WorldWideScience

Sample records for elemental mercury capture

  1. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  2. Enhanced capture of elemental mercury by bamboo-based sorbents

    International Nuclear Information System (INIS)

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-01-01

    Highlights: ► The KI-modified BC has excellent capacity for elemental mercury removal. ► The chemisorption plays a dominant role for the modified BC materials. ► The BC-I has strong anti-poisoning ability with the presence of NO or SO 2 . - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO 2 on gas-phase Hg 0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents’ BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO 2 could inhibit Hg 0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  3. Elemental mercury vapor capture by powdered activated carbon in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabrizio Scala; Riccardo Chirone; Amedeo Lancia [Istituto di Ricerche sulla Combustione - CNR, Napoli (Italy)

    2011-06-15

    A bubbling fluidized bed of inert material was used to increase the activated carbon residence time in the reaction zone and to improve its performance for mercury vapor capture. Elemental mercury capture experiments were conducted at 100{sup o}C in a purposely designed 65 mm ID lab-scale pyrex reactor, that could be operated both in the fluidized bed and in the entrained bed configurations. Commercial powdered activated carbon was pneumatically injected in the reactor and mercury concentration at the outlet was monitored continuously. Experiments were carried out at different inert particle sizes, bed masses, fluidization velocities and carbon feed rates. Experimental results showed that the presence of a bubbling fluidized bed led to an increase of the mercury capture efficiency and, in turn, of the activated carbon utilization. This was explained by the enhanced activated carbon loading and gas-solid contact time that establishes in the reaction zone, because of the large surface area available for activated carbon adhesion/deposition in the fluidized bed. Transient mercury concentration profiles at the bed outlet during the runs were used to discriminate between the controlling phenomena in the process. Experimental data have been analyzed in the light of a phenomenological framework that takes into account the presence of both free and adhered carbon in the reactor as well as mercury saturation of the adsorbent. 14 refs., 7 figs.

  4. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    Science.gov (United States)

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  5. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  6. 40 CFR 721.10068 - Elemental mercury.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Elemental mercury. 721.10068 Section... Substances § 721.10068 Elemental mercury. (a) Definitions. The definitions in § 721.3 apply to this section... elemental mercury (CAS. No. 7439-97-6) is subject to reporting under this section for the significant new...

  7. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  8. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    OpenAIRE

    Park, Jung-Duck; Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability o...

  9. Identification of elemental mercury in the subsurface

    Science.gov (United States)

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  10. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  11. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.

    Science.gov (United States)

    Rodríguez-Pérez, Jorge; López-Antón, M Antonia; Díaz-Somoano, Mercedes; García, Roberto; Martínez-Tarazona, M Rosa

    2013-09-15

    This work demonstrates that regenerable sorbents containing nano-particles of gold dispersed on an activated carbon are efficient and long-life materials for capturing mercury species from coal combustion flue gases. These sorbents can be used in such a way that the high investment entailed in their preparation will be compensated for by the recovery of all valuable materials. The characteristics of the support and dispersion of gold in the carbon surface influence the efficiency and lifetime of the sorbents. The main factor that determines the retention of mercury and the regeneration of the sorbent is the presence of reactive gases that enhance mercury retention capacity. The capture of mercury is a consequence of two mechanisms: (i) the retention of elemental mercury by amalgamation with gold and (ii) the retention of oxidized mercury on the activated carbon support. These sorbents were specifically designed for retaining the mercury remaining in gas phase after the desulfurization units in coal power plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    Science.gov (United States)

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  13. Making Mercury's Core with Light Elements

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.

  14. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  15. Mercury

    Science.gov (United States)

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  16. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    Science.gov (United States)

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  17. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  18. Fate of trace element haps when applying mercury control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H. [University of North Dakota Energy and Environmental Research Center 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018 (United States); Brickett, Lynn; Pletcher, Sara [U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, PO Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)

    2009-11-15

    During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air pollutants (HAPs), which typically include As, Be, Cd, Cr, Co, Mn, Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects, Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (author)

  19. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    Energy Technology Data Exchange (ETDEWEB)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting

  20. Assessing elemental mercury vapor exposure from cultural and religious practices.

    Science.gov (United States)

    Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M

    2001-08-01

    Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users.

  1. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  2. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  3. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    Science.gov (United States)

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  4. Chapter 4 Gaseous Elemental Mercury in the Ambient Atmosphere

    DEFF Research Database (Denmark)

    Ariya, Parisa A.; Skov, Henrik; Grage, Mette M L

    2008-01-01

    Understanding the kinetics and mechanisms associated with the atmospheric chemistry of mercury is of great importance to protecting the environment. This review will focus on theoretical calculations to advance understanding of gas phase oxidation of gaseous elemental mercury (GEM) by halogen spe...

  5. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  6. Sulfur polymer cement stabilization of elemental mercury mixed waste

    International Nuclear Information System (INIS)

    Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

    1998-04-01

    Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to ∼35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL)

  7. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    Science.gov (United States)

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of

  8. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    Science.gov (United States)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  9. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    Science.gov (United States)

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  10. CALCULATIONS FOR A MERCURY JET TARGET IN A SOLENOID MAGNET CAPTURE SYSTEM

    International Nuclear Information System (INIS)

    GALLARDO, J.; KAHN, S.; PALMER, R.B.; THIEBERGER, P.; WEGGEL, R.J.; MCDONALD, K.

    2001-01-01

    A mercury jet is being considered as the production target for a muon storage ring facility to produce an intense neutrino beam. A 20 T solenoid magnet that captures pions for muon production surrounds the mercury target. As the liquid metal jet enters or exits the field eddy currents are induced. We calculate the effects that a liquid metal jet experiences in entering and exiting the magnetic field for the magnetic configuration considered in the Neutrino Factory Feasibility Study II

  11. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Science.gov (United States)

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  12. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kostova, I.J.; Hower, J.C.; Mastalerz, M.; Vassilev, S.V. [University of Kentucky, Lexington, KY (United States). Center of Applied Energy Research

    2011-01-15

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture.

  13. Simulation of mercury capture by sorbent injection using a simplified model.

    Science.gov (United States)

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  14. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  15. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    Science.gov (United States)

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  16. Feasibility of using prompt neutron capture gamma rays to detect mercury

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1993-10-01

    This report describes a study to determine the feasibility to use neutrons to probe hidden spaces within buildings for the presence of mercury. The study was performed in four phases: First a search of the scientific literature was performed to ascertain the behavior of mercury subsequent to the capture of a thermal or near-thermal neutron. Second, a Monte Carlo investigation (using the code MCNP) of the effects of neutrons on materials expected to be found near and/or surrounding the mercury was undertaken. Third, a Monte Carlo study of the shielding and beam forming properties of various configurations of moderator material was started. Lastly, a Monte Carlo analysis of a likely field situation involving mercury behind 1 inch and 2 inch thicknesses of concrete was performed

  17. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, M.H.; Huang, H.S.

    1999-05-04

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents. 7 figs.

  18. Method for the removal of elemental mercury from a gas stream

    Science.gov (United States)

    Mendelsohn, Marshall H.; Huang, Hann-Sheng

    1999-01-01

    A method is provided to remove elemental mercury from a gas stream by reacting the gas stream with an oxidizing solution to convert the elemental mercury to soluble mercury compounds. Other constituents are also oxidized. The gas stream is then passed through a wet scrubber to remove the mercuric compounds and oxidized constituents.

  19. Elemental mercury poisoning caused by subcutaneous and intravenous injection: An unusual self-injury

    International Nuclear Information System (INIS)

    Wale, Jaywant; Yadav, Pankaj K; Garg, Shairy

    2010-01-01

    Elemental mercury poisoning most commonly occurs through vapor inhalation as mercury is well absorbed through the lungs. Administering subcutaneous and intravenous elemental mercury is very uncommon but with only a few isolated case reports in the literature. We present an unusual case of elemental mercury poisoning in a 20-year-old young male who presented with chest pain, fever, and hemoptysis. He had injected himself subcutaneously with elemental mercury obtained from a sphygmomanometer. The typical radiographic findings in the chest, forearm, and abdomen are discussed, with a review of the literature

  20. Elemental mercury poisoning caused by subcutaneous and intravenous injection: An unusual self-injury

    Directory of Open Access Journals (Sweden)

    Wale Jaywant

    2010-01-01

    Full Text Available Elemental mercury poisoning most commonly occurs through vapor inhalation as mercury is well absorbed through the lungs. Administering subcutaneous and intravenous elemental mercury is very uncommon but with only a few isolated case reports in the literature. We present an unusual case of elemental mercury poisoning in a 20-year-old young male who presented with chest pain, fever, and hemoptysis. He had injected himself subcutaneously with elemental mercury obtained from a sphygmomanometer. The typical radiographic findings in the chest, forearm, and abdomen are discussed, with a review of the literature.

  1. Glutathione level after long-term occupational elemental mercury exposure

    International Nuclear Information System (INIS)

    Kobal, Alfred Bogomir; Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-01-01

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg o ) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg o -not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p o could be an inductive and additive response to maintain the balance between GSH and antioxidative enzymes in interaction with the Hg body burden accumulated during remote occupational exposure, which does not represent a severely increased oxidative stress

  2. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  3. A 3 Year-Old Male Child Ingested Approximately 750 Grams of Elemental Mercury

    Directory of Open Access Journals (Sweden)

    Metin Uysalol

    2016-08-01

    Full Text Available Background: The oral ingestion of elemental mercury is unlikely to cause systemic toxicity, as it is poorly absorbed through the gastrointestinal system. However, abnormal gastrointestinal function or anatomy may allow elemental mercury into the bloodstream and the peritoneal space. Systemic effects of massive oral intake of mercury have rarely been reported. Case Report: In this paper, we are presenting the highest ingle oral intake of elemental mercury by a child aged 3 years. A Libyan boy aged 3 years ingested approximately 750 grams of elemental mercury and was still asymptomatic. Conclusion: The patient had no existing disease or abnormal gastrointestinal function or anatomy. The physical examination was normal. His serum mercury level was 91 μg/L (normal: <5 μg/L, and he showed no clinical manifestations. Exposure to mercury in children through different circumstances remains a likely occurrence.

  4. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    Science.gov (United States)

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  5. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  6. Exposures of dental professionals to elemental mercury and methylmercury.

    Science.gov (United States)

    Goodrich, Jaclyn M; Chou, Hwai-Nan; Gruninger, Stephen E; Franzblau, Alfred; Basu, Niladri

    2016-01-01

    Mercury (Hg) exposure, a worldwide public health concern, predominantly takes two forms--methylmercury from fish consumption and elemental Hg from dental amalgam restorations. We recruited 630 dental professionals from an American Dental Association meeting to assess Hg body burden and primary sources of exposure in a dually exposed population. Participants described occupational practices and fish consumption patterns via questionnaire. Hg levels in biomarkers of elemental Hg (urine) and methylmercury (hair and blood) were measured with a Direct Mercury Analyzer-80 and were higher than the general US population. Geometric means (95% CI) were 1.28 (1.19-1.37) μg/l in urine, 0.60 (0.54-0.67) μg/g in hair and 3.67 (3.38-3.98) μg/l in blood. In multivariable linear regression, personal amalgams predicted urine Hg levels along with total years in dentistry, amalgams handled, working hours and sex. Fish consumption patterns predicted hair and blood Hg levels, which were higher among Asians compared with Caucasians. Five species contributed the majority of the estimated Hg intake from fish--swordfish, fresh tuna, white canned tuna, whitefish and king mackerel. When studying populations with occupational exposure to Hg, it is important to assess environmental exposures to both elemental Hg and methylmercury as these constitute a large proportion of total exposure.

  7. Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term mercury storage

    International Nuclear Information System (INIS)

    Lopez, F.A.; Lopez-Delgado, A.; Padilla, I.; Tayibi, H.; Alguacil, F.J.

