WorldWideScience

Sample records for elementary energy bands

  1. Building blocks of topological quantum chemistry: Elementary band representations

    Science.gov (United States)

    Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

  2. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  3. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  4. Teaching elementary thermodynamics and energy conversion: Opinions

    International Nuclear Information System (INIS)

    Gaggioli, Richard A.

    2010-01-01

    This presentation deals with innovation in teaching and understanding of thermodynamic principles. Key features of the approach being advocated are: (a) postulation of the existence of entropy, (b) explicitly associating energy transfers with other transports, (c) stating the 2nd Law in terms of Gibbs' available-energy, (d) systematic use of software such as EES. The paper outlines and elaborates upon an introductory course. Major headings in the course are: basic concepts: properties, additive properties and balances, primitive properties, energy, 1st Law. entropy, elementary academic applications of balances, available-energy, second law, exergy, thermostatic property relations, EES. Applications to processes, fluid flow, Heat transfer, thermochemical. Applications to devices, single-process, compound-process, systems (consisting of devices and processes functioning together).

  5. Energy correlations for mixed rotational bands

    International Nuclear Information System (INIS)

    Doessing, T.

    1985-01-01

    A schematic model for the mixing of rotational bands above the yrast line in well deformed nuclei is considered. Many-particle configurations of a rotating mean field form basis bands, and these are subsequently mixed due to a two body residual interaction. The energy interval over which a basis band is spread out increases with increasing excitation energy above the yrast line. Conversely, the B(E2) matrix element for rotational decay out of one of the mixed band states is spread over an interval which is predicted to become more narrow with increasing excitation energy. Finally, the implication of band mixing for γ-ray energy correlations is briefly discussed. (orig.)

  6. Teaching - learning plan on nuclear energy for elementary school

    International Nuclear Information System (INIS)

    2009-03-01

    This is for teaching - learning curriculum about nuclear energy for elementary school students. It consist of four titles, which are I saved this much, learning energy through quiz, I work for nuclear power plant and would mayor build a nuclear power plant in our town? It was written to teach nuclear power plant and nuclear energy to elementary school students in easy way.

  7. Exploring elementary students’ understanding of energy and climate change

    Directory of Open Access Journals (Sweden)

    Colin BOYLAN

    2008-10-01

    Full Text Available As environmental changes become a significant societal issue, elementary science curriculaneed to develop students’ understanding about the key concepts of energy and climate change.For teachers, developing quality learning experiences involves establishing what theirstudents’ prior understanding about energy and climate change are. A survey was developed toexplore what elementary students know and understand about renewable and non-renewablesources of energy and their relationship to climate change issues. The findings from thissurvey are reported in this paper.

  8. Energy bands and gaps near an impurity

    Czech Academy of Sciences Publication Activity Database

    Mihóková, Eva; Schulman, L. S.

    2016-01-01

    Roč. 380, č. 41 (2016), s. 3430-3433 ISSN 0375-9601 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : crystal structure * impurity * modeling * energy bands Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.772, year: 2016

  9. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  10. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  11. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  12. Correlation energy for elementary bosons: Physics of the singularity

    International Nuclear Information System (INIS)

    Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung

    2016-01-01

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  13. Correlation energy for elementary bosons: Physics of the singularity

    Energy Technology Data Exchange (ETDEWEB)

    Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)

    2016-04-15

    We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.

  14. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  15. Nuclear energy levels and elementary particles

    International Nuclear Information System (INIS)

    de Wet, J.A.

    1982-01-01

    Considering only exchange forces, the binding energies and excited states of nuclei up to 24 Mg are predicted to within charge independence, and there is no reason why the model should not be extended to cover all of the elements. A comparison of theory with experiment shows that the energy of one exchange is 2.56 MeV. Moreover, there is an attractive well of depth 30 MeV, corresponding to the helium nucleus. before exchange forces become operative. A possible explanation of the origin of mesons is also presented

  16. Conservation of topological quantum numbers in energy bands

    International Nuclear Information System (INIS)

    Chang, L.N.; Liang, Y.

    1988-01-01

    Quantum systems described by parametrized Hamiltinians are studied in a general context. Within this context, the classification scheme of Avron-Seiler-Simon for non-degenerate energy bands is extended to cover general parameter spaces, whole their sum rule is generalized to cover cases with degenerate bands as well. Additive topological quantum numbers are defined, and these are shown to be conserved in energy band ''collisions''. The conservation laws dictate that when some invariants are non-vanishing, no energy gap can develop in a set of degenerate bands. This gives rise to a series of splitting rules

  17. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  18. Interpolation of band-limited discrete-time signals by minimising out-of-band energy

    NARCIS (Netherlands)

    Janssen, A.J.E.M.; Vries, L.B.

    1984-01-01

    An interpolation method for restoring burst errors in discrete—time, band—limited signals is presented. The restoration is such that the restored signal has minimal out—of—band energy. The filter coefficients depend Only on the burst length and on the size of the band to which the signal is assumed

  19. Quantitative analysis on electric dipole energy in Rashba band splitting.

    Science.gov (United States)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  20. Quantitative operando visualization of the energy band depth profile in solar cells.

    Science.gov (United States)

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  1. Zero Energy Building Pays for Itself: Odyssey Elementary

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    Odyssey Elementary is a large public school in an area of Utah with a growing population. Created as a prototype for the Davis School District, Odyssey is a zero energy building whose design has already been copied for two other new schools, both of which are targeting zero energy. It has a unique design with four 'houses' (or classroom wings) featuring generously daylit classrooms. This design contributes to the school's energy efficiency. In an effort to integrate positive messages about fitness into the learning environment, each house has a different take on the theme of 'bodies in motion' in the natural world. In a postoccupancy survey of parents, students, and teachers, more than 87% were satisfied with the building overall.

  2. Magnetron based high energy S-band linac system

    International Nuclear Information System (INIS)

    Tiwari, T.; Krishnan, R.; Phatangare, Manoj

    2012-01-01

    This paper deals with the study of magnetron based high energy S-band linear accelerator (linac) system operating at spot frequency 2.998 GHz. The energy and dose are two important parameters of linac system which depend on input power of microwave source and length of linac tube. Here the author has studied how these parameters can be improved for side coupled standing wave S-band linac system

  3. Hole energy and momentum distributions in valence bands

    International Nuclear Information System (INIS)

    Laan, G. van der.

    1982-01-01

    In order to understand the electrical and magnetic properties of solids, the knowledge of the density of states and the dispersion relation of the valence bands is indispensable. This thesis offers some alternative methods to obtain information about the nature of the valence band. Part A deals with the energy distribution of the photoelectrons. A simple model, which explains the core hole satellite structure in compounds with large correlation effects between the valence band holes and the created photo-hole, is outlined. CuCl, CuX 2 (X = F Cl and Br) are studied, by photoemission and Auger electron spectroscopies in determining the valence band properties. Part B deals with the simultaneous measurement of the energy and the wave vector of the emitted electrons. A practical example is given for the determination of the dispersion relation in copper. The measurements of a surface resonance band and the distribution of the secondary electrons are also reported. (Auth.)

  4. Energy band dispersion in photoemission spectra of argon clusters

    International Nuclear Information System (INIS)

    Foerstel, Marko; Mucke, Melanie; Arion, Tiberiu; Lischke, Toralf; Barth, Silko; Ulrich, Volker; Ohrwall, Gunnar; Bjoerneholm, Olle; Hergenhahn, Uwe; Bradshaw, Alex M.

    2011-01-01

    Using photoemission we have investigated free argon clusters from a supersonic nozzle expansion in the photon energy range from threshold up to 28 eV. Measurements were performed both at high resolution with a hemispherical electrostatic energy analyser and at lower resolution with a magnetic bottle device. The latter experiments were performed for various mean cluster sizes. In addition to the ∼1.5 eV broad 3p-derived valence band seen in previous work, there is a sharper feature at ∼15 eV binding energy. Surprisingly for non-oriented clusters, this peak shifts smoothly in binding energy over the narrow photon energy range 15.5-17.7 eV, indicating energy band dispersion. The onset of this bulk band-like behaviour could be determined from the cluster size dependence.

  5. Energies of conduction bands in dielectric liquids

    International Nuclear Information System (INIS)

    Holroyd, R.

    1975-01-01

    The properties of excess electrons in non-polar liquids depend on the relative energies of the trapped and conducting states. We have measured the energies of the conducting states, denoted V 0 , for about twenty non-polar liquids. Two methods were used: In one the work functions of metals immersed in the liquid were measured. In the other, solutes (TMPD) were photoionized in the liquid and V 0 calculated from the wavelength at which ionization onsets occur. A wide variation in conduction state energies is observed from a high of +0.21 eV for tetradecane to a low of --0.60 eV for tetramethylsilane. In general V 0 shifts to more negative values with increasing molecular symmetry, and correlates well with electron mobility. The photoionization results indicate that V 0 decreases with increasing temperature. In mixtures V 0 is linearly dependent on mole fraction. It was found empirically for n-hexane-neopentane mixtures that μ = 0.34 exp [--15.2(V 0 )]. This equation relating V 0 to the electron mobility also applies approximately to pure hydrocarbons. Thus the role of the conduction state energy in influencing electron mobilities and photoionization onsets is established and recent evidence indicates V 0 also influences the rates of electron reactions in these liquids

  6. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  7. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    Science.gov (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-03

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Performance of two Vermont elementary school integrated energy conservation/solar energy retrofit projects

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.W. (Marlboro College, VT); Converse, A.O.

    1980-01-01

    Two Vermont elementary school energy conservation/passive solar energy retrofit projects are described. Both masonry buildings were insulated with polystyrene on the east, north and west exterior walls. The south walls of each building were converted to Trombe walls, and, in addition, a portion of the south wall of one building was fitted with a solar greenhouse. The construction details, the predicted performance, and some actual results are reported here.

  9. Experimental study of energy harvesting in UHF band

    International Nuclear Information System (INIS)

    Bernacki, Ł; Gozdur, R; Salamon, N

    2016-01-01

    A huge progress of down-sizing technology together with trend of decreasing power consumption and, on the other hand, increasing efficiency of electronics give the opportunity to design and to implement the energy harvesters as main power sources. This paper refers to the energy that can be harvested from electromagnetic field in the unlicensed frequency bands. The paper contains description of the most popular techniques and transducers that can be applied in energy harvesting domain. The overview of current research and commercial solutions was performed for bands in ultra-high frequency range, which are unlicensed and where transmission is not limited by administrative arrangements. During the experiments with Powercast’s receiver, the same bands as sources of electromagnetic field were taken into account. This power source is used for conducting radio-communication process and excess energy could be used for powering the extra electronic circuits. The paper presents elaborated prototype of energy harvesting system and the measurements of power harvested in ultra-high frequency range. The evaluation of RF energy harvesters for powering ultra-low power (ULP) electronic devices was performed based on survey and results of the experiments. (paper)

  10. Calculation of the band gap energy of ionic crystals

    International Nuclear Information System (INIS)

    Aguado, A.; Lopez, J.M.; Alonso, J.A.; Ayuela, A.; Rivas S, J.F.; Berrondo, M.

    1998-01-01

    The band gap of alkali halides, alkaline-earth oxides, Al 2 O 3 and SiO 2 crystals has been calculated using the perturbed-ion model supplemented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calculations, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials. (Author)

  11. Electron correlations in narrow energy bands: modified polar model approach

    Directory of Open Access Journals (Sweden)

    L. Didukh

    2008-09-01

    Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.

  12. Experimental Studies of Elementary Particle Interactions at High Energies

    Energy Technology Data Exchange (ETDEWEB)

    Goulianos, Konstantin [Rockefeller Univ., New York, NY (United States)

    2013-07-30

    This is the final report of a program of research on "Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate

  13. CZTS stoichiometry effects on the band gap energy

    International Nuclear Information System (INIS)

    Malerba, Claudia; Biccari, Francesco; Azanza Ricardo, Cristy Leonor; Valentini, Matteo; Chierchia, Rosa; Müller, Melanie; Santoni, Antonino; Esposito, Emilia; Mangiapane, Pietro; Scardi, Paolo; Mittiga, Alberto

    2014-01-01

    Highlights: • CZTS films with different compositions were grown from stacked-layer precursors. • The band-gap energy varies from 1.48 to 1.63 eV as the [Sn]/[Cu] ratio increases. • The Zn content seems not to be a critical parameter for the optical properties. • PDS data show an increase of the sub-gap absorption as the Sn content is reduced. • Formation of defects at low Sn content was proposed to explain the Eg variation. -- Abstract: The considerable spread of Cu 2 ZnSnS 4 (CZTS) optical properties reported in the literature is discussed in terms of material stoichiometry. To this purpose, kesterite thin films were prepared by sulfurization of multilayered precursors of ZnS, Cu and Sn, changing the relative amounts to obtain CZTS layers with different compositions. X-Ray Diffraction (XRD), Energy Dispersive X-Ray (EDX) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy were used for structural and compositional analysis. XRD quantitative phase analysis provides the amount of spurious phases and information on Sn-site occupancy. The optical properties were investigated by spectrophotometric and Photothermal Deflection Spectroscopy (PDS) measurements to assess the absorption coefficient of samples with different compositions. The PDS data show an increase of the sub-band absorption as the Sn content decreases. The results are interpreted assuming the formation of additional defects as the tin content is reduced. Those defects can also be responsible for the decrease of the band gap energy value as the Sn/Cu ratio is decreased

  14. Public Schools Energy Conservation Measures, Report Number 4: Hindman Elementary School, Hindman, Kentucky.

    Science.gov (United States)

    American Association of School Administrators, Arlington, VA.

    Presented is a study identifying and evaluating opportunities for decreasing energy use at Hindman Elementary School, Hindman, Kentucky. Methods used in this engineering investigation include building surveys, computer simulations and cost estimates. Findings revealed that modifications to the school's boiler, temperature controls, electrical…

  15. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  16. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  17. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    Science.gov (United States)

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  18. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  19. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  20. Renormalizing the kinetic energy operator in elementary quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br

    2009-09-15

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  1. Renormalizing the kinetic energy operator in elementary quantum mechanics

    International Nuclear Information System (INIS)

    Coutinho, F A B; Amaku, M

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form ψ(r) = u(r)/r, where u(0) ≠ 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  2. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    Science.gov (United States)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  3. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  4. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    International Nuclear Information System (INIS)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-01-01

    Reflection electron energy loss spectra from some insulating materials (CaCO 3 , Li 2 CO 3 , and SiO 2 ) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO 2 , good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E gap ) 1.5 . For CaCO 3 , the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li 2 CO 3 (7.5 eV) is the first experimental estimate

  5. Calculation of Energy Band Diagram of a Photoelectrochemical Water Splitting Cell

    OpenAIRE

    Cendula, P.; Tilley, S. D.; Gimenez, S.; Schmid, M.; Bisquert, J.; Graetzel, M.; Schumacher, J. O.

    2014-01-01

    A physical model is presented for a semiconductor electrode of a photoelectrochemical (PEC) cell, accounting for the potential drop in the Helmholtz layer. Hence both band edge pinning and unpinning are naturally included in our description. The model is based on the continuity equations for charge carriers and direct charge transfer from the energy bands to the electrolyte. A quantitative calculation of the position of the energy bands and the variation of the quasi-Fermi levels in the semic...

  6. Solar Energy Education Packet for Elementary & Secondary Students.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  7. Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.

    Science.gov (United States)

    Center for Renewable Resources, Washington, DC.

    The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…

  8. Zero Energy Is an A+ for Education: Discovery Elementary

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    Currently experiencing a population boom, Arlington County is facing massive growth in the next decade and is seeking to add half a million square feet in educational facilities. During competitive design procurement, one of the teams suggested a zero energy goal could be accomplished within the given budget. Proponents at the district level who had been championing energy efficiency were receptive because sustainability was a core value of the project from the start, but they were skeptical that it could be done within the budget aimed at LEED Silver. Not only did the project end up coming under budget, including the solar array, but the building is more efficient than the originally predicted. Now Discovery saves $100,000 per year in utility costs, enough to cover the salaries of two teachers.

  9. Development of Nuclear Energy and Radiation Textbooks for Elementary School Students

    International Nuclear Information System (INIS)

    Han, E.; Choi, Y.; Yang, J.; Lee, S.

    2015-01-01

    The textbooks for elementary school students were developed to help future generations make value judgments based on appropriate information about nuclear energy and radiation. The themes and educational contents of the 13 lessons, to be delivered in one semester at elementary school level, were selected by the educational requirements of students, science teachers, and experts. The “Radiation and Life” textbook for elementary school students consists of the following chapters: – Chapter 1. What is nuclear energy and radiation?, – Chapter 2. Who discovered the nuclear energy and radiation?, – Chapter 3. Why is nuclear energy and radiation important?, – Chapter 4. Is nuclear energy and radiation dangerous?, – Chapter 5. Let’s learn about what to do when an accident occurs, – Chapter 6. How are nuclear energy and radiation used?, – Chapter 7. What is nuclear power generation?, – Chapter 8. Why is radiation used for food?, – Chapter 9. What is medical radiation?, – Chapter 10. What kind of irradiated products are in our daily lives?, – Chapter 11. What jobs are related to nuclear energy and radiation?, – Chapter 12. What are energies of future?, – Chapter 13. Concept of Talk-talk (a study review game). The general trend in recent educational curriculum development suppresses national education course organizations and authorities and expands the autonomy and authority of regions and schools. The derived textbook contents are expected to be helpful as first textbooks for the autonomous selection of education about nuclear energy and radiation for use in creative experiences developed at the school level. (author)

  10. Elementary particles and high energy phenomena. Progress report

    International Nuclear Information System (INIS)

    Ford, W.T.

    1984-01-01

    During the past year, the MAC collaboration continued accumulating data at PEP and published several results. Included in the results are the lifetime measurement of b quarks; the observation of electroweak interference effects using Bhabba, μμ, and tau tau scattering, a precise measurement of R, observations of direct photons, and a study of energy-energy correlations in multihadron events. For MkII/SLC, a vertex detector system chamber using proportional drift tubes is under construction.The Tagged Photon Spectrometer group has published results and is preparing a new experiment, E-691, to be run in January, 1985. The published results of E-516 include a study of J/psi photoproduction and a study of D 0 → K - π + π 0 . An analysis of Λ 0 anti Λ 0 , and K 0 inclusive photoproduction has recently been completed and is being prepared for publication. Design work and preparation for prototype development has begun on the end cap drift chambers for SLD. Experiment E-400, Hadronic Charm Production, accumulated data during the first two SAVER runs at Fermilab and is now involved in data analysis. E-687, a photoproduction experiment at Fermilab, has begun construction of an electromagnetic calorimeter to measure the energy and postion photons and electrons. Novel forms of supersymmetry breaking were investigated. The anomaly and its relation to the construction of finite supersymmetric theories was studied. A long project was completed on the relation between the gluon condensate in QCD and on effective gluon mass. A series of papers was published on numerical studies of quantum Hamiltonian field theories. Studies of the confinement-deconfinement phase transition in QCD at high temperature were conducted, with applications both to the early universe and to the phenomenogy of ultrarelativistic nucleus-nucleus collisons

  11. Elementary particles and high energy phenomena: Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  12. [Studies of elementary particles and high energy phenomena: [Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1989-01-01

    The scope of work under this contract is unclassified and shall consist of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles at the Fermi National Accelerator Laboratory, the Stanford Linear Accelerator Center, the Los Alamos National Laboratory, the SSC laboratory, and the University of Colorado with emphasis on photon beam experiments, electron-positron interactions, charmed particles, production of new vector bosons, advanced data acquisition systems, two photon physics, particle lifetimes, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, anomaly-free theories, gravity and instrumentation development. These topics are covered in this report

  13. A new perspective of ground band energy formulae

    Indian Academy of Sciences (India)

    J B GUPTA

    2017-08-07

    Aug 7, 2017 ... Nuclear structure; ground band; moment of inertia; softness parameter. PACS Nos 21.60 ... mary data on the spectral properties of atomic nuclei. ... poorer at higher spins and for shape transitional (in ... 25 and figure 4.11 on p.

  14. Investigation of Detectability of Elementary Composition of Rainbow trout muscle with EDS (Energy Dispersive Spectroscopy Method

    Directory of Open Access Journals (Sweden)

    Saltuk Buğrahan CEYHUN

    2017-06-01

    Full Text Available In present study, it is investigated that detectability of elementary composition of rainbow trout muscle using Energy Dispersive Spectroscopy (EDS. EDS system which has worked with attached to scanning electron microscope can do qualitative and semi-quantitative elementary analyses on selected region of sample using characteristic X-rays. For this purpose, it was performed four point and two mapping analyses from four samples. According to results, it was detected 13 elements which are consist of C, N and O in 87.70 percentage. As a result, although the method is sensitive and reliable, it is concluded that not adequate for elemental analysis alone but can be used as a support for analyzes with systems such as especially atomic absorption and ICP-MS.

  15. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    Science.gov (United States)

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  16. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Lohaus, Christian [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Reiser, Patrick [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); InnovationLab GmbH, Speyerer Straße 4, 69115 Heidelberg (Germany); Dimesso, Lucangelo [Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Wang, Xiucai; Yang, Tongqing [Tongji University, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Functional Materials Research Laboratory, College of Materials Science and Engineering, Cao’an Road 4800, Shanghai 201804 (China)

    2017-06-15

    Highlights: • Energy band alignment of antiferroelectric PLZST studied by XPS. • A deconvolution procedure is applied to study band alignment of insulating materials. • Contribution of Pb 6s orbitals leads to higher valence band maximum. • Ferroelectric polarization does not contribute to valence band maximum energy. • The variation of Schottky barrier heights indicates no Fermi level pinning in PLZST. - Abstract: The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O{sub 3} is studied with photoelectron spectroscopy using interfaces with high work function RuO{sub 2} and low work function Sn-doped In{sub 2}O{sub 3} (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O{sub 3} is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO{sub 3}. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O{sub 3} should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  17. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  18. A decision support model for reducing electric energy consumption in elementary school facilities

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok

    2012-01-01

    Highlights: ► Decision support model is developed to reduce CO 2 emission in elementary schools. ► The model can select the school to be the most effective in energy savings. ► Decision tree improved the prediction accuracy by 1.83–3.88%. ► Using the model, decision-maker can save the electric-energy consumption by 16.58%. ► The model can make the educational-facility improvement program more effective. -- Abstract: The South Korean government has been actively promoting an educational-facility improvement program as part of its energy-saving efforts. This research seeks to develop a decision support model for selecting the facility expected to be effective in generating energy savings and making the facility improvement program more effective. In this research, project characteristics and electric-energy consumption data for the year 2009 were collected from 6282 elementary schools located in seven metropolitan cities in South Korea. In this research, the following were carried out: (i) a group of educational facilities was established based on electric-energy consumption, using a decision tree; (ii) a number of similar projects were retrieved from the same group of facilities, using case-based reasoning; and (iii) the accuracy of prediction was improved, using the combination of genetic algorithms, the artificial neural network, and multiple regression analysis. The results of this research can be useful for the following purposes: (i) preliminary research on the systematic and continuous management of educational facilities’ electric-energy consumption; (ii) basic research on electric-energy consumption prediction based on the project characteristics; and (iii) practical research for selecting an optimum facility that can more effectively apply an educational-facility improvement program as a decision support model.

  19. Application of energies of optimal frequency bands for fault diagnosis based on modified distance function

    Energy Technology Data Exchange (ETDEWEB)

    Zamanian, Amir Hosein [Southern Methodist University, Dallas (United States); Ohadi, Abdolreza [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2017-06-15

    Low-dimensional relevant feature sets are ideal to avoid extra data mining for classification. The current work investigates the feasibility of utilizing energies of vibration signals in optimal frequency bands as features for machine fault diagnosis application. Energies in different frequency bands were derived based on Parseval's theorem. The optimal feature sets were extracted by optimization of the related frequency bands using genetic algorithm and a Modified distance function (MDF). The frequency bands and the number of bands were optimized based on the MDF. The MDF is designed to a) maximize the distance between centers of classes, b) minimize the dispersion of features in each class separately, and c) minimize dimension of extracted feature sets. The experimental signals in two different gearboxes were used to demonstrate the efficiency of the presented technique. The results show the effectiveness of the presented technique in gear fault diagnosis application.

  20. Energies and damping rates of elementary excitations in spin-1 Bose-Einstein-condensed gases

    International Nuclear Information System (INIS)

    Szirmai, Gergely; Szepfalusy, Peter; Kis-Szabo, Krisztian

    2003-01-01

    The finite temperature Green's function technique is used to calculate the energies and damping rates of the elementary excitations of homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature in both the density and spin channels. For this purpose a self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to satisfy the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to gases of 23 Na and 87 Rb atoms

  1. Effects of daily energy expenditure on academic performance of elementary students in Taiwan.

    Science.gov (United States)

    Wang, Peng-Sheng; Huang, Yi-Ching; Wu, Shu-Fang Vivienne; Wang, Kuo-Ming

    2014-01-01

    The objective of the study was to investigate the potential effects of daily energy expenditure on the academic performance (AP) of elementary schoolchildren, the results of which will be used as the basis of planning physical activity (PA) for children in the future. Participants were collected from 4th to 6th grade children at an elementary school in southern Taiwan. The effective sample data size was 1065 (79.8%; 528 boys and 537 girls). Daily mean energy expenditure was obtained using the 3 Day Physical Activity Recall (3-DPAR), and the intensive activities degrees of physical activity were categorized into lowest PA, middle PA, and highest PA group, and academic performance assessed with weighted academic score. The significant effect on the academic performance of schoolchildren was only in energy expenditure but not for sexes and tutorials attended. All students in the middle PA group performed better academically than those in the highest PA group. After controlling sexes, male students in the middle PA group performed better than other groups; female students in the lowest PA group performed better than other groups. These results may be consulted by schools, academic faculties, and parents in setting up exercise plans for children. © 2012 The Authors. Japan Journal of Nursing Science © 2012 Japan Academy of Nursing Science.

  2. Superlattice band structure: New and simple energy quantification condition

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, P.O. Box 9004, Abha 61413 (Saudi Arabia)

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga{sub 0.5}Al{sub 0.5}As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  3. Experimental observation on asymmetric energy flux within the forbidden frequency band in the LC transmission line

    International Nuclear Information System (INIS)

    Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan

    2012-01-01

    We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.

  4. Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Man, Isabela-Costinela; Soriga, Stefan-Gabriel

    2017-01-01

    on semiconductors. We propose here a correlation between the cooperative interaction energy, i.e., the energy difference between the adsorption energies of coadsorbed electron donor–acceptor pair and isolated fragments and the band gap of the clean oxide surface. We demonstrate this effect for a number of oxides...... and donor–acceptor pairs and explain it with the shift in the Fermi level before and after the adsorption. The conclusion is that the adsorption of acceptor–donor pairs is considerably more favorable compared to unpaired fragments,and this energy difference is approximately equal to the value of the band...

  5. Improved cache performance in Monte Carlo transport calculations using energy banding

    Science.gov (United States)

    Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.

    2014-04-01

    We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.

  6. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  7. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  8. Socio-Cultural Impact of Energy Saving: Studying the Behaviour of Elementary School Students in Greece

    Directory of Open Access Journals (Sweden)

    Sideri Lefkeli

    2018-03-01

    Full Text Available Education makes it possible for students to become familiar with the rational management of energy as well as learn to implement energy saving practices in their everyday life. The study of certain student characteristics helps in the direction of applying strategies of behavioural change. The aim of this research is to record the knowledge and attitudes of elementary school students in the Prefecture of Evros with regard to energy saving. The collection of research data was done through the use of a structured and anonymous questionnaire with closed questions. The method used for the collection of the research data was cluster sampling. This involved 17 elementary schools of the continental part of the prefecture. 612 questionnaires were completed by students of the 5th and 6th grade of these schools. The evaluation of the research data showed that 69.6% of the students think that the most appropriate house temperature is 20°C with 79.1% of the students keeping the thermostat switched off while the house is aired. With regard to the use of TV, stereo, play station and PC the research showed that 93.8% of the students switch off the above devices when these are not in use. In parallel, 86.6% of the respondents usually or always switch off the lights when coming out of a room and 46.2% of the students use energy saving bulbs. Also, 93% of the students recycle because they believe that doing so contributes to the protection of the environment while 41% always chooses to walk to school. With regard to the significance of reasons concerning energy saving 85.9% thinks that energy saving is important to very important for reducing environmental pollution.

  9. The Effects of a Demonstration School Program on Nuclear Energy for Elementary School Students in Korea

    International Nuclear Information System (INIS)

    Han, EunOk; Lee, Seung Koo; Choi, Yoon Seok

    2016-01-01

    Advancing nuclear energy and radiation technology to drive the country forward should be based on the understanding and acceptance of the public. Korea has provided numerous types of information to increase public acceptance of nuclear energy, but it has been difficult to change adults’ perceptions and increase their acceptance of nuclear energy. As a result, social costs are rising. After a pilot program of 13 classes on understanding nuclear energy and radiation offered to elementary school students, who were expected to easily change their perceptions and to experience a relatively greater educational effect, this study analyzed changes to knowledge, attitudes, and behaviors regarding nuclear energy. In addition, this program was the first curriculum of its kind used as a step to lay the groundwork for offering it nationally in the free semester system. Therefore, the study analyzed its appropriateness to educational purposes. A lack of research and practice on communication strategies could be responsible for the situation in Korea of low support for nuclear energy because Korea does not have public understanding even though it is a nuclear energy exporter. If Korea implemented strategic communications from this point, such efforts could reduce unnecessary social costs

  10. The Effects of a Demonstration School Program on Nuclear Energy for Elementary School Students in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Han, EunOk; Lee, Seung Koo; Choi, Yoon Seok [Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2016-10-15

    Advancing nuclear energy and radiation technology to drive the country forward should be based on the understanding and acceptance of the public. Korea has provided numerous types of information to increase public acceptance of nuclear energy, but it has been difficult to change adults’ perceptions and increase their acceptance of nuclear energy. As a result, social costs are rising. After a pilot program of 13 classes on understanding nuclear energy and radiation offered to elementary school students, who were expected to easily change their perceptions and to experience a relatively greater educational effect, this study analyzed changes to knowledge, attitudes, and behaviors regarding nuclear energy. In addition, this program was the first curriculum of its kind used as a step to lay the groundwork for offering it nationally in the free semester system. Therefore, the study analyzed its appropriateness to educational purposes. A lack of research and practice on communication strategies could be responsible for the situation in Korea of low support for nuclear energy because Korea does not have public understanding even though it is a nuclear energy exporter. If Korea implemented strategic communications from this point, such efforts could reduce unnecessary social costs.

  11. Transverse Characteristics of Hadron Production in Elementary and Nuclear Collisions at the CERN SPS Energies

    CERN Document Server

    AUTHOR|(CDS)2076476; Bialkowska, H

    2004-01-01

    A comprehensive study of transverse phenomena at CERN-SPS energies has been performed using data collected by the NA49 experiment. Results on p, p, pi+ and pi- production in elementary hadronic interactions (p + p, pi+ +p and pi- + p) as well as in nuclear collisions (centrality-defined p + Pb, C + C, Si + Si And Pb + Pb) are presented. The dependence of transverse momentum spectra, and in particular the - xF correlations, on particle species, collision energy, size and structure of the colliding objects has been investigated. Particle composition, in terms of the nuclear modification factors RpA (pT) for different xF regions – and particle ratios, has been also studied. The whole set of experimental data puts strong constraints on theoretical models aiming at the description of hadron production in the studied reactions.

  12. Influence of energy bands on the Hall effect in degenerate semiconductors

    International Nuclear Information System (INIS)

    Wu, Chhi-Chong; Tsai, Jensan

    1989-01-01

    The influence of energy bands on the Hall effect and transverse magnetoresistance has been investigated according to the scattering processes of carriers in degenerate semiconductors such as InSb. Results show that the Hall angle, Hall coefficient, and transverse magnetoresistance depend on the dc magnetic field for both parabolic and nonparabolic band structures of semiconductors and also depend on the scattering processes of carriers in semiconductors due to the energy-dependent relaxation time. From their numerical analysis for the Hall effect, it is shown that the conduction electrons in degenerate semiconductors play a major role for the carrier transport phenomenon. By comparing with experimental data of the transverse magnetoresistance, it shows that the nonparabolic band model is better in agreement with the experimental work than the parabolic band model of semiconductors

  13. Fully inkjet printed wide band cantor fractal antenna for RF energy harvesting application

    KAUST Repository

    Bakytbekov, Azamat

    2017-06-07

    Energy harvesting from ambient RF signals is feasible, particularly from the GSM bands such as 900MHz, 1800MHz and the 3G band at 2.1GHz. This requires a wideband receive antenna which can cover all these bands with decent gain performance and an omnidirectional radiation pattern. In this work, a novel Cantor fractal antenna has been designed which fulfills the above mentioned performance requirements. Antenna has been realized through a combination of 3D inkjet printing of plastic substrate and 2D inkjet printing of metallic nanoparticles based ink. The stable impedance and radiation performance of the antenna over a bandwidth of 0.8GHz to 2.2GHz (93 %) shows the feasibility of its employment in wide band energy harvesting applications.

  14. Disclosure of the peaceful use of nuclear energy to the lay audience of elementary school children

    International Nuclear Information System (INIS)

    Batista, M.R.; Neder, D.L.S.M.; Batista, A.S.M.

