a construction material goes through both physical and chemical changes under extreme elevated temperatures. As one of the most widely used building materials, it is important that both engineers and architects are able to understand and predict its behavior in under extreme heat conditions. Brief and readable, this book provides the tools and techniques to properly analysis the effects of high temperature of reinforced concrete which will lead to more stable, safer structures. Based on years of the author's research, Reinforced Concrete at Elevated Temperatures four par

  16. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  17. Upshot of Elevated Temperature on Performance Facet of Fly Ash ...

    African Journals Online (AJOL)

    This study investigates the effects of elevated temperature variation on the compressive strength of Fly Ash/Ordinary Portland Cement (OPC) Laterized concrete (LATCON). Cube specimens were cast, cured in water at ambient laboratory temperature and subjected to different temperature regimes before testing.

  18. Mechanisms of Recovering Low Cycle Fatigue Damage in Incoloy 901.

    Science.gov (United States)

    1979-01-01

    borides , porosity, brittle second phases, ctc.). Kim and Laird point out that in pure metals, crack initiation occurs at persistent slip bands at low...carbo-nitrides, and borides intentionally added to control the grain size, improve creep resistance, increase grain boundary strength, and to vitiate...which can be forged and machined fairly conventionally (19). Incoloy 901 has an austenitic (y-f.c.c.) iron-nickel-chromium matrix. Molybdenum

  19. Life prediction in low cycle fatigue using elastic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tortel, J.; Petrequin, P.; Roche, R.

    1983-04-01

    First, a brief review of the methods proposed in open literature and in construction codes is done. Then, a comprehensive mechanical analysis shows that inelastic behavior leads to a magnification of elastically computed strain. This magnification is strongly related to the mechanical behavior of the component. It is low when kinematic requirements are prevailing and large when static requirements are dominant. In both cases, strain magnification value is easy to estimate. Intermediate cases are most difficult to analyse but methods like NEUBER's rule are well suited for practical cases. As a result of this analysis, a practical method is presented. The elastic computed strain range is divided in three parts. The first is the one which is load-controlled: either external forces or elastic follow-up are involved. For this part the magnification factor is easy to obtain. The second one is deformation controlled (usually only peak thermal strains). No magnification factor is applied to this part. The magnification factor for the third part is given in a chart as a function of temperature and elastic strain range. Charts are given for each specified material. They were derived from cyclic stress-strain curves according to the following assumption: the square root of the stress-strain product is not magnified. For high temperature prediction, the cyclic curves are corrected in order to account for the hold time effect.

  20. The cementation of nickel onto iron at elevated temperatures

    OpenAIRE

    Sareyed-Dim, Nadim Abdala

    2017-01-01

    Much research has been undertaken to find economic ways of recovering nickel from limonitic and silicate deposits. In one process, nickel ions are precipitated from aqueous solution at elevated temperature using metallic iron. A fundamental investigation into the reaction mechanism and kinetics has been undertaken using a rotating disc and a particulate geometry. Using a rotating disc geometry, the Influence of initial nickel ion concentration, reaction temperature, degree of stirrin...

  1. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  2. Fatigue characteristics of sand-cast AZ91D magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zhenming Li

    2017-03-01

    Full Text Available The fatigue characteristics of the AZ91D-T6 alloy samples taken from engine blocks have been investigated at 20 °C and elevated temperature (150 °C. The fatigue strength and cyclic stress amplitude of the alloy significantly decrease with the increase of the test temperature, although cyclic hardening occurs continuously until failure for both temperatures. With the increase of the temperature, the decreased fatigue life of the alloy tested at the same stress amplitude is mainly attributed to the decreased matrix strength and the increased hysteresis energies. Fatigue failure of the engine blocks made of AZ91D-T6 alloy is mainly controlled by casting defects. For the defect-free specimens, the crack initiation behavior is determined by the single-slip (20 °C and by environment-assisted cyclic slip (150 °C during fatigue, respectively. The low-cycle fatigue lives of the alloy can be predicted using the Coffin-Manson relation and Basquin laws, the three-parameter equation and the energy-based concepts, while the high-cycle fatigue lives of the alloy fitted well with the developed long crack life model and MSF life models.

  3. Vacuum thermal-mechanical fatigue behavior of two iron-base alloys

    Science.gov (United States)

    Sheffler, K. D.

    1976-01-01

    The present study extends the concept of in-phase grain boundary ratcheting to two iron-base alloys (Type 304 stainless steel and A286 alloy) and provides a clearer interpretation of out-of-phase grain boundary ratcheting effects observed in the A286 alloy which does not exhibit geometric instability. Elevated-temperature low-cycle thermal-mechanical fatigue tests in an ion-pumped ultrahigh vacuum chamber revealed significant effects of frequency and combined temperature-strain cycling on fatigue life. In-phase thermal cycling (tension at high temperature and compression at low temperature) caused large life reductions in both materials due to grain boundary cavitation caused by unreversed grain boundary sliding (grain boundary ratcheting). Out-of-phase thermal cycling (tension at low temperature and compression at high temperature) also caused large cyclic life reductions in both materials. In the A286 alloy, out-of-phase life reductions are attributed to compressive ratcheting.

  4. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  5. Properties of Free-Machining Aluminum Alloys at Elevated Temperatures

    Science.gov (United States)

    Faltus, Jiří; Karlík, Miroslav; Haušild, Petr

    In areas close to the cutting tool the workpieces being dry machined could be heated up to 350°C and they may be impact loaded. Therefore it is of interest to study mechanical properties of corresponding materials at elevated temperatures. Free-machining alloys of Al-Cu and Al-Mg-Si systems containing Pb, Bi and Sn additions (AA2011, AA2111B, AA6262, and AA6023) were subjected to Charpy U notch impact test at the temperatures ranging from 20 to 350°C. The tested alloys show a sharp drop in notch impact strength KU at different temperatures. This drop of KU is caused by liquid metal embrittlement due to the melting of low-melting point dispersed phases which is documented by differential scanning calorimetry. Fracture surfaces of the specimens were observed using a scanning electron microscope. At room temperature, the fractures of all studied alloys exhibited similar ductile dimple fracture micromorphology, at elevated temperatures, numerous secondary intergranular cracks were observed.

  6. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  7. 49 CFR 173.247 - Bulk packaging for certain elevated temperature materials.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packaging for certain elevated temperature... Than Class 1 and Class 7 § 173.247 Bulk packaging for certain elevated temperature materials. When... constructed of carbon steel which is in elevated temperature material service is excepted from § 178.345-7(d...

  8. Numerical Study of FRP Reinforced Concrete Slabs at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Masoud Adelzadeh

    2014-02-01

    Full Text Available One-way glass fibre reinforced polymer (GFRP reinforced concrete slabs at elevated temperatures are investigated through numerical modeling. Serviceability and strength requirements of ACI-440.1R are considered for the design of the slabs. Diagrams to determine fire endurance of slabs by employing “strength domain” failure criterion are presented. Comparisons between the existing “temperature domain” method with the more representative “strength domain” method show that the “temperature domain” method is conservative. Additionally, a method to increase the fire endurance of slabs by placing FRP reinforcement in two layers is investigated numerically. The amount of fire endurance gained by placing FRP in two layers increases as the thickness of slab increases.

  9. Complexation of Neptunium(V) with Fluoride at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Linfeng; Tian, Guoxin; Xia, Yuanxian; Friese, Judah I.

    2008-06-16

    Complexation of neptunium(V) with fluoride at elevated temperatures was studied by spectrophotometry and microcalorimetry. Two successive complexes, NpO{sub 2}F(aq) and NpO{sub 2}F{sub 2}{sup -}, were identified by spectrophotometry in the temperature range of 10-70 C. Thermodynamic parameters, including the equilibrium constants and enthalpy of complexation between Np(V) and fluoride at 10-70 C were determined. Results show that the complexation of Np(V) with fluoride is endothermic and that the complexation is enhanced by the increase in temperature - a two-fold increase in the stability constants of NpO{sub 2}F(aq) and more than five-fold increase in the stability constants of NpO{sub 2}F{sub 2}{sup -} as the temperature is increased from 10 to 70 C.

  10. Elevated temperature lasing from injection microdisk lasers on silicon

    Science.gov (United States)

    Kryzhanovskaya, N. V.; Moiseev, E. I.; Polubavkina, Y. S.; Maximov, M. V.; Mokhov, D. V.; Morozov, I. A.; Kulagina, M. M.; Zadiranov, Y. M.; Lipovskii, A. A.; Tang, M.; Liao, M.; Wu, J.; Chen, S.; Liu, H.; Zhukov, A. E.

    2018-01-01

    The combination of high operation temperatures and small diode lasers directly grown on silicon substrates is essential for their application in future photonic integrated circuits. In this letter, results are presented for quantum dot III–V-on-Si microdisk diode lasers tested at elevated temperatures. To the best of our knowledge, we have demonstrated the first uncooled microlasers with diameter of 30 µm capable of operating in the continuous wave regime at 60 °C. In the lasing regime, the emission spectra contain one very intense line with a full-width at half-maximum of 30 pm; the side mode suppression ratio reaches 18 dB. Because of self-heating, the actual temperature of the active region is close to 100 °C. Under pulsed excitation, the maximal lasing temperature is 110 °C.

  11. The tensile behavior of GH3535 superalloy at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.F.; Zhou, B.M.; Huang, H.F.; Leng, B.; Lu, Y.L. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Dong, J.S. [Superalloy Division, Institute of Metal Research, Chinese Academy of Sciences (China); Li, Z.J., E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Zhou, X.T. [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China)

    2016-10-01

    The tensile behavior of GH3535 alloy has been investigated at strain rates of 8.33 × 10{sup −5}/s{sup −1}–8.33 × 10{sup −3}/s{sup −1}, in the temperature range of 25–800 °C. The results showed that the ultimate tensile strength was decreased with increasing temperature and increased with rising strain rate, whereas the yield strength kept almost a constant value at the temperature range from 550 to 800 °C in all strain rates test. The formation of M{sub 12}C carbides at the grain boundary during the tension process played an important role in increasing the yield strength of the alloy at elevated temperatures. But inhomogeneous deformation at 650 °C resulted in the minimum ductility of the alloy. Additionally, various types of serrations were noticed on the stress-strain curves for the alloy tested in the temperature range of 500–800 °C. Normal Portevin-Le Chatelier (PLC) effect and positive strain rate sensitivity were observed in this alloy. Type A and A + B serrations were presented to stress-strain curves at temperatures below 650 °C, whereas type C serration was noticed when the temperature rose above 650 °C. The analysis suggested that the interactions between substitutional solutes migration and mobile dislocations were the main reason for the serrated flow behavior in this alloy. - Highlights: • The tensile behavior of GH3535 alloy at elevated temperature was studied. • The yield strength anomaly was observed in the temperature range from 550 to 800 °C. • The formation of M{sub 12}C improves the grain boundary strength to a certain extent. • Inhomogeneous deformation at 650 °C results in the ductility loss of the alloy. • The interaction between solute atoms and dislocations results in the PLC effect.

  12. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  13. Elevated-temperature luminescence measurements to improve spatial resolution

    Science.gov (United States)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  14. Damage tolerance of nuclear graphite at elevated temperatures

    Science.gov (United States)

    Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.

    2017-06-01

    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800-1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are `frozen-in' following processing.

  15. Creep and Creep-Fatigue of Alloy 617 Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jill K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Laura J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  16. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  17. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fatigue Behavior of IM7/BMI 5250-4 Composite at Room and Elevated Temperatures

    Science.gov (United States)

    2015-03-01

    to the ancient Egyptians and their use of clay bricks reinforced with straw , but it is most commonly used in steel-reinforce concrete today [5, p...polycomp.mse.iastate.edu/files/2012/01/6-Bismaleimide-Resins.pdf. [Accessed 2015 Jan 29]. [20] M. J. Owen and T. R. Smith, Plastics and Polymers

  19. Effects of Contact Load on the Fretting Fatigue Behavior of IN-100 at Elevated Temperature

    Science.gov (United States)

    2009-03-01

    outstanding properties. The face centered cubic lattice of nickel gives adequate ductility near cryogenic temperatures as well as good strength up to 70...24.1935 mm2. The edges of the specimens were rounded slightly by grinding wheel and then were hand polished along with a very fine 52 grain sand...processes such as machining and grinding , through non-uniform cooling during processing, or from a phase transformation that is induced upon cooling

  20. Fatigue and Fracture of Polycrystalline Silicon and Diamond MEMS at Room and Elevated Temperatures

    National Research Council Canada - National Science Library

    Chasiotis, Ioannis

    2006-01-01

    ...) and polycrystalline silicon (polysilicon) for microelectromechanical systems (MEMS). Polysilicon and ta-C test structures were fabricated at the Sandia National Laboratories (SNL) and at MCNC-Cronos...

  1. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    Science.gov (United States)

    2014-03-27

    would like to thank my Lord and Savior Jesus Christ for this opportunity and for sustaining me throughout the past year and a half. I would also like...showing the proportional limit. The bilinear nature of the stress- strain curve is evident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17...change in the stress-strain curve for PMR-15 neat resin with increasing temperature can be seen in Figure 8. It is evident that the ultimate tensile

  2. Dynamic Uniaxial Compression of HSLA-65 Steel at Elevated Temperatures

    Science.gov (United States)

    Dike, Shweta; Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present study, the dynamic response of a high-strength, low alloy Grade 65 (HSLA-65) steel, used by the United States Navy for ship hull construction, is investigated under dynamic uniaxial compression at temperatures ranging from room temperature to 1000 °C using a novel elevated temperature split-Hopkinson pressure bar. These experiments are designed to probe the dynamic response of HSLA-65 steel in its single α-ferrite phase, mixed α + γ-austenite phase, and the single γ-austenite phase, as a function of temperature. The investigation is conducted at two different average strain rates—1450 and 2100/s. The experimental results indicate that at test temperatures in the range from room temperature to lower than 600 °C, i.e. prior to the development of the mixed α + γ phase, a net softening in flow strength is observed at all levels of plastic strain with increase in test temperatures. As the test temperatures are increased, the rate of this strain softening with temperature is observed to decrease, and at 600 °C the trend reverses itself resulting in an increase in flow stress at all strains tested. This increase in flow stress is understood be due to dynamic strain aging, where solute atoms play a distinctive role in hindering dislocation motion. At 800 °C, a (sharp) drop in the flow stress, equivalent to one-half of its value at room temperature, is observed. As the test temperature are increased to 900 and 1000 °C, further drop in flow stress are observed at all plastic strain levels. In addition, strain hardening in flow stress is observed at all test temperatures up to 600 °C; beyond 800 °C the rate of strain hardening is observed to decrease, with strain softening becoming dominant at temperatures of 900 °C and higher. Moreover, comparing the high strain rate stress versus strain data gathered on HSLA 65 in the current investigation with those available in the literature at quasi-static strain rates, strain-rate hardening can be

  3. Time-dependent deformation at elevated temperatures in basalt from El Hierro, Stromboli and Teide volcanoes

    Science.gov (United States)

    Benson, P. M.; Fahrner, D.; Harnett, C. E.; Fazio, M.

    2014-12-01

    Time dependent deformation describes the process whereby brittle materials deform at a stress level below their short-term material strength (Ss), but over an extended time frame. Although generally well understood in engineering (where it is known as static fatigue or "creep"), knowledge of how rocks creep and fail has wide ramifications in areas as diverse as mine tunnel supports and the long term stability of critically loaded rock slopes. A particular hazard relates to the instability of volcano flanks. A large number of flank collapses are known such as Stromboli (Aeolian islands), Teide, and El Hierro (Canary Islands). Collapses on volcanic islands are especially complex as they necessarily involve the combination of active tectonics, heat, and fluids. Not only does the volcanic system generate stresses that reach close to the failure strength of the rocks involved, but when combined with active pore fluid the process of stress corrosion allows the rock mass to deform and creep at stresses far lower than Ss. Despite the obvious geological hazard that edifice failure poses, the phenomenon of creep in volcanic rocks at elevated temperatures has yet to be thoroughly investigated in a well controlled laboratory setting. We present new data using rocks taken from Stromboli, El Heirro and Teide volcanoes in order to better understand the interplay between the fundamental rock mechanics of these basalts and the effects of elevated temperature fluids (activating stress corrosion mechanisms). Experiments were conducted over short (30-60 minute) and long (8-10 hour) time scales. For this, we use the method of Heap et al., (2011) to impose a constant stress (creep) domain deformation monitored via non-contact axial displacement transducers. This is achieved via a conventional triaxial cell to impose shallow conditions of pressure (<25 MPa) and temperature (<200 °C), and equipped with a 3D laboratory seismicity array (known as acoustic emission, AE) to monitor the micro

  4. Martensitic high nitrogen steel for applications at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Berns, H.; Escher, C. [Bochum Univ. (Germany); Streich, W.-D. [TRW Deutschland GmbH, Blumberg (Germany)

    1999-07-01

    Based on required material properties for inlet valves in combustion engines a martensitic high nitrogen steel was created. After selecting an alloy system with 14-17 w/o Cr, 1-3 w/o Mo, 0.1-0.3 w/o V and 0.4-0.7 w/o N by method of thermodynamical calculations of phase equilibria the newly developed martensitic steel was produced by pressurized electroslag remelting. Hot tensile tests and corrosion tests were carried out on hardened and tempered specimens in comparison with two standard valve steels. The high nitrogen steel shows a distinctly better corrosion resistance and high-temperature strength than the standard steel X45CrSi9-3 and is therefore comparable with the steel X85CrMoV18-2. Due to finer nitrides the newly developed steel is characterized by a fatigue strength which is 26% higher at 500 C service temperature. (orig.)

  5. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    Science.gov (United States)

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  6. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures.

    Science.gov (United States)

    Abdulkareem, Omar A; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed

    2013-10-09

    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.

  7. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis

    OpenAIRE

    Huot, Bethany; Castroverde, Christian Danve M.; Velásquez, André C.; Hubbard, Emily; Pulman, Jane A.; Yao, Jian; Childs, Kevin L.; Tsuda, Kenichi; Montgomery, Beronda L.; He, Sheng Yang

    2017-01-01

    Environmental conditions profoundly affect plant disease development; however, the underlying molecular bases are not well understood. Here we show that elevated temperature significantly increases the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato (Pst) DC3000 independently of the phyB/PIF thermosensing pathway. Instead, elevated temperature promotes translocation of bacterial effector proteins into plant cells and causes a loss of ICS1-mediated salicylic acid (SA) biosynth...

  8. The effect of elevated temperature on the toxicity of the laboratory cultured dinoflagellate Ostreopsis lenticularis (Dinophyceae).

    Science.gov (United States)

    Ashton, Mayra; Tosteson, Thomas; Tosteson, Carmen

    2003-06-01

    Ostreopsis lenticularis Fukuyo 1981, is the major benthic dinoflagellate vector implicated in ciguatera fish poisoning in finfish on the southwest coast of Puerto Rico. Clonal laboratory cultures of O. lenticularis (clone 301) exposed to elevated temperatures (30-31 degrees C) for 33 and 54 days showed significant increases in the quantity of extractable toxin they produced as compared to their toxicities versus cells grown at temperatures of 25-26 degrees C. O lenticularis samples collected directly from the field following exposure to elevated temperatures for comparable periods of time also showed significant increases in extractable toxin. The increased toxicity of both field sampled and laboratory grown O. lenticularis exposed to elevated temperatures may result from the effects of elevated temperatures on their metabolism and/or the bacterial symbionts found associated with these microalgae. The number of bacteria associated with cultured O. lenticularis exposed to elevated temperatures was significantly reduced. Increased toxin recovery from O. lenticularis exposed to elevated temperatures may have resulted from the direct effect of temperature on toxin production and/or the reduction of Ostreopsis associated bacterial flora that consume toxin in the process of their growth. This reduction in the quantity of associated bacterial flora in temperature treated cultures may result in increased toxin recovery from O. lenticularis due to a reduction in the consumption of toxin by these symbiont bacteria.

  9. elevated temperatures

    African Journals Online (AJOL)

    2007-10-12

    Oct 12, 2007 ... Optical absorption and luminescence studies of alkali halide crystals doped with divalent europium, Eu“, ions have shown that the formation of precipitate phases of the Eu2+ ions in the crystals modifies the optical absorption spectra of the ions in the lattice of the host crystals. This is attributed to changes in ...

  10. Degradation chemistry of N719 and Z-907 dyes at elevated temperatures

    DEFF Research Database (Denmark)

    Lund, Torben; Nguyen, Hoang Thai; Phuong, Nguyen Tuyet

    2009-01-01

    Degradation chemistry of N719 and Z-907 dyes at elevated temperatures.   Torben Lunda, Phuong Tuyet Nguyena and Hoang Thai Nguyenb aDepartment of Science, Systems and Models, Roskilde University, DK-4000, Denmark bDepartment of Chemistry, University of Sciences, HoChiMinh City, Vietnam...

  11. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  12. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties.

    Science.gov (United States)

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo

    2005-01-01

    Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.

  13. Design of Cold-Formed Steel Screw Connections with Gypsum Sheathing at Ambient and Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-09-01

    Full Text Available Load-bearing cold-formed steel (CFS walls sheathed with double layers of gypsum plasterboard on both sides have demonstrated good fire resistance and attracted increasing interest for use in mid-rise CFS structures. As the main connection method, screw connections between CFS and gypsum sheathing play an important role in both the structural design and fire resistance of this wall system. However, studies on the mechanical behavior of screw connections with double-layer gypsum sheathing are still limited. In this study, 200 monotonic tests of screw connections with single- or double-layer gypsum sheathing at both ambient and elevated temperatures were conducted. The failure of screw connections with double-layer gypsum sheathing in shear was different from that of single-layer gypsum sheathing connections at ambient temperature, and it could be described as the breaking of the loaded sheathing edge combined with significant screw tilting and the loaded sheathing edge flexing fracture. However, the screw tilting and flexing fracture of the loaded sheathing edge gradually disappear at elevated temperatures. In addition, the influence of the loaded edge distance, double-layer sheathing and elevated temperatures is discussed in detail with clear conclusions. A unified design formula for the shear strength of screw connections with gypsum sheathing is proposed for ambient and elevated temperatures with adequate accuracy. A simplified load–displacement model with the post-peak branch is developed to evaluate the load–displacement response of screw connections with gypsum sheathing at ambient and elevated temperatures.

  14. Flexural Fatigue Behavior of an EBC CMC Composite System In Air and Steam at High Temperature

    Science.gov (United States)

    Jaskowiak, Martha; Bur, Michael; Harder, Bryan; Gorican, Daniel

    2017-01-01

    Both coated and uncoated SiCSiC ceramic matrix composite (CMC) samples were tested in flexure under sustained peak low cycle fatigue (SPLCF) conditions in air or steam at elevated temperatures. The SiCSiC composites were reinforced with 2-D plies of boron nitride coated Hi-Nicalon Type-S SiC fibers which were woven as 5 harness satin (5HS) cloth. The composites were densified by chemical vapor infiltration (CVI) followed by slurry melt infiltration (SMI). A multilayer barium strontium aluminosilicate (BSAS) coating was applied to the samples by a plasma spray method. Fatigue loading limits were determined from monotonic flexure tests at room temperature and 1200oC. Stress levels under the proportional limit of the composite material were selected for the SPLCF tests. After cyclic testing, the composites were evaluated to determine crack propagation and failure modes in the coated and uncoated composites. Microstructural examination was used to identify coating degradation and failure modes of the EBCCMC system.

  15. GWAS of Barley Phenotypes Established Under Future Climate Conditions of Elevated Temperature, CO2, O3 and Elevated Temperature and CO2 Combined

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Backes, G.; Lyngkjær, M. F.

    2015-01-01

    Climate change is likely to decrease crop yields worldwide. Developing climate resilient cultivars is one way to combat this production scarcity, however, little is known of crop response to future climate conditions and in particular the variability within crops.In Scandinavia, barley is widely...... yield, grain protein concentration, grain protein harvested, number of grains, number of ears, aboveground vegetative biomass and harvest index. In addition, stability of the production was calculated over the applied treatments for the assessed parameters.In the climate scenario of elevated temperature...... and [CO2] the grain yield of barley decreased 29% and harvested grain protein declined 22%. Vast variation was identified among the individual barley accessions, which should be exploited by plant breeders in the development of climate resilient cultivars.A genome-wide association study (GWAS) of recorded...

  16. Viscoelastoplastic Deformation and Damage Response of Titanium Alloy, Ti-6Al-4V, at Elevated Temperatures

    Science.gov (United States)

    Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.

    2013-01-01

    Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.

  17. Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature

    Directory of Open Access Journals (Sweden)

    Mattias Calmunger

    2014-01-01

    Full Text Available In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L and one nickel-base alloy (Alloy 617 have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

  18. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xue-Min; Mei, Ping; Mi, Yuanzhu; Gao, Lin; Qin, Shaoxiong [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023 (China)

    2009-01-15

    Novel water-retention proton exchange membrane of Nafion-phosphotungstic acid/mesoporous silica with hydrophilic capillaries has been fabricated to improve the elevated temperature performance of the PEM fuel cells. Due to the hydrophilic capillarity of the HPW/meso-SiO{sub 2} mesoporous structure, the Nafion-HPW/meso-SiO{sub 2} composite membrane retained 23.7 wt% of water after being dried in 100 C for 2 h and then exposed in 25 RH% gas for 2 h. As a result, under the condition of elevated temperature of 120 C and low humidity of 25 RH%, the Nafion-HPW/meso-SiO{sub 2} composite membrane showed a steady performance. (author)

  19. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-11-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ`s) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  20. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    Science.gov (United States)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  1. First-step mutations for adaptation at elevated temperature increase capsid stability in a virus.

    Directory of Open Access Journals (Sweden)

    Kuo Hao Lee

    Full Text Available The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing.

  2. First-step mutations for adaptation at elevated temperature increase capsid stability in a virus.

    Science.gov (United States)

    Lee, Kuo Hao; Miller, Craig R; Nagel, Anna C; Wichman, Holly A; Joyce, Paul; Ytreberg, F Marty

    2011-01-01

    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing.

  3. Apparatus for production, measurement and reaction studies of dissociated gases at elevated temperatures

    Science.gov (United States)

    Christian, J. D.; Gilbreath, W. P.

    1975-01-01

    An apparatus is described which is used for the controlled production, characterization, and study of dissociated gases in a microwave discharge at elevated temperatures. A unique feature is the ability to produce and study a microwave discharge plasma in the heated zone. This allows elevated temperature reactions to be studied in high concentrations of dissociated gases. Further, the system permits weight change measurements of specimens in the plasma, thus facilitating reaction rate determinations. Included is a description of a cavity for use on a 50-mm diameter cylindrical reactor. The effects of flow rate, pressure, temperature, power, metal sample, and sampling position on dissociation percentage of oxygen in the apparatus are described as well as a technique for sample temperature measurements in the plasma which permits determination of high temperature recombination coefficients and reaction rates.

  4. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites

    Directory of Open Access Journals (Sweden)

    Les Vickers

    2016-06-01

    Full Text Available In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress. Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  5. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures

    KAUST Repository

    Li, Meng

    2017-02-20

    Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures.

  6. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites.

    Science.gov (United States)

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-06-03

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  7. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures

    OpenAIRE

    Ke-cheng He; Rong-xin Guo; Qian-min Ma; Feng Yan; Zhi-wei Lin; Yan-Lin Sun

    2016-01-01

    In order to improve the spalling resistance of lightweight aggregate concrete at high temperature, two types of modified materials were used to modify clay ceramsite lightweight aggregates by adopting the surface coating modification method. Spalling of the concrete specimens manufactured by using the modified aggregates was observed during a temperature elevation. Mass loss and residual axial compressive strength of the modified concrete specimens after exposure to elevated temperatures were...

  8. The effect of elevated temperature on the toxicity of the laboratory cultured dinoflagellate Ostreopsis lenticularis (Dinophyceae)

    OpenAIRE

    Ashton, Mayra; Tosteson, Thomas; Tosteson, Carmen

    2016-01-01

    Ostreopsis lenticularis Fukuyo 1981, is the major benthic dinoflagellate vector implicated in ciguatera fish poisoning in finfish on the southwest coast of Puerto Rico. Clonal laboratory cultures of O. lenticularis (clone 301) exposed to elevated temperatures (30-31°C) for 33 and 54 days showed significant increases in the quantity of ex-tractable toxin they produced as compared to their toxicities versus cells grown at temperatures of 25-26°C. O. lenticularis samples collected directly from ...

  9. Guidelines and procedures for design of Class 1 elevated temperature nuclear system components

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    This standard provides guidelines and procedures which may be used by the manufacturer in satisfying the requirements given for design of class 1 elevated temperature nuclear system components. Guidance is given regarding planning and control of design analysis. A sequence for calculations is recommended. Methods of analysis, including procedures to account for environmental effects, are given which are acceptable in principle to the owner. A format is provided for use in documentation of design analyses.

  10. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures

    OpenAIRE

    Chen, G M.; He, Y. H.; Yang, H.; Chen, J F; Guo, Y. C.

    2014-01-01

    For sustainability considerations, the use of recycled aggregate in concrete has attracted many interests in the research community. One of the main concerns for using such concrete in buildings is its spalling in fire. This may be alleviated by adding steel fibers to form steel fiber reinforced recycled aggregate concrete (SFRAC). This paper presents an experimental investigation into the compressive properties of SFRAC cylinders after exposure to elevated temperatures, including the compres...

  11. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-11-01

    Full Text Available Background: Tropical and subtropical Africa is predicted to experience a rise in temperature. The effects of rising temperatures on temperate grasslands have been studied using open-top chambers (OTCs but reports for tropical/subtropical grasslands are scarce. This study used OTCs to investigate the effects of elevated temperatures on a threatened subtropical grassland type, namely KwaZulu-Natal Sandstone Sourveld (KZNSS.Objectives: To assess the effects of OTCs on selected abiotic parameters and plant productivity within KZNSS.Methods: Five OTC and control plots were randomly distributed at the same altitude within a patch of KZNSS. Air and soil temperature, relative humidity (RH, soil moisture content and light intensity were monitored in all plots in spring, summer, autumn and winter. Biomass production and plant density were measured in each season, for each life form (graminoid, forb and shrub, separately and combined.Results: The OTCs resulted in a rise in average, maximum and minimum day and night, air and soil temperatures. This increase, the degree of which differed across seasons, was accompanied by a decline in RH and soil moisture content. Elevated temperatures led to a significant increase in combined, graminoid and shrub above-ground productivity (AGP and a decrease in forb density, but in certain seasons only. Below-ground biomass production was unaffected by elevated temperatures.Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  12. Electrospun melamine resin-based multifunctional nonwoven membrane for lithium ion batteries at the elevated temperatures

    Science.gov (United States)

    Wang, Qingfu; Yu, Yong; Ma, Jun; Zhang, Ning; Zhang, Jianjun; Liu, Zhihong; Cui, Guanglei

    2016-09-01

    A flame retardant and thermally dimensional stable membrane with high permeability and electrolyte wettability can overcome the safety issues of lithium ion batteries (LIBs) at elevated temperatures. In this work, a multifunctional thermoset nonwoven membrane composed of melamine formaldehyde resin (MFR) nano-fibers was prepared by a electro-spinning method. The resultant porous nonwoven membrane possesses superior permeability, electrolyte wettability and thermally dimensional stability. Using the electrospun MFR membrane, the LiFePO4/Li battery exhibits high safety and stable cycling performance at the elevated temperature of 120 °C. Most importantly, the MFR membrane contains lone pair electron in the nitrogen element, which can chelate with Mn2+ ions and suppress their transfer across the separator. Therefore, the LiMn2O4/graphite cells with the electrospun MFR multifunctional membranes reveal an improved cycle performance even at high temperature. This work demonstrated that electrospun MFR is a promising candidate material for high-safety separator of LIBs with stable cycling performance at elevated temperatures.

  13. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  14. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  15. Page 1 Dynamic strain ageing and low cycle fatigue Development of ...

    Indian Academy of Sciences (India)

    Development of crude cells with randomly arranged dislocations in cell walls. Figure 10. at 298 K for type 316LNSS. Figure 11. Well-developed cell structure at 573 K with relatively few dislocations in the interior regions of the cells in type 316LNSS, at 873 K (figure 13). The transition from cells to homogeneous dislocation ...

  16. Dynamic strain ageing evidences during low cycle fatigue deformation in ferritic martensitic stainless steels

    Science.gov (United States)

    Armas, A. F.; Avalos, M.; Alvarez-Armas, I.; Petersen, C.; Schmitt, R.

    1998-10-01

    The influence of dynamic strain ageing (DSA) on the strain cyclic behaviour of ferrite-martensite stainless steels was investigated at temperatures ranging from room temperature to 823 K. For fully annealed AISI 420 initial hardening followed by a saturation stage was observed at each test temperature. This steel was found to be susceptible to DSA as evidenced by the temperature independent stress saturation observed between 523 and 723 K. Normalized and tempered MANET II and F82H mod. softens during cyclic loading at all temperatures. In this steel DSA manifestations were observed on plotting the peak tensile stress difference between hysteresis loops obtained at different strain rates. Strongly abnormal behaviour with higher peak tensile stresses corresponding to slower strain rates was observed in the temperature range between 500 and 700 K. It is proposed that DSA mechanisms caused by the drag of solution carbon atoms is responsible for this unusual behaviour.