    2010-01-01

    In this paper we present the results of the formation of black HgS (metacinnabar) from liquid mercury and elemental sulfur using the mechanical energy provided by a ball mill in different conditions. Metacinnabar formation was observed even after short milling times (15 min) and unreacted liquid mercury was no longer detected after 60 min of milling. The reaction mechanism was monitored with a scanning electron microscope. The impact and friction forces of milling on the Hg and S mixture resulted in the formation of metacinnabar by reducing the size of mercury drops, giving rise to microspheres, and lowering the surface tension to allow sulfur grains to become adhered at the reaction interface. After 60 min of milling, the metacinnabar formation reaction was observed to be more than 99.99% complete, yielding a Toxicity Characteristic Leaching Procedure value of 3.1 μg/L Hg. The reaction product thus complies with the limits of the most stringent Universal Treatment Standard requirements, which allow a maximum TCLP concentration of 25 μg/L.

  8. n-capture elements in the Sculptor dwarf spheroidal galaxy

    Science.gov (United States)

    Skúladóttir, Ása

    2018-06-01

    Sculptor is a well studied dwarf galaxy in the Local Group, which is dominated by an old stellar population (>10 Gyr) and is therefore an ideal system to study early chemical evolution. With high-resolution VLT/FLAMES spectra, R~20,000, we are able to get accurate abundances of several n-capture elements in ~100 stars, from both the lighter n-capture elements (Y) as well as the heavier ones, both tracers of the s-process (e.g. Ba) and the r-process (e.g. Eu). I will discuss the similarities and differences in the n-capture elements in Sculptor and the Milky Way, as well as other dwarf galaxies.

  9. [Removal Characteristics of Elemental Mercury by Mn-Ce/molecular Sieve].

    Science.gov (United States)

    Tan, Zeng-qiang; Niu, Guo-ping; Chen, Xiao-wen; An, Zhen

    2015-06-01

    The impregnation method was used to support molecular sieve with active manganese and cerium components to obtain a composite molecular sieve catalyst. The mercury removal performance of the catalyst was studied with a bench-scale setup. XPS analysis was used to characterize the sample before and after the modification in order to study the changes in the active components of the catalyst prepared. The results showed that the catalyst carrying manganese and cerium components had higher oxidation ability of elemental mercury in the temperature range of 300 degrees C - 450 degrees C, especially at 450 degrees C, the oxidation efficiency of elemental mercury was kept above 80%. The catalyst had more functional groups that were conducive to the oxidation of elemental mercury, and the mercury removal mainly depended on the chemical adsorption. The SO2 and NO in flue gas could inhibit the oxidation of elemental mercury to certain extent.

  10. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    Science.gov (United States)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  11. Relationship between catalase activity and uptake of elemental mercury by rat brain

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1983-01-01

    Uptake of mercury by brain after intravenous injection of elemental mercury was investigated in the rat. Catalase activity was inhibited by aminotriazole either by intraperitoneal affecting catalase in most tissues of the animal or by intraventricular injections affecting catalase in the brain selectively. Uptake of elemental mercury by rat brain was not influenced by intraperitoneal administration of aminotriazole resulting in 50% inhibition of brain catalase. However, when the inhibitor was injected intraventricularly in concentrations to give a 50% inhibition of brain catalase, it was shown that the mercury uptake by brain was significantly decreased. In the latter case when only brain catalase was inhibited and the supply of elemtal mercury to brain was maintained, mercury uptake by brain was proportional to the activity of catalase in brain tissue and to the injected amount of elemental mercury. Contrary to the intraventricular injection of aminotriazole, in animals recieving aminotriazole intraperitoneally prior to elemental mercury injection, we suggest that the lower activity of brain catalse is compensated by an increased supply of elemtal mercury caused by the generally lower oxidation rate in the animal. This view is supported by the finding that mercury uptake by liver increased due to aminotriazole intraperitoneally although activity of catalase was depressed. (author)

  12. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    Science.gov (United States)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  13. Spectroscopic Analyses of Neutron Capture Elements in Open Clusters

    Science.gov (United States)

    O'Connell, Julia E.

    The evolution of elements as a function or age throughout the Milky Way disk provides strong constraints for galaxy evolution models, and on star formation epochs. In an effort to provide such constraints, we conducted an investigation into r- and s-process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 near infrared survey. To obtain data for neutron capture abundance analysis, we conducted a long-term observing campaign spanning three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-meter telescope and Sandiford Cass Echelle Spectrograph (SES, R(lambda/Deltalambda) ˜60,000). The SES provides a wavelength range of ˜1400 A, making it uniquely suited to investigate a number of other important chemical abundances as well as the neutron capture elements. For this study, we derive abundances for 18 elements covering four nucleosynthetic families- light, iron-peak, neutron capture and alpha-elements- for ˜30 open clusters within 6 kpc of the Sun with ages ranging from ˜80 Myr to ˜10 Gyr. Both equivalent width (EW) measurements and spectral synthesis methods were employed to derive abundances for all elements. Initial estimates for model stellar atmospheres- effective temperature and surface gravity- were provided by the APOGEE data set, and then re-derived for our optical spectra by removing abundance trends as a function of excitation potential and reduced width log(EW/lambda). With the exception of Ba II and Zr I, abundance analyses for all neutron capture elements were performed by generating synthetic spectra from the new stellar parameters. In order to remove molecular contamination, or blending from nearby atomic features, the synthetic spectra were modeled by a best-fit Gaussian to the observed data. Nd II shows a slight enhancement in all cluster stars, while other neutron capture elements follow solar abundance trends. Ba II shows a large cluster-to-cluster abundance spread

  14. Modern alchemy: Fred Hoyle and element building by neutron capture

    Science.gov (United States)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  15. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    NARCIS (Netherlands)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of

  16. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    Science.gov (United States)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    2018-02-01

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19 cm and 12.51 cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74 cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced

  17. Real-time analysis of total, elemental, and total speciated mercury

    International Nuclear Information System (INIS)

    Schlager, R.J.; Wilson, K.G.; Sappey, A.D.

    1995-01-01

    ADA Technologies, Inc., is developing a continuous emissions monitoring system that measures the concentrations of mercury in flue gas. Mercury is emitted as an air pollutant from a number of industrial processes. The largest contributors of these emissions are coal and oil combustion, municipal waste combustion, medical waste combustion, and the thermal treatment of hazardous materials. It is difficult, time consuming, and expensive to measure mercury emissions using current testing methods. Part of the difficulty lies in the fact that mercury is emitted from sources in several different forms, such as elemental mercury and mercuric chloride. The ADA analyzer measures these emissions in real time, thus providing a number of advantages over existing test methods: (1) it will provide a real-time measure of emission rates, (2) it will assure facility operators, regulators, and the public that emissions control systems are working at peak efficiency, and (3) it will provide information as to the nature of the emitted mercury (elemental mercury or speciated compounds). This update presents an overview of the CEM and describes features of key components of the monitoring system--the mercury detector, a mercury species converter, and the analyzer calibration system

  18. Real-time analysis of total, elemental, and total speciated mercury

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Wilson, K.G.; Sappey, A.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    ADA Technologies, Inc., is developing a continuous emissions monitoring system that measures the concentrations of mercury in flue gas. Mercury is emitted as an air pollutant from a number of industrial processes. The largest contributors of these emissions are coal and oil combustion, municipal waste combustion, medical waste combustion, and the thermal treatment of hazardous materials. It is difficult, time consuming, and expensive to measure mercury emissions using current testing methods. Part of the difficulty lies in the fact that mercury is emitted from sources in several different forms, such as elemental mercury and mercuric chloride. The ADA analyzer measures these emissions in real time, thus providing a number of advantages over existing test methods: (1) it will provide a real-time measure of emission rates, (2) it will assure facility operators, regulators, and the public that emissions control systems are working at peak efficiency, and (3) it will provide information as to the nature of the emitted mercury (elemental mercury or speciated compounds). This update presents an overview of the CEM and describes features of key components of the monitoring system--the mercury detector, a mercury species converter, and the analyzer calibration system.

  19. Medical image of the week: Elemental mercury poisoning

    Directory of Open Access Journals (Sweden)

    Boivin M

    2018-05-01

    Full Text Available No abstract available. Article truncated at 150 words. A 34-year-old woman presented to the Emergency department with abdominal pain after ingestion of an unknown liquid that family felt might be poisonous. The patient had a past history of prior suicide attempts, as well as a history of polysubstance and alcohol abuse. The patient was confused, tangential and a difficult historian. The patient had a heart rate of 72, was normotensive, and had an oxygen saturation of 100% on room air. She was confused and answered questions intermittently. The remainder of her physical examination including her neurological exam was normal. The initial serum chemistry, anion gap, lactate, liver function tests were normal. Urine drug screen was positive for benzodiazepines, for which the patient was prescribed. An abdominal x-ray was performed showing a radiopaque substance in the abdomen (Figure 1A. It was eventually determined she ingested elemental mercury. Blood levels were elevated, and she did eventually have hematochezia. Colonoscopy was …

  20. Elemental Mercury Diffusion Processes and Concentration at the Lunar Poles

    Science.gov (United States)

    Moxley, Frederick; Killen, Rosemary M.; Hurley, Dana M.

    2011-01-01

    In 2009, the Lyman Alpha Mapping Project (LAMP) spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft made the first detection of element mercury (Hg) vapor in the lunar exosphere after the Lunar Crater Observing and Sensing Satellite (LCROSS) Centaur rocket impacted into the Cabeus crater in the southern polar region of the Moon. The lunar regolith core samples from the Apollo missions determined that Hg had a devolatilized pattern with a concentration gradient increasing with depth, in addition to a layered pattern suggesting multiple episodes of burial and volatile loss. Hg migration on the lunar surface resulted in cold trapping at the poles. We have modeled the rate at which indigenous Hg is lost from the regolith through diffusion out of lunar grains. We secondly modeled the migration of Hg vapor in the exosphere and estimated the rate of cold-trapping at the poles using a Monte Carlo technique. The Hg vapor may be lost from the exosphere via ionization, Jeans escape, or re-impact into the surface causing reabsorption.

  1. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  2. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  3. UiO-66 and its Br-modified derivates for elemental mercury removal.

    Science.gov (United States)

    Zhang, Xiao; Shen, Boxiong; Zhu, Sheaowen; Xu, Huan; Tian, Linghui

    2016-12-15

    Phenyl bromine-appended metal-organic frameworks (Br-MOFs) were synthesized and applied in elemental mercury (Hg 0 ) removal from simulated flue gas, considering the stability of bromine on the materials at the same time. The techniques of PXRD, nitrogen adsorption, TGA and XPS were used to characterize the materials. Phenyl bromide on the MOFs was the main active site for Hg 0 capture. The optimal Br-MOF showed high Hg 0 removal efficiency of more than 99% for 48h at 200°C, whereas the efficiency of un-functionalized MOF and conventional bromine impregnated active carbon dropped to 59.8% and 91.2% within 5h, respectively. The crystalline integrity of the Br-MOF was maintained after Hg 0 adsorption. Br-MOF exhibited enhanced Hg 0 removal efficiency when SO 2 was introduced to the flue gas. However, exposure Br-MOF to flue gas with steam resulted in low Hg 0 removal efficiency. Bromine leaching experiments proved that Br-MOFs have high bromine stability over the Hg 0 adsorption process, avoiding the possible bromine pollution caused by the conventional bromine impregnated adsorbents. All of these results demonstrated the phenyl bromine-appended MOFs to be potential Hg 0 adsorbent regarding its high Hg 0 capture efficiency and low environmental risk. Copyright © 2016. Published by Elsevier B.V.

  4. NEUTRON-CAPTURE ELEMENT ABUNDANCES IN MAGELLANIC CLOUD PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Mashburn, A. L.; Sterling, N. C. [Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118 (United States); Madonna, S. [Instituto de Astrofísica de Canarias, Departamento Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Dinerstein, Harriet L. [Department of Astronomy, University of Texas, 2515 Speedway, C1400, Austin, TX 78712-1205 (United States); Roederer, I. U. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Geballe, T. R., E-mail: awhite15@my.westga.edu, E-mail: nsterlin@westga.edu, E-mail: smadonna@iac.es, E-mail: harriet@astro.as.utexas.edu, E-mail: iur@umich.edu, E-mail: tgeballe@gemini.edu [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States)

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n -capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s -process enrichments of Kr (0.6–1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5–0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2–3 M {sub ⊙} progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s -process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2–0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n -capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s -process enrichments to be studied in PN populations with well-determined distances.