    2017-01-01

    The peaceful use of nuclear energy, both to obtain safe energy and in medical applications, need to be disseminated among lay public so that fear is not expressed as risk due to lack of knowledge. For this, it is valid the training effort among children of Basic Education, in the instigation to the conscious knowledge that must be consolidated throughout their school career. Thus, in the context of an extension project with a partnership between the Federal University of Minas Gerais (UFMG) and the Municipal Department of Education of the city of Santa Luzia, Minas Gerais, was worked, between the public school students, the theme 'Energy: knowing to understand', using as background the Disney Monsters S / A movie (2001). In the movie the monsters use the energy of the children's shout, but they know them little, considering them toxic and serves in the project to establish analogy with the fear of Nuclear Energy. Methods: The project was developed in twelve public schools in the city of Santa Luzia, Minas Gerais. The film Monstro S / A and Gnose book (produced for the project) were used between October and December 2016. Classroom activities, lectures, model construction and distribution of children's magazines granted by Eletronuclear were the instruments used to observe the appropriation of concepts. Results: Speech records, filming and photographs included a survey of impressions that confirmed a demystification of the association between nuclear energy and unsafety. Conclusion: The elementary school children involved in the research had a mystified view of the use of nuclear energy, with immediate correlations with the atomic bomb. With the development of the project, a critical knowledge formation was demonstrated regarding the safe use of nuclear energy, through new correlations now turned to a plausible comparison with other sources of energy

  15. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    International Nuclear Information System (INIS)

    Gürkan, Gül; Langestraat, Romeo

    2014-01-01

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of certificates. We analyze these two different renewable obligation policies in a mathematical representation of an electricity market with random availabilities of renewable generation outputs and random electricity demand. We also present another, alternative, banding policy. We provide revenue adequate pricing schemes for the three obligation policies. We carry out a simulation study via sampling. A key finding is that the UK banding policy cannot guarantee that the original obligation target is met, hence potentially resulting in more pollution. Our alternative provides a way to make sure that the target is met while supporting less established technologies, but it comes with a significantly higher consumer price. Furthermore, as an undesirable side effect, we observe that a cost reduction in a technology with a high banding (namely offshore wind) leads to more CO 2 emissions under the UK banding policy and to higher consumer prices under the alternative banding policy. - Highlights: • We model and analyze three renewable obligation policies in a mathematical framework. • We provide revenue adequate pricing schemes for the three policies. • We carry out a simulation study via sampling. • The UK policy cannot guarantee that the original obligation target is met. • Cost reductions can lead to more pollution or higher prices under banding policies

  16. Software tool for representation and processing of experimental data on high energy interactions of elementary particles

    International Nuclear Information System (INIS)

    Cherepanov, E.O.; Skachkov, N.B.

    2002-01-01

    The software tool is developed for detailed and evident displaying of information about energy and space distribution of secondary particles produced in the processes of elementary particles collisions. As input information the data on the components of 4-momenta of secondary particles is used. As for these data the information obtained from different parts of physical detector (for example, from the calorimeter or tracker) as well as the information obtained with the help of event generator is taken. The tool is intended for use in Windows operation system and is developed on the basis of Borland Delphi. Mathematical architecture of the software tool allows user to receive complete information without making additional calculations. The program automatically performs analysis of structure and distributions of signals and displays the results in a transparent form which allows their quick analysis. To display the information the three-dimensional graphic methods as well as colour decisions based on intuitive associations are also used. (author)

  17. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    Science.gov (United States)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  18. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Lars [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Smythe, Louisa [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Sarquilla, Lindsey [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States); Ferguson, Kelly [Santa Ynez Band of Chumash Indians, Santa Ynez, CA (United States)

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  19. Temperature Dependence of the Energy Band Diagram of AlGaN/GaN Heterostructure

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2018-01-01

    Full Text Available Temperature dependence of the energy band diagram of AlGaN/GaN heterostructure was investigated by theoretical calculation and experiment. Through solving Schrodinger and Poisson equations self-consistently by using the Silvaco Atlas software, the energy band diagram with varying temperature was calculated. The results indicate that the conduction band offset of AlGaN/GaN heterostructure decreases with increasing temperature in the range of 7 K to 200 K, which means that the depth of quantum well at AlGaN/GaN interface becomes shallower and the confinement of that on two-dimensional electron gas reduces. The theoretical calculation results are verified by the investigation of temperature dependent photoluminescence of AlGaN/GaN heterostructure. This work provides important theoretical and experimental basis for the performance degradation of AlGaN/GaN HEMT with increasing temperature.

  20. Modeling and analysis of renewable energy obligations and technology bandings in the UK electricity market

    NARCIS (Netherlands)

    Gurkan, G.; Langestraat, R.

    In the UK electricity market, generators are obliged to produce part of their electricity with renewable energy resources in accordance with the Renewable Obligation Order. Since 2009 technology banding has been added, meaning that different technologies are rewarded with a different number of

  1. CdSe/CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M. [Centro de Pesquisas Avancadas Wernher von Braun, Av. Alice de Castro P.N. Mattosinho 301, CEP 13098-392 Campinas, SP (Brazil); Ferreira, L.G. [Departamento de Fisica dos Materiais e Mecanica, Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil); Fonseca, L.R.C. [Center for Semiconductor Components, State University of Campinas, R. Pandia Calogeras 90, 13083-870 Campinas, SP (Brazil); Ramprasad, R. [Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, CT 06269 (United States)

    2012-09-20

    We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications.

  2. Energy band structure of Cr by the Slater-Koster interpolation scheme

    International Nuclear Information System (INIS)

    Seifu, D.; Mikusik, P.

    1986-04-01

    The matrix elements of the Hamiltonian between nine localized wave-functions in tight-binding formalism are derived. The symmetry adapted wave-functions and the secular equations are formed by the group theory method for high symmetry points in the Brillouin zone. A set of interaction integrals is chosen on physical ground and fitted via the Slater-Koster interpolation scheme to the abinito band structure of chromium calculated by the Green function method. Then the energy band structure of chromium is interpolated and extrapolated in the Brillouin zone. (author)

  3. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    Directory of Open Access Journals (Sweden)

    Diana E. Proffit

    2010-11-01

    Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  4. Lanthanide 4f-electron binding energies and the nephelauxetic effect in wide band gap compounds

    International Nuclear Information System (INIS)

    Dorenbos, Pieter

    2013-01-01

    Employing data from luminescence spectroscopy, the inter 4f-electron Coulomb repulsion energy U(6, A) in Eu 2+/3+ impurities together with the 5d-centroid energy shift ϵ c (1,3+,A) in Ce 3+ impurities in 40 different fluoride, chloride, bromide, iodide, oxide, sulfide, and nitride compounds has been determined. This work demonstrates that the chemical environment A affects the two energies in a similar fashion; a fashion that follows the anion nephelauxetic sequence F, O, Cl, Br, N, I, S, Se. One may then calculate U(6, A) from well established and accurate ϵ c (1,3+,A) values which are then used as input to the chemical shift model proposed in Dorenbos (2012) [19]. As output it provides the chemical shift of 4f-electron binding energy and therewith the 4f-electron binding energy relative to the vacuum energy. In addition this method provides a tool to routinely establish the binding energy of electrons at the top of the valence band (work function) and the bottom of the conduction band (electron affinity) throughout the entire family of inorganic compounds. How the electronic structure of the compound and lanthanide impurities therein change with type of compound and type of lanthanide is demonstrated. -- Highlights: ► A relationship between 5d centroid shift and 4f-electron Coulomb repulsion energy is established. ► Information on the absolute 4f-electron binding energy of lanthanides in 40 compounds is provided. ► A new tool to determine absolute binding energies of electrons in valence and conduction bands is demonstrated

  5. Validity of single term energy expression for ground state rotational band of even-even nuclei

    International Nuclear Information System (INIS)

    Sharma, S.; Kumar, R.; Gupta, J.B.

    2005-01-01

    Full text: There are large numbers of empirical studies of gs band of even-even nuclei in various mass regions. The Bohr-Mottelson's energy expression is E(I) = AX + BX 2 +CX 3 +... where X = I(I+1). The anharmonic vibrator energy expression is: E(I) = al + bl 2 + cl 3 SF model with energy expression: E(I)= pX + qI + rXI... where the terms represents the rotational, vibrational and R-V interaction energy, respectively. The validity f the various energy expressions with two terms had been tested by Sharma for light, medium and heavy mass regions using R I s. R 4 plots (where, spin I=6, 8, 10, 12), which are parameter independent. It was also noted, that of the goodness of energy expression can be judged with the minimum input of energies (i.e. only 2 parameters) and predictability's of the model p to high spins. Recently, Gupta et. al proposed a single term energy expression (SSTE) which was applied for rare earth region. This proposed power law reflected the unity of rotation - vibration in a different way and was successful in explaining the structure of gs-band. It will be useful for test the single term energy expression for light and heavy mass region. The single term expression for energy of ground state band can be written as: E I =axI b , where the index b and the coefficient a are the constant for the band. The values of b+1 and a 1 are as follows: b 1 =log(R 1 )/log(I/2) and a 1 =E I /I b ... The following results were gained: 1) The sharp variation in the value of index b at given spin will be an indication of the change in the shape of the nucleus; 2) The value of E I /I b is fairly constant with spin below back-bending, which reflects the stability of shape with spin; 3) This proposed power law is successful in explaining the structure of gs-band of nuclei

  6. Search for two-{gamma} sum-energy peaks in the decay out of superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.; Khoo, T.L.; Lauritsen, T. [and others

    1995-08-01

    The spectrum of {gamma}rays decaying out of the superdeformed (SD) band in {sup 192}Hg has a quasicontinuous distribution. Whereas methods to construct level schemes from discrete lines in coincidence spectra are well established, new techniques must still be developed to extract information from coincidences involving quasicontinuous {gamma}rays. From an experiment using Eurogam, we obtained impressively clean 1- and 2-dimensional {gamma} spectra from pairwise or single gates, respectively, on the transitions of the SD band in {sup 192}Hg. We investigated methods to exploit the 2-dimensional quasicontinuum spectra coincident with the SD band to determine the excitation energy of the SD band above the normal yrast line. No strong peaks were observed in the 2-{gamma} sum spectra; only candidates of peaks at a 2-3 {sigma} level were found. This suggests that 2-{gamma} decay is not the dominant decay branch out of SD bands, consistent with the observed multiplicity of 3.2. We shall next search for peaks in sum-spectra of 3 {gamma}s.

  7. Relativistic band-structure calculations for CeTIn sub 5 (T=Ir and Co) and analysis of the energy bands by using tight-binding method

    CERN Document Server

    Maehira, T; Ueda, K; Hasegawa, A

    2003-01-01

    In order to investigate electronic properties of recently discovered heavy fermion superconductors CeTIn sub 5 (T=Ir and Co), we employ the relativistic linear augmented-plane-wave (RLAPW) method to clarify the energy band structures and Fermi surfaces of those materials. The obtained energy bands mainly due to the large hybridization between Ce 4 f and In 5 p states well reproduce the Fermi surfaces consistent with the de Haas-van Alphen experimental results. However, when we attempt to understand magnetism and superconductively in CeTIn sub 5 from the microscopic viewpoint, the energy bands obtained in the RLAPW method are too complicated to analyze the system by further including electron correlations. Thus, it is necessary to prepare a more simplified model, keeping correctly the essential characters of the energy bands obtained in the band-structure calculation. For the purpose, we construct a tight-binding model for CeTIn sub 5 by including f-f and p-p hoppings as well as f-p hybridization, which are ex...

  8. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  9. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    Science.gov (United States)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  10. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  11. Energy of the 4(+) isomer and new bands in the odd-odd nucleus 74Br

    International Nuclear Information System (INIS)

    Doering, J.; Holcomb, J.W.; Johnson, T.D.; Riley, M.A.; Tabor, S.L.; Womble, P.C.; Winter, G.

    1993-01-01

    High-spin states of the odd-odd nucleus 74 Br were investigated via the reactions 58 Ni ( 19 F,2pn) 74 Br and 65 Cu( 12 C,3n) 74 Br at beam energies of 62 and 50 MeV, respectively. On the basis of coincidence data new levels have been introduced and partly grouped into rotational bands. Some of these new states decay to known levels of negative-parity bands built on both the ground state and the long-lived 4 (+) isomer. Thus, an excitation energy of 13.8 keV has been deduced for the long-lived isomer in 74 Br. The level sequences observed are interpreted in terms of Nilsson configurations in conjunction with collective excitations

  12. Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13

    Energy Technology Data Exchange (ETDEWEB)

    Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.

    2013-06-27

    The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.

  13. Positron and electron energy bands in several ionic crystals using restricted Hartree-Fock method

    Science.gov (United States)

    Kunz, A. B.; Waber, J. T.

    1981-08-01

    Using a restricted Hartree-Fock formalism and suitably localized and symmetrized wave functions, both the positron and electron energy bands were calculated for NaF, MgO and NiO. The lowest positron state at Γ 1 lies above the vacuum level and negative work functions are predicted. Positron annihilation rates were calculated and found to be in good agreement with measured lifetimes.

  14. Augustine Band of Cahuilla Indians Energy Conservation and Options Analysis - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Paul Turner

    2008-07-11

    The Augustine Band of Cahuilla Indians was awarded a grant through the Department of Energy First Steps program in June of 2006. The primary purpose of the grant was to enable the Tribe to develop energy conservation policies and a strategy for alternative energy resource development. All of the work contemplated by the grant agreement has been completed and the Tribe has begun implementing the resource development strategy through the construction of a 1.0 MW grid-connected photovoltaic system designed to offset a portion of the energy demand generated by current and projected land uses on the Tribe’s Reservation. Implementation of proposed energy conservation policies will proceed more deliberately as the Tribe acquires economic development experience sufficient to evaluate more systematically the interrelationships between conservation and its economic development goals.

  15. Triaxial energy relation to describe rotational band in 98-112Ru nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Varshney, Mani; Singh, M.; Gupta, D.K.

    2010-01-01

    In a broader perspective rotation vibration coupling parameter (b) is considered changing with the change in excitation energy (ε 1 ) and is evaluated on fitting experimental energy for 98-112 Ru isotopes in the frame work of general asymmetric rotor model. The moment of inertia parameter (a), common to yrast and quasi-γ band, is calculated from deformation parameter (β) using general empirical relation. The present work is undertaken to suggest some suitable equation for the trajectories which are similar in shape in 98-112 Ru nuclei

  16. Crystal structure and energy band and optical properties of phosphate Sr3P4O13

    International Nuclear Information System (INIS)

    Zhang, Y.-C.; Cheng, W.-D.; Wu, D.-S.; Zhang, H.; Chen, D.-G.; Gong, Y.-J.; Kan, Z.-G.

    2004-01-01

    A single crystal of the compound Sr 3 P 4 O 13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group P1-bar. It builds up from SrO 7 polyhedra and P 4 O 13 -6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr 3 P 4 O 13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr 3 P 4 O 13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr 3 P 4 O 13 is a low refractive index, and it is possible that the Sr 3 P 4 O 13 is used to make transparent material between the UV and FR light zone

  17. Electronic Energy Levels and Band Alignment for Aqueous Phenol and Phenolate from First Principles.

    Science.gov (United States)

    Opalka, Daniel; Pham, Tuan Anh; Sprik, Michiel; Galli, Giulia

    2015-07-30

    Electronic energy levels in phenol and phenolate solutions have been computed using density functional theory and many-body perturbation theory. The valence and conduction bands of the solvent and the ionization energies of the solutes have been aligned with respect to the vacuum level based on the concept of a computational standard hydrogen electrode. We have found significant quantitative differences between the generalized-gradient approximation, calculations with the HSE hybrid functional, and many-body perturbation theory in the G0W0 approximation. For phenol, two ionization energies below the photoionization threshold of bulk water have been assigned in the spectrum of Kohn-Sham eigenvalues of the solution. Deprotonation to phenolate was found to lift a third occupied energy level above the valence band maximum of the solvent which is characterized by an electronic lone pair at the hydroxyl group. The second and third ionization energies of phenolate were found to be very similar and explain the intensity pattern observed in recent experiments using liquid-microjet photoemission spectroscopy.

  18. Ocean dynamic noise energy flux directivity in the 400 Hz to 700 Hz frequency band

    Institute of Scientific and Technical Information of China (English)

    Vladimir A. Shchurov; Galina F. Ivanova; Marianna V. Kuyanova; Helen S. Tkachenko

    2007-01-01

    Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.

  19. Elementary particles and high energy physics. Progress report, January-December 1982

    International Nuclear Information System (INIS)

    Nauenberg, U.

    1982-11-01

    The Tagged Photon Spectrometer Group began analysis of their data and have presented first results on inclusive distributions of charged hadrons, which look very similar to inclusive distributions measured in e + e - annihilation. The upgrade of the Cerenkov counter continues with new mirrors being produced on a routine basis. The Broad Band Photon Beam collaboration has finished its analysis of psi and psi' photoproduction and submitted articles on this subject for publication. The Hadronic Charm Production experiment group took data in April and May and is analyzing it now. We continue to work on a proposal to do deep inelastic scattering of electrons and protons at the Fermilab Collider. The MAC detector group has presented results on the lifetime of the tau lepton and μμ and tau tau weak-electromagnetic interference and continues to analyze energy-energy correlations and a precision measurement of R. The theoretical group has continued its investigation of phase transitions in grand unified theories, particularly SU(5), studying effects of the temperature dependence of the coupling constant and computing the Helmholtz free energy of the theory in its broken and unbroken phases. The study of symmetry breaking in SU(2)xU(1) without fundamental scalars led to the conclusion that such models do not admit experimentally viable solutions. Strong interaction phenomenology performed includes a study of jets in photoproduction with a diffractive trigger, a study of charmed baryon production in e + e - annihilation, and attempts to understand hadronization with strong coupling

  20. Optical band gap energy and ur bach tail of CdS:Pb2+ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, M.; Juarez, H.; Pacio, M. [Universidad Autonoma de Puebla, Instituto de Ciencias, Centro de Investigacion en Dispositivos Semiconductores, Av. 14 Sur, Col. Jardines de San Manuel, Ciudad Universitaria, Puebla, Pue. (Mexico); Gutierrez, R.; Chaltel, L.; Zamora, M.; Portillo, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, Laboratorio de Materiales, Apdo. Postal 1067, 72001 Puebla, Pue. (Mexico); Mathew, X., E-mail: osporti@yahoo.mx [UNAM, Instituto de Energias Renovables, Temixco, Morelos (Mexico)

    2016-11-01

    Pb S-doped CdS nano materials were successfully synthesized using chemical bath. Transmittance measurements were used to estimate the optical band gap energy. Tailing in the band gap was observed and found to obey Ur bach rule. The diffraction X-ray show that the size of crystallites is in the ∼33 nm to 12 nm range. The peaks belonging to primary phase are identified at 2θ = 26.5 degrees Celsius and 2θ = 26.00 degrees Celsius corresponding to CdS and Pb S respectively. Thus, a shift in maximum intensity peak from 2θ = 26.4 to 28.2 degrees Celsius is clear indication of possible transformation of cubic to hexagonal phase. Also peaks at 2θ = 13.57, 15.9 degrees Celsius correspond to lead perchlorate thiourea. The effects on films thickness and substrate doping on the band gap energy and the width on tail were investigated. Increasing doping give rise to a shift in optical absorption edge ∼0.4 eV. (Author)

  1. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  2. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    Directory of Open Access Journals (Sweden)

    Ning Cui

    2012-06-01

    Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  3. Touching points in the energy band structure of bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C Huy; Nguyen, V Lien

    2014-01-01

    The energy band structure of the bilayer graphene superlattices with zero-averaged periodic δ-function potentials are studied within the four-band continuum model. Using the transfer matrix method, the study is mainly focused on examining the touching points between adjacent minibands. For the zero-energy touching points the dispersion relation derived shows a Dirac-like double-cone shape with the group velocity which is periodic in the potential strength P with the period of π and becomes anisotropic at relatively large P. From the finite-energy touching points we have identified those located at zero wave-number. It was shown that for these finite-energy touching points the dispersion is direction-dependent in the sense that it is linear or parabolic in the direction parallel or perpendicular to the superlattice direction, respectively. We have also calculated the density of states and the conductivity which demonstrates a manifestation of the touching points examined. (paper)

  4. Beyond Mathematics, a Standard Elementary Particle, and the Unified Field of Energy

    International Nuclear Information System (INIS)

    Sourial, A.S.

    2008-01-01

    Teaching methods are presented based on a theoretical logical thesis of: A Standard Elementary Particle, i nstead of the current 200 odd different subatomic particles, and their plausible derivation from such a standard particle, similar to the derivation of our body cells from a multi potential S tem Cell, T he thesis reintroduces the theory of A Material Ether a s a necessary medium for the transmission of the Electro-Magnetic-Gravitational Waves. It solves and demystifies the following riddles: 1. The A ether Vacuum, by offering a plausible composition of A n elastic solid medium, t hat meets the specific physical requirements needed for the transmission of the electro magnetic gravitational waves, Explains the vast amount of Potential Energy that such an A ether can carry, That there is No Action at a Distance, 2. It explains Q uantum Mechanics, o n simple Newtonian principles, It nullifies the H eisenberg Uncertainty Principle, s howing that there is no uncertainty whatsoever, for individual particle interactions, and the existence of F unctional Barriers f or the disc like aggregates of contiguous particles representing I ntra-atomic Electrons, a nd A full P hysical e xplanation of the their quantum numbers, their electronic shells, as well as: The Pauli Exclusion Principle. 3. The possible explanation of Hubbell's Law without an expansion of the Universe, that the C osmic Red Shift g ives the illusion of an expanding Universe similar to that of the B ent Stick i n the water due to refraction. 4. That the Big Bang I nflation Theory, f or the origin of the Universe is: a Figment of Imagination similar to Aladdin's D jinni out of the bottle. a nd a Fantasy of Mathematics with complete lack of touch with reality. The thesis suggests a plausible explanation - Modus Operandi - for, and composition of: i) Gravity, II) The structure of nucleons, III) The nature of the strong force, IV) The structure of the string of The String Theory

  5. Solar-energy-system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, November 1978-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-01-01

    The solar energy system reported is designed to provide space heating and cooling for a West Virginia elementary school. It has an array of water-based flat plate collectors freeze protected through a drain-down system, two 10,000-gallon storage tanks, and an absorption chiller. There are an oil-fired boiler and a centrifugal chiller for back-up. The system and its operation are briefly described, and its space heating performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  6. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  7. Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate-band solar cell application by thermal annealing process.

    Science.gov (United States)

    Liu, Wei-Sheng; Chu, Ting-Fu; Huang, Tien-Hao

    2014-12-15

    This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

  8. A New Fractal-Based Miniaturized Dual Band Patch Antenna for RF Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Sika Shrestha

    2014-01-01

    Full Text Available The growth of wireless communications in recent years has made it necessary to develop compact, lightweight multiband antennas. Compact antennas can achieve the same performance as large antennas do with low price and with greater system integration. Dual-frequency microstrip antennas for transmission and reception represent promising approach for doubling the system capacity. In this work, a miniaturized dual band antenna operable at 2.45 and 5.8 GHz is constructed by modifying the standard microstrip patch antenna geometry into a fractal structure. In addition to miniaturization and dual band nature, the proposed antenna also removes unwanted harmonics without the use of additional filter component. Using a finite-element-method-based high frequency structure simulator (HFSS, the antenna is designed and its performance in terms of return loss, impedance matching, radiation pattern, and voltage standing wave ratio (VSWR is demonstrated. Simulation results are shown to be in close agreement with performance measurements from an actual antenna fabricated on an FR4 substrate. The proposed antenna can be integrated with a rectifier circuit to develop a compact rectenna that can harvest RF energy in both of these frequency bands at a reduction in size of 25.98% relative to a conventional rectangular patch antenna.

  9. A novel approach for characterizing broad-band radio spectral energy distributions

    Science.gov (United States)

    Harvey, V. M.; Franzen, T.; Morgan, J.; Seymour, N.

    2018-05-01

    We present a new broad-band radio frequency catalogue across 0.12 GHz ≤ ν ≤ 20 GHz created by combining data from the Murchison Widefield Array Commissioning Survey, the Australia Telescope 20 GHz survey, and the literature. Our catalogue consists of 1285 sources limited by S20 GHz > 40 mJy at 5σ, and contains flux density measurements (or estimates) and uncertainties at 0.074, 0.080, 0.119, 0.150, 0.180, 0.408, 0.843, 1.4, 4.8, 8.6, and 20 GHz. We fit a second-order polynomial in log-log space to the spectral energy distributions of all these sources in order to characterize their broad-band emission. For the 994 sources that are well described by a linear or quadratic model we present a new diagnostic plot arranging sources by the linear and curvature terms. We demonstrate the advantages of such a plot over the traditional radio colour-colour diagram. We also present astrophysical descriptions of the sources found in each segment of this new parameter space and discuss the utility of these plots in the upcoming era of large area, deep, broad-band radio surveys.

  10. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    Science.gov (United States)

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  11. Design, Customization and Implementation of Energy Simulation with 5E Model in Elementary Classroom

    Science.gov (United States)

    Lye, Sze Yee; Wee, Loo Kang; Kwek, Yao Chie; Abas, Suriati; Tay, Lee Yong

    2014-01-01

    Science simulations are popular among educators as such simulations afford for multiple visual representation and interactivity. Despite the popularity and abundance on the internet, our literature review suggested little research has been conducted on the use of simulation in elementary school. Thus, an exploratory pilot case study was conducted…

  12. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    Science.gov (United States)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  13. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  14. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I; Su, Yu-Chuan

    2014-01-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300∼600 kPa and extreme piezoelectricity of d 33 >2000 pC/N and d 31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d 31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ∼200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices

  15. Composite Piezoelectric Rubber Band for Energy Harvesting from Breathing and Limb Motion

    Science.gov (United States)

    Wang, Jhih-Jhe; Su, Huan-Jan; Hsu, Chang-I.; Su, Yu-Chuan

    2014-11-01

    We have successfully demonstrated the design and microfabrication of piezoelectric rubber bands and their application in energy harvesting from human motions. Composite polymeric and metallic microstructures with embedded bipolar charges are employed to realize the desired stretchability and electromechanical sensitivity. In the prototype demonstration, multilayer PDMS cellular structures coated with PTFE films and stretchable gold electrodes are fabricated and implanted with bipolar charges. The composite structures show elasticity of 300~600 kPa and extreme piezoelectricity of d33 >2000 pC/N and d31 >200 pC/N. For a working volume of 2.5cm×2.5cm×0.3mm, 10% (or 2.5mm) stretch results in effective d31 of >17000 pC/N. It is estimated that electric charge of >0.2 μC can be collected and stored per breath (or 2.5cm deformation). As such, the composite piezoelectric rubber bands (with spring constants of ~200 N/m) can be mounted on elastic waistbands to harvest the circumferential stretch during breathing, or on pads around joints to harvest the elongation during limb motion. Furthermore, the wearable piezoelectric structures can be spread, stacked and connected to charge energy storages and power micro devices.

  16. Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

    Science.gov (United States)

    Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.

    Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.

  17. Fine structure and energy spectrum of exciton in direct band gap cubic semiconductors with degenerate valence bands

    International Nuclear Information System (INIS)

    Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Que Huong

    1987-06-01

    The influence of the cubic structure on the energy spectrum of direct exciton is investigated, using the new method suggested by Nguyen Van Hieu and co-workers. Explicit expressions of the exciton energy levels 1S, 2S and 2P are derived. A comparison with the experiments and the other theory is done for ZnSe. (author). 10 refs, 1 fig., 2 tabs

  18. Process and device of elementary and chemical analysis of a sample through a spectral analysis of the secondary electron energies

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene.

    1975-01-01

    The present invention relates to a method of chemical and elementary analysis of samples through a spectral analysis of secondary electrons (Auger electrons) emitted from said sample under a primary monokinetic electron beam concentrated on its surface. Said method is characterized in that the intensity of the primary monokinetic electron beam emitted from an electron gun is modulated at a frequency ω; and in that the secondary electrons of energy E emitted from the sample are then collected. A reference voltage corresponding to the modulation in intensity of the primary electron beam is applied at the input of a phase sensitive detector together with a voltage proportional to the intensity of the flux of said collected secondary electrons to obtain at the output of said detector a voltage proportional to the number of the secondary electrons of energy E. The secondary emission energy spectrum of the sample is then plotted [fr

  19. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  20. A Novel Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz

    Directory of Open Access Journals (Sweden)

    Dinh Khanh Ho

    2017-06-01

    Full Text Available This paper presents a novel dual-band rectenna for RF energy harvesting system. This rectenna is created from a dual-band antenna and a dual-band rectifier which operates at GSM bands (900 MHz and 1800 MHz. The printed monopole antenna is miniaturized by two meander-lines. The received signal from the receiving antenna is rectified by a voltage double using Schottky diode SMS-7630. The rectifier is optimized for low input power level of -20dBm using harmonic balance. Prototype is designed and fabricated. The simulation is validated by measurement with power conversion efficiency of 20% and 40.8% (in measurement at the input power level of -20dBm. The proposed rectenna has output voltage from 183-415 mV. From the measured results, this rectenna provides the possibility to harvest the ambient electromagnetic energy for powering low-power electronic devices.

  1. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  2. Broad band energy distribution of UV-bright BL Lac objects

    International Nuclear Information System (INIS)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references

  3. Broad band energy distribution of UV-bright BL Lac objects

    Energy Technology Data Exchange (ETDEWEB)

    Maraschi, L.; Tanzi, E.G.; Treves, A.

    1984-01-01

    IUE satellite data in the 1200-2000 and 1900-3200 A intervals of BL Lac objects are analyzed in terms of two discernible groups. A total of 25 BL Lac objects were observed, with differences between groups displayed in terms of the power slope of the energy of the UV emissions, i.e., slopes of 1 and 2. Comparisons of the spectra with those of quasars showed that quasars have a small spectral index in the 1000-6000 A band and no correlation exists between the spectral index and UV flux of the BL Lac objects. The comparisons underscore the lack of a thermal component for BL Lac objects. Steep spectral components in both BL Lac objects and highly polarized quasars emissions could both be due to synchrotron emission. Compton scattering of relativistic electrons off synchrotron photons could produce the X ray emissions. 44 references.

  4. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    Science.gov (United States)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  5. Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method

    International Nuclear Information System (INIS)

    Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; El-Awady, J.; Woodward, C.; Uchic, M.D.

    2011-01-01

    The nudged elastic band (NEB) method is used to evaluate activation energies for dislocation intersection cross-slip in face-centered cubic (fcc) nickel and copper, to extend our prior work which used an approximate method. In this work we also extend the study by including Hirth locks (HL) in addition to Lomer-Cottrell locks and glide locks (GL). Using atomistic (molecular statics) simulations with embedded atom potentials we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on the cross-slip plane when intersecting a 120 o forest dislocation in both Ni and Cu. The initial separation between the screw and the intersecting dislocation on the (1 1 1) glide plane is varied to find a minimum in the activation energy. The NEB method gives energies that are ∼10% lower than those reported in our prior work. It is estimated that the activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming GL in Ni and Cu are ∼0.47 and ∼0.65 eV, respectively, and from the fully cross-slip plane state to the partially cross-slipped state forming LC are ∼0.68 and ∼0.67 eV. The activation energies for cross-slip from the fully glide plane state to the partially cross-slipped state at the 120 o intersection forming HL in Ni and Cu are estimated to be ∼0.09 and ∼0.31 eV, respectively. These values are a factor of 3-20 lower than the activation energy for bulk cross-slip in Ni and, a factor of 2-6 lower than the activation energy for cross-slip in Cu estimated by Friedel-Escaig analysis. These results suggest that cross-slip should nucleate preferentially at selected screw dislocation intersections in fcc materials and the activation energies for such mechanisms are also a function of stacking fault energy.

  6. Forbidden energy band gap in diluted a-Ge1−xSix:N films

    International Nuclear Information System (INIS)

    Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.

    2012-01-01

    By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.

  7. An Approach to Energy Education for High School, Junior High School and Elementary School Students at Aichi Institute of Technology

    Science.gov (United States)

    Yukita, Kazuto; Ichiyanagi, Katsuhiro; Mori, Tsuyoshi; Goto, Yasuyuki

    This paper discusses the methods of implementation and improvement adopted in the energy education program of “Marugoto Taiken World” (“Total Experience World”) at Aichi Institute of Technology. The program, which is aimed at high school, junior high school and elementary school students, has been carried on at Aichi Institute of Technology for a number of years now, and the authors have been involved in the energy education project for the past four years. During that time, the following four courses have been held : 1) Let's use wind power to generate electricity, 2) Let's use flowers to build a solar battery, 3) Let's use bottles to build a fuel cell battery, 4) Let's make all sorts of batteries.

  8. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    Directory of Open Access Journals (Sweden)

    Sung Heo

    2015-07-01

    Full Text Available The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS and high-energy resolution REELS (HR-REELS. HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS energy was located at approximately 4.2 eV above the valence band maximum (VBM and the surface band gap width (EgS was approximately 6.3 eV. The bulk F center (FB energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were FS and FB, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  9. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  10. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    Science.gov (United States)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  11. Investigating a Learning Progression for Energy Ideas from Upper Elementary through High School

    Science.gov (United States)

    Herrmann-Abell, Cari F.; DeBoer, George E.