  17. High Temperature Low Cycle Fatigue Data for Three High Strength Nickel-Base Superalloys.

    Science.gov (United States)

    1980-06-01

    The tensile and creep properties of Rene 95 are summarized in Table 6. 14 TABLE 5 CRDMICAL COMPOSITION OF RENE 95* Nickel 61 Chromium 14 Cobalt 8... Stent , Mar-Test Inc. Cincinnati, Ohio June 1980 TECHNICAL REPORT AFWAL-TR-80-4077 Final Report for Period May 1976 - September 1978 Approved for...tantalum, and hafnium; and depleted in chromium , a M23C6 carbide former. The grain size of the as-HIP AF-115 was ASTM #7.0 (30p diameter), while the HIP

  18. High strength reinforcing steel bars : low-cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  19. High strength reinforcing steel bars : low cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  20. Mechanical properties of long carbon fiber reinforced thermoplastic (LFT) at elevated temperature

    Science.gov (United States)

    Wang, Qiushi

    Long fiber reinforced thermoplastics (LFT) possess high specific modulus and strength, superior damage tolerance and fracture toughness and have found increasing use in transportation, military, and aerospace applications. However, one of the impediments to utilizing these materials is the lack of performance data in harsh conditions, especially at elevated temperature. In order to quantify the effect of temperature on the mechanical properties of carbon fiber reinforced thermoplastic composites, carbon fiber PAA composite plates containing 20% and 30% carbon fiber were produced using extrusion/compression molding process and tested at three representative temperatures, room temperature (RT 26°C), middle temperature (MID 60°C) and glass transition temperature (Tg 80°C). A heating chamber was designed and fabricated for the testing at elevated temperature. As temperature increases, flexural modulus, flexural strength, tensile modulus and tensile strength decrease. The highest reduction observed in stiffness (modulus) values of 30% CF/PAA at Tg in the 00 orientation is 75%. The reduction values were larger for the transverse (perpendicular to flow direction) samples than the longitudinal (flow direction) samples. The property reduction in 30% CF/PAA is larger than 20% CF/PAA. Furthermore, an innovative method was developed to calculate the fiber content in carbon fiber reinforced composites by burning off the neat resin and sample in a tube furnace. This method was proved to be accurate (within 1.5 wt. % deviation) by using burning off data obtained from CF/Epoxy and CF/Vinyl Ester samples. 20% and 30% carbon/PAA samples were burned off and carbon fiber content was obtained using this method. The results of the present study will be helpful in determining the end-user applications of these composite materials. Keywords: Long Carbon Fibers, Elevated Temperature, Mechanical Properties, Burn off Test.

  1. Elevated temperature crack growth in aluminum alloys: Tensile deformation of 2618 and FVS0812 aluminum alloys

    Science.gov (United States)

    Leng, Yang; Gangloff, Richard P.

    1990-01-01

    Understanding the damage tolerance of aluminum alloys at elevated temperatures is essential for safe applications of advanced materials. The objective of this project is to investigate the time dependent subcritical cracking behavior of powder metallurgy FVS0812 and ingot metallurgy 2618 aluminum alloys at elevated temperatures. The fracture mechanics approach was applied. Sidegrooved compact tension specimens were tested at 175, 250, and 316 C under constant load. Subcritical crack growth occurred in each alloy at applied stress intensity levels (K) of between about 14 and 25 MPa/m, well below K (sub IC). Measured load, crack opening displacement and displacement rate, and crack length and growth rate (da/dt) were analyzed with several continuum fracture parameters including, the C-integral, C (sub t), and K. Elevated temperature growth rate data suggest that K is a controlling parameter during time dependent cracking. For FVS0812, da/dt is highest at 175 C when rates are expressed as a function of K. While crack growth rate is not controlled by C (sub t) at 175 C, da/dt appears to better correlate with C (sub t) at higher temperatures. Creep brittle cracking at intermediate temperatures, and perhaps related to strain aging, is augmented by time dependent transient creep plasticity at higher temperatures. The C (sub t) analysis is, however, complicated by the necessity to measure small differences in the elastic crack growth and creep contributions to the crack opening displacement rate. A microstructural study indicates that 2618 and FVS0812 are likely to be creep brittle materials, consistent with the results obtained from the fracture mechanics study. Time dependent crack growth of 2618 at 175 C is characterized by mixed transgranular and intergranular fracture. Delamination along the ribbon powder particle boundaries occurs in FVS0812 at all temperatures. The fracture mode of FVS0812 changes with temperature. At 175 C, it is characterized as dimpled rupture

  2. Effects of Control Mode and R-Ratio on the Fatigue Behavior of a Metal Matrix Composite

    Science.gov (United States)

    2005-01-01

    Composite Because of their high specific stiffness and strength at elevated temperatures, continuously reinforced metal matrix composites (MMC's) are under consideration for a future generation of aeropropulsion systems. Since components in aeropropulsion systems experience substantial cyclic thermal and mechanical loads, the fatigue behavior of MMC's is of great interest. Almost without exception, previous investigations of the fatigue behavior of MMC's have been conducted in a tension-tension, load-controlled mode. This has been due to the fact that available material is typically less than 2.5-mm thick and, therefore, unable to withstand high compressive loads without buckling. Since one possible use of MMC's is in aircraft skins, this type of testing mode may be appropriate. However, unlike aircraft skins, most engine components are thick. In addition, the transient thermal gradients experienced in an aircraft engine will impose tension-compression loading on engine components, requiring designers to understand how the MMC will behave under fully reversed loading conditions. The increased thickness of the MMC may also affect the fatigue life. Traditionally, low-cycle fatigue (LCF) tests on MMC's have been performed in load control. For monolithic alloys, low-cycle fatigue tests are more typically performed in strain control. Two reasons justify this choice: (1) the critical volume from which cracks initiate and grow is generally small and elastically constrained by the larger surrounding volume of material, and (2) load-controlled, low-cycle fatigue tests of monolithics invariably lead to unconstrained ratcheting and localized necking--an undesired material response because the failure mechanism is far more severe than, and unrelated to, the fatigue mechanism being studied. It is unknown if this is the proper approach to composite testing. However, there is a lack of strain-controlled data on which to base any decisions. Consequently, this study addresses the

  3. Tensile behaviour of radiata pine with different moisture contents at elevated temperatures

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    that moisture and temperature can play a significant role in reducing stress during drying, regardless of the drying time. Properties of wood, such as tensile elastic information at elevated temperatures, are important for mechanical design, distortion modelling and understanding the fundamental behaviour...... into a mastercurve based on temperature-moisture equivalence through a modified form of the Williams, Landel, and Ferry equation for amorphous polymers. This result is consistent with the view that wood is visco-plastic around the glass transition zone of the ligno-hemicellulosic matrix. It is demonstrated...... of wood in general....

  4. Reliability and life prediction of ceramic composite structures at elevated temperatures

    Science.gov (United States)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  5. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    Science.gov (United States)

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  6. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    Science.gov (United States)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  7. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    Science.gov (United States)

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross

  8. Development of Mg-Al-Zn based diecasting alloys for elevated temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.M.; Park, B.K.; Jun, J.H.; Kim, K.T.; Jung, W.J. [Advanced Materials Development Center, Korea Inst. of Industrial Technology, Incheon (Korea); Shin, K. [Dept. of Metallurgy and Materials Science, Changwon National Univ., Changwon (Korea)

    2005-07-01

    Effort has been devoted to develop new heat resistant diecasting alloys based on Mg-Al-Zn system in this research. Small amounts of cerium-rich misch metal and antimony additions to AZ91 alloy could enhance the tensile strength at an elevated temperature while keeping the good castability. The increase of Zn content in Mg-8(wt%)Al-xZn-0.5RE-0.5Sb alloys, was observed to significantly increase the yield strength at 175 C although the castability such as fluidity and hot cracking resistance was slightly decreased. Intensive microstructural investigation on the new Mg-Al-Zn diecasting alloys was also carried out. (orig.)

  9. Effects of nuclear radiation and elevated temperature storage on electroexplosive devices

    Science.gov (United States)

    Menichelli, V. J.

    1976-01-01

    Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.

  10. Note: A method for minimizing oxide formation during elevated temperature nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, I. C.; Hodge, A. M., E-mail: ahodge@usc.edu [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Garcia-Sanchez, E. [Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Avenue OHE430, Los Angeles, California 90089 (United States); Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad S/N, San Nicolás de los Garza, NL 66450 (Mexico)

    2014-09-15

    A standardized method to protect metallic samples and minimize oxide formation during elevated-temperature nanoindentation was adapted to a commercial instrument. Nanoindentation was performed on Al (100), Cu (100), and W (100) single crystals submerged in vacuum oil at 200 °C, while the surface morphology and oxidation was carefully monitored using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The results were compared to room temperature and 200 °C nanoindentation tests performed without oil, in order to evaluate the feasibility of using the oil as a protective medium. Extensive surface characterization demonstrated that this methodology is effective for nanoscale testing.

  11. Leveraging elevated temperature and particle size reduction to extract API from various tablet formulations.

    Science.gov (United States)

    Nickerson, Beverly; Arikpo, William B; Berry, Mark R; Bobin, Vincent J; Houck, Timothy L; Mansour, Hany L; Warzeka, John

    2008-06-09

    Several sample preparation techniques were evaluated for extracting active pharmaceutical ingredient (API) from immediate release (IR) and controlled release (CR) tablet formulations. These techniques utilized either elevated temperature [e.g., accelerated solvent extraction (ASE) and microwave assisted extraction (MAE)] or particle size reduction [e.g., ball mill and homogenizer/Tablet Processing Workstation II (TPWII)]. Results were compared for equivalence to those obtained with the existing standard method for each formulation. For the CR formulations, sample preparation times were significantly reduced when using these techniques compared to the standard method. Advantages and limitations associated with each technique are discussed.

  12. Tensile deformation of 2618 and Al-Fe-Si-V aluminum alloys at elevated temperatures

    Science.gov (United States)

    Leng, Y.; Porr, W. C., Jr.; Gangloff, R. P.

    1990-01-01

    The present study experimentally characterizes the effects of elevated temperature on the uniaxial tensile behavior of ingot metallurgy 2618 Al alloy and the rapidly solidified FVS 0812 P/M alloy by means of two constitutive formulations: the Ramberg/Osgood equation and the Bodner-Partom (1975) incremental formulation for uniaxial tensile loading. The elastoplastic strain-hardening behavior of the ingot metallurgy alloy is equally well represented by either formulation. Both alloys deform similarly under decreasing load after only 1-5 percent uniform tensile strain, a response which is not described by either constitutive relation.

  13. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Fleige, Michael; Arenz, Matthias

    2015-01-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated...... temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow...

  14. Creep-Rupture and Fatigue Behavior of a Notched Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    2008-06-01

    24 Figure 19. Representative Creep Test .............................................................................. 28 Figure 20. PVC ...design creep should be restricted to 1% over a 1000 hour lifecycle (Mattingly, 2002:289). Harlan calculated that this corresponding creep rate of...ratio of .05 (R=σmin/ σmax). PVC adaptive compensation was utilized to ensure that commanded loads matched the applied loads. 29 Figure 20. PVC

  15. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    Science.gov (United States)

    2015-03-26

    Although composites have only recently become advanced enough for aircraft use, they have been around for centuries in various forms such as straw ...time, composites made their debut into aircraft in the form of reinforced plastics for non-structural parts such as electrical components [3]. In...shock loading [12]. Even worse, low fracture toughness and the lack of ductility or plasticity results in catastrophic failure without warning [12

  16. Fatigue Behavior of an Advanced SiC/SiC Composite at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2009-12-01

    are divisible into two classes: traditional and advanced. Traditional ceramics are items such as bricks, pottery , or tiles. Advanced ceramics are...curves of the CMCs tested had a nearly bi- linear appearance with an initial linear elastic region extending up to the proportional 7 limit, which...conclusion of the heating stage. Thermal strain measurements were used to determine the linear thermal expansion 30 coefficient of the material. Thermal

  17. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    Science.gov (United States)

    2015-09-21

    tested in this effort consisted of a high-temperature polyimide NRPE matrix reinforced with carbon fibers. The 3D PMC was reinforced with carbon fibers...4 II. Literature Review ...CMCs) for structure that is subjected to high temperature. While PMR-15 being the most widely used as a thermosetting polyimide resins for high

  18. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment

    Science.gov (United States)

    Mayfield, A. B.; Fan, T.-Y.; Chen, C.-S.

    2013-12-01

    Recent work has found that pocilloporid corals from regions characterized by unstable temperatures, such as those exposed to periodic upwelling, display a remarkable degree of phenotypic plasticity. In order to understand whether important reef builders from these upwelling reefs remain physiologically uncompromised at temperatures they will experience in the coming decades as a result of global climate change, a long-term elevated temperature experiment was conducted with Pocillopora damicornis specimens collected from Houbihu, a small embayment within Nanwan Bay, southern Taiwan that is characterized by 8-9 °C temperature changes during upwelling events. Upon nine months of exposure to nearly 30 °C, all colony (mortality and surface area), polyp ( Symbiodinium density and chlorophyll a content), tissue (total thickness), and molecular (gene expression and molecular composition)-level parameters were documented at similar levels between experimental corals and controls incubated at 26.5 °C, suggesting that this species can readily acclimate to elevated temperatures that cause significant degrees of stress, or even bleaching and mortality, in conspecifics of other regions of the Indo-Pacific. However, the gastrodermal tissue layer was relatively thicker in corals of the high temperature treatment sampled after nine months, possibly as an adaptive response to shade Symbiodinium from the higher photosynthetically active radiation levels that they were experiencing at that sampling time. Such shading may have prevented high light and high temperature-induced photoinhibition, and consequent bleaching, in these samples.

  19. Extended exposure to elevated temperature affects escape response behaviour in coral reef fishes

    Directory of Open Access Journals (Sweden)

    Donald T. Warren

    2017-08-01

    Full Text Available The threat of predation, and the prey’s response, are important drivers of community dynamics. Yet environmental temperature can have a significant effect on predation avoidance techniques such as fast-start performance observed in marine fishes. While it is known that temperature increases can influence performance and behaviour in the short-term, little is known about how species respond to extended exposure during development. We produced a startle response in two species of damselfish, the lemon damsel Pomacentrus moluccensis, and the Ambon damselfish Pomacentrus amboinensis, by the repeated use of a drop stimulus. We show that the length of thermal exposure of juveniles to elevated temperature significantly affects this escape responses. Short-term (4d exposure to warmer temperature affected directionality and responsiveness for both species. After long-term (90d exposure, only P. moluccensis showed beneficial plasticity, with directionality returning to control levels. Responsiveness also decreased in both species, possibly to compensate for higher temperatures. There was no effect of temperature or length of exposure on latency to react, maximum swimming speed, or escape distance suggesting that the physical ability to escape was maintained. Evidence suggests that elevated temperature may impact some fish species through its effect on the behavioural responses while under threat rather than having a direct influence on their physical ability to perform an effective escape response.

  20. Characteristics and mechanism of explosive reactions of Purex solvents with Nitric Acid at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Teijiro [Radiation Application Development Association, Tokai, Ibaraki (Japan); Takada, Junichi; Koike, Tadao; Tsukamoto, Michio; Watanabe, Koji [Department of Fuel Cycle Safety Research, Nuclear Safety Research Center, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Ida, Masaaki [JGC PLANTECH CO., LTD (Japan); Nakagiri, Naotaka [JGC Corp., Tokyo (Japan); Nishio, Gunji [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-03-01

    This investigation was undertaken to make clear the energetic properties and mechanism of explosive decomposition of Purex solvent systems (TBP/n-Dodecane/HNO{sub 3}) by Nitric Acid at elevated temperatures using a calorimetric technique (DSC, ARC) and a chromatographic technique (GC, GC/MS). The measurement of exothermic events of solvent-HNO{sub 3} reactions using DSC with a stainless steel sealed cell showed distinct two peaks with maxima at around 170 and 320degC, respectively. The peak at around 170degC was mainly attributed to the reactions of dealkylation products (n-butyl nitrate) of TBP and the solvent with nitric acid, and the peak at around 320degC was attributed to the exothermic decomposition of nitrated dodecanes formed in the foregoing exothermic reaction of dodecane with nitric acid. By using the data obtained in ARC experiments, activation energies of 123.2 and 152.5 kJ/mol were determined for the exothermic reaction of TBP with nitric acid and for the exothermic pyrolysis of n-butyl nitrate, respectively. Some possible pathways were considered for the explosive decomposition of TBP by nitric acid at elevated temperatures. (author)

  1. Elevated-Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, RL

    2005-01-31

    In the 1970s, high-chromium (9-12% Cr) ferritic/martensitic steels became candidates for elevated-temperature applications in the core of fast reactors. Steels developed for conventional power plants, such as Sandvik HT9, a nominally Fe-12Cr-1Mo-0.5W-0.5Ni-0.25V-0.2C steel (composition in wt %), were considered in the United States, Europe, and Japan. Now, a new generation of fission reactors is in the planning stage, and ferritic, bainitic, and martensitic steels are again candidates for in-core and out-of-core applications. Since the 1970s, advances have been made in developing steels with 2-12% Cr for conventional power plants that are significant improvements over steels originally considered. This paper will review the development of the new steels to illustrate the advantages they offer for the new reactor concepts. Elevated-temperature mechanical properties will be emphasized. Effects of alloying additions on long-time thermal exposure with and without stress (creep) will be examined. Information on neutron radiation effects will be discussed as it applies to ferritic and martensitic steels.

  2. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    Science.gov (United States)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  3. Experimental Research on High Temperature Resistance of Modified Lightweight Concrete after Exposure to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ke-cheng He

    2016-01-01

    Full Text Available In order to improve the spalling resistance of lightweight aggregate concrete at high temperature, two types of modified materials were used to modify clay ceramsite lightweight aggregates by adopting the surface coating modification method. Spalling of the concrete specimens manufactured by using the modified aggregates was observed during a temperature elevation. Mass loss and residual axial compressive strength of the modified concrete specimens after exposure to elevated temperatures were also tested. Concrete specimens consisting of ordinary clay ceramsites and crushed limestone were manufactured as references for comparison. The results showed that the ordinary lightweight concrete specimens and the crushed limestone concrete specimens were completely spalled after exposure to target temperatures above 400°C and 1000°C, respectively, whereas the modified concrete specimens remained intact at 1200°C, at which approximately 25% to 38% of the residual compressive strength was retained. The results indicated that the modified lightweight concrete specimens have exhibited superior mechanical properties and resistance to thermal spalling after exposure to elevated temperatures.

  4. Measurement of mechanical properties of metallic glass at elevated temperature using sonic resonance method

    Science.gov (United States)

    Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep

    2017-04-01

    Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.

  5. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  6. Experimental and numerical investigation of formability for austenitic stainless steel 316 at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Syed Mujahed Hussaini

    2014-01-01

    Full Text Available Sheet metal forming at elevated temperature is not much used in industries but it is going to be a very important process in the future. The present work is aimed to investigate the formability of austenitic stainless steel 316 at elevated temperatures. Limiting drawing ratio and thickness of the drawn cup are the indicators of formability in deep drawing. In the present investigation circular blanks are deep drawn at room temperature, 150 °C and 300 °C using a 20 ton hydraulic press coupled with a furnace. Finite element simulations are carried out using Dynaform with LS-Dyna solver. Simulations and experimental results show an increase in the limiting drawing ration as the temperature increases and a decrease in the thickness of the drawn cup without any fracture. An artificial neural network model is developed for the prediction of the cup thickness at different locations. Based on the input variables, such as distance from the center of the cup, temperature and LDR, a back propagation neural network model to predict the thickness as output was develop. The comparison between these sets of results indicates the reliability of the predictions. It was found that there is a good agreement between the experimental and predicted values.

  7. Residual characteristic properties of ternary blended steel fibre reinforced concrete subjected to sustained elevated temperature

    Directory of Open Access Journals (Sweden)

    Sinha Deepa A.

    2013-09-01

    Full Text Available To study the behavior of ternary blended steel fibre reinforced concrete when subjected to 800 Deg.C and 1000 Deg.C for 3 hours. It has been found that the ternary blended steel fibre reinforced concrete containing (FA+GGBFS and (FA+MK offer higher resistance to sustained elevated temperatures upto 800 Deg.C, where as the blend containing (FA+SF does not offer any resistance at this temperature. The study reveals that the blend containing (FA+GGBFS and (FA+MK gives highest resistance at replacement levels of (10+20 and (15+15 respectively at sustained exposure to 800 Deg.C.

  8. New Construction and Catalyst Support Materials for Water Electrolysis at Elevated Temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey

    Proton exchange membrane (PEM) water electrolysis presents an attractive technology allowing to produce hydrogen for further use as a renewable energy source in the "Hydrogen cycle". Electrolysis of water steam at elevated temperatures has several advantages over the low temperature process....... However, at the same time it involves increased demands to dimensional and chemical stability of components against corrosion environment. Therefore, materials utilized in low temperature PEM electrolyzers cannot be used in systems operating above 100 °C and new candidates should be tested. The materials...... gives an introduction into the subject and Chapter 2 subsequently presents the theoretical background of the topic and describes techniques used to characterize catalysts and construction materials. Chapter 3 presents general principles and overview of materials used for PEM water electrolysis. Chapter...

  9. Elevated temperature dependent transport properties of phosphorus and arsenic doped zinc oxide thin films

    Science.gov (United States)

    Cai, B.; Nakarmi, M. L.; Oder, T. N.; McMaster, M.; Velpukonda, N.; Smith, A.

    2013-12-01

    Elevated temperature dependent Hall effect measurements were performed in a wide temperature range from 80 to 800 K to study transport properties of zinc oxide (ZnO) thin films heavily doped with phosphorus (P) and arsenic (As), and grown on sapphire substrates by RF magnetron sputtering. Double thermal activation processes in both P- and As-doped ZnO thin films with small activation energy of ˜0.04 eV and large activation energy of ˜0.8 eV were observed from variable temperature Hall effect measurements. The samples exhibited n-type conductivities throughout the temperature range. Based on photoluminescence measurements at 11 K and theoretical results, the large activation energy observed in the temperature dependent Hall effect measurement has been assigned to a deep donor level, which could be related to oxygen vacancy (VO) in the doped ZnO thin films.

  10. Effect of elevated temperatures on flexural strength of hybrid Napier/glass reinforced epoxy composites

    Science.gov (United States)

    Ramli, W. M. A. W.; Ridzuan, M. J. M.; Majid, M. S. Abdul; Rahman, M. N.; Azduwin, Y. K.

    2017-10-01

    The effects of elevated temperatures on the flexural strength of hybrid Napier/glass reinforced epoxy composites were investigated. Hybrid composites laminates were fabricated using untreated, 5%, or 10% alkali-treated Napier fibres with woven E-glass fibres and epoxy resin. The composites were manufactured using a vacuum infusion process; the volume fraction of the Napier, glass fibres and epoxy resin were 24%, 6% and 70% respectively. When tested at room temperature (RT), the maximum flexural strength was recorded for the hybrid composites with the 5% alkali-treated Napier fibres. When the test temperature greater than 60°C, the matrix cracking and delamination were occurred due to the temperature that approached the glass transition temperature (Tg) of the composites, which resulted in a reduction of the flexural strength. The fracture surface morphologies indicated that the 5% alkali-treated Napier fibres improved the fibre-matrix interfacial bonding of the hybrid Napier/glass reinforced epoxy composites.

  11. Analysis of elevated temperature data for thermodynamic properties of selected radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Wruck, D.A.; Palmer, C.E.A.

    1997-08-01

    This report is a review of chemical thermodynamic data for Ni, Zr, Tc, U, Np, Pu and Am in aqueous solutions at elevated temperatures. Thermodynamic data for aqueous reactions over the temperature range 20-150{degrees}C are needed for geochemical modeling studies of the Yucca Mountain Project. The present review is focused on the aqueous complexes relevant to expected conditions in the Yucca Mountain region: primarily the hydroxide, carbonate, sulfate and fluoride complexes with the metal ions. Existing thermodynamic data are evaluated, and means of extrapolating 25{degrees}C data to the temperatures of interest are discussed. There will be a separate review of solubility data for relevant Ni, Zr, Tc, Np, Pu and Am compounds.

  12. Analysis of the austenitic stainless steel's r-value behavior at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2015-05-01

    Full Text Available An analysis of the anisotropy properties of austenitic steel AISI 304 (X5CrNi18-10 at elevated temperatures is presented in this paper. Considerations of the anisotropy problems are presented in the theoretical part of the paper, as well as the procedure for determination of the normal anisotropy coefficient. The experimental part of the paper describes the plan, methodology and equipment for testing of material's normal anisotropy and mechanical characteristics. The objective of conducting the experiments was to investigate influence of temperature on normal anisotropy, as well as on the mechanical properties of the considered material. The normal anisotropy was monitored by the coefficient – the so-called "r-value". Besides that, the tensile strength, yield stress and elongation at break were monitored, also. The tests were done on the 0.7 mm thick sheet metal within the temperature range 20 to 700°C.

  13. Wear Response of Aluminium 6061 Composite Reinforced with Red Mud at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    R. Dabral

    2017-09-01

    Full Text Available The present work is focused on the investigations on dry sliding wear behaviour of aluminium metal matrix composite at room and elevated temperature. Aluminium metal matrix composites reinforced with red mud are prepared by stir casting method. The experiments are planned using Taguchi technique. An orthogonal array, analysis of variance and signal to noise ratio are used to check the influence of wear parameters like temperature, percentage of reinforcement, mesh size, load, sliding distance and sliding speed on dry sliding wear of composites. The optimal testing parameters are found and their values are calculated which are then compared with predicted values. A reasonable agreement is found between predicted and actual values. The model prepared in the present work can be effectively used to predict the specific wear rate of the composites.

  14. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  15. Effect of Elevated Temperature on Mechanical Assets of Metakaolin Base Steel Fiber Reinforced Concrete

    Science.gov (United States)

    Vijay Anand, M.; Ibrahim, Azmi; Patil, Anand A.; Muthu, K. U.

    2017-06-01

    The fact of vast usage of concrete leads to important problems regarding its design and preparation of eco-friendly to obtain an economic cost of the product on varieties of time periods. Conventional ordinary Portland concrete may not able to meet its functional requisites as it found inconsistency in high temperature. The exposing of concrete structure to elevated temperature may be in case of rocket launching space ships, nuclear power plants. In this experiment, to enhance the high temperature resistance, pozzolanic materials and steel fibres are added to preserve the strength characteristics of concrete structure. In this analysis, the pozzolanic admixture MK is used as partial replacement of cementatious materials. The volume fraction of steel fibre is varied 0.25%, 0.5%, 0.75% and 1% by preserving MK as stationary for 10% replacement of cement. The strength parameters of concrete such as compressive strength, split tensile strength and flexural strength are studied.

  16. Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges

    DEFF Research Database (Denmark)

    Pearson, Hamish; Gabbitas, Brian; Ormarsson, Sigurdur

    2012-01-01

    Relatively few studies have been performed on the equilibrium moisture content (EMC) of wood under conditions of elevated temperature and pressure. Eight studies indicated that EMC near saturation decreased between 100 and 150 °C, whilst five studies indicated that EMC increased. The aim...... of this study was to identify the likely source of the disagreement using radiata pine (Pinus radiata D. Don) sapwood which was conditioned to a moisture content of around 3 % and then exposed for 1 h at 150 °C and relative humidities of either 50, 70 or 90 %. Mean values of EMC, obtained through in situ...... conditions with minimal standard error, (2) specimens with low initial moisture content to avoid unwanted wood mass loss over time, (3) a relative humidity upper limit that avoids drift above 95 %, and (4) extrapolation of data to humidity approaching 100 %....

  17. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2011-01-01

    Here we report on the electrochemical removal of segregated silicon dioxide impurities from Yttria Stabilized Zirconia (YSZ) surfaces at elevated temperatures studied under Ultra High Vacuum (UHV) conditions. YSZ single crystals were heated in vacuum by an applied 18kHz a.c. voltage using the ionic...... electrochemically reduced by the a.c. voltage when no oxidation substances are present. The absence of silicon on the surfaces annealed in vacuum or at low oxygen or water vapor partial pressures was attributed to electrochemical reduction of silicon dioxide to volatile silicon monoxide on the YSZ surface....... This was demonstrated by silicon enrichment of a gold foil placed behind the YSZ crystal surface while annealed. The results suggest a fast way to clean YSZ for trace silicon dioxide impurities found in the bulk of the cleanest crystals commercially available....

  18. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures.

    Science.gov (United States)

    Wiberg, Gustav K H; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  19. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    Science.gov (United States)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  20. Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures

    Science.gov (United States)

    Deckers, J.; Meyers, S.; Kruth, J. P.; Vleugels, J.

    Direct selective laser sintering (SLS) or selective laser melting (SLM) are additive manufacturing techniques that can be used to produce three-dimensional ceramic parts directly, without the need for a sacrificial binder. In this paper, a low laser energy density is applied to SLS/SLM high density powder layers of sub-micrometer alumina at elevated temperatures (up to 800̊C). In order to achieve this, a furnace was designed and built into a commercial SLS machine. This furnace was able to produce a homogeneously heated cylindrical zone with a height of 60 mm and a diameter of 32 mm. After optimizing the layer deposition and laser scanning parameters, two ceramic parts with a density up to 85% and grain sizes as low as 5 μm were successfully produced.

  1. Determination the mechanism and kinetic parameters of copper sulfide minerals oxidation at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Štrbac Nada D.

    2015-01-01

    Full Text Available The paper presents DTA/TG results of polymetallic sulphide copper concentrate from the mine 'Veliki Krivelj' (Serbia at 25-1000 °C. The reaction mechanism at elevated temperatures was proposed. As confirmation to the proposed mechanism, the results of EDXRF and, XRD analysis of the initial sample and the oxidation products at 550 and 950 °C, and the results of SEM/EDS analysis of the initial sample and the oxidation products at 675 ° C were presented. It can be concluded that the oxidation process goes through sulfide oxidation with characteristic exothermic effects, followed by sulfates and oxy- sulfates formation and their. Kinetic analysis of the oxidation process concentrates the test was performed according to the methods of Kissinger and Ozawa in non-isothermal conditions. The results of kinetic studies have shown that the oxidation process in the whole investigated temperature range is located in the kinetic field.

  2. Morphological Evolution of Low-Grade Silica Fume at Elevated Temperature

    Science.gov (United States)

    Chen, Junhong; Li, Tong; Li, Xiaoping; Chou, Kuo-Chih; Hou, Xinmei

    2017-07-01

    To solve the environmental pollution problem caused by low-grade silica fume (SiO2, < 86 mass%) and further expand its application field, the morphological development of low-grade silica fume from room temperature to 900 °C in air was investigated using TG-DTA, SEM and TEM techniques. The structural development of silica fume was further analyzed using FT-IR and Raman spectrum. The results show that silica fume contains many defects of broken bands such as Si-O or ≡Si at room temperature. When exposed to the moister or water, the broken bonds tend to react with water and result in the formation of Si-OH and adjacent hydroxyl groups of Si-OH•OH-Si. At elevated temperature up to 900 °C, the structure of silica fume becomes compact due to the reconstruction of the broken bonds caused by the dehydration reaction.

  3. Damage behavior in helium-irradiated reduced-activation martensitic steels at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fengfeng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Jihong; Li, Tiecheng; Zheng, Zhongcheng [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yao, Z. [Department of Mechanical and Materials Engineering, Queen’s University, Kingston K7L 3N6, ON (Canada); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-12-15

    Dislocation loops induced by helium irradiation at elevated temperatures in reduced-activation martensitic steels were investigated using transmission electron microscopy. Steels were irradiated with 100 keV helium ions to 0.8 dpa between 300 K and 723 K. At irradiation temperatures T{sub irr} ⩽ 573 K, small defects with both Burger vectors b = 1/2〈1 1 1〉 and b = 〈1 0 0〉 were observed, while at T{sub irr} ⩾ 623 K, the microstructure was dominated by large convoluted interstitial dislocation loops with b = 〈1 0 0〉. Only small cavities were found in the steels irradiated at 723 K.

  4. Spalling Assessment of Self-Compacting Concrete with and Without Polypropylene Fibres at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Qahir N. S. Al-Kadi

    2016-06-01

    Full Text Available This research presents an experimental study on the spalling of self-compacting concrete (SCC with and without polypropylene (PP fibres subjected to elevated temperatures and at 2 and 4 hour exposure times. The results showed spalling occurred in all specimens that did not contain PP fibre in the concrete mixture above 400oC. On the other hand, spalling did not occur in specimens containing PP fibres above 0.05 % by volume. Spalling resistance performance was significantly improved. The hardened densities, weight losses, permeability, and scanning electron microscopy tests showed that the main cause for spalling was the low permeability of the SCC and the presence of water inside the concrete. Vapour developed inside the concrete during a fire finds it difficult to escape and will produce high internal stresses that lead to spalling. Statistical models were devised for the above test.

  5. Modeling of anisotropic and asymmetric behaviour of magnesium alloys at elevated temperature coupled with ductile damage

    Science.gov (United States)

    Zhang, K.; Badreddine, H.; Labergere, C.; Saanouni, K.

    2017-09-01

    Poor formability of Magnesium alloys at room temperature is due to their Hexagonal Closed Packed (HCP) crystal structure. These materials also have a pronounced Strength Differential (SD) effect. In the present work, an improved constitutive model of thermo-elasto-Dviscoplasticity with mixed nonlinear isotropic and kinematic hardening strongly coupled with isotropic ductile damage is developed. The induced anisotropy as well as tension compression asymmetry are carefully considered including their interaction with thermal effects. The numerical implementation of the developed model into ABAQUS/Explicit FE is made through the user subroutine VUMAT. The proposed model is used to simulate material responses of AZ31 Magnesium alloy during sheet metal forming processes at elevated temperature.

  6. Study on Shear Behavior of Concrete-polymer Cement Mortar at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Khuram Rashid

    2016-09-01

    Full Text Available In this experimental and analytical work, interfacial shear strengths were evaluated at material and member level. Bi-surface shear strength was performed at material level and three-point bending test was conducted at member level. Beams were strengthened by adding steel reinforcement at soffit level and covered by spraying polymer cement mortar (PCM. After curing, strengthened RC beams were exposed to 60 ℃ for 24 hours and tested in three point loading test. Flexural capacity, load deflection relationship and failure modes were observed and compared with the strengthened beams tested at 20 ℃. Reduction in flexural capacity was observed with temperature, failure mode was also shifted from flexural mode to debonding mode of failure at elevated temperature. Ultimate shear load and failure modes were predicted by truss analogy approach. Debonding model was proposed by incorporating bi-surface interfacial shear strength, close agreement were observed between experimental and predicted values.

  7. Effects of episodic low aragonite saturation and elevated temperature on the physiology of Stylophora pistillata

    Science.gov (United States)

    Lürig, M.; Kunzmann, A.