  5. Oxidation Catalysts for Elemental Mercury in Flue Gases—A Review

    Directory of Open Access Journals (Sweden)

    Liliana Lazar

    2012-02-01

    Full Text Available The removal of mercury from flue gases in scrubbers is greatly facilitated if the mercury is present as water-soluble oxidized species. Therefore, increased mercury oxidation upstream of scrubber devices will improve overall mercury removal. For this purpose heterogeneous catalysts have recently attracted a great deal of interest. Selective catalytic reduction (SCR, noble metal and transition metal oxide based catalysts have been investigated at both the laboratory and plant scale with this objective. A review article published in 2006 covers the progress in the elemental mercury (Hgel catalytic oxidation area. This paper brings the review in this area up to date. To this end, 110 papers including several reports and patents are reviewed. For each type of catalyst the possible mechanisms as well as the effect of flue gas components on activity and stability are examined. Advantages and main problems are analyzed. The possible future directions of catalyst development in this environmental research area are outlined.

  6. New processes for the reduction and capture of mercury emissions in the exhaust gas treatment; Neue Verfahren zur Minderung und Erfassung von Quecksilber-Emissionen in der Abgasbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Boness, Michael [Sick Maihak GmbH, Meersburg (Germany); Kanefke, Rico [Currenta GmbH und Co. OHG, Leverkusen (Germany). Sonderabfallverbrennung Leverkusen; Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany)

    2013-03-01

    The highly volatile heavy metal mercury is deemed to be very toxic. There exist a lot of natural as well as anthropogenic sources for the pollution of the environment with mercury such as the coal-fired power generation, the electrolytic production of chlorine, the cement burning including the release of mercury from the cement raw meal, the waste incineration and the artisanal production of gold by amalgamation with liquid mercury. The authors of the contribution under consideration report on new procedures for the reduction and capture of mercury emissions in the exhaust gas treatment. The bromine supported precipitation of mercury in the exhaust gas treatment is an efficient and economic process which takes account of the future requirements of lower limit values for mercury. Simultaneously, a new measurement technique for a continuous capture of mercury with new standards on detection sensitivity, accuracy and reliability in connection with a more simple and cost-effective maintenance is developed. The bromine supported precipitation as well as the continuous capture of mercury are trendsetters and are actually the best available technologies for the reduction of mercury emissions.

  7. Elemental Impurities in Nigerian Pediatric Syrups: Mercury in Violation of Standard Guidelines.

    Science.gov (United States)

    Orisakwe, Orish Ebere; Roberts, Irosanga Itamuno; Bagbi, Baribefe Monday

    2016-01-01

    Studies on the human exposure to elemental impurities like antimony, tin, and mercury pharmaceutical products in the African environment are scarce and limited. In this study, we determined the concentrations of these elemental impurities in 28 different brands of commonly used pediatric syrups, purchased randomly from patent medicine retail outlets in Port Harcourt, Rivers State, Nigeria. The aim of this study was to compare the antimony, tin, and mercury levels in these pediatric syrups with the recommended limits of United States Pharmacopeia. Twenty-eight different pediatric syrups were randomly sampled and purchased using the market basket protocol from pharmacy shops in Port Harcourt, Rivers State, Nigeria in December 2010. Syrups were ashed before digestion using concentrated aqua regia, HCl: HNO3 (3:1), and antimony, tin, and mercury were analyzed using Unicam Atomic Absorption Spectrophotometer (AAS) Model 929. The ranges of heavy metal content in these pediatric syrups were 0.54-1.27, 0.86-2.56, and 0.97-5.13 μg/g for antimony, tin, and mercury, respectively. About 75% of the syrups exceeded the United States Pharmacopeia mercury limit of 1.5 μg/g. The estimated or calculated amounts of antimony, tin, and mercury in the 3 most likely administered syrups were 17.15, 64.20, and 34.60 μg of antimony, tin, and mercury, respectively. The daily intake or estimated amount from the ingestion of syrups excluding background exposure (μg metal·kg body weight·d) for a 15-kg child were 1.17, 2.31, and 4.28 for antimony, tin, and mercury, respectively. Mercury content in pediatric syrups may constitute a significant source of heavy metal exposure to children and may be of public health importance in Nigeria.

  8. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    Science.gov (United States)

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  9. Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D.M.; Quejido, A.J.; Fernandez, M.; Hernandez, C.; Schmid, T.; Millan, R.; Gonzalez, M.; Aldea, M.; Martin, R.; Morante, R. [CIEMAT, Madrid (Spain)

    2005-04-01

    A comparative evaluation of the mercury distribution in a soil sample from Almaden (Spain) has been performed by applying three different sequential extraction procedures, namely, modified BCR (three steps in sequence), Di Giulio-Ryan (four steps in sequence), and a specific SEP developed at CIEMAT (six steps in sequence). There were important differences in the mercury extraction results obtained by the three procedures according to the reagents applied and the sequence of their application. These findings highlight the difficulty of setting a universal SEP to obtain information on metal fractions of different mobility for any soil sample, as well as the requirement for knowledge about the mineralogical and chemical characteristics of the samples. The specific six-step CIEMAT sequential extraction procedure was applied to a soil profile (Ap, Ah, Bt1, and Bt2 horizons). The distribution of mercury and major, minor, and trace elements in the different fractions were determined. The results indicate that mercury is mainly released with 6 M HCl. The strong association of mercury with crystalline iron oxyhydroxides, present in all the horizons of the profile, and/or the solubility of some mercury compounds in such acid can explain this fact. Minor mercury is found in the fraction assigned to oxidizable matter and in the final insoluble residue (cinnabar). (orig.)

  10. Vaporization of elemental mercury from pools of molten lead at low concentrations

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  11. Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada

    International Nuclear Information System (INIS)

    Cairns, Elaine; Tharumakulasingam, Kavitharan; Athar, Makshoof; Yousaf, Muhammad; Cheng, Irene; Huang, Y.; Lu, Julia; Yap, Dave

    2011-01-01

    Atmospheric gaseous elemental mercury [GEM] at 1.8, 4, and 59 m above ground, in parking lots, and in indoor and outdoor air was measured in Toronto City, Canada from May 2008-July 2009. The average GEM value at 1.8 m was 1.89 ± 0.62 ng m -3 . The GEM values increased with elevation. The average GEM in underground parking lots ranged from 1.37 to 7.86 ng m -3 and was higher than those observed from the surface parking lots. The GEM in the indoor air ranged from 1.21 to 28.50 ng m -3 , was higher in the laboratories than in the offices, and was much higher than that in the outdoor air. All these indicate that buildings serve as sources of mercury to the urban atmosphere. More studies are needed to estimate the contribution of urban areas to the atmospheric mercury budget and the impact of indoor air on outdoor air quality and human health. - Highlights: → Buildings served as mercury sources to urban atmosphere. → Atmospheric mercury level increased with increasing height in the street canyon. → Emission from vehicles and ground surfaces was not the major sources of Hg to urban air. → Mercury levels were higher in indoor than outdoor air and in laboratories than in offices. → Mercury levels were higher in the outdoor air near building walls. - Buildings serve as sources of gaseous elemental mercury and research is needed to quantify the emission and to assess the impact of indoor air on outdoor air quality and human health.

  12. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  13. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    International Nuclear Information System (INIS)

    Mei Zhijian; Shen Zhemin; Zhao Qingjie; Wang Wenhua; Zhang Yejian

    2008-01-01

    The reusability of Co 3 O 4 (AC-Co), MnO 2 (AC-Mn) and CuCoO 4 (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N 2 atmosphere and the enrichment regenerated Hg 0 could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg 0 removal efficiency decreased greatly due to AC's decomposition and MnO 2 's crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg 0 capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g -1 and 5.21 mg g -1 , respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg 0 removal efficiency. However, CuCoO 4 and MnO 2 's AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO 2 tests showed that AC-CC had higher anti SO 2 -poisoning ability than AC-Co and AC-Mn

  14. Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location.

    Science.gov (United States)

    Nicklisch, Sascha C T; Bonito, Lindsay T; Sandin, Stuart; Hamdoun, Amro

    2017-10-01

    Mercury is a toxic compound to which humans are exposed by consumption of fish. Current fish consumption advisories focus on minimizing the risk posed by the species that are most likely to have high levels of mercury. Less accounted for is the variation within species, and the potential role of the geographic origin of a fish in determining its mercury level. Here we surveyed the mercury levels in 117 yellowfin tuna caught from 12 different locations worldwide. Our results indicated significant variation in yellowfin tuna methylmercury load, with levels that ranged from 0.03 to 0.82 μg/g wet weight across individual fish. Mean mercury levels were only weakly associated with fish size (R 2  mercury load, and argue for better traceability of fish to improve the accuracy of exposure risk predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    Science.gov (United States)

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.

  16. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    Science.gov (United States)

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  17. Direct Measurement of Trace Elemental Mercury in Hydrocarbon Matrices by Gas Chromatography with Ultraviolet Photometric Detection.

    Science.gov (United States)

    Gras, Ronda; Luong, Jim; Shellie, Robert A

    2015-11-17

    We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is 98% over this range.

  18. Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008

    Directory of Open Access Journals (Sweden)

    E.-G. Brunke

    2010-02-01

    Full Text Available Gaseous mercury in the marine boundary layer has been measured with a 15 min temporal resolution at the Global Atmosphere Watch station Cape Point since March 2007. The most prominent features of the data until July 2008 are the frequent occurrences of pollution (PEs and depletion events (DEs. Both types of events originate mostly within a short transport distance (up to about 100 km, which are embedded in air masses ranging from marine background to continental. The Hg/CO emission ratios observed during the PEs are within the range reported for biomass burning and industrial/urban emissions. The depletion of gaseous mercury during the DEs is in many cases almost complete and suggests an atmospheric residence time of elemental mercury as short as a few dozens of hours, which is in contrast to the commonly used estimate of approximately 1 year. The DEs observed at Cape Point are not accompanied by simultaneous depletion of ozone which distinguishes them from the halogen driven atmospheric mercury depletion events (AMDEs observed in Polar Regions. Nonetheless, DEs similar to those observed at Cape Point have also been observed at other places in the marine boundary layer. Additional measurements of mercury speciation and of possible mercury oxidants are hence called for to reveal the chemical mechanism of the newly observed DEs and to assess its importance on larger scales.

  19. Mercury and other element exposure to tree swallows (Tachycineta bicolor) nesting on Lostwood National Wildlife Refuge, North Dakota

    International Nuclear Information System (INIS)

    Custer, Thomas W.; Custer, Christine M.; Johnson, Kevin M.; Hoffman, David J.

    2008-01-01

    Elevated mercury concentrations in water were reported in the prairie wetlands at Lostwood National Wildlife Refuge, ND. In order to determine whether wildlife associated with these wetlands was exposed to and then accumulated higher mercury concentrations than wildlife living near more permanent wetlands (e.g. lakes), tree swallow (Tachycineta bicolor) eggs and nestlings were collected from nests near seasonal wetlands, semi-permanent wetlands, and lakes. Mercury concentrations in eggs collected near seasonal wetlands were higher than those collected near semi-permanent wetlands or lakes. In contrast, mercury concentrations in nestling livers did not differ among wetland types. Mercury and other element concentrations in tree swallow eggs and nestlings collected from all wetlands were low. As suspected from these low concentrations, mercury concentrations in sample eggs were not a significant factor explaining the hatching success of the remaining eggs in each clutch. - Mercury concentrations in tree swallows nesting in the prairie wetlands at Lostwood National Wildlife Refuge were not elevated

  20. Mercury

    Science.gov (United States)

    ... that mercuric chloride and methylmercury are possible human carcinogens. top How does mercury affect children? Very young ... billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum ...

  1. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.