    2018-01-01

    This study tests a hypothesized learning progression for the concept of energy. It looks at 14 specific ideas under the categories of (i) Energy Forms and Transformations; (ii) Energy Transfer; (iii) Energy Dissipation and Degradation; and (iv) Energy Conservation. It then examines students' growth of understanding within each of these ideas at…

  12. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    Science.gov (United States)

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and ab initio calculations

    Science.gov (United States)

    Gadret, E. G.; Dias, G. O.; Dacal, L. C. O.; de Lima, M. M., Jr.; Ruffo, C. V. R. S.; Iikawa, F.; Brasil, M. J. S. P.; Chiaramonte, T.; Cotta, M. A.; Tizei, L. H. G.; Ugarte, D.; Cantarero, A.

    2010-09-01

    We investigated experimentally and theoretically the valence-band structure of wurtzite InP nanowires. The wurtzite phase, which usually is not stable for III-V phosphide compounds, has been observed in InP nanowires. We present results on the electronic properties of these nanowires using the photoluminescence excitation technique. Spectra from an ensemble of nanowires show three clear absorption edges separated by 44 meV and 143 meV, respectively. The band edges are attributed to excitonic absorptions involving three distinct valence-bands labeled: A, B, and C. Theoretical results based on “ab initio” calculation gives corresponding valence-band energy separations of 50 meV and 200 meV, respectively, which are in good agreement with the experimental results.

  14. Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot

    International Nuclear Information System (INIS)

    Sivakami, A.; Mahendran, M.

    2010-01-01

    The binding energy of a shallow hydrogenic impurity in a spherical quantum dot under hydrostatic pressure with square well potential is calculated using a variational approach within the effective mass approximation. The effect of conduction band non-parabolicity on these energies is also estimated. The binding energy is computed for GaAs spherical quantum dot as a function of dot size, hydrostatic pressure both in the presence and absence of the band non-parabolicity effect. Our results show that (i) the hydrostatic pressure increases the impurity binding energy when dot radius increases for a given pressure, (ii) the hydrostatic pressure with the band non-parabolicity effect effectively increases the binding energy such that the variation is large for smaller dots and (iii) the maximum contribution by the non-parabolicity effect is about 15% for narrow dots. Our results are in good agreement with Perez-Merchancano et al. [J. Phys. Condens. Matter 19 (2007) 026225] who have not considered the conduction band non-parabolicity effect.

  15. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

    Science.gov (United States)

    Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary

    2015-01-20

    Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.

  16. Voltage effect in PTCR ceramics: Calculation by the method of tilted energy band

    International Nuclear Information System (INIS)

    Fang Chao; Zhou Dongxiang; Gong Shuping

    2010-01-01

    A numerical model for the calculation of the electrical characteristics of donor-doped BaTiO 3 semiconducting ceramics is suggested. This paper established a differential equation about electron level on the base of Poisson equation, and solved the equation with Runge-Kutta method. Under extra electric field, electrical characteristics have been calculated by the method of tilted energy band. We have quantitatively computed the positive temperature coefficient of resistivity (PTCR) behavior of donor-doped BaTiO 3 semiconducting ceramics and its voltage effect, and further obtained non-linear current-voltage characteristics with different grain sizes at different temperature. The results pointed out that the resistance jumping is reduced with increasing electric field applied; current and voltage relation follows Ohm's law below Curie temperature, and exhibits strong non-linear above Curie temperature; the non-linear coefficient shows a maximum value at temperature the resistivity reaches maximum and with grain size closed to depletion region width. The results are compared with experimental data.

  17. The Higgs and the expectation value of the number of elementary particles in a supersymmetric extensions of the standard model of high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2005-01-01

    Supersymmetry, colours and chirality are utilized to develop three minimally extended versions of the standard model. Based on these models, it is possible to predict that few new elementary particles are likely to be found experimentally at an energy scale which is very modestly above that of the electroweak. Connections to the 8064 massless states of Heterotic string theory are also discussed

  18. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  19. Credibility and persuasion: A sociopsychological approach to changing the attitudes toward energy conservation of preservice elementary school science teachers

    Science.gov (United States)

    Koballa, Thomas R., Jr.; Shrigley, Robert L.

    Tested was the effect of two persuasive messages presented by a credible communicator on the attitudes toward energy conservation of 180 preservice elementary teachers. The study asked the following questions: (1) Can attitudes toward energy conservation be positively changed with a brief, belief-laden communication? (2) Do positive attitude gains between pre- and post-tests, if any, dissipate within three weeks following the treatment? (3) Do the integrated and the nonintegrated communications affect energy attitudes of three subgroups (abstract, concrete differentiator and concrete thinkers) of the sample differently? The important finding was that both experimental treatments, integrated and nonintegrated, were equally effective and significantly more effective in attitude change than the control. Secondly, the finding that neither experimental treatment dissipated in effect, at least for three weeks, suggests some duration of brief treatment periods. And finally, the attitude changes are as likely to occur when concrete differentiators are presented with a nonintegrated as an integrated treatment, but abstract thinkers exposed to the integrated treatment and concrete thinkers exposed to the nonintegrated treatment sustain a changed attitude to a greater degree than other combinations of treatment and cognitive processing styles.

  20. Elementary operators - still not elementary?

    Directory of Open Access Journals (Sweden)

    Martin Mathieu

    2016-01-01

    Full Text Available Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.

  1. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  2. Energy band structure and electrical properties of Ga-oxide/GaN interface formed by remote oxygen plasma

    Science.gov (United States)

    Yamamoto, Taishi; Taoka, Noriyuki; Ohta, Akio; Truyen, Nguyen Xuan; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Makihara, Katsunori; Nakatsuka, Osamu; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The energy band structure of a Ga-oxide/GaN structure formed by remote oxygen plasma exposure and the electrical interface properties of the GaN metal–oxide–semiconductor (MOS) capacitors with the SiO2/Ga-oxide/GaN structures with postdeposition annealing (PDA) at various temperatures have been investigated. Reflection high-energy electron diffraction and X-ray photoelectron spectroscopy clarified that the formed Ga-oxide layer is neither a single nor polycrystalline phase with high crystallinity. We found that the energy band offsets at the conduction band minimum and at the valence band maximum between the Ga-oxide layer and the GaN surface were 0.4 and 1.2 ± 0.2 eV, respectively. Furthermore, capacitance–voltage (C–V) characteristics revealed that the interface trap density (D it) is lower than the evaluation limit of Terman method without depending on the PDA temperatures, and that the SiO2/Ga-oxide stack can work as a protection layer to maintain the low D it, avoiding the significant decomposition of GaN at the high PDA temperature of 800 °C.

  3. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  4. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO₂.

    Science.gov (United States)

    Zhang, Daoyu; Yang, Minnan; Dong, Shuai

    2015-11-21

    Titanium dioxide materials have been studied intensively and extensively for photocatalytic applications. A long-standing open question is the energy band alignment of rutile and anatase TiO2 phases, which can affect the photocatalytic process in the composite system. There are basically two contradictory viewpoints about the alignment of these two TiO2 phases supported by the respective experiments: (1) straddling type and (2) staggered type. In this work, our DFT plus U calculations show that the perfect rutile(110) and anatase(101) surfaces have the straddling type band alignment, whereas the surfaces with defects can turn the band alignment into the staggered type. The electric dipoles induced by defects are responsible for the reversal of band alignment. Thus the defects introduced during the preparation and post-treatment processes of materials are probably the answer to the above open question regarding the band alignment, which can be considered in real practice to tune the photocatalytic activity of materials.

  5. New directions in elementary particle physics: p anti p from very low to very high energies

    International Nuclear Information System (INIS)

    Jacob, M.

    1979-01-01

    The review covers low energy anti pp physics including annihilation processes, the spectroscopy of baryonium states, quasinuclear states and their relation to baryonium, the spectroscopy of protonium, and access to the whole charmonium family. High energy anti pp physics is reviewed covering total cross section rise, the common shape of cross sections, real part of forward amplitude, particle production, quantum number excitation, high transverse momentum, and high mass lepton pair. Also reviewed are the search for the weak bosons, hadron physics at collider energies, and the anti pp collider program. 47 references

  6. Elementary particle physics and high energy phenomena. Progress report for FY92

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  7. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    International Nuclear Information System (INIS)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-01-01

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  8. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2016-11-21

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  9. Elementary analysis by means of the x fluorescence and energy dispersion

    International Nuclear Information System (INIS)

    Jbeli, H.

    1988-10-01

    Three actualisation reports are shown, in the three first chapters, concerning the following subjects: x fluorescence principle, energy dispersive X ray spectroscopy and excitation spectrum characteristics. The matrice effects, the energy equivalence concept, and the correction methods of the interelement effects, related to a calibration curve, are discussed. For the last ones, it is shown that they are supplied to rough values. Quantitative analysis results are shown. A new possibility has been added to those of data processing program usually applied in quantitative analysis. In the second method applied in quantitative analysis, standard samples are used. In both methods an error appreciation analysis is carried out. It is shown that energy dispersive X fluorescence analysis can be applied to thin layers composition and thickness characterization [fr

  10. Influence of linear-energy-dependent density of states on two-band superconductors: Three-square-well model approach

    International Nuclear Information System (INIS)

    Ogbuu, O.A.; Abah, O.C.; Asomba, G.C.; Okoye, C.M.I.

    2011-01-01

    We derived the transition temperature and the isotope exponent of two-band superconductor. We employed Bogoliubov-Valatin formalism assuming a three-square-well potential. The effect of linear-energy-dependent electronic DOS in superconductors is considered. The relevance of the studies to MgB 2 is analyzed. We have derived the expressions for the transition temperature and the isotope effect exponent within the framework of Bogoliubov-Valatin two-band formalism using a linear-energy-dependent electronic density of states assuming a three-square-well potentials model. Our results show that the approach could be used to account for a wide range of values of the transition temperature and isotope effect exponent. The relevance of the present calculations to MgB 2 is analyzed.

  11. A Method against Interrupted-Sampling Repeater Jamming Based on Energy Function Detection and Band-Pass Filtering

    Directory of Open Access Journals (Sweden)

    Hui Yuan

    2017-01-01

    Full Text Available Interrupted-sampling repeater jamming (ISRJ is a new kind of coherent jamming to the large time-bandwidth linear frequency modulation (LFM signal. Many jamming modes, such as lifelike multiple false targets and dense false targets, can be made through setting up different parameters. According to the “storage-repeater-storage-repeater” characteristics of the ISRJ and the differences in the time-frequency-energy domain between the ISRJ signal and the target echo signal, one new method based on the energy function detection and band-pass filtering is proposed to suppress the ISRJ. The methods mainly consist of two parts: extracting the signal segments without ISRJ and constructing band-pass filtering function with low sidelobe. The simulation results show that the method is effective in the ISRJ with different parameters.

  12. Elementary particle physics and high energy phenomena. [Dept. of Physics, Univ. of Colorado, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z[sup 0] with the SLD detector; fixed-target K-decay experiments; the R D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  13. Elementary particle physics and high energy phenomena. Progress report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z{sup 0} with the SLD detector; fixed-target K-decay experiments; the R&D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  14. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.

    Science.gov (United States)

    Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen

    2018-02-02

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.

  15. Report on survey/research on energy-related elementary techniques; Energy kanren yoso gijutsu ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The survey/research project is implemented for establishing environment-compatible energy systems in urban areas by constructing wide-area heat supply networks to exchange energy among cities. This project studies, taking Kanagawa Pref. as the model area, distributions of unutilized energy sources, and possibilities of their utilization for heat supply. There are large quantities of unutilized energy, including waste heat from power plants, general works and cleaning works, and low-temperature waste heat from, e.g., sewage and pumping systems. The district air conditioning promotion areas are selected from those consuming large quantities of heat energy in the prefecture, and their characteristics are grasped. The effects of the networks on total energy consumption of the entire prefecture are estimated for the cases of introducing the district air conditioning systems or wide-area heat supply networks in these selected areas. Introduction of optimum advanced heat utilization systems in stereotyped areas is also considered, in order to predict the effects of introduction of wide-area heat supply networks. (NEDO)

  16. Associations among measures of energy balance related behaviors and psychosocial determinants in urban upper elementary school children.

    Science.gov (United States)

    Bandelli, Lorraine N; Gray, Heewon Lee; Paul, Rachel C; Contento, Isobel R; Koch, Pamela A

    2017-01-01

    Childhood obesity prevention is a pressing issue. Understanding the relationships among eating and physical activity behaviors and potential psychosocial determinants of behavior will help us design more effective interventions. This study aimed to examine such relationships in a large sample of urban elementary school children. Fifth grade students in 20 recruited New York City public schools completed a validated questionnaire on six "do more" (fruits and vegetables and physical activity) and "do less" (sweetened beverages, processed packaged snacks, fast food and sedentary behavior) energy balance related behaviors (EBRBs) and psychosocial determinants of behavior from social cognitive and self-determination theories. Correlations among behaviors and hierarchical linear model analyses of the relationship between psychosocial determinants and behaviors were conducted for those with complete data (n = 952). The "do more" and the "do less" behaviors were significantly correlated within categories (p food-related behaviors were correlated with physical activity but so were sports drinks, while the "do less" food-related behaviors tended to be correlated to sedentary behavior (p intention. Interventions can address the healthy and less healthy clusters of behaviors together, focusing on strategies to enhance their self-efficacy and habit strength for the "do more" behaviors and outcome expectations to motivate intention to choose fewer "do less" behaviors, along with enhancing self-efficacy and habit. Research can examine these determinants as potential mediators of change in intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Research in high energy elementary particle physics: Annual progress report, [March 1, 1986-February 29, 1988

    International Nuclear Information System (INIS)

    Field, R.; Ramond, P.; Thorn, C.; Avery, P.; Walker, J.; Tanner, D.; Sikivie, P.; Sullivan, N.; Majeswki, S.

    1988-01-01

    This is a progress report covering the period March 1, 1986 through February 29, 1988 for the High Energy Physics program at the University of Florida (DOE Florida Demonstration Project grant FG05-86-ER40272). Our research program covers a braod range of topics in theoretical and experimental physics and includes detector development and an Axion search. Included in this report is a summary of our program and a discussion of the research progress

  18. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    Science.gov (United States)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  19. Carrier-carrier relaxation kinetics in quantum well semiconductor structures with nonparabolic energy bands

    DEFF Research Database (Denmark)

    Dery, H.; Tromborg, Bjarne; Eisenstein, G.

    2003-01-01

    We describe carrier-carrier scattering dynamics in an inverted quantum well structure including the nonparabolic nature of the valance band. A solution of the semiconductor Bloch equations yields strong evidence to a large change in the temporal evolution of the carrier distributions compared to ...

  20. New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2017-01-01

    Full Text Available Silver nanoparticles within a host polymer of chitosan were synthesized by using in situ method. Ultraviolet-visible spectroscopy was then carried out for the prepared chitosan : silver triflate (CS : AgTf samples, showing a surface plasmonic resonance (SPR peak at 420 nm. To prepare polymer composites with reduced energy band gap, different amounts of alumina nanoparticles were incorporated into the CS : AgTf solution. In the present work, the results showed that the reduced silver nanoparticles and their adsorption on wide band gap alumina (Al2O3 particles are an excellent approach for the preparation of polymer composites with small optical band gaps. The optical dielectric loss parameter has been used to determine the band gap experimentally. The physics behind the optical dielectric loss were interpreted from the viewpoint of quantum mechanics. From the quantum-mechanics viewpoint, optical dielectric loss was also found to be a complex equation and required lengthy numerical computation. From the TEM investigation, the adsorption of silver nanoparticles on alumina has been observed. The optical micrograph images showed white spots (silver specks with different sizes on the surface of the films. The second semicircle in impedance Cole-Cole plots was found and attributed to the silver particles.

  1. Investigation of level energies and B(E2) values for rotation-aligned bands in Hg isotopes

    International Nuclear Information System (INIS)

    Mertin, D.; Tischler, R.; Kleinrahm, A.; Kroth, R.; Huebel, H.; Guenther, C.

    1978-01-01

    High spin states in 191 192 193 195 197 199 Hg were investigated by observing γ-rays and conversion electrons in the compound reactions 192 194 198 Pt(α,xn) and 192 Pt ( 3 He,4n). In 197 Hg the decoupled band built on the 13/2 + state and the semi-decoupled negative-parity band are observed up to Isup(π)=41/2 + and 33/2 - , respectively. A careful investigation of 199 Hg revealed no new high spin states above the previously known levels with Isup(π)=25/2 + and 31/2 - . Half-lives were determined for the 10 + , 7 - , 8 - and 16 - states in 192 Hg, the 33/2 states in 191 193 Hg and the 25/2 - states in 191 193 195 197 Hg. The systematics of the level energies and B(E2) values for the positive parity ground and 13/2 + bands and the negative-parity semi-decoupled bands in 190-200 Hg is discussed. (Auth.)

  2. Solar-energy-system performance evaluation: Northview Elementary School (Howard's Grove) Howard's Grove, Wisconsin, September 1978-April 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shenfish, K.L.

    1979-01-01

    The Northview Elementary School in Howard's Grove, Wisconsin is provided space heating by a system consisting of an array of flat plate air collectors and a rock bed. Auxiliary heat is supplied by a fuel oil boiler. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  3. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyan, Rajesh [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); Oulad Elhmaidi, Zakaria [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada); University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); Sekkat, Zouheir [Optics & Photonics Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat (Morocco); Abd-lefdil, Mohammed [University of Mohammed V, Faculty of Sciences, Materials Physics Laboratory, B.P. 1014 Rabat (Morocco); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel–Boulet, C.P. 1020, Varennes, QC J3X-1S2 (Canada)

    2017-02-28

    Highlights: • High quality CZTS thin films grown by means of PLD technique without resorting to any post sulfurization process. • Effect of thermal annealing treatments (in the 200–500 °C range) on the structural, morphological and optoelectronic properties of PLD-CZTS films. • Experimental determination of key optoelectronic parameters (i.e.; E{sub g}, VBM, ϕ, I{sub p}, and χ) enabling the reconstruction of energy band electronic structure of the PLD-CZTS films. • Investigation on the energy band alignments of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials. - Abstract: We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (T{sub a}), but their crystallinity is much improved for T{sub a} ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with T{sub a} (from ∼14 nm at RT to 70 nm at T{sub a} = 500 °C with a value around 40 nm for T{sub a} = 300–400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV–vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at T{sub a} = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS

  4. Research in experimental elementary particle physics. A proposal to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    White, Andrew P.; Kaushik De; Draper, Paul A.; Ransom Stephens

    1995-01-01

    We report on the activities of the High Energy Physics Group at the University of Texas at Arlington for the period 1994-95. We propose the continuation of the research program for 1996-98 with strong participation in the detector upgrade and physics analysis work for the D0 Experiment at Fermilab, prototyping and pre-production studies for the muon and calorimeter systems for the ATLAS Experiment at CERN, and detector development and simulation studies for the PP2PP Experiment at Brookhaven

  5. Experimental studies of elementary particle interactions at high energies. Technical progress report

    International Nuclear Information System (INIS)

    1986-01-01

    Work being done with respect to the CERN S anti ppS Collider experiment UA-6, which seeks to measure direct photon production, neutral pion and neutral eta inclusive cross sections from proton-antiproton interactions, is reported. Also reported is data analysis for alpha-alpha and p-p collisions performed at ISR. Work is being performed on the small angle silicon detector system of CDF. An experiment is described to determine the electron neutrino mass with the precision of a few electron volts by measuring the tritium beta decay energy distribution near the endpoint

  6. Theory of elementary particles and accelerator theory: Task C: Experimental high energy physics

    International Nuclear Information System (INIS)

    Brau, J.E.

    1992-01-01

    The experimental high energy physics group at the University of Oregon broadened its effort during the past year. The SLD effort extends from maintaining and operating the SLD luminosity monitor which was built at Oregon, to significant responsibility in physics analysis, such as event selection and background analysis for the left-right asymmetry measurement. The OPAL work focussed on the luminosity monitor upgrade to a silicon-tungsten calorimeter. Building on the work done at Oregon for SLD, the tungsten for this upgrade was machined by the Oregon shops and shipped to CERN for assembly. The Oregon GEM effort now concentrates on tracking, specifically silicon tracking. Oregon also has developed a silicon strip preradiator prototype, and tested it in a Brookhaven beam

  7. Elementary particles and high energy phenomena. Progress report, January 1979-December 1979

    International Nuclear Information System (INIS)

    Bartlett, D.

    1980-01-01

    The experimental program in 1979 was directed toward the preparation of two major detectors: the new multiparticle spectrometer facility for the Fermilab tagged photon beam and the lepton/total energy detector (MAC) for PEP. The two large Cerenkov counters were installed and made operational during a test beam run at Fermilab and substantial progress was made on the track reconstruction programs. The MAC central drift chamber was completed and delivered at SLAC and operational tests were started. Work produced by the theory group included studies of color separation in multi-hadron jet production, diffractive jet production in photo-induced reactions, the relation between the several generations of leptons and quarks, tests of unified gauge theories, gauge hierarchies, and several problems in grand unified theories

  8. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2014-08-01

    Full Text Available We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  9. Elementary Thermal Operations

    DEFF Research Database (Denmark)

    Lostaglio, Matteo; Alhambra, Álvaro M.; Perry, Christopher

    2018-01-01

    To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings in......To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes...

  10. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James

    2017-08-25

    Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  11. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS2

    Science.gov (United States)

    Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S.; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J.; Schuck, P. James

    2017-08-01

    Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena—critical to both many-body physics exploration and device applications—presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

  12. Lac du Flambeau Band of Lake Superior Chippewa Indians Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bryan Hoover

    2009-11-16

    This plan discusses the current energy use on the Lac du Flambeau Reservation, the current status of the Tribe's energy program, as well as the issues and concerns with energy on the reservation. This plan also identifies and outlines energy opportunities, goals, and objectives for the Tribe to accomplish. The overall goal of this plan is to address the energy situation of the reservation in a holistic manner for the maximum benefit to the Tribe. This plan is an evolving document that will be re-evaluated as the Tribe's energy situation changes.

  13. Elementary particles. 2

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-01-01

    In this part the subject is covered under the following headings, methods for producing high-energy particles; interaction of high-energy particles with matter; methods for the detection of high-energy particles; symmetry properties and conservation laws; quantum number and selection rules; theorem of scattering behaviour at asymptotically high energies; statistical methods in elementary particle physics; interaction of high-energy particles with nuclei; relations of high-energy physics to other branches of science and its response to engineering. Intended as information on high-energy physics for graduate students and research workers familiar with the fundamentals of classical and quantum physics

  14. Energy band and transport properties in magnetic aperiodic graphene superlattices of Thue-Morse sequence

    Science.gov (United States)

    Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue

    2016-02-01

    Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.

  15. Energy band alignment at ferroelectric/electrode interface determined by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Chen Feng; Wu Wen-Bin; Li Shun-Yi; Klein Andreas

    2014-01-01

    The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O 3 (PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy (XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  16. Relocation of the disulfonic stilbene sites of AE1 (band 3) on the basis of fluorescence energy transfer measurements.

    Science.gov (United States)

    Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian; Atherton, Stephen J

    2004-09-28

    Previous fluorescence resonance energy transfer (FRET) measurements, using BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) as a label for the disulfonic stilbene site and FM (fluorescein-5-maleimide) as a label for the cytoplasmic SH groups on band 3 (AE1), combined with data showing that the cytoplasmic SH groups lie about 40 A from the cytoplasmic surface of the lipid bilayer, would place the BIDS sites very near the membrane's inner surface, a location that seems to be inconsistent with current models of AE1 structure and mechanism. We reinvestigated the BIDS-FM distance, using laser single photon counting techniques as well as steady-state fluorescence of AE1, in its native membrane environment. Both techniques agree that there is very little energy transfer from BIDS to FM. The mean energy transfer (E), based on three-exponential fits to the fluorescence decay data, is 2.5 +/- 0.7% (SEM, N = 12). Steady-state fluorescence measurements also indicate BIDS to FM. These data indicate that the BIDS sites are probably over 63 A from the cytoplasmic SH groups, placing them near the middle or the external half of the lipid bilayer. This relocation of the BIDS sites fits with other evidence that the disulfonic stilbene sites are located farther toward the external membrane surface than Glu-681, a residue near the inner membrane surface whose modification affects the pH dependence and anion selectivity of band 3. The involvement of two relatively distant parts of the AE1 protein in transport function suggests that the transport mechanism requires coordinated large-scale conformational changes in the band 3 protein.

  17. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    Howard Bender; Dave Schwellenbach; Ron Sturges; Rusty Trainham

    2008-01-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials

  18. Calculations of Energy Shift of the Conduction Band-Edge in Doped and Compensated GaP

    OpenAIRE

    Endo, Tamio; Itoh, Nobuhiko; Okino, Yasushi; 遠藤, 民生; 伊藤, 伸彦; 沖野, 祥[他

    1989-01-01

    The energy shifts of the parabolic conduction band-edge at 77 and 300K with doping the Te-donor in GaP were calculated in the nondegenerate system for the two cases ; unintentional and intentional compensations, using the two models proposed by Hwang abd by Mahan. The total parabolic shift △EM(△EH), and the contributions of the exchangeinteraction △μex(△Ee) and of the Coulomb interaction △μed(△Ec) calculated by the Mahan's model (Hwang's model), increase with increasing donor concentration in...

  19. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-01-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials

  20. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  1. Reconstructing the energy band electronic structure of pulsed laser deposited CZTS thin films intended for solar cell absorber applications

    Science.gov (United States)

    Pandiyan, Rajesh; Oulad Elhmaidi, Zakaria; Sekkat, Zouheir; Abd-lefdil, Mohammed; El Khakani, My Ali

    2017-02-01

    We report here on the use of pulsed KrF-laser deposition (PLD) technique for the growth of high-quality Cu2ZnSnS4 (CZTS) thin films onto Si, and glass substrates without resorting to any post sulfurization process. The PLD-CZTS films were deposited at room temperature (RT) and then subjected to post annealing at different temperatures ranging from 200 to 500 °C in Argon atmosphere. The X-ray diffraction and Raman spectroscopy confirmed that the PLD films crystallize in the characteristic kesterite CZTS structure regardless of their annealing temperature (Ta), but their crystallinity is much improved for Ta ≥ 400 °C. The PLD-CZTS films were found to exhibit a relatively dense morphology with a surface roughness (RMS) that increases with Ta (from ∼14 nm at RT to 70 nm at Ta = 500 °C with a value around 40 nm for Ta = 300-400 °C). The optical bandgap of the PLD-CZTS films, was derived from UV-vis transmission spectra analysis, and found to decrease from 1.73 eV for non-annealed films to ∼1.58 eV for those annealed at Ta = 300 °C. These band gap values are very close to the optimum value needed for an ideal solar cell absorber. In order to achieve a complete reconstruction of the one-dimensional energy band structure of these PLD-CZTS absorbers, we have combined both XPS and UPS spectroscopies to determine their chemical bondings, the position of their valence band maximum (relative to Fermi level), and their work function values. This enabled us to sketch out, as accurately as possible, the band alignment of the heterojunction interface formed between CZTS and both CdS and ZnS buffer layer materials.

  2. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  3. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  4. Term value/band-gap energy correlations for solid rare gas excitons

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Term value/ionization energy correlation algorithms have proven to be of considerable utility in the assignment of atomic and molecular Rydberg states. Many examples of empirical term value/ionization energy correlations are known for diverse classes of atoms and molecules. The purpose of this paper is to demonstrate that similar correlations are also obtained for excitons in rare gas solids

  5. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to μ + and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics

  6. Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier

    Science.gov (United States)

    Forrest, Stephen R.; Wei, Guodan

    2010-07-06

    A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.

  7. Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials

    International Nuclear Information System (INIS)

    Li, Guanqiang; Chen, Guangde; Peng, Ping; Cao, Zhenzhou; Ye, Honggang

    2013-01-01

    We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices

  8. Determination of energy band diagram and charge carrier mobility of white emitting polymer from optical, electrical and impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Sarjidan, M.A., E-mail: mohd.arif@um.edu.my; Mohd Mokhtar, H.A.; Abd Majid, W.H., E-mail: q3haliza@um.edu.my

    2015-03-15

    A single-layer white polymer light-emitting device (WPLED) has been fabricated using spin coating technique. The device was constructed as ITO/PEDOT:PSS(50 nm)/SPW-111(50 nm)/LiF(1 nm)/Al(100 nm). Indium tin oxide (ITO) and poly(3,4-ethylenedioxythiophene) Polystyrene sulfonate (PEDOT:PSS) are used as the transparent anode. SPW-111 is fabricated as a white emissive layer and lithium fluoride (LiF) and aluminum (Al) are used as reflecting cathode. Energy band diagram of the device was estimated from a combination of ultraviolet–visible (UV–vis) and current–voltage (J–V) analyses. Charge carrier mobility (μ) of PLED was evaluated using negative differential susceptance (−ΔB) method from impedance spectroscopy (IS) analysis. The calculated μ of the SPW-111 device is in the magnitude of 10{sup −6} cm{sup 2}/V/s. - Highlights: • Single layer PLED has been fabricated with spin-coating technique and device performance has been evaluated. • Energy band diagram of the SPW-111 is estimated from optical and electrical analyses. • Charge carrier mobility of the SPW-111 materials is obtained by impedance spectroscopy.

  9. Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure

    Directory of Open Access Journals (Sweden)

    Eul Noh

    2013-01-01

    Full Text Available The effect of TiO2 layer applied to the conventional Fe2O3/FTO photoanode to improve the photoelectrochemical performance was assessed from the viewpoint of the microstructure and energy band structure. Regardless of the location of the TiO2 layer in the photoanodes, that is, Fe2O3/TiO2/FTO or TiO2/Fe2O3/FTO, high performance was obtained when α-Fe2O3 and H-TiNT/anatase-TiO2 phases existed in the constituent Fe2O3 and TiO2 layers after optimized heat treatments. The presence of the Fe2O3 nanoparticles with high uniformity in the each layer of the Fe2O3/TiO2/FTO photoanode achieved by a simple dipping process seemed to positively affect the performance improvement by modifying the energy band structure to a more favorable one for efficient electrons transfer. Our current study suggests that the application of the TiO2 interlayer, together with α-Fe2O3 nanoparticles present in the each constituent layers, could significantly contribute to the performance improvement of the conventional Fe2O3 photoanode.

  10. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  11. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  12. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  13. Study on ground state energy band of even 114-124Cd isotopes under the framework of interacting boson model (IBM-1)

    International Nuclear Information System (INIS)

    Hossain, I.; Abdullah, Hewa Y.; Ahmed, I.M.; Saeed, M.A.; Ahmad, S.T.

    2012-01-01

    In this research, the ground state gamma ray bands of even 114-124 Cd isotopes are calculated using interacting boson model (IBM-1). The theoretical energy levels for Z = 48, N = 66–76 up to spin-parity 8 + have been obtained by using PHINT computer program. The values of the parameters in the IBM-1 Hamiltonian yield the best fit to the experimental energy spectrum. The calculated results of the ground state energy band are compared to the previous experimental results and the obtained theoretical calculations in IBM-1 are in good agreement with the experimental energy level. (author)

  14. Simple vertex correction improves GW band energies of bulk and two-dimensional crystals

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt; Patrick, Christopher E.; Thygesen, Kristian Sommer

    2017-01-01

    The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy this situ......The GW self-energy method has long been recognized as the gold standard for quasiparticle (QP) calculations of solids in spite of the fact that the neglect of vertex corrections and the use of a density-functional theory starting point lack rigorous justification. In this work we remedy...

  15. Energy Band Structure Studies Of Zinc-Blende GaAs and InAs ...

    African Journals Online (AJOL)

    A self-consistent calculation of the structural and electronic properties of zinc blende GaAs and InAs has been carried out. The calculations were done using the full potential-linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT). The exchange-correlation energy used is the ...

  16. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    Science.gov (United States)

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  17. Composition-tuned band gap energy and refractive index in GaS{sub x}Se{sub 1−x} layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Mehmet, E-mail: mehmet.isik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836, Ankara (Turkey); Gasanly, Nizami [Department of Physics, Middle East Technical University, 06800, Ankara (Turkey); Virtual International Scientific Research Centre, Baku State University, 1148, Baku (Azerbaijan)

    2017-04-01

    Transmission and reflection measurements on GaS{sub x}Se{sub 1−x} mixed crystals (0 ≤ x ≤ 1) were carried out in the 400–1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaS{sub x}Se{sub 1−x} mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. - Highlights: • Transmission and reflection experiments were performed on GaS{sub x}Se{sub 1−x} mixed crystals. • Derivative spectra of transmittance and reflectance were used for analyses. • Compositional dependence of band gap energy and refractive index were reported.

  18. Exchange interaction in the heavy rare-earth metals calculated from energy bands

    International Nuclear Information System (INIS)

    Lindgard, P.A.; Liu, S.H.