    2015-05-01

    As global climate change is predicted to gradually alter the oceans' carbonate system and water temperature, knowledge about the effects an altered marine environment has on the physiology of reef building (hermatypic) coral species is more widely established. However, although it is recognized that seawater temperature and the carbonate system of a coral reef can change rapidly and with great amplitude, little is known about how the interaction of these natural fluctuations with long term effects of climate change may affect the metabolism and productivity of hermatypic corals. To investigate this, we acclimated the hermatypic coral Stylophora pistillata to a "worst case" scenario for carbon dioxide emissions (aragonite saturation state [ΩARAG] = 1.6), and tested how exposure to short term (24 h) elevated temperature (+ 3 °C) and further lowered ΩARAG (-1 unit) affected its photosynthesis and respiration. While episodic exposure to very low ΩARAG had only little effect on S. pistillata's physiology, short term heat stress caused a shift from net oxygen production to consumption and partial coral bleaching. Higher gross coral respiration, and lowered photosynthetic activity under episodically elevated temperature may have been the result of photoinhibition and partial coral bleaching. These findings suggest that fluctuating environmental conditions in combination with a low ΩARAG background signal may impair basic metabolic processes in calcifying corals. In a future high-CO2 world short term stress could be relevant for reef ecosystem processes, and may affect the resilience of coral reefs to other external influences and effects of climate change.

  8. Alcohol electrooxidation at Pt and Pt-Ru sputtered electrodes under elevated temperature and pressurized conditions

    Science.gov (United States)

    Umeda, Minoru; Sugii, Hiromasa; Uchida, Isamu

    2008-05-01

    The electrooxidation properties of methanol and 2-propanol, which are both promising candidates for direct alcohol fuel cells (DAFCs), have been studied under elevated temperature and pressurized conditions. Sputter-deposited Pt and Pt-Ru electrodes were well-characterized and utilized for the electrochemical measurement of the alcohol oxidation at 25-100 °C. The Pt electrode prepared at 600 °C had a flat surface, and the Pt-Ru formed an alloy. The electrochemical measurements were carried out in a gas-tight cell under elevated temperature, which accompanies the pressurized condition. This is a representative example of the DAFC rising temperature operation. As a result, at 25 °C, the onset potential of the 2-propanol oxidation is about 400 mV more negative than that of the methanol oxidation, and current density of the 2-propanol oxidation exceeds that of the methanol oxidation. Conversely, at 100 °C, the methanol oxidation current density overcomes that of 2-propanol, and the onset potentials of the two are almost the same. The highest current density for the methanol oxidation is obtained at the Pt:Ru = 50:50 electrode, whereas at the Pt:Ru = 35:65 for the 2-propanol oxidation. A Tafel plot analysis was employed to investigate the reaction mechanism. For the methanol oxidation, the number of electrons transferred during the rate-determining process is estimated to be 1 at 25 °C and 2 at 100 °C. This suggests that the methanol reaction mechanism differs at 25 and 100 °C. In contrast, the rate-determining process of the 2-propanol oxidation at 25 and 100 °C was expected to be 1-electron transfer which accompanies the proton-elimination reaction to produce acetone. Consequently, it is deduced that methanol and 2-propanol have an advantage under the rising temperature and room temperature operation, respectively.

  9. Computational and Experimental Design of Fe-Based Superalloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Fine, Morris E. [Northwestern Univ., Evanston, IL (United States); Ghosh, Gautam [Northwestern Univ., Evanston, IL (United States); Asta, Mark D. [Univ. of California, Berkeley, CA (United States); Liu, Chain T. [Auburn Univ., AL (United States); Sun, Zhiqian [Univ. of Tennessee, Knoxville, TN (United States); Huang, Shenyan [Univ. of Tennessee, Knoxville, TN (United States); Teng, Zhenke [Univ. of Tennessee, Knoxville, TN (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States)

    2012-04-13

    Analogous to nickel-based superalloys, Fe-based superalloys, which are strengthened by coherent B2- type precipitates are proposed for elevated-temperature applications. During the period of this project, a series of ferritic superalloys have been designed and fabricated by methods of vacuum-arc melting and vacuum-induction melting. Nano-scale precipitates were characterized by atom-probe tomography, ultrasmall- angle X-ray scattering, and transmission-electron microscopy. A duplex distribution of precipitates was found. It seems that ferritic superalloys are susceptible to brittle fracture. Systematic endeavors have been devoted to understanding and resolving the problem. Factors, such as hot rolling, precipitate volume fractions, alloy compositions, precipitate sizes and inter-particle spacings, and hyperfine cooling precipitates, have been investigated. In order to understand the underlying relationship between the microstructure and creep behavior of ferric alloys at elevated temperatures, in-situ neutron studies have been carried out. Based on the current result, it seems that the major role of β' with a 16%-volume fraction in strengthening ferritic alloys is not load sharing but interactions with dislocations. The oxidation behavior of one ferritic alloy, FBB8 (Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B, weight percent), was studied in dry air. It is found that it possesses superior oxidation resistance at 1,023 and 1,123 K, compared with other creep-resistant ferritic steels [T91 (modified 9Cr-1Mo, weight percent) and P92 (9Cr-1.8W-0.5Mo, weight percent)]. At the same time, the calculation of the interfacial energies between the -iron and B2-type intermetallics (CoAl, FeAl, and NiAl) has been conducted.

  10. Elevated temperature viscous remanent magnetization of natural and synthetic multidomain magnetite

    Science.gov (United States)

    Kelso, Paul R.; Banerjee, Subir K.

    1994-01-01

    The time-temperature relationship of magnetization is a subject of much interest and debate by paleomagnetists, rock magnetists, and magnetic anomaly modellers. We have investigated this relationship by studying the viscous remanent magnetization (VRM) of coarse-grained multidomain (MD) magnetite. Our experiments covered the temperature range from 22 to 400 C, times from minutes to months, and included both Australian granulite samples and multidomain magnetite samples synthesized by the glass ceramic method. VRM acquisition was found to generally increase with temperature but not always at the rate predicted from classical thermal fluctuation theories. Thermal cycling between room temperature (at which the measurements were made) and the VRM acquisition temperature sharply decreased the temperature dependence of the VRM. Room temperature VRM acquisition accelerates with time when plotted on a semilog plot, whereas at elevated temperature the curves are quasilinear against log(time) for both the natural and synthetic samples. This change in behavior may suggest a variation in the VRM acquisition mechanism as a function of temperature for MD magnetite. The granulites have a nearly linear increase in VRM acquisition rate with temperature whereas the glass ceramics display little change in the acquisition rate between 22 and 200 C, but increase by nearly a factor of 3 by 400 C. The increase in VRM of the glass ceramics between 200 and 400 C is in general qualitative agreement with thermal fluctuation theory. There was no systematic change in the rate of VRM acquisition with grain size for the multidomain magnetites used in this study. Elevated temperature (e.g., 400 C) VRM acquisition by the deep crustal granulites, if extrapolated over the Brunhes chron, would produce a magnetization of several A/m which, if true, is of the order required by models for the source of long-wavelength magnetic anomalies.

  11. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...

  12. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)

    1998-12-31

    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  13. Elevated Temperature, Notched Compression Performance of Out of Autoclave Processed Composites

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Dixon, Genevieve D.; Smeltzer, Satn S.

    2013-01-01

    Curved honeycomb sandwich panels composed of carbon fiber reinforced toughened-epoxy polymer facesheets are being evaluated for potential use as payload fairing components on the NASA heavy-lift space launch system (HL-SLS). These proposed composite sandwich panels provide the most efficient aerospace launch structures, and offer mass and thermal advantages when compared with existing metallic payload fairing structures. NASA and industry are investigating recently developed carbon fiber epoxy prepreg systems which can be fabricated using out-of autoclave (OOA) processes. Specifically, OOA processes using vacuum pressure in an oven and thereby significantly reducing the cost associated with manufacturing large (up to 10 m diameter) composite structures when compared with autoclave. One of these OOA composite material systems, CYCOM(R) 5320-1, was selected for manufacture of a 1/16th scale barrel portion of the payload fairing; such that, the system could be compared with the well-characterized prepreg system, CYCOM(R) 977-3, typically processed in an autoclave. Notched compression coupons for each material were obtained from the minimum-gauge flat laminate [60/-60/0]S witness panels produced in this manufacturing study. The coupons were also conditioned to an effective moisture equilibrium point and tested according to ASTM D6484M-09 at temperatures ranging from 25 C up to 177 C. The results of this elevated temperature mechanical characterization study demonstrate that, for thin coupons, the OHC strength of the OOA laminate was equivalent to the flight certified autoclave processed composite laminates; the limitations on the elevated temperature range are hot-wet conditions up to 163 C and are only within the margins of testing error. At 25 C, both the wet and dry OOA material coupons demonstrated greater OHC failure strengths than the autoclave processed material laminates. These results indicate a substantial improvement in OOA material development and

  14. Heat shock protein concentration and clarity of porcine lenses incubated at elevated temperatures.

    Science.gov (United States)

    Dzialoszynski, T M; Milne, K J; Trevithick, J R; Noble, E G

    2016-01-01

    To quantify the concentration of heat shock proteins in lenses in lens organ culture at elevated temperatures, and to examine the relation between elevated temperature and lens clarity. Pig lenses obtained from a local abattoir were dissected aseptically and incubated in medium M199 without serum for 4 days to stabilize, and lenses with protein leakage of less than 10 mg/l were obtained for heat shock exposure. Heat shock was performed by incubation for 1 h in M199 without serum at various temperatures ranging from 37 °C to 55 °C. After incubation for 24 h, cataract blurring of the images was assessed using Scantox™ and Scion Image analysis of the lens photographs. Lens homogenates were subsequently analyzed for Hsp70 and Hsp27 with western blotting. The degree of cataract blurring of the images increased with increasing temperature, but the two functional measures provided different results. Focal length inconsistency, as assessed with the back vertex distance standard error of the mean (BVD SEM; the variability in focal lengths measured at 20 equally spaced locations across the lens, Scantox™), increased nearly linearly with the heat treatment temperature. In contrast, decreased clarity, evident by a fuzzy image with lower contrast, was not markedly altered as the temperature rose until a threshold of approximately 47.5 °C. The inducible isoform of the Hsp70 family (Hsp70) of heat shock proteins was increased at all temperatures above the control except those above 50 °C. Changes in Hsp27 were less clear as the protein content increased only at the incubation temperatures of 39 °C and 48.5 °C. The porcine lens demonstrates subtle changes in the variability of the focal length, and the variability increases as the incubation temperature rises. In contrast, lens clarity is relatively stable at temperatures up to 47.5 °C, above which dramatic changes, indicative of the formation of cataracts, occur. The lens content of Hsp70 was elevated in lenses

  15. Effects of elevated temperature and CO2 concentration on photosynthesis of the alpine plants in Zoige Plateau, China

    Science.gov (United States)

    Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie

    2017-04-01

    Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants

  16. Development of Refractory Ceramics for The Oxygen Evolution Reaction (OER) Electrocatalyst Support for Water Electrolysis at elevated temperatures

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Prag, Carsten Brorson; Polonsky, J.

    2012-01-01

    Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis for their th......Commercial TaC and Si3N4 powders were tested as possible electrocatalyst support materials for the Oxygen Evolution Reaction (OER) for PEM water electrolysers, operating at elevated temperatures. TaC and Si3N4 were characterised by thermogravimmetric and differential thermal analysis...

  17. Microstructure characteristics of steel M50 implanted with nitrogen by plasma-based ion implantation at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shuyan [School of Material Science and Engineering, Harbin Institute of Technology, Box 433, Harbin 150001 (China); Ma Xinxin [School of Material Science and Engineering, Harbin Institute of Technology, Box 433, Harbin 150001 (China)]. E-mail: maxin@hit.edu.cn; Sun Mingren [School of Material Science and Engineering, Harbin Institute of Technology, Box 433, Harbin 150001 (China); Sun Yue [School of Material Science and Engineering, Harbin Institute of Technology, Box 433, Harbin 150001 (China); Yukimura, Ken [Department of Electrical Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0321 (Japan)

    2006-01-15

    Steel M50 was modified by plasma-based ion implantation (PBII) at different temperatures. The results of scanning electron microscope (SEM) indicate that PBII at elevated temperature can reduce both grain size of substrate and precipitates in the implanted layer and remove the network microstructure of carbides in the substrate. Glancing angle X-ray diffraction (GXRD) analysis indicates that the elevated temperature is in favor of the formation of nitrides. The diffraction peaks of nitrides are obvious when the temperature is higher than 300 {sup o}C with implantation voltage of 25 kV.

  18. Filament Formation in Clostridium acidiurici Under Conditions of Elevated Temperatures1

    Science.gov (United States)

    Terry, David R.; Gaffar, Abdul; Sagers, Richard D.

    1966-01-01

    Terry, David R. (Brigham Young University, Provo, Utah), Abdul Gaffar, and Richard D. Sagers. Filament formation in Clostridium acidiurici under conditions of elevated temperatures. J. Bacteriol. 91:1625–1634. 1966.—Vegetative cells of Clostridium acidiurici, when grown at temperatures up to 42 C, are straight rods varying from 2.5 to 4 μ in length. When grown at 43 C, the cells show a definite tendency to elongate, and, when grown at 44 C, filaments are formed, often exceeding 500 μ in length. Only an occasional cross wall is apparent in the heat-induced long forms, but as the temperature is lowered they readily form cross walls and fragment into short, single cells. Chromatin material is distributed in evenly spaced clusters throughout the length of the filaments. The filaments grown at 44 C are gram-negative, whereas cells grown at 37 C are gram-positive. However, filament formation and gram-negativity apparently are not due to magnesium deficiency, since the gram-negative filaments are formed in concentrations of magnesium ranging from 10−6 to 10−2m. The rapid transition from filaments to single cells upon lowering the temperature from 44 to 37 C suggests that the temperature-related repression of the cross wall-forming system is a phenotypic response rather than the selection of specific mutants which produce the observed phenomena. Images PMID:5929781

  19. Contrasting effects of elevated temperature and invertebrate grazing regulate multispecies interactions between decomposer fungi.

    Directory of Open Access Journals (Sweden)

    A Donald A'Bear

    Full Text Available Predicting the influence of biotic and abiotic factors on species interactions and ecosystem processes is among the primary aims of community ecologists. The composition of saprotrophic fungal communities is a consequence of competitive mycelial interactions, and a major determinant of woodland decomposition and nutrient cycling rates. Elevation of atmospheric temperature is predicted to drive changes in fungal community development. Top-down regulation of mycelial growth is an important determinant of, and moderator of temperature-driven changes to, two-species interaction outcomes. This study explores the interactive effects of a 4 °C temperature increase and soil invertebrate (collembola or woodlice grazing on multispecies interactions between cord-forming basidiomycete fungi emerging from colonised beech (Fagus sylvatica wood blocks. The fungal dominance hierarchy at ambient temperature (16 °C; Phanerochaete velutina > Resinicium bicolor > Hypholoma fasciculare was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare in ungrazed systems. Warming promoted the competitive ability of the fungal species (R. bicolor that was preferentially grazed by all invertebrate species. As a consequence, grazing prevented the effect of temperature on fungal community development and maintained a multispecies assemblage. Decomposition of fungal-colonised wood was stimulated by warming, with implications for increased CO2 efflux from woodland soil. Analogous to aboveground plant communities, increasing complexity of biotic and abiotic interactions appears to be important in buffering climate change effects on soil decomposers.

  20. Shock Sensitivity of LX-04 Containing Delta Phase HMX at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Urtiew, P A; Forbes, J W; Tarver, C M; Vandersall, K S; Garcia, F; Greenwood, D W; Hsu, P C; Maienschein, J L

    2003-07-11

    LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experiments conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.

  1. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment.

    Science.gov (United States)

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sáez, Laura; Morán, Xosé Anxelu G; Mayali, Xavier

    2017-03-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  2. Mechanical Characterization of Adhesive Bonded Sheet Metal Joints at Elevated Temperature

    Science.gov (United States)

    Mori, Kiyomi; Azimin, Muhd; Tanaka, Masashi; Ikeda, Takashi

    A new approach is expected for heat resisting metal joints with inorganic adhesive. In the present study, the mechanical characterization of the inorganic adhesive and the strength evaluation of metal joints are realized by an experimental procedure that includes a static test for single lap joints bonded with inorganic adhesives. The inorganic adhesive can be cured at 150°C, and the maximum temperature resistance proposed is up to 1,200°C. A tensile shear test for the joints with a nickel adherend is performed at an elevated temperature of up to 400°C. The effect of material property, overlap length, and thickness of adherend on the joint strength is discussed based on stress analysis for corresponding joint models using a Finite Element Method. It is important to confirm whether fracture occurred in the adhesive layer or at the interface between the adhesive and the adherend. Therefore, the deformation and fracture behavior of the adhesive layer is investigated microscopically by the photographs of a scanning electron microscope (SEM) for the fracture surface.

  3. Effect of Particle Size on Wear of Particulate Reinforced Aluminum Alloy Composites at Elevated Temperatures

    Science.gov (United States)

    Kumar, Suresh; Pandey, Ratandeep; Panwar, Ranvir Singh; Pandey, O. P.

    2013-11-01

    The present paper describes the effect of particle size on operative wear mechanism in particle reinforced aluminum alloy composites at elevated temperatures. Two composites containing zircon sand particles of 20-32 μm and 106-125 μm were fabricated by stir casting process. The dry sliding wear tests of the developed composites were performed at low and high loads with variation in temperatures from 50 to 300 °C. The transition in wear mode from mild-to-severe was observed with variation in temperature and load. The wear at 200 °C presented entirely different wear behavior from the one at 250 °C. The wear rate of fine size reinforced composite at 200 °C at higher load was substantially lower than that of coarse size reinforced composite. Examination of wear tracks and debris revealed that delamination occurs after run in wear mode followed by formation of smaller size wear debris, transfer of materials from the counter surfaces and mixing of these materials on the contact surfaces. The volume loss was observed to increase with increase in load and temperature. Composite containing bigger size particles exhibit higher loss under similar conditions.

  4. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  5. Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nemer, Martin Bernard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Thermal and Fluid Sciences; Brooks, Carlton F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Thermal and Fluid Sciences; Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Thermal and Fluid Sciences; Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Thermal and Fluid Sciences; Barringer, David Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Thermal and Fluid Sciences

    2014-10-01

    A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

  6. Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Sihn, Ihn Cheol; Lim, Byung Joo [Dai-Yang Industries Co., Daejeon (Korea, Republic of)

    2016-11-15

    In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

  7. Elevated temperature and CO{sub 2} concentration effects on xylem anatomy of Scots pine

    Energy Technology Data Exchange (ETDEWEB)

    Kilpelainen, A.; Gerendiain, A.Z.; Luostarinen, K.; Peltola, H.; Kellomaki, S. [Joensuu Univ., Joensuu (Finland). Faculty of Forestry

    2007-09-15

    The effects of carbon dioxide (CO{sub 2}) concentrations and elevated temperatures on the xylem anatomy of 20-year old Scots pine trees were investigated. The experiment was conducted in 16 chambers containing 4 trees each with a factorial combination of both ambient and elevated CO{sub 2} concentrations and 2 different temperature regimes. CO{sub 2} concentrations were doubled with a corresponding increase of between 2 and 6 degrees C according to each season over a period of 6 years. The study showed that elevated CO{sub 2} concentrations increased the ring width in 4 of the 6 analyzed treatment years. Earlywood width increased during the first 2 years of the experiment, while latewood width increased during the third year of the study. The study also showed that the tracheid walls in both the latewood and earlywood samples were thicker when either temperature levels or CO{sub 2} levels were increased. It was noted that combined CO{sub 2} and temperature elevations resulted in thinner tracheid walls. However, latewood tracheid lumen diameters were larger in all CO{sub 2} and temperature treatments than trees grown in ambient conditions. It was concluded that xylem anatomy was impacted more by increases in temperature than by elevated CO{sub 2} concentrations. 48 refs., 2 tabs., 6 figs.

  8. Significant stress reduction of cBN layers upon ion irradiation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, Stefan; Geburt, Sebastian; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena (Germany); Ye, Jian; Ulrich, Sven [Institut fuer Materialforschung, Forschungszentrum Karlsruhe (Germany)

    2011-07-01

    Cubic boron nitride (cBN) is the hardest materials beneath diamond and exceeds the properties in terms of chemical resistivity, making it a promising candidate for ultra-hard coatings in extreme environments. Due to the ion assisted growth process, the cBN layers suffer from an intrinsic stress, which limits the layer thickness and therefore possible industrial applications. To investigate new approaches for the synthesis of low stress cBN layers, we applied ion irradiation with various ion species (O,Ne,Kr) and at different temperatures between 300 to 600 K to cBN:O layers. The intrinsic stress and the cBN content were monitored by profilometer and FTIR after each implantation step. As expected, ion irradiation at room temperature leads to a stress reduction with constant cBN content upon an ion induced damage up to 0.5 dpa, but a severe damage is introduced to the layer above this value resulting into a phase transition to hBN. However, irradiation at elevated temperatures results in a significant stress reduction without decrease of the cBN quality even up to 4.3 dpa.

  9. Measuring the Flexural Strength of Ceramics at Elevated Temperatures – An Uncertainty Analysis

    Directory of Open Access Journals (Sweden)

    Štubňa I.

    2014-02-01

    Full Text Available The flexural mechanical strength was measured at room and elevated temperatures on green ceramic samples made from quartz electroporcelain mixture. An apparatus exploited the three-point-bending mechanical arrangement and a magazine for 10 samples that are favorable at the temperature measurements from 20 °C to 1000 °C. A description of the apparatus from the point of possible sources of uncertainties is also given. The uncertainty analysis taking into account thermal expansion of the sample and span between the supports is performed for 600 °C. Friction between the sample and supports as well as friction between mechanical parts of the apparatus is also considered. The value of the mechanical strength at the temperature of 600 °C is 13.23 ± 0.50 MPa, where the second term is an expanded standard uncertainty. Such an uncertainty is mostly caused by inhomogeneities in measured samples. The biggest part of the uncertainty arises from the repeatability of the loading force which reflects a scatter of the sample properties. The influence of the temperature on the uncertainty value is very small

  10. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  11. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  12. Daphnia fed algal food grown at elevated temperature have reduced fitness

    Directory of Open Access Journals (Sweden)

    Anna B. Sikora

    2014-05-01

    Full Text Available Lake water temperature is negatively correlated with fatty acids content and P:C ratio in green algae. Hence, elevated temperature may indirectly reduce the fitness of Daphnia due to induced decrease in algal food quality. The aim of this study was to test the hypotheses that quality of algal food decreases with increasing temperature of its culture and that large-bodied Daphnia are more vulnerable to the temperature-related deterioration of algal food quality than small-bodied ones. Laboratory life-table experiments were performed at 20°C with large-bodied D. pulicaria and small-bodied D. cucullata fed with the green alga Scenedesmus obliquus, that had been grown at temperatures of 16, 24 or 32°C. The somatic growth rates of both species decreased significantly with increasing algal culture temperature and this effect was more pronounced in D. pulicaria than in D. cucullata. In the former species, age at first reproduction significantly increased and clutch size significantly decreased with increasing temperature of algae growth, while no significant changes in these two parameters were observed in the latter species. The proportion of egg-bearing females decreased with increasing algal culture temperature in both species. The results of this study support the notion that the quality of algal food decreases with increasing water temperature and also suggest that small-bodied Daphnia species might be less vulnerable to temperature-related decreases in algal food quality than large-bodied ones.

  13. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity.

    Science.gov (United States)

    Tunick, Michael H; Thomas-Gahring, Audrey; Van Hekken, Diane L; Iandola, Susan K; Singh, Mukti; Qi, Phoebe X; Ukuku, Dike O; Mukhopadhyay, Sudarsan; Onwulata, Charles I; Tomasula, Peggy M

    2016-03-01

    In a case study, we monitored the physical properties of 2 batches of whey protein concentrate (WPC) under adverse storage conditions to provide information on shelf life in hot, humid areas. Whey protein concentrates with 34.9 g of protein/100g (WPC34) and 76.8 g of protein/100g (WPC80) were stored for up to 18 mo under ambient conditions and at elevated temperature and relative humidity. The samples became yellower with storage; those stored at 35 °C were removed from the study by 12 mo because of their unsatisfactory appearance. Decreases in lysine and increases in water activity, volatile compound formation, and powder caking values were observed in many specimens. Levels of aerobic mesophilic bacteria, coliforms, yeast, and mold were <3.85 log10 cfu/g in all samples. Relative humidity was not a factor in most samples. When stored in sealed bags, these samples of WPC34 and WPC80 had a shelf life of 9 mo at 35 °C but at least 18 mo at lower temperatures, which should extend the market for these products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Reduced group delay dispersion in quantum dot passively mode-locked lasers operating at elevated temperature

    Science.gov (United States)

    Mee, J. K.; Raghunathan, R.; Murrell, D.; Braga, A.; Li, Y.; Lester, L. F.

    2014-09-01

    A detailed study of the pulse characteristics emitted from a monolithic Quantum Dot (QD) passively Mode-Locked Laser (MLL) has been performed using a state-of-the-art Frequency Resolved Optical Gating (FROG) pulse measurement system. While traditionally the time-domain pulse characteristics of semiconductor MLLs have been studied using digital sampling oscilloscope or intensity autocorrelation techniques, the FROG measurements allow for simultaneous characterization of time and frequency, which has been shown to be necessary and sufficient for true determination of mode-locked stability. In this paper, FROG pulse measurements are presented on a two-section QD MLL operating over wide temperature excursions. The FROG measurement allows for extraction of the temporal and spectral intensity and phase profiles from which the Group Delay Dispersion (GDD) can be determined. The magnitude of the GDD is found to decrease from 16.1 to 3.5 ps/nm when the temperature is increased from 20 to 50 oC, mirroring the trend of pulse width reduction at elevated temperature, which has been shown to correlate strongly with reduced unsaturated absorption. The possibility to further optimize pulse generation via intra-cavity dispersion compensation in a novel three-section MLL design is also examined, and shows strong potential toward providing valuable insight into the optimal cavity designs and operating parameters for QD MLLs.

  15. Evaluation of acoustic emission signals during monitoring of thick-wall vessels operating at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, A.; Tsimogiannis, A. [Envirocoustics S.A., El. Venizelou 7 and Delfon, Athens (Greece)

    2004-07-01

    Acoustic Emission testing of thick wall vessels, operating at elevated temperatures is discussed and pattern recognition methodologies for AE data evaluation are presented. Two different types of testing procedures are addressed: Cool Down monitoring and semi-continuous periodic monitoring. In both types of tests, temperature variation is the driving force of AE as opposed to traditional AE testing where controlled pressure variation is used as AE stimulus. Representative examples of reactors cool down testing as well as in-process vessel monitoring are given. AE activity as a function of temperature and pressure variation is discussed. In addition to the real-time limited criteria application, unsupervised pattern recognition is applied as a post-processing tool for multidimensional sorting, noise discrimination, characterizing defects and/or damage. On the other hand, Supervised Pattern Recognition is used for data classification in repetitive critical tests, leading to an objective quantitative comparison between repeated tests. Results show that damage sustained by the equipment can be described by the plotting the cumulative energy of AE, from critical signal classes, versus temperature. Overall, the proposed methodology can reduce the complexity of AE tests in many cases leading to higher efficiency. The possibility for real time signals classification, during permanent AE installations and continuous monitoring is discussed. (orig.)

  16. In-situ Elevated Temperature Mechanical Performance of MWCNT/epoxy Nanocomposite

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Singh

    2017-03-01

    Full Text Available The present investigation has been focused on the effects of multi-walled carbon nanotube (MWCNT addition on the mechanical performance of epoxy under different in-service elevated temperature environments. Room temperature flexural test results revealed that addition of 0.1 wt. % MWCNT into epoxy resin resulted in modulus and strength enhancement of 21 % and 9 % respectively. With increase in service temperature, significant decrement in both modulus and strength was noticed for both materials (neat epoxy and MWCNT/epoxy nanocomposite, but the rate of degradation was found to be quite drastic for the nanocomposite. At 90 °C temperature, the CNT/epoxy nanocomposite exhibited inferior modulus and strength, which are 41 % and 59 % lower than neat epoxy respectively. The variation trend in elastic modulus with temperature obtained from both flexural testing and DMA for both these materials was also analyzed. It was found that addition of 0.1 % CNT in the epoxy reduced the glass transition temperature by about 16°C.

  17. Elevated temperature technique for the isolation of salmonellas from sewage and human faeces.

    Science.gov (United States)

    Nabbut, N H

    1973-03-01

    Modified Moore's swabs, placed in sewers for 5 days, were used to concentrate salmonellas from sewage. Duplicate cultures of swab strips in selenite broth were incubated at 41 and 37 degrees C. respectively. Salmonella organisms were recovered consistently from the swabs when the enrichment broths were incubated at 41 degrees C. However, when equal portions of the same swabs were incubated at 37 degrees C., only 22% of them yielded Salmonella organisms. These results indicate an advantage in incubating the selenite broths at 41 degrees C. rather than 37 degrees C. in attempting to isolate salmonellas from sewage.One hundred and fifty faecal samples were examined for salmonellas by culture in selenite broths incubated at 41 and 37 degrees C. Twelve (8%) samples were positive at 41 degrees C. compared to only 10 (6.7%) positive samples at 37 degrees C. This difference is not statistically significant to indicate an advantage of the elevated-temperature of incubation over the conventional temperature in attempting to isolate salmonellas from human faeces. Moreover, results of the recovery rates of S. paratyphi B, S. typhi, and S. typhimurium indicate that an incubation temperature of 37 degrees C. is more appropriate for recovering salmonellas from artificially infected faecal samples than an incubation temperature of 41 degrees C. This stresses the inability of laboratory studies to mimic conditions in nature.

  18. Aluminum-Silicon Alloy Having Improved Properties at Elevated Temperatures and Articles Cast Therefrom

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2002-01-01

    An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications. having the following composition, by weight percent (wt %): Silicon: 11.0-14.0; Copper: 5.6-8.0; Iron: 0-0.8; Magnesium: 0.5-1.5; Nickel: 0.05-0.9; Manganese: 0.5-1.5; Titanium: 0.05-1.2; Zirconium: 0.12-1.2; Vanadium: 0.05-1.2; Zinc: 0.005-0.9; Strontium: 0.001-0.1; Aluminum: balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.

  19. Formability Evaluation of Aluminum Alloy 6061-T6 Sheet at Room and Elevated Temperatures

    Science.gov (United States)

    Chen, Zhu; Fang, Gang; Zhao, Jia-Qing

    2017-09-01

    The formability of aluminum alloy 6061-T6 sheet was evaluated, and the effects of temperature and strain rate on the formability were analyzed. Uniaxial tension tests and Nakajima tests were conducted at room temperature to obtain the constitutive parameters of AA 6061-T6 and establish the forming limit diagram (FLD), respectively. Moreover, uniaxial tension tests were performed at the temperatures ranging between 180 and 380 °C and the strain rates ranging between 0.0005 and 0.05 s-1, and the constitutive equations of AA 6061-T6 were established. Nakajima tests at temperature 330 °C and two forming speeds (15 and 150 mm/min) were carried out to evaluate the formability of AA6061-T6 at elevated temperatures. In consequence, FLDs under different forming conditions were established and compared. Experimental results showed that the forming limit of AA 6061-T6 increased with the increasing temperature and the decreasing forming speed. The present investigation presented the formability of AA 6061-T6 under different forming conditions, which provided a guidance to design the warm/hot forming of AA 6061 sheet. The FLDs and constitutive equations established through these experiments will be used to predict the forming defects in the forming process design.

  20. Evaluation of elevated temperature properties of asphalt cement modified with aluminum oxide and calcium carbonate nanoparticles

    Science.gov (United States)

    Albrka Ali, Shaban Ismael; Ismail, Amiruddin; AlMansob, Ramez A.; Alhmali, Dhawo Ibrahim

    2017-09-01

    Higher temperature properties of the asphalt cement have been characterized before and after modification using dynamic shear rheometer (DSR) and viscosity testing. In this study, calcium carbonate nanoparticles (CaCO3) and aluminum oxide nanoparticles (Al2O3) have been added to the base asphalt cement with concentrations of 3, 5 and 7%.wt by the weight of the asphalt cement. The increase of CaCO3 and Al2O3 content has significant effect on the properties of asphalt cement. The viscosity of the modified asphalt cement increased up to 90 and 108% respectively compared to the base asphalt cement. In addition, the results showed that both modifiers have great storage stability and compatibility at elevated temperature. The evaluation of the rheological properties of asphalt cements revealed that the stiffness of the modified samples improved with additional increase of the modifier concentration of up to 5%, which indicates better resistance to rutting parameter. The enhancement was up to 388.89% for Al2O3 and 74.07% for CaCO3. As a result, the usage of CaCO3 and Al2O3 nanoparticles can be considered as appropriate alternative materials to modify asphalt cement.

  1. Production of hydrogen bromide by bromine-methane reactions at elevated temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Larson, Richard S.

    2003-05-01

    Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

  2. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1990-08-31

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.

  3. Reaction mechanism and kinetics of sulfide copper concentrate oxidation at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Aleksandra Mitovski

    2017-09-01

    Full Text Available Sulfide copper concentrate from domestic ore deposit (Bor, Serbia was subjected to oxidation in the air atmosphere due to a better understanding of reaction mechanism and oxidation of various sulfides present in the copper concentrate at elevated temperatures. Results of the initial sample characterization showed that concentrate is chalcopyrite–enargite-tennantite type, with an increased arsenic content. Characterization of the oxidation products showed the presence of sulfates, oxysulfates, and oxides. Based on predominance area diagrams for Me-S-O systems (Me = Cu, Fe, As combined with thermal analysis results, the reaction mechanism of the oxidation process was proposed. The reactions which occur in the temperature range 25 – 1000 °C indicate that sulfides are unstable in the oxidative conditions. Sulfides from the initial sample decomposed into binary copper and iron sulfides and volatile arsenic oxides at lower temperatures. Further heating led to oxidation of sulfides into iron oxides and copper sulfates and oxysulfates. At higher temperatures sulfates and oxysulfates decomposed into oxides. Kinetic analysis of the oxidation process was done using Ozawa’s method in the non-isothermal conditions. The values for activation energies showed that the reactions are chemically controlled and the temperature is the most influential parameter on the reaction rates.

  4. Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature.

    Science.gov (United States)

    Yang, Weiwei; Lai, Rebecca Y

    2011-01-07

    Here we report the effect of passivating diluent chain length and sensor interrogation temperature on the electrochemical DNA (E-DNA) sensor's mismatch discrimination capability. Both stem-loop and linear probe-based E-DNA sensors were constructed with various diluents, including 6-mercapto-1-hexanol and longer chain hydroxyl-terminated alkanethiols. Contrary to previously reported results, we find that the E-DNA sensors work optimally in the presence of the longer chain diluents, signified by the enhanced % signal suppression observed upon target hybridization. Of note, the sensors' signaling efficiency maintains even when interrogated at an elevated temperature, permitting the use of stringent temperature conditions to improve sensor specificity. For example, a stem-loop E-DNA sensor fabricated with 8-mercapto-1-octanol, when employed at 47 °C, produces signal suppression of 79%, 35% and 1.6% for the perfect match, single-base mismatch, and 2-base mismatch DNA targets, respectively. In addition to the significant enhancement in sensor discrimination capacity, high temperature operation also improves hybridization kinetics. Our results also suggest that the stem-loop E-DNA sensors demonstrate better mismatch discrimination capability when compared to the linear probe system under the same experimental condition.