    Science.gov (United States)

    Musmarra, D; Karatza, D; Lancia, A; Prisciandaro, M; Mazziotti di Celso, G

    2016-07-01

    exhaust gases from coal combustion and municipal solid waste incineration. Furthermore, certain CO2 capture processes, particularly oxyfuel combustion in a pulverized fuel coal-fired power station, produce a raw CO2 product containing several contaminants, mainly water vapor, oxygen, and nitrogen but also mercury, that have to be almost completely removed; otherwise these would represent a strong drawback to the success of the process.

  2. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    Science.gov (United States)

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  3. A smart nanofibrous material for adsorbing and detecting elemental mercury in air

    Directory of Open Access Journals (Sweden)

    A. Macagnano

    2017-06-01

    Full Text Available The combination of the affinity of gold for mercury and nanosized frameworks has allowed for the design and fabrication of novel kinds of sensors with promising sensing features for environmental applications. Specifically, conductive sensors based on composite nanofibrous electrospun layers of titania easily decorated with gold nanoparticles were developed to obtain nanostructured hybrid materials capable of entrapping and revealing gaseous elemental mercury (GEM traces from the environment. The electrical properties of the resulting chemosensors were measured. A few minutes of air sampling were sufficient to detect the concentration of mercury in the air, ranging between 20 and 100 ppb, without using traps or gas carriers (LOD: 1.5 ppb. Longer measurements allowed the sensor to detect lower concentrations of GEM. The resulting chemosensors are expected to be low cost and very stable (due to the peculiar structure, requiring low power, low maintenance, and simple equipment.

  4. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mei Zhijian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Shen Zhemin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)], E-mail: pnyql520@hotmail.com; Zhao Qingjie [Shanghai Academy of Environmental Science, 508 Qin-Zhou Road, Shanghai 200233 (China); Wang Wenhua; Zhang Yejian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-04-01

    The reusability of Co{sub 3}O{sub 4} (AC-Co), MnO{sub 2} (AC-Mn) and CuCoO{sub 4} (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N{sub 2} atmosphere and the enrichment regenerated Hg{sup 0} could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg{sup 0} removal efficiency decreased greatly due to AC's decomposition and MnO{sub 2}'s crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg{sup 0} capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g{sup -1} and 5.21 mg g{sup -1}, respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg{sup 0} removal efficiency. However, CuCoO{sub 4} and MnO{sub 2}'s AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO{sub 2} tests showed that AC-CC had higher anti SO{sub 2}-poisoning ability than AC-Co and AC-Mn.

  5. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  6. Shock capturing techniques for hphp-adaptive finite elements

    Czech Academy of Sciences Publication Activity Database

    Hierro, A.; Kůs, Pavel; Badia, S.

    2016-01-01

    Roč. 309, 1 September (2016), s. 532-553 ISSN 0045-7825 Institutional support: RVO:67985840 Keywords : hphp-adaptivity * discontinuous Galerkin * shock capturing Subject RIV: BA - General Mathematics Impact factor: 3.949, year: 2016 http://www.sciencedirect.com/science/article/pii/S0045782516305862

  7. MERCURY IN SOIL AND ATMOSPHERE AS A PATHFINDER ELEMENT FOR ISTRIAN BAUXITE DEPOSITS — A TENTATIVE EXPLORATION MODEL

    Directory of Open Access Journals (Sweden)

    Ladislav A. Palinkaš

    1989-12-01

    Full Text Available ID order to find out a secondary dispersion halo of mercury and some other trace elements around the bauxite ore bodies, the authors sampled terra rossa along traverses over them. At the same time, mercury in air is measured and expressed by relative values (mA using Zeeman mercury vapor analyser. Mercury in soil was determined by flameless atomic absorption method and Cd, Pb, Zn, Cu, Co and Mn by standard AA techniques. The results are equivocal since the natural vertical soil profiles are severely disturbed on traverses due to different land use, what should be taken into consideration during continuation of the survey.

  8. Mercury

    CERN Document Server

    Mahoney, T J

    2014-01-01

    This gazetteer and atlas on Mercury lists, defines and illustrates every named (as opposed to merely catalogued) object and term as related to Mercury within a single reference work. It contains a glossary of terminology used, an index of all the headwords in the gazetteer, an atlas comprising maps and images with coordinate grids and labels identifying features listed in the gazetteer, and appendix material on the IAU nomenclature system and the transcription systems used for non-roman alphabets. This book is useful for the general reader, writers and editors dealing with astronomical themes, and those astronomers concerned with any aspect of astronomical nomenclature.

  9. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  10. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of

  11. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.

    Science.gov (United States)

    Meagher, Richard B; Heaton, Andrew C P

    2005-12-01

    Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the

  12. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  13. Examining the Possibility of Carbon as a Light Element in the Core of Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen; McCubbin, Francis M.; Turner, Amber; Ross, D. Kent

    2017-01-01

    Results from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft have shown elevated abundances of C on the surface of Mercury. Peplowski et al. used GRS data from MESSENGER to show an average northern hemisphere abundance of C on the planet of 0 to 4.1 wt% C at the three-sigma detection limit. Confirmation of C on the planet prompts many questions regarding the role of C during the differentiation and evolution of Mercury. The elevated abundances of both S and C on Mercury's surface, coupled with the low abundances of iron, suggest that the oxygen fugacity of the planet is several log10 units below the Iron-Wustite buffer. These observations spark questions about the bulk composition of Mercury's core. This experimental study seeks to understand the impact of C as a light element on potential mercurian core compositions. In order to address this question, experiments were conducted at 1 GPa and a variety of temperatures (700 - 1500 C) on metal compositions ranging from Si5Fe95 to Si22Fe78, possibly representative of the mercurian core. All starting metals were completely enclosed in a graphite capsule to ensure C saturation at a given set of run conditions. All elements, including C, were analyzed using electron probe microanalysis. Precautions were taken to ensure accurate measurements of C with this technique including using the LDE2 crystal, the cold finger on the microprobe to minimize contamination and increase the vacuum, and an instrument with no oil based pumps. Based on the superliquidus experimental results in the present study, as Fe-rich cores become more Si-rich, the C content of that core composition will decrease. Furthermore, although C concentration at graphite saturation (CCGS) varies from a liquid to a solid, temperature does not seem to play a substantial role in CCGS, at least at 1 GPa.

  14. Carbone_et_al_2016_ambient_data - Sea surface temperature variation linked to elemental mercury concentrationsmeasured on Mauna Loa

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set has two sets of gaseous elemental mercury data. The first column contains all Hg related data some of which may have been affected by the upslope...

  15. Investigation of mercury-free potentiometric stripping analysis and the influence of mercury in the analysis of trace-elements lead and zinc

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Laust

    1997-01-01

    in an electrolyte containing 0.1 M HCl and 2 mg/g Zn2+ and electrolysis at -1400 mV(SCE). It is suggested that the concentration range of linear response occur where the electrode is not fully covered by metal clusters during the electrolysis step. The influence of mercury is investigated and a model is proposed...... which explains the co-deposition of mercury and test metals in the electrolysis step in terms of a charge-distribution parameter. The model explains that the decrease of stripping peak area, as a function of concentration, is entirely due to mercury ions being simultaneously reduced together......Application of Potentiometric Stripping Analysis (PSA), without any mercury, to determination of trace-elements lead and zinc, results in linear responses between stripping-peak areas and concentrations within the range 0-2000 ng/g. The best response, as determined by the size of stripping areas...

  16. Neutron radiative capture methods for surface elemental analysis

    Science.gov (United States)

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  17. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Science.gov (United States)

    Fritsche, J.; Wohlfahrt, G.; Ammann, C.; Zeeman, M.; Hammerle, A.; Obrist, D.; Alewell, C.

    2013-01-01

    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude. PMID:24348525

  18. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Directory of Open Access Journals (Sweden)

    J. Fritsche

    2008-12-01

    Full Text Available In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e.g. heavy rain, summer ozone on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m−2 h−1 and mean deposition velocities up to 0.10 cm s−1 were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude.

  19. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  20. Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Summary and Guide for Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.

  1. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    Science.gov (United States)

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  2. Gadolinium as an element for neutron capture therapy

    International Nuclear Information System (INIS)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made

  3. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  4. Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Belzile, Nelson; Wu Gaojun; Chen, Yu-Wei; Appanna, Vasu D.

    2006-01-01

    A study on the assimilation and detoxification of selenium and mercury and on the interaction between these two elements was conducted on Pseudomonas fluorescens. P. fluorescens was able to convert separately both elements to their elemental forms, which are less toxic and biologically less available. To study the converting mechanism of selenite to elemental Se, cells were grown in the presence of various selenite concentrations and several parameters such as extracellular protein concentrations, pH, carbohydrate concentrations, isocitrate dehydrogenase (ICDH) and malic enzyme were monitored. Transmission electron microscopy (TEM) and various analytical methods were applied to confirm the interaction between selenium and cell. The former appeared as a red precipitate localized predominantly in the consumed culture medium. P. fluorescens also resisted to the toxic effect of mercury by converting Hg 2+ to the volatile and less toxic form Hg . Mercury reductase was likely responsible for the conversion of Hg 2+ to Hg . More importantly, the interaction between mercury and selenium was also studied. The presence of selenite significantly reduced the accumulation of mercury in P. fluorescens. It was also interesting to note that mercury appeared to behave as a protecting agent against selenium intoxication as the bioaccumulation of Se was also inhibited by this metal. The formation of Se-Hg complexes could explain this mutual protective effect. No precipitate of elemental Se could be detected when Hg was present in the cultures

  5. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  6. Fixed-bed studies of the interactions between mercury and coal combustion fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Grant E.; DeWall, Raymond A. [Energy and Environmental Research Center, 15 North 23rd Street, Grand Forks, ND 58203 (United States); Senior, Constance L. [Reaction Engineering International, 77 West 200 South, Suite 210, Salt Lake City, UT 84101 (United States)

    2003-08-15

    Sixteen different fly ash samples, generated from both pilot-scale and full-scale combustion systems, were exposed to a simulated flue gas containing either elemental mercury or HgCl{sub 2} in a bench-scale reactor system at the Energy and Environmental Research Center to evaluate the interactions and determine the effects of temperature, mercury species, and ash type on adsorption of mercury and oxidation of elemental mercury. The fly ash samples were characterized for surface area, loss on ignition, and forms of iron in the ash. While many of the ash samples oxidized elemental mercury, not all of the samples that oxidized mercury also captured elemental mercury. However, no capture of elemental mercury was observed without accompanying oxidation. Generally, oxidation of elemental mercury increased with increasing amount of magnetite in the ash. However, one high-carbon subbituminous ash with no magnetite showed considerable mercury oxidation that may have been due to unburned carbon. Surface area as well as the nature of the surface appeared to be important for oxidation and adsorption of elemental mercury. The capacity of the ash samples for HgCl{sub 2} was similar to that for elemental mercury. There was a good correlation between the capacity for HgCl{sub 2} and the surface area; capacity decreased with increasing temperature.

  7. Uptake of elemental mercury and activity of catalase in rat, hamster, guinea-pig, normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1982-01-01

    Uptake of elemental mercury after inhalation (3.5 mg/m 3 ) and the activity of catalase in brain, liver, kidney and blood were investigated in rat, hamster, guinea-pig, and normal and acatalasemic mice. The uptake of mercury in the species investigated varied considerably, being highest in the two strains of mice, followed by rat and hamster, and lowest in the guinea-pig. The uptake seemed to be more dependent on pulmonary ventilation than on the activity of catalase. The two strains of mice were exposed to a wide range of mercury concentrations in air (0.002-3.5 mg/m 3 ). The content of mercury in brain, liver and kidney was linearly dependent on the mercury concentration in the air, whereas in blood this relationship was exponential. At the lower concentraions of mercury in the inhaled air, the mercury level in blood was significantly lower, and in kidney higher in the acatalasemic mice compared to the normal ones. In acatalasemic mice the mercury content in the liver has higher at all concentrations investigated, whereas in brain no difference between the two strains was found. (author)

  8. Report to Congress on the Global Supply and Trade of Elemental Mercury

    Science.gov (United States)

    This report assembles available information on the global supply and trade of mercury, including both primary mercury mining as well as mercury that has been recovered from a wide variety of sources and redistilled to a high level of purity.