    1973-01-01

    The exchange interaction in the ordered phases was calculated and found to be significantly influenced by the magnetic perturbation of the conduction electron states. The exchange interaction is intrinsically temperature dependent and is anisotropic. The effect explains how it is possible to have a spiral phase of Tb, although spin wave measurements show no maximum in J/sub q/ for q not equal to 0. The energy difference between the ferromagnetic and spiral phases is of correct order of magnitude to be counterbalanced by the magnetoelastic energy. The wave vector dependent matrix element is found to be similar for Gd, Tb, Dy, and Er with a narrow central conduction electron contribution and a flat region. (U.S.)

  19. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source.

    Science.gov (United States)

    Baillie, Devin; St Aubin, J; Fallone, B G; Steciw, S

    2013-04-01

    To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV∕m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show dmax is at 2.15 cm for a 10 × 10 cm(2) field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  20. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    Energy Technology Data Exchange (ETDEWEB)

    Baillie, Devin [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Aubin, J. St. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Steciw, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  1. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-01-01

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d max is at 2.15 cm for a 10 × 10 cm 2 field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  2. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  3. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  4. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  5. A detailed analysis of the energy levels configuration existing in the band gap of supersaturated silicon with titanium for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, E.; Dueñas, S.; Castán, H.; García, H.; Bailón, L. [Dept. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén 15, 47011 Valladolid (Spain); Montero, D.; García-Hernansanz, R.; García-Hemme, E.; González-Díaz, G. [Dept. de Física Aplicada III (Electricidad y Electrónica), Univ. Complutense de Madrid, 28040 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Olea, J. [CEI Campus Moncloa, UCM-UPM, 28040 Madrid (Spain); Instituto de Energía Solar, E.T.S.I. de Telecomunicación, Univ. Politécnica de Madrid, 28040 Madrid (Spain)

    2015-12-28

    The energy levels created in supersaturated n-type silicon substrates with titanium implantation in the attempt to create an intermediate band in their band-gap are studied in detail. Two titanium ion implantation doses (10{sup 13 }cm{sup -2} and 10{sup 14 }cm{sup -2}) are studied in this work by conductance transient technique and admittance spectroscopy. Conductance transients have been measured at temperatures of around 100 K. The particular shape of these transients is due to the formation of energy barriers in the conduction band, as a consequence of the band-gap narrowing induced by the high titanium concentration. Moreover, stationary admittance spectroscopy results suggest the existence of different energy level configuration, depending on the local titanium concentration. A continuum energy level band is formed when titanium concentration is over the Mott limit. On the other hand, when titanium concentration is lower than the Mott limit, but much higher than the donor impurity density, a quasi-continuum energy level distribution appears. Finally, a single deep center appears for low titanium concentration. At the n-type substrate, the experimental results obtained by means of thermal admittance spectroscopy at high reverse bias reveal the presence of single levels located at around E{sub c}-425 and E{sub c}-275 meV for implantation doses of 10{sup 13 }cm{sup −2} and 10{sup 14 }cm{sup −2}, respectively. At low reverse bias voltage, quasi-continuously distributed energy levels between the minimum of the conduction bands, E{sub c} and E{sub c}-450 meV, are obtained for both doses. Conductance transients detected at low temperatures reveal that the high impurity concentration induces a band gap narrowing which leads to the formation of a barrier in the conduction band. Besides, the relationship between the activation energy and the capture cross section values of all the energy levels fits very well to the Meyer-Neldel rule. As it is known

  6. Prediction of energies of yrast band in some even-even nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. The researchers found that the values of γ obtained from energies (= γ e ) are nearly equal to the value of γ derived from transition rate (= γ b ) in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov. In the present study, the relatively light mass nuclei (Mo, Ru and Pd) have been taken. As far as γ is concerned, it is known that the Ru chains of nuclei is intermediate between the two having opposite trends for parameter γ, decreasing for Mo and increasing for Pd, and has an irregular behaviour in itself with the increase of neutron number

  7. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    Science.gov (United States)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  8. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  9. The formation of α-phase SnS nanorods by PVP assisted polyol synthesis: Phase stability, micro structure, thermal stability and defects induced energy band transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baby, Benjamin Hudson; Mohan, D. Bharathi, E-mail: d.bharathimohan@gmail.com

    2017-05-01

    We report the formation of single phase of SnS nanostructure through PVP assisted polyol synthesis by varying the source concentration ratio (Sn:S) from 1:1M to 1:12M. The effect of PVP concentration and reaction medium towards the preparation of SnS nanostructure is systematically studied through confocal Raman spectrometer, X-ray diffraction, thermogravimetry analysis, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis–NIR absorption and fluorescence spectrophotometers. The surface morphology of SnS nanostructure changes from nanorods to spherical shape with increasing PVP concentration from 0.15M to 0.5M. Raman analysis corroborates that Raman active modes of different phases of Sn-S are highly active when Raman excitation energy is slightly greater than the energy band gap of the material. The presence of intrinsic defects and large number of grain boundaries resulted in an improved thermal stability of 20 °C during the phase transition of α-SnS. Band gap calculation from tauc plot showed the direct band gap of 1.5 eV which is attributed to the single phase of SnS, could directly meet the requirement of an absorber layer in thin film solar cells. Finally, we proposed an energy band diagram for as synthesized single phase SnS nanostructure based on the experimental results obtained from optical studies showing the energy transitions attributed to band edge transition and also due to the presence of intrinsic defects. - Highlights: • PVP stabilizes the orthorhombic (α) phase of SnS. • Optical band gap of P type SnS tuned by PVP for photovoltaic applications. • The formation of Sn rich SnS phase is investigated through XPS analysis. • Intrinsic defects enhance the thermal stability of α-SnS. • The feasibility of energy transition liable to point defects is discussed.

  10. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO

    Science.gov (United States)

    Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M. N.; Dixit, H.; Lamoen, D.; Partoens, B.

    2013-01-01

    The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.

  11. Determination of the impact of Bi content on the valence band energy of GaAsBi using x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Collar

    2017-07-01

    Full Text Available We investigate the change of the valence band energy of GaAs1-xBix (0band energy per addition of 1 % Bi is determined for strained and unstrained thin films using a linear approximation applicable to the dilute regime. Spectroscopic ellipsometry (SE was used as a complementary technique to determine the change in GaAsBi bandgap resulting from Bi addition. Analysis of SE and XPS data together supports the conclusion that ∼75% of the reduction in the bandgap is in the valence band for a compressively strained, dilute GaAsBi thin film at room temperature.

  12. Forbidden energy band gap in diluted a-Ge{sub 1-x}Si{sub x}:N films

    Energy Technology Data Exchange (ETDEWEB)

    Guarneros, C.; Rebollo-Plata, B. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Lozada-Morales, R., E-mail: rlozada@fcfm.buap.mx [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Espinosa-Rosales, J.E. [Posgrado en Fisica Aplicada, Facultad de Ciencias Fisico-Matematicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Portillo-Moreno, J. [Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Blvd. 14 Sur 6301, Col. San Manuel, 72570, Puebla (Mexico); Zelaya-Angel, O. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, PO Box 14-740, Mexico 07360 D.F. (Mexico)

    2012-06-01

    By means of electron gun evaporation Ge{sub 1-x}Si{sub x}:N thin films, in the entire range 0 {<=} x {<=} 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 Multiplication-Sign 10{sup -4} Pa, then a pressure of 2.7 Multiplication-Sign 10{sup -2} Pa of high purity N{sub 2} was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge{sub 1-x}Si{sub x}:N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E{sub g}) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E{sub g}) as a function of x in the entire range 0 {<=} x {<=} 1 shows two well defined regions: 0 {<=} x {<=} 0.67 and 0.67 {<=} x {<=} 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E{sub g}(x). In this case E{sub g}(x) versus x is different to the variation of E{sub g} in a-Ge{sub 1-x}Si{sub x} and a-Ge{sub 1-x}Si{sub x}:H. This fact can be related to the formation of Ge{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} when x {<=} 0.67, and to the formation of Si{sub 3}N{sub 4} and GeSi{sub 2}N{sub 4} for 0.67 {<=} x. - Highlights: Black-Right-Pointing-Pointer Nitrogen doped amorphous Ge{sub 1-x}Si{sub x} thin films are grown by electron gun technique. Black-Right-Pointing-Pointer Nitrogen atoms on E{sub g} of the a-Ge{sub 1-x}Si{sub x} films in the 0 Pound-Sign x Pound-Sign 1 range are analyzed. Black-Right-Pointing-Pointer Variation in 0 Pound-Sign x Pound-Sign 1 range shows a warped change of E{sub g} in 1.0 - 3.6 eV range. Black-Right-Pointing-Pointer The change in E{sub g}(x) behavior when x {approx} 0.67 was associated with Ge{sub 2}SiN{sub 4

  13. Exciton spectra and energy band structure of Cu{sub 2}ZnSiSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Guc, M., E-mail: gmax@phys.asm.md [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Levcenko, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Dermenji, L. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of); Gurieva, G. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Schorr, S. [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Free University Berlin, Institute of Geological Sciences, Malteserstr. 74-100, Berlin (Germany); Syrbu, N.N. [Technical University of Moldova, Chisinau MD-2004, Republic of Moldova (Moldova, Republic of); Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Academiei Str. 5, Chisinau MD 2028, Republic of Moldova (Moldova, Republic of)

    2014-02-25

    Highlights: • Reflection spectra of Cu{sub 2}ZnSiSe{sub 4} were studied for E ⊥ c and E || c light polarizations. • Four excitonic series are revealed in the reflection spectra at 10 K. • Model of exciton dispersion and the presence of a dead-layer. • Exciton Rydberg energies and free carriers effective masses were calculated. • Reflectivity for E ⊥ c and E || c were analyzed in the region 3–6 eV at 300 K. -- Abstract: Exciton spectra are studied in Cu{sub 2}ZnSiSe{sub 4} single crystals at 10 and 300 K by means of reflection spectroscopy. The exciton parameters, dielectric constant and free carriers effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The structure found in the reflectivity was analyzed and related to the theoretical electronic band structure of close related Cu{sub 2}ZnSiS{sub 4} semiconductor.

  14. ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap

    Directory of Open Access Journals (Sweden)

    Javed Iqbal

    2016-10-01

    Full Text Available Nanostructured ZnO thin films with high transparency have been grown on glass substrate by atomic layer deposition at various temperatures ranging from 100 °C to 300 °C. Efforts have been made to observe the effect of substrate temperature on the thickness of the deposited thin films and its consequences on the energy band gap. A remarkably high growth rate of 0.56 nm per cycle at a substrate temperature of 200 °C for ZnO thin films have been achieved. This is the maximum growth rate for ALD deposited ZnO thin films ever reported so far to the best of our knowledge. The studies of field emission scanning electron microscopy and X-ray diffractometry patterns confirm the deposition of uniform and high quality nanosturtured ZnO thin films which have a polycrystalline nature with preferential orientation along (100 plane. The thickness of the films deposited at different substrate temperatures was measured by ellipsometry and surface profiling system while the UV–visible and photoluminescence spectroscopy studies have been used to evaluate the optical properties of the respective thin films. It has been observed that the thickness of the thin film depends on the substrate temperatures which ultimately affect the optical and structural parameters of the thin films.

  15. Elementary Thermal Operations

    DEFF Research Database (Denmark)

    Lostaglio, Matteo; Alhambra, Álvaro M.; Perry, Christopher

    2018-01-01

    To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings in......To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes......-Cummings interaction in rotating wave approximation and draw a connection to standard descriptions of thermalisation. We then prove that elementary thermal operations present tighter constraints on the allowed transformations than thermal operations. Mathematically, this illustrates the failure at finite temperature...... to do so, including necessary and sufficient conditions for a given change of the population to be possible. As an example, we describe the resource theory of the Jaynes-Cummings model. Finally, we initiate an investigation into how our resource theories can be applied to Heat Bath Algorithmic Cooling...

  16. Elementary metallography

    Science.gov (United States)

    Kazem, Sayyed M.

    1992-01-01

    Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.

  17. Elementary vectors

    CERN Document Server

    Wolstenholme, E Œ

    1978-01-01

    Elementary Vectors, Third Edition serves as an introductory course in vector analysis and is intended to present the theoretical and application aspects of vectors. The book covers topics that rigorously explain and provide definitions, principles, equations, and methods in vector analysis. Applications of vector methods to simple kinematical and dynamical problems; central forces and orbits; and solutions to geometrical problems are discussed as well. This edition of the text also provides an appendix, intended for students, which the author hopes to bridge the gap between theory and appl

  18. Elementary analysis

    CERN Document Server

    Snell, K S; Langford, W J; Maxwell, E A

    1966-01-01

    Elementary Analysis, Volume 2 introduces several of the ideas of modern mathematics in a casual manner and provides the practical experience in algebraic and analytic operations that lays a sound foundation of basic skills. This book focuses on the nature of number, algebraic and logical structure, groups, rings, fields, vector spaces, matrices, sequences, limits, functions and inverse functions, complex numbers, and probability. The logical structure of analysis given through the treatment of differentiation and integration, with applications to the trigonometric and logarithmic functions, is

  19. Elementary particles and cosmology

    International Nuclear Information System (INIS)

    Audouze, J.; Paty, M.

    2000-01-01

    The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)

  20. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure

    NARCIS (Netherlands)

    Le Thi Ngoc, Loan; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin

    2015-01-01

    Two distinct single-photon plasmon-modulated photoluminescence processes are generated from nanostructured gold surfaces by tuning the spectral overlap of the incident laser source, localized surface plasmon resonance band, and the interband transitions between the d and sp bands, near the X-and

  1. Structure and optical band-gap energies of Ba0.5Sr0.5TiO3 thin films fabricated by RF magnetron plasma sputtering

    International Nuclear Information System (INIS)

    Xu, Zhimou; Suzuki, Masato; Yokoyama, Shin

    2005-01-01

    The structure and optical band-gap energies of Ba 0.5 Sr 0.5 TiO 3 (BST0.5) thin films prepared on SiO 2 /Si and fused quartz substrates by RF magnetron plasma sputtering were studied in terms of deposition temperature and film thickness. Highly (100)-oriented BST0.5 thin films were successfully sputtered on a Si substrate with an approximately 1.0-μm-thick SiO 2 layer at a deposition temperature of above 450degC. The optical transmittance of BST0.5 thin films weakly depended on the magnitude of X-ray diffraction (XRD) peak intensity. This is very helpful for monolithic integration of BST0.5 films for electrooptical functions directly onto a SiO 2 /Si substrate. The band-gap energies showed a strong dependence on the deposition temperature and film thickness. It was mainly related to the quantum size effect and the influence of the crystallinity of thin films, such as grain boundaries, grain size, oriented growth, and the existence of an amorphous phase. The band-gap energy values, which were much larger than those of single crystals, decreased with the increase in the deposition temperature and the thickness of BST0.5 thin films. The band-gap energy of 311-nm-thick amorphous BST0.5 thin film was about 4.45 eV and that of (100)-oriented BST0.5 thin film with a thickness of 447 nm was about 3.89 eV. It is believed that the dependence of the band-gap energies of the thin films on the crystallinity for various values of deposition temperature and film thickness means that there could be application in integrated optical devices. (author)

  2. Study of Unwanted Emissions in the CENELEC-A Band Generated by Distributed Energy Resources and Their Influence over Narrow Band Power Line Communications

    Directory of Open Access Journals (Sweden)

    Noelia Uribe-Pérez

    2016-11-01

    Full Text Available Distributed Energy Resources might have a severe influence on Power Line Communications, as they can generate interfering signals and high frequency emissions or supraharmonics that may cause loss of metering and control data. In this paper, the influence of various energy resources on Narrowband Power Line Communications is described and analyzed through several test measurements performed in a real microgrid. Accordingly, the paper describes the effects on smart metering communications through the Medium Access Control (MAC layer analysis. Results show that the switching frequency of inverters and the presence of battery chargers are remarkable sources of disturbance in low voltage distribution networks. In this sense, the results presented can contribute to efforts towards standardization and normative of emissions at higher frequencies higher, such as CENELEC EN 50160 and IEC/TS 62749.

  3. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  4. The Evaluation of the Impact of a Stand-Biased Desk on Energy Expenditure and Physical Activity for Elementary School Students

    Science.gov (United States)

    Benden, Mark E.; Zhao, Hongwei; Jeffrey, Christina E.; Wendel, Monica L.; Blake, Jamilia J.

    2014-01-01

    Due to the increasing prevalence of childhood obesity, the association between classroom furniture and energy expenditure as well as physical activity was examined using a standing-desk intervention in three central-Texas elementary schools. Of the 480 students in the 24 classrooms randomly assigned to either a seated or stand-biased desk equipped classroom, 374 agreed to participate in a week-long data collection during the fall and spring semesters. Each participant’s data was collected using Sensewear® armbands and was comprised of measures of energy expenditure (EE) and step count. A hierarchical linear mixed effects model showed that children in seated desk classrooms had significantly lower (EE) and fewer steps during the standardized lecture time than children in stand-biased classrooms after adjusting for grade, race, and gender. The use of a standing desk showed a significant higher mean energy expenditure by 0.16 kcal/min (p < 0.0001) in the fall semester, and a higher EE by 0.08 kcal/min (p = 0.0092) in the spring semester. PMID:25211776

  5. The Evaluation of the Impact of a Stand-Biased Desk on Energy Expenditure and Physical Activity for Elementary School Students

    Directory of Open Access Journals (Sweden)

    Mark E. Benden

    2014-09-01

    Full Text Available Due to the increasing prevalence of childhood obesity, the association between classroom furniture and energy expenditure as well as physical activity was examined using a standing-desk intervention in three central-Texas elementary schools. Of the 480 students in the 24 classrooms randomly assigned to either a seated or stand-biased desk equipped classroom, 374 agreed to participate in a week-long data collection during the fall and spring semesters. Each participant’s data was collected using Sensewear® armbands and was comprised of measures of energy expenditure (EE and step count. A hierarchical linear mixed effects model showed that children in seated desk classrooms had significantly lower (EE and fewer steps during the standardized lecture time than children in stand-biased classrooms after adjusting for grade, race, and gender. The use of a standing desk showed a significant higher mean energy expenditure by 0.16 kcal/min (p < 0.0001 in the fall semester, and a higher EE by 0.08 kcal/min (p = 0.0092 in the spring semester.

  6. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  7. Excitation of the 4.3-μm bands of CO2 by low-energy electrons

    International Nuclear Information System (INIS)

    Bulos, R.R.; Phelps, A.V.

    1976-01-01

    Rate coefficients for the excitation of the 4.3-μm bands of CO 2 by low-energy electrons in CO 2 have been measured using a drift-tube technique. The CO 2 density [(1.5 to 7) x 10 17 molecules/cm 3 ] was chosen to maximize the radiation reaching the detector. Line-by-line transmission calculations were used to take into account the absorption of 4.3-μm radiation. A small fraction of the approximately 10 -8 W of the 4.3-μm radiation produced by the approximately 10 -7 -A electron current was incident on an InSb photovoltaic detector. The detector calibration and absorption calculations were checked by measuring the readily calculated excitation coefficients for vibrational excitation of N 2 containing a small concentration of CO 2 . For pure CO 2 the number of molecules capable of emitting 4.3-μm radiation produced per cm of electron drift and per CO 2 molecule varied from 10 -17 cm -2 at E/N = 6 x 10 -17 V cm 2 to 5.4 x 10 -16 cm -2 at E/N = 4 x 10 -16 V cm 2 . Here E is the electric field and N is total gas density. The excitation coefficients at lower E/N are much larger than estimated previously. A set of vibrational excitation cross sections is obtained for CO 2 which is consistent with the excitation coefficient data and with most of the published electron-beam data

  8. Multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution as a mechanism to generate intermediate band energy levels

    Science.gov (United States)

    Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.

    2017-04-01

    In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.

  9. Charm-quarks and new elementary particles

    International Nuclear Information System (INIS)

    Petersen, J.L.

    1978-01-01

    This is the first part of an extensive paper which discusses: the Nobel prize in physics 1976; discovery of the J/psi-particle; elementary particles and elementary building blocks; the four reciprocal effects; gauge theories; quark-antiquark reciprocal effects; the high-energy approximation; a simple quark-antiquark potential; and quark diagrams and the Zweig rule. (Auth.)

  10. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    Science.gov (United States)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  11. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  12. Centrality and energy dependence of charged-particle multiplicities in heavy ion collisions in the context of elementary reactions

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-08-01

    The PHOBOS experiment at the BNL Relativistic Heavy Ion Collider has measured the total multiplicity of primary charged particles as a function of collision centrality in Au+Au collisions at sNN= 19.6, 130, and 200 GeV. An approximate independence of / on the number of participating nucleons is observed, reminiscent of “wounded nucleon” scaling (Nch∝Npart) observed in proton-nucleus collisions. Unlike p+A, the constant of proportionality does not seem to be set by the pp/p¯p data at the same energy. Rather, there seems to be a surprising correspondence with the total multiplicity measured in e+e- annihilations, as well as the rapidity shape measured over a large range. The energy dependence of the integrated multiplicity per participant pair shows that e+e- and A+A data agree over a large range of center-of-mass energies (s>20 GeV), and pp/p¯p data can be brought to agree approximately with the e+e- data by correcting for the typical energy taken away by leading particles. This is suggestive of a mechanism for soft particle production that depends mainly on the amount of available energy. It is conjectured that the dominant distinction between A+A and p+p collisions is the multiple collisions per participant, which appears to be sufficient to substantially reduce the energy taken away by leading particles.

  13. Electronic structure of indium-tungsten-oxide alloys and their energy band alignment at the heterojunction to crystalline silicon

    Science.gov (United States)

    Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars

    2018-01-01

    The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.

  14. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 2. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 2. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the chemical heat storage techniques and plant simulation, for R and D of the super heat pump energy accumulation system. For R and D of the chemical heat storage techniques, the R and D efforts are directed to the researches on the fundamental reactions and continuous exothermic reactions involved for the high temperature heat storage type (utilizing the metathesis reactions); researches on the physical properties, heat storage systems, solid-phase reactions, liquid-phase reactors, corrosion of the materials, and so on for the high temperature heat storage type (utilizing ammonia complex); collection of the data related to media and structural materials, tests of the elementary equipment for the absorption and hydration reactions, and so on for the high temperature heat storage type (chemical heat storage utilizing hydration); researches on the media properties and system performance, tests of equipment, and so on for the high temperature heat storage type (heat storage/heating utilizing solvation); researches on the heat storage media, heat storage techniques, corrosion of the materials, systems, and so on for the low temperature heat storage type (utilizing the hydration reactions by mixing solutes); and researches on the media, corrosion and elementary equipment, optimization of the system, and so on for the low temperature heat storage type (clathrate low temperature heat storage systems). (NEDO)

  15. FY 1986 Report on research and development of super heat pump energy accumulation system. Part 1. Development of elementary techniques; 1986 nendo super heat pump energy shuseki system no kenkyu kaihatsu seika hokokusho. 1. Yoso gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-04-01

    Summarized in detail herein are R and D results of the super high performance heat pumps and elementary equipment and working fluids, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to development of new working fluids, high-performance heat exchangers, closed motors and so on for the highly efficient type (for heating only); to researches on mixed coolants, high-efficiency screw compressors and so on for the highly efficient type (for cooling and heating); to development of tooth shape of the screw compression section, surveys on thermal stability of the working fluids for heating and so on for the high temperature type (utilizing low temperature heat source); and to R and D of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment and working fluids, researches are conducted on evaporators for mixed working fluids, condensers utilizing the EHD effect, stainless steel plate fin type heat exchangers, heat exchangers for the chemical heat accumulation unit, and so on. The R and D efforts are also directed to the working fluids (alcohol-based and nonalcohol-based). (NEDO)

  16. Solar-energy-system performance evaluation: Irvine School (El Camino Real Elementary School) Irvine, California, October 1978-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.T.

    1979-01-01

    The Irvine School in California has a solar heating and cooling system consisting of evacuated tube collectors, two absorption chillers, a heat rejector, and heat exchanger. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

  17. Properties of nuclei and elementary particles at low and intermediate energies. Progress report, July 1992--August 1993

    International Nuclear Information System (INIS)

    Boehm, F.

    1993-01-01

    Work reported relate to: a 12 ton low energy neutrino detector for neutrino oscillation studies at the San Onofre Reactor Station; new limits on the 17 keV neutrino; time reversal and parity tests for hindered nuclear gamma transitions; and theory of nuclear structure and its application

  18. An approach to improving science knowledge about energy balance and nutrition among elementary- and middle-school students.

    Science.gov (United States)

    Moreno, Nancy P; Denk, James P; Roberts, J Kyle; Tharp, Barbara Z; Bost, Michelle; Thomson, William A

    2004-01-01

    Unhealthy diets, lack of fitness, and obesity are serious problems in the United States. The Centers for Disease Control, Surgeon General, and Department of Health and Human Services are calling for action to address these problems. Scientists and educators at Baylor College of Medicine and the National Space Biomedical Research Institute teamed to produce an instructional unit, "Food and Fitness," and evaluated it with students in grades 3-7 in Houston, Texas. A field-test group (447 students) completed all unit activities under the guidance of their teachers. This group and a comparison group (343 students) completed pre and postassessments measuring knowledge of concepts covered in the unit. Outcomes indicate that the unit significantly increased students' knowledge and awareness of science concepts related to energy in living systems, metabolism, nutrients, and diet. Pre-assessment results suggest that most students understand concepts related to calories in food, exercise and energy use, and matching food intake to energy use. Students' prior knowledge was found to be much lower on topics related to healthy portion sizes, foods that supply the most energy, essential nutrients, what "diet" actually means, and the relationship between body size and basal metabolic rate.

  19. Consistency Study About Critical Thinking Skill of PGSD Students (Teacher Candidate of Elementary School) on Energy Material

    Science.gov (United States)

    Wijayanti, M. D.; Raharjo, S. B.; Saputro, S.; Mulyani, S.

    2017-09-01

    This study aims to examine the consistency of critical thinking ability of PGSD students in Energy material. The study population is PGSD students in UNS Surakarta. Samples are using cluster random sampling technique obtained by 101 students. Consistency of student’s response in knowing the critical thinking ability of PGSD students can be used as a benchmark of PGSD students’ understanding to see the equivalence of IPA problem, especially in energy material presented with various phenomena. This research uses descriptive method. Data are obtained through questionnaires and interviews. The research results that the average level of critical thinking in this study is divided into 3 levels, i.e.: level 1 (54.85%), level 2 (19.93%), and level 3 (25.23%). The data of the research result affect to the weak of students’ Energy materials’ understanding. In addition, indicators identify that assumptions and arguments analysis are also still low. Ideally, the consistency of critical thinking ability as a whole has an impact on the expansion of students’ conceptual understanding. The results of the study may become a reference to improve the subsequent research in order to obtain positive changes in the ability of critical thinking of students who directly improve the concept of students’ better understanding, especially in energy materials at various real problems occured.

  20. Elementary electron-molecule interactions and negative ion resonances at subexcitation energies and their significance in gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1977-01-01

    Recent knowledge on low-energy (mostly approximately less than 10 eV) electron-molecule interaction processes in dilute and in dense gases is synthesized, discussed, and related to the breakdown strength of gaseous dielectrics. Optimal design of multicomponent gaseous insulators can be made on the basis of such knowledge

  1. Structural parameter based modification of energy conscious ESPAR antenna system through optimization for WLAN’s dual-band operability

    CSIR Research Space (South Africa)

    Bembe, MJ

    2010-11-01

    Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...

  2. On the Action of the Radiation Field Generated by a Traveling-Wave Element and Its Connection to the Time Energy Uncertainty Principle, Elementary Charge and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2017-02-01

    Full Text Available Recently, we published two papers in this journal. One of the papers dealt with the action of the radiation fields generated by a traveling-wave element and the other dealt with the momentum transferred by the same radiation fields and their connection to the time energy uncertainty principle. The traveling-wave element is defined as a conductor through which a current pulse propagates with the speed of light in free space from one end of the conductor to the other without attenuation. The goal of this letter is to combine the information provided in these two papers together and make conclusive statements concerning the connection between the energy dissipated by the radiation fields, the time energy uncertainty principle and the elementary charge. As we will show here, the results presented in these two papers, when combined together, show that the time energy uncertainty principle can be applied to the classical radiation emitted by a traveling-wave element and it results in the prediction that the smallest charge associated with the current that can be detected using radiated energy as a vehicle is on the order of the elementary charge. Based on the results, an expression for the fine structure constant is obtained. This is the first time that an order of magnitude estimation of the elementary charge based on electromagnetic radiation fields is obtained. Even though the results obtained in this paper have to be considered as order of magnitude estimations, a strict interpretation of the derived equations shows that the fine structure constant or the elementary charge may change as the size or the age of the universe increases.

  3. A research Program in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  4. Investigation of energy band alignments and interfacial properties of rutile NMO2/TiO2 (NM = Ru, Rh, Os, and Ir) by first-principles calculations.

    Science.gov (United States)

    Yang, Chen; Zhao, Zong-Yan

    2017-11-08

    In the field of photocatalysis, constructing hetero-structures is an efficient strategy to improve quantum efficiency. However, a lattice mismatch often induces unfavorable interfacial states that can act as recombination centers for photo-generated electron-hole pairs. If the hetero-structure's components have the same crystal structure, this disadvantage can be easily avoided. Conversely, in the process of loading a noble metal co-catalyst onto the TiO 2 surface, a transition layer of noble metal oxides is often formed between the TiO 2 layer and the noble metal layer. In this article, interfacial properties of hetero-structures composed of a noble metal dioxide and TiO 2 with a rutile crystal structure have been systematically investigated using first-principles calculations. In particular, the Schottky barrier height, band bending, and energy band alignments are studied to provide evidence for practical applications. In all cases, no interfacial states exist in the forbidden band of TiO 2 , and the interfacial formation energy is very small. A strong internal electric field generated by interfacial electron transfer leads to an efficient separation of photo-generated carriers and band bending. Because of the differences in the atomic properties of the components, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures demonstrate band dividing, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures have a pseudo-gap near the Fermi energy level. Furthermore, NMO 2 /TiO 2 hetero-structures show upward band bending. Conversely, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures present a relatively strong infrared light absorption, while RhO 2 /TiO 2 and IrO 2 /TiO 2 hetero-structures show an obvious absorption edge in the visible light region. Overall, considering all aspects of their properties, RuO 2 /TiO 2 and OsO 2 /TiO 2 hetero-structures are more suitable than others for improving the photocatalytic performance of TiO 2 . These findings will provide useful information

  5. Investigation of an energy-gap model for photoacoustic O2A-band spectra: H2O calibration near 7180 cm−1

    International Nuclear Information System (INIS)

    Vess, E.M.; Anderson, C.N.; Awadalla, V.E.; Estes, E.J.; Jeon, C.; Wallace, C.J.; Hu, X.F.; Havey, D.K.

    2012-01-01

    Highlights: ► We investigate an energy transfer model for photoacoustic measurements of the O 2 A-band. ► We measure the response of a photoacoustic spectrometer for known quantities of H 2 O and O 2 . ► We fit multiple theoretical spectral line profiles to the data. ► We bind the relative uncertainty of the energy transfer model to less than 1%. ► We demonstrate that speed-dependence is an important line shape effect for these experiments. - Abstract: A photoacoustic spectrometer is used to evaluate the accuracy of an energy-gap model for collisional energy transfer. For photoacoustic measurements involving the b 1 Σ g + ←X 3 Σ g - transition of molecular oxygen the conversion of photon energy to thermal energy is inefficient and proceeds through the a 1 Δ g state. This results in attenuation of the photoacoustic signal. The magnitude of the attenuation can be predicted with an energy-gap model whose accuracy has been previously confirmed to within 3 ± 5%. However, this prior result does not rule out incomplete rotational relaxation of O 2 in the a 1 Δ g state. In this study, high-resolution spectra of H 2 O in air are used to calibrate the photoacoustic spectrometer. This work binds the relative uncertainty in the energy-gap relaxation factor for O 2 A-band photoacoustic signals to be approximately 1%. During one acoustic cycle, this result implies negligible collisional relaxation to the X 3 Σ g - state of O 2 and nearly complete collisional relaxation to the a 1 Δ g state.

  6. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    Science.gov (United States)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  7. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  8. Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC photo-injector energy upgrade

    CERN Document Server

    Alesini, D.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Gallo, A.; Lollo, V.; Marcellini, F.; Higo, T.; Kakihara, K.; Matsumoto, S.; Campogiani, G.; Mostacci, A.; Palumbo, L.; Persichelli, S.; Spizzo, V.; Verdú-Andrés, S.

    2011-01-01

    The energy upgrade of the SPARC photo-injector from 160 to more than 260 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.4m high gradient C-band structures. The structures are travelling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates (10^6 bpp/m) at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results.

  9. Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure

    Institute of Scientific and Technical Information of China (English)

    Tai Wang; Yong-Quan Guo; Shuai Li

    2017-01-01

    The Eu-doped Cu(In,Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CulnTe2.In this paper,the Eu-doped CulnTe2 (Culn1-xEuxTe2,x =0,0.1,0.2,0.3) are studied systemically based on the empirical electron theory (EET).The studies cover crystal structures,bonding regularities,cohesive energies,energy levels,and valence electron structures.The theoretical values fit the experimental results very well.The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions.The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease.The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms,which shows that the 3d electron numbers of Cu atoms change before and after Eu doping.In single phase CuIn1-xEuxTe2,the number of valence electrons changes regularly with increasing Eu content,and the calculated band gap Eg also increases,which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.