  5. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...

  6. Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2013-03-01

    the 1920’s. In the 1930’s and 1940’s, honeycomb structures, powder metallurgy , and glass reinforced plastic were the advanced structural materials...materials to bear the service loads and conditions are not available. Whatever the field may be, the final limitation on advancement depends on... Steel . “consequence of INtermittent Exposure to Moisture and Salt Fog on the High-Temperature Fatigue Durability of Several Ceramic-Matrix Composites

  7. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  8. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    Science.gov (United States)

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  9. Evaluation of a strain-gage load calibration on a low-aspect-ratio wing structure at elevated temperature

    Science.gov (United States)

    Reardon, Lawrence F.

    1989-01-01

    The environmental aspect of elevated temperature and its relationship to the science of strain gage calibrations of aircraft structures are addressed. A section of a wing designed for a high-speed aircraft structure was used to study this problem. This structure was instrumented with strain gages calibrated at both elevated and room temperatures. Load equations derived from a high-temperature load calibration were compared with equations derived from an identical load calibration at room temperature. The implications of the high temperature load calibration were studied from the viewpoint of applicability and necessity. Load equations derived from the room temperature load calibration resulted in generally lower equation standard errors than equations derived from the elevated temperature load calibration. A distributed load was applied to the structure at elevated temperature and strain gage outputs were measured. This applied load was then calculated using equations derived from both the room temperature and elevated temperature calibration data. It was found that no significant differences between the two equation systems existed in terms of computing this applied distributed load, as long as the thermal shifts resulting from thermal stresses could be identified. This identification requires a heating of the structure. Therefore, it is concluded that for this structure, a high temperature load calibration is not required. However, a heating of the structure is required to determine thermal shifts.

  10. Variation of Wheat Cultivars in Their Response to Elevated Temperature on Starch and Dry Matter Accumulation in Grain

    Directory of Open Access Journals (Sweden)

    Soyema Khatun

    2016-01-01

    Full Text Available Three wheat cultivars, namely, BARI Gom 25, BARI Gom 26, and Pavon 76, were sown in experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, in Bangladesh, on 18 November, 2013. Two temperature regimes, namely, normal (23°C in open field and elevated (6 ± 1°C higher compared to open field mean air temperature in polythene chamber temperature, were created immediately after anthesis to investigate the response of wheat cultivars to heat stress. Elevated temperature cuts back the duration of grain filling by 5 days in BARI Gom 25 and BARI Gom 26 and 10 days in Pavon 76. Starch synthesis was also cut back by the same duration in respective cultivars under elevated temperature condition. Results indicate that failure of conversion of sugar to starch rather than limited supply of sugar under high temperature condition was responsible for shortening of grain filling duration in all wheat cultivars. However, the response of elevated temperature on grain starch and main stem grain dry matter was less profound in BARI Gom 25 and BARI Gom 26 compared to Pavon 76 indicating their better tolerance to elevated temperature.

  11. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam

    NARCIS (Netherlands)

    Amid, C.; Olstedt, M.; Gunnarsson, J.S.; Lan, Le H.; Tran Thi Minh, H.; Brink, van den P.J.; Hellström, M.; Tedengren, M.

    2017-01-01

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the

  12. The evaluation of ordinary Portland cement concrete subject to elevated temperatures in conjunction with acoustic emission and splitting tensile test

    Science.gov (United States)

    Su, Yu-Min; Hou, Tsung-Chin; Chen, Guan-Ying; Hou, Ping-Ni

    2017-04-01

    The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.45 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged curing conditions were executed to recover damaged concrete specimens: one was to recure under 23°C with 50% humidity in a controlled environmental chamber and the other was to recure in the same curing tank. Acoustic emission apparatus coupled with the splitting tensile test was utilized and found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of first fracture and the plain concrete generally exhibited a quasi-brittle fracture with two major series of AE energy dissipations; however when concrete specimens were subject to elevated temperatures, the damaged concrete specimens displayed neither fracture pattern nor the "double-hump" AE energy dissipation in comparison with those of plain concrete.

  13. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius

    Science.gov (United States)

    Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing

    2017-01-01

    Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933

  14. Quantification of properties modification and cutting performance of (Ti{sub 1-x}Al{sub x})N coatings at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bouzakis, K.-D.; Vidakis, N.; Michailidis, N. [Aristoteles Univ. of Thessaloniki (Greece). Lab. for Machine Tools and Manuf. Eng.; Leyendecker, T.; Erkens, G.; Fuss, G. [CemeCon GmbH, Aachen (Germany)

    1999-11-01

    Thin, hard, titanium- and aluminium-derived nitride coatings are usually operated at elevated temperatures. Typical examples are coated tools, applied in manufacturing especially at high cutting speeds. The operation of coatings in high-temperature environments may modify their composition and their structure, and may negatively affect, among others, their bulk mechanical properties, such as Young's modulus, hardness, fatigue strength, etc. This paper presents a quantitative study of such phenomena, based on experimental data, derived by the application of the indentation and impact tests, as well as cutting experiments with as-deposited and artificially oxidized coatings. To carry out these tasks, special experimental test rigs have been developed and SEM and EDX investigations have been conducted. Moreover, FEM models were established to support the evaluation of the experimental investigations. By means of the aforementioned procedures, a comprehensive study of the influence of hard metal (HM) insert coating specifications on the deterioration of their cutting performance was incorporated. Thereby, the effects of the film properties, of their oxidation mechanisms as well as of the mechanical stresses occurring during the cutting processes on the entire film wear behaviour in milling operations were investigated. (orig.)

  15. Molecular and genotoxic effects in Mytilus galloprovincialis exposed to tritiated water at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dallas, L.; Jha, A. [School of Biological Sciences, Plymouth University (United Kingdom); Bean, T.; Lyons, B. [Cefas Weymouth Laboratory (United Kingdom); Turner, A. [School of Geography, Earth and Environmental Sciences, Plymouth University (United Kingdom)

    2014-07-01

    Radioactive contaminants do not occur in isolation; organisms are also exposed to fluctuations in biological, biotic and physico-chemical factors, such as competition, other contaminants, salinity and temperature. Thermal discharge from nuclear facilities is considered to be one of the most important environmental issues surrounding these establishments, second only to the release of radionuclides. Cooling water from nuclear institutions is one of the major sources of tritium ({sup 3}H) to the aquatic environment; temperature is therefore an abiotic factor of particular concern when it comes to assessing the potential detrimental impacts of {sup 3}H exposure in marine species. In this context, we used a molecular approach to elucidate the potential mechanisms behind the genotoxicity of tritiated water (HTO) to marine mussels, at 'normal' and elevated temperatures. Mussels were exposed to control seawater or 15 MBq L{sup -1} HTO at 15 and 25 deg. C for 7 days, with haemolymph and gill tissue sampling (for comet assay to detect DNA strand breaks and gene expression analysis, respectively) after 0, 1, 12, 72 and 168 h. In addition, a Cu concentration of 40 μg L{sup -1} (previously established as genotoxic under these exposure conditions) was used concurrently as a positive control (at 15 deg. C). Tissue-specific accumulation of {sup 3}H was also determined, allowing the calculation of dose rates using the ERICA tool. Comparison of DNA strand breakage (DSB) as a function of time suggested that significant levels of DSB were induced earlier in haemocytes of mussels exposed to HTO at 25 deg. C compared to 15 deg. C (72 h vs. 168 h). Alterations in transcriptional expression of key genes also suggest that the 72 h time point is critical, with gill showing reduced expression of hsp70, hsp90, mt20, p53 and rad51 during HTO exposure at the elevated temperature. In contrast, HTO exposure at 15 deg. C resulted in significant up-regulation of the same genes after 72

  16. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhauf, Lukas [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Kuo, Yu-Ying; Bahk, Yeon Kyoung [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland); Nüesch, Frank [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Wang, Jing, E-mail: Jing.Wang@ifu.baug.ethz.ch [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland)

    2015-11-15

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  17. Shock Response of Commercial Purity Polycrystalline Magnesium Under Uniaxial Strain at Elevated Temperatures

    Science.gov (United States)

    Wang, Tianxue; Zuanetti, Bryan; Prakash, Vikas

    2017-12-01

    In the present paper, results of plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial strain compression and elevated temperatures up to melt are presented. The dynamic stress at yield and post yield of magnesium, as inferred from the measured normal component of the particle velocity histories at the free (rear) surface of the target plate, are observed to decrease progressively with increasing test temperatures in the range from 23 to 500 °C. At (higher) test temperatures in the range 500-610 °C, the rate of decrease of dynamic stress with temperature at yield and post-yield in the sample is observed to weaken. At still higher test temperatures (617 and 630 °C), a dramatic increase in dynamic yield as well as flow stress is observed indicating a change in dominant mechanism of plastic deformation as the sample approaches the melt point of magnesium at strain rates of 105/s. In addition to these measurements at the wavefront, the plateau region of the free surface particle velocity profiles indicates that the longitudinal (plastic) impedance of the magnesium samples decreases continuously as the sample temperatures are increased from room to 610 °C, and then reverses trend (indicating increasing material longitudinal impedance/strength) as the sample temperatures are increased to 617 and 630 °C. Electron back scattered diffraction analysis of the as-received and annealed pre-test magnesium samples reveal grain coarsening as well as grain re-orientation to a different texture during the heating process of the samples.

  18. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J. M.; Michler, J. [EMPA - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, Thun CH-3602 (Switzerland)

    2013-04-15

    A general nano-mechanical test platform capable of performing variable temperature and variable strain rate testing in situ in the scanning electron microscope is described. A variety of test geometries are possible in combination with focused ion beam machining or other fabrication techniques: indentation, micro-compression, cantilever bending, and scratch testing. The system is intrinsically displacement-controlled, which allows it to function directly as a micro-scale thermomechanical test frame. Stable, elevated temperature indentation/micro-compression requires the indenter tip and the sample to be in thermal equilibrium to prevent thermal displacement drift due to thermal expansion. This is achieved through independent heating and temperature monitoring of both the indenter tip and sample. Furthermore, the apex temperature of the indenter tip is calibrated, which allows it to act as a referenced surface temperature probe during contact. A full description of the system is provided, and the effects of indenter geometry and of radiation on imaging conditions are discussed. The stabilization time and temperature distribution throughout the system as a function of temperature is characterized. The advantages of temperature monitoring and thermal calibration of the indenter tip are illustrated, which include the possibility of local thermal conductivity measurement. Finally, validation results using nanoindentation on fused silica and micro-compression of <100> silicon micro-pillars as a function of temperature up to 500 Degree-Sign C are presented, and procedures and considerations taken for these measurements are discussed. A brittle to ductile transition from fracture to splitting then plastic deformation is directly observed in the SEM for silicon as a function of temperature.

  19. Alterations in gill structure in tropical reef fishes as a result of elevated temperatures.

    Science.gov (United States)

    Bowden, A J; Gardiner, N M; Couturier, C S; Stecyk, J A W; Nilsson, G E; Munday, P L; Rummer, J L

    2014-09-01

    Tropical regions are expected to be some of the most affected by rising sea surface temperatures (SSTs) because seasonal temperature variations are minimal. As temperatures rise, less oxygen dissolves in water, but metabolic requirements of fish and thus, the demand for effective oxygen uptake, increase. Gill remodelling is an acclimation strategy well documented in freshwater cyprinids experiencing large seasonal variations in temperature and oxygen as well as an amphibious killifish upon air exposure. However, no study has investigated whether tropical reef fishes remodel their gills to allow for increased oxygen demands at elevated temperatures. We tested for gill remodelling in five coral reef species (Acanthochromis polyacanthus, Chromis atripectoralis, Pomacentrus moluccensis, Dascyllus melanurus and Cheilodipterus quinquelineatus) from populations in northern Papua New Guinea (2° 35.765' S; 150° 46.193' E). Fishes were acclimated for 12-14 days to 29 and 31°C (representing their seasonal range) and 33 and 34°C to account for end-of-century predicted temperatures. We measured lamellar perimeter, cross-sectional area, base thickness, and length for five filaments on the 2nd gill arches and qualitatively assessed 3rd gill arches via scanning electron microscopy (SEM). All species exhibited significant differences in the quantitative measurements made on the lamellae, but no consistent trends with temperature were observed. SEM only revealed alterations in gill morphology in P. moluccensis. The overall lack of changes in gill morphology with increasing temperature suggests that these near-equatorial reef fishes may fail to maintain adequate O2 uptake under future climate scenarios unless other adaptive mechanisms are employed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Xanthan gum and Scleroglucan - how both differ at elevated temperatures. Industrial biopolymers for oilwell drilling

    Energy Technology Data Exchange (ETDEWEB)

    Lange, P.; Keilhofer, G. [Degussa Construction Polymers GmbH, Trostberg (Germany)

    2004-12-01

    Industrial biopolymers produced by microorganisms have become very popular in the oilfield over the last years. Especially Xanthan Gum and Scleroglucan are used extensively as viscosifiers for various drilling fluid applications due to its unique rheological properties. Scleroglucan is known to be more temperature stable than Xanthan Gum. It is distinguished by a better stability against molecular decomposition. Moreover, Scleroglucan offers a better thickening performance at elevated temperatures. This latter aspect is often neglected when temperature stability is discussed. Although the viscosity-behaviour at increased temperature is of decisive importance with regard to downhole conditions. Rheology measurements indicate that Scleroglucan becomes superior to Xanthan Gum even at moderate temperatures of 60 to 80 C (140 to 175 F). At these temperatures and above, Xanthan Gum fluid viscosity drops significantly. Whereas Scleroglucan shows a flat and stable performance profile. This advantage of Scleroglucan first became obvious from a solids settling experiment at 80 C (175 F). It was only the Scleroglucan solution that retained the sized sand particles in suspension. While in the Xanthan Gum solution the solids settled down completely. Surprisingly, from the oilfield-standard FANN 35 SA viscometer this result was not evident. The instrument does not reach the ultra-low-shear range which is most relevant for particle settling. Advanced special instruments are available to cover this. However, it turned out, that also a common Brookfield HAT viscometer is very well suited for this purpose. Equipped with a heating cup and rotating at its lowest speed of 0.5 rpm, the instrument provides a simple and reliable approach to trace suspension capacity with increasing temperature. For example, with 2 ppb of Scleroglucan in a CaCl{sub 2} brine the biopolymer provides a stable Brookfield viscosity of about 20.000 mPas. Whereas with 2 ppb Xanthan Gum it drops down to 5.200 m

  1. Properties, sustainability and elevated temperature behavior of concrete containing Portland limestone cement

    Science.gov (United States)

    El-Hawary, Moetaz; Ahmed, Mahmoud

    2017-09-01

    The utilization of some type of cheap filler as partial cement replacement is an effective way of improving concrete sustainability. With the recent trends to reduce water to cement ratio and improve compaction, there is no enough space or water for complete hydration of cement. This means that actually, a portion of mixed cement acts as expensive filler. Replacing this portion with cheaper filler that requires less energy to produce is, therefore, beneficial. Crushed limestone is the most promising filler. This work is to investigate the effect of the amount of limestone fillers on the sustainability and the fresh and mechanical properties of the resulting concrete. A rich mix is designed with a low water/cement ratio of 0.4. Lime is introduced as a replacement percentage of cement. Ratios of 0, 10, 20 and 30% were used. Slump, compressive strength, specific gravity and water absorption are evaluated for every mix. In addition, the effect of the amount of lime on the residual strength of concrete subjected to elevated temperatures is also investigated. Samples are subjected to six different temperature stations of 20, 100, 200, 300, 500 and 700°C for six hours before being cooled and subsequently tested for compressive strength and specific gravity. Sustainability of the tested mixes is evaluated through reductions in the emitted carbon dioxide, energy and reduction in cost. Based on the annual use of concrete in Kuwait, the sustainability benefits resulting from the use of limestone filler in Kuwait are evaluated and assessed. The paper is concluded with the recommendation of the use of 15% limestone filler as partial cement replacement where the properties and the behavior under high temperature of the resulting concrete are almost the same as those of conventional concrete with considerable cost and sustainability benefits.

  2. Selected durability studies of geopolymer concrete with respect to carbonation, elevated temperature, and microbial induced corrosion

    Science.gov (United States)

    Badar, Mohammad Sufian

    This thesis reports a comprehensive study related to the experimental evaluation of carbonation in reinforced geopolymer concrete, the evaluation of geopolymer concretes at elevated temperature, and the resistance of geopolymer concrete to microbial induced corrosion (MIC). Carbonation: Reinforced concretes, made of geopolymer, prepared from two class F fly ashes and one class C fly ash, were subjected to accelerated carbonation treatment for a period of 450 days. Electrochemical, microstructure and pore structure examinations were performed to evaluate the effect of corrosion caused due to carbonation. GPC specimens prepared from class F fly ash exhibited lower corrosion rates by a factor of 21, and higher pH values (pH>12) when compared with concrete specimens prepared from class C Fly ash (GPCMN). Microstructure and pore characterization of GPC prepared using class F fly ash revealed lower porosity by a factor of 2.5 as compared with thier counterparts made using GPC-MN. The superior performace of GPC prepared with the class F fly ash could be attributed to the dense pore structure and formation of the protective layer of calcium and sodium alumino silicate hydrates (C/N-A-S-H) geopolymeric gels around the steel reinforcement. Elevated Temperature: Geopolymers are an emerging class of cementitious binders which possess a potential for high temperature resistance that could possibly be utilized in applications such as nozzles, aspirators and refractory linings. This study reports on the results of an investigation into the performance of a fly ash based geopolymer binder in high temperature environments. Geopolymer concrete (GPC) was prepared using eleven types of fly ashes obtained from four countries. High content alumina and silica sand was used in the mix for preparing GPC. GPC was subjected to thermal shock tests following ASTM C 1100-88. The GPC samples prepared with tabular alumina were kept at 1093° C and immediately quenched in water. GPC specimens

  3. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  4. Comprehensive Report For Proposed Elevated Temperature Elastic Perfectly Plastic (EPP) Code Cases Representative Example Problems

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, Greg L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-06-01

    Background: The current rules in the nuclear section of the ASME Boiler and Pressure Vessel (B&PV) Code , Section III, Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200F (650C)1. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. The proposed rules for strain limits and creep-fatigue evaluation were initially documented in the technical literature 2, 3, and have been recently revised to incorporate comments and simplify their application. The revised code cases have been developed. Task Objectives: The goal of the Sample Problem task is to exercise these code cases through example problems to demonstrate their feasibility and, also, to identify potential corrections and improvements should problems be encountered. This will provide input to the development of technical background documents for consideration by the applicable B&PV committees considering these code cases for approval. This task has been performed by Hollinger and Pease of Becht Engineering Co., Inc., Nuclear Services Division and a report detailing the results of the E-PP analyses conducted on example problems per the procedures of the E-PP strain limits and creep-fatigue draft code cases is enclosed as Enclosure 1. Conclusions: The feasibility of the application of the E-PP code cases has been demonstrated through example problems that consist of realistic geometry (a nozzle attached to a semi-hemispheric shell with a circumferential weld) and load (pressure; pipe reaction load applied at the end of the nozzle, including axial and shear forces, bending and torsional moments; through-wall transient temperature gradient) and design and operating conditions (Levels A, B and C).

  5. Modeling of the viscoelastic behavior of a polyimide matrix at elevated temperature

    Science.gov (United States)

    Crochon, Thibaut

    Use of Polymer Matrix Composite Materials (PMCMs) in aircraft engines requires materials able to withstand extreme service conditions, such as elevated temperatures, high mechanical loadings and an oxidative environment. In such an environment, the polymer matrix is likely to exhibit a viscoelastic behavior dependent on the mechanical loading and temperature. In addition, the combined effects of elevated temperature and the environment near the engines are likely to increase physical as well as chemical aging. These various parameters need to be taken into consideration for the designer to be able to predict the material behavior over the service life of the components. The main objective of this thesis was to study the viscoelastic behavior of a high temperature polyimide matrix and develop a constitutive theory able to predict the material behavior for every of service condition. Then, the model had to have to be implemented into commercially available finite-element software such as ABAQUS or ANSYS. Firstly, chemical aging of the material at service temperature was studied. To that end, a thermogravimetric analysis of the matrix was conducted on powder samples in air atmosphere. Two kinds of tests were performed: i) kinetic tests in which powder samples were heated at a constant rate until complete sublimation; ii) isothermal tests in which the samples were maintained at a constant temperature for 24 hours. The first tests were used to develop a degradation model, leading to an excellent fit of the experimental data. Then, the model was used to predict the isothermal data but which much less success, particularly for the lowest temperatures. At those temperatures, the chemical degradation was preceded by an oxidation phase which the model was not designed to predict. Other isothermal degradation tests were also performed on tensile tests samples instead of powders. Those tests were conducted at service temperature for a much longer period of time. The samples

  6. Evaluation of elevated temperature influence on mechanical properties of a commercial unrefined bagasse fiber-polypropylene composite

    Directory of Open Access Journals (Sweden)

    Foroogh Dastoorian

    2014-11-01

    Full Text Available An experimental investigation was conducted to evaluate the effect of elevated temperatures, ranging from room temperature to 80oC, on mechanical characteristics of a commercial bagasse fiber/polypropylene composite. The test results were used to determine the temperature dependencies of the mechanical properties of the studied composite material at temperatures up to 80°C in order to develop temperature adjustment factors for the use in structural applications. The results have shown that as temperature increases, the material become more ductile due to increased plastic deformation gets lower stiffness and fails at higher strains. The resulted adjustment factors were different for each loading mode and the results also have indicated that the influence of elevated temperatures on values of modulus was higher than that on strengths.

  7. Impact of an Elevated Temperature Environment on Sn-Ag-Cu Interconnect Board Level High-G Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Baty, Greg; Bieler, Thomas R.; Kim, Choong-Un

    2016-12-01

    The mechanical stability of Sn-Ag-Cu interconnects with low and high silver content against mechanical shock at room and elevated temperatures was investigated. With a heating element-embedded printed circuit board design, a test temperature from room temperature to 80°C was established. High impact shock tests were applied to isothermally pre-conditioned ball-grid array interconnects. Under cyclic shock testing, degradation and improved shock performances were identified associated with test temperature variation and non-solder mask defined and solder-mask defined pad design configuration differences. Different crack propagation paths were observed, induced by the effect of the elevated temperature test conditions and isothermal aging pre-conditions.

  8. The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Cerny, Frantisek [Department of Physics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Drahokoupil, Jan [Department of Metals, Institute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); Sepitka, Josef [Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic); Tolde, Zdenek [Department of Materials Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 16607 Prague (Czech Republic)

    2015-01-25

    Highlights: • The Ti6Al4V samples were implanted with 90 keV nitrogen ions. • The samples were annealed at 500 °C during the ion implantation process. • An elevated temperature increases the mobility of the atoms and the quantity of TiN. • The hardness showed a significant increase compared to room temperature implantation. - Abstract: The effect of an elevated temperature during nitrogen ion implantation on the microstructure and on the surface hardness of Ti6Al4V titanium alloy was examined. The implantation process was carried out at fluences of 1 ⋅ 10{sup 17}, 2.7 ⋅ 10{sup 17} and 6 ⋅ 10{sup 17} cm{sup −2} and at ion energy 90 keV. The implanted samples were annealed at 500 °C during the implantation process. X-ray diffraction analysis was performed to obtain a phase characterization and a phase quantification in the implanted sample surface. The surface hardness was investigated by nanoindentation testing, and the nitrogen depth distribution was measured by Rutherford Backscattering Spectroscopy. Elevated temperature led to increased formation of a TiN compound. It was found that a mixture of TiN and an α-Ti(+N) solid solution had a predominant amount of TiN for samples with fluence of 2.7 ⋅ 10{sup 17} cm{sup −2} or higher. Elevated temperature during ion implantation caused an increase in surface hardening more towards the depth of the substrate in comparison with room temperature implantation. The hardness showed a remarkably significant increase at a fluence of 1 ⋅ 10{sup 17} and 2.7 ⋅ 10{sup 17} cm{sup −2} compared to samples implanted at the same fluences and at room temperature. There is a discussion of such mechanisms that explain the observed hardening more towards the depth of the substrate, and the increase in hardness.

  9. Evolution of Intermetallics, Dispersoids, and Elevated Temperature Properties at Various Fe Contents in Al-Mn-Mg 3004 Alloys

    Science.gov (United States)

    Liu, K.; Chen, X.-G.

    2016-12-01

    Nowadays, great interests are rising on aluminum alloys for the applications at elevated temperature, driven by the automotive and aerospace industries requiring high strength, light weight, and low-cost engineering materials. As one of the most promising candidates, Al-Mn-Mg 3004 alloys have been found to possess considerably high mechanical properties and creep resistance at elevated temperature resulted from the precipitation of a large number of thermally stable dispersoids during heat treatment. In present work, the effect of Fe contents on the evolution of microstructure as well as high-temperature properties of 3004 alloys has been investigated. Results show that the dominant intermetallic changes from α-Al(MnFe)Si at 0.1 wt pct Fe to Al6(MnFe) at both 0.3 and 0.6 wt pct Fe. In the Fe range of 0.1-0.6 wt pct studied, a significant improvement on mechanical properties at elevated temperature has been observed due to the precipitation of dispersoids, and the best combination of yield strength and creep resistance at 573 K (300 °C) is obtained in the 0.3 wt pct Fe alloy with the finest size and highest volume fraction of dispersoids. The superior properties obtained at 573 K (300 °C) make 3004 alloys more promising for high-temperature applications. The relationship between the Fe content and the dispersoid precipitation as well as the materials properties has been discussed.

  10. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    Science.gov (United States)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  11. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study

    Science.gov (United States)

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-01

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433

  12. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    Science.gov (United States)

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  13. The role of microstructure on deformation and damage mechanisms in a Nickel-based superalloy at elevated temperatures

    Science.gov (United States)

    Maciejewski, Kimberly E.

    introduced by considering the mobility limit in the tangential direction leading to strain incompatibility and failure. This limit is diminished by environmental effects which are introduced as a dynamic embrittlement process that hinders grain boundary mobility due to oxygen diffusion. The concepts described herein indicate that implementation of the cohesive zone model requires the knowledge of the grain boundary external and internal deformation fields. The external field is generated by developing and coupling two continuum constitutive models including (i) a microstructure-explicit coarse scale crystal plasticity model with strength provided by tertiary and secondary gamma' precipitates. This scale is appropriate for the representation of the continuum region at the immediate crack tip, and (ii) a macroscopic internal state variable model for the purpose of modeling the response of the far field region located several grains away from the crack path. The hardening contributions of the gamma' precipitates consider dislocation/precipitate interactions in terms of gamma' particles shearing and/or Orowan by-passing mechanisms. The material parameters for these models are obtained from results of low cycle fatigue tests which were performed at three temperatures; 650, 704 and 760°C. Furthermore, a series of microstructure controlled experiments were carried out in order to develop and validate the microstructure dependency feature of the continuum constitutive models. The second requirement in the implementation of the cohesive zone model is a grain boundary deformation model which has been developed, as described above, on the basis of viscous flow rules of the boundary material. This model is supported by dwell crack growth experiments carried out at the three temperatures mentioned above, in both air and vacuum environments. Results of these tests have identified the frequency range in which the grain boundary cohesive zone model is applicable and also provided data to

  14. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  15. The elevated temperature mechanical properties of silicon nitride/boron nitride fibrous monoliths

    Science.gov (United States)

    Trice, Rodney Wayne

    A unique, all-ceramic material capable of non-brittle fracture via crack deflection has been characterized from 25sp°C through 1400sp°C. This material, called fibrous monoliths (FMs), was comprised of unidirectionally aligned 250 mum diameter cells of silicon nitride surrounded by 10 mum thick cell boundaries of boron nitride. Six weight percent yttria and two weight percent alumina were added to the silicon nitride to aid in densification. TEM experiments revealed that the sintering aids used to densify the silicon nitride cells were migrating into the boron nitride cell boundary during hot-pressing and that a fine network of micro-cracks existed between basal planes of boron nitride. Elevated temperature four point bending tests were performed on fibrous monolith ceramics from room temperature through 1400sp°C. Peak strengths of FMs averaged 510 MPa for specimens tested at room temperature through 176 MPa at 1400sp°C. Work of fractures ranged from 7300 J/msp2 to 3200 J/msp2 under the same temperature conditions. The interfacial fracture energy of boron nitride, GammasbBN, as a function of temperature has been determined using the Charalambides method. The fracture energy of boron nitride is approximately 40 J/msp2 and remained constant from 25sp°C through 950sp°C. A sharp increase in GammasbBN, to about 60 J/msp2, was observed at 1000sp°C-1050sp°C. This increase in GammasbBN was attributed to interactions of the crack tip with the cell boundary glassy phase. Subsequent measurements at 1075sp°C indicated a marked decrease in GammasbBN to near 40 J/msp2 before plateauing at 17-20 J/msp2 in the 1200sp°C-1300sp°C regime. The Mode I fracture toughness of silicon nitride was also determined using the single edge precracked beam method as a function of temperature. The He and Hutchinson model relating crack deflection at an interface to the Dundurs' parameter was applied to the current data set using the temperature dependent fracture energies of the boron

  16. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Directory of Open Access Journals (Sweden)

    Ian M McLeod

    Full Text Available The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg across fine temporal scales at a typical current summer temperature (28.5°C and a temperature that is likely be encountered during warm summer periods later this century (31.5°C. Second, we measured routine metabolic rate (Mo2 routine and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C and 42.6% (31.5°C, which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C and 22.8±8.8% (31.5°C in mass and 10.3±2.0% (28.5°C and 7.8±2.6% (31.5°C in length compared with pre-feeding values (no significant temperature effect. Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5

  17. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  18. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Fan [CompuTherm LLC, Madison, WI (United States); Zhang, Chuan [CompuTherm LLC, Madison, WI (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States); Xie, Xie [Univ. of Tennessee, Knoxville, TN (United States); Diao, Haoyan [Univ. of Tennessee, Knoxville, TN (United States); Kuo, Chih-Hsiang [Univ. of Tennessee, Knoxville, TN (United States); An, Zhinan [Univ. of Tennessee, Knoxville, TN (United States); Hemphill, Michael [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-30

    tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.

  19. Habitat pollution and thermal regime modify molecular stress responses to elevated temperature in freshwater mussels (Anodonta anatina: Unionidae)

    Energy Technology Data Exchange (ETDEWEB)

    Falfushynska, H.; Gnatyshyna, L.; Yurchak, I. [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil (Ukraine); Ivanina, A. [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Stoliar, O. [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, Kryvonosa Str 2, 46027 Ternopil (Ukraine); Sokolova, I., E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)

    2014-12-01

    Elevated temperature and pollution are common stressors in freshwater ecosystems. We study cellular stress response to acute warming in Anodonta anatina (Unionidae) from sites with different thermal regimes and pollution levels: a pristine area and an agriculturally polluted site with normal temperature regimes (F and A, respectively) and a polluted site with elevated temperature (N) from the cooling pond of an electrical power plant. Animals were exposed to different temperatures for 14 days and stress response markers were measured in gills, digestive gland and hemocytes. Mussels from site N and A had elevated background levels of lactate dehydrogenase activity indicating higher reliance on anaerobic metabolism for ATP production and/or redox maintenance. Exposure to 25 °C and 30 °C induced oxidative stress (indicated by elevated levels of lipid peroxidation products) in digestive gland and gills of mussels from A and F sites, while in mussels from N sites elevated oxidative stress was only apparent at 30 °C. Temperature-induced changes in levels of antioxidants (superoxide dismutase, metallothioneins and glutathione) were tissue- and population-specific. Acute warming led to destabilization of lysosomal membranes and increased frequencies of nuclear lesions in mussels from F and A sites but not in their counterparts from N site. Elevated temperature led to an increase in the frequency of micronuclei in hemocytes in mussels from F and A sites at 25 °C and 30 °C and in mussels from N site at 30 °C. The mussels from N site also demonstrated better survival at elevated temperature (30 °C) than their counterparts from the F and A sites. Taken together, these data indicate that long-term acclimation and/or adaptation of A. anatina to elevated temperatures result in increased thermotolerance and alleviate stress response to moderate temperature rise. In contrast, extreme warming (30 °C) is harmful to mussels from all populations indicating limit to this induced

  20. Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I [Global Egineering and Technology, LLC, Coral Gables, FL (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-25

    Alloy 617 is a reference structural material for very high temperature components of advanced-gas cooled reactors with outlet temperatures in the range of 900-950°C . In order for designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. A plan has been developed to submit a draft code for Alloy 617 to ASME Section III by 2015. However, the current rules in Subsection NH for the evaluation of strain limits and creep-fatigue damage using simplified methods based on elastic analysis have been deemed inappropriate for Alloy 617 at temperatures above 1200°F (650°C). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep deformation, which is the basis for the current simplified rules. This temperature, 1200 °F, is well below the temperature range of interest for this material in High Temperature Gas Cooled Reactor (HTGR) applications. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have been formulated but not yet verified. To address this issue, proposed code rules have been developed which are based on the use of elastic-perfectly plastic (EPP) analysis methods and which are expected to be applicable to very high temperatures.

  1. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    Science.gov (United States)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    low-cycle fatigue testing, wherein some prescribed indication of impending failure due to cracking is adopted. Specific criteria will be described later. As a rule, cracks that develop during testing are not measured nor are the test parameters intentionally altered owing to the presence of cracking.

  2. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam.