  9. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.

    2017-12-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of

  10. SRXRF study of trace elements in hippocampus of pup rats after prenatal and postnatal exposure to low-level mercury

    International Nuclear Information System (INIS)

    Zhang Fang; Feng Weiyue; Chai Zhifang; Wang Meng; Shi Junwen; Huang Yuying; He Wei

    2005-01-01

    Since the pollution of mercury in the environment still keeps high, more and more concerns over mercury toxicity are focused on the potential risk associated with relatively low-dose and long-term mercury exposure in the environment. It is well known that fetus and developing children are the susceptive victims of mercury damage. Therefore, high attention is focused on whether the prenatal and postnatal exposure to relatively low level of mercury will be harmful to children development. Some epidemiological studies reported that the methylmercury-related neuropsychological deficits were mainly found in the domains of cognitional parts, such as language, attention, memory, and so forth, Our previous study found out that high level of mercury was accumulated in the pup hippocampus after their prenatal and postnatal exposure to low dose of inorganic mercury. Synchrotron radiation X-ray fluorescence technique (SRXRF) is characterized of its simultaneous determination of multi-elements, high sensitivity, small sampling amount and microanalysis. SRXRF does not cause the damage of irradiated samples. Thus, it makes possible to measure the distributions of trace elements in a selected area. In this study, in order to study the effects of low-level mercury exposure to pup rat brain, some oxidation-related elements, e.g. Cu, Fe and Mn in pup hippocampus after in utero and weaning exposure to low-level inorganic mercury were determined by SRXRF. The experiment was performed at a synchrotron radiation facility at Institute of High Energy Physics. And the spot size of the beam irradiating on the sample was adjusted to about 100 x 200 μm 2 , Each spot was irradiated for about 100 s. The spectra were analyzed by the AXIL program. Additionally, the activities of some important antioxidant enzymes, such as GSH-Px, SOD, CAT, were also measured together with the content of malondialdehyde (MDA). The results showed that mercury exposure could lead to significant increase of both

  11. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  12. Subtask 4.8 - Fate and Control of Mercury and Trace Elements

    Energy Technology Data Exchange (ETDEWEB)

    Pavlish, John; Lentz, Nicholas; Martin, Christopher; Ralston, Nicholas; Zhuang, Ye; Hamre, Lucinda

    2011-12-31

    The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impact trace metal releases to the environment, such as SOx, NOx, CO2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas

  13. Oxidation of elemental mercury in the atmosphere; Constraints imposed by global scale modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, Torbjoern; Rodhe, Henning [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-05-01

    Based on the global mercury model published by Bergan et al. (1999), we present here further results from simulations where the central theme has been to evaluate the role of ozone and the hydroxyl radical as possible gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates and the flux from land areas is assumed to vary by season. We consider only two mercury reservoirs, elemental mercury, Hg{sup 0}, and the more soluble divalent form, Hgll. Wet and dry deposition of Hgll is explicitly treated. Applying monthly mean fields of ozone for the oxidation of gas phase Hg{sup 0} and using the reaction rate by Hall (1995) yields a global transformation of Hg{sup 0} to Hgll which is too slow to keep the simulated concentration of Hg{sup 0} near observed values. This shows that there are additional important removal processes for Hg{sup 0} or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg{sup 0} was one year and the simulated average concentration of Hg{sup 0} was realistic, produced latitudinal and seasonal variations in Hg{sup 0} that did not support the hypothesis that gas phase reaction with O{sub 3} is the major oxidation process for Hg{sup 0}. Recent studies indicate that OH may be an important gas phase oxidant for Hg{sup 0}. Using OH as the oxidant and applying the preliminary oxidation rate by Sommar et al. (1999) gave an unrealistically large removal of Hg{sup 0} from the atmosphere. From calculations using a slower reaction rate, corresponding to a turn-over time of Hg{sup 0} of one year, we calculated concentrations of both Hg{sup 0} in surface air and Hgll in precipitation which correspond, both in magnitude and temporal variation, to seasonal observations in Europe and North America. This result supports the suggestion that

  14. Capture analysis of element content of a substance with other neutron methods

    International Nuclear Information System (INIS)

    Kurbanov, B.I.

    2004-01-01

    Full text: Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source ( 252 Cf) with the yield of 1,5 x 10 7 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied

  15. Construction of hexahedral elements mesh capturing realistic geometries of Bayou Choctaw SPR site

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill, Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.

  16. Study of elemental mercury re-emission through a lab-scale simulated scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Li Wu; Yan Cao; Cheng-Chun He; Zhong-Bing Dong; Wei-Ping Pan [Western Kentucky University, KY (United States). Institute for Combustion Science and Environmental Technology

    2010-08-15

    This paper describes a lab-scale simulated scrubber that was designed and built in the laboratory at Western Kentucky University's Institute for Combustion Science and Environmental Technology. A series of tests on slurries of CaO, CaSO{sub 3}, CaSO{sub 4}/CaSO{sub 3} and Na{sub 2}SO{sub 3} were carried out to simulate recirculating slurries in different oxidation modes. Elemental mercury (Hg{sup 0}) re-emission was replicated through the simulated scrubber. The relationship between the oxidation-reduction potential (ORP) of the slurries and the Hg0 re-emissions was evaluated. Elemental mercury re-emission occurred when Hg{sup 2+} that was absorbed in the simulated scrubber was converted to Hg{sup 0}; then, Hg{sup 0} was emitted from the slurry together with the carrier gas. The effects of both the reagents and the operational conditions (including the temperature, pH, and oxygen concentrations in the carrier gas) on the Hg{sup 0} re-emission rates in the simulated scrubber were investigated. The results indicated that as the operational temperature of the scrubber and the pH value of the slurry increased, the Hg{sup 0} concentrations that were emitted from the simulated scrubber increased. The Hg{sup 0} re-emission rates decreased as the O{sub 2} concentration in the carrier gas increased. In addition, the effects of additives to suppress Hg{sup 0} re-emission were evaluated in this paper. Sodium tetrasulfide, TMT 15, NaHS and HI were added to the slurry, while Hg{sup 2+}, which was absorbed in the slurry, was retained in the slurry as mercury precipitates. Therefore, there was a significant capacity for the additives to suppress Hg{sup 0} re-emission. 11 refs., 11 figs., 5 tabs.

  17. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-456 Marine Sediment Samples

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of prime concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess t h e reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. A marine sediment sample with certified mass amount contents for aluminium, arsenic, cadmium chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, vanadium and zinc was recently produced by the IAEA Environment Laboratories. This publication presents the sample preparation methodology, including material homogeneity and the stability study, the selection of laboratories, the evaluation of results from the certification campaign, and the assignment of property values and their associated uncertainty. As a result, certified values for mass fractions and associated expanded uncertainty were

  18. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  19. Removal of elemental mercury by bamboo charcoal impregnated with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zengqiang Tan; Jianrong Qiu; Hancai Zeng; Hao Liu; Jun Xiang [Huazhong University of Science and Technology, Wuhan (China). Key Laboratory of Coal Combustion

    2011-04-15

    Mercury emission from coal combustion is an increasing environmental concern due to its high volatility and toxicity, and activated carbon (AC) adsorption has been proven an effective mercury-control method, with high-cost limit. The renewable bioresource of bamboo constitutes an important precursor for activated carbon, and the bamboo charcoal (BC) may act as low-cost sorbent used in the mercury-control. The adsorptive potential of BC and modified BC using H{sub 2}O{sub 2} for elemental mercury was investigated for the first time through a parametric study conducted with a bench-scale bed. The effects of pore structure and surface chemistry were investigated based on BET, XPS. Which suggest that BC materials have excellent adsorption potential for elemental mercury, especially after modified by H{sub 2}O{sub 2}. The modification using H{sub 2}O{sub 2} altered the physical and chemical properties of BC materials, making the sorbents more effective in mercury adsorption even at a relative higher temperature, and the enhancing-effect was more obvious with increasing H{sub 2}O{sub 2}. 32 refs., 6 figs., 5 tabs.

  20. Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea

    International Nuclear Information System (INIS)

    Nfon, Erick; Cousins, Ian T.; Jaervinen, Olli; Mukherjee, Arun B.; Verta, Matti; Broman, Dag

    2009-01-01

    Mercury (Hg) and 13 other trace elements (Al, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) were measured in phytoplankton, zooplankton, mysis and herring in order to examine the trophodynamics in a well-studied pelagic food chain in the Baltic Sea. The fractionation of nitrogen isotopes (δ 15 N) was used to evaluate food web structure and to estimate the extent of trophic biomagnification of the various trace elements. Trophic magnification factors (TMFs) for each trace element were determined from the slope of the regression between trace element concentrations and δ 15 N. Calculated TMFs showed fundamental differences in the trophodynamics of the trace elements in the pelagic food chain studied. Concentrations of Al, Fe, Ni, Zn, Pb and Cd showed statistically significant decreases (TMF 1) in concentration with trophic level i.e. Hg biomagnifies in this Baltic food chain. The estimated TMF for Hg in this food chain was comparable to TMFs observed elsewhere for diverse food chains and locations.

  1. The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling

    NARCIS (Netherlands)

    Sweijen, T.; Hartog, Niels; Marsman, A.; Keijzer, T.J.S.

    2014-01-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental

  2. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  3. Dynamic recycling of gaseous elemental mercury in the boundary layer of the Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    A. Dommergue

    2012-11-01

    Full Text Available Gaseous elemental mercury (Hg0 was investigated in the troposphere and in the interstitial air extracted from the snow at Dome Concordia station (alt. 3320 m on the Antarctic Plateau during January 2009. Measurements and modeling studies showed evidence of a very dynamic and daily cycling of Hg0 inside the mixing layer with a range of values from 0.2 ng m−3 up to 2.3 ng m−3. During low solar irradiation periods, fast Hg0 oxidation processes in a confined layer were suspected. Unexpectedly high Hg0 concentrations for such a remote place were measured under higher solar irradiation due to snow photochemistry. We suggest that a daily cycling of reemission/oxidation occurs during summer within the mixing layer at Dome Concordia. Hg0 concentrations showed a negative correlation with ozone mixing ratios, which contrasts with atmospheric mercury depletion events observed during the Arctic spring. Unlike previous Antarctic studies, we think that atmospheric Hg0 removal may not be the result of advection processes. The daily and dramatic Hg0 losses could be a consequence of surface or snow induced oxidation pathways. It remains however unclear whether halogens are involved. The cycling of other oxidants should be investigated together with Hg species in order to clarify the complex reactivity on the Antarctic plateau.

  4. Monitoring of gaseous elemental mercury in central Antarctica at Dome Concordia

    Directory of Open Access Journals (Sweden)

    Dommergue A.

    2013-04-01

    Full Text Available Within the framework of the Global Mercury Observation System (GMOS, we are monitoring gaseous elemental mercury (Hg(0 at the Dome Concordia Station to improve our understanding of atmospheric Hg in the Antarctic atmosphere. This French-Italian facility is located in one of the coldest places on the planet and is situated on the vast Antarctic Plateau at an elevation of 3320 m. Continuous measurements began on December 7, 2011 and are ongoing. The median value calculated over the period (n=24506 is approximately 0.9 ng/m3 and values range from <0.1 ng/m3 up to 2.3 ng/m3. Preliminary results suggest that the Antarctic atmospheric boundary layer is a very reactive place during the periods when sunlight is present. A combination of fast and efficient oxidation processes with snow photochemistry lead to a dynamic record of Hg(0 unlike any other location. Our improved understanding of these processes will help to better constrain the cycle of Hg in the Southern Hemisphere.