  10. The Effects of Set-Points and Dead-Bands of the HVAC System on the Energy Consumption and Occupant Thermal Comfort

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2013-01-01

    A building is a complex system where many components interact with each other therefore the control system plays a key role regarding the energy consumption and the occupant thermal comfort. This study is concerned with a detached, one-storey, single family, energy-plus house. It is equipped...... on the effects of the set-points and dead-bands of different components on the energy consumption together with the occupant thermal comfort. Evaluations are carried out with TRNSYS for Copenhagen and Madrid in order to compare climatic effects....... with a ground heat exchanger, a ground coupled heat pump, embedded pipes in the floor and in the ceiling, a ventilation system (mechanical and natural), a domestic hot water tank and photovoltaic/thermal panels on the roof. Preliminary evaluations showed that for Madrid, change of indoor set-point in cooling...

  11. Intraclass Correlation Coefficients for Obesity Indicators and Energy Balance-Related Behaviors Among New York City Public Elementary Schools.

    Science.gov (United States)

    Gray, Heewon Lee; Burgermaster, Marissa; Tipton, Elizabeth; Contento, Isobel R; Koch, Pamela A; Di Noia, Jennifer

    2016-04-01

    Sample size and statistical power calculation should consider clustering effects when schools are the unit of randomization in intervention studies. The objective of the current study was to investigate how student outcomes are clustered within schools in an obesity prevention trial. Baseline data from the Food, Health & Choices project were used. Participants were 9- to 13-year-old students enrolled in 20 New York City public schools (n= 1,387). Body mass index (BMI) was calculated based on measures of height and weight, and body fat percentage was measured with a Tanita® body composition analyzer (Model SC-331s). Energy balance-related behaviors were self-reported with a frequency questionnaire. To examine the cluster effects, intraclass correlation coefficients (ICCs) were calculated as school variance over total variance for outcome variables. School-level covariates, percentage students eligible for free and reduced-price lunch, percentage Black or Hispanic, and English language learners were added in the model to examine ICC changes. The ICCs for obesity indicators are: .026 for BMI-percentile, .031 for BMIz-score, .035 for percentage of overweight students, .037 for body fat percentage, and .041 for absolute BMI. The ICC range for the six energy balance-related behaviors are .008 to .044 for fruit and vegetables, .013 to .055 for physical activity, .031 to .052 for recreational screen time, .013 to .091 for sweetened beverages, .033 to .121 for processed packaged snacks, and .020 to .083 for fast food. When school-level covariates were included in the model, ICC changes varied from -95% to 85%. This is the first study reporting ICCs for obesity-related anthropometric and behavioral outcomes among New York City public schools. The results of the study may aid sample size estimation for future school-based cluster randomized controlled trials in similar urban setting and population. Additionally, identifying school-level covariates that can reduce cluster

  12. Medium energy elementary particle physics: Technical progress report, 11/1/86 thru 5/28/87

    International Nuclear Information System (INIS)

    1987-01-01

    We have searched for spontaneous conversion of muonium (M identical to μ + e - ) to antimuonium (anti M identical to μ - e + ) at LAMPF. When μ + of 10 MeV/c pass through an Al foil (0.2 mg/cm 2 ), M atoms with kinetic energies of 1 to 20 keV are formed by e - -capture. They pass a drift space of 342 cm, of which 206 cm is magnetically shielded to ≤20 mG, and are stopped on a 1 μm thick Bi target, which was evaporated onto a 2 mil mylar backing and coated with 75 A of MgO. The impact of M or anti M atoms on the target liberates about 5 secondary electrons each with kinetic energies of a few eV. These are electrostatically collected and guided onto a microchannel plate detector, using electric fields of about 100 V/cm. We have counted M at 1 to 20 keV with 50% efficiency using this 0.4 m 2 area active target. If an oscillation of M to anti M has occurred, stopping an anti M atom will entail formation of a Biμ - atom and emission of its characteristic muonic x rays. The crystal box detector then detects the coincident Lα and Kα x rays at 4% efficiency. The anti M event signature was defined as a triple coincidence of a Biμ - Lα x ray, a Kα x ray, and a count in the M(anti M) secondary emission counter. No statistically significant signal was seen and our preliminary data analysis yields an upper limit of G/sub M anti M/ ≤ 8 G/sub F/ (95% C.L.) on the coupling constant of a four-Fermion contact interaction. The current published limit is G/sub M anti M/ ≤ 20 G/sub F/. A conversion of M to anti M is forbidden in the standard model, since it would violate additive lepton flavor conservation. However, an alternative theory based on a lef-tright symmetric model allows the M → anti M coupling at G/sub M anti M/ - 10 G/sub F/. 8 refs., 4 figs

  13. Elementary Mathematics Leaders

    Science.gov (United States)

    Fennell, Francis; Kobett, Beth McCord; Wray, Jonathan A.

    2013-01-01

    Elementary school mathematics leaders often come to the realization that their position, however titled and determined, although dedicated to addressing needs in math teaching and learning, also entails and directly involves leadership. Elementary school math specialists/instructional leaders (referenced here as elementary mathematics leaders, or…

  14. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    Science.gov (United States)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  15. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    Science.gov (United States)

    Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.

    2017-05-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.

  16. Implementation of density functional theory method on object-oriented programming (C++) to calculate energy band structure using the projector augmented wave (PAW)

    International Nuclear Information System (INIS)

    Alfianto, E; Rusydi, F; Aisyah, N D; Dipojono, H K; Martoprawiro, M A; Fadilla, R N

    2017-01-01

    This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso. (paper)

  17. Observation of band bending of metal/high-k Si capacitor with high energy x-ray photoemission spectroscopy and its application to interface dipole measurement

    Science.gov (United States)

    Kakushima, K.; Okamoto, K.; Tachi, K.; Song, J.; Sato, S.; Kawanago, T.; Tsutsui, K.; Sugii, N.; Ahmet, P.; Hattori, T.; Iwai, H.

    2008-11-01

    Band bendings of Si substrates have been observed using hard x-ray photoemission spectroscopy. With a capability of collecting photoelectrons generated as deep as 40 nm, the binding energy shift in a core level caused by the potential profile at the surface of the substrate results in a spectrum broadening. The broadening is found to be significant when heavily doped substrates are used owing to its steep potential profile. The surface potential of the substrate can be obtained by deconvolution of the spectrum. This method has been applied to observe the band bending profile of metal-oxide-semiconductor capacitors with high-k gate dielectrics. By comparing the band bending profiles of heavily-doped n+- and p+-Si substrates, the interface dipoles presented at interfaces can be estimated. In the case of W gated La2O3/La-silicate capacitor, an interface dipole to shift the potential of -0.45 V has been estimated at La-silicate/Si interface, which effectively reduces the apparent work function of W. On the other hand, an interface dipole of 0.03-0.07 V has been found to exist at Hf-silicate/SiO2 interface for W gated HfO2/Hf-silicate/SiO2 capacitor.

  18. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements

    International Nuclear Information System (INIS)

    Grenier, P.

    1966-06-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the α and β phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the α - β transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the β phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [fr

  19. The Effect of Hands-on '"Energy-Saving House" Learning Activities on Elementary School Students' Knowledge, Attitudes, and Behavior Regarding Energy Saving and Carbon-Emissions Reduction

    Science.gov (United States)

    Lee, Lung-Sheng; Lin, Kuen-Yi; Guu, Yunn-Horng; Chang, Liang-Te; Lai, Chih-Chien

    2013-01-01

    Energy saving and carbon-emissions reduction (ESCER) are widely regarded as important issues for progress towards ensuring sustainable forms of economic development. This Taiwanese study focuses on the effects of a series of educational activities about ESCER on students' knowledge, attitudes and behavior. Sixty fifth-grade students from two…

  20. Decay of superdeformed bands

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-01-01

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs

  1. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    Science.gov (United States)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  2. Energy perspectives 2035 - Volume 1, synthesis; Die Energieperspektiven 2035 - Band 1: Synthese. Modellrechnungen, Vergleiche, Bewertungen und Herausforderungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) presents a synthesis of the results of a study that examined four scenarios concerning future developments in Swiss energy supply policy. The four scenarios include the variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. The four scenarios are presented in detail in a separate paper. Here, for each scenario, policy options, energy demand, electricity offerings and CO{sub 2} emissions are noted. The scenarios are compared with each other and evaluated with respect to energy efficiency and energy demand. Examples are quoted and developments in demand are examined. Their sensitivities with respect to Gross Domestic Product (GDP), climate change and their costs are discussed. Renewable sources of energy for power, heating and motor fuels are discussed and non-renewable sources of energy such as nuclear power, gas-fired power stations, combined heat and power installations and district heating systems are examined. Electricity supply and possible shortages are discussed, as are environmental pollution and nuclear wastes. Finally, a dynamic balance model and effects on consumption, trade, employment and welfare are discussed and challenges placed concerning security of supply, environmental protection, the economy, society, politics and legislation are examined

  3. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  4. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  5. Medium energy elementary particle physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics: muon beam development at LAMPF; muon physics; a new precision measurement of the muon g-2 value; measurement of the spin-dependent structure functions of the neutron and proton; and meson factories

  6. Design and simulation of a short, variable-energy 4 to 10 MV S-band linear accelerator waveguide.

    Science.gov (United States)

    Baillie, Devin; Fallone, B Gino; Steciw, Stephen

    2017-06-01

    To modify a previously designed, short, 10 MV linac waveguide, so that it can produce any energy from 4 to 10 MV. The modified waveguide is designed to be a drop-in replacement for the 6 MV waveguide used in the author's current linear accelerator-magnetic resonance imager (Linac-MR). Using our group's previously designed short 10 MV linac as a starting point, the port was moved to the fourth cavity, the shift to the first coupling cavity was removed and a tuning cylinder added to the first coupling cavity. Each cavity was retuned using finite element method (FEM) simulations to resonate at the desired frequency. FEM simulations were used to determine the RF field distributions for various tuning cylinder depths, and electron trajectories were computed using a particle-in-cell model to determine the required RF power level and tuning cylinder depth to produce electron energy distributions for 4, 6, 8, and 10 MV photon beams. Monte Carlo simulations were then used to compare the depth dose profiles with those produced by published electron beam characteristics for Varian linacs. For each desired photon energy, the electron beam energy was within 0.5% of the target mean energy, the depth of maximum dose was within 1.5 mm of that produced by the Varian linac, and the ratio of dose at 10 cm depth to 20 cm depth was within 1%. A new 27.5 cm linear accelerator waveguide design capable of producing any photon energy between 4 and 10 MV has been simulated, however coupling port design and the implications of increased electron beam current at 10 MV remain to be investigated. For the specific cases of 4, 6, and 10 MV, this linac produces depth dose profiles similar to those produced by published spectra for Varian linacs. © 2017 American Association of Physicists in Medicine.

  7. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    International Nuclear Information System (INIS)

    Meevasana, Warawat

    2010-01-01

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  8. C6H6/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    International Nuclear Information System (INIS)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-01

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  9. The mass spectrum of high energy elementary particles via El Naschie's E sup ( supinfinity sup ) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    CERN Document Server

    Marek-Crnjac, L

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed.

  10. The mass spectrum of high energy elementary particles via El Naschie's E(∞) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed

  11. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Park, J. S.; Sasaki, K.; Saito, R.; Izumida, W.; Kalbáč, Martin; Farhat, H.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-01-01

    Roč. 80, č. 8 (2009), 081402-1-081402-4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fermi energy dependence * Raman spectroscopy * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 3.475, year: 2009

  12. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  13. Reducing Energy Degradation Due to Back-bombardment Effect with Modulated RF Input in S-band Thermionic RF Gun

    Science.gov (United States)

    Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo

    2007-01-01

    Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.

  14. Mass Enhancement of Nearly Trivalent Compound EuCo2Si2: Studied by the de Haas-van Alphen Experiments and Energy Band Calculations

    International Nuclear Information System (INIS)

    Ōnuki, Yoshichika; Hedo, Masato; Nakama, Takao; Nakamura, Ai; Aoki, Dai; Boukahil, Mounir; Haga, Yoshinori; Takeuchi, Tetsuya; Harima, Hisatomo

    2015-01-01

    We succeeded in growing single crystals of EuCo 2 Si 2 by the Bridgman method, and carried out the de Haas-van Alphen (dHvA) experiments. EuCo 2 Si 2 was previously studied from a viewpoint of the trivalent electronic state on the basis of the magnetic susceptibility and X-ray absorption experiments, whereas most of the other Eu compounds order magnetically, with the divalent electronic state. The detected dHvA branches in the present experiments are found to be explained by the results of the full potential linearized augmented plane wave energy band calculations on the basis of a local density approximation (LDA) for YCo 2 Si 2 (LDA) and EuCo 2 Si 2 (LDA + U), revealing the trivalent electronic state. The detected cyclotron effective masses are moderately large, ranging from 1.2 to 2.9 m 0

  15. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  16. Absolute generalized oscillator strength for the Lyman--Birge--Hopfield band of N2 as determined by high energy electron impact spectroscopy

    International Nuclear Information System (INIS)

    Wong, T.C.; Lee, J.S.; Wellenstein, H.F.; Bonham, R.A.

    1975-01-01

    The absolute generalized oscillator strength for the dipole forbidden quadrupole allowed Lyman--Birge--Hopfield band a 1 Pi/subg/ reverse arrow X 1 Σ + /subg/ in molecular nitrogen at an energy loss of 9.35 eV is observed by electron impact spectroscopy using 25 keV electrons over the momentum transfer range 0.04less than or equal toK 2 less than or equal to10 a.u. The results agree in the zero angle (zero momentum transfer) limit with the previous observations of Skerbele and Lassettre, but are in disagreement with previous theoretical and experimental results for K 2 >0.5. (auth)

  17. Elementary Particles A New Approach

    Directory of Open Access Journals (Sweden)

    FranciscoMartnezFlores.

    2015-07-01

    Full Text Available ABSTRACT It is shown the inexistence of neutrinos to define precisely the concept of relativistics mass under this scheme to elementarys particles as electron and interactions particles like photons correspond an electromagnetic and virtual mass. Nucleons protons and neutrons have real or inertial mass for being composite particles since inertia needs structure it is provided by an interactive network originated by strong and weak forces. This mass is building up atoms and all the material world under Classical Physics and Chemistrys laws.These actual masses may be considered as electromagnetic and virtual one thanks to its charge in order to establish the high energies level needed to obtain all particles physics elementary or not which are governed by the laws of Quantum Physics. With all this one may set up amore reasonable and understandable new Standard Model which being projected into Cosmological Model can get rid of some inconsistencies and concepts difficult to be admitted.

  18. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  19. Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of 'banded' Renewables Obligation Certificates

    International Nuclear Information System (INIS)

    Allan, Grant; Gilmartin, Michelle; McGregor, Peter; Swales, Kim

    2011-01-01

    In this paper, publicly available cost data are used to calculate the private levelised costs of two marine energy technologies for UK electricity generation: Wave and Tidal Stream power. These estimates are compared to those for ten other electricity generation technologies whose costs were identified by the UK Government (). Under plausible assumptions for costs and performance, point estimates of the levelised costs of Wave and Tidal Stream generation are Pounds 190 and Pounds 81/MWh, respectively. Sensitivity analysis shows how these relative private levelised costs calculations are affected by variation in key parameters, specifically the assumed capital costs, fuel costs and the discount rate. We also consider the impact of the introduction of technology-differentiated financial support for renewable energy on the cost competitiveness of Wave and Tidal Stream power. Further, we compare the impact of the current UK government support level to the more generous degree of assistance for marine technologies that is proposed by the Scottish government. - Research highlights: → Levelised costs of electricity generation from wave and tidal stream in UK calculated. → Comparison to ten renewable and non-renewable technologies demonstrated. → Sensitivity of levelised costs to key assumptions is demonstrated. → Technology-specific financial support revealed to be insufficient at current costs.

  20. Elementary Environmental Activities.

    Science.gov (United States)

    Larson, Robert J.

    This guide presents suggestions for field trips, out-of-doors activities, material for centers, and individualized activities in the teaching of elementary school science and particularly environmental education at the elementary level. The guide includes a section on preparation and procedures for conducting field trips, including sample…

  1. Departmentalize Elementary Schools

    Science.gov (United States)

    Chan, Tak Cheung; Jarman, Delbert

    2004-01-01

    In elementary schools today, most students receive their education in a single classroom from one teacher who is responsible for teaching language arts, social studies, math, and science. The self-contained classroom organization is predicated on the assumption that an elementary school teacher is a Jack (or Jill)-of-all-trades who is equally…

  2. Density functional theory calculations for the band gap and formation energy of Pr4-xCaxSi12O3+xN18-x; a highly disordered compound with low symmetry and a large cell size.

    Science.gov (United States)

    Hong, Sung Un; Singh, Satendra Pal; Pyo, Myoungho; Park, Woon Bae; Sohn, Kee-Sun

    2017-06-28

    A novel oxynitride compound, Pr 4-x Ca x Si 12 O 3+x N 18-x , synthesized using a solid-state route has been characterized as a monoclinic structure in the C2 space group using Rietveld refinement on synchrotron powder X-ray diffraction data. The crystal structure of this compound was disordered due to the random distribution of Ca/Pr and N/O ions at various Wyckoff sites. A pragmatic approach for an ab initio calculation based on density function theory (DFT) for this disordered compound has been implemented to calculate an acceptable value of the band gap and formation energy. In general, for the DFT calculation of a disordered compound, a sufficiently large super cell and infinite variety of ensemble configurations is adopted to simulate the random distribution of ions; however, such an approach is time consuming and cost ineffective. Even a single unit cell model gave rise to 43 008 independent configurations as an input model for the DFT calculations. Since it was nearly impossible to calculate the formation energy and the band gap energy for all 43 008 configurations, an elitist non-dominated sorting genetic algorithm (NSGA-II) was employed to find the plausible configurations. In the NSGA-II, all 43 008 configurations were mathematically treated as genomes and the calculated band gap and the formation energy as the objective (fitness) function. Generalized gradient approximation (GGA) was first employed in the preliminary screening using NSGA-II, and thereafter a hybrid functional calculation (HSE06) was executed only for the most plausible GGA-relaxed configurations with lower formation and higher band gap energies. The final band gap energy (3.62 eV) obtained after averaging over the selected configurations, resembles closely the experimental band gap value (4.11 eV).

  3. Reduction of dark-band-like metal artifacts caused by dental implant bodies using hypothetical monoenergetic imaging after dual-energy computed tomography.

    Science.gov (United States)

    Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K

    2013-06-01

    The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wang, Qian; Cheng, Xinhong; Zheng, Li; Ye, Peiyi; Li, Menglu; Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue; Yu, Yuehui

    2017-01-01

    Highlights: • Composite TiAlO rather than TiO_2-Al_2O_3 laminations is deposited on 4H-SiC by PEALD. • An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC. • TiAlO offers competitive barrier heights (>1 eV) for both electrons and holes. - Abstract: Intermixing of TiO_2 with Al_2O_3 to form TiAlO films on 4H-SiC is expected to simultaneously boost the dielectric constant and achieve sufficient conduction/valence band offsets (CBO/VBO) between dielectrics and 4H-SiC. In this work, a composite TiAlO film rather than TiO_2-Al_2O_3 laminations is deposited on 4H-SiC by plasma enhanced atomic layer deposition (PEALD). X-ray photoelectron spectroscopy (XPS) is performed to systematically analyze the interfacial chemistry and energy band alignment between TiAlO and 4H-SiC. An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC during PEALD process. The VBO and CBO between TiAlO and 4H-SiC are determined to be 1.45 eV and 1.10 eV, respectively, which offer competitive barrier heights (>1 eV) for both electrons and holes and make it suitable for the fabrication of 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  5. Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Zheng, Li, E-mail: zhengli@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ye, Peiyi; Li, Menglu [Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095 (United States); Shen, Lingyan; Li, Jingjie; Zhang, Dongliang; Gu, Ziyue [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System & Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2017-07-01

    Highlights: • Composite TiAlO rather than TiO{sub 2}-Al{sub 2}O{sub 3} laminations is deposited on 4H-SiC by PEALD. • An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC. • TiAlO offers competitive barrier heights (>1 eV) for both electrons and holes. - Abstract: Intermixing of TiO{sub 2} with Al{sub 2}O{sub 3} to form TiAlO films on 4H-SiC is expected to simultaneously boost the dielectric constant and achieve sufficient conduction/valence band offsets (CBO/VBO) between dielectrics and 4H-SiC. In this work, a composite TiAlO film rather than TiO{sub 2}-Al{sub 2}O{sub 3} laminations is deposited on 4H-SiC by plasma enhanced atomic layer deposition (PEALD). X-ray photoelectron spectroscopy (XPS) is performed to systematically analyze the interfacial chemistry and energy band alignment between TiAlO and 4H-SiC. An interfacial layer composed of Ti, Si, O and C forms between TiAlO and 4H-SiC during PEALD process. The VBO and CBO between TiAlO and 4H-SiC are determined to be 1.45 eV and 1.10 eV, respectively, which offer competitive barrier heights (>1 eV) for both electrons and holes and make it suitable for the fabrication of 4H-SiC metal-oxide-semiconductor field effect transistors (MOSFETs).

  6. A jet-dominated model for a broad-band spectral energy distribution of the nearby low-luminosity active galactic nucleus in M94

    Science.gov (United States)

    van Oers, Pieter; Markoff, Sera; Uttley, Phil; McHardy, Ian; van der Laan, Tessel; Donovan Meyer, Jennifer; Connors, Riley

    2017-06-01

    We have compiled a new multiwavelength spectral energy distribution (SED) for the closest obscured low-ionization emission-line region active galactic nucleus (AGN), NGC 4736, also known as M94. The SED comprises mainly high-resolution (mostly sub-arcsecond, or, at the distance to M94, ≲23 pc from the nucleus) observations from the literature, archival data, as well as previously unpublished sub-millimetre data from the Plateau de Bure Interferometer (PdBI) and the Combined Array for Research in Millimeter-wave Astronomy, in conjunction with new electronic MultiElement Radio Interferometric Network (e-MERLIN) L-band (1.5 GHz) observations. Thanks to the e-MERLIN resolution and sensitivity, we resolve for the first time a double structure composed of two radio sources separated by ˜1 arcsec, previously observed only at higher frequency. We explore this data set, which further includes non-simultaneous data from the Very Large Array, the Gemini telescope, the Hubble Space Telescope and the Chandra X-ray observatory, in terms of an outflow-dominated model. We compare our results with previous trends found for other AGN using the same model (NGC 4051, M81*, M87 and Sgr A*), as well as hard- and quiescent-state X-ray binaries. We find that the nuclear broad-band spectrum of M94 is consistent with a relativistic outflow of low inclination. The findings in this work add to the growing body of evidence that the physics of weakly accreting black holes scales with mass in a rather straightforward fashion.

  7. Electron densities and chemical bonding in TiC, TiN and TiO derived from energy band calculations

    International Nuclear Information System (INIS)

    Blaha, P.

    1983-10-01

    It was the aim of this paper to describe the chemical bonding of TiC, TiN and TiO by means of energy bands and electron densities. Using the respective potentials we have calculated the bandstructure of a finer k-grid with the linearized APW method to obtain accurate densities of states (DOS). These DOS wer partitioned into local partial contributions and the metal d DOS were further decomposed into tsub(2g) and esub(g) symmetry components in order to additionally characterize bonding. The electron densities corresponding to the occupied valence states are obtained from the LAPW calculations. They provide further insight into characteristic trends in the series from TiC to TiO: around the nonmetal site the density shows increasing localisation; around the metal site the deviation from spherical symmetry changes from esub(g) to tsub(2g). Electron density plots of characteristic band states allow to describe different types of bonding occurring in these systems. For TiC and TiN recent measurements of the electron densities exist for samples of TiCsub(0.94) and TiNsub(0.99), where defects cause static displacements of the Ti atoms. If this effect can be compensated by an atomic model one hopefully can extrapolate to stoichiometric composition. This procedure allows a comparison with structure factors derived from theoretical electron densities. The agreement for TiN is very good. For TiC the extrapolated data agree in terms of the deviations from spherical symmetry near the Ti site with the LAPW data, but the densities around both atoms are more localized than in theory. An explanation could be: a) the defects affect the electronic structure in TiCsub(0.94) with respect to TiCsub(1.0): b) the applied atomic model does not properly extrapolate to stoichiometry, because parameters of this model correlate or become unphysical. (Author)

  8. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  9. Olympiads for Elementary Schools.

    Science.gov (United States)

    Lenchner, George

    1985-01-01

    The goals and history of the Mathematical Olympiads for Elementary Schools are described. Teams, levels, and gender are discussed, as well as teacher training, administration, scoring, and awards. Sample problems are included. (MNS)

  10. Current state of X-band accelerating structure high gradient test. Be held at high energy accelerator organization on April 15, 2005

    International Nuclear Information System (INIS)

    Watanabe, Ken; Higo, Toshiyasu

    2005-01-01

    XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)

  11. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  12. Design of an X -band electron linear accelerator dedicated to decentralized 99Mo/99mTc supply: From beam energy selection to yield estimation

    Science.gov (United States)

    Jang, Jaewoong; Yamamoto, Masashi; Uesaka, Mitsuru

    2017-10-01

    The most frequently used radionuclide in diagnostic nuclear medicine, 99mTc, is generally obtained by the decay of its parent radionuclide, 99Mo. Recently, concerns have been raised over shortages of 99Mo/99mTc, owing to aging of the research reactors which have been supplying practically all of the global demand for 99Mo in a centralized fashion. In an effort to prevent such 99Mo/99mTc supply disruption and, furthermore, to ameliorate the underlying instability of the centralized 99Mo/99mTc supply chain, we designed an X -band electron linear accelerator which can be distributed over multiple regions, whereby 99Mo/99mTc can be supplied with improved accessibility. The electron beam energy was designed to be 35 MeV, at which an average beam power of 9.1 kW was calculated by the following beam dynamics analysis. Subsequent radioactivity modeling suggests that 11 of the designed electron linear accelerators can realize self-sufficiency of 99Mo/99mTc in Japan.

  13. Design of an X-band electron linear accelerator dedicated to decentralized ^{99}Mo/^{99m}Tc supply: From beam energy selection to yield estimation

    Directory of Open Access Journals (Sweden)

    Jaewoong Jang

    2017-10-01

    Full Text Available The most frequently used radionuclide in diagnostic nuclear medicine, ^{99m}Tc, is generally obtained by the decay of its parent radionuclide, ^{99}Mo. Recently, concerns have been raised over shortages of ^{99}Mo/^{99m}Tc, owing to aging of the research reactors which have been supplying practically all of the global demand for ^{99}Mo in a centralized fashion. In an effort to prevent such ^{99}Mo/^{99m}Tc supply disruption and, furthermore, to ameliorate the underlying instability of the centralized ^{99}Mo/^{99m}Tc supply chain, we designed an X-band electron linear accelerator which can be distributed over multiple regions, whereby ^{99}Mo/^{99m}Tc can be supplied with improved accessibility. The electron beam energy was designed to be 35 MeV, at which an average beam power of 9.1 kW was calculated by the following beam dynamics analysis. Subsequent radioactivity modeling suggests that 11 of the designed electron linear accelerators can realize self-sufficiency of ^{99}Mo/^{99m}Tc in Japan.

  14. Reaction mechanism of a PbS-on-ZnO heterostructure and enhanced photovoltaic diode performance with an interface-modulated heterojunction energy band structure.

    Science.gov (United States)

    Li, Haili; Jiao, Shujie; Ren, Jinxian; Li, Hongtao; Gao, Shiyong; Wang, Jinzhong; Wang, Dongbo; Yu, Qingjiang; Zhang, Yong; Li, Lin

    2016-02-07

    A room temperature successive ionic layer adsorption and reaction (SILAR) method is introduced for fabricating quantum dots-on-wide bandgap semiconductors. Detailed exploration of how SILAR begins and proceeds is performed by analyzing changes in the electronic structure of related elements at interfaces by X-ray photoelectric spectroscopy, together with characterization of optical properties and X-ray diffraction. The distribution of PbS QDs on ZnO, which is critical for optoelectrical applications of PbS with a large dielectric constant, shows a close relationship with the dipping order. A successively deposited PbS QDs layer is obtained when the sample is first immersed in Na2S solution. This is reasonable because the initial formation of different chemical bonds on ZnO nanorods is closely related to dangling bonds and defect states on surfaces. Most importantly, dipping order also affects their optoelectrical characteristics greatly, which can be explained by the heterojunction energy band structure related to the interface. The formation mechanism for PbS QDs on ZnO is confirmed by the fact that the photovoltaic diode device performance is closely related to the dipping order. Our atomic-scale understanding emphasises the fundamental role of surface chemistry in the structure and tuning of optoelectrical properties, and consequently in devices.

  15. Study of the energy band in n-type GaAs and p-type In P by transmission and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Banai, N.; Khanzadeh, M.

    1998-01-01

    Optical characterization of the n-type In P grown by horizontal Bridgman method was carried out using modular photoluminescence and optical transmission spectroscopy. The measured transmission spectra at room temperature using Cary 17 DX spectrophotometer reveals the band gap energies of 1.4 and 1.34 eV for p-type In P and the n-type GaAs, respectively. Photoluminescence spectra of the above samples was measured at 77 K with the excitation intensity of (20 W/Cm 2 ). The (B-A) transitions occur at 1.405 eV and at 1.382 eV respectively. Three spectra were observed for the n-type GaAs sample, namely, (B-B), (B-A) and another relatively wide spectra at wavelengths above the absorption edge caused by the deep level impurities. The peak position of these spectra are 1.482, 1.4 and 1.36 eV respectively. (author)

  16. Simbol-X: a formation flight mission with an unprecedented imaging capability in the 0.5-80 keV energy band

    Science.gov (United States)

    Tagliaferri, Gianpiero; Ferrando, Philippe; Le Duigou, Jean-Michel; Pareschi, Giovanni; Laurent, Philippe; Malaguti, Giuseppe; Clédassou, Rodolphe; Piermaria, Mauro; La Marle, Olivier; Fiore, Fabrizio; Giommi, Paolo

    2017-11-01

    The discovery of X-ray emission from cosmic sources in the 1960s has opened a new powerful observing window on the Universe. In fact, the exploration of the X-ray sky during the 70s-90s has established X-ray astronomy as a fundamental field of astrophysics. Today, the emission from astrophysical sources is by large best known at energies below 10 keV. The main reason for this situation is purely technical since grazing incidence reflection has so far been limited to the soft X-ray band. Above 10 keV all the observations have been obtained with collimated detectors or coded mask instruments. To make a leap step forward in Xray astronomy above 10 keV it is necessary to extend the principle of focusing X ray optics to higher energies, up to 80 keV and beyond. To this end, ASI and CNES are presently studying the implementation of a X-ray mission called Simbol-X. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to 80 keV and beyond, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This technological breakthrough will open a new highenergy window in astrophysics and cosmology. Here we will address the problematic of the development for such a distributed and deformable instrument. We will focus on the main performances of the telescope, like angular resolution, sensitivity and source localization. We will also describe the specificity of the calibration aspects of the payload distributed over two satellites and therefore in a not "frozen" configuration.

  17. X-ray short-time lags in the Fe-K energy band produced by scattering clouds in active galactic nuclei

    Science.gov (United States)

    Mizumoto, Misaki; Done, Chris; Hagino, Kouichi; Ebisawa, Ken; Tsujimoto, Masahiro; Odaka, Hirokazu

    2018-05-01

    X-rays illuminating the accretion disc in active galactic nuclei give rise to an iron K line and its associated reflection spectrum which are lagged behind the continuum variability by the light-travel time from the source to the disc. The measured lag timescales in the iron band can be as short as ˜Rg/c, where Rg is the gravitational radius, which is often interpreted as evidence for a very small continuum source close to the event horizon of a rapidly spinning black hole. However, the short lags can also be produced by reflection from more distant material, because the primary photons with no time-delay dilute the time-lags caused by the reprocessed photons. We perform a Monte-Carlo simulation to calculate the dilution effect in the X-ray reverberation lags from a half-shell of neutral material placed at 100 Rg from the central source. This gives lags of ˜2 Rg/c, but the iron line is a distinctly narrow feature in the lag-energy plot, whereas the data often show a broader line. We show that both the short lag and the line broadening can be reproduced if the scattering material is outflowing at ˜0.1c. The velocity structure in the wind can also give shifts in the line profile in the lag-energy plot calculated at different frequencies. Hence we propose that the observed broad iron reverberation lags and shifts in profile as a function of frequency of variability can arise from a disc wind at fairly large distances from the X-ray source.