    Science.gov (United States)

    Amid, C; Olstedt, M; Gunnarsson, J S; Le Lan, H; Tran Thi Minh, H; Van den Brink, P J; Hellström, M; Tedengren, M

    2017-01-22

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the laboratory, branches of the corals were exposed to the herbicide glyphosate at ambient (28 °C) and at 3 °C elevated water temperatures (31 °C). Effects of herbicide and elevated temperature were studied on coral bleaching using photography and digital image analysis (new colorimetric method developed here based on grayscale), chlorophyll a analysis, and symbiotic dinoflagellate (Symbiodinium, referred to as zooxanthellae) counts. All corals from the MPA started to bleach in the laboratory before they were exposed to the treatments, indicating that they were very sensitive, as opposed to the corals collected from the more polluted site, which were more tolerant and showed no bleaching response to temperature increase or herbicide alone. However, the combined exposure to the stressors resulted in significant loss of color, proportional to loss in chlorophyll a and zooxanthellae. The difference in sensitivity of the corals collected from the polluted site versus the MPA site could be explained by different symbiont types: the resilient type C3u and the stress-sensitive types C21 and C23, respectively. The additive effect of elevated temperatures and herbicides adds further weight to the notion that the bleaching of coral reefs is accelerated in the presence of multiple stressors. These results suggest that the corals in Nha Trang bay have adapted to the ongoing pollution to become more tolerant to anthropogenic stressors, and that multiple stressors hamper this resilience. The loss of color and decrease of chlorophyll a suggest that bleaching is related to concentration of chloro-pigments. The colorimetric method could be further fine-tuned and used as a precise, non

  3. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    Science.gov (United States)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  4. Role of grain boundary diffusion on ion-induced composition change in alloys at elevated temperatures. [A/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Hayashibara, M.; Ohno, H.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1984-05-01

    We prepared nickel specimens which contain gold impurity only near the grain boundaries and measured thermal segregation of gold onto the surface and the change in the composition induced by bombardment with Ar/sup +/ ions. It is found that irradiation causes composition change over a depth much larger than the thickness of the altered layer for Ni-Au alloys. It is also found that when a two-layered Ni-Au film is bombarded with gold atoms from the nickel side at elevated temperatures, the nickel is protected by a thin gold film segregated on the nickel surface.

  5. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2.

    Directory of Open Access Journals (Sweden)

    Michael Sswat

    Full Text Available In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus, a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C with two CO2 levels (400 μatm and 900 μatm CO2 at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi. The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive

  6. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  7. Elevated Temperature Creep Properties of Conventional 50Au-50Cu and 47Au 50Cu-3Ni Braze Alloys

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS JR.,JOHN J.; SCHMALE,DAVID T.

    2000-12-18

    The elevated temperature creep properties of the 50Au-50Cu wt% and 47Au-50Cu-3Ni braze alloys have been evaluated over the temperature range 250-850 C. At elevated temperatures, i.e., 450-850 C, both alloys were tested in the annealed condition (2 hrs. 750 C/water quenched). The minimum strain rate properties over this temperature range are well fit by the Garofalo sinh equation. At lower temperatures (250 and 350 C), power law equations were found to characterize the data for both alloys. For samples held long periods of time at 375 C (96 hrs.) and slowly cooled to room temperature, an ordering reaction was observed. For the case of the 50Au-50Cu braze alloy, the stress necessary to reach the same, strain rate increased by about 15% above the baseline data. The limited data for ordered 47Au-50Cu-3Ni alloy reflected a,smaller strength increase. However, the sluggishness of this ordering reaction in both alloys does not appear to pose a problem for braze joints cooled at reasonable rates following brazing.

  8. Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature

    Science.gov (United States)

    Huang, Minsheng; Li, Zhenhuan

    2015-12-01

    To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.

  9. Microstructure and mechanical properties of sputter deposited Ni/Ni{sub 3}Al multilayer films at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China); Lu, Fenggui; Huang, Jian; Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240 (China)

    2016-08-15

    Highlights: • Ni/Ni{sub 3}Al multilayers are prepared by magnetron sputtering. • Both grain size and phase constitution of annealed Ni/Ni{sub 3}Al multilayers are dependent on individual layer thickness. • The hardness of annealed Ni/Ni{sub 3}Al multilayers varies with individual layer thickness and annealing temperature. • 40 nm Ni/Ni{sub 3}Al multilayer exhibits excellent hardness at elevated temperature. - Abstract: Nano-structured Ni/Ni{sub 3}Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni{sub 3}Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni{sub 3}Al on strengthening mechanisms of Ni/Ni{sub 3}Al multilayers at elevated temperature are discussed.

  10. Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites

    Science.gov (United States)

    Diaz, J. O.

    1985-01-01

    Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000 F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

  11. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  12. Fatigue Behavior of Inconel 718 TIG Welds

    Science.gov (United States)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  13. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  14. Postdialysis fatigue.

    Science.gov (United States)

    Sklar, A H; Riesenberg, L A; Silber, A K; Ahmed, W; Ali, A

    1996-11-01

    To clarify the demographic and clinicolaboratory features of postdialysis fatigue (PDF), we enrolled 85 patients on maintenance hemodialysis in a cross-sectional study using validated questionnaires and chart review. Forty-three patients complained of fatigue after dialysis. On formal testing using the Kidney Disease Questionnaire, the PDF group had statistically greater severity of fatigue and somatic complaints than the group of patients without subjective fatigue (P = 0.03 and 0.04, respectively). On a scale measuring intensity of fatigue (1 = least to 5 = worst), the PDF group average was 3.4 +/- 1.2. PDF subjects reported that 80% +/- 25% of dialysis treatments were followed by fatigue symptoms. In 28 (65%) of patients, the symptoms started with the first dialysis treatment. They reported needing an average of 4.8 hours of rest or sleep to overcome the fatigue symptoms (range, 0 to 24 hours). There were no significant differences between patients with and without PDF in the following parameters: age; sex; type of renal disease; presence of diabetes mellitus, heart disease (congestive, ischemic), or chronic obstructive lung disease; blood pressure response to dialysis; type or adequacy of dialysis regimen; hematocrit; electrolytes; blood urea nitrogen; creatinine; cholesterol; albumin; parathyroid hormone; ejection fraction; and use of antihistamines, benzodiazepines, and narcotics. In the fatigue group, there was significantly greater use of antihypertensive medications known to have fatigue as a side effect (P = 0.007). Depression was more common in the fatigue group by Beck Depression score (11.6 +/- 8.0 v 7.8 +/- 6.3; P = 0.02). We conclude that (1) postdialysis fatigue is a common, often incapacitating symptom in patients on chronic extracorporeal dialysis; (2) no routinely measured parameter of clinical or dialytic function appears to predict postdialysis fatigue; and (3) depression is highly associated with postdialysis fatigue, but the cause

  15. Behaviour and modelling of the inelastic response of concrete and steel-concrete infrastructures subjected to low-cycle fatigue

    OpenAIRE

    Fassin, Manuel

    2016-01-01

    Nowadays, infrastructures are of strategical importance for allowing communication between countries. Owing to its usefulness, the design and the maintenance of bridges, streets and tunnels, which represent the network, become a fundamental issue. In order to investigate the behaviour of infrastructures under different loads, such as gravity, seismic phenomena, thermal differences, and so on, appears essential a comprehensive experimental campaign on scaled and full-scale specimens. In partic...

  16. Low cycle fatigue behaviour of Ti–6Al–5Zr–0⋅ 5Mo–0⋅ 25Si alloy at ...

    Indian Academy of Sciences (India)

    Mo–0.25Si (LT26A), was investigated in the ( + ) as well as treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of t/2: from ± 0.60% to ± 1.40%. The alloy shows cyclic ...

  17. Low cycle fatigue behaviour of Ti–6Al–5Zr–0⋅5Mo–0⋅25Si alloy at ...

    Indian Academy of Sciences (India)

    Unknown

    condition as compared to the β treated one is in conformity with the higher degree of softening in the former one, as indicated by the stress-response curves in figures 3a and b. Some investigators have reported cross over in the cyclic and monotonic stress–strain curves above 1⋅5% of total strain in the near-α titanium alloy, ...

  18. T55-L-714 Engine Development and Qualification. Engine M11 Low Cycle Fatigue Test Report. (0213-005-87),

    Science.gov (United States)

    1987-12-01

    total cycles) calibration, the engine was removed from the test cell for a brief period to facilitate removal of the combustor/power turbine assembly and...stack fires reported from the field while operating in conditions similar to those present in the test cell , i.e., high ambient temperatures (80 + °F...4p Ca ~~41 rT4 Ile ~ 0 Figure 11 First Nozzle, Rear, Posttest E-4CfM -4j 5-4 4J -4 0 0 S 0 1-4 44 is~ tit.5- 0 04 -4 41 -24 0 .4 4-) .- 1 544 I z 0 C

  19. Strain-rate dependent fatigue behavior of 316LN stainless steel in high-temperature water

    Science.gov (United States)

    Tan, Jibo; Wu, Xinqiang; Han, En-Hou; Ke, Wei; Wang, Xiang; Sun, Haitao

    2017-06-01

    Low cycle fatigue behavior of forged 316LN stainless steel was investigated in high-temperature water. It was found that the fatigue life of 316LN stainless steel decreased with decreasing strain rate from 0.4 to 0.004 %s-1 in 300 °C water. The stress amplitude increased with decreasing strain rate during fatigue tests, which was a typical characteristic of dynamic strain aging. The fatigue cracks mainly initiated at pits and slip bands. The interactive effect between dynamic strain aging and electrochemical factors on fatigue crack initiation is discussed.

  20. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments

    Science.gov (United States)

    Seewald, Jeffrey S.

    2001-05-01

    Organic matter, water, and minerals coexist at elevated temperatures and pressures in sedimentary basins and participate in a wide range of geochemical processes that includes the generation of oil and natural gas. A series of laboratory experiments were conducted at 300 to 350°C and 350 bars to examine chemical interactions involving low molecular weight aqueous hydrocarbons with water and Fe-bearing minerals under hydrothermal conditions. Mineral buffers composed of hematite-magnetite-pyrite, hematite-magnetite, and pyrite-pyrrhotite-magnetite were added to each experiment to fix the redox state of the fluid and the activity of reduced sulfur species. During each experiment the chemical system was externally modified by addition of ethene, ethane, propene, 1-butene, or n-heptane, and variations in the abundance of aqueous organic species were monitored as a function of time and temperature. Results of the experiments indicate that decomposition of aqueous n-alkanes proceeds through a series of oxidation and hydration reactions that sequentially produce alkenes, alcohols, ketones, and organic acids as reaction intermediaries. Organic acids subsequently undergo decarboxylation and/or oxidation reactions to form carbon dioxide and shorter chain saturated hydrocarbons. This alteration assemblage is compositionally distinct from that produced by thermal cracking under anhydrous conditions, indicating that the presence of water and minerals provide alternative reaction pathways for the decomposition of hydrocarbons. The rate of hydrocarbon oxidation decreases substantially under reducing conditions and in the absence of catalytically active aqueous sulfur species. These results represent compelling evidence that the stability of aqueous hydrocarbons at elevated temperatures in natural environments is not a simple function of time and temperature alone. Under the appropriate geochemical conditions, stepwise oxidation represents a mechanism for the decomposition of low

  1. Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [Department; Center; Fedin, Igor [Department; Diroll, Benjamin T. [Center; Liu, Yuzi [Center; Talapin, Dmitri V. [Center; Department; Schaller, Richard D. [Department; Center

    2018-01-03

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology up to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.

  2. Mechanical Properties of Thixoforged In Situ Mg2Sip/AM60B Composite at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Suqing Zhang

    2018-02-01

    Full Text Available The mechanical behaviors of the thixoforged in situ Mg2Sip/AM60B composite at elevated temperatures were evaluated. The results indicated that the thixoforged composite exhibits higher UTS (ultimate tensile strength than that of the thixoforged AM60B at the cost of elongation. As the testing temperature rises from 25 to 300 °C, the UTS of both these two materials decreases while their elongations increases. The enhanced dislocation motion ability, the softened eutectic β phase at 120 °C, the activated non-basal slipping and the dynamic recovery and recrystallization mechanisms at 150 °C are responsible for the change in tensile properties with testing temperatures. The fracture mode transforms from the ductile into the brittle as the initial strain rate increases from 0.01 to 0.2 s−1 at 200 °C.

  3. Drift algae, an invasive snail and elevated temperature reduce ecological performance of a warm-temperate seagrass, through additive effects

    DEFF Research Database (Denmark)

    Hoffle, H.; Wernberg, T.; Thomsen, M. S.

    2012-01-01

    Seagrasses are under pressure from multiple concurrent threats, including rising temperatures, invasive species and nutrient-driven algal accumulations. We quantified the abundance of drift algae and the invasive snail Batillaria australis in 3 Halophila ovalis seagrass beds in the Swan River....... The survey showed that drift algae varied considerably between sites and sampling times, and sites experienced average loads of 0.4 to 0.8 kg fresh wt m(-2) and extreme loads up to 2.5 kg fresh wt m(-2). In contrast, invasive snails were constantly abundant at all sites at all collection times (mean......, suggesting increased risk of hypoxia. Invasive snails reduced the biomass of H. ovalis leaves and roots, increased leaf plastochrone interval and decreased the depth of the sulphide horizon. Finally, elevated temperature increased leaf loss and reduced leaf biomass, and, in the presence of drift algae, also...

  4. Evaluation Some Properties of NanoMetakaolin or Rice Husk Ash Cement Mortar and its Resistance to Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Jassim Atiya Alwan

    2016-12-01

    Full Text Available The objective of this research is to find the optimum value of some properties like compressive, flexural strength of blended cement mortar by nanometakaolin ( NMK or rice husk ash (RHA and to evaluate the effect of high temperature on these properties. The ordinary Portland cement(OPC of mortar was partially substituted by NMK or RHA of 5,10,15 and 20% by weight of cement. (108 control and blended specimens were casted and tested at ambient temperature (33 ºC for compressive and flexural strength for 28 and 90 days. Another (270 of the control and blended specimens were casted and cured for 90 days and exposed to elevated temperature of a gradual increase in temperature up to 200 ºC,300 ºC, 400 ºC,600 ºC and 800 ºC for two hours in an electrical furnace and they were under the same previous tests. The test results at ambient temperature indicate that the optimum compressive and flexural strength was with ratio of 15% NMK cement replacement in mortar for 28 and 90 days but for RHA was ratio of 10% for 28 days and 15% of cement weight in mortar for 90 days compared to control specimens. The results of exposing control and blended specimens of (90 days to elevated temperature showed that the optimum strength for control and the best MK replacement ratio were found at 200 ºC, and the best RHA replacement ratio specimens was found at 300 ºC. It is also found that exposing the mortar to more than these temperatures destroyed its strength and it was detrimental to its properties.

  5. CANDLE syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature-a rare case with a novel mutation.

    Science.gov (United States)

    Cavalcante, Miria Paula V; Brunelli, Juliana B; Miranda, Clarissa C; Novak, Glaucia V; Malle, Louise; Aikawa, Nadia E; Jesus, Adriana A; Silva, Clovis Artur

    2016-05-01

    We described herein a patient with chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome and a novel mutation in PSMB8 gene. This patient had multiple visceral inflammatory involvements, including rare manifestations, such as Sweet syndrome and pericarditis. A 3-year-old male, Caucasian, was born to consanguineous healthy parents. At the age of 11 months, he presented daily fever (temperature >40 °C), irritability, hepatomegaly, splenomegaly; and tender and itching, erythematous papular and edematous plaque lesions. Echocardiogram showed mild pericarditis. Skin biopsy revealed a neutrophil infiltrate without vasculitis suggesting Sweet syndrome. Mutational screening of PSMB8 gene revealed homozygous c.280G>C, p.A94P mutation. He responded partially to high doses of oral glucorticoid and intravenous methylprednisolone. Colchicine, azathioprine, methotrexate, cyclosporine, and intravenous immunoglobulin were not efficacious. At the age of 3 years and 1 month, tocilizumab was administered resulting in remission of daily fever and irritability. However, there was no improvement of the skin tenderness and itching lesions. A new mutation in a CANDLE syndrome patient was reported with pericarditis and mimicking Sweet syndrome. The disease manifestations were refractory to immunosuppressive agents and partially responsive to tocilizumab therapy. • Proteasome-associated autoinflammatory syndromes (PRAAS) include four rare diseases. • Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome was seldom reported. What is New: • We described a Brazilian patient with CANDLE syndrome possessing a novel mutation in the PSMB8 gene. • This patient had multiple visceral inflammatory involvements, including rare manifestations, such as pericarditis and mimicking Sweet syndrome.

  6. Combined effects of elevated temperature and CO2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L.

    Science.gov (United States)

    Wang, Xiaoheng; Li, Yu; Lu, Hong; Wang, Shigong

    2016-09-01

    A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO2 concentration on the bioaccumulation, translocation and subcellular distributions of Cd and Zn in wheat seedlings (Triticum aestivum L. cv. Xihan 1.) at Dingxi, Gansu Province, China. The objective was to find evidence that global climate change is affecting the bioaccumulation of Cd and Zn in T. aestivum L. cv. Xihan 1. The results showed that compared to control A, elevated temperature and CO2 increased Cd bioaccumulation in the shoots by 1.4-2.5 times, and increased that in the roots by 1.2-1.5 times, but decreased Zn levels in wheat shoots by 1.4-2.0 times, while decreased that in the roots by 1.6-1.9 times. Moreover, temperature and CO2 concentration increase also led to increased Cd concentration, and decreased Zn concentration in subcellular compartments of wheat seedlings. The largest Cd concentration increase (174.4%) was observed in the cell wall and debris fractions of shoots after they were subjected to the highest CO2 and temperature treatment (TC3). The largest Zn concentration decrease (53.1%) was observed in the soluble (F3) fractions of shoots after they were subjected to the medium CO2 and temperature treatment (TC2). The temperature and CO2 increase had no significant effect on the proportional distribution of Cd and Zn in the subcellular fractions. The root-to-shoot translocation of Cd increased with the increasing temperature and CO2 concentration. However, the Zn distributions only fluctuated within a small range. Copyright © 2016. Published by Elsevier B.V.

  7. Elevated-temperature crack-growth studies of advanced titanium aluminides. Final report, September 1986-April 1987

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S.

    1987-09-01

    Ordered intermetallic titanium aluminide Ti Al alloyed with niobium possesses attractive high-temperature properties and moderate low temperature ductibility. Currently, its application is limited to static components in aircraft gas turbine engines. To extend their use to rotating components of turbine engines, better understanding of life limiting processes such as creep/fatigue crack growth and fracture is required. Phase I of this Air Force Small Business Innovative Research program involved investigation of fatigue crack growth in an alpha two titanium aluminide plus niobium alloy (titanium - 16 wt% aluminum - 10 wt% niobium) as a function of temperature and environment. Computer-automated fatigue-crack-growth tests were conducted in both air and vacuum environments at temperatures ranging from room temperature to 1200 F (649 C). Two heat treatment conditions, namely, beta solution and alpha + beta solution resulted in coarse- and fine-grain materials, respectively, with varying alpha two morphology. Fractographic analyses were conducted for all test specimens.

  8. Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites Through Hysteresis-Based Parameters

    Science.gov (United States)

    Li, Longbiao

    2017-10-01

    The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.

  9. THE STRENGTH OF REINFORCED CONCRETE BEAM ELEMENTS UNDER CYCLIC ALTERNATING LOADING AND LOW CYCLE LOAD OF CONSTANT SIGN

    Directory of Open Access Journals (Sweden)

    Semina Yuliya Anatol'evna

    2015-09-01

    Full Text Available The behavior of reinforced concrete elements under some types of cyclic loads is described in the paper. The main aim of the investigations is research of the stress-strain state and strength of the inclined sections of reinforced concrete beam elements in conditions of systemic impact of constructive factors and the factor of external influence. To spotlight the problem of cyclic loadings three series of tests were conducted by the author. Firstly, the analysis of the tests showed that especially cyclic alternating loading reduces the bearing capacity of reinforced concrete beams and their crack resistance by 20 % due to the fatigue of concrete and reinforcement. Thus the change of load sign creates serious changes of stress-strain state of reinforced concrete beam elements. Low cycle loads of constant sign effect the behavior of the constructions not so adversely. Secondly, based on the experimental data mathematical models of elements’ strength were obtained. These models allow evaluating the impact of each factor on the output parameter not only separately, but also in interaction with each other. Furthermore, the material spotlighted by the author describes stress-strain state of the investigated elements, cracking mechanism, changes of deflection values, the influence of mode cyclic loading during the tests. Since the data on the subject are useful and important to building practice, the ultimate aim of the tests will be working out for improvement of nonlinear calculation models of span reinforced concrete constructions taking into account the impact of these loads, and also there will be the development of engineering calculation techniques of their strength, crack resistance and deformability.

  10. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  11. Elevated temperature deformation analysis

    Science.gov (United States)

    Nelson, J. M.

    The paper demonstrates a novel nondestructive test and data analysis technique for quantitative measurement of circumferentially varying flexural moduli of 2D involute carbon-carbon tag rings containing localized wrinkles and dry plies at room and rocket nozzle operating temperatures. Room temperature computed tomography (CT) deformation tests were performed on 11 carbon-carbon rings selected from the cylinders and cones fabricated under the NDE data application program and two plexiglass rings fabricated under this program. This testing and analysis technique is found to have primary application in validation of analytical models for carbon-carbon performance modeling. Both effects of defects assumptions, the effects of high temperature environments, and failure-related models can be validated effectively. The testing and analysis process can be interwoven in a manner that increases the engineering understanding of the material behavior and permits rapid resolution of analysis questions. Specific recommendations for the development and implementation of this technique are provided.

  12. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    OpenAIRE

    Liu Gang; Wang Jianlong; Dang Kexin; Yuan Shijian

    2015-01-01

    High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were ...

  13. Fatigue (PDQ)

    Science.gov (United States)

    ... home. Depression. Anxiety. Trouble sleeping. Younger age. Being underweight. Having advanced cancer or other medical conditions. Fatigue ... detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health ...

  14. Very High Cycle Fatigue Behavior of TA11 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    JIAO Zehui

    2017-06-01

    Full Text Available The conventional fatigue test method was used to obtain the very high cycle fatigue (VHCF limits of 3×107 and 1×108 cycles for TA11 titanium alloy in different temperatures and stress ratios. Three parameter power function method was used to obtain the VHCF median S-N curves and equations. The results show that the VHCF strength of 3×107 and 1×108 cycles presented a continue reducing trend compared with the traditional 1 x 107 fatigue limit. This trend is not obvious in negative stress ratio (R=-1, but significant in normal stress ratio (R=0.1 and 0.5, and the reduction amplitude of room temperature tests was greater than that of elevated temperature tests. The fracture morphologies showed that the VHCF cracks initiat at the specimen surface of TA11 alloy in room temperature tests, and the VHCF cracks initiation ways in elevated temperature tests relate to the stress ratio. The cracks initiate at the specimen surface when R=0.1 and 0.5 but in the internal when R=0.5; The surface state of TA11 alloy specimens is the main cause of its fatigue life dispersion.

  15. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  16. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  17. A rapid technique for determination of nitrate and nitric acid by acid reduction and diazotization at elevated temperature.

    Science.gov (United States)

    Mir, S A

    2008-07-14

    A rapid technique for determination of nitrate by acid reduction and diazotization at elevated temperature has been standardized. The technique is based on quantitative diazotization of sulfanilamide by nitrate on incubation in boiling water bath for 3, 5 or 10 min in presence of high concentration of HCl, ca. 64.5%. The diazotized sulfanilamide is coupled at room temperature to N-1-(naphthyl)-ethylenediamine dihydrochloride, and the chromophore evaluated spectrophotometrically at 540 nm. The technique provides linear estimate of nitrate over the test range of 0.5 through 10 microg N mL(-1) sample with all test incubation time periods using alkali nitrate and nitric acid as sources of nitrate anion. Urea treatment enables selective determination of nitrate in presence of nitrite with overall 99+/-1% recovery, and without affecting nitrate determination (P>0.1) or its regression coefficient. The technique has obvious advantages over metal-reduction technique. It is simple, rapid, selective in presence of nitrite, and an inexpensive method for routine determination of nitrate with detection range 0.5-10 microg N mL(-1) sample. Besides, the technique provides opportunity to detect nitric acid as low as 35 microM even in presence of other acids.

  18. Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Ngoc-Trung Nguyen

    2014-02-01

    Full Text Available Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally.

  19. Simultaneous assessment of Asp isomerization and Asn deamidation in recombinant antibodies by LC-MS following incubation at elevated temperatures.

    Directory of Open Access Journals (Sweden)

    Katharina Diepold

    Full Text Available The degradation of proteins by asparagine deamidation and aspartate isomerization is one of several chemical degradation pathways for recombinant antibodies. In this study, we have identified two solvent accessible degradation sites (light chain aspartate-56 and heavy chain aspartate-99/101 in the complementary-determining regions of a recombinant IgG1 antibody susceptible to isomerization under elevated temperature conditions. For both hot-spots, the degree of isomerization was found to be significantly higher than the deamidation of asparagine-(387, 392, 393 in the conserved CH3 region, which has been identified as being solvent accessible and sensitive to chemical degradation in previous studies. In order to reduce the time for simultaneous identification and functional evaluation of potential asparagine deamidation and aspartate isomerization sites, a test system employing accelerated temperature conditions and proteolytic peptide mapping combined with quantitative UPLC-MS was developed. This method occupies the formulation buffer system histidine/HCl (20 mM; pH 6.0 for denaturation/reduction/digestion and eliminates the alkylation step. The achieved degree of asparagine deamidation and aspartate isomerization was adequate to identify the functional consequence by binding studies. In summary, the here presented approach greatly facilitates the evaluation of fermentation, purification, formulation, and storage conditions on antibody asparagine deamidation and aspartate isomerization by monitoring susceptible marker peptides located in the complementary-determining regions of recombinant antibodies.

  20. Impacts of vinyl ethylene carbonate and vinylene carbonate on lithium manganese oxide spinel cathode at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renheng [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Li, Xinhai, E-mail: 703131039@qq.com [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Wang, Zhixing; Guo, Huajun; Wang, Jiexi [School of Metallurgy and Environment, Central South University, Changsha 410083 (China); Hou, Tao [Jiangxi Youli New Materials Co., Ltd, Pingxiang 337000 (China)

    2015-05-25

    Highlights: • 1 wt.% VEC used as additive to improve cycling performance of LiMn{sub 2}O{sub 4}/Li cells. • A stable SEI film using VEC electrolyte can be formed. • The stability performance of the LiMn{sub 2}O{sub 4} cells using VEC electrolyte is improved. • The exfoliation of LiMn{sub 2}O{sub 4} using VEC electrolyt is effectively suppressed. - Abstract: The effects of adding vinylene carbonate (VC) and vinyl ethylene carbonate (VEC) in a 1:1:1 (weight ratio) ethylene carbonate (EC)/diethy carbonate (DEC)/dimethyl carbonate (EMC) on the performance of LiMn{sub 2}O{sub 4}/Li cells at elevated temperature are studied. Linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used for the analyses. These results confirm the capability of the 1 wt.% VEC electrolyte additive to more effectively improve the cell cycling performance and stability in the (EC and DEC)-based electrolyte of LiMn{sub 2}O{sub 4}/Li cells.

  1. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    KAUST Repository

    Choi, Byungchul

    2010-12-01

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800. K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. © 2010 The Combustion Institute.

  2. L10 ordered structures in Al-Cu-(Mg) alloys at the early stages of elevated temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuzhong, X.; Mingpu, W.

    2016-07-01

    This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. %) alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg) alloys were characterized by Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HTREM). 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg) alloys during aging. (Author)

  3. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  4. Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Sjögren, B.A.

    1999-01-01

    to optimise fatigue resistance. In this study, glass-fibre-reinforced vinyl-ester was used. The adverse effect of compressive load excursions was verified by counting the transverse cracks in cross-ply laminates. The mechanisms were studied in low-cycle fatigue of a specimen containing a single transverse......-tension fatigue to transverse and multidirectional laminates. By analysing the debonding mechanisms and modelling thereof, the macroscopic fatigue behaviour can be better understood. Also, the dominant crack-propagation mode can be identified which may be of use in selection of constituent material properties...

  5. A comparison between ultra-high-strength and conventional high-strength fastener steels : Mechanical properties at elevated temperature and microstructural mechanisms

    NARCIS (Netherlands)

    Ohlund, C.E.I.C.; Lukovic, M.; Weidow, J; Thuvander, M; Offerman, S.E.

    2016-01-01

    A comparison is made between the mechanical properties of the ultra-high-strength steel KNDS4 of fastener grade 14.9 and of conventional, high-strength steels 34Cr4 of fastener grade 12.9 and 33B2 of grade 10.9. The results show that the ratio of the yield strength at elevated temperatures to the

  6. ELEVATED TEMPERATURE, SOIL MOISTURE AND SEASONALITY BUT NOT CO2 AFFECT CANOPY ASSIMILATION AND SYSTEM RESPIRATION IN SEEDLING DOUGLAS-FIR ECOSYSTEMS

    Science.gov (United States)

    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  7. Dating Middle Pleistocene loess from Stari Slankamen (Vojvodina, Serbia) — Limitations imposed by the saturation behaviour of an elevated temperature IRSL signal

    DEFF Research Database (Denmark)

    Murray, Andrew Sean; Schmidt, E.D.; Stevens, T.

    2014-01-01

    Recent advances in post-IR IRSL dating have led to breakthroughs in dating upper Middle Pleistocene loess sequences. Here, an elevated temperature post-IR IR protocol using a second IR stimulation temperature of 290°C is applied to eleven polymineral fine-grain (4–11μm) samples from the lower par...

  8. Cavitation at migrating boundaries during high temperature fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.

    1987-06-01

    There is growing interest in the role of migrating boundaries during high temperature deformation. One area of current interest is the manner in which grain boundary migration can influence deformation and fracture at elevated temperatures. Much of the detailed treatments of intergranular cracking and cavitation during creep deformation have centered on effects occurring at stationary grain boundaries. The conventional idea represented in numerous publications is that grain boundary sliding plays an important role in intergranular fracture at elevated temperatures. The large stress concentrations developed at irregularities on grain boundaries are frequently cited as the principal reason for the easy generation of cracks and cavities. This article concludes that high temperature fatigue can cause significant migration and sliding in Al-3% Mg and Pb-2% Sn solid solution alloys, and that microcavitation and cracking takes place at the migrating boundaries in specimens tested at large strain amplitudes and low test frequencies. Cavities may be isolated within grains due to boundary migration.

  9. Chronic Fatigue Syndrome

    Science.gov (United States)

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  10. Elevated-temperature, colorimetric, monoclonal, enzyme-linked immunosorbent assay for rapid screening of Salmonella in foods: collaborative study.

    Science.gov (United States)

    Eckner, K F; Dustman, W A; Curiale, M S; Flowers, R S; Robison, B J

    1994-01-01

    A collaborative study was performed by 30 laboratories in 3 sets of trials to validate a modified colorimetric monoclonal enzyme-linked immunosorbent assay (ELISA) method for Salmonella detection. The modifications to the current methodology included incubation of enrichments and post-enrichments at an elevated temperature, addition of novobiocin to the M-broth post-enrichment, and elimination of the centrifugation and agitation steps. Five artificially contaminated foods (nonfat dry milk, milk chocolate, dried egg, ground black pepper, and soy flour) and 1 naturally contaminated food (raw ground turkey) were analyzed. The artificially contaminated foods were inoculated with individual Salmonella serotypes at a high (10-50 cells/25 g) and low (1-5 cells/25 g) contamination level. Results from the modified ELISA method were compared to the Bacteriological Analytical Manual (BAM)/AOAC culture method. In 2 of the food products, milk chocolate and pepper, a number of laboratories isolated Salmonella from un-inoculated control samples, thus invalidating their data. As a result, there were too few laboratories remaining with valid data, and these foods were repeated. In the completed study, there were 11 false negative results obtained by the modified ELISA method, while there were 28 false negatives produced by the BAM/AOAC procedure. There were 11 ELISA positive assays which could not be confirmed by culture methods. Statistically, there were no differences between the modified, colorimetric, monoclonal ELISA and the reference culture method in all foods except raw turkey, where the ELISA method was more productive. The colorimetric monoclonal enzyme immunoassay (Salmonella-Tek) method for detecting Salmonella in all foods has been adopted first action by AOAC INTERNATIONAL.

  11. Effects of Short-Term Aging on Asphalt Binders and Hot Mix Asphalt at Elevated Temperatures and Extended Aging Time

    Directory of Open Access Journals (Sweden)

    Lolly Rubben

    2017-01-01

    Full Text Available The production process of Hot Mix Asphalt (HMA causes a short term aging (STA to asphalt binder due to the heating of both asphalt binder and aggregates before mixing together. Laboratory protocols are followed to simulate the STA conditions for both asphalt binders and asphalt mixtures. STA protocols expose asphalt binders or asphalt mixtures to specific aging temperature for a specific period of time to produce stiffening that is similar to that of actual production conditions. Successful construction of HMA in cold season/regions may require elevating the production temperature of HAM to achieve proper compaction of HMA layers. Producing HMA mixtures at elevated temperatures may cause further increase in the binder stiffness and negatively affect the future field performance of asphalt pavements. This negative affect can be even worse especially if it is coupled with extended exposer time increase. This study aims to investigate effect of elevated production (mixing and STA temperatures and exposure time on the stiffening of binders and asphalt mixtures. The binder experiment involved aging of two Performance Graded (PG binders (PG 76-16 and PG 64-22 at two different temperatures and aging durations. The asphalt mixture experiment involved the STA of asphalt mixtures produced in the laboratory at mixing and STA temperatures 25°F above standard practice and aging time 2 and 4 hours longer than standard practices. The effect of different aging times and temperatures was investigated by running viscosity tests on binders and dynamic modulus |E*| and Indirect Diametrical Strength (IDT tests on asphalt mixtures. The results showed that increasing the mixing and STA temperatures by 25°F seems to have no significant effect on the asphalt mixture properties while doubling the standard STA time seems to have a significant effect on binder and asphalt mixture properties.

  12. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida).

    Science.gov (United States)

    Andersen, Øivind; Frantzen, Marianne; Rosland, Marte; Timmerhaus, Gerrit; Skugor, Adrijana; Krasnov, Aleksei

    2015-08-01

    Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments?

    Science.gov (United States)

    Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo

    2018-04-01

    Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.

  14. Damage buildup in Ar-ion-irradiated 3 C -SiC at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J. B.; Bayu Aji, L. B.; Li, T. T.; Shao, L.; Kucheyev, S. O.