  5. Gaseous elemental mercury (GEM emissions from snow surfaces in northern New York.

    Directory of Open Access Journals (Sweden)

    J Alexander Maxwell

    Full Text Available Snow surface-to-air exchange of gaseous elemental mercury (GEM was measured using a modified Teflon fluorinated ethylene propylene (FEP dynamic flux chamber (DFC in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2 hr(-1 to 9.89 ng m(-2 hr(-1. For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  6. Gaseous elemental mercury (GEM) emissions from snow surfaces in northern New York.

    Science.gov (United States)

    Maxwell, J Alexander; Holsen, Thomas M; Mondal, Sumona

    2013-01-01

    Snow surface-to-air exchange of gaseous elemental mercury (GEM) was measured using a modified Teflon fluorinated ethylene propylene (FEP) dynamic flux chamber (DFC) in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg) vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2) hr(-1) to 9.89 ng m(-2) hr(-1). For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  7. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  8. Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and air-sea exchange

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2011-01-01

    Dissolved gaseous mercury (DGM, largely Hg(0)) in coastal seawater and gaseous elemental mercury (GEM or Hg(0)) in the atmosphere were simultaneously measured on the coast of the Yellow Sea, China in four different seasons (2008-09). Mean concentrations (±SD) of DGM and GEM over the study period were 34.0 ± 26.1 pg L -1 and 2.55 ± 0.98 ng m -3, respectively. DGM concentrations and the degree of DGM saturation ( Sa) exhibited distinct seasonal variation with the order of summer (DGM: 69.0 ± 23.3 pg L -1, Sa: 11.00 ± 5.92) > fall (27.0 ± 16.4 pg L -1, 3.50 ± 2.60) > spring (23.0 ± 8.7 pg L -1, 2.00 ± 0.98) > winter (16.0 ± 6.0 pg L -1, 0.96 ± 0.39). Under typical meteorological condition with low wind speed and intensive solar radiation in warm seasons, DGM usually exhibited the clear diurnal variation with elevated levels around noon and low levels in morning and afternoon. The diurnal and seasonal variation of DGM indicated the importance of photochemical DGM formation in the seawater. A consistent low DGM levels in high wind speed condition suggested that the biological activity probably influenced the DGM formation. There was no significant correlation between DGM and total mercury (THg), reactive mercury (RHg), dissolved organic carbon (DOC) in the seawater, indicating that THg/RHg and DOC might be not the controlling factors for the DGM formation in our study region. Based on the data of DGM and GEM and a two-layer gas exchange model, Hg(0) fluxes (in the unit of ng m -2 h -1) at air-sea interface were 0.51 ± 1.29 over the entire study period with 0.89 ± 1.84 in fall, 0.88 ± 1.38 in summer, 0.32 ± 0.71 in spring, and -0.06 ± 0.64, a slightly net Hg(0) deposition rate, in winter, respectively.

  9. Neutron-Capture Element Abundances in the Globular Cluster M15.

    Science.gov (United States)

    Sneden; Johnson; Kraft; Smith; Cowan; Bolte

    2000-06-20

    High-resolution, high signal-to-noise ratio, blue-violet spectra of three red giant branch tip stars in M15 have been obtained with the Keck I High-Resolution Echelle Spectrograph. These spectra have been analyzed to determine the abundances of several neutron-capture elements, including the radioactive chronometer element thorium. There are two principal results of this study. First, the abundances of the heavier (Z>/=56) elements for each of the three stars is well matched by a scaled solar system r-process abundance distribution. Second, a weighted mean-observed Th/Eu ratio for the stars implies an age for the neutron-capture material in M15 stars of 14+/-3 Gyr, in reasonable agreement with other recent age estimates for Galactic globular clusters.

  10. Infiltration and Distribution of Elemental Mercury DNAPL in Water-Saturated Porous Media : Experimental and Numerical Investigation

    NARCIS (Netherlands)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    Liquid elemental mercury occurrence in the subsurface as dense non-aqueous phase liquid (DNAPL) is reported worldwide in proximity of several industrial facilities, such as chlor-alkali plants. Insight into Hg0 DNAPL infiltration behavior is lacking and, to date, there are no experimental

  11. THE EFFECT OF WATER (VAPOR-PHASE) AND CARBON ON ELEMENTAL MERCURY REMOVAL IN A FLOW REACTOR

    Science.gov (United States)

    The paper gives results of studying the effect of vapor-phase moisture on elemental mercury (Hgo) removal by activated carbon (AC) in a flow reactor. tests involved injecting AC into both a dry and a 4% moisture nitrogen (N2) /Hgo gas stream. A bituminous-coal-based AC (Calgon WP...

  12. Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils.

    Science.gov (United States)

    Pannu, Ravinder; Siciliano, Steven D; O'Driscoll, Nelson J

    2014-10-01

    Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278-303 K), moisture (15-80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    Science.gov (United States)

    Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.

    2018-01-01

    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as

  14. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  15. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  16. Elemental mercury: Its unique properties affect its behavior and fate in the environment

    International Nuclear Information System (INIS)

    Gonzalez-Raymat, Hansell; Liu, Guangliang; Liriano, Carolina; Li, Yanbin; Yin, Yongguang; Shi, Jianbo; Jiang, Guibin; Cai, Yong

    2017-01-01

    Elemental mercury (Hg 0 ) has different behavior in the environment compared to other pollutants due to its unique properties. It can remain in the atmosphere for long periods of time and so can travel long distances. Through air-surface (e.g., vegetation or ocean) exchange (dry deposition), Hg 0 can enter terrestrial and aquatic systems where it can be converted into other Hg species. Despite being ubiquitous and playing a key role in Hg biogeochemical cycling, Hg 0 behavior in the environment is not well understood. The objective of this review is to provide a better understanding of how the unique physicochemical properties of Hg 0 affects its cycling and chemical transformations in different environmental compartments. The first part focuses on the fundamental chemistry of Hg 0 , addressing why Hg 0 is liquid at room temperature and the formation of amalgam, Hg halide, and Hg chalcogenides. The following sections discuss the long-range transport of Hg 0 as well as its redistribution in the atmosphere, aquatic and terrestrial systems, in particular, on the sorption/desorption processes that occur in each environmental compartment as well as the involvement of Hg 0 in chemical transformation processes driven by photochemical, abiotic, and biotic reactions. - Highlights: • Unique property of Hg 0 make it to behave differently with other toxic metals. • Hg 0 is considered the only global metal pollutant due to its uniqueness. • Hg 0 can be easily transformed and efficiently redistributed in the environments. - A better understanding of the properties and behavior of Hg 0 is the key to elucidate the biogeochemical cycling of mercury, a global pollutant in the environment.

  17. Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China

    Science.gov (United States)

    Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei

    2018-01-01

    Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg

  18. Experimental study on ZnO-TiO_2 sorbents for the removal of elemental mercury

    International Nuclear Information System (INIS)

    Qiu, Kunzan; Zhou, Jinsong; Qi, Pan; Zhou, Qixin; Gao, Xiang; Luo, Zhongyang

    2017-01-01

    ZnO-TiO_2 sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO_2 under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg"0 removal performance were analyzed. The results showed that ZnO-TiO_2 sorbents exhibited excellent Hg removal capacity in the presence of H2S at 150 .deg. C and 200 .deg. C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H_2S reacting on the surface of ZnO-TiO_2: (1) H_2S directly reacted with ZnO to form ZnS, (2) H_2S was oxidized to elemental sulfur (S_a_d) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg"0 and H_2S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H_2S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.

  19. Mercury in the environment : a review

    International Nuclear Information System (INIS)

    Goodarzi, F.

    2000-01-01

    Both geogenic and anthropogenic sources are responsible for the input of mercury into the environment. However, mercury comes mostly from geogenic sources and is found naturally in air, water and soil. Crustal degassing results in emission of mercury into the atmosphere. Mercury in water and soil is due mostly to input from sedimentary rocks. Mercury in lake sediments is related mainly to input by country rock and anthropogenic activities such as agriculture. The mercury content of coal is similar to or less than the amount found in the earths crust. Natural charcoal is also able to capture mercury at low temperature combustion. The amount of mercury emitted from the stack of coal-fired power plants is related to the nature of the milled coal and its mineralogical and elemental content. Mercury emissions originating from the combustion of coal from electric utility power plants are considered to be among the greatest contributors to global mercury air emissions. In order to quantify the impact the electric power industry has on the environment, information regarding mercury concentrations in coal and their speciation is needed. For this reason the author examined the behaviour of mercury in three coal samples ashed at increasing temperatures. Mercury removal from coal-fired power plants ranges from 10 to 50 per cent by fabric filters and 20 to 95 per cent by FGD systems. This data will help in regulating emissions of hazardous air pollutants from electric utility steam generating units and will potentially provide insight into the industry's contribution to the global mercury burden. 50 refs

  20. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  1. The origin of light neutron-capture elements in very metal-poor stars

    International Nuclear Information System (INIS)

    Honda, S.; Aoki, W.; Kajino, T.; Ando, H.; Beers, T.C.

    2005-01-01

    We obtained high resolution spectra of 40 very metal-poor stars, and measured the abundances of heavy elements. The abundance pattern of the heavy neutron-capture elements (56=< Z=<70) in r-process-enhanced, metal-poor stars are quite similar to that of the r-process component in solar-system material. In contrast, the abundance ratios of the light neutron-capture elements (38=< Z=<40) to heavier ones show a large dispersion. We investigated the correlation between Sr(Z=38) and Ba(Z=56) abundances, and obtained two clear results: (1) Ba-enhanced stars also show large excess of Sr (there is no object which is Ba-rich and Sr-poor); (2) stars with low Ba abundance show large scatter in Sr abundance. This trend is naturally explained by hypothesizing the existence of two processes, one that produces Sr without Ba and the other that produces Sr and Ba in similar proportions

  2. Half a Year of Co-located Gaseous Elemental Mercury Measurements: Investigation of Temporal Changes in Measurement Differences

    Czech Academy of Sciences Publication Activity Database

    Veselík, P.; Dvorská, Alice; Michálek, J.

    2017-01-01

    Roč. 26, č. 5 (2017), s. 3128-3137 ISSN 1018-4619 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : gaseous elemental mercury * Tekran 2537B * co-located measurement * capability indices * regression * cluster analysis Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 0.425, year: 2016

  3. Effect of halide impregnation on elemental mercury removal of activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Yoon Ji; Park, Soo Jin [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    Activated carbons (ACs) were impregnated with potassium halides (KX) to enhance the removal efficiency of elemental mercury (Hg{sup 0}). In this work, the impregnation effect of potassium bromide (KBr) and potassium iodine (KI) were investigated. The surface properties of KX-ACs were determined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The pore structures and total pore volumes of the KX-ACs were analyzed using the N{sub 2} /77 K adsorption isotherms. The Hg{sup 0} removal efficiency of KBr-ACs and KI-ACs was studied under simulated flue gas conditions. The effects of KI and KBr loading, adsorption temperature, and flue gas components on Hg{sup 0} removal efficiency were also investigated. The results showed that the Hg{sup 0} removal efficiency of the ACs was significantly enhanced by KI or KBr impregnation, and KI-ACs showed higher Hg{sup 0} removal efficiency than KBr-ACs under the same conditions. An increase in KI or KBr loading and higher adsorption temperatures improved the Hg{sup 0} removal efficiency, indicating that chemisorption occurred due to the reaction between X− and Hg{sup 0}. The lower extent of Hg{sup 0} removal exhibited by the KBr-ACs than by the KI-ACs was due to the difficulty of Br{sub 2} formation on the surfaces.