  18. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we give an introduction to the ε (∞) Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and α-bar 0 . Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi 2 , 1/phi 3 , etc. Consequently and using ε (∞) theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=(}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  19. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L

    2004-02-01

    In the present work we give an introduction to the {epsilon}{sup ({infinity}}{sup )} Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and {alpha}-bar{sub 0}. Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi{sup 2}, 1/phi{sup 3}, etc. Consequently and using {epsilon}{sup ({infinity}}{sup )} theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=({r_brace}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  20. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    Science.gov (United States)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  1. Dipole Bands in 196Hg

    International Nuclear Information System (INIS)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-01-01

    High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  2. Is an elementary particle really: (i) a particle? (ii) elementary?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Is an elementary particle really: (i) a particle? (ii) elementary? Over centuries, naïve notions about this have turned out incorrect. Particles are not really pointlike. The word elementary is not necessarily well-defined. Notes:

  3. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  4. Elementary topology problem textbook

    CERN Document Server

    Viro, O Ya; Netsvetaev, N Yu; Kharlamov, V M

    2008-01-01

    This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. The book is tailored for the reader who is determined to work actively. The proofs of theorems are separated from their formulations and are gathered at the end of each chapter. This makes the book look like a pure problem book and encourages the reader to think through each formulation. A reader who prefers a more traditional style can either find the pr

  5. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  6. Elementary number theory

    CERN Document Server

    Dudley, Underwood

    2008-01-01

    Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta

  7. Systematic study of β-band and correlation with g- band using power law and soft rotor formula

    International Nuclear Information System (INIS)

    Katoch, Vikas; Kaushik, Reetu; Sharma, S.; Gupta, J.B.

    2014-01-01

    The nuclear structure of even Z even N medium mass transitional nuclei consist of ground state band, K π =0 1 β-band, K π =2 1 γ- band and other higher bands. As we move away from closed shell, energy levels are low lying from spherical to deformed nuclei and energy deviated from ideal rotor behavior. The energy of these transitional nuclei in ground band can also be studied using Bohr Mottelson energy expression, Soft Rotor Formula (SRF), Power Law (PL) etc. Recently, Gupta et al. (2013) modified SRF for non zero band head K π =2 1 γ-band and reproduced the level energies. Here same formula applied for K π =0 1 β-band and the level energies are reproduced and compared with experimental energies. The power law is also used for recalculation of level energies and for useful comparison

  8. Congenital Constriction Band Syndrome

    OpenAIRE

    Rajesh Gupta, Fareed Malik, Rishabh Gupta, M.A.Basit, Dara Singh

    2008-01-01

    Congenital constriction bands are anomalous bands that encircle a digit or an extremity. Congenitalconstriction band syndrome is rare condition and is mostly associated with other musculoskeletaldisorders.We report such a rare experience.

  9. Huge operation by energy gap of novel narrow band gap Tl1-x In1-x B x Se2 (B = Si, Ge): DFT, x-ray emission and photoconductivity studies

    Science.gov (United States)

    Piasecki, M.; Myronchuk, G. L.; Zamurueva, O. V.; Khyzhun, O. Y.; Parasyuk, O. V.; Fedorchuk, A. O.; Albassam, A.; El-Naggar, A. M.; Kityk, I. V.

    2016-02-01

    It is shown that narrow band gap semiconductors Tl1-x In1-x GexSe2 are able effectively to vary the values of the energy gap. DFT simulations of the principal bands during the cationic substitutions is done. Changes of carrier transport features is explored. Relation with the changes of the near the surface states is explored . Comparison on a common energy scale of the x-ray emission Se Kβ 2 bands, representing energy distribution of the Se 4p states, indicates that these states contribute preliminary to the top of the valence band. The temperature dependence of electrical conductivity and spectral dependence photoconductivity for the Tl1-x In1-x Ge x Se2 and Tl1-x In1-x Si x Se2 single crystals were explored and compared with previously reported Tl1-x In1-x Sn x Se2. Based on our investigations, a model of centre re-charging is proposed. Contrary to other investigated crystals in Tl1-x In1-x Ge x Se2 single crystals for x = 0.1 we observe extraordinarily enormous photoresponse, which exceed more than nine times the dark current. X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces of Tl1-x In1-x GexSe2 (x = 0.1 and 0.2) single crystals have been studied. These results indicate that the relatively low hygroscopicity of the studied single crystals is typical for the Tl1-x In1-x Ge x Se2 crystals, a property that is very important for handling these quaternary selenides as infrared materials operating at ambient conditions.

  10. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  11. DEPARTMENTALIZATION IN ELEMENTARY SCHOOLS.

    Science.gov (United States)

    American Association of School Administrators, Washington, DC.

    THE RESULTS OF A SURVEY CONCERNED WITH DEPARTMENTALIZATION IN ELEMENTARY SCHOOLS ARE REPORTED IN STATISTICAL TABLES WHICH ARE ACCOMPANIED BY DESCRIPTIVE COMMENTARY. FOR THE PURPOSE OF THE SURVEY, THE DEFINITION OF DEPARTMENTALIZATION IS RESTRICTED TO INCLUDE ONLY THOSE SITUATIONS IN WHICH STUDENTS RECEIVE INSTRUCTION IN THE VARIOUS ACADEMIC…

  12. Elementary Science Resource Guide.

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This guide for elementary teachers provides information on getting ideas into action, designing and implementing the right situation, ways in which to evaluate science process activities with students, and seven sample units. The units cover using the senses, magnets, forces, weather forecasting, classification of living things, and the physical…

  13. Elementary School Mathematics Priorities

    Science.gov (United States)

    Wilson, W. Stephen

    2009-01-01

    This article first describes some of the basic skills and knowledge that a solid elementary school mathematics foundation requires. It then elaborates on several points germane to these practices. These are then followed with a discussion and conclude with final comments and suggestions for future research. The article sets out the five…

  14. Vision in elementary mathematics

    CERN Document Server

    Sawyer, W W

    2003-01-01

    Sure-fire techniques of visualizing, dramatizing, and analyzing numbers promise to attract and retain students' attention and understanding. Topics include basic multiplication and division, algebra, word problems, graphs, negative numbers, fractions, many other practical applications of elementary mathematics. 1964 ed. Answers to Problems.

  15. Playing Golf Is Elementary

    Science.gov (United States)

    Goldman, Jill S.; Pfluge, Kevin F.

    2010-01-01

    Golf is a lifelong activity that people of all ages can enjoy if they experience success and have fun. Early involvement in the sport facilitates the development of the ability to strike an object with an implement. Striking with implements can be challenging for young children and teachers, but golf can be taught in all elementary school settings…

  16. Generalized elementary functions

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 411, č. 2 (2014), s. 838-852 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : elementary functions * Kurzweil-Stieltjes integral * generalized linear ordinary differential equations * time scale calculus Subject RIV: BA - General Mathematics Impact factor: 1.120, year: 2014 http://www.sciencedirect.com/science/article/pii/S0022247X13009141

  17. Piaget and Elementary Science

    Science.gov (United States)

    Chittenden, Edward A.

    1970-01-01

    Describes the intellectual development stages ascribed to children by Jean Piaget. Characteristics and examples are given for sensori-motor, preoperational, concrete operational, and formal operational thinking periods. Implications are given for elementary school science education, including (1) formal instruction does not accelerate acquisition…

  18. Elementary particles physics

    International Nuclear Information System (INIS)

    1990-01-01

    It is discussed the physics in Brazil in the next decade with regard to elementary particles and field theories. The situation of brazilian research institutes as well as its personnel is also presented. Some recommendations and financing of new projects are also considered. (A.C.A.S.)

  19. Hydrostatic pressure effects on the {gamma}-X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62210, Cuernavaca (Mexico)

    2007-06-15

    Mixing between {gamma} and X valleys of the conduction band in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated taken into account the effect of applied hydrostatic pressure. This effect is introduced via the pressure-dependent values of the corresponding energy gaps and the main band parameters. The mixing is considered along the lines of a phenomenological model. Variation of the confined ground state in the well as a function of the pressure is reported. The dependencies of the variationally calculated binding energy of a donor impurity with the hydrostatic pressure and well width are also presented. It is shown that the inclusion of the {gamma}-X mixing explains the non-linear behavior in the photoluminescence peak of confined exciton states that has been observed for pressures above 20 kbar. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Superdeformed bands in 64147Gd83, a possible test of the existence of octupole correlations in superdeformed bands

    International Nuclear Information System (INIS)

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T.

    1990-01-01

    Two discrete superdeformed bands (SD) have been identified in the nucleus 147 Gd. The transitions energies of the SD yrast band lie halfway between the γ-ray energies of the yrast SD band in 146 Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in 148 Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.)

  1. C-band main linac rf system for e+e- linear collider of 0.5 to 1.0 TeV C.M. energy

    International Nuclear Information System (INIS)

    Shintake, T.; Akasaka, N.; Kubo, K.; Matsumoto, H.; Matsumoto, S.; Takeda, Shigeru; Oide, K.; Yokoya, K.; Pearce, P.; Lee, H.S.; Cho, M.H.; Watanabe, K.; Takeda, Osamu; Baba, H.

    1996-01-01

    A hardware R and D for the C-band (5712 MHz) rf system for a linear collider started in 1996 at KEK. An accelerating gradient of 32 MV/m (including beam loading) will be generated by 50 MW C-band klystrons in combination with an rf-compression system. The klystron and its power supply can be fabricated by conventional technology. The straightness tolerance for the accelerating structures is 30 μm, which is also achievable with conventional fabrication processes. No critical new technology is required in a C-band system. Therefore, a reliable system can be constructed at low cost with a minimum of R and D studies. The first high-power test is scheduled for 1997. (author)

  2. Rotationally resolved pulsed-field ionization photoelectron bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) in the energy range of 17.0-18.2 eV

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Evans, M. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Ng, C. Y. [Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Hsu, C.-W. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Jarvis, G. K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2000-01-15

    We have obtained rotationally resolved pulsed-field ionization photoelectron (PFI-PE) spectra for O{sub 2} in the energy range of 17.05-18.13 eV, covering the ionization transitions O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12,N{sup +})(<-)O{sub 2}(X {sup 3}{sigma}{sub g}{sup -},v{sup ''}=0,N{sup ''}). Although these O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}) PFI-PE bands have significant overlaps with vibrational bands for O{sub 2}{sup +}(a {sup 4}{pi}{sub u}) and O{sub 2}{sup +}(X {sup 2}{pi}{sub g}), we have identified all the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12) bands by simulation of spectra obtained using supersonically cooled O{sub 2} samples with rotational temperatures {approx_equal}20 and 220 K. While these v{sup +}=0-12 PFI-PE bands represent the first rotationally resolved photoelectron data for O{sub 2}{sup +}(A {sup 2}{pi}{sub u}), the PFI-PE bands for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) are the first rotationally resolved spectroscopic data for these levels. The simulation also allows the determination of accurate ionization energies, vibrational constants, and rotational constants for O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=0-12). The analysis of the PFI-PE spectra supports the conclusion of the previous emission study that the O{sub 2}{sup +}(A {sup 2}{pi}{sub u},v{sup +}=9 and 10) states are strongly perturbed by a nearby electronic state. (c) 2000 American Institute of Physics.

  3. On Adiabatic Processes at the Elementary Particle Level

    OpenAIRE

    A, Michaud

    2016-01-01

    Analysis of adiabatic processes at the elementary particle level and of the manner in which they correlate with the principle of conservation of energy, the principle of least action and entropy. Analysis of the initial and irreversible adiabatic acceleration sequence of newly created elementary particles and its relation to these principles. Exploration of the consequences if this first initial acceleration sequence is not subject to the principle of conservation.

  4. Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO3

    Science.gov (United States)

    Zhang, Jiaye; Han, Shaobo; Luo, Weihuang; Xiang, Shuhuai; Zou, Jianli; Oropeza, Freddy E.; Gu, Meng; Zhang, Kelvin H. L.

    2018-04-01

    Transparent oxide semiconductors hold great promise for many optoelectronic devices such as transparent electronics, UV-emitting devices, and photodetectors. A p-n heterojunction is the most ubiquitous building block to realize these devices. In this work, we report the fabrication and characterization of the interface properties of a transparent heterojunction consisting of p-type NiO and n-type perovskite BaSnO3. We show that high-quality NiO thin films can be epitaxially grown on BaSnO3 with sharp interfaces because of a small lattice mismatch (˜1.3%). The diode fabricated from this heterojunction exhibits rectifying behavior with a ratio of 500. X-ray photoelectron spectroscopy reveals a type II or "staggered" band alignment with valence and conduction band offsets of 1.44 eV and 1.86 eV, respectively. Moreover, a large upward band bending potential of 0.90 eV for BaSnO3 and a downward band bending potential of 0.15 eV for NiO were observed in the interface region. Such electronic properties have important implication for optoelectronic applications as the large built-in potential provides favorable energetics for photo-generated electron-hole separation/migration.

  5. [Research in elementary particles and interactions

    International Nuclear Information System (INIS)

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K + decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e + e - interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks

  6. Solar Energy

    Science.gov (United States)

    Building Design and Construction, 1977

    1977-01-01

    Describes 21 completed projects now using solar energy for heating, cooling, or electricity. Included are elementary schools in Atlanta and San Diego, a technical school in Detroit, and Trinity University in San Antonio, Texas. (MLF)

  7. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  8. An equipment complex for instrumental elementary analysis

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Kuz'michev, V.A.; Leonov, V.F.; Tarasov, Y.F.

    1986-01-01

    The competitiveness of elementary analysis on a research reactor depends, in many respects, on the provision of equipment which would permit the realization of the advantages of the analytical method. This paper describes the IR-8 reactor at the I.V. Kurchatov Institute of Atomic energy. In the design of the complex considerable attention was focused on automation and the radiation safety of the operations, which is of particular importance in the light of the large volumes of analysis

  9. Making elementary particles visible

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Eyal [ArSciMed (art, science, media), 100, rue du Faubourg Saint Antoine, 75012 Paris (France)

    1994-07-15

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics.

  10. Making elementary particles visible

    International Nuclear Information System (INIS)

    Cohen, Eyal

    1994-01-01

    Ever since the days of the ancient Greek atomists, the notion that matter is made up of tiny fundamental elements has dominated the history of scientific theories. Elementary particles (and now strings...) are the latest in this chronological list of fundamental objects. Our notions of what a physical theory should be like, and what precisely ''matter is made up of...'' really means, have evolved with the years, undergoing a profound revolution with quantum mechanics

  11. Introduction to elementary particles

    CERN Document Server

    Griffiths, David J

    2008-01-01

    This is the first quantitative treatment of elementary particle theory that is accessible to undergraduates. Using a lively, informal writing style, the author strikes a balance between quantitative rigor and intuitive understanding. The first chapter provides a detailed historical introduction to the subject. Subsequent chapters offer a consistent and modern presentation, covering the quark model, Feynman diagrams, quantum electrodynamics, and gauge theories. A clear introduction to the Feynman rules, using a simple model, helps readers learn the calculational techniques without the complicat

  12. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  13. Table of members of quasi-bands

    International Nuclear Information System (INIS)

    Sakai, Mitsuo.

    1984-04-01

    The probable members of the quasi-bands in even-even nuclei for Z between 6 and 100 are listed in this table. The terms quasi-bands have been introduced in the so-called spherical regions as the counter parts of the collective bands in the deformed regions. In the present compilation, the data for deformed nuclei are classified for convenience under the same titles, Quasi-Ground Band, Quasi-Beta Band and Quasi-Gamma Band, as are used for other nuclear regions. The present edition covers the literature through September, 1983. Fifteen newly discovered nuclides are included. The classification of energy level into quasi-bands is made on the basis of the systematic trend in the data over large groups of nuclei. (Kato, T.)

  14. Experiments in high energy elementary particle physics and processing of photographically filed data with the aid of a measuring and evaluating system

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, H [Akademie der Wissenschaften der DDR, Berlin-Zeuthen. Inst. fuer Hochenergiephysik

    1977-01-01

    The measuring and evaluating system includes pattern recognition and measuring instruments as well as a processor for data evaluation and checking procedures. The program chart and the application to evaluating photographs of particle tracks from high energy physics experiments are mentioned. The time-sharing effect of such systems in data evaluation is emphasized.

  15. Elementary school on the move– moving in elementary school

    Directory of Open Access Journals (Sweden)

    Reiner Hildebrandt-Stramann

    2008-06-01

    Full Text Available Elementary school in Germany has changed during the last five years because, among other reasons, movement has entered it. The title's pun calls attention for two lines of work that characterize school pedagogy contemporary discussion. One of these lines is related to the last 15 years changing process at elementary school: it states that elementary school must be a learning and living place for children. The other line is related to movement pedagogy processes, which has been achieving higher and higher dimensions. Elementary school must be seen from movement point of view and must be transformed in a place for movement.

  16. Acoustical conditions for speech communication in active elementary school classrooms

    Science.gov (United States)

    Sato, Hiroshi; Bradley, John

    2005-04-01

    Detailed acoustical measurements were made in 34 active elementary school classrooms with typical rectangular room shape in schools near Ottawa, Canada. There was an average of 21 students in classrooms. The measurements were made to obtain accurate indications of the acoustical quality of conditions for speech communication during actual teaching activities. Mean speech and noise levels were determined from the distribution of recorded sound levels and the average speech-to-noise ratio was 11 dBA. Measured mid-frequency reverberation times (RT) during the same occupied conditions varied from 0.3 to 0.6 s, and were a little less than for the unoccupied rooms. RT values were not related to noise levels. Octave band speech and noise levels, useful-to-detrimental ratios, and Speech Transmission Index values were also determined. Key results included: (1) The average vocal effort of teachers corresponded to louder than Pearsons Raised voice level; (2) teachers increase their voice level to overcome ambient noise; (3) effective speech levels can be enhanced by up to 5 dB by early reflection energy; and (4) student activity is seen to be the dominant noise source, increasing average noise levels by up to 10 dBA during teaching activities. [Work supported by CLLRnet.

  17. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  18. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  19. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  20. First-principles energy band calculation of Ruddlesden–Popper compound Sr{sub 3}Sn{sub 2}O{sub 7} using modified Becke–Johnson exchange potential

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, Sunao, E-mail: kamimura-sunao@che.kyutech.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobata, Kitakyushu, Fukuoka 804-8550 (Japan); National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga 841-0052 (Japan); Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga Kouen, Kasuga, Fukuoka 816-8580 Japan (Japan); Obukuro, Yuki [Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192 (Japan); Matsushima, Shigenori, E-mail: smatsu@kct.ac.jp [Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985 (Japan); Nakamura, Hiroyuki [Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985 (Japan); Arai, Masao [Computational Materials Science Unit (CMSU), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Xu, Chao-Nan, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 807-1 Shuku-machi, Tosu, Saga 841-0052 (Japan); Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1 Kasuga Kouen, Kasuga, Fukuoka 816-8580 Japan (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-12-15

    The electronic structure of Sr{sub 3}Sn{sub 2}O{sub 7} is evaluated by the scalar-relativistic full potential linearized augmented plane wave (FLAPW+lo) method using the modified Becke–Johnson potential (Tran–Blaha potential) combined with the local density approximation correlation (MBJ–LDA). The fundamental gap between the valence band (VB) and conduction band (CB) is estimated to be 3.96 eV, which is close to the experimental value. Sn 5s states and Sr 4d states are predominant in the lower and upper CB, respectively. On the other hand, the lower VB is mainly composed of Sn 5s, 5p, and O 2p states, while the upper VB mainly consists of O 2p states. These features of the DOS are well reflected by the optical transition between the upper VB and lower CB, as seen in the energy dependence of the dielectric function. Furthermore, the absorption coefficient estimated from the MBJ–LDA is similar to the experimental result. - Graphical abstract: Calculated energy band structure along the symmetry lines of the first BZ of Sr{sub 3}Sn{sub 2}O{sub 7} crystal obtained using the MBJ potential. - Highlights: • Electronic structure of Sr{sub 3}Sn{sub 2}O{sub 7} is calculated on the basis of MBJ–LDA method for the first time. • Band gap of Sr{sub 3}Sn{sub 2}O{sub 7} is determined accurately on the basis of MBJ–LDA method. • The experimental absorption spectrum of Sr{sub 3}Sn{sub 2}O{sub 7} produced by MBJ–LDA is more accurate than that obtained by GGA method.

  1. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  2. Elementary matrix theory

    CERN Document Server

    Eves, Howard

    1980-01-01

    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  3. FY 1991 Report on research and development of super heat pump energy accumulation system. Part 1. Construction and operation of the prototype system (researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaiahtsu 1981 nendo seika hokokusho. 1. System shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the super high performance heat pumps and elementary equipment, for R and D of the super heat pump energy accumulation system. For R and D of the super high performance compression heat pumps, the R and D efforts are directed to tests and evaluation of the pilot plant for the highly efficient type (for heating only), which produce the results of COP exceeding the target of 8; to tests of the anti-corrosion measures for the aluminum heat exchangers for the highly efficient type (for cooling and heating), by which the effective inhibitors are selected. The hybrid systems of the super high performance compression heat pumps and chemical heat storage are also studied in detail. The R and D efforts are directed to construction and operation of the hybrid heat pump system to collect underground heat for the high temperature type (utilizing low temperature heat source), which produce the results of confirming possibility of efficient heat collection for extended periods; and to improvement, construction on a trial basis and operation of the high-speed reciprocating compressors and steam superchargers for the high temperature type (utilizing high temperature heat source). For R and D of the elementary equipment, tests and evaluation are conducted for the EHD heat exchangers which use R123 as the new working fluid. (NEDO)

  4. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqua, Poppy; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada)

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  5. High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the X3Σg−, a1Δg and b1Σg+ states

    International Nuclear Information System (INIS)

    Yu, Shanshan; Drouin, Brian J.; Miller, Charles E.

    2014-01-01

    We have updated the isotopically invariant Dunham fit of O 2 with newly reported literature transitions to derive (1) the energy levels, partition sums, band-by-band molecular constants, and RKR potentials for the X 3 Σ g − , a 1 Δ g , and b 1 Σ g + states of the six O 2 isotopologues: 16 O 16 O, 16 O 17 O, 16 O 18 O, 17 O 17 O, 17 O 18 O, and 18 O 18 O; (2) Franck-Condon factors for their a 1 Δ g −X 3 Σ g − , b 1 Σ g + −X 3 Σ g − , and a 1 Δ g −b 1 Σ g + band systems. This new spectroscopic parameterization characterizes all known transitions within and between the X 3 Σ g − , a 1 Δ g , and b 1 Σ g + states within experimental uncertainty and can be used for accurate predictions of as yet unmeasured transitions. All of these results are necessary to provide a consistent linelist of all transitions which will be reported in a followup paper

  6. Energy-band alignment of (HfO2)x(Al2O3)1-x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (-201)

    Science.gov (United States)

    Yuan, Lei; Zhang, Hongpeng; Jia, Renxu; Guo, Lixin; Zhang, Yimen; Zhang, Yuming

    2018-03-01

    Energy band alignments between series band of Al-rich high-k materials (HfO2)x(Al2O3)1-x and β-Ga2O3 are investigated using X-Ray Photoelectron Spectroscopy (XPS). The results exhibit sufficient conduction band offsets (1.42-1.53 eV) in (HfO2)x(Al2O3)1-x/β-Ga2O3. In addition, it is also obtained that the value of Eg, △Ec, and △Ev for (HfO2)x(Al2O3)1-x/β-Ga2O3 change linearly with x, which can be expressed by 6.98-1.27x, 1.65-0.56x, and 0.48-0.70x, respectively. The higher dielectric constant and higher effective breakdown electric field of (HfO2)x(Al2O3)1-x compared with Al2O3, coupled with sufficient barrier height and lower gate leakage makes it a potential dielectric for high voltage β-Ga2O3 power MOSFET, and also provokes interest in further investigation of HfAlO/β-Ga2O3 interface properties.

  7. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  8. Engineering at the Elementary Level

    Science.gov (United States)

    McGrew, Cheryl

    2012-01-01

    Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…

  9. Assessing Elementary Algebra with STACK

    Science.gov (United States)

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  10. Explorations in Elementary Mathematical Modeling

    Science.gov (United States)

    Shahin, Mazen

    2010-01-01

    In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and…

  11. Elementary School Philosophy: A Response

    Science.gov (United States)

    Wartenberg, Thomas E.

    2012-01-01

    This article is a response to criticism of my book "Big Ideas for Little Kids." The main topics addressed are: Who is the audience for the book? Can people without formal philosophical training can be good facilitators of elementary school philosophy discussions? Is it important to assess attempts to teach philosophy in elementary school? Should…

  12. Elementary chaotic snap flows

    International Nuclear Information System (INIS)

    Munmuangsaen, Buncha; Srisuchinwong, Banlue

    2011-01-01

    Highlights: → Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. → Three of all are conservative systems whilst three others are dissipative systems. → Four cases need only a single control parameter and a single nonlinearity. → A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x .... =f(x ... ,x .. ,x . ,x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.

  13. Research on elementary particle physics

    International Nuclear Information System (INIS)

    Holloway, L.E.; O'Halloran, T.A.

    1992-05-01

    This report describes the activities of the University of Illinois Experimental High Energy Physics Group. The physicists in the University of Illinois High Energy Physics Group are engaged in a wide variety of experiments at current and future accelerator laboratories. These include: (1) The CDF experiment at the Fermilab Tevetron p bar p collider. (2) Design and developmental work for the SDC group at SSCL. (3) Experiments at the wide band photon beam at Fermilab. (4) The SLD experiment at SLAC and design studies for a τ-charm factor. (5) CP violation experiments at Fermilab. (6) The HiRes cosmic ray experiment at Dugway Proving Grounds, Utah. (7) Computational facilities. (8) Electronics systems development

  14. Identical and shifted identical bands

    International Nuclear Information System (INIS)

    Dodder, R.S; Jones, E.F.; Hamilton, J.H.

    1997-01-01

    Spontaneous fission of 252 Cm was studied with 72 large Compton suppressed Ge detectors in Gamma sphere. New isotopes 160 Sm and 162 Gd were identified. Through X-ray-γ and γ-γ-γ) coincidence measurements, level energies were established to spins 14 + to 20 + in 152 , 154 156 60 Nd 92 94 96 , 156 , 158 , 160 62 Sm 94 , 96 , 98 , and 160 , 162 64 Gd 96 , 98 . These nuclei exhibit a remarkable variety of identical bands and bands where the energies and moments of inertia are shifted by the same constant amount for every spin state from 2 + to 12 + for various combinations of nuclei differing by 2n, 4n, 2p, 4p, and α

  15. The energy band structure of A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noriza A. [Physics Department, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Azhan, Muhd. Z. [Defence Science Department, Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Rosli, A. N. [Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai 71800, Negeri Sembilan (Malaysia); Shrivastava, Keshav N. [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-03-05

    We study the band structure of antiferromagnetic A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors by using first-principles electronic structure calculations which is density functional theory. In the vicinity of iron-vacancy, we identify the valence electrons of A{sub x}Fe{sub 2}Se{sub 2} will be filled up to the Fermi level and no semiconducting gap is observed. Hence, the A{sub x}Fe{sub 2}Se{sub 2} is a metallic instead of semiconducting which leads to superconductivity in the orbital-selective Mott phase. Similarly, there is non-vanishing density of states at the Fermi level.

  16. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  17. Energy perspectives 2035 - Volume 4, side-notes; Die Energieperspektiven 2035 - Band 4: Exkurse. Einzelthemen, wie fossile Energieressourcen, Einfluss der Klimaerwaermung, Flugverkehr, Ueberblick ueber andere Energieperspektiven des Energiesektors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    This comprehensive report published by the Swiss Federal Office of Energy (SFOE) presents a number of side-notes pertaining to the first three volumes of the Energy Perspectives series of reports. Various topics are discussed by the authors of the first three volumes of the perspectives in the meetings held by the Energy Perspectives Working Group. The sixteen side-notes presented here cover the following topics: General conditions, fossil resources, the influence of climate warming, CO{sub 2} emissions trading (Joint Implementation JI and Clean Development Mechanism CDM), definition of potentials, air traffic, imported renewable electricity, hydro power, electricity cost calculation, sensitivity analysis of centralised power production facilities, heat-pumps and their power consumption, cold spells and heat-waves, risk and its perception, the 2000-Watt society and international and national energy perspectives

  18. Supersymmetry of elementary particles

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.; Zakharov, O.A.

    1986-01-01

    Some difficulties, connected with correct application of supersymmetry mathematical tools in the field and elementary particle theory are pointed out. The role of Grassman algebra in the usual field theory and the role of Lee superalgebra in supertransformations mixing bosons and fermions are shown. Grassman algebra in the theory of supersymmetries plays a role of numerical field. A supersymmetrical model, when indexes {i} of Grassman algebra corresponding to ''color'', and indexes {α} of Lee superalgebra representations - to ''flavor'', is considered. It is marked that the problem of interpretation of Grassman algebra indexes is a key one for the theory of supersymmetries. In particular, it gives no possibility to come from the theory of supersymmetries to the usual field theory, whose indexes of Grassman algebra possess obvious physical meaning

  19. Information work: solar energy. Home heating, hot water production, cooling, power generation. Volume 1. Informationswerk sonnenenergie. Hausheizung, warmwasserbereitung, kuehlung, stromgewinnung. Band 1

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Seven articles on various aspects of solar energy utilization are compiled. The topics discussed are solar home heating in modular construction, recommedations for private and industrial new construction, legal aspects in solar energy installations, solar state diagrams as an aid for improving solar planning data for construction, insolation and clouds, network of stations and observation sites for radiation measurements in Germany, and solar collectors for air medium. (JSR)

  20. Energy perspectives 2035 - Volume 3, effects on the national economy; Die Energieperspektiven 2035 - Band 3: Volkswirtschaftliche Auswirkungen. Ergebnisse des dynamischen Gleichgewichtsmodells, mit Anhang ueber die externen Kosten

    Energy Technology Data Exchange (ETDEWEB)

    Voehringer, F.; Mueller, A.

    2007-03-15

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at the effects of the four scenarios concerning future developments in Swiss energy supply policy on the Swiss national economy. The four energy scenarios include variants entitled 'business as usual', 'increased co-operation', 'new priorities' and 'on the way to a 2000-Watt society'. This report presents and discusses the results of a dynamic balance model and includes an appendix that presents data on the external costs of the energy sector in Switzerland. Swiss energy scenarios are discussed in an international context and five climate-policy scenarios are developed. Effects on CO{sub 2} emissions and energy consumption are discussed, as are socio-economic effects. The results of a so-called cross-impact analysis are discussed and the opinions of Swiss climate experts are reviewed. External costs are reviewed in a comprehensive appendix to the report

  1. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  2. Elementary particles in curved spaces

    International Nuclear Information System (INIS)

    Lazanu, I.

    2004-01-01

    The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)

  3. Notes on elementary particle physics

    CERN Document Server

    Muirhead, William Hugh

    1972-01-01

    Notes of Elementary Particle Physics is a seven-chapter text that conveys the ideas on the state of elementary particle physics. This book emerged from an introductory course of 30 lectures on the subject given to first-year graduate students at the University of Liverpool. The opening chapter deals with pertinent terminologies in elementary particle physics. The succeeding three chapters cover the concepts of transition amplitudes, probabilities, relativistic wave equations and fields, and the interaction amplitude. The discussion then shifts to tests of electromagnetic interactions, particul

  4. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  5. Dielectric functions and energy band gap variation studies of manganese doped Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} thin films using spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Prikshit, E-mail: pgautam.phy.du@gmail.com [Department of Physics and Astrophysics, University of Delhi (DU), Delhi 110007 (India); Department of Physics Kirori Mal College, University of Delhi, Delhi 110007 (India); Sachdeva, Anupama [Department of Physics and Astrophysics, University of Delhi (DU), Delhi 110007 (India); Singh, Sushil K. [Functional Materials Division, SSPL, Timarpur, New Delhi 110054 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi (DU), Delhi 110007 (India)

    2014-12-25

    Highlights: • Mn Doped Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) thin films prepared by chemical solution deposition technique. • Raman spectroscopy of these films shows that Mn{sup 3+} is well substituted at Ti{sup 4+} site. • The optical properties of BLT and Mn modified BLT thin films were investigated by using spectroscopic ellipsometry. • A double Tauc–Lorentz (DTL) dispersion relation was successfully used to model the dielectric functions. • The direct optical band gap (Eg{sup d}) is found to decrease with increase in Mn content. - Abstract: Single phase polycrystalline Mn-modified Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) thin films were prepared by chemical solution deposition method using spin coating technique on Pt/Ti/SiO{sub 2}/Si (1 0 0) substrates. Raman spectroscopy of these films shows that Mn{sup 3+} is well substituted at Ti{sup 4+} site. The optical properties of BLT and Mn modified BLT thin films were investigated at room temperature by using spectroscopic ellipsometry (SE) in the energy range 0.72–6.2 eV. A double Tauc–Lorentz (DTL) dispersion relation was successfully used to model the dielectric functions of these films where a shift to the lower energy side with Mn doping is seen. The full width at half maxima (FWHM) (Γ) of dielectric function is found to increase with Mn doping. This increase in FWHM may be attributed to the increase in the trap density in forbidden band which consequently decreases the value of direct optical band gap (Eg{sup d}). The direct optical band gap (Eg{sup d}) is found to decrease with increase in Mn content in the studied composition range. This decrease in Eg{sup d} with doping may be attributed to the variation in the defect concentration present in the structure.

  6. Wide Band to ''Double Band'' upgrade

    International Nuclear Information System (INIS)

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs

  7. Utilizing Suomi NPP's Day-Night Band to Assess Energy Consumption in Rural and Urban Areas as an Input for Poverty Analysis

    Science.gov (United States)

    Baldwin, H. B.; Klug, M.; Tapracharoen, K.; Visudchindaporn, C.