    2015-09-14

    Above room temperature, the accumulation of radiation damage in 3C-SiC is strongly influenced by dynamic defect interaction processes and remains poorly understood. Here, we use a combination of ion channeling and transmission electron microscopy to study lattice disorder in 3C-SiC irradiated with 500 keV Ar ions in the temperature range of 25–250 °C. Results reveal sigmoidal damage buildup for all the temperatures studied. For 150 °C and below, the damage level monotonically increases with ion dose up to amorphization. Starting at 200 °C, the shape of damage–depth profiles becomes anomalous, with the damage peak narrowing and moving to larger depths and an additional shoulder forming close to the ion end of range. As a result, damage buildup curves for 200 and 250 °C exhibit an anomalous two-step shape, with a damage saturation stage followed by rapid amorphization above a critical ion dose, suggesting a nucleation-limited amorphization behavior. Despite their complexity, all damage buildup curves are well described by a phenomenological model based on an assumption of a linear dependence of the effective amorphization cross section on ion dose. In contrast to the results of previous studies, 3C-SiC can be amorphized by bombardment with 500 keV Ar ions even at 250 °C with a relatively large dose rate of ~2×1013 cm-2 s-1, revealing a dominant role of defect interaction dynamics at elevated temperatures.

  15. Elevated temperature prolongs long-term effects of a pesticide on Daphnia spp. due to altered competition in zooplankton communities.

    Science.gov (United States)

    Knillmann, Saskia; Stampfli, Nathalie C; Noskov, Yury A; Beketov, Mikhail A; Liess, Matthias

    2013-05-01

    Considerable research efforts have been made to predict the influences of climate change on species composition in biological communities. However, little is known about how changing environmental conditions and anthropogenic pollution can affect aquatic communities in combination. We investigated the influence of short warming periods on the response of a zooplankton community to the insecticide esfenvalerate at a range of environmentally realistic concentrations (0.03, 0.3 and 3 μg L(-1) ) in 55 outdoor pond microcosms. Warming periods increased the cumulative water temperature, but did not exceed the maximum temperature measured under ambient conditions. Under warming conditions alone the abundance of some zooplankton taxa increased selectively compared to ambient conditions. This resulted in a shift in the community composition that had not recovered by the end of the experiment, 8 weeks after the last warming period. Regarding the pesticide exposure, short-term effects of esfenvalerate on the community structure and the sensitive taxa Daphnia spp. did not differ between the two temperature regimes. In contrast, long-term effects of esfenvalerate on Daphnia spp., a taxon that did not benefit from elevated temperatures, were observed twice as long under warming than under ambient conditions. This resulted in long-term effects on Daphnia spp. until 4 months after contamination at 3 μg L(-1) esfenvalerate. Under both temperature regimes, we identified strength of interspecific competition as the mechanism determining the time until recovery. However, enhanced interspecific competition under warming conditions was prolonged and explained the delayed recovery of Daphnia spp. from esfenvalerate. These results show that, for realistic prediction of the combined effects of changing environmental factors and toxicants on sensitive taxa, the impacts of stressors on the biotic interactions within the community need to be considered. © 2013 Blackwell Publishing Ltd.

  16. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria.

    Science.gov (United States)

    Nyboer, Elizabeth A; Chapman, Lauren J

    2017-10-15

    Increasing water temperatures owing to anthropogenic climate change are predicted to negatively impact the aerobic metabolic performance of aquatic ectotherms. Specifically, it has been hypothesized that thermal increases result in reductions in aerobic scope (AS), which lead to decreases in energy available for essential fitness and performance functions. Consequences of warming are anticipated to be especially severe for warm-adapted tropical species as they are thought to have narrow thermal windows and limited plasticity for coping with elevated temperatures. In this study we test how predicted warming may affect the aerobic performance of Nile perch (Lates niloticus), a commercially harvested fish species in the Lake Victoria basin of East Africa. We measured critical thermal maxima (CTmax) and key metabolic variables such as AS and excess post-exercise oxygen consumption (EPOC) across a range of temperatures, and compared responses between acute (3-day) exposures and 3-week acclimations. CTmax increased with acclimation temperature; however, 3-week-acclimated fish had higher overall CTmax than acutely exposed individuals. Nile perch also showed the capacity to increase or maintain high AS even at temperatures well beyond their current range; however, acclimated Nile perch had lower AS compared with acutely exposed fish. These changes were accompanied by lower EPOC, suggesting that drops in AS may reflect improved energy utilization after acclimation, a finding that is supported by improvements in growth at high temperatures over the acclimation period. Overall, the results challenge predictions that tropical species have limited thermal plasticity, and that high temperatures will be detrimental because of limitations in AS. © 2017. Published by The Company of Biologists Ltd.

  17. The metabolic, locomotor and sex-dependent effects of elevated temperature on Trinidadian guppies: limited capacity for acclimation.

    Science.gov (United States)

    Muñoz, Nicolas J; Breckels, Ross D; Neff, Bryan D

    2012-10-01

    Global warming poses a threat to many ectothermic organisms because of the harmful effects that elevated temperatures can have on resting metabolic rate (RMR) and body size. This study evaluated the thermal sensitivity of Trinidadian guppies (Poecilia reticulata) by describing the effects of developmental temperature on mass, burst speed and RMR, and investigated whether these tropical fish can developmentally acclimate to their thermal conditions. These traits were measured following exposure to one of three treatments: 70 days at 23, 25, 28 or 30°C (acclimated groups); 6 h at 23, 28 or 30°C following 70 days at 25°C (unacclimated groups); or 6 h at 25°C following 70 days in another 25°C tank (control group). Body mass was lower in warmer temperatures, particularly amongst females and individuals reared at 30°C. The burst speed of fish acclimated to each temperature did not differ and was marginally higher than that of unacclimated fish, indicative of complete compensation. Conversely, acclimated and unacclimated fish did not differ in their RMR at each temperature. Amongst the acclimated groups, RMR was significantly higher at 30°C, indicating that guppies may become thermally limited at this temperature as a result of less energy being available for growth, reproduction and locomotion. Like other tropical ectotherms, guppies appear to be unable to adjust their RMR through physiological acclimation and may consequently be susceptible to rising temperatures. Also, because larger females have higher fecundity, our data suggest that fecundity will be reduced in a warmer climate, potentially decreasing the viability of guppy populations.

  18. Neutron diffraction reveals the existence of confined water in triangular and hexagonal channels of modified YPO4 at elevated temperatures

    Science.gov (United States)

    Mishra, S. K.; Ningthoujam, R. S.; Mittal, R.; Vatsa, R. K.; Zbiri, M.; Sharma, K. Shitaljit; Singh, B. P.; Sastry, P. U.; Hansen, T.; Schober, H.; Chaplot, S. L.

    2017-09-01

    We provide experimental evidence for confinement of water molecules in the pores of hexagonal structure of YPO4 at elevated temperatures up to 600 K using powder neutron diffraction. In order to avoid the large incoherent scattering from the hydrogen, deuterated samples of doped YPO4:Ce-Eu were used for diffraction measurements. The presence of water molecules in the triangular and hexagonal pores in the hexagonal structure was established by detailed simulation of the diffraction pattern and Rietveld refinement of the experimental data. It was observed that the presence of water leads specifically to suppression of the intensity of a peak around Q = 1.04 Å-1 while the intensity of peaks around Q = 1.83 Å-1 is enhanced in the neutron-diffraction pattern. We estimate the number of water molecules as 2.36 (6) per formula units at 300 K and the sizes of the hexagonal and triangular pores as 7.2 (1) and 4.5 (1) Å, respectively. With an increase in temperature, the water content in both pores decreases above 450 K and vanishes around 600 K. Analysis of the powder-diffraction data reveals that the hexagonal structure with the pores persist up to 1273 K, and transforms to another structure at 1323 K. The high-temperature phase is not found to have the zircon- or monazite-type structure, but a monoclinic structure (space group P 2 /m ) with lattice parameters am= 6.826 (4 ) Å ,bm= 6.645 (4 ) Å ,cm= 10.435 (9 ) Å , and β = 107.21 (6) ∘ . The monoclinic structure has about 14% smaller volume than the hexagonal structure which essentially reflects the collapse of the pores. The phase transition and the change in the volume are also confirmed by x-ray-diffraction measurements. The hexagonal-to-monoclinic phase transition is found to be irreversible on cooling to room temperature.

  19. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast.

    Science.gov (United States)

    Alings, Fiona; Sarin, L Peter; Fufezan, Christian; Drexler, Hannes C A; Leidel, Sebastian A

    2015-02-01

    Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s(2)U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s(2)U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s(2)U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms. © 2015 Alings et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Effect of carbon content on elevated temperature stability and tensile properties of Fe-8.5Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baligidad, R.G.; Radhakrishna, A. [Defence Metallurgical Research Lab., Hyderabad (India)

    2000-04-15

    Fe-8.4Al-0.04C, Fe-8.26Al-0.46C and Fe-8.35Al-1.1C alloys were prepared by a combination of air induction melting and electroslag remelting. The low (0.04 wt.%) carbon alloy exhibited microcracks therefore it was not studied further. The ESR ingots of high (0.46 and 1.1 wt.%) carbon alloys exhibited a significant amount of Fe{sub 3}AlC{sub 0.5} precipitation. The cast ESR samples of Fe-8.26Al-0.46C and Fe-8.35Al-1.1 C were placed in a hearth furnace at 873,1073 and 1273 K for 24 h and then furnace cooled. The high carbon alloys do not undergo decarburization and exhibit stable microstructure up to 873 K. Decarburization appears to be a problem only after exposure at temperatures of 1073 K and above. The ESR Fe-8.26Al-0.46C alloy exhibited greater elongation and significantly better elevated temperature strength up to 873 K than those reported for cast VIM low carbon multicomponent alloy with similar Al content. This may be due to the presence of a large volume fraction of stable Fe{sub 3}AlC{sub 0.5} precipitates. All the high carbon alloys exhibit a sharp drop in strength at 873 K regardless of carbon content. These alloys are therefore targeted for potential structural application at or below 873 K. (orig.)

  1. Fatigue damage in 20% cold-worked type 316L stainless steel under deuteron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, R. (CEC, Joint Research Centre, 21020, Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Type 316L stainless steel samples in 20% cold-worked conditions were exposed to fully reversed fatigue cycling in torsion at 400 C during an irradiation with 19 MeV deuterons. Fatigue tests were performed in the high cycle fatigue (HCF) range under continuous cycling and in the low cycle fatigue (LCF) range by imposing a hold-time at the minimum strain value. In comparison with tests under thermal conditions, an increase in the number of cycles to failure N[sub f] by a factor of 6 is observed for the HCF tests and a decrease in N[sub f], by more than an order of magnitude, for the LCF tests. The data are analyzed using a fatigue damage model: a fatigue damage parameter is defined and the change in this parameter caused by the different irradiation or loading conditions shows directly the effect of changed experimental conditions on the fatigue life. ((orig.))

  2. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... that hold times could be damaging even at room temperature, well below temperatures typically associated with creep. Hold times resulted in shorter fatigue lives in the high cycle fatigue, long life regime (i.e., at low strain amplitudes) than those of materials tested under the same conditions without hold...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...

  3. Behavior of Steel Branch Connections during Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Sládek A.

    2017-09-01

    Full Text Available Fatigue behavior of the branch connection made of low-alloyed steel with yield stress of 355 MPa during low-cycle bending test is investigated in the article. Numerical prediction of the stress and strain distribution are described and experimentally verified by fatigue test of the branch connection sample. Experimental verification is based on low-cycle bending testing of the steel pipes welded by manual metal arc process and loaded by external force in the appropriate distance. Stresses and displacement of the samples induced by bending moment were measured by unidirectional strain gauges and displacement transducers. Samples were loaded in different testing levels according to required stress for 2.106 cycles. Increase of the stress value was applied until the crack formation and growth was observed. Results showed a high agreement of numerical and experimental results of stress and displacement.

  4. Cyclic response and fatigue life of TiAl alloys at high temperatures

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Obrtlík, Karel; Petrenec, Martin; Polák, Jaroslav

    2010-01-01

    Roč. 417 - 418, - (2010), s. 585-588 ISSN 1013-9826. [8th International Conference on Fracture and Damage Mechanics. St. Georges Bay, 08.09.2009-10.09.2010] R&D Projects: GA ČR GA106/07/0762; GA ČR GA106/08/1631 Institutional research plan: CEZ:AV0Z20410507 Keywords : TiAl * lamellar microstructure * low cycle fatigue * transmission electron microscopy Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. Analysis of cracks induced by elevated temperature in rock using micro-focus X-ray CT

    Science.gov (United States)

    Cheon, D. S.; Park, E. S.

    2016-12-01

    Thermal energy storage facilities and deep borehole nuclear waste disposal in the underground are repeatedly applied by heat. The thermal stress induced by heat can generate micro-cracks and extend the existing micro-cracks of rocks. For long-term stabilities of the above facilities, the features of thermal induced cracks should be investigated. In this paper, we investigated occurred the features of thermal cracks using micro-focus X-ray CT before and after thermal experiments. Two different kinds of rock core specimens (limestone, granite) were heated within the furnace with the elevated temperatures of 250 °C, 400 °C and 550 °C. In thermal experiments, we heated rocks with the speed of 1.5 ºC /min to avoid thermal shock. Total 16 cases were subjected to X-ray imaging and post-processing to observe thermally induced fractures. Micro-cracks induced by thermal loading may not be extractable by a thresholding method such that the manual tracking within the ROI (Region of Interest) was implemented by using the VG Studio Software. Identified fractures were grouped by each object whose orientation was fitted by 3D plane. And then, its normal vector was computed and visualized. Nominal fractures (less than 10 voxel size) were excluded. Each fracture was projected on the 3D sphere and its volume was represented by color map. Thermal induced cracks in the limestone observed on CT images were very small. On the other hand, they could be more clearly observed in the granite. In case of limestone, the number of cracks is only 4 after heating up 550 °C and most of them occurred within the mineral. In case of granite, 157 cracks are detected both at the boundaries of minerals and within the mineral. In both rocks, the development of thermal cracks within a certain mineral was superior to them that occurred along the interface between minerals. After heating up to 550 °C the occurred cracks significantly increased. Crack volume was also similar pattern to the number of

  6. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region.

    Directory of Open Access Journals (Sweden)

    Doug-Hwan Choi

    Full Text Available Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea. These two soybean cultivars, Sinpaldalkong [maturity group (MG IV] and Daewonkong (MG VI, were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT, AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7 were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5 for both cultivars; the optimum temperatures (R5-R7 for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7 temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current

  7. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments.

    Science.gov (United States)

    Cheung, G S P; Zhang, E W; Zheng, Y F

    2011-04-01

    To evaluate the bending fatigue lifetime of nickel-titanium alloy (NiTi) and stainless steel (SS) endodontic files using finite element analysis. The strain-life approach was adopted and two theoretical geometry profiles, the triangular (TR) and the square cross-sections, were considered. Both low-cycle fatigue (LCF) lifetime and high-cycle fatigue (HCF) lifetime were evaluated. The bending fatigue behaviour was affected by the material property and the cross-sectional configuration of the instrument. Both the cross-section factor and material property had a substantial impact on fatigue lifetime. The NiTi material and TR geometry profiles were associated with better fatigue resistance than that of SS and square cross-sections. Within the limitations of this study, finite element models were established for endodontic files to prejudge their fatigue lifetime, a tool that would be useful for dentist to prevent premature fatigue fracture of endodontic files. © 2010 International Endodontic Journal.

  8. Toxicity of chromium (VI) to two mussels and an amphipod in water-only exposures with or without a co-stressor of elevated temperature, zinc, or nitrate

    Science.gov (United States)

    Wang, Ning; Kunz, James L.; Ivey, Chris D.; Ingersoll, Christopher G.; Barnhart, M. Christopher; Glidewell, Elizabeth A.

    2017-01-01

    The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39–68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83–98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature

  9. Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture

    Digital Repository Service at National Institute of Oceanography (India)

    Baragi, L.V.; Khandeparker, L.; Anil, A.C.

    version: Hydrobiologia (2015) 762:127-142 Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture Lalita V. Baragi, Lidita Khandeparker, Arga C. Anil* Academy of Scientific... (picoperiphyte and heterotrophic bacteria). Materials and methods Culture conditions Navicula distans, a pennate periphytic diatom, was isolated from a biofilm developed on a glass slide submerged in the waters of Dona Paula Bay located along the west coast...

  10. Computer Program of SIE ASME-NH Code for Structural Integrity Evaluation of Next Generation Reactors Subjecting to Elevated Temperature Operations

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2006-03-15

    In this report, the SIE ASME (Structural Integrity Evaluations by ASME-NH), which has a computerized implementation of ASME Pressure Vessels and Piping Code Section III Subsection NH rules, is developed to apply to the next generation reactor design subjecting to the elevated temperature operations over 500 .deg. C and over 30 years design lifetime, and the user's manual for this program is described in detail.

  11. Mutation in a gene encoding anti-sigma factor in A. brasilense confers tolerance to elevated temperature, antibacterial peptide and PEG-200 via carotenoid synthesis.

    Science.gov (United States)

    Mishra, Mukti Nath; Thirunavukkarasu, Nagarajan; Sharma, Indra Mani; Jagnnadham, Medicharla V; Tripathi, Anil K

    2008-10-01

    Azospirillum brasilense Sp7 has been shown to overproduce carotenoids if the anti-sigma factor (anti-sigma(E))-encoding gene is inactivated. The anti-sigma mutant (Car-1) of A. brasilense Sp7 was more tolerant to the stresses generated by elevated temperature (40 degrees C), PEG-200 (30 mg mL(-1)) and the antibacterial agent Polymyxin-B (PMB, 25 microg mL(-1)) but not to elevated salinity (15 mg mL(-1)). Inhibition of carotenoid synthesis by diphenylamine inhibited the ability of the mutant to tolerate all the three stresses. Out of the four stress agents, only elevated temperature and salinity induced the rpoE promoter and increased the carotenoid content in Sp7 as well as in the Car-1 mutant. Comparison of the membrane permeability of the parent and the mutant by a PMB-N-phenyl-1-naphthylamine coupled assay showed that the presence of carotenoids in the mutant reduced the permeability of their membranes. Our study indicates that the carotenoid synthesis, which is under the control of extracytoplasmic function sigma factor (sigma(E)) in A. brasilense Sp7, plays a positive role in tolerating elevated temperature, the antibacterial peptide and PEG-200.

  12. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.

    Science.gov (United States)

    Hu, Pu; Duan, Yulong; Hu, Deping; Qin, Bingsheng; Zhang, Jianjun; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2015-03-04

    LiMn2O4-based batteries exhibit severe capacity fading during cycling or storage in LiPF6-based liquid electrolytes, especially at elevated temperatures. Herein, a novel rigid-flexible gel polymer electrolyte is introduced to enhance the cyclability of LiMn2O4/graphite battery at elevated temperature. The polymer electrolyte consists of a robust natural cellulose skeletal incorporated with soft segment poly(ethyl α-cyanoacrylate). The introduction of the cellulose effectively overcomes the drawback of poor mechanical integrity of the gel polymer electrolyte. Density functional theory (DFT) calculation demonstrates that the poly(ethyl α-cyanoacrylate) matrices effectively dissociate the lithium salt to facilitate ionic transport and thus has a higher ionic conductivity at room temperature. Ionic conductivity of the gel polymer electrolyte is 3.3 × 10(-3) S cm(-1) at room temperature. The gel polymer electrolyte remarkably improves the cycling performance of LiMn2O4-based batteries, especially at elevated temperatures. The capacity retention after the 100th cycle is 82% at 55 °C, which is much higher than that of liquid electrolyte (1 M LiPF6 in carbonate solvents). The polymer electrolyte can significantly suppress the dissolution of Mn(2+) from surface of LiMn2O4 because of strong interaction energy of Mn(2+) with PECA, which was investigated by DFT calculation.

  13. Thermal stability and elevated temperature mechanical properties of electroslag remelted Fe-16wt.%Al-(0.14-0.5)wt.%C intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baligidad, R.G. [Defence Metallurgical Research Lab., Hyderabad (India); Prakash, U. [Defence Metallurgical Research Lab., Hyderabad (India); Radha Krishna, A. [Defence Metallurgical Research Lab., Hyderabad (India)

    1997-07-01

    Addition of carbon in the range of 0.14-0.5 wt.% to the Fe{sub 3}Al-based intermetallic Fe-16wt.%Al (Fe-28at.%Al) alloy results in the formation of a thermally stable dispersion of Fe{sub 3}AlC carbide phase. The volume fraction of these precipitates increases with increase in carbon content. Processing of these alloys through a combination of air induction melting and electroslag remelting leads to enhanced elevated temperature mechanical properties compared to those reported for the low (<0.01 wt.%) carbon alloys with similar Al contents. Enhancement of up to 30% in elevated temperature yield strength was observed at the test temperatures (600, 700 and 800 C) used. The improvement in mechanical properties may be attributed to the presence of strengthening Fe{sub 3}AlC phase as well as the interstitial carbon present in the alloy matrix. The addition of carbon also leads to improved room temperature mechanical properties in contrast with other alloying additions (such as Mo, Ti and Si) used for enhancing elevated temperature properties of Fe{sub 3}Al-based intermetallic alloys. It is suggested that carbon may be an important alloying addition to these alloys. (orig.)

  14. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...... and metabolic pathways to the development of chronic diseases that are particularly prevalent in seafarers. Conclusions: Taking into account the frequency of seafarer fatigue and the severity of its consequences, one should look into the efficacy of the current legislative framework and the industry’s...... compliance, the manning of the international merchant fleet, and optimised working, living and sleeping conditions at sea. Considering circumstances at sea, e.g. working in shifts and crossing time zones, that cannot be altered, further assessment of the potentials of preventive interventions including...

  15. L10 ordered structures in Al-Cu-(Mg alloys at the early stages of elevated temperature aging

    Directory of Open Access Journals (Sweden)

    Fuzhong, Xia

    2016-09-01

    Full Text Available This study concerns the precipitation structures of Al-3Cu and Al-3Cu-1.78Mg (wt. % alloys at the early stages of elevated temperature aging. The Al-3Cu and Al-3Cu-1.78 Mg alloys were solution treated at 540 °C and 500 °C for 2 h, respectively, and then aged at 190 °C for 2 min. The precipitation structures in aged Al-3Cu-(1.78Mg alloys were characterized by Transmission Electron Microscopy (TEM and High Resolution Transmission Electron Microscopy (HTREM. 001 zone axis Selected area electron diffraction patterns indicate that L10 ordered structures are formed in the two aged alloys. HRTEM experiments reveal the partial dislocations on the interfaces of L10 ordered structures. From comparing experimental results with that in the literature, it is concluded that the L10 ordered structures in aged Al-3Cu alloy consist of Al and Cu atoms, and they are comprised by Al, Cu and Mg atoms together in the aged Al-3Cu-1.78Mg alloy. On the basis of precipitate growing thermodynamics, it is thought the L10 ordered structures act as nuclei for GP zones in Al-Cu-(Mg alloys during aging.En este trabajo se estudian las estructuras de precipitación en Al-3Cu y Al-3Cu-1,78Mg (% en peso en los estados iniciales de envejecimiento a temperatura elevada. Las aleaciones Al-3Cu y Al-3Cu-1.78 Mg fueron sometidas a un tratamiento térmico de solución de 2 h a 540 °C y 500 °C, respectivamente, y posteriormente envejecidas 2 min a 190 °C. Las estructuras de precipitación en Al-3Cu-(1.78Mg envejecido fueron caracterizadas por microscopía electrónica de transmisión (TEM y por microscopía electrónica de transmisión de alta resolución (HTREM. Los diagramas de difracción de electrones de área seleccionada indican que se forman estructuras ordenadas L10 en las dos aleaciones envejecidas. Experimentos de HRTEM revelan la presencia de dislocaciones parciales en las intercaras de las estructuras L10 ordenadas. Comparando estos resultados experimentales con la

  16. Statistical model of water environment effects on the fatigue behavior of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul [AREVA GmbH, Erlangen (Germany); Erlangen-Nuernberg Univ., Erlangen (Germany). Chair of Applied Mechanics; Steinmann, Paul [Erlangen-Nuernberg Univ., Erlangen (Germany). Chair of Applied Mechanics; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany)

    2014-07-01

    Many studies on the effects of elevated temperature environments on the cycle fatigue performance of austenitic stainless steels typically used for boiling and light water reactor components have been performed. The key parameters (e. g. strain rate, and temperature) that influence the fatigue life were identified and the range of these key parameters where environmental effects become pronounced were defined. The two major efforts to characterize environmentally assisted fatigue (EAF) are by Argonne National Laboratory (U. S.) and EFD (Japan). Since each nation considers only domestic fatigue data, the widely applied titanium and niobium stabilized austenitic stainless steels in Germany are not included by any data points in these models. Based on a review of past and current research reports about EAF a database for wrought Types 304, 304L, 316, 316NG, 321, 347, and 348 stainless steels was compiled. Only specimen tests under strain control with a fully reversed uniaxial loading were included. The modified Langer equation was used to develop the room temperature in air curve to the collected data, which serves as the basis for the discussion of the EAF database. Besides the key variables that influence fatigue life in light and boiling water reactor environments additional parameters like, for example, the strain amplitude, which pronounces environmental effects more at low than at high strain amplitudes, can reduce the fatigue life by a factor of about two and should not be neglected in the current fatigue approach. A statistical model is evolved to address EAF in fatigue usage calculation by a fatigue life correction factor (F{sub en}), which is defined as the ratio of life in air at room temperature to that in water at elevated temperature. Compared to the current ANL statistical prediction model, a different functional form is used and additional variables are considered, too.

  17. Side Effects: Fatigue

    Science.gov (United States)

    Fatigue is a common side effect of many cancer treatments such as chemotherapy, radiation therapy, immunotherapy, and surgery. Anemia and pain can also cause fatigue. Learn about symptoms and way to manage fatigue.

  18. Experimental evidence that electrical fatigue failure obeys a generalized Coffin–Manson law

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiangtong; Fu, John Y., E-mail: johnyfu2016@gmail.com

    2017-05-10

    The empirical Coffin–Manson law has been used to characterize the low-cycle mechanical fatigue failure of metallic materials for decades. Our experimental studies reported in this letter have shown that the electrical fatigue failure in dielectrics can be well described by a fitting function having the same mathematical expression as that of the Coffin–Manson law. This observation indicates that the physical mechanism beneath the formation and evolution of atomic disordered structures, the key factor influencing both mechanical and electrical fatigue, might be the same.

  19. Influence of elevated temperature, pCO2, and nutrients on larva-biofilm interaction: Elucidation with acorn barnacle, Balanus amphitrite Darwin (Cirripedia: Thoracica)

    Science.gov (United States)

    Baragi, Lalita V.; Anil, Arga Chandrashekar

    2017-02-01

    Selection of optimal habitat by larvae of sessile organism is influenced by cues offered by the biofilm. Ocean warming and acidification are likely to enforce changes in the biofilm community and inturn influence the settlement process. Hence, we evaluated the influence of biofilm (multispecies and unialgal) and diet-mediated changes on the settlement of Balanus amphitrite cyprids (presettlement non-feeding larval stage) under different combinations of temperature (28, 30, 32 and 34 °C), pCO2 (400, 750 and 1500 μatm) and nutrient (unenriched and f/2 enriched). Nutrient enrichment enhanced the diatom and bacterial abundance at ambient temperature (30 °C) and pCO2 (400 μatm), which inturn increased larval settlement. Elevated pCO2 (750 and 1500 μatm) had no direct effect but a variable cascading effect on the settlement via biofilm-mediated changes was observed, depending on the type of biofilm. In contrast, elevated temperature (32 and 34 °C), either individually or in combination with elevated pCO2 had direct negative effect on settlement. However, biofilm-mediated changes compensated this negative effect. The larval settlement was also influenced by changes in the larval diet. Under elevated temperature and pCO2, cyprids raised with a feed (Chaetoceros calcitrans) from ambient temperature and pCO2 were of poor quality (lower RNA:DNA ratio, lower protein synthetic capacity) and yielded lower settlement. However, cyprids raised with a feed from elevated temperature and pCO2 were of better quality (higher RNA:DNA ratio, higher protein synthetic capacity) and yielded higher settlement. Overall, the observations from the present study provide insights into the significance of biotic interactions on the coastal biofouling communities under future climatic scenario and emphasise the need for future experiments on these aspects.

  20. Combined, short-term exposure to reduced seawater pH and elevated temperature induces community shifts in an intertidal meiobenthic assemblage.

    Science.gov (United States)

    Mevenkamp, Lisa; Ong, Ee Zin; Van Colen, Carl; Vanreusel, Ann; Guilini, Katja

    2018-02-01

    In future global change scenarios the surface ocean will experience continuous acidification and rising temperatures. While effects of both stressors on marine, benthic communities are fairly well studied, consequences of the interaction of both factors remain largely unknown. We performed a short-term microcosm experiment exposing a soft-bottom community from an intertidal flat in the Westerscheldt estuary to two levels of seawater pH (ambient pH T  = 7.9, reduced pH T  = 7.5) and temperature (10 °C ambient and 13 °C elevated temperature) in a crossed design. After 8 weeks, meiobenthic community structure and nematode staining ratios, as a proxy for mortality, were compared between treatments and structural changes were related to the prevailing abiotic conditions in the respective treatments (pore water pH T , sediment grain size, total organic matter content, total organic carbon and nitrogen content, phytopigment concentrations and carbonate concentration). Pore water pH T profiles were significantly altered by pH and temperature manipulations and the combination of elevated temperature and reduced pH intensified the already more acidic porewater below the oxic zone. Meiofauna community composition was significantly affected by the combination of reduced pH and elevated temperature resulting in increased densities of predatory Platyhelminthes, reduced densities of Copepoda and Nauplii and complete absence of Gastrotricha compared to the experimental control. Furthermore, nematode staining ratio was elevated when seawater pH was reduced pointing towards reduced degradation rates of dead nematode bodies. The observed synergistic interactions of pH and temperature on meiobenthic communities and abiotic sediment characteristics underline the importance of multistressor experiments when addressing impacts of global change on the marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Climate change (elevated CO{sub 2}, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Parra, C.; Aguirreolea, J.; Sanchez-Diaz, M.; Irigoyen, J.J.; Morales, F. (Departamento de Biologia Vegetal, Seccion Biologia Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logrono), Facultades de Ciencias y Farmacia, Universidad de Navarra, Pamplona (Spain))

    2012-07-01

    Photosynthetic carbon fixation (A{sub N}) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O{sub 2}, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO{sub 2}, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A{sub N} + respiration + photorespiration) were observed in plants treated with elevated CO{sub 2} and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H{sub 2}O{sub 2} and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO{sub 2} and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. (Author)

  2. Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields

    Science.gov (United States)

    Pereira, José; Figueiredo, Nuno; Goufo, Piebiep; Carneiro, João; Morais, Raul; Carranca, Corina; Coutinho, João; Trindade, Henrique

    2013-12-01

    Methane (CH4) and nitrous oxide (N2O) emissions from flooded rice fields have been rarely measured in Europe. A field study was carried out in an intermittent flooded rice field at central Portugal to investigate if global warming under Mediterranean conditions, elevated soil temperature (+2 °C) and atmospheric [CO2] (550 ppm), could lead to significant effects in CH4 and N2O emissions. The experimental design consisted of three treatments arranged in a randomized complete block design with three replicates. To assess the effects of ambient temperature and actual atmospheric [CO2] (375 ppm), plots were laid under open-field rice conditions. Using open-top chambers, two other treatments were established: one to assess the effect of elevated temperature and actual atmospheric [CO2] and a third treatment to evaluate the combined effect of elevated temperature and atmospheric [CO2]. Measurements of CH4 and N2O fluxes were made throughout two consecutive growing seasons in the field using the closed chamber technique. Elevation of temperature with or without elevated atmospheric [CO2] increased CH4 emissions by 50%, but this increase was not significant compared to the open-field condition. As for N2O, elevated temperature alone or combined with elevated atmospheric [CO2] had no significant effect on emissions relative to the open-field treatment. The estimated seasonal CH4 EF for the Portuguese flooded rice fields was 10.0 g CH4 m-2, while the EF for N2O emissions was 1.4% of N input. These results suggested that default seasonal CH4 and N2O EFs currently used by the Portuguese inventory were not appropriated.

  3. Fatigue characterization of flowformed A356-T6

    Directory of Open Access Journals (Sweden)

    Roy Matthew J.

    2014-06-01

    Full Text Available Flowforming is an incremental rotary forming technology consisting of deforming a cylindrical workpiece through contact between a roller and a rotating mandrel. This process delivers significant local compressive plastic strain to the workpiece. The effects on fatigue resilience of a common aluminum foundry alloy (A356 processed in this manner at an elevated temperature has been shown to improve post heat treatment. Fatigue properties of material processed with a standard heat treatment following casting is compared to material which has been cast and flowformed to varying degrees and then heat treated. Flowformed material with varying degrees of rotary deformation have been tested. Endurance limits have been found to be generally governed by porosity and maximum principal stress for high cycle fatigue on undeformed material. Fatigue properties have been quantified employing stress-life relationships derived from uniaxial fatigue tests. A 30% increase in the high-cycle endurance limits of flowformed compared to non-deformed material has been observed and is linked to the extent of deformation. Fractographic examination shows that this increase in endurance limit can be attributed primarily to the mitigation of porosity. Microstructural changes due to processing appear to be a secondary factor.

  4. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    Science.gov (United States)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  5. Effect of long-time, elevated-temperature exposures to vacuum and lithium on the properties of a tantalum alloy, T-111

    Science.gov (United States)

    Buzzard, R. J.; Sheffler, K. D.

    1974-01-01

    The effect of long-term, elevated-temperature vacuum and lithium exposures on the mechanical properties of T-111 (Ta-8W-2Hf) is determined. Exposure conditions were for 1000 hours at 980 or 1315 C, 5000 hours at 1315 C, and a duplex temperature exposure of 1000 hours at 980 C plus 4000 hours at 1040 C. The exposures resulted in reduced tensile and creep strengths of the T-111 in the 900 to 1100 C temperature range where a dynamic strain-age-strengthening mechanism is operative in this alloy. This strength reduction was attributed to the depletion of oxygen from solid solution in this alloy.

  6. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...

  7. Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans.