  4. Exchange pattern of gaseous elemental mercury in an active urban landfill facility.

    Science.gov (United States)

    Nguyen, Hang Thi; Kim, Ki-Hyun; Kim, Min-Young; Shon, Zang-Ho

    2008-01-01

    The environmental behavior of gaseous elemental mercury (Hg) in the ambient air was investigated from the center of a municipal landfill site (area approximately 0.6km(2)) located in Dae Gu, Korea in the winter of 2004. In order to provide insight on the Hg exchange processes in strong source areas, we continuously analyzed Hg concentration gradients developed across two heights between 1m and 5m over soil surfaces at hourly intervals. The results displayed Hg concentrations in the lower and upper levels in the range of 1.46-13.1ngm(-3) (3.33+/-1.29ngm(-3): N=139) and 1.20-13.7ngm(-3) (3.27+/-1.23ngm(-3): N=139), respectively. The results of our analysis, when divided separately into emission and dry deposition, showed that emission of Hg was fairly dominant in frequency (up to 58%) over dry deposition. By multiplying our Hg gradient data with the K-values predicted indirectly from the results of previous studies, the emission and deposition fluxes of Hg were estimated as 39.0+/-43.3ngm(-2)h(-1) (N=80) and -60.0+/-80.2ngm(-2)h(-1) (N=59), respectively. Although the magnitudes of exchange were moderately lower than previously investigated anthropogenic sources, the overall results of this study suggest that an active landfill site can act as an important source of Hg in an urban environment along with other man-made activities.

  5. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay)

    International Nuclear Information System (INIS)

    Campbell, Linda M.; Norstrom, Ross J.; Hobson, Keith A.; Muir, Derek C.G.; Backus, Sean; Fisk, Aaron T.

    2005-01-01

    Total mercury (THg), methylmercury (MeHg) and 22 other trace elements were measured in ice algae, three species of zooplankton, mixed zooplankton samples, Arctic cod (Boreogadus saida), ringed seals (Phoca hispida) and eight species of seabirds to examine the trophodynamics of these metals in an Arctic marine food web. All samples were collected in 1998 in the Northwater Polynya (NOW) located between Ellesmere Island and Greenland in Baffin Bay. THg and MeHg were found to biomagnify through the NOW food web, based on significant positive relationships between log THg and log MeHg concentrations vs. δ 15 N muscle and liver . The slope of these relationships for muscle THg and MeHg concentrations (slope = 0.197 and 0.223, respectively) were similar to those reported for other aquatic food webs. The food web behavior of THg and δ 15 N appears constant, regardless of trophic state (eutrophic vs. oligotrophic), latitude (Arctic vs. tropical) or salinity (marine vs. freshwater) of the ecosystem. Rb in both liver and muscle tissue and Zn in muscle tissue were also found to biomagnify through this food web, although at a rate that is approximately 25% of that of THg. A number of elements (Cd, Pb and Ni in muscle tissue and Cd and Li in seabird liver tissue) were found to decrease trophically through the food web, as indicated by significantly negative relationships with tissue-specific δ 15 N. A diverse group of metals (Ag, Ba, La, Li, Sb, Sr, U and V) were found to have higher concentrations in zooplankton than seabirds or marine mammals due to bioconcentration from seawater. The remaining metals (As, Co, Cu, Ga, Mn, Mo and Se in muscle tissue) showed no relationship with trophic position, as indicated by δ 15 N values, although As in liver tissue showed significant biomagnification in the seabird portion of the food web

  6. Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review

    Science.gov (United States)

    Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin

    2016-04-01

    Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East

  7. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  8. Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Fu

    2016-10-01

    Full Text Available There exists observational evidence that gaseous elemental mercury (GEM can be readily removed from the atmosphere via chemical oxidation followed by deposition in the polar and sub-polar regions, free troposphere, lower stratosphere, and marine boundary layer under specific environmental conditions. Here we report GEM depletions in a temperate mixed forest at Mt. Changbai, Northeast China. The strong depletions occurred predominantly at night during the leaf-growing season and in the absence of gaseous oxidized mercury (GOM enrichment (GOM  <  3 pg m−3. Vertical gradients of decreasing GEM concentrations from layers above to under forest canopy suggest in situ loss of GEM to forest canopy at Mt. Changbai. Foliar GEM flux measurements showed that the foliage of two predominant tree species is a net sink of GEM at night, with a mean flux of −1.8 ± 0.3 ng m2 h−1 over Fraxinus mandshurica (deciduous tree species and −0.1 ± 0.2 ng m2 h−1 over Pinus Koraiensis (evergreen tree species. Daily integrated GEM δ202Hg, Δ199Hg, and Δ200Hg at Mt. Changbai during 8–18 July 2013 ranged from −0.34 to 0.91 ‰, from −0.11 to −0.04 ‰ and from −0.06 to 0.01 ‰, respectively. A large positive shift in GEM δ202Hg occurred during the strong GEM depletion events, whereas Δ199Hg and Δ200Hg remained essentially unchanged. The observational findings and box model results show that uptake of GEM by forest canopy plays a predominant role in the GEM depletion at Mt. Changbai forest. Such depletion events of GEM are likely to be a widespread phenomenon, suggesting that the forest ecosystem represents one of the largest sinks ( ∼ 1930 Mg of atmospheric Hg on a global scale.

  9. Gaseous elemental mercury (GEM fluxes over canopy of two typical subtropical forests in south China

    Directory of Open Access Journals (Sweden)

    Q. Yu

    2018-01-01

    Full Text Available Mercury (Hg exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM was used to continuously observe gaseous elemental mercury (GEM fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ and a moderately polluted site (Huitong, HT, near a large Hg mine in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m−2 h−1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT when compared with that in the mildly polluted site (QYZ may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration

  10. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  11. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-461 Clam (Gafrarium tumidum) Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact exerted by large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess the reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. This publication describes the production of the IAEA-461 certified reference material, which was produced following ISO Guide 34:2009, General Requirements for the Competence of Reference Material Producers. A sample of approximately 60 kg of clams (Gafrarium tumidum) was collected in Noumea, New Caledonia, and processed at the IAEA Environment Laboratories to produce a certified reference material of marine biota. The sample contained certified mass fractions for arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, selenium, vanadium and zinc. The produced vials

  12. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  13. Sequence Capture and Phylogenetic Utility of Genomic Ultraconserved Elements Obtained from Pinned Insect Specimens.

    Directory of Open Access Journals (Sweden)

    Bonnie B Blaimer

    Full Text Available Obtaining sequence data from historical museum specimens has been a growing research interest, invigorated by next-generation sequencing methods that allow inputs of highly degraded DNA. We applied a target enrichment and next-generation sequencing protocol to generate ultraconserved elements (UCEs from 51 large carpenter bee specimens (genus Xylocopa, representing 25 species with specimen ages ranging from 2-121 years. We measured the correlation between specimen age and DNA yield (pre- and post-library preparation DNA concentration and several UCE sequence capture statistics (raw read count, UCE reads on target, UCE mean contig length and UCE locus count with linear regression models. We performed piecewise regression to test for specific breakpoints in the relationship of specimen age and DNA yield and sequence capture variables. Additionally, we compared UCE data from newer and older specimens of the same species and reconstructed their phylogeny in order to confirm the validity of our data. We recovered 6-972 UCE loci from samples with pre-library DNA concentrations ranging from 0.06-9.8 ng/μL. All investigated DNA yield and sequence capture variables were significantly but only moderately negatively correlated with specimen age. Specimens of age 20 years or less had significantly higher pre- and post-library concentrations, UCE contig lengths, and locus counts compared to specimens older than 20 years. We found breakpoints in our data indicating a decrease of the initial detrimental effect of specimen age on pre- and post-library DNA concentration and UCE contig length starting around 21-39 years after preservation. Our phylogenetic results confirmed the integrity of our data, giving preliminary insights into relationships within Xylocopa. We consider the effect of additional factors not measured in this study on our age-related sequence capture results, such as DNA fragmentation and preservation method, and discuss the promise of the UCE

  14. Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer.

    Science.gov (United States)

    Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui

    2017-12-15

    Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted air from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross Sea implying the influence of the sea ice environment. Diminishing sea ice could cause more mercury evasion from the ocean to the air. Using the thin film gas exchange model, the air-sea fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    Science.gov (United States)

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  16. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  17. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi, E-mail: zhaoyi9515@163.com; Hao, Runlong; Guo, Qing

    2014-09-15

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg{sup 0} removal was prepared. • A novel integrative process for Hg{sup 0} removal was proposed. • The simultaneous removal efficiencies of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg{sup 0}) removal has been proposed in this paper, in which Hg{sup 0} was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH{sub 3}COOOH) and sodium chloride (NaCl), after which Hg{sup 2+} was absorbed by the resultant Ca(OH){sub 2}. The experimental results indicated that CH{sub 3}COOOH and NaCl were the best additives for Hg{sup 0} oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg{sup 0} removal. The coexisting gases, SO{sub 2} and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg{sup 0} was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO{sub 2}, NO and Hg{sup 0} was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references.

  18. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent

    International Nuclear Information System (INIS)

    Zhao, Yi; Hao, Runlong; Guo, Qing

    2014-01-01

    Graphical abstract: - Highlights: • An innovative liquid-phase complex absorbent (LCA) for Hg 0 removal was prepared. • A novel integrative process for Hg 0 removal was proposed. • The simultaneous removal efficiencies of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. • The reaction mechanism of simultaneous removal of SO 2 , NO and Hg 0 was proposed. - Abstract: A novel semi-dry integrative method for elemental mercury (Hg 0 ) removal has been proposed in this paper, in which Hg 0 was initially pre-oxidized by a vaporized liquid-phase complex absorbent (LCA) composed of a Fenton reagent, peracetic acid (CH 3 COOOH) and sodium chloride (NaCl), after which Hg 2+ was absorbed by the resultant Ca(OH) 2 . The experimental results indicated that CH 3 COOOH and NaCl were the best additives for Hg 0 oxidation. Among the influencing factors, the pH of the LCA and the adding rate of the LCA significantly affected the Hg 0 removal. The coexisting gases, SO 2 and NO, were characterized as either increasing or inhibiting in the removal process, depending on their concentrations. Under optimal reaction conditions, the efficiency for the single removal of Hg 0 was 91%. Under identical conditions, the efficiencies of the simultaneous removal of SO 2 , NO and Hg 0 were 100%, 79.5% and 80.4%, respectively. Finally, the reaction mechanism for the simultaneous removal of SO 2 , NO and Hg 0 was proposed based on the characteristics of the removal products as determined by X-ray diffraction (XRD), atomic fluorescence spectrometry (AFS), the analysis of the electrode potentials, and through data from related research references

  19. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  20. A study on removal of elemental mercury in flue gas using fenton solution

    International Nuclear Information System (INIS)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Yongchun; Zhou, Jianfei; Zhang, Jun

    2015-01-01

    Highlights: • A novel technique on oxidation of Hg 0 using Fenton was proposed. • The effects of several process parameters on Hg 0 removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg 0 removal was studied. • Simultaneous removal of Hg 0 , NO and SO 2 was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg 0 ) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H 2 O 2 concentration, Hg 0 inlet concentration, Fe 2+ concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO 2 , O 2 , CO 2 , inorganic ions and particulate matters on Hg 0 removal were studied. The results indicate that H 2 O 2 concentration, Fe 2+ concentration, solution pH and gas flow have great effects on Hg 0 removal. Solution temperature, Hg 0 , NO, SO 2 , CO 3 2− and HCO 3 − concentrations also have significant effects on Hg 0 removal. However, Cl − , SO 4 2− , NO 3 − , O 2 and CO 2 concentrations only have slight effects on Hg 0 removal. Furthermore, reaction mechanism of Hg 0 removal and simultaneous removal process of Hg 0 , NO and SO 2 were also studied. Hg 0 is removed by oxidation of ·OH and oxidation of H 2 O 2 . The simultaneous removal efficiencies of 100% for SO 2 , 100% for Hg 0 and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg 0 removal and simultaneous removal of Hg 0 , SO 2 and NO using Fenton solution in a bubbling reactor

  1. Metal-Silicate-Sulfide Partitioning of U, Th, and K: Implications for the Budget of Volatile Elements in Mercury

    Science.gov (United States)

    Habermann, M.; Boujibar, A.; Righter, K.; Danielson, L.; Rapp, J.; Righter, M.; Pando, K.; Ross, D. K.; Andreasen, R.