    2017-12-01

    While poverty in Thailand has decreased from 67% in 1986 to 13% in 2012, 6.7 million people were still living within 20% of the poverty line in 2014. Economic uncertainty caused by recurring droughts and decreasing agricultural prices puts this vulnerable part of the population at risk of dropping below the national poverty line in the future. In order to address this issue, the team worked with the Office of Science and Technology (OSTC) at the Royal Thai Embassy, Asian Disaster Preparedness Center (ADPC), and the NASA SERVIR Coordination Office to formulate a new method of analyzing poverty within Thailand. This project utilizes the monthly composite product for 2012-2015 produced by the Earth Observations Group (EOG) at National Oceanic and Atmospheric Administration (NOAA) and National Geophysical Data Center (NGDC). EOG created this product from satellite imagery from Suomi National Polar-Orbiting Visible Infrared Imaging Radiometer Suite's Day Night Band (Suomi NPP VIIRS DNB). Additionally, this project incorporated socio-economic data from Thailand's Ministry of Information and Communication Technology's National Statistical Office and Ministry of Education's National Education Information System to create an enhanced poverty index. This new poverty index will provide the Thai government a cost-effective way to analyze changes of poverty within the nation and inform policy making.

  8. Elementary Particles The first hundred years

    CERN Document Server

    Perkins, Donald Hill

    1997-01-01

    To mark the centenary of the discovery of that first elementary particle, the electron, some remarks and recollections from the early days of high energy physics, including the impact of early experiments and ideas on todayÕs research. Much of our progress in this field has been carefully anticipated and planned, but a surprising number of successes were the result of incredibly lucky breaks, where headway was made despite - or even because of - incorrect experimental results, crossed wires or simply asking the wrong question at the right time. We can be sure therefore that the next century - or perhaps even what remains of this one - will have unexpected surprises in store.

  9. The basic elementary particles as martensitic nucleus

    International Nuclear Information System (INIS)

    Aguinaco-Bravo, V. J.; Onoro, J.

    1999-01-01

    The martensitic transformation is a diffusional structural change that produces an important modification of the microstructure and properties of materials. In this paper we propose how the martensitic phase is nucleated from a basic elementary particle (bep). The bep is formed in several stages. Vacancies, divacancies, etc. are formed at high temperature, which collapse into prismatic dislocation loops during the cooling process. We define a bep as a dislocation loop reaching a critical radius and fulfilling certain elastic energy conditions. A martensitic nucleus is a bep that coincides crystallographically with the habit plane of the matrix. (Author) 16 refs

  10. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  11. Plasmon band gap generated by intense ion acoustic waves

    International Nuclear Information System (INIS)

    Son, S.; Ku, S.

    2010-01-01

    In the presence of an intense ion acoustic wave, the energy-momentum dispersion relation of plasmons is strongly modified to exhibit a band gap structure. The intensity of an ion acoustic wave might be measured from the band gap width. The plasmon band gap can be used to block the nonlinear cascading channel of the Langmuir wave decay.

  12. Energy partitioning in elementary chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Bersohn, R. [Columbia Univ., New York, NY (United States)

    1993-12-01

    In the past year research has centered on the decomposition of hot molecules, the reaction of ethynyl radicals with hydrogen molecules and the reaction of oxygen atoms with acetylene. Reaction kinetics studies are reported for each of these systems.

  13. Elementary number theory with programming

    CERN Document Server

    Lewinter, Marty

    2015-01-01

    A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con

  14. Cosmic objects and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Rozental, I L [AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij

    1977-02-01

    Considered are the connections between the parameters of elementary particles (mass ''size'') and the characteristics of stars (the main sequence stars, white dwarf stars and pulsars). Presented is the elementary theory of black hole radiation in the framework of which all the regularities of the process are derived. The emphiric numerical sequence connecting nucleon mass and universe constants (G, h, c) with the masses of some cosmic objects is given.

  15. Amniotic constriction bands

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Amniotic band sequence URL of this page: //medlineplus.gov/ency/ ... birth. The baby should be delivered in a medical center that has specialists experienced in caring for babies ... or partial loss of function of a body part. Congenital bands affecting large parts of the body cause the ...

  16. Features of the core-valence luminescence and electron energy band structure of A1-xCsxCaCl3 (A = K,Rb) crystals

    International Nuclear Information System (INIS)

    Chornodolskyy, Ya; Stryganyuk, G; Syrotyuk, S; Voloshinovskii, A; Rodnyi, P

    2007-01-01

    From luminescence spectroscopy of CsCaCl 3 , Rb 1-x Cs x CaCl 3 and K 1-x Cs x CaCl 3 crystals, we have found evidence for intrinsic and impurity core-valence luminescence due to the radiative recombination of valence electrons with the holes of intrinsic or impurity 5p Cs + core states. The structural similarity of core-valence luminescence spectra has been revealed for the A 1-x Cs x CaCl 3 (A = K,Rb) crystals investigated. The electron energy structure of the CsCaCl 3 crystal has been calculated using the pseudopotential approach taking into account the gradient corrections for the exchange-correlation energy. The calculated density of the electronic states of CsCaCl 3 has been compared with corresponding parameters obtained from the analysis of core-valence luminescence spectra

  17. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  18. Kinetics of elementary atom and radical reactions: Progress report

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1986-01-01

    Our research program is concerned with the kinetics of elementary gas phase reactions and energy transfer involving polyatomic molecules. We report here on three ongoing projects: The reaction of oxygen atoms with hydrogen molecules, the electronic relaxation of NH radicals, and the vibrational relaxation of highly excited SF 6 molecules. 10 refs., 5 figs

  19. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  20. Superdeformed bands in sub 64 sup 147 Gd sub 83 , a possible test of the existence of octupole correlations in superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, K.; Balouka, D.; Beck, F.A.; Byrski, T.; Curien, D.; Duchene, G.; Gehringer, C.; Haas, B.; Merdinger, J.C.; Romain, P.; Santos, D.; Styczen, J.; Vivien, J.P.; Dudek, J.; Szymanski, Z.; Werner, T. (Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires)

    1990-12-24

    Two discrete superdeformed bands (SD) have been identified in the nucleus {sup 147}Gd. The transitions energies of the SD yrast band lie halfway between the {gamma}-ray energies of the yrast SD band in {sup 146}Gd while the transition energies of the excited band lie half way between the transition energies of the yrast SD band in {sup 148}Gd. These two bands are shown to exhibit the presence of the pseudo SU(3) symmetry and also indicate the possible existence of octupole correlations at large elongations and high spins. (orig.).

  1. Electron currents associated with an auroral band

    International Nuclear Information System (INIS)

    Spiger, R.J.; Anderson, H.R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed

  2. Electron currents associated with an auroral band

    Science.gov (United States)

    Spiger, R. J.; Anderson, H. R.

    1975-01-01

    Measurements of electron pitch angle distributions and energy spectra over a broad auroral band were used to calculate net electric current carried by auroral electrons in the vicinity of the band. The particle energy spectrometers were carried by a Nike-Tomahawk rocket launched from Poker Flat, Alaska, at 0722 UT on February 25, 1972. Data are presented which indicate the existence of upward field-aligned currents of electrons in the energy range 0.5-20 keV. The spatial relationship of these currents to visual structure of the auroral arc and the characteristics of the electrons carrying the currents are discussed.

  3. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  4. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...

  5. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    Science.gov (United States)

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  6. B(M1) values in the band-crossing of shears bands in 197Pb

    Science.gov (United States)

    Krücken, R.; Cooper, J. R.; Beausang, C. W.; Novak, J. R.; Dewald, A.; Klug, T.; Kemper, G.; von Brentano, P.; Carpenter, M.; Wiedenhöver, I.

    We present details of the band crossing mechanism of shears bands using the example of 197Pb. Absolute reduced matrix elements B(M1) were determined by means of a RDM lifetime measurement in one of the shears bands in 197Pb. The experiment was performed using the New Yale Plunger Device (NYPD) in conjunction with the Gammasphere array. Band mixing calculations on the basis of the semi-classical model of the shears mechanism are used to describe the transition matrix elements B(M1) and energies throughout the band-crossing regions. Good agreement with the data was obtained and the detailed composition of the states in the shears band are discussed.

  7. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    Science.gov (United States)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  8. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-07-15

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 10{sup 15} ions/cm{sup 2}. The guiding modes at the wavelength of 633 nm (He–Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical “well + barrier” distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  9. Band parameters of phosphorene

    International Nuclear Information System (INIS)

    Lew Yan Voon, L C; Wang, J; Zhang, Y; Willatzen, M

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene. (paper)

  10. Infrared diffuse interstellar bands

    Science.gov (United States)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  11. Band parameters of phosphorene

    DEFF Research Database (Denmark)

    Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.

    2015-01-01

    Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...... are computed using a first-principles theory based upon the generalized-gradient approximation to the density-functional theory. These parameters and Hamiltonian will be useful for modeling physical properties of phosphorene....

  12. Electron correlations in narrow band systems

    International Nuclear Information System (INIS)

    Kishore, R.

    1983-01-01

    The effect of the electron correlations in narrow bands, such as d(f) bands in the transition (rare earth) metals and their compounds and the impurity bands in doped semiconductors is studied. The narrow band systems is described, by the Hubbard Hamiltonian. By proposing a local self-energy for the interacting electron, it is found that the results are exact in both atomic and band limits and reduce to the Hartree Fock results for U/Δ → 0, where U is the intra-atomic Coulomb interaction and Δ is the bandwidth of the noninteracting electrons. For the Lorentzian form of the density of states of the noninteracting electrons, this approximation turns out to be equivalent to the third Hubbard approximation. A simple argument, based on the mean free path obtained from the imaginary part of the self energy, shows how the electron correlations can give rise to a discontinous metal-nonmetal transition as proposed by Mott. The band narrowing and the existence of the satellite below the Fermi energy in Ni, found in photoemission experiments, can also be understood. (Author) [pt

  13. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    International Nuclear Information System (INIS)

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B 4 C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems

  14. Optical bands and energy levels of Nd{sup 3+} ion in the YAl{sub 3}(BO{sub 3}){sub 4} nonlinear laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, D.; Capmany, J.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Luo, Z.D. [Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    1997-11-03

    In this paper the polarized optical spectra (absorption and fluorescence) of the Nd{sup 3+} ion in the YAl{sub 3}(BO{sub 3}){sub 4} nonlinear crystal have been systematically investigated at low (10 K) and room temperature. Most energy levels of Nd{sup 3+} in this crystal (103) have been identified and conveniently labelled with their crystal field quantum numbers, {mu}=1/2 and {mu}=3/2. The radiative emitting states have been identified. Analysing the optical absorption spectra with the anisotropic Judd-Ofelt theory, the radiative lifetimes and branching ratios from the metastable state {sup 4}F{sub 3/2} have been calculated. Then, relevant spectroscopic parameters (quantum efficiency and emission cross sections) for laser applications have been estimated. Infrared to visible up-conversion is reported for the first time in this host crystal. (author)

  15. Introduction to the theory of low-energy electron diffraction

    International Nuclear Information System (INIS)

    Fingerland, A.; Tomasek, M.

    1975-01-01

    An elementary introduction to the basic principles of the theory of low-energy electron diffraction is presented. General scattering theory is used to classify the hitherto known approaches to the problem (optical potential and one-electron approximation; formal scattering theory: Born expansion and multiple scattering; translational symmetry: Ewald construction; classification of LEED theories by means of the T matrix; pseudokinematical theory for crystal with clean surface and with an adsorbed monomolecular layer; dynamical theory; inclusion of inelastic collisions; discussion of a simple example by means of the band-structure approach)

  16. Red organic light-emitting diodes based on wide band gap emitting material as the host utilizing two-step energy transfer

    International Nuclear Information System (INIS)

    Haq Khizarul; Shanpeng Liu; Khan, M A; Jiang, X Y; Zhang, Z L; Zhu, W Q

    2008-01-01

    We demonstrated efficient red organic light-emitting diodes based on a host emitting system of 9,10-di(2-naphthyl)anthracene (ADN) co-doped with 4-(dicyano-methylene)-2-t-butyle-6- (1,1,7,7-tetramethyl-julolidyl-9-enyl)-4H-pyran (DCJTB) as a red dopant and 2,3,6,7- tetrahydro-1,1,7,7-tetramethyl-1H,5H,1 1H-10(2-benzothiazolyl)-quinolizine-[9,9a,1gh] coumarin (C545T) as an assistant dopant. The typical device structure was glass substrate/ITO/4,4',4''-tris(N-3-methylphenyl-N-phenylamino) triphenylamine(m-MTDATA)/N,N'-bis-(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB)/[ADN: DCJTB: C545T/Alq 3 /LiF/Al]. It was found that C545T dopant did not emit by itself but did assist the energy transfer from the host (ADN) to the red emitting dopant. The red OLEDs realized by this approach not only enhanced the emission color, but also significantly improved the EL efficiency. The EL efficiency reached 3.5 cd A −1 at a current density of 20 mA cm −2 , which is enhanced by three times compared with devices where the emissive layer is composed of the DCJTB doped ADN. The saturated red emission was obtained with CIE coordinates (x = 0.618, y = 0.373) at 621 nm, and the device driving voltage is decreased as much as 38%. We attribute these improvements to the assistant dopant (C545T), which leads to the more efficient energy transfer from ADN to DCJTB. These results indicate that the co-doped system is a promising method for obtaining high-efficiency red OLEDs

  17. CSF oligoclonal banding - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy To use the ... 5 out of 5 Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous ...

  18. Laparoscopic gastric banding

    Science.gov (United States)

    ... eat by making you feel full after eating small amounts of food. After surgery, your doctor can adjust the band ... You will feel full after eating just a small amount of food. The food in the small upper pouch will ...

  19. Surface Resonance Bands on (001)W: Experimental Dispersion Relations

    DEFF Research Database (Denmark)

    Willis, R. F.; Feuerbacher, B.; Christensen, N. Egede

    1977-01-01

    A band of unbound surface states (resonances), located in an energy region above the vacuum threshold corresponding to an energy band gap in the electron states of the bulk crystal, has been observed by angle-resolved secondary-electron-emission spectroscopy. The experimental dispersion behavior...... is in agreement with the two-dimensional band structure of a clean (001)W surface recently proposed by Smith and Mittheiss....

  20. Elementary particle interactions

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out

  1. Decay out of the yrast superdeformed band in 191Hg

    International Nuclear Information System (INIS)

    Sien, S.; Reiter, P.; Khoo, T.; Lauritsen, T.; Carpenter, M. P.; Ahmad, I.; Amro, H.; Calderin, I.; Dossing, T.; Fischer, S. M.; Garg, U.; Gassmann, D.; Hackman, G.; Hannachi, F.; Janssens, R. V. F.; Kharraja, B.; Korichi, A.; Lopez-Martens, A.; Moore, E. F.; Nisius, D.; Schuck, C.

    1999-01-01

    The excitation energies and spins of the yrast superdeformed band in 191 Hg have been determined by analyzing the quasicontinuum spectrum connecting the superdeformed and normal-deformed states. The results from this analysis, combined with that given by one-step decay lines, give confident assignments of the spins and energies of the yrast superdeformed band in 191 Hg

  2. Elementary functions algorithms and implementation

    CERN Document Server

    Muller, Jean-Michel

    2016-01-01

    This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...

  3. Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals.

    Science.gov (United States)

    Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Qu, Junling; Ithurria, Sandrine; Silly, Mathieu G; Dubertret, Benoit; Lhuillier, Emmanuel

    2018-04-11

    Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge. These observations raise two main questions: (i) what are the carrier dynamics at the band edge and (ii) should we expect some additional effect (multiexciton generation (MEG)) as such narrow band gap materials are excited far above the band edge? To answer these questions, we developed a high-bandwidth setup that allows us to understand and compare the carrier dynamics resonantly pumped at the band edge in the mid-IR and far above the band edge. We demonstrate that fast (>50 MHz) photoresponse can be obtained even in the mid-IR and that MEG is occurring in HgTe nanocrystal arrays with a threshold around 3 times the band edge energy. Furthermore, the photoresponse can be effectively tuned in magnitude and sign using a phototransistor configuration.

  4. PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co3O4p-Type Semiconductor in Cells and the Lung

    Science.gov (United States)

    2014-01-01

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0–8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the Ec levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from −4.12 to −4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of Ev, Ec, and Ef levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4. PMID:24673286

  5. PdO doping tunes band-gap energy levels as well as oxidative stress responses to a Co₃O₄ p-type semiconductor in cells and the lung.

    Science.gov (United States)

    Zhang, Haiyuan; Pokhrel, Suman; Ji, Zhaoxia; Meng, Huan; Wang, Xiang; Lin, Sijie; Chang, Chong Hyun; Li, Linjiang; Li, Ruibin; Sun, Bingbing; Wang, Meiying; Liao, Yu-Pei; Liu, Rong; Xia, Tian; Mädler, Lutz; Nel, André E

    2014-04-30

    We demonstrate through PdO doping that creation of heterojunctions on Co3O4 nanoparticles can quantitatively adjust band-gap and Fermi energy levels to study the impact of metal oxide nanoparticle semiconductor properties on cellular redox homeostasis and hazard potential. Flame spray pyrolysis (FSP) was used to synthesize a nanoparticle library in which the gradual increase in the PdO content (0-8.9%) allowed electron transfer from Co3O4 to PdO to align Fermi energy levels across the heterojunctions. This alignment was accompanied by free hole accumulation at the Co3O4 interface and production of hydroxyl radicals. Interestingly, there was no concomitant superoxide generation, which could reflect the hole dominance of a p-type semiconductor. Although the electron flux across the heterojunctions induced upward band bending, the E(c) levels of the doped particles showed energy overlap with the biological redox potential (BRP). This allows electron capture from the redox couples that maintain the BRP from -4.12 to -4.84 eV, causing disruption of cellular redox homeostasis and induction of oxidative stress. PdO/Co3O4 nanoparticles showed significant increases in cytotoxicity at 25, 50, 100, and 200 μg/mL, which was enhanced incrementally by PdO doping in BEAS-2B and RAW 264.7 cells. Oxidative stress presented as a tiered cellular response involving superoxide generation, glutathione depletion, cytokine production, and cytotoxicity in epithelial and macrophage cell lines. A progressive series of acute pro-inflammatory effects could also be seen in the lungs of animals exposed to incremental PdO-doped particles. All considered, generation of a combinatorial PdO/Co3O4 nanoparticle library with incremental heterojunction density allowed us to demonstrate the integrated role of E(v), E(c), and E(f) levels in the generation of oxidant injury and inflammation by the p-type semiconductor, Co3O4.

  6. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  7. Dimensional considerations about elementary particles

    International Nuclear Information System (INIS)

    Cocconi, G.

    1978-01-01

    The search for fundamental elementary particles responsible for the observed behaviour of matter during the past decades is briefly reviewed, and the possibility is considered that the four fundamental interactions that shape things merge into a unique field when matter is so compressed that particles are at extremely small distances from one another. These interactions are the gravitational interaction, the electromagnetic interaction, the strong interaction, and the weak interaction. It is thought that a simple geometrical criterion, termed the 'elementary criterion', would suffice to indicate how the various interactions should behave as particles are brought closer to one another and thus approach the situation where all interactions merge. (6 references). (U.K.)

  8. Rupture history of the 2011 M 9 Tohoku Japan earthquake determined from strong‐motion and high‐rate GPS recordings: Subevents radiating energy in different frequency bands

    Science.gov (United States)

    Frankel, Arthur

    2013-01-01

    Strong‐motion records from KiK‐net and K‐NET, along with 1 sample/s Global Positioning System (GPS) records from GEONET, were analyzed to determine the location, timing, and slip of subevents of the M 9 2011 Tohoku earthquake. Timing of arrivals on stations along the coast shows that the first subevent was located closer to the coast than subevent (2), which produced the largest slip. A waveform inversion of data from 0 to 0.2 Hz indicates that the first subevent primarily ruptured down‐dip and north of the hypocenter and had an M of 8.5. The areas of this subevent that generated the low (0.2  Hz) frequency energy are located in the same vicinity. The inversion result for the second subevent (M 9.0) has large slip on the shallow part of the fault with peak slip of about 65 m above about 25 km depth. This slip generated the tsunami. The preferred inversion has initiation of subevent 2 on the shallow portion of the fault so that rupture proceeded down‐dip and mainly to the south. Subevent 2 started about 35 s after subevent 1, which allows for the possibility of dynamic triggering from subevent 1. The slip model predicts displacements comparable to those found from ocean‐bottom transducers near the epicenter. At frequencies that most affect tall buildings (0.1–0.5 Hz), there is a strong pulse (subevent 3) in the strong‐motion records that arrives after the near‐field ramp from subevent 2. High‐frequency subevent 3 was located down‐dip and south of the high‐slip portion of subevent 2 and was initiated as rupture from subevent 2 proceeded down‐dip. The compact pulse for subevent 3 is modeled with an M 8.0 source in a 75 by 30 km area that ruptured down‐dip and to the south with a high slip velocity, indicating high stress drop.

  9. Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION

    International Nuclear Information System (INIS)

    Rogers, Justin C.; Apai, Daniel; Lopez-Morales, Mercedes; Sing, David K.; Burrows, Adam

    2009-01-01

    We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b from time series photometry with the ARC 3.5 m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336 ± 0.042% and is centered at phase 0.5022 +0.0023 -0.0027 , consistent with a zero eccentricity orbit (e cos ω = 0.0035 +0.0036 -0.0042 ). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanet's atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 μm secondary eclipse detections by Snellen et al., Gillon et al., and Alonso et al. Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2460 +80 -160 K; a very low Bond albedo A B = 0.000 +0.081 -0.000 ; and an energy redistribution parameter P n = 0.1, indicating a small but nonzero amount of heat transfer from the day to nightside. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity κ e = 0.05 cm 2 g -1 , placed near the 0.1 bar atmospheric pressure level. This inversion layer is located 10 times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.

  10. An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szadkowski, Zbigniew, E-mail: zszadkow@kfd2.phys.uni.lodz.pl [University of Lodz, Department of Physics and Applied Informatics (Poland); Fraenkel, E.D. [Kernfysisch Versneller Instituut of the University of Groningen, Groningen (Netherlands); Glas, Dariusz; Legumina, Remigiusz [University of Lodz, Department of Physics and Applied Informatics (Poland)

    2013-12-21

    The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages. -- Highlights: • We propose an adaptive method using linear prediction for periodic RFI suppression. • Requirements are the detection of short transient signals powered by solar panels. • The RFI is significantly suppressed by ∼70%, even in a very contaminated environment. • This method consumes less energy than the current method based on FFT used in AERA. • Distortion of the short transient signals is negligible.

  11. Two-band superconductor magnesium diboride

    International Nuclear Information System (INIS)

    Xi, X X

    2008-01-01

    This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors

  12. Do Elementary Particles Have an Objective Existence?

    OpenAIRE

    Nissenson, Bilha

    2007-01-01

    The formulation of quantum theory does not comply with the notion of objective existence of elementary particles. Objective existence independent of observation implies the distinguishability of elementary particles. In other words: If elementary particles have an objective existence independent of observations, then they are distinguishable. Or if elementary particles are indistinguishable then matter cannot have existence independent of our observation. This paper presents a simple deductio...

  13. A model for evaluating the environmental benefits of elementary school facilities.

    Science.gov (United States)

    Ji, Changyoon; Hong, Taehoon; Jeong, Kwangbok; Leigh, Seung-Bok

    2014-01-01

    In this study, a model that is capable of evaluating the environmental benefits of a new elementary school facility was developed. The model is composed of three steps: (i) retrieval of elementary school facilities having similar characteristics as the new elementary school facility using case-based reasoning; (ii) creation of energy consumption and material data for the benchmark elementary school facility using the retrieved similar elementary school facilities; and (iii) evaluation of the environmental benefits of the new elementary school facility by assessing and comparing the environmental impact of the new and created benchmark elementary school facility using life cycle assessment. The developed model can present the environmental benefits of a new elementary school facility in terms of monetary values using Environmental Priority Strategy 2000, a damage-oriented life cycle impact assessment method. The developed model can be used for the following: (i) as criteria for a green-building rating system; (ii) as criteria for setting the support plan and size, such as the government's incentives for promoting green-building projects; and (iii) as criteria for determining the feasibility of green building projects in key business sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Peer Assessment of Elementary Science Teaching Skills

    Science.gov (United States)

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  15. 34 CFR 300.13 - Elementary school.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Elementary school. 300.13 Section 300.13 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... DISABILITIES General Definitions Used in This Part § 300.13 Elementary school. Elementary school means a...

  16. PERCEPTIONS OF THE ELEMENTARY SCHOOL COUNSELOR.

    Science.gov (United States)

    BRADEN, BILLY; AND OTHERS

    FACTORS ASSOCIATED WITH THE ROLE AND FUNCTION OF THE ELEMENTARY SCHOOL COUNSELOR AS THEY WERE PERCEIVED BY SELECTED ELEMENTARY SCHOOL COUNSELORS, ELEMENTARY SCHOOL PRINCIPALS, COUNSELOR EDUCATORS, AND STATE SUPERVISORS IN THE SOUTHERN ASSOCIATION FOR COUNSELOR EDUCATION AND SUPERVISION (SACES) REGION WERE IDENTIFIED. THREE INSTRUMENTS WERE…

  17. Dislocation pile-ups, slip-bands, ellipsoids, and cracks

    International Nuclear Information System (INIS)

    Brown, Lawrence M.

    2005-01-01

    The classic theories of dislocation pile-ups, initiated by Eshelby, Frank and Nabarro, and by Leibfried, can be greatly simplified if it is recognised that the dislocations in the pile-up will experience uniform stress if they are lodged in an ellipsoidal interface. Elementary algebra then produces the familiar results from continuum theory. It seems possible that the ellipsoid construction may represent physical reality if it is taken to represent a three-dimensional slip-band. If so, there are concentrated forces spreading the band perpendicular to the slip band as well as parallel to it. Such ellipsoids also represent Mode II and Mode III cracks, and give a method for dealing with the more complicated Mode I cracks

  18. About limit masses of elementary particles

    International Nuclear Information System (INIS)

    Ibadova, U.R.

    2002-01-01

    The simple examples of spontaneous breaking of various symmetries for the scalar theory with fundamental mass have been considered. Higgs' generalizations on 'fundamental masses' that was introduced into the theory on a basis of the five-dimensional de Sitter space. The connection among 'fundamental mass', 'Planck's mass' and 'maxim ons' has been found. Consequently, the relationship among G-gravitational constant and other universal parameters can be established. The concept the mass having its root from deep antiquity (including Galilee's Pis sans experiment, theoretical research of the connection of mass with the Einstein's energy etc.) still remains fundamental. Every theoretical and experimental research in classical physics and quantum physics associated with mass is of step to the discernment of Nature. Besides of mass, the other fundamental constants such as Planck's constant ℎ and the speed of light also play the most important role in the modern theories. The first one related to quantum mechanics and the second one is related to the theory of relativity. Nowadays the properties and interactions of elementary particles can be described more or less adequately in terms of local fields that are affiliated with the lowest representations of corresponding compact groups of symmetry. It is known that the mass of any body is composed of masses of its comprising elementary particles. The mass of elementary particles is the Casimir operator of the non-compact Poincare group, and those representations of the given group, that are being used in Quantum Field Theory (QFT), and it can take any values in the interval of 0≤m≤∞. Two particles, today referred to as elementary particles, can have masses; distinct one from another by many orders. For example, vectorial bosons with the mass of ∼10 15 GeV take place in general relativity theory modules, whereas the mass of an electron is only ∼0.5·10 3 GeV. Formally, the standard QFT remains logical in a case

  19. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  20. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  1. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  2. Ultra wide band antennas

    CERN Document Server

    Begaud, Xavier

    2013-01-01

    Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog

  3. Digital Photography for Elementary Students

    Science.gov (United States)

    Neckers, Matt

    2009-01-01

    Most elementary students approach photography in an open-minded, experimental way. As a result, their images are often more playful than those taken by adults. Students discover more through their own explorations than they would learn through overly structured lessons. In this article, the author describes how he introduces his elementary…

  4. Innovation in the Elementary Classroom

    Science.gov (United States)

    Wright, Geoffrey A.; Jones, Matthew D.

    2018-01-01

    In this article, the authors outline an innovation curriculum that can be taught to elementary-aged students to expand their creative and innovative abilities and potential. The curriculum focuses on divergent and convergent thinking principles embedded in a hands-on learning pedagogy. The curriculum framework is based on an innovation model known…

  5. Topics in elementary particle physics

    International Nuclear Information System (INIS)

    Dugan, M.J.

    1985-01-01

    Topics in elementary particle physics are discussed. Models with N = 2 supersymmetry are constructed. The CP violation properties of a class of N = 1 supergravity models are analyzed. The structure of a composite Higgs model is investigated. The implications of a 17 keV neutrino are considered

  6. Play Therapy in Elementary Schools

    Science.gov (United States)

    Landreth, Garry L.; Ray, Dee C.; Bratton, Sue C.

    2009-01-01

    Because the child's world is a world of action and activity, play therapy provides the psychologist in elementary-school settings with an opportunity to enter the child's world. In the play therapy relationship, toys are like the child's words and play is the child's language. Therefore, children play out their problems, experiences, concerns, and…

  7. Robotics Literacy Captivates Elementary Students.

    Science.gov (United States)

    Friedman, Madeleine

    1986-01-01

    Describes a robotics literacy course offered for elementary age children at Broward Community College (Florida) and discusses the motivation for offering such a course, the course philosophy and objectives, and participant reactions. A sampling of robots and robotics devices and some of their teaching applications are included. (MBR)

  8. Franklin Elementary PTA's "Sweet Success"

    Science.gov (United States)

    Freemon, Jennifer

    2012-01-01

    Just a few short years ago, Franklin Elementary in Glendale, California, was in danger of closing its doors because enrollment was so low. The school district decided to put into place a series of language immersion programs at the site. It currently houses Spanish, Italian, and German immersion programs. These programs have boosted Franklin's…

  9. Marketing School Music: It's Elementary.

    Science.gov (United States)

    Anderson, Jill Kuespert

    1992-01-01

    Explores methods of promoting elementary school music programs. Suggests inviting visitors to the class as a means of increasing awareness of school music. Recommends sending press releases to school newsletters and local newspapers. Reminds teachers to make use of educational access channels on area cable television systems. (SG)

  10. Cooperative Learning in Elementary Schools

    Science.gov (United States)

    Slavin, Robert E.

    2015-01-01

    Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…

  11. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  12. Elementary Students' Metaphors for Democracy

    Science.gov (United States)

    Dundar, Hakan

    2012-01-01

    The purpose of the research was to reveal elementary 8th grade students' opinions concerning democracy with the aid of metaphors. The students were asked to produce metaphors about the concept of democracy. 140 students from 3 public schools in Ankara (Turkey) participated in the research. 55% of the students were females and 45% were males. The…

  13. Elementary Algebra Connections to Precalculus

    Science.gov (United States)

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  14. Thomas Edison Accelerated Elementary School.

    Science.gov (United States)

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  15. Effects of phosphorus-doping on energy band-gap, structural, surface, and photocatalytic characteristics of emulsion-based sol-gel derived TiO{sub 2} nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Ibram, E-mail: ibramganesh@arci.res.in

    2017-08-31

    Highlights: • Reported a novel route to synthesize high specific surface area P-doped TiO{sub 2} nano-powder photocatalysts. • Established methylene blue dye-sensitization mechanism of TiO{sub 2} photocatalyst. • Established the effects of methylene blue adsorption on the surface, structural and photocatalytic activity of P-doped TiO{sub 2}. • Established true quantum efficiency determination method for TiO{sub 2} photocatalysis. - Abstract: Different amounts of phosphorus (P)-doped TiO{sub 2} (PDT) nano-powders (P = 0–10 wt.%) were synthesized by following a new emulsion-based sol-gel (EBSG) route and calcined at 400 °C–800 °C for 6 h. These calcined PDT powders were then thoroughly characterized by means of XRD, XPS, SEM, FT-IR, FT-Raman, DRS, BET surface area, zeta-potential, cyclic-voltammetry and photocatalytic evaluation using methylene blue (MB) as a model-pollutant and established the effects of phosphorous doping on structural, surface, band-gap energy, and photocatalytic characteristics of TiO{sub 2} nano-powder formed in EBSG route. The characterization results suggest that the EBSG derived TiO{sub 2} nano-powder after calcination at 400 °C for 6 h is in the form of anatase phase when it was doped with <8 wt.% P, and it is in the amorphous state when doped with >8 wt.% P. Furthermore, these EBSG derived PDT powders own high negative zeta-potentials, high specific surface areas (up to >250 m{sup 2}/g), and suitable band-gap energies (<3.34 eV). Surprisingly, these PDT powders exhibit very high MB adsorption (up to 50%) from its aqueous 0.01 mM, 0.02 mM and 0.03 mM solutions during 30 min stirring in the dark, whereas, the commercial Degussa P-25 TiO{sub 2} nano-powder shows no adsorption. Among various photocatalysts investigated in this study, the 1 wt.% P-doped TiO{sub 2} nano-powder formed in EBSG route exhibited the highest photocatalytic activity for MB degradation reaction.