    Science.gov (United States)

    Zhong, Yu; Wang, Zhuyi; Zhao, Yanyun

    2015-12-01

    In this study, the effects of high hydrostatic pressure (HHP) at elevated temperature (60 °C) and 2 dielectric heating (DH) methods (radio frequency [RF], and microwaving [MW]) on the nutritional compositions and removal of antinutritional factors in black soybeans were studied. Each treatment caused 22% in DH treated samples. MW and HHP led to higher in vitro protein digestibility, RF and MW promoted protein aggregation from atomic force microscope topography, but HHP caused more damages on protein subunits as seen from SDS-PAGE image. © 2015 Institute of Food Technologists®

  8. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  9. The effect of pressurization path on high pressure gas forming of Ti-3Al-2.5V at elevated temperature

    Directory of Open Access Journals (Sweden)

    Liu Gang

    2015-01-01

    Full Text Available High pressure gas forming is a tubular component forming technology with pressurized gas at elevated temperature, based on QPF, HMGF and Hydroforming. This process can be used to form tube blank at lower temperatures with high energy efficiency and also at higher strain rates. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPGF was studied further through experiments at the elevated temperatures of 650 ∘C and 700 ∘C. In order to know the formability of the Ti-alloy tube, tensile tests were also carried out. The results show that: at the temperatures of 650 ∘C and 700 ∘C, the flow curves exhibit the power-law constitutive relation until peak stress is reached and the deformability is suitable for the HPGF process of Ti-3Al-2.5V alloy tube. The effects of pressurization path on the corner filling process and thickness profile are obvious. The high pressure inflow process can result in temperature difference between the straight wall area and corner area, which makes the thickness profile special. Besides, with the stepped pressurization path, the more constant filling rate and better thickness profile can be obtained.

  10. Metabolic performance of the coral reef fish Siganus guttatus exposed to combinations of water borne diesel, an anionic surfactant and elevated temperature in Indonesia.

    Science.gov (United States)

    Baum, G; Kegler, P; Scholz-Böttcher, B M; Alfiansah, Y R; Abrar, M; Kunzmann, A

    2016-09-30

    Jakarta Bay in Indonesia and its offshore island chain, the Thousand Islands, are facing extreme pollution. Surfactants and diesel-borne compounds from sewage and bilge water discharges are common pollutants. However, knowledge of their effects on reef fish physiology is scarce. This study investigated combined and single effects of a) the water accommodated fraction of diesel (WAF-D, determined by ƩEPA polycyclic aromatic hydrocarbons (PAHs)) and b) the surfactant linear alkylbenzene sulfonate (LAS) on metabolic performance of the coral reef fish Siganus guttatus. Responses to combinations of each pollutant with elevated temperature (+3°C) were determined. Short-term exposure to WAF-D led to a significant decrease in standard metabolic rates, while LAS led to an increase. During combined exposure, metabolic depression was observed. Effects of pollutants were not amplified by elevated temperature. This study highlights the need to reduce import of these pollutants and to avoid negative long-term effects on fish health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    Science.gov (United States)

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  12. On the interaction of water-soluble binders and nano silicon particles: alternative binder towards increased cycling stability at elevated temperatures.

    Science.gov (United States)

    Klamor, S; Schröder, M; Brunklaus, G; Niehoff, P; Berkemeier, F; Schappacher, F M; Winter, M

    2015-02-28

    Silicon based composites are among the most promising negative electrodes for lithium ion battery applications due to their high theoretical capacities. One major drawback of silicon based anodes are their large volume changes during lithiation and delithiation. Although many efforts have been made in view of new binder materials and improved electrolytes, the resulting battery cell suffers from severe capacity fading at ambient or elevated temperatures, respectively. The strong reactivity with the electrolyte is considered to be responsible for the reduced cycle life at elevated temperatures. In this work we introduce silicon composite anodes with a novel composition based on a gellan gum binder material that show an improved cycling performance at ambient temperature and at 60 °C. To elucidate the influence of the binder material, we investigated the structure of the silicon based composite anodes in order to understand the nature of the interaction of the gellan gum based binder polymers with the silicon particles in comparison with a common CMC binder. Also the influence of the choice of binder on the interactions at the interface between electrode surface and electrolyte were studied. A combination of powerful techniques including solid state NMR, TEM and EELS, XPS as well as FTIR were applied.

  13. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  14. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  15. Effects of frequency and temperature- and strain-wave form on thermal fatigue strength of type 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsunenari, Toshiyasu; Horikawa, Takeshi; Okada, Tomonobu; Take, Koji; Miyashita, Takuya (Kawasaki Heavy Industries Ltd., Akashi, Hyogo (Japan). Technical Inst.)

    1983-06-01

    The effects of frequency and temperature- and strain-wave form on thermal fatigue strength were examined by conducting out-of-phase and in-phase thermal fatigue tests with three kinds of temperature-wave forms (fast heating and fast cooling, slow heating and slow cooling, slow heating and fast cooling) under temperature cycling between 350 - 650/sup 0/C and by isothermal low-cycle fatigue tests at 650/sup 0/C under cyclic frequencies of 0.5 -- 0.039 cpm. The following results were obtained. (1) The effect of frequency on fatigue life in out-of-phase thermal fatigue was as small as in isothermal low-cycle fatigue, whereas in in-phase thermal fatigue it was much greater and the fatigue life reduction was more remarkable in low frequency. (2) The effect of temperature- and strain-wave form on thermal fatigue life was still smaller than the effect of frequency on out-of-phase thermal fatigue life. (3) The fracture mode of out-of-phase thermal fatigue was the transgranular type even at the lowest frequency tested, but that of in-phase thermal fatigue changed to the intergranular type at low frequency. (4) Out-of-phase and in-phase thermal fatigue data obtained at the test condition of such an extremely low frequency as 0.039 cpm were found to coincide well with ..delta..epsilon sub(PC) - N sub(PC) and ..delta..epsilon sub(CP) - N sub(CP) relations, respectively.

  16. Interacting effects of elevated temperature and additional water on plant physiology and net ecosystem carbon fluxes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, Kadmiel; Seibt, Ulrike; Lett, Céline; Lupascu, Massimo; Czimczik, Claudia; Sullivan, Patrick; Welker, Jeff

    2013-04-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence plant physiology and soil biogeochemistry with subsequent implications for system carbon balance. We have investigated the effects of a long-term (10 years) increase in temperature, soil water and the combination of both on a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf gas exchange, chlorophyll fluorescence, carbon (C) and nitrogen (N) content and leaf isotopic composition, and leaf morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net plant and soil fluxes of CO2 and water were made using automatic chambers coupled to a trace gas laser analyzer. Plants in the elevated temperature (T2) treatment had the highest photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. T2 plants also had the highest leaf N content, specific leaf area (SLA) and saturation light level of photosynthesis. It appears that warming increases soil N availability, which the plants direct towards increasing photosynthetic capacity and producing larger thinner leaves. On the other hand, the plants in the plots with both elevated temperatures and additional water (T2W) had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation, due more to higher levels of constitutive energy dissipation than regulated thermal quenching. Watering, both in combination with higher temperatures and alone (W treatment), also reduced leaf SLA and leaf N relative to control plots. However, net photosynthetic rates remained similar to control plants, due in part to higher stomatal conductance (W) and

  17. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    Science.gov (United States)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical

  18. Effect of Growth Rate on Elevated Temperature Plastic Flow and Room Temperature Fracture Toughness of Directionally Solidified NiAl-31Cr-3Mo

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.; Salem, J. A.

    1999-01-01

    The eutectic system Ni-33Al-31Cr-3Mo was directionally solidified at rates ranging from 7.6 to 508 mm/h. Samples were examined for microstructure and alloy chemistry, compression tested at 1200 and 1300 K, and subjected to room temperature fracture toughness measurements. Lamellar eutectic grains were formed at 12.7 mm/h; however cellular structures with a radial eutectic pattern developed at faster growth rates. Elevated temperature compression testing between 10(exp -4) to 10(exp -7)/s did not reveal an optimum growth condition, nor did any single growth condition result in a significant fracture toughness advantage. The mechanical behavior, taken together, suggests that Ni-33Al-31Cr-3Mo grown at rates from 25.4 to 254 mm/h will have nominally equivalent properties.

  19. Influence of length and dosage of polypropylene fibres on the spalling tendency and the residual properties of self-compacting concrete after heated at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Sideris K.K.

    2013-09-01

    Full Text Available The objective of this paper was to study the influence of different length and dosage of polypropylene fibres on the properties of self-compacting concretes at elevated temperatures. A total of five self compacting concretes and one normally vibrated concrete were produced. The poypropylene fibres were of different length (12 mm, 6 mm and 3 mm and were added at dosages of 1.0 Kg/m3 and 0.5 Kg/m3. The properties measured after fire exposure were the compressive strength, splitting tensile strength and water capillary absorption. The best overall performance was observed on the fibre reinforced self compacting concrete produced with the 6 mm HPR fibres at a dosage of 0.5 Kg/m3.

  20. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bobbili, Ravindranadh, E-mail: ravindranadh@dmrl.drdo.in; Madhu, Vemuri

    2016-06-14

    In this study, Split hopkinson tension bar (SHTB) has been employed to investigate the dynamic tensile flow behavior of Ti-10-2-3 alloy at high strain rates and elevated temperatures. The combined effect of stress triaxiality, strain rate and temperature and on the tensile behavior of the alloy was evaluated. Johnson-Cook (J-C) constitutive and fracture models were developed based on high strain rate tensile data. A modified Johnson–Cook model was established and proved to have high accuracy. A comparative assessment has been done to confirm the accuracy of modified J–C model based on finite element method (FEM). The improved model provides better description on the influence of equivalent plastic strain rate and temperature on the plastic flow. The simulation results proved to be in good agreement with the experimental data. The fracture surfaces of specimens tested under various strain rates and temperatures were studied under scanning electron microscopy (SEM).

  1. Friction and Wear Characteristics of Plasma-Sprayed Self-Lubrication Coating with Clad Powder at Elevated Temperatures up to 800 °C

    Science.gov (United States)

    Huang, Chuanbing; Du, Lingzhong; Zhang, Weigang

    2014-02-01

    NiCr/(Cr3C2-BaF2·CaF2) coating was fabricated by atmospheric plasma spray technology using clad powder. The coating shows low porosity, high microhardness and bonding strength, and it also exhibits good friction reduction and wear resistance at elevated temperatures up to 800 °C which is due to the formation of a kind of continuous BaF2·CaF2 eutectic lubricating film. The excellent mechanical and tribological properties of the coating are partially attributed to the protection of NiCr layer of the composite powders which can decrease oxidation, decarburization of Cr3C2, and ablation of BaF2·CaF2 eutectic during spray and deposition process.

  2. Gamma-ray irradiation and post-irradiation at room and elevated temperature response of pMOS dosimeters with thick gate oxides

    Directory of Open Access Journals (Sweden)

    Pejović Momčilo M.

    2011-01-01

    Full Text Available Gamma-ray irradiation and post-irradiation response at room and elevated temperature have been studied for radiation sensitive pMOS transistors with gate oxide thickness of 100 and 400 nm, respectively. Their response was followed based on the changes in the threshold voltage shift which was estimated on the basis of transfer characteristics in saturation. The presence of radiation-induced fixed oxide traps and switching traps - which lead to a change in the threshold voltage - was estimated from the sub-threshold I-V curves, using the midgap technique. It was shown that fixed oxide traps have a dominant influence on the change in the threshold voltage shift during gamma-ray irradiation and annealing.

  3. Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La 2 NiO 4+δ Thin Films at Elevated Temperatures

    KAUST Repository

    Lee, Dongkyu

    2013-09-19

    Ruddlesden-Popper materials such as La2NiO4+δ (LNO) have high activities for surface oxygen exchange kinetics promising for solid oxide fuel cells and oxygen permeation membranes. Here we report the synthesis of the (100)tetragonal-oriented epitaxial LNO thin films prepared by pulsed laser deposition. The surface oxygen exchange kinetics determined from electrochemical impedance spectroscopy (EIS) were found to increase with decreasing film thickness from 390 to 14 nm. No significant change of the surface chemistry with different film thicknesses was observed using ex situ auger electron spectroscopy (AES). Increasing volumetric strains in the LNO films at elevated temperatures determined from in situ high-resolution X-ray diffraction (HRXRD) were correlated with increasing surface exchange kinetics and decreasing film thickness. Volumetric strains may alter the formation energy of interstitial oxygen and influence on the surface oxygen exchange kinetics of the LNO films. © 2013 American Chemical Society.

  4. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    in 1.3mbar of H2. Three-window elemental maps and jump-ratio images of the O K edge and total inelastic mean free path images are recorded as a function of temperature and used to provide local and quantitative information about the reaction kinetics and the volume changes that result from the reaction......A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell anode....... Under certain assumptions, the speed of progression of the reaction front in all three dimensions is obtained, thereby providing a three-dimensional understanding of the reaction....

  5. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction.

    Science.gov (United States)

    Lefevre, Sjannie

    2016-01-01

    With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.

  6. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  7. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.

    Science.gov (United States)

    Currie, Ashleigh R; Tait, Karen; Parry, Helen; de Francisco-Mora, Beatriz; Hicks, Natalie; Osborn, A Mark; Widdicombe, Steve; Stahl, Henrik

    2017-01-01

    Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA) and bacterial nitrite reductase (nirS) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  8. Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H-preferring xylose reductase–xylitol dehydrogenase pathway

    Directory of Open Access Journals (Sweden)

    Biao Zhang

    2015-12-01

    Full Text Available A thermo-tolerant NADP(H-preferring xylose pathway was constructed in Kluyveromyces marxianus for ethanol production with xylose at elevated temperatures (Zhang et al., 2015 [25]. Ethanol production yield and efficiency was enhanced by pathway engineering in the engineered strains. The constructed strain, YZJ088, has the ability to co-ferment glucose and xylose for ethanol and xylitol production, which is a critical step toward enabling economic biofuel production from lignocellulosic biomass. This study contains the fermentation results of strains using the metabolic pathway engineering procedure. The ethanol-producing abilities of various yeast strains under various conditions were compared, and strain YZJ088 showed the highest production and fastest productivity at elevated temperatures. The YZJ088 xylose fermentation results indicate that it fermented well with xylose at either low or high inoculum size. When fermented with an initial cell concentration of OD600=15 at 37 °C, YZJ088 consumed 200 g/L xylose and produced 60.07 g/L ethanol; when the initial cell concentration was OD600=1 at 37 °C, YZJ088 consumed 98.96 g/L xylose and produced 33.55 g/L ethanol with a productivity of 0.47 g/L/h. When fermented with 100 g/L xylose at 42 °C, YZJ088 produced 30.99 g/L ethanol with a productivity of 0.65 g/L/h, which was higher than that produced at 37 °C.

  9. Fatigue of reinforcing bars during hydro-demolition

    Science.gov (United States)

    Hyland, C. W. K.; Ouwejan, A.

    2017-05-01

    Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars

  10. Chronic fatigue syndrome

    National Research Council Canada - National Science Library

    Gonthier, Ariane; Favrat, Bernard

    2015-01-01

    Chronic fatigue syndrome (CFS) is a debilitating disorder, characterized by a severe, persistant and unexplained fatigue, which can be associated with diffuse pain, sleep difficulties, neurocognitive and neurovegetative troubles...

  11. Insomnia and Fatigue

    Science.gov (United States)

    ... in turn leads to fatigue, may affect your self-esteem, mood, emotions, relationships and work. But you don’ ... Loss Insomnia and Fatigue Menopausal Symptoms Secondary Cancers Sexual Side Effects Living With HR-Positive Breast Cancer ...

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue ...

  14. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.

    Science.gov (United States)

    Gardner, A Scott; Martin, David T; Jenkins, David G; Dyer, Iain; Van Eiden, Jan; Barras, Martin; Martin, James C

    2009-04-01

    Previous investigators have quantified fatigue during short maximal cycling trials ( approximately 30 s) by calculating a fatigue index. Other investigators have reported a curvilinear power-pedaling rate relationship during short fatigue-free maximal cycling trials (track bicycles. Data from the initial portion of maximal acceleration were used to establish maximal power-pedaling rate relationships. Fatigue was quantified three ways: 1) traditional fatigue index, 2) fatigue index modified to account for the power-pedaling rate relationship (net fatigue index), and 3) work deficit, the difference between actual work done and work that might have been accomplished without fatigue. Fatigue index (55.4% +/- 6.4%) was significantly greater than net fatigue index (41.0% +/- 7.9%, P cycling. These measures can be used to compare fatigue during different fatigue protocols, including world-class sprint cycling competition. Precise quantification of fatigue during elite cycling competition may improve evaluation of training status, gear ratio selection, and fatigue resistance.

  15. ISOTHERMAL AND THERMOMECHANICAL FATIGUE OF A NICKEL-BASE SUPERALLOY

    Directory of Open Access Journals (Sweden)

    Carlos Carvalho Engler-Pinto Júnior

    2014-06-01

    Full Text Available Thermal gradients arising during transient regimes of start-up and shutdown operations produce a complex thermal and mechanical fatigue loading which limits the life of turbine blades and other engine components operating at high temperatures. More accurate and reliable assessment under non-isothermal fatigue becomes therefore mandatory. This paper investigates the nickel base superalloy CM 247LC-DS under isothermal low cycle fatigue (LCF and thermomechanical fatigue (TMF. Test temperatures range from 600°C to 1,000°C. The behavior of the alloy is strongly affected by the temperature variation, especially in the 800°C-1,000°C range. The Ramberg-Osgood equation fits very well the observed isothermal behavior for the whole temperature range. The simplified non-isothermal stress-strain model based on linear plasticity proposed to represent the thermo-mechanical fatigue behavior was able to reproduce the observed behavior for both in-phase and out-of-phase TMF cycling.

  16. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  17. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  18. Determinants of seafarers’ fatigue

    DEFF Research Database (Denmark)

    Bøggild Dohrmann, Solveig; Leppin, Anja

    2017-01-01

    Purpose: Fatigue jeopardizes seafarer’s health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim...... in the review. The main reason for exclusion was fatigue not being the outcome variable. Results: Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on–6-h off watch...... system was the most fatiguing. Specific work demands and particularly the psychosocial work environment have received little attention, but preliminary evidence suggests that stress may be an important factor. A majority of 12 studies were evaluated as potentially having a high risk of bias. Conclusions...

  19. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  20. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes the...... the experimental work carried out in order to establish the models. The constitutive equations represent the materials properties mathematically and define the relationships between load, deformation, lifetime cycles, crack growth rates and stress intensities....

  1. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718; Aspects probabilistes et microstructuraux de l'amorcage des fissures de fatigue dans l'alliage INCO 718

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, F

    2004-03-15

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  2. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  3. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    Science.gov (United States)

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (pfatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  4. Fatigue Life of Stainless Steel in PWR Environments with Strain Holding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taesoon; Kim, Kyuhyung [KHNP CRI, Daejeon (Korea, Republic of); Seo, Myeonggyu; Jang, Changheui [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Many components and structures of nuclear power plants are exposed to the water chemistry conditions during the operation. Recently, as design life of nuclear power plant is expanded over 60 years, the environmentally assisted fatigue (EAF) due to these water chemistry conditions has been considered as one of the important damage mechanisms of the safety class 1 components. Therefore, many studies to evaluate the effect of light water reactor (LWR) coolant environments on fatigue life of materials have been conducted. Many EAF test results including Argonne National Laboratory’s consistently indicated the substantial reduction of fatigue life in the light water reactor environments. However, there is a discrepancy between laboratory test data and plant operating experience regarding the effects of environment on fatigue: while laboratory test data suggest huge accumulation of fatigue damage, very limited experience of cracking caused by the low cycle fatigue in light water reactor. These hold-time effect tests are preformed to characterize the effects of strain holding on the fatigue life of austenitic stainless steels in PWR environments in comparison with the existing fixed strain rate results. Low cycle fatigue life tests were conducted for the type 316 stainless steel in 310℃ air and PWR environments with triangular strain. In agreement with the previous reports, the LCF life was reduced in PWR environments. Also for the slower strain rate, the reduction of LCF life was greater than the faster strain rate. The LCF test conditions for the hold-time effects were determined by the references and consideration of actual plant transient. To simulate the heat-up and cooldown transient, sub-peak strain holding during the down-hill of strain amplitude was chosen instead of peak strain holding which used in the previous researches.

  5. Fatigue failure in polysilicon not due to simple stress corrosion cracking.

    Science.gov (United States)

    Kahn, H; Ballarini, R; Bellante, J J; Heuer, A H

    2002-11-08

    In the absence of a corrosive environment, brittle materials such as silicon should be immune to cyclic fatigue. However, fatigue effects are well known in micrometer-sized polycrystalline silicon (polysilicon) samples tested in air. To investigate the origins of this phenomenon in polysilicon, we developed a fixed-grip fracture mechanics microspecimen but could find no evidence of static stress corrosion cracking. The environmental sensitivity of the fatigue resistance was also investigated under cyclic loading. For low-cycle fatigue, the behavior is independent of the ambient conditions, whether air or vacuum, but is strongly influenced by the ratio of compressive to tensile stresses experienced during each cycle. The fatigue damage most likely originates from contact stresses at processing-related surface asperities; subcritical crack growth then ensues during further cyclic loading. The lower far-field stresses involved in high-cycle fatigue induce reduced levels of fatigue damage. Under these conditions, a corrosive ambient such as laboratory air exacerbates the fatigue process. Without cyclic loading, polysilicon does not undergo stress corrosion cracking.

  6. Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718

    Science.gov (United States)

    Johnson, Alex S.; Shao, Shuai; Shamsaei, Nima; Thompson, Scott M.; Bian, Linkan

    2017-03-01

    Inconel 718 is considered to be a superalloy with a series of superior properties such as high strength, creep resistance, and corrosion resistance at room and elevated temperatures. Additive manufacturing (AM) is particularly appealing to Inconel 718 because of its near-net-shape production capability for circumventing the poor machinability of this superalloy. Nevertheless, AM parts are prone to porosity, which is detrimental to their fatigue resistance. Thus, further understanding of their fatigue behavior is required before their widespread use in load-bearing applications. In this work, the microstructure and fatigue properties of AM Inconel 718, produced in a Laser Engineered Net Shaping (LENS™) system and heat treated with a standard heat treatment schedule, are evaluated at room temperature. Fully reversed strain controlled fatigue tests were performed on cylindrical specimens with straight gage sections at strain amplitudes ranging from 0.001 mm/mm to 0.01 mm/mm. The fracture surfaces of fatigue specimens were inspected with a scanning electron microscope. The results indicate that the employed heat treatment allowed the large, elongated grains and dendritic structure of the as-built material to break down into smaller, equiaxed grains, with some dendritic structures remaining between layers. The AM specimens were found to possess lower fatigue resistance than wrought Inconel 718, and this is primarily attributed to the presence of brittle metal-carbide/oxide inclusions or pores near their surface.

  7. Proof-of-Concept Testing of the Passive Cooling System (T-CLIP™) for Solar Thermal Applications at an Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Quintana, Donald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Vigil, Gabrielle M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Perraglio, Martin Juan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Farley, Cory Wayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Tafoya, Jose I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology; Martinez, Adam L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Applied Engineering and Technology

    2015-11-30

    The Applied Engineering and Technology-1 group (AET-1) at Los Alamos National Laboratory (LANL) conducted the proof-of-concept tests of SolarSPOT LLC’s solar thermal Temperature- Clipper, or T-CLIP™ under controlled thermal conditions using a thermal conditioning unit (TCU) and a custom made environmental chamber. The passive T-CLIP™ is a plumbing apparatus that attaches to a solar thermal collector to limit working fluid temperature and to prevent overheating, since overheating may lead to various accident scenarios. The goal of the current research was to evaluate the ability of the T-CLIP™ to control the working fluid temperature by using its passive cooling mechanism (i.e. thermosiphon, or natural circulation) in a small-scale solar thermal system. The assembled environmental chamber that is thermally controlled with the TCU allows one to simulate the various possible weather conditions, which the solar system will encounter. The performance of the T-CLIP™ was tested at two different target temperatures: 1) room temperature (70 °F) and 2) an elevated temperature (130 °F). The current test campaign demonstrated that the T-CLIP™ was able to prevent overheating by thermosiphon induced cooling in a small-scale solar thermal system. This is an important safety feature in situations where the pump is turned off due to malfunction or power outages.

  8. Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures

    DEFF Research Database (Denmark)

    Phuong, Nguyen Tuyet; Degn, Rikke; Nguyen, Thai Hoang

    2009-01-01

    The dye sensitized solar cell dye Z-907, [RuLL´(NCS)2] may loose a thiocyanate ligand at elevated temperatures (80-100 ºC) by ligand exchange with the solar cell additive 4-tert-butylpyridine (4-TBP) or the electrolyte solvent 3-methoxypropionitrile (3-MPN). The mechanism in homogeneous solution...... by HPLC coupled to UV/Vis and electrospray mass spectrometry. A half life time t1/2 = 150 h was obtained for the Z-907 dye bound to TiO2 nano crystalline particles at 85 ºC in presence of 4-TBP and 3-MPN. Dye sensitized solar cells (DSC) with Z-907 as sensitizer and application of the so called “non...... robust” electrolytes containing 4-TBP and 3-MPN is therefore not expected to be able to pass a 1000 h thermal stress test at 85 ºC. Addition of thiocyanate to the cell electrolyte may however, eliminate or reduce the problems caused by dye thiocyanate ligand substitution in DSC cells....

  9. Rate constant for the H˙ + H2O → ˙OH + H2reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  10. Drawability Studies of Magnesium Alloy Sheets at Elevated Temperature / Badania Tłoczności Blach Ze Stopów Magnezu W Podwyższonej Temperaturze

    Directory of Open Access Journals (Sweden)

    Hyrcza-Michalska M.

    2015-12-01

    Full Text Available The paper presents the results of a study of drawability of thin AZ31 magnesium alloy metal sheets. These studies are a continuation of experiences in presenting the characteristics of technological plasticity of strips made of magnesium alloy which have been cast between rolls in vertical and horizontal systems called ‘twin-roll casting’. In the context of previous experiments conducted at the Institute of Material Technology of the Silesian University of Technology in cooperation with the Technical University - Bergakademie Freiberg (Germany, drawability of these strips at elevated temperatures has been comprehensively defined while using forming limit curves. Due to low formability of magnesium alloys at ambient temperature, formability tests - including cup forming tests presented in this paper - have been carried out in heated dies at temperature range of 200°C to 350°C. A modern AutoGrid digital local strain analyzer has been used in the examinations and the method of image analysis of deformed coordination nets has been applied. Quantitative and qualitative impact of deformation temperature upon the drawability effects of AZ31 magnesium alloys products have been evaluated.

  11. Elevated Temperature Solid Particle Erosion Performance of Plasma-Sprayed Co-based Composite Coatings with Additions of Al2O3 and CeO2

    Science.gov (United States)

    Nithin, H. S.; Desai, Vijay; Ramesh, M. R.

    2017-09-01

    In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.

  12. Elevated Temperature Solid Particle Erosion Performance of Plasma-Sprayed Co-based Composite Coatings with Additions of Al2O3 and CeO2

    Science.gov (United States)

    Nithin, H. S.; Desai, Vijay; Ramesh, M. R.

    2017-11-01

    In this paper, investigation into solid particle erosion behavior of atmospheric plasma-sprayed composite coating of CoCrAlY reinforced with Al2O3 and CeO2 oxides on Superni 76 at elevated temperature of 600 °C is presented. Alumina particles are used as erodent at two impact angles of 30° and 90°. The microstructure, porosity, hardness, toughness and adhesion properties of the as-sprayed coatings are studied. The effects of temperature and phase transformation in the coatings during erosion process are analyzed using XRD and EDS techniques. Optical profilometer is used for accurate elucidation of erosion volume loss. CoCrAlY/CeO2 coating showed better erosion resistance with a volume loss of about 50% of what was observed in case of CoCrAlY/Al2O3/YSZ coating. Lower erosion loss is observed at 90° as compared to 30° impact angle. The erosion mechanism evaluated using SEM micrograph revealed that the coatings experienced ductile fracture exhibiting severe deformation with unusual oxide cracks. Reinforced metal oxides provide shielding effect for erodent impact, enabling better erosion resistance. The oxidation of the coating due to high-temperature exposure reforms erosion process into oxidation-modified erosion process.

  13. A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins

    Science.gov (United States)

    Song, Anren; Labella, Sara; Korneeva, Nadejda L.; Keiper, Brett D.; Aamodt, Eric J.; Zetka, Monique; Rhoads, Robert E.

    2010-01-01

    Caenorhabditis elegans expresses five family members of the translation initiation factor eIF4E whose individual physiological roles are only partially understood. We report a specific role for IFE-2 in a conserved temperature-sensitive meiotic process. ife-2 deletion mutants have severe temperature-sensitive chromosome-segregation defects. Mutant germ cells contain the normal six bivalents at diakinesis at 20°C but 12 univalents at 25°C, indicating a defect in crossover formation. Analysis of chromosome pairing in ife-2 mutants at the permissive and restrictive temperatures reveals no defects. The presence of RAD-51-marked early recombination intermediates and 12 well condensed univalents indicate that IFE-2 is not essential for formation of meiotic double-strand breaks or their repair through homologous recombination but is required for crossover formation. However, RAD-51 foci in ife-2 mutants persist into inappropriately late stages of meiotic prophase at 25°C, similar to mutants defective in MSH-4/HIM-14 and MSH-5, which stabilize a critical intermediate in crossover formation. In wild-type worms, mRNAs for msh-4/him-14 and msh-5 shift from free messenger ribonucleoproteins to polysomes at 25°C but not in ife-2 mutants, suggesting that IFE-2 translationally upregulates synthesis of MSH-4/HIM-14 and MSH-5 at elevated temperatures to stabilize Holliday junctions. This is confirmed by an IFE-2-dependent increase in MSH-5 protein levels. PMID:20530576

  14. Cement-based radioactive waste hosts formed under elevated temperatures and pressures (FUETAP concretes) for Savannah River Plant high-level defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.; Rogers, G.C.; Morgan, M.T.; Stinton, D.P.; Kessler, J.H.; Robinson, S.M.; Moore, J.G.

    1983-03-01

    Concretes that are formed under elevated temperatures and pressures (called FUETAP) are effective hosts for high-level radioactive defense wastes. Tailored concretes developed at the Oak Ridge National Laboratory (ORNL) have been prepared from common Portland cements, fly ash, sand, clays, and waste products. These concretes are produced by accelerated curing under mild autoclave conditions (85 to 200/sup 0/C, 0.1 to 1.5 MPa) for 24 h. The solids are subsequently dewatered (to remove unbound water) at 250/sup 0/C for 24 h. The resulting products are strong (compressive strength, 40 to 100 MPa), leach resistant (plutonium leaches at the rate of 10 pg/(cm/sup 2/.d)), and radiolytically stable, monolithic waste forms (total gas value = 0.005 molecule/100 eV). This report summarizes the results of a 4-year FUETAP development program for Savannah River Plant (SRP) high-level defense wastes. It addresses the major questions concerning the performance of concretes as radioactive waste forms. These include leachability, radiation stability, thermal stability, thermal conductivity, impact strength, permeability, phase complexity, and effect of waste composition.

  15. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  16. Optical and electronic properties of sub-surface conducting layers in diamond created by MeV B-implantation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.; Johnson, B. C.; McCallum, J. C.; Prawer, S. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Liu, R. [SIMS Facility, Office of the Deputy-Vice Chancellor (Research and Development) Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751 (Australia)

    2016-06-14

    Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.

  17. Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures.

    Science.gov (United States)

    Zhang, Wei; Zhou, Weidong; Wright, Jasper H; Kim, Young Nam; Liu, Dawei; Xiao, Xingcheng

    2014-05-28

    Novel Mn(2+)-doped TiO2 nanosheet-based spheres have been successfully prepared via a simple hydrothermal and ion-exchange process. After hydrothermal growth, flowerlike nanosheet-based spheres of protonated dititanate were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hierarchical nanostructure was obtained via a dissolution-recrystallization process starting from a precursor of homogenous TiO2 nanospheres. Moreover, as-prepared protonated dititanate was converted to Mn-doped nanosheet-based spheres via the ion-exchange method. Then, both the doped and undoped protonated dititanate were calcined and tested as anode materials for lithium-ion battery applications at elevated temperatures. The undoped sample showed an initial capacity of 201 mAh g(-1) but only had 44.1% of the initial capacity retained after 50 cycles at mixed current densities of 30, 150, and 500 mA g(-1) at 55 °C, while the Mn-doped one exhibited an initial capacity of 190 mAh g(-1) and 91.4% capacity retention with superior reversible capacity under the same test conditions. Comparisons between different samples suggest that manganese ions on the surface of TiO2 nanosheet-based spheres are responsible for the enhanced electrochemical performance.

  18. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display.

    Science.gov (United States)

    Khatun, M Mahfuza; Liu, Chen-Guang; Zhao, Xin-Qing; Yuan, Wen-Jie; Bai, Feng-Wu

    2017-02-01

    Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.

  19. Explanation of the Wear Behaviour of NCD Coated Carbide Tools Facilitated by Appropriate Methods for Assessing the Coating Adhesion Deterioration at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    K.-D. Bouzakis

    2015-09-01

    Full Text Available The determination of the temperature dependent interface fatigue strength of Nano-Crystalline Diamond (NCD coatings facilitates a thorough understanding of the NCD coated cutting tools wear mechanisms. In the present paper, the fatigue strength of the interface region between a NCD film and its hardmetal substrate was investigated by inclined impact tests at various temperatures. Depending upon the impact load and the applied temperature, after a certain number of impacts, damages in the film-substrate interface develop, resulting in coating detachment and lifting. These effects were attributed among others to the release of highly compressive residual stresses in the NCD coating structure. The attained inclined impact test’s results contributed to the explanation of the wear-evolution of NCD-coated tools with diverse film-substrate adhesion qualities. The related milling experiments using as work material AA 7075 T6 verified the dominant effect of the film adhesion on the NCD coated tool life.

  20. Comparative Physiology of Fatigue

    National Research Council Canada - National Science Library

    JONES, JAMES H

    2016-01-01

    ABSTRACTThis review attempts to provide insights into factors associated with fatigue in human and nonhuman animals by using the two fundamental approaches of comparative physiologydetermining common...

  1. Neurobiological studies of fatigue

    Science.gov (United States)

    Harrington, Mary E.

    2012-01-01

    Fatigue is a symptom associated with many disorders, is especially common in women and in older adults, and can have a huge negative influence on quality of life. Although most past research on fatigue uses human subjects instead of animal models, the use of appropriate animal models has recently begun to advance our understanding of the neurobiology of fatigue. In this review, results from animal models using immunological, developmental, or physical approaches to study fatigue are described and compared. Common across these animal models is that fatigue arises when a stimulus induces activation of microglia and/or increased cytokines and chemokines in the brain. Neurobiological studies implicate structures in the ascending arousal system, sleep executive control areas, and areas important in reward. In addition, the suprachiasmatic nucleus clearly plays an important role in homeostatic regulation of the neural network mediating fatigue. This nucleus responds to cytokines, shows decreased amplitude firing rate output in models of fatigue, and responds to exercise, one of our few treatments for fatigue. This is a young field but very important as the symptom of fatigue is common across many disorders and we do not have effective treatments. PMID:22841649

  2. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  3. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO2] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A study on the influence of microstructure on small fatigue cracks

    Science.gov (United States)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex

  5. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Falfushynska, Halina; Gnatyshyna, Lesya; Yurchak, Irina [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine); Sokolova, Inna, E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Stoliar, Oksana [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine)

    2015-05-15

    decrease in the levels of protein carbonyls in all exposures except nZnO + Ta. Expos ure to n-ZnO in the absence of other stressors also led to a strong (∼7-fold) elevation of cathepsin D activity. Cellular responses to Zn{sup 2+} and n-ZnO were different indicating that n-ZnO was not due exclusively to Zn release. Ca-channel blocker Nfd affected intracellular Zn distribution (reflected in the prominent elevation of Zn-MT levels) and caused reductive stress indicated by elevated levels of reduced glutathione levels and an increase in lactate/pyruvate ratio (reflecting higher NADH/NAD ratio). Elevated temperature (25 °C) abolished most of the typical responses to n-ZnO and induced oxidative injury, DNA fragmentation and caspase-3 mediated apoptosis in n-ZnO-exposed mussels. DNA fragmentation was also induced by exposure to organic toxins (alone and in combination with n-ZnO) but not by n-ZnO alone. These data indicate that n-ZnO toxicity to freshwater organisms is modulated by organic pollutants and enhanced by elevated temperatures.

  6. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  7. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature

    Science.gov (United States)

    Liu, Yifan; Ma, Daoyuan; Xiao, Zhizhong; Xu, Shihong; Wang, Yanfeng; Wang, Yufu; Xiao, Yongshuang; Song, Zongcheng; Teng, Zhaojun; Liu, Qinghua; Li, Jun

    2015-01-01

    High temperature influences the homeostasis of fish. We investigated the effects of elevated temperature on tissues of Japanese flounder ( Paralichthys olivaceus) by analyzing the histology and heat shock protein 70 ( hsp70) expression of fish reared in warm conditions. In this study, temperature was increased at 1±0.5°C/day starting at 24±0.5°C, and was kept at that temperature for 5 days before the next rise. After raising temperature at the rate up to 32±0.5°C, tissue samples from midgut, spleen, stomach, liver, muscle, gill, heart, trunk kidney and brain were collected for histological analysis and mRNA assay. Almost all the tissues showed changes in morphological structure and hsp70 level at 32±0.5°C. Histological assessment of the tissues indicated that the gill had the most serious damage, including highly severe epithelial lifting and edema, curved tips and hyperemia at the ending of the lamellars, desquamation and necrosis. The next most severe damage was found in liver and kidney. The hsp70 levels in all the tissues first increased and then decreased. The gut, stomach, muscle, heart, and brain had the highest expressions in 6 h, whereas the spleen, liver, gill and kidney had the highest expressions in 2 h. Therefore, tissues with the most significant lesions (especially gill and liver) responded much earlier (2 h) in hsp70 expression than other tissues, and these tissues demonstrated the most marked histological disruption and elevated mRNA levels, making them ideal candidates for further studies on the thermal physiology of this species.

  8. Tolerance to Elevated Temperature and Ocean Acidification of the Larvae of the Solitary Corals Fungia fungites (Linnaues, 1758) and Lithophyllon repanda (Dana, 1846).

    Science.gov (United States)

    Baria, Maria Vanessa B; Kurihara, Haruko; Harii, Saki

    2015-10-01

    Increase in atmospheric CO₂is the main driver of global climate change and is projected to elevate sea surface temperature by at least 2°C and to decrease oceanic pH by 0.3 to 0.4 units by the end of the century. These factors seriously threaten coral reef ecosystems worldwide. In Okinawa, solitary corals are an important feature of the coral community structure. While previous studies on the effects of ocean warming (OW), ocean acidification (OA) and its combination on larval survival focused on colonial coral species, the present study assessed the effect of high temperature on larvae from solitary corals. In this study, we examined the influence of OW (control = 28°C; control +3 = 31°C; control + 6 = 34°C) and OA (control, pCO₂= 400 to 500 μatm; medium, pCO₂= 1000 to 1300 μatm; high, pCO₂= 1700 to 2200 μatm) on the larval survival of two solitary corals, Fungia fungites and Lithophyllon repanda for eight days. Results showed that F. fungites was neither affected by OW, OA, nor its combination. Similarly, survival of L. repanda was not affected by OA however it was significantly affected by temperature. Temperature tolerance varies between species; L. repanda (+3°C above ambient) has lower tolerance than F. fungites (+6°C above ambient). This observation suggests that fungiid larvae had higher tolerance to elevated temperature stress relative to other scleractinian corals. With the projected increase in OW and OA in the future, fungiidsmay retain good potential to widely disperse and successfully recruit to natal and other neighbouring reefs.

  9. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O

    2015-04-01

    Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Toward accurate thermochemistry of the (24)MgH, (25)MgH, and (26)MgH molecules at elevated temperatures: corrections due to unbound states.

    Science.gov (United States)

    Szidarovszky, Tamás; Császár, Attila G

    2015-01-07

    The total partition functions QT and their first two moments Q(')T and Q(″)T, together with the isobaric heat capacities CpT, are computed a priori for three major MgH isotopologues on the temperature range of T = 100-3000 K using the recent highly accurate potential energy curve, spin-rotation, and non-adiabatic correction functions of Henderson et al. [J. Phys. Chem. A 117, 13373 (2013)]. Nuclear motion computations are carried out on the ground electronic state to determine the (ro)vibrational energy levels and the scattering phase shifts. The effect of resonance states is found to be significant above about 1000 K and it increases with temperature. Even very short-lived states, due to their relatively large number, have significant contributions to QT at elevated temperatures. The contribution of scattering states is around one fourth of that of resonance states but opposite in sign. Uncertainty estimates are given for the possible error sources, suggesting that all computed thermochemical properties have an accuracy better than 0.005% up to 1200 K. Between 1200 and 2500 K, the uncertainties can rise to around 0.1%, while between 2500 K and 3000 K, a further increase to 0.5% might be observed for Q(″)T and CpT, principally due to the neglect of excited electronic states. The accurate thermochemical data determined are presented in the supplementary material for the three isotopologues of (24)MgH, (25)MgH, and (26)MgH at 1 K increments. These data, which differ significantly from older standard data, should prove useful for astronomical models incorporating thermodynamic properties of these species.

  11. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root / shoot herbivores

    Directory of Open Access Journals (Sweden)

    James Michael William Ryalls

    2013-11-01

    Full Text Available Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT and elevated atmospheric carbon dioxide (eCO2 are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus and colonisation by the pea aphid (Acyrthosiphon pisum, on three cultivars of a common host plant, lucerne (Medicago sativa. Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 on three trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing, with cultivar ‘Sequel’ achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonisation was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonisation rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.

  12. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    Science.gov (United States)

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  13. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Pu...

  14. A Fatigue Life Prediction Method Based on Strain Intensity Factor.

    Science.gov (United States)

    Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing

    2017-06-22

    In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = -1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading

  15. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    Science.gov (United States)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  16. ENVIRONMENTAL FATIGUE OF METALLIC MATERIALS IN NUCLEAR POWER PLANTS – A REVIEW OF KOREAN TEST PROGRAMS

    Directory of Open Access Journals (Sweden)

    CHANGHEUI JANG

    2013-12-01

    Full Text Available Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

  17. Environmental Fatigue of Metallic Materials in Nuclear Power Plants - A Review of Korean Test Programs

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheul; Jang, Hun; Hong, Jongdae [KAIST, Daejeon (Korea, Republic of); Cho, Hyunchul [Doosan Heavy Industry and Construction, Changwon (Korea, Republic of); Kim, Tae Soon; Lee, Jaegon [KHNP, Daejeon (Korea, Republic of)

    2013-12-15

    Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during the early 2000s. To deal with the environmental fatigue issue domestically, a systematic test program has been initiated and is still underway. The materials tested were SA508 Gr.1a low alloy steels, 316LN stainless steels, cast stainless steels, and an Alloy 690 and 52M weld. Through tests and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for those alloys. In addition, the effects of temperature, dissolved oxygen level, and dissolved hydrogen level on low cycle fatigue behaviors have been investigated. In this paper, the test results and key analysis results are briefly summarized. Finally, an on-going test program for hot-bending of 347 stainless steel is introduced.

  18. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  19. Factors affecting the corrosion fatigue life in nickel based superalloys for disc applications

    Directory of Open Access Journals (Sweden)

    Rosier Hollie

    2014-01-01

    Full Text Available The nickel based superalloy 720Li is employed in the gas turbine due to its mechanical performance at elevated temperature. A comprehensive assessment of the materials behaviour under representative service conditions is reported to address the drive for ever increasing temperatures and more arduous environmental exposure. Fatigue experiments have been performed in an air and air/SOx environment at 700 ∘C containing a mixed salt as a contaminant. There is an intimate relationship between local salt level (flux, stress level and stress state, i.e. static or cyclic. The interaction with these variables with the work hardened layer present on the surface of all tested specimens as a result of the shot peening process directly affects the crack initiation process. If specific conditions of environment and stress are achieved, a significant reduction in fatigue life is observed.

  20. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  1. Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila.

    Science.gov (United States)

    Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick

    2017-10-15

    Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r2 = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The effects of fire retardant additives on the properties of flax fiber bio-resin composites at room and elevated temperatures

    Science.gov (United States)

    Budd, Ryan

    Today, throughout the engineering world, there is a large emphasis being placed on the environment which requires the development of new greener materials. This is no different in the realm of composite materials with natural fibers and new bio-based resins being investigated to replace their synthetic alternatives. However, a large obstacle has prevented a more wide spread use of green Natural Fiber Reinforced Polymer (NFRP) materials, and that is their poor elevated temperature (ET) and fire performance. One common method for increasing the fire performance of a material is the incorporation of fire retardant (FR) additives. The purpose of this research was to investigate, and try to maximize, the ET properties of new NFRP composites. Specifically, this included evaluating the mechanical properties of NFRP composites at room temperature (RT) and ET, as well as assessing the effect of FR additives on these properties. A secondary goal of this research included comparing a synthetic epoxy resin, Biresin, with a bio-based epoxy resin, Super Sap. This was accomplished using one type of natural fiber (flax), two resins (one synthetic, one bio-based) and three FR additives. In all, four different testing methods were employed. The first was Differential Scanning Calorimetry (DSC) analysis of all composite materials. The second type of testing evaluated the resin plus additive combinations without any fibers. The final two types of testing evaluated the mechanical properties of the fabricated NFRP at RT and ET. Several important conclusions were reached with regards to this research. One of these noted the percentage loadings used in this research did not negatively affect the NFRP samples enough to be considered a major hindrance against their use in NFRP fabrication. It was also determined Super Sap composites could be used as an appropriate replacement for Biresin FRP composites in high temperature applications. Finally, two recommendations toward NFRP design, for RT

  3. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  4. IIW recommendations for the HFMI treatment for improving the fatigue strength of welded joints

    CERN Document Server

    Marquis, Gary B

    2016-01-01

    This book of recommendations presents an overview of High Frequency Mechanical Impact (HFMI) techniques existing today in the market and their proper procedures, quality assurance measures and documentation. Due to differences in HFMI tools and the wide variety of potential applications, certain details of proper treatments and quantitative quality control measures are presented generally. An example of procedure specification as a quality assurance measure is given in the Appendix. Moreover, the book presents procedures for the fatigue life assessment of HFMI-improved welded joints based on nominal stress, structural hot spot stress and effective notch stress. It also considers the extra benefit that has been experimentally observed for HFMI-treated high-strength steels. The recommendations offer proposals on the effect of loading conditions like high mean stress fatigue cycles, variable amplitude loading and large amplitude/low cycle fatigue cycles. Special considerations for low stress concentration welded...

  5. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  6. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco; van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose: Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods: Perceived fatigue was

  7. Perceived fatigue following pediatric burns

    NARCIS (Netherlands)

    Akkerman, Moniek; Mouton, Leonora J.; Dijkstra, Froukje; Niemeijer, Anuschka S.; van Brussel, Marco|info:eu-repo/dai/nl/30481962X; Van der Woude, Lucas H. V.; Disseldorp, Laurien M.; Nieuwenhuis, Marianne K.

    2017-01-01

    Purpose Fatigue is a common consequence of numerous pediatric health conditions. In adult burn survivors, fatigue was found to be a major problem. The current cross-sectional study is aimed at determining the levels of perceived fatigue in pediatric burn survivors. Methods Perceived fatigue was

  8. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of

  9. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  10. Minutes of the Conference on the International Committee on Aeronautical Fatigue (10th) Held in Melbourne, Australia on May 1967

    Science.gov (United States)

    1968-02-01

    records are moreover running in one VENOM and in one MIRAGE III S. Further continuous records were made in a FAIRY GANNET and in one of the mentioned C...results of this study were presented (ref. 3) at an ASTM Symposium on Fatigue Crack Propagation held last June in Atlantic City, New Jersey. 249 An...Propagation, Atlantic City, New Jersey, June 1966. 18. Manson, S. S.: Thermal Stress and Low-Cycle Fatigue. Published by McGraw Hill, New York, 1966. 19

  11. Estimation of the resistance to the initiation of fatigue cracks in the welded joints of steel constructions

    Science.gov (United States)

    Odesskii, P. D.; Shuvalov, A. N.; Emel'yanov, O. V.

    2017-04-01

    The problem of choosing an effective approach to determining the fatigue strength of welded butt joints at the stage of crack nucleation is solved. The results of the calculations performed according to the existing building code from the specified strength characteristics and the calculations that take into account local elastoplastic deformation in stress concentration zones are compared. Full-scale specimens of the welded joints of pair angles are tested in the low-cycle fatigue region at a constant load. The kinetics of the state of stress in the zones of terminating flange welded joints is studied by a tensometric method. It is shown that the stage of fatigue crack nucleation is best described using the deformation criterion of fracture: a comparison of the results of calculating the number of cycles to the nucleation of a fatigue crack with experimental data demonstrates good agreement.

  12. The effect of advanced ultrasonic forging on fatigue fracture mechanisms of welded Ti-6A1-4V alloy

    Science.gov (United States)

    Smirnova, A.; Pochivalov, Yu.; Panin, V.; Panin, S.; Eremin, A.; Gorbunov, A.

    2017-12-01

    The current study is devoted to application of advanced postwelding ultrasonic forging to joints formed by laser welding of Ti-6A1-4V alloy in order to enhance their mechanical properties and fatigue durability. Low cycle fatigue tests were performed via digital image correlation technique used to obtain strain fields and in situ characterization of deformation, crack growth and fracture. Fracture surfaces were studied by SEM analysis accompanied with calculation of fracture patterns percentage. The fatigue tests demonstrate the high increase in the number of cycles until fracture (from 17 000 to 32 000 cycles) which could be explained by high ductility of welded material after treatment. This leads to lower fatigue crack growth rate due to higher energy dissipation. The obtained effect is attributable only for small cracks on micro-/mesoscales and fails to play a significant role for macro cracks.

  13. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    boundary. 638 FATIGUE 87 The bulk bismuth concentrations of the bicrystals were measured by Chicago Spectro Laboratory and Charles C. Kawin Company both...645. B.M. Strauss and W.H. Cullen , Jr., editors, ASTM, Philadelphia, 1978, pp. 164-175. (4) Meakin. J.D. and Wilsdorf, H.G.F.. Trans. TMS-AIME, Vol... Edmunds , 1986. 785 FATIGUE 87 (7) James, M.N. and Knott, J.F., Fatigue Fract. Engng Mater. Struct., Vol.8, 1985, pp.177-191. (8) Breat, J.L., Mudry, F

  14. Degradation of mechanical properties of cast Cr-Mo-V and Cr-W-V steam turbine casings after long-term service at elevated temperatures: Pt. 2:; Fracture toughness, correlation of fracture toughness with Charpy V-notch toughness

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, M.; Man, J.; Vlach, B. (Ceskoslovenska Akademie Ved, Brno (Czech Republic). Ustav Fyzikalni Metalurgie); Krumpos, J. (Czechoslovak Academy of Sciences, Plzen (Czech Republic). Inst. of Technology and Reliability of Machine Structures)

    1994-01-01

    The effect of long-term exposure at elevated temperatures on the transition behaviour of the fracture toughness temperature curve of cast Cr-Mo-V and Cr-W-V steels has been studied. The fracture toughness versus temperature behaviour after any operational period seems to be controlled by the initial fracture properties. Relationships linking the fracture toughness to Charpy V-notch impact properties are reported. The validity of these relationships for cast steels was confirmed. (Author)

  15. Effect of Pre-Fatigue on the Monotonic Deformation Behavior of a Coplanar Double-Slip-Oriented Cu Single Crystal

    Directory of Open Access Journals (Sweden)

    Xiao-Wu Li

    2016-11-01

    Full Text Available The [ 2 ¯ 33 ] coplanar double-slip-oriented Cu single crystals were pre-fatigued up to a saturation stage and then uniaxially tensioned or compressed to fracture. The results show that for the specimen pre-fatigued at a plastic strain amplitude γpl of 9.2 × 10−4, which is located within the quasi-plateau of the cyclic stress-strain (CSS curve, its tensile strength and elongation are coincidently improved, showing an obvious strengthening effect by low-cycle fatigue (LCF training. However, for the crystal specimens pre-fatigued at a γpl lower or higher than the quasi-plateau region, due to a low pre-cyclic hardening or the pre-induction of fatigue damage, no marked strengthening effect by LCF training occurs, and even a weakening effect by LCF damage takes place instead. In contrast, the effect of pre-fatigue deformation on the uniaxial compressive behavior is not so significant, since the compressive deformation is in a stress state more beneficial to the ongoing plastic deformation and it is insensitive to the damage induced by pre-cycling. Based on the observations and comparisons of deformation features and dislocation structures in the uniaxially deformed [ 2 ¯ 33 ] crystal specimens which have been pre-fatigued at different γpl, the micro-mechanisms for the effect of pre-fatigue on the static mechanical behavior are discussed.

  16. Chronic Fatigue Syndrome

    Science.gov (United States)

    ... light, eye pain) Psychological symptoms (irritability, mood swings, panic attacks, anxiety) Chills and night sweats Low grade ... Research Phone Number: 775-682-8250 Chronic fatigue syndrome > A-Z Health Topics The Office on Women's ...

  17. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise......The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity...

  18. Chronic Fatigue Syndrome

    Science.gov (United States)

    ... people with CFS should avoid heavy meals, alcohol, caffeine, and large quantities of junk food. Some people ... to address problems. Write it down. If your memory and concentration are affected by chronic fatigue, it ...

  19. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  20. Biomarkers for chronic fatigue.

    Science.gov (United States)

    Klimas, Nancy G; Broderick, Gordon; Fletcher, Mary Ann

    2012-11-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body's core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. BIOMARKERS for CHRONIC FATIGUE

    Science.gov (United States)

    Broderick, Gordon; Fletcher, Mary Ann

    2012-01-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body’s core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. PMID:22732129

  2. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

    2013-12-01

    irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.

  3. Assessing the response of maize phenology under elevated temperature scenarios Resposta fenológica do milho em cenários de aumento de temperatura

    Directory of Open Access Journals (Sweden)

    Nereu Augusto Streck

    2012-03-01

    Full Text Available The objective of this study was to simulate the development of maize in elevated temperature scenarios at Santa Maria, RS, Brazil. The developmental cycle of maize was simulated with the Wang and Engel (WE model with genotype-dependent coefficients for the cultivar BRS Missões. The developmental cycle was divided into vegetative phase (from emergence to silking, and reproductive phase (from silking to physiological maturity. Twelve sowing dates throughout the year were considered, resulting in emergences on the day 15 of each month all year round. Climate scenarios used were synthetic time series of 100 years of current climate and with increase in mean air temperature of +1, +2, +3, +4, and +5, with symmetric and asymmetric increases in daily minimum and maximum temperatures. As temperature increased, the number of years in which crop was killed by frost decreased, indicating that if global warming will confirm, the growing season for maize grown in subtropical environment will be longer by the end of this century. Maize vegetative and reproductive development was delayed or hastened depending upon the emergence time of the year, and if the increase in air temperature is symmetric or asymmetric, indicating complex Genotype x Environment interactions and high vulnerability of maize development to climate change.O objetivo deste trabalho foi simular o desenvolvimento da cultura de milho em cenários de aumento de temperatura em Santa Maria, RS, Brasil. O ciclo de desenvolvimento do milho foi simulado com o modelo de Wang e Engel (WE com coeficientes dependentes do genótipo, para a cultivar BRS Missões. O ciclo de desenvolvimento foi dividido em fase vegetativa (da emergência ao espigamento e fase reprodutiva (do florescimento até a maturidade fisiológica. Foram consideradas doze datas de semeadura, resultando a emergência no dia 15 de cada mês durante todo o ano. Os cenários climáticos utilizados foram séries sintéticas de 100 anos do

  4. Impact of elevated temperature scenarios on potato leaf development Impacto de cenários de aumento de temperatura no desenvolvimento foliar da batata

    Directory of Open Access Journals (Sweden)

    Nereu A. Streck

    2012-08-01

    Full Text Available The objective of this study was to simulate the impact of elevated temperature scenarios on leaf development of potato in Santa Maria, RS, Brazil. Leaf appearance was estimated using a multiplicative model that has a non-linear temperature response function which calculates the daily leaf appearance rate (LAR, leaves day-1 and the accumulated number of leaves (LN from crop emergence to the appearance of the upper last leaf. Leaf appearance was estimated during 100 years in the following scenarios: current climate, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. The LAR model was estimated with coefficients of the Asterix cultivar in five emergence dates and in two growing seasons (Fall and Spring. Variable of interest was the duration (days of the crop emergence to the appearance of the final leaf number (EM-FLN phase. Statistical analysis was performed assuming a three-factorial experiment, with main effects being climate scenarios, growing seasons, and emergence dates in a completely randomized design using years (one hundred as replications. The results showed that warmer scenarios lead to an increase, in the fall, and a decrease, in the spring growing season, in the duration of the leaf appearance phase, indicating high vulnerability and complexity of the response of potato crop grown in a Subtropical environment to climate change.O objetivo, neste trabalho, foi estimar o impacto de cenários de temperaturas elevadas no desenvolvimento foliar da cultura da batata, em Santa Maria-RS, Brasil. A emissão de folhas da cultura da batata foi estimada por um modelo multiplicativo com função de reposta não linear à temperatura que calcula a taxa diária de aparecimento de folhas (TAF, folhas dia-1 e o número acumulado de folhas (NF a partir da data de emergência da cultura até o surgimento da última folha. A emissão de folhas foi estimada em 100 anos de cada um dos cenários climáticos: clima atual, +1 °C, +2 °C, +3 °C, +4 °C e +5 °C. O

  5. Biomarkers of Fatigue: Ranking Mental Fatigue Susceptibility

    Science.gov (United States)

    2010-12-10

    Effectiveness ( SAFTE ), described in Hursh et al. 2004) holds that performance declines steeply after midnight until mid-morning where it levels off to...Meals occurred during the daylight portion of the protocol with greater frequency than the night time portion; however, participants were allowed...Vigilance Task) SAFTE (Sleep Activity Fatigue Task Effectiveness) SD (standard deviation) T (training) 28 Distribution A: Approved for

  6. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    Energy Technology Data Exchange (ETDEWEB)

    He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-08-26

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  7. Fatigue in Emergency Services Operations: Assessment of the Optimal Objective and Subjective Measures Using a Simulated Wildfire Deployment

    Directory of Open Access Journals (Sweden)

    Sally A. Ferguson

    2016-01-01

    Full Text Available Under controlled laboratory conditions, neurobehavioral assays such as the Psychomotor Vigilance Task (PVT are sensitive to increasing levels of fatigue, and in general, tend to correlate with subjective ratings. However, laboratory studies specifically curtail physical activity, potentially limiting the applicability of such findings to field settings that involve physical work. In addition, laboratory studies typically involve healthy young male participants that are not always representative of a typical working population. In order to determine whether these findings extend to field-like conditions, we put 88 Australian volunteer firefighters through a multi-day firefighting simulation. Participants were required to perform real-world physical and cognitive tasks under conditions of elevated temperature and moderate sleep restriction. We aimed to examine changes in fatigue in an effort to determine the optimum objective and subjective measures. Objective and subjective tests were sensitive to fatigue outside laboratory conditions. The PVT was the most sensitive assay of objective fatigue, with the Samn-Perelli fatigue scale the most sensitive of the subjective measures. The Samn-Perilli fatigue scale correlated best with PVT performance, but explained a small amount of variance. Although the Samn-Perelli scale can be easily administered in the field, the wide range of individual variance limits its efficacy as a once-off assessment tool. Rather, fatigue measures should be applied as a component of a broader fatigue risk management system. Findings provide firefighting agencies, and other occupations involving physical work, guidance as to the most sensitive and specific measures for assessing fatigue in their personnel.

  8. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T., E-mail: Thomas.Niendorf@iwt.tu-freiberg.de [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); Krooß, P. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, 33098 Paderborn (Germany); Batyrsina, E. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany); Paulsen, A.; Motemani, Y.; Ludwig, A.; Buenconsejo, P.; Frenzel, J.; Eggeler, G. [Institut für Werkstoffe, Ruhr-Universität Bochum, 44801 Bochum (Germany); Maier, H.J. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany)

    2015-01-03

    Due to their high work output and good mechanical properties, actuators made from shape memory alloys (SMAs) are used in numerous applications. Unfortunately, SMAs such as nickel–titanium (Ni–Ti) can only be employed at temperatures up to about 100 °C. Lately, high-temperature shape memory alloys (HT SMAs) have been introduced to overcome this limitation. Ternary systems based on Ni–Ti have been intensively characterized and alloys are available that can operate at elevated temperatures. However, these alloys either contain substantial amounts of expensive noble elements like platinum and palladium, or the materials are brittle. The titanium–tantalum (Ti–Ta) system has been developed to overcome these issues. Binary Ti–Ta provides relatively high M{sub S} temperature combined with excellent workability, but it suffers from fast cyclic degradation. By alloying with third elements this drawback can be overcome: The ternary Ti–Ta–Al alloy shows overall promising properties as will be shown in the present work. In-situ thermo-mechanical cycling experiments were conducted and allowed for evaluation of the factors affecting the functional and structural fatigue of this alloy. Functional fatigue is dominated by ω-phase evolution, while structural fatigue is triggered by an interplay of ω-phase induced embrittlement and deformation constraints imposed by unsuitable texture. In addition, a concept for fatigue life extension proposed very recently for binary Ti–Ta, is demonstrated to be also applicable for the ternary Ti–Ta–Al.

  9. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  10. The Identification of Fatigue Resistant and Fatigue Susceptible Individuals

    Science.gov (United States)

    2008-05-01

    normalized and compared 38 to normalized SAFTE predictions. See text for details. Figure 3 Fatigue plots for fatigue susceptible vs. fatigue...has 5 seconds to press the button to get points for successful signal detections. Lower tones are given with greater frequency and responses to...address the first question, and we use predictions of the Sleep Activity Fatigue Task Effectiveness, or SAFTE model (Hursh, Redmond, Johnson, Thorne

  11. NASALIFE - Component Fatigue and Creep Life Prediction Program

    Science.gov (United States)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  12. Pressure-tension test for assessing fatigue in concrete

    Science.gov (United States)

    Soleimani, Sayed M.; Boyd, Andrew J.; Komar, Andrew J. K.

    2017-04-01

    In a pressure-tension test, a cylindrical concrete specimen is inserted into a cylindrical steel jacket, with a rubber ``O'' ring seal at each end to prevent gas leakage. Gas pressure is then applied to the curved surface of the concrete cylinder, leaving the ends free. As the gas pressure is increased, the specimen eventually fractures across a single plane transverse to the axis of the cylinder. The gas pressure at fracture may then be considered as the tensile strength of the concrete. In this study, the pressure-tension test is used to study fatigue in concrete. A total of 22 standard concrete cylinders (100 mm × 200 mm) were tested. Both dry and wet specimens have been studied. Low-cycle loading, which involves the application of a few load cycles at high stress levels - such as a concrete structure under earthquake load - has been used in this study. It was found that the concrete specimens in a low-cycle loading fail after only a few cycles of loading and interestingly at a stress level lower than the maximum value applied in the cyclic loading. In addition, non-destructive testing (NDT) was performed to determine the progressive damage due to tensile load in concrete cylinders using Ultrasonic Pulse Velocity (UPV). It was found that UPV can be used to evaluate the damage in concrete even after the application of a very low-level of tensile stress - as low as 10% of its tensile strength.

  13. Fatigue design 1998

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, G.; Solin, J. [eds.] [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    These preprints contain the presentations to be delivered at the Fatigue Design 1998 symposium held on May 26-29, 1998 in Espoo. Fatigue Design 1998 is the tenth in a series of VTT symposia addressing the challenge of fatigue of materials, components and structures. Previous international events were in 1992 and 1995. The key theme of the current meeting is `RELIABILITY`. The two volumes (VTT symposium 181-182) represent 56 contributions by authors representing 26 countries. Emphasis has been given to application oriented research topics that report new technologies, new uses of existing methods and case studies. The objective of the symposium is to bring together researchers and engineers to share experiences and new innovations in designing reliable components to resist alternating loads. (orig.)

  14. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    in the game: (1) after short-term intense periods in both halves; (2) in the initial phase of the second half; and (3) towards the end of the game. Temporary fatigue after periods of intense exercise in the game does not appear to be linked directly to muscle glycogen concentration, lactate accumulation...... temperatures compared with the end of the first half. Thus, when players perform low-intensity activities in the interval between the two halves, both muscle temperature and performance are preserved. Several studies have shown that fatigue sets in towards the end of a game, which may be caused by low glycogen...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  15. Myth vs. Fact: Adrenal Fatigue

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used ...

  16. Modafinil May Alleviate Poststroke Fatigue

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Damgaard, Bodil; Zerahn, Bo

    2015-01-01

    was randomized, double-blinded, and placebo-controlled. Patients were treated with 400-mg modafinil or placebo for 90 days. Assessments were done at inclusion, 30, 90, and 180 days. The primary end point was fatigue at 90 days measured by the Multidimensional Fatigue Inventory-20 general fatigue domain......BACKGROUND AND PURPOSE: Poststroke fatigue is common and reduces quality of life. Current evidence for intervention is limited, and this is the first placebo-controlled trial to investigate treatment of poststroke fatigue with the wakefulness promoting drug modafinil. METHODS: The trial....... Secondary end points included the Fatigue Severity Scale, the Montreal Cognitive Assessment, the modified Rankin Scale and the Stroke-specific quality of Life questionnaire. Adult patients with a recent stroke achieving a score of ≥12 on the Multidimensional Fatigue Inventory-20 general fatigue domain were...

  17. Coping with cancer -- managing fatigue

    Science.gov (United States)

    ... Fatigue is a feeling of tiredness, weakness, or exhaustion. It is different from drowsiness, which can be ... chap 45. National Cancer Institute. Fatigue (PDQ) - Health professional version. Cancer.gov Web site. Updated January 13, ...

  18. Treatments for chronic fatigue syndrome

    National Research Council Canada - National Science Library

    Rimes, K A; Chalder, T

    2005-01-01

    To review studies evaluating the treatment of chronic fatigue and chronic fatigue syndrome, to describe predictors of response to treatment and to discuss the role of the occupational health physician...

  19. Determinants of fatigue and stress.

    Science.gov (United States)

    Kocalevent, Rüya D; Hinz, Andreas; Brähler, Elmar; Klapp, Burghard F

    2011-07-20

    Fatigue can be triggered by previous perceived stress which may lead to impairment of performance and function. The purpose of the study was to investigate the relationship between fatigue and perceived stress. Health determinants including sociodemographic factors for associations between fatigue and perceived stress in the general population (N = 2,483) are outlined. Fatigue and stress were assessed with the Chalder Fatigue Scale (CFS) and the Perceived Stress Questionnaire (PSQ). Within the general population, 25.9% of male and 34.5% of female respondents reported moderate fatigue during the last six months; 9.7% of subjects reported substantial fatigue lasting six months or longer. An adjusted regression analysis (R2corr = .28, p rates of fatigue and perceived stress: female gender, divorce/separation, low social class and poor health status. We conclude that the two conditions overlap most in terms of socio-economic status and self-perceived health status.

  20. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.

    Science.gov (United States)

    Villarraga, M L; Kurtz, S M; Herr, M P; Edidin, A A

    2003-08-01

    Previous observations of reduced uniaxial elongation, fracture resistance, and crack propagation resistance of highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) have contributed to concern that the technology may not be appropriate for systems undergoing cyclic fatigue loading. Using a "total life" approach, we examined the influence of radiation crosslinking on the fatigue response of UHMWPE under cyclic loading via the small punch test. Our goal in this study was to evaluate the suitability of the small punch test for conducting miniature-specimen, cyclic loading, and fatigue experiments of conventional and highly crosslinked UHMWPE. We subjected four types of conventional and highly crosslinked UHMWPE to cyclic loading at 200 N/s and at body temperature in a small punch test apparatus. After failure, the fracture surfaces were characterized with the use of field emission scanning electron microscopy to evaluate the fatigue mechanisms. Cyclic small punch testing under load control was found to be an effective and repeatable method for relative assessment of the fatigue resistance of conventional and highly crosslinked UHMWPE specimens under multiaxial loading conditions. For each of the four conventional and highly crosslinked UHMWPE materials evaluated in this study, fatigue failures were consistently produced according to a power law relationship in the low cycle regimen, corresponding to failures below 10000 cycles. The fatigue failures were all found to be consistent with a single source of initiation and propagation to failure. Our long-term goal in this research is to develop miniature-specimen fatigue testing techniques for characterization of retrieved UHMWPE inserts. Copyright 2003 Wiley Periodicals, Inc.