  16. 2D-2D stacking of graphene-like g-C{sub 3}N{sub 4}/Ultrathin Bi{sub 4}O{sub 5}Br{sub 2} with matched energy band structure towards antibiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Mengxia; Di, Jun; Ge, Yuping; Xia, Jiexiang, E-mail: xjx@ujs.edu.cn; Li, Huaming, E-mail: lhm@ujs.edu.cn

    2017-08-15

    Highlights: • 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} materials have been prepared. • With matched energy band structure, the effective charge separation can be achieved. • The holes and O{sub 2}{sup −} are determined to be the main active species. - Abstract: A novel visible-light-driven 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} photocatalyst was prepared via a facile solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) for the first time. FT-IR, XPS and TEM analysis results demonstrated the successful introduction of the 2D graphene-like g-C{sub 3}N{sub 4} material to the Bi{sub 4}O{sub 5}Br{sub 2} system. DRS and BET analysis results indicated the existence of the g-C{sub 3}N{sub 4} could lead to the broaden absorption edge and larger surface area of the ultrathin Bi{sub 4}O{sub 5}Br{sub 2} nanosheets. The electrochemical analysis implied a fast transfer of the interfacial electrons and low recombination rate of photogenerated charge carriers in g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2}, which could be assigned to the sufficient and tight contact between ultrathin Bi{sub 4}O{sub 5}Br{sub 2} and graphene-like g-C{sub 3}N{sub 4}. The quinolone antibiotic ciprofloxacin (CIP) was chosen as the target pollutant to evaluate the photocatalytic performance of the as-prepared samples under visible light irradiation. 1 wt% g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2} composite exhibited the highest photocatalytic degradation performance among all of the as-prepared photocatalysts. The enhancement of photocatalytic activity was attributed to the maximum contact between graphene-like g-C{sub 3}N{sub 4} and ultrathin Bi{sub 4}O{sub 5}Br{sub 2} material with matched energy band structure, which enable the efficient charge seperation. A possible photocatalytic mechanism also was proposed.

  17. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  18. New results on the superdeformed {sup 196}Pb nucleus: The decay of the excited bands to the yrast band

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Azaiez, F.; Duprat, J. [IPN, Orsay (France)] [and others

    1996-12-31

    The study of the superdeformed (SD) {sup 196}Pb nucleus has been revisited using the EUROGAM phase 2 spectrometer. In addition to the known yrast and two lowest excited SD bands, a third excited SD band has been seen. All of the three excited bands were found to decay to the yrast SD band through, presumably, E1 transitions, allowing relative spin and excitation energy assignments. Comparisons with calculations using the random-phase approximation suggest that all three excited bands can be interpreted as octupole vibrational structures.

  19. Electronic band structure of lithium, sodium and potassium fluorides

    International Nuclear Information System (INIS)

    Jouanin, C.; Albert, J.P.; Gout, C.

    1975-01-01

    A mixed tight-binding, pseudopotential method is proposed to calculate the energy band structure of large-gap crystals and is tested here on LiF, NaF and KF. Three-centre terms are included in the determination of the valence bands by the tight-binding method and for the conduction bands we use a pseudopotential model proposed by Bassani and Giuliano, modified for the positive ions. By taking into account the polarization corrections, transitions calculated from the energy band structures are compared with experimental data and the agreement is generally good

  20. Picosecond thermometer in the amide I band of myoglobin

    DEFF Research Database (Denmark)

    Austin, R.H.; Xie, A.; Meer, L. van der

    2005-01-01

    The amide I and II bands in myoglobin show a heterogeneous temperature dependence, with bands at 6.17 and 6.43 mu m which are more intense at low temperatures. The amide I band temperature dependence is on the long wavelength edge of the band, while the short wavelength side has almost...... can be used to determine the time it takes vibrational energy to flow into the hydration shell. We determine that vibrational energy flow to the hydration shell from the amide I takes approximately 20 ps to occur....

  1. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  2. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  3. Band-notched spiral antenna

    Science.gov (United States)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  4. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  5. Band structures in near spherical 138Ce

    Science.gov (United States)

    Bhattacharjee, T.; Chanda, S.; Bhattacharyya, S.; Basu, S. K.; Bhowmik, R. K.; Das, J. J.; Pramanik, U. Datta; Ghugre, S. S.; Madhavan, N.; Mukherjee, A.; Mukherjee, G.; Muralithar, S.; Singh, R. P.

    2009-06-01

    The high spin states of N=80138Ce have been populated in the fusion evaporation reaction 130Te( 12C, 4n) 138Ce at E=65 MeV. The γ transitions belonging to various band structures were detected and characterized using an array of five Clover Germanium detectors. The level scheme has been established up to a maximum spin and excitation energy of 23 ℏ and 9511.3 keV, respectively, by including 53 new transitions. The negative parity ΔI=1 band, developed on the 6536.3 keV 15 level, has been conjectured to be a magnetic rotation band following a semiclassical analysis and comparing the systematics of similar bands in the neighboring nuclei. The said band is proposed to have a four quasiparticle configuration of [πgh]⊗[. Other band structures are interpreted in terms of multi-quasiparticle configurations, based on Total Routhian Surface (TRS) calculations. For the low and medium spin states, a shell model calculation using a realistic two body interaction has been performed using the code OXBASH.

  6. Thermoelectric band engineering: The role of carrier scattering

    Science.gov (United States)

    Witkoske, Evan; Wang, Xufeng; Lundstrom, Mark; Askarpour, Vahid; Maassen, Jesse

    2017-11-01

    Complex electronic band structures, with multiple valleys or bands at the same or similar energies, can be beneficial for thermoelectric performance, but the advantages can be offset by inter-valley and inter-band scattering. In this paper, we demonstrate how first-principles band structures coupled with recently developed techniques for rigorous simulation of electron-phonon scattering provide the capabilities to realistically assess the benefits and trade-offs associated with these materials. We illustrate the approach using n-type silicon as a model material and show that intervalley scattering is strong. This example shows that the convergence of valleys and bands can improve thermoelectric performance, but the magnitude of the improvement depends sensitively on the relative strengths of intra- and inter-valley electron scattering. Because anisotropy of the band structure also plays an important role, a measure of the benefit of band anisotropy in the presence of strong intervalley scattering is presented.

  7. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  8. The new classification of elementary particle resonance mass spectra

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Elementary particle resonances have been systematically analyzed from the first principles: the conservation laws of energy-momentum and Ehrenfest adiabatic invariant. As a result, resonance decay product momenta and masses of resonances were established to be quantized. Radial excited states of resonances were revealed. These observations give us a possibility to formulate the strategy of experimental searches for new resonances and to systematize already known ones. (author)

  9. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  10. Identical gamma-vibrational bands in {sup 165}Ho

    Energy Technology Data Exchange (ETDEWEB)

    Radford, D.C.; Galindo-Uribarri, A.; Janzen, V.P. [Chalk River Labs., Ontario (Canada)] [and others

    1996-12-31

    The structure of {sup 165}Ho at moderate spins has been investigated by means of Coulomb excitation. Two {gamma}-vibrational bands (K{sup {pi}} = 11/2{sup {minus}} and K{sup {pi}} = 3/2{sup {minus}}) are observed, with very nearly identical in-band {gamma}-ray energies. Gamma-ray branching ratios are analyzed to extract information on Coriolis mixing, and the role of the K quantum number in identical bands is discussed.

  11. Elementary principles of linear accelerators

    International Nuclear Information System (INIS)

    Loew, G.A.; Talman, R.

    1983-09-01

    These lectures come in five sections. The first is this introduction. The second is a short chronology of what are viewed as important milestones in the field. The third covers proton linacs. It introduces elementary concepts such as transit time, shunt impedance, and Q. Critical issues such as phase stability and transverse forces are discussed. The fourth section contains an elementary discussion of waveguide accelerating structures. It can be regarded as an introduction to some of the more advanced treatments of the subject. The final section is devoted to electron accelerators. Taking SLAC as an example, various topics are discussed such as structure design, choice of parameters, frequency optimization, beam current, emittance, bunch length and beam loading. Recent developments and future challenges are mentioned briefly. 41 figures, 4 tables

  12. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  13. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    Science.gov (United States)

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  14. Disclosure of the peaceful use of nuclear energy to the lay audience of elementary school children; Divulgação do uso pacífico da energia nuclear para o público leigo de crianças do ensino básico

    Energy Technology Data Exchange (ETDEWEB)

    Batista, M.R.; Neder, D.L.S.M. [Secretaria Municipal de Educação, Santa Luzia, MG (Brazil); Batista, A.S.M., E-mail: adriananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina

    2017-07-01

    The peaceful use of nuclear energy, both to obtain safe energy and in medical applications, need to be disseminated among lay public so that fear is not expressed as risk due to lack of knowledge. For this, it is valid the training effort among children of Basic Education, in the instigation to the conscious knowledge that must be consolidated throughout their school career. Thus, in the context of an extension project with a partnership between the Federal University of Minas Gerais (UFMG) and the Municipal Department of Education of the city of Santa Luzia, Minas Gerais, was worked, between the public school students, the theme 'Energy: knowing to understand', using as background the Disney Monsters S / A movie (2001). In the movie the monsters use the energy of the children's shout, but they know them little, considering them toxic and serves in the project to establish analogy with the fear of Nuclear Energy. Methods: The project was developed in twelve public schools in the city of Santa Luzia, Minas Gerais. The film Monstro S / A and Gnose book (produced for the project) were used between October and December 2016. Classroom activities, lectures, model construction and distribution of children's magazines granted by Eletronuclear were the instruments used to observe the appropriation of concepts. Results: Speech records, filming and photographs included a survey of impressions that confirmed a demystification of the association between nuclear energy and unsafety. Conclusion: The elementary school children involved in the research had a mystified view of the use of nuclear energy, with immediate correlations with the atomic bomb. With the development of the project, a critical knowledge formation was demonstrated regarding the safe use of nuclear energy, through new correlations now turned to a plausible comparison with other sources of energy.

  15. FY 1991 Report on research and development of super heat pump energy accumulation system. Material for explanation (Construction and operation of the prototype system - researches on elementary techniques and construction and operation of the pilot system); Super heat pump energy shuseki system no kenkyu kaihatsu 1991 nendo seika hokokusho. Setsumei shiryo (system shisaku unten kenkyu (yoso gijutsu no kenkyu / pilot system no shisaku unten kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-05-01

    Summarized herein are R and D results of the researches on the super heat pump energy accumulation system, obtained from FY 1985 to 1991. For R and D of the super high performance compression heat pumps, the R and D results of the elementary techniques and bench and pilot plant operation are summarized for the highly efficient type (for heating) and highly efficient type (for cooling and heating), and high temperature type (utilizing high temperature heat source) and high temperature type (utilizing low temperature heat source). Described are patent application list, designated know-hows, and conclusions. For the elementary equipment and working fluids, the R and D results are summarized for the evaporators for mixed solvents, EHD condensers, and working fluids (alcohol-based fluids and application characteristics of new fluids) and working fluids (nonalcohol-based fluids and basic properties of new fluids). For the chemical heat storage techniques, the R and D results are summarized for the high temperature heat storage type (utilizing metathesis reactions, ammonia complexes and hydration reactions), and low temperature heat storage type (utilizing clathrates, hydration by solute mixing and solvation). (NEDO)

  16. Advances in X-Band and S-Band Linear Accelerators for Security, NDT, and Other Applications

    CERN Document Server

    Mishin, Andrey V

    2005-01-01

    At AS&E High Energy Systems Division, we designed several new advanced high energy electron beam and X-ray sources. Our primary focus has always been in building the world's most portable commercial X-band accelerators. Today, our X-band systems frequently exceed performance of the similar S-band machines, while they are more portable compared to the latter. The new designs of the X-band accelerators in the most practical energy range from 1 MeV to 6 MeV have been tested delivering outstanding results. Seventy 6 MeV X-band linacs systems have been produced. The most compact linac for security is used by AS&E in a self-shielded, Shaped Energy™ cargo screening system. We pioneered using the X-band linear accelerators for CT, producing high quality images of oil pipes and wood logs. An X-band linear accelerator head on a robotic arm has been used for electron beam radiation curing of an odd-shaped graphite composite part. We developed the broad-range 4 MeV to over 10 MeV energy-regulated X-band ...

  17. Solar Energy-An Everyday Occurrence

    Science.gov (United States)

    Keister, Carole; Cornell, Lu Beth

    1978-01-01

    Describes a solar energy research project sponsored by the Energy Research and Development Administration and conducted at Timonium School in Maryland. Elementary student involvement in solar energy studies resulting from the project is noted. (MDR)

  18. Structure of dipole bands in 106In

    International Nuclear Information System (INIS)

    Deo, A. Y.; Palit, R.; Naik, Z.; Joshi, P. K.; Mazumdar, I.; Sihotra, S.; Mehta, D.; Kumar, S.; Chakrabarti, R.; Kshetri, R.; Jain, H. C.

    2009-01-01

    High spin states in neutron-deficient 106 In were investigated using 78 Se( 32 S,p3n) reaction at 125 MeV. The level scheme is extended up to 7 MeV of excitation energy for the negative parity states constituting four dipole bands, and the positive parity states which mainly exhibit single-particle excitations are extended up to 5 MeV. Projected deformed Hartree-Fock calculations were carried out to understand the configurations of different bands in this nucleus.

  19. Itinerant ferromagnetism in the narrow band limit

    CERN Document Server

    Liu, S H

    2000-01-01

    It is shown that in the narrow band, strong interaction limit the paramagnetic state of an itinerant ferromagnet is described by the disordered local moment state. As a result, the Curie temperature is orders of magnitude lower than what is expected from the large exchange splitting of the spin bands. An approximate analysis has also been carried out for the partially ordered state, and the result explains the temperature evolvement of the magnetic contributions to the resistivity and low-energy optical conductivity of CrO sub 2.

  20. Band theory of metals the elements

    CERN Document Server

    Altmann, Simon L

    1970-01-01

    Band Theory of Metals: The Elements focuses on the band theory of solids. The book first discusses revision of quantum mechanics. Topics include Heisenberg's uncertainty principle, normalization, stationary states, wave and group velocities, mean values, and variational method. The text takes a look at the free-electron theory of metals, including heat capacities, density of states, Fermi energy, core and metal electrons, and eigenfunctions in three dimensions. The book also reviews the effects of crystal fields in one dimension. The eigenfunctions of the translations; symmetry operations of t

  1. Quantum numbers and band topology of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Damnjanovic, M [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Milosevic, I [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Vukovic, T [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Yugoslavia); Maultzsch, J [Institut fuer Festkoerper Physik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2003-05-30

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.

  2. Quantum numbers and band topology of nanotubes

    International Nuclear Information System (INIS)

    Damnjanovic, M; Milosevic, I; Vukovic, T; Maultzsch, J

    2003-01-01

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities

  3. Quantum numbers and band topology of nanotubes

    CERN Document Server

    Damnjanovic, M; Vukovic, T; Maultzsch, J

    2003-01-01

    Nanotubes as well as polymers and quasi-1D subsystems of 3D crystals have line group symmetry. This allows two types of quantum numbers: roto-translational and helical. The roto-translational quantum numbers are linear and total angular (not conserved) momenta, while the helical quantum numbers are helical and complementary angular momenta. Their mutual relations determine some topological properties of energy bands, such as systematic band sticking or van Hove singularities related to parities. The importance of these conclusions is illustrated by the optical absorption in carbon nanotubes: parity may prevent absorption peaks at van Hove singularities.

  4. Neutron transmission bands in one dimensional lattices

    International Nuclear Information System (INIS)

    Monsivais, G.; Moshinsky, M.

    1999-01-01

    The original Kronig-Penney lattice, which had delta function interactions at the end of each of the equal segments, seems a good model for the motion of neutrons in a linear lattice if the strength b of the δ functions depends of the energy of the neutrons, i.e., b(E). We derive the equation for the transmission bands and consider the relations of b(E) with the R(E) function discussed in a previous paper. We note the great difference in the behavior of the bands when b(E) is constant and when it is related with a single resonance of the R function. (Author)

  5. Photonic band gap structure simulator

    Science.gov (United States)

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  6. Modern Elementary Particle Physics

    Science.gov (United States)

    Kane, Gordon

    2017-02-01

    1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.

  7. Reduction in pediatric identification band errors: a quality collaborative.

    Science.gov (United States)

    Phillips, Shannon Connor; Saysana, Michele; Worley, Sarah; Hain, Paul D

    2012-06-01

    Accurate and consistent placement of a patient identification (ID) band is used in health care to reduce errors associated with patient misidentification. Multiple safety organizations have devoted time and energy to improving patient ID, but no multicenter improvement collaboratives have shown scalability of previously successful interventions. We hoped to reduce by half the pediatric patient ID band error rate, defined as absent, illegible, or inaccurate ID band, across a quality improvement learning collaborative of hospitals in 1 year. On the basis of a previously successful single-site intervention, we conducted a self-selected 6-site collaborative to reduce ID band errors in heterogeneous pediatric hospital settings. The collaborative had 3 phases: preparatory work and employee survey of current practice and barriers, data collection (ID band failure rate), and intervention driven by data and collaborative learning to accelerate change. The collaborative audited 11377 patients for ID band errors between September 2009 and September 2010. The ID band failure rate decreased from 17% to 4.1% (77% relative reduction). Interventions including education of frontline staff regarding correct ID bands as a safety strategy; a change to softer ID bands, including "luggage tag" type ID bands for some patients; and partnering with families and patients through education were applied at all institutions. Over 13 months, a collaborative of pediatric institutions significantly reduced the ID band failure rate. This quality improvement learning collaborative demonstrates that safety improvements tested in a single institution can be disseminated to improve quality of care across large populations of children.

  8. Determination of conduction and valence band electronic structure ...

    Indian Academy of Sciences (India)

    shifts in the rutile Ti d-band to lower energy with respect to anatase, i.e., ... requires excitation with UV light due to its wide band ... RIXS maps were compared to the theoretical results .... optical methods are insufficient, such as dark samples.

  9. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...

  10. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  11. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  12. 50 MW C-band pulse klystron; 50MW C band pulse klystron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    C-band pulse klystron E3746 with an output of 50 MW class was developed jointly with the High-Energy Accelerator Research Organization in the Ministry of Education as the klystron for a linear accelerator. For a large-sized linear accelerator in the next generation, a klystron with higher operating frequency has been required to obtain a compact and efficient accelerator. In E3746, the problem of power resistance during high-frequency operation was solved by mounting a traveling-wave multi-cell output circuit. Moreover, stable operation in the pulse width of 2.5 {mu}s and the output of 54 MW was performed at the same operation efficiency (44%) as the conventional S-band tube by using the frequency (in a C-band frequency band) that is two times as high as the conventional general accelerator. (translated by NEDO)

  13. Band connectivity for topological quantum chemistry: Band structures as a graph theory problem

    Science.gov (United States)

    Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.

  14. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  15. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  16. Elementary Preservice Teachers' and Elementary Inservice Teachers' Knowledge of Mathematical Modeling

    Science.gov (United States)

    Schwerdtfeger, Sara

    2017-01-01

    This study examined the differences in knowledge of mathematical modeling between a group of elementary preservice teachers and a group of elementary inservice teachers. Mathematical modeling has recently come to the forefront of elementary mathematics classrooms because of the call to add mathematical modeling tasks in mathematics classes through…

  17. Highlighting High Performance: Clearview Elementary School, Hanover, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    2002-08-01

    Case study on high performance building features of Clearview Elementary School in Hanover, Pennsylvania. Clearview Elementary School in Hanover, Pennsylvania, is filled with natural light, not only in classrooms but also in unexpected, and traditionally dark, places like stairwells and hallways. The result is enhanced learning. Recent scientific studies conducted by the California Board for Energy Efficiency, involving 21,000 students, show test scores were 15% to 26% higher in classrooms with daylighting. Clearview's ventilation system also helps students and teachers stay healthy, alert, and focused on learning. The school's superior learning environment comes with annual average energy savings of about 40% over a conventional school. For example, with so much daylight, the school requires about a third less energy for electric lighting than a typical school. The school's innovative geothermal heating and cooling system uses the constant temperature of the Earth to cool and heat the building. The building and landscape designs work together to enhance solar heating in the winter, summer cooling, and daylighting all year long. Students and teachers have the opportunity to learn about high-performance design by studying their own school. At Clearview, the Hanover Public School District has shown that designing a school to save energy is affordable. Even with its many innovative features, the school's $6.35 million price tag is just $150,000 higher than average for elementary schools in Pennsylvania. Projected annual energy cost savings of approximately $18,000 mean a payback in 9 years. Reasonable construction costs demonstrate that other school districts can build schools that conserve energy, protect natural resources, and provide the educational and health benefits that come with high-performance buildings.

  18. Temperature dependence of the fundamental band gap parameters ...

    Indian Academy of Sciences (India)

    the energy and broadening of the fundamental band gap have been evaluated using various models including the ... other crucial parameters including the operating temperatures of these devices. ... refrigeration system (Air Product Displex).

  19. Degenerate band edge laser

    Science.gov (United States)

    Veysi, Mehdi; Othman, Mohamed A. K.; Figotin, Alexander; Capolino, Filippo

    2018-05-01

    We propose a class of lasers based on a fourth-order exceptional point of degeneracy (EPD) referred to as the degenerate band edge (DBE). EPDs have been found in parity-time-symmetric photonic structures that require loss and/or gain; here we show that the DBE is a different kind of EPD since it occurs in periodic structures that are lossless and gainless. Because of this property, a small level of gain is sufficient to induce single-frequency lasing based on a synchronous operation of four degenerate Floquet-Bloch eigenwaves. This lasing scheme constitutes a light-matter interaction mechanism that leads also to a unique scaling law of the laser threshold with the inverse of the fifth power of the laser-cavity length. The DBE laser has the lowest lasing threshold in comparison to a regular band edge laser and to a conventional laser in cavities with the same loaded quality (Q ) factor and length. In particular, even without mirror reflectors the DBE laser exhibits a lasing threshold which is an order of magnitude lower than that of a uniform cavity laser of the same length and with very high mirror reflectivity. Importantly, this novel DBE lasing regime enforces mode selectivity and coherent single-frequency operation even for pumping rates well beyond the lasing threshold, in contrast to the multifrequency nature of conventional uniform cavity lasers.

  20. Elementary spin excitations in ultrathin itinerant magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, Khalil, E-mail: zakeri@mpi-halle.de

    2014-12-10

    Elementary spin excitations (magnons) play a fundamental role in condensed matter physics, since many phenomena e.g. magnetic ordering, electrical (as well as heat) transport properties, ultrafast magnetization processes, and most importantly electron/spin dynamics can only be understood when these quasi-particles are taken into consideration. In addition to their fundamental importance, magnons may also be used for information processing in modern spintronics. Here the concept of spin excitations in ultrathin itinerant magnets is discussed and reviewed. Starting with a historical introduction, different classes of magnons are introduced. Different theoretical treatments of spin excitations in solids are outlined. Interaction of spin-polarized electrons with a magnetic surface is discussed. It is shown that, based on the quantum mechanical conservation rules, a magnon can only be excited when a minority electron is injected into the system. While the magnon creation process is forbidden by majority electrons, the magnon annihilation process is allowed instead. These fundamental quantum mechanical selection rules, together with the strong interaction of electrons with matter, make the spin-polarized electron spectroscopies as appropriate tools to excite and probe the elementary spin excitations in low-dimensional magnets e.g ultrathin films and nanostructures. The focus is put on the experimental results obtained by spin-polarized electron energy loss spectroscopy and spin-polarized inelastic tunneling spectroscopy. The magnon dispersion relation, lifetime, group and phase velocity measured using these approaches in various ultrathin magnets are discussed in detail. The differences and similarities with respect to the bulk excitations are addressed. The role of the temperature, atomic structure, number of atomic layers, lattice strain, electronic complexes and hybridization at the interfaces are outlined. A possibility of simultaneous probing of magnons and phonons

  1. VIBRONIC PROGRESSIONS IN SEVERAL DIFFUSE INTERSTELLAR BANDS

    International Nuclear Information System (INIS)

    Duley, W. W.; Kuzmin, Stanislav

    2010-01-01

    A number of vibronic progressions based on low-energy vibrational modes of a large molecule have been found in the diffuse interstellar band (DIB) spectrum of HD 183143. Four active vibrational modes have been identified with energies at 5.18 cm -1 , 21.41 cm -1 , 31.55 cm -1 , and 34.02 cm -1 . The mode at 34.02 cm -1 was previously recognized by Herbig. Four bands are associated with this molecule, with origins at 6862.61 A, 6843.64 A, 6203.14 A, and 5545.11 A (14589.1 cm -1 , 14608.08 cm -1 , 16116.41 cm -1 , and 18028.9 cm -1 , respectively). The progressions are harmonic and combination bands are observed involving all modes. The appearance of harmonic, rather than anharmonic, terms in these vibronic progressions is consistent with torsional motion of pendant rings, suggesting that the carrier is a 'floppy' molecule. Some constraints on the type and size of the molecule producing these bands are discussed.

  2. The elementary process of Bremsstrahlung

    CERN Document Server

    Haug, Eberhard

    2004-01-01

    This book deals with the theory and experiment of the elementary process of bremsstrahlung, where photons are detected in coincidence with decelerated outgoing electrons. Such experiments allow for a more stringent check of the theoretical work. The main emphasis is laid on electron-atom bremsstrahlung and electron-electron bremsstrahlung, but further bremsstrahlung processes are also dealt with. In the theoretical parts, triply differential cross sections are derived in various approximations, including electron spin and photon-polarization. In the experimental sections, electron-photon coinc

  3. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  4. Elementary linear programming with applications

    CERN Document Server

    Kolman, Bernard

    1995-01-01

    Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

  5. Instrumentation in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Fabjan, C W [European Organization for Nuclear Research, Geneva (Switzerland); Pilcher, J E [Chicago Univ., IL (United States); eds.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs.

  6. Instrumentation in elementary particle physics

    International Nuclear Information System (INIS)

    Fabjan, C.W.; Pilcher, J.E.

    1988-01-01

    The first International Committee for Future Accelerators Instrumentation School was held at the International Centre for Theoretical Physics, Trieste, Italy from 8 to 19 June 1987. The School was attended by 74 students of whom 45 were from developing countries, 10 lecturers and 9 laboratory instructors. The next generation of elementary particle physics experiments would depend vitally on new ideas in instrumentation. This is a field where creativity and imagination play a major role and large budgets are not a prerequisite. One of the unique features was the presentation of four laboratory experiments using modern techniques and instrumentation. Refs, figs and tabs

  7. Elementary Concepts and Fundamental Laws of the Theory of Heat

    Science.gov (United States)

    de Oliveira, Mário J.

    2018-06-01

    The elementary concepts and fundamental laws concerning the science of heat are examined from the point of view of its development with special attention to its theoretical structure. The development is divided into four periods, each one characterized by the concept that was attributed to heat. The transition from one to the next period was marked by the emergence of new concepts and new laws, and by singular events. We point out that thermodynamics, as it emerged, is founded on the elementary concepts of temperature and adiabatic wall, and on the fundamental laws: Mayer-Joule principle, or law of conservation of energy; Carnot principle, which leads to the definition of entropy; and the Clausius principle, or law of increase in entropy.

  8. Elementary Concepts and Fundamental Laws of the Theory of Heat

    Science.gov (United States)

    de Oliveira, Mário J.

    2018-03-01

    The elementary concepts and fundamental laws concerning the science of heat are examined from the point of view of its development with special attention to its theoretical structure. The development is divided into four periods, each one characterized by the concept that was attributed to heat. The transition from one to the next period was marked by the emergence of new concepts and new laws, and by singular events. We point out that thermodynamics, as it emerged, is founded on the elementary concepts of temperature and adiabatic wall, and on the fundamental laws: Mayer-Joule principle, or law of conservation of energy; Carnot principle, which leads to the definition of entropy; and the Clausius principle, or law of increase in entropy.

  9. Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-05-01

    The power index formula has been used to obtain the band head spin (I 0) of all the superdeformed (SD) bands in Hg isotopes. A least squares fitting approach is used. The root mean square deviations between the determined and the observed transition energies are calculated by extracting the model parameters using the power index formula. Whenever definite spins are available, the determined and the observed transition energies are in accordance with each other. The computed values of dynamic moment of inertia J (2) obtained by using the power index formula and its deviation with the rotational frequency is also studied. Excellent agreement is shown between the calculated and the experimental results for J (2) versus the rotational frequency. Hence, the power index formula works very well for all the SD bands in Hg isotopes expect for 195Hg(2, 3, 4).

  10. Band-Structure of Thallium by the LMTO Method

    DEFF Research Database (Denmark)

    Holtham, P. M.; Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    by an energy gap. The 6d and 7s bands were found to be far above the Fermi level and the 5d states were found to be far below it. Fermi surface properties and the electronic specific heat are computed and compared with experiment. The joint density of states has also been computed and is in reasonable...... and p bands for the HCP structure. Energy bands have been evaluated both with and without spin-orbit coupling which is particularly large in thallium. Energy bands close to the Fermi level were found to be mainly 6p like in character. The 6s states lay below the 6p bands and were separated from them......The relativistic band structure of thallium has been calculated using the linear muffin-tin orbital (LMTO) method. The positions and extents of the bands were found to follow the Wigner-Seitz rule approximately, and the origin of the dispersion of the bands was established from the canonical s...

  11. Band Gap Engineering of Titania Systems Purposed for Photocatalytic Activity

    Science.gov (United States)

    Thurston, Cameron

    Ab initio computer aided design drastically increases candidate population for highly specified material discovery and selection. These simulations, carried out through a first-principles computational approach, accurately extrapolate material properties and behavior. Titanium Dioxide (TiO2 ) is one such material that stands to gain a great deal from the use of these simulations. In its anatase form, titania (TiO2 ) has been found to exhibit a band gap nearing 3.2 eV. If titania is to become a viable alternative to other contemporary photoactive materials exhibiting band gaps better suited for the solar spectrum, then the band gap must be subsequently reduced. To lower the energy needed for electronic excitation, both transition metals and non-metals have been extensively researched and are currently viable candidates for the continued reduction of titania's band gap. The introduction of multicomponent atomic doping introduces new energy bands which tend to both reduce the band gap and recombination loss. Ta-N, Nb-N, V-N, Cr-N, Mo-N, and W-N substitutions were studied in titania and subsequent energy and band gap calculations show a favorable band gap reduction in the case of passivated systems.

  12. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  13. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  14. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  15. Effective Lagrangians in elementary particle physics

    International Nuclear Information System (INIS)

    Trahern, C.G.

    1982-01-01

    Non-linear effective Lagrangians are constructed to represent the low energy phenomenology of elementary particles. As approximate descriptions of the dynamics of hadrons, these models simulate the expected (but unproven) behavior of more complex theories such as quantum Chromo-dynamics [QCD]. A general formalism for non-linear models was developed in the late 1960's by Coleman, Wess and Zumino. This dissertation utilizes and extends their work by incorporating some of the advances that have been made in the understanding of quantum field theories in the last decade. In particular the significance of spatial boundary conditions for interpreting the ground state behavior of the non-linear models is investigated. In addition the existence of a dual theory for the non-linear model is discussed. For experimental purposes duality refers to the possibility that in different enrgy regimes there may be wholly distinct kinds of excitations in the physical spectrum. Corresponding to these phenomenological distinctions are mutually exclusive mathematical descriptions. A familiar example is the duality of electric and magnetic charge in electro-dynamics. If magnetic charges do exist, they are expected to be extremely massive states that are unobservable up to very high energies. The analysis of such states within electrodynamics shows that one cannot describe both electric and magnetic charges without admitting the presence of singularities in the electric potential. A completely analogous form of duality is found and discussed for the non-linear models

  16. Spins of superdeformed rotational bands in Tl isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)

    2017-01-15

    The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)

  17. Elementary particle physics at the University of Florida

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP)

  18. Elementary particle physics at the University of Florida

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  19. Wide band ENDOR spectrometer

    International Nuclear Information System (INIS)

    Mendonca Filho, C.

    1973-01-01

    The construction of an ENDOR spectrometer operating from 0,5 to 75 MHz within a single band, with ore Klystron and homodine detection, and no fundamental changes on the electron spin resonance spectrometer was described. The ENDOR signal can be detected both by amplitude modulation of the frequency field, or direct detection of the ESR output, which is taken to a signal analyser. The signal-to-noise ratio is raised by averaging rather than filtering avoiding the use of long time constants, providing natural line widths. The experimental apparatus and the spectra obtained are described. A discussion, relating the ENDOR line amplitudes with the experimental conditions is done and ENDOR mechanism, in which there is a relevant presence of cross relaxation is proposed

  20. Electronic band structure

    International Nuclear Information System (INIS)

    Grosso, G.

    1986-01-01

    The aim of this chapter is to present, in detail, some theoretical methods used to calculate electronic band structures in crystals. The basic strategies employed to attack the problem of electronic-structure calculations are presented. Successive sections present the basic formulations of the tight-binding, orthogonalized-plane-wave, Green'sfunction, and pseudopotential methods with a discussion of their application to perfect solids. Exemplifications in the case of a few selected problems provide further insight by the author into the physical aspects of the different methods and are a guide to the use of their mathematical techniques. A discussion is offered of completely a priori Hartree-Fock calculations and attempts to extend them. Special aspects of the different methods are also discussed in light of recently published related work