    2016-01-01

    During formation of the solar system, the Sun produced strong solar winds, which stripped away a portion of the volatile elements from the forming planets. Hence, it was expected that planets closest to the sun, such as Mercury, are more depleted in volatile elements in comparison to other terrestrial planets. However, the MESSENGER mission detected higher than expected K/U and K/Th ratios on Mercury's surface, indicating a volatile content between that of Mars and Earth. Our experiments aim to resolve this discrepancy by experimentally determining the partition coefficients (D(sup met/sil)) of K, U, and Th between metal and silicate at varying pressure (1 to 5 GPa), temperature (1500 to 1900 C), oxygen fugacity (IW-2.5 to IW-6.5) and sulfur-content in the metal (0 to 33 wt%). Our data show that U, Th, and K become more siderophile with decreasing fO2 and increasing sulfur-content, with a stronger effect for U and Th in comparison to K. Using these results, the concentrations of U, Th, and K in the bulk planet were calculated for different scenarios, where the planet equilibrated at a fO2 between IW-4 and IW-7, assuming the existence of a FeS layer, between the core and mantle, with variable thickness. These models show that significant amounts of U and Th are partitioned into Mercury's core. The elevated superficial K/U and K/Th values are therefore only a consequence of the sequestration of U and Th into the core, not evidence of the overall volatile content of Mercury.

  2. First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces

    International Nuclear Information System (INIS)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen; Shen, Zhemin; Fan, Maohong

    2017-01-01

    Highlights: • Hg 0 adsorption on low index CoMnO 3 surface was predicted by DFT method. • Hg 0 is adsorbed on the CoMnO 3 surface with chemisorption interaction. • Hg 0 has highest adsorption energy on CoMnO 3 (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg 0 has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg 0 ) adsorption on CoMnO 3 surface for the first time. GGA/PBE functional were selected to determine the potential Hg 0 capture mechanisms. The results show that Hg 0 has good affinity with CoMnO 3 surfaces with chemical adsorption. The adsorption energy of Hg 0 -CoMnO 3 (1 0 0), Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg 0 was oxidized to its valence state of 0.236 on Mn site in CoMnO 3 (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) with 0.209e − and 0.189e − transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO 3 catalyst performed excellent in Hg 0 oxidation. Exposing CoMnO 3 (1 0 0) is most favorable in Hg 0 control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  3. Capturing structured, pulmonary disease-specific data elements in electronic health records.

    Science.gov (United States)

    Gronkiewicz, Cynthia; Diamond, Edward J; French, Kim D; Christodouleas, John; Gabriel, Peter E

    2015-04-01

    Electronic health records (EHRs) have the potential to improve health-care quality by allowing providers to make better decisions at the point of care based on electronically aggregated data and by facilitating clinical research. These goals are easier to achieve when key, disease-specific clinical information is documented as structured data elements (SDEs) that computers can understand and process, rather than as free-text/natural-language narrative. This article reviews the benefits of capturing disease-specific SDEs. It highlights several design and implementation considerations, including the impact on efficiency and expressivity of clinical documentation and the importance of adhering to data standards when available. Pulmonary disease-specific examples of collection instruments are provided from two commonly used commercial EHRs. Future developments that can leverage SDEs to improve clinical quality and research are discussed.

  4. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    Science.gov (United States)

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia

    Directory of Open Access Journals (Sweden)

    G. C. Edwards

    2013-05-01

    Full Text Available This paper presents the first gaseous elemental mercury (GEM air-surface exchange measurements obtained over naturally enriched and background (−1 Hg terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m−2 h−1 to 113 ± 6 ng m−2 h−1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m−2 h−1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. For periods of deposition, dry deposition velocities ranged from 0.00025 cm s−1 to 0.0083 cm s−1 with an average of 0.0041 ± 0.00018 cm s−1, representing bare soil, nighttime conditions. Comparison of the Australian data to North American data suggests the need for Australian-specific mercury air-surface exchange data representative of Australia's unique climatic conditions, vegetation types, land use patterns and soils.

  6. Elemental content changes in hemolymph of Rhodnius prolixus due to mercury contamination: a study using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, A.; Oliveira, A.P.; Barroso, R.C. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Almeida, A.P.; Braz, D.; Cardoso, S.C. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Figueiredo, M.B.; Azambuja, P. [Fundacao Instituto Osvaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil); Gonzalez, M.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In recent years, the effects of pollution on the health of humans and other vertebrates have been extensively studied. However, the effects on some invertebrates are comparatively unknown. Research has demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Depending on environmental conditions, pollution produces chronic and acute effects on different systems and organs of animals. In general, some more toxic elements like arsenic, cadmium, lead, mercury and nickel in contact with organisms change cellular structures, enzyme activities, and in some cases destroy the physiological integrities of the tissues. In insects, the effects of pollutants depend upon the species studied. In this work, we investigated the changes in elemental contents in the hemolymph of Rhodnius prolixus on 2 and 5 days after feeding on blood containing mercury chloride. R. Prolixus is an obligated hematophagous Hemiptera and one of the most important insect vectors of trypanosoma cruzi, the causative agent of Chagas disease. The SR-TXRF measurements were performed at the X-ray fluorescence (XRF) beamline facility in Brazilian Synchrotron Light Laboratory LNLS/Brazil. The major elements Cl, K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, K were found in all hemolymph samples analysed. Insects treated with HgCl2 had reduced Cl and Ca levels, whereas the same treatment had enhanced Br levels in comparison with non- treated control insects. (author)

  7. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia).

    Science.gov (United States)

    Bavec, Špela; Gosar, Mateja; Miler, Miloš; Biester, Harald

    2017-06-01

    A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6-120 mg/kg) and slightly elevated As content (1-13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg 0 ), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006-0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9-31.5 %) in the dust samples.

  8. A study on removal of elemental mercury in flue gas using fenton solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Yongchun [Jiangsu Province Special Equipment Safety Supervision Inspection Institute (Branch of Wuxi), Wuxi 214000 (China); Zhou, Jianfei [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Jun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2015-07-15

    Highlights: • A novel technique on oxidation of Hg{sup 0} using Fenton was proposed. • The effects of several process parameters on Hg{sup 0} removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg{sup 0} removal was studied. • Simultaneous removal of Hg{sup 0}, NO and SO{sub 2} was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg{sup 0}) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H{sub 2}O{sub 2} concentration, Hg{sup 0} inlet concentration, Fe{sup 2+} concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO{sub 2}, O{sub 2}, CO{sub 2}, inorganic ions and particulate matters on Hg{sup 0} removal were studied. The results indicate that H{sub 2}O{sub 2} concentration, Fe{sup 2+} concentration, solution pH and gas flow have great effects on Hg{sup 0} removal. Solution temperature, Hg{sup 0}, NO, SO{sub 2}, CO{sub 3}{sup 2−} and HCO{sub 3}{sup −} concentrations also have significant effects on Hg{sup 0} removal. However, Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, O{sub 2} and CO{sub 2} concentrations only have slight effects on Hg{sup 0} removal. Furthermore, reaction mechanism of Hg{sup 0} removal and simultaneous removal process of Hg{sup 0}, NO and SO{sub 2} were also studied. Hg{sup 0} is removed by oxidation of ·OH and oxidation of H{sub 2}O{sub 2}. The simultaneous removal efficiencies of 100% for SO{sub 2}, 100% for Hg{sup 0} and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg{sup 0} removal and simultaneous removal of Hg{sup 0}, SO{sub 2} and NO using Fenton solution in a bubbling reactor.

  9. Characterization of soils from an industrial complex contaminated with elemental mercury

    International Nuclear Information System (INIS)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Lowe, Kenneth A.; Pierce, Eric M.; Liang, Liyuan

    2013-01-01

    Historical use of liquid elemental mercury (Hg(0) l ) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0) l in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0) g headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0) l in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0) l was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0) l in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0) l is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the

  10. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  11. Summary of Mercury and Trace Element Results in Precipitation from the Culpeper, Virginia, Mercury Deposition Network Site (VA-08), 2002-2006

    Science.gov (United States)

    Engle, Mark A.; Kolker, Allan; Mose, Douglas E.; East, Joseph A.; McCord, Jamey D.

    2008-01-01

    The VA-08 Mercury Deposition Network (MDN) site, southwest of Culpeper, Virginia, was established in autumn of 2002. This site, along with nearby VA-28 (~31 km west) at Big Meadows in Shenandoah National Park, fills a spatial gap in the Mid-Atlantic region of the MDN network and provides Hg deposition data immediately west of the Washington, D.C., metropolitan area. Results for the Culpeper site from autumn of 2002 to the end of 2006 suggest that the highest mercury (Hg) deposition (up to 5.0 ug/m2 per quarter of the 6.5-12.6 ug/m2 annual Hg deposition) is measured during the second and third quarters of the year (April-September). This is a result of both elevated Hg precipitation concentrations (up to 27 ng/L) and greater precipitation during these months. The data also exhibit a general statistically significant (peffect during larger precipitation events, especially during winter and spring. Comparison of results between the Culpeper and Big Meadows sites indicates that although quarterly Hg deposition was not significantly different (panalysis of the Hg and trace metal data identified 3 primary source categories, each with large loadings of characteristic elements: 1) Ca, Al, Mg, Sr, La, and Ce (crustal sources); 2) V, Na, and Ni (local wintertime heating oil); and 3) Zn, Cd, Mn, and Hg (regional anthropogenic emission sources). HYSPLIT air mass trajectory modeling and enrichment factor calculations are consistent with this interpretation. A preliminary source attribution model suggests that ~51% of the Hg in wet deposition is due to regional anthropogenic sources, while crustal sources and local oil combustion account for 9.5% and <1%, respectively. This calculation implies that the global Hg burden accounts for ~40% of the Hg in wet deposition.

  12. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    Science.gov (United States)

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  13. EFFECT OF NON-ESSENTIAL ELEMENTS (MERCURY. ARSENIC ON SALMONIDS (SALMONIDAE (REVIEW

    Directory of Open Access Journals (Sweden)

    І. Hrytsyniak

    2015-09-01

    Full Text Available Purpose. The problem of water ecosystem pollution with heavy metals achieved great actuality during recent years, both because of their significant distribution in environment, and wide spectrum of their toxic effects on fish organism. Much attention in modern scientific literature is given to the problem of the effects of heavy metals, including mercury and arsenic, on fish organism. However, investigations in this field are conducted mainly on cyprinids, while physiological and biochemical mechanisms of the effects of heavy metals on salmonids are less studied. According to this, the studies of the sources of heavy metals in water ecosystems, peculiarities of their action in salmonid organism on subcellular, cellular, tissue and organ levels, species and age-related peculiarities of the effects of heavy metals are of great scientific and practical importance. The purpose of this work is to review the mentioned problems. Findings. The work characterizes the effects of mercury and arsenic on salmonids on subcellular, cellular, tissue and organ levels. The article contains characteristic of conditions, under which toxic or lethal action of the mentioned xenobiotics on different species of salmonids was observed. Originality. The paper summarizes literature data concerning the effect of mercury and arsenic on salmonids. Attention is accented on the sources of the mentioned pollutants in surface waters, physiological and biochemical mechanisms of their effects on salmonids, and on factors, which determine the level of their toxicity. Lethal concentrations of mercury and arsenic to salmonids, depending on experiment duration, species and age-related peculiarities are presented. Practical value. Data presented in the review can be used for the explanation of physiological and biochemical mechanisms of the adaptation of salmonids to surface water pollution with heavy metals, diagnostics of fish pathologies caused by toxic effects of mercury and

  14. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    1998-01-01

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  15. Mercury risk from fluorescent lamps in China: current status and future perspective.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2012-09-01

    Energy-efficient lighting is one of the key measures for addressing electric power shortages and climate change mitigation, and fluorescent lamps are expected to dominate the lighting market in China over the next several years. This review presents an overview on the emissions and risk of mercury from fluorescent lamps during production and disposal, and discusses measures for reducing the mercury risk through solid waste management and source reduction. Fluorescent lamps produced in China used to contain relatively large amounts of mercury (up to 40 mg per lamp) due to the prevalence of liquid mercury dosing, which also released significant amounts of mercury to the environment. Upgrade of the mercury dosing technologies and manufacturing facilities had significantly reduced the mercury contents in fluorescent lamps, with most of them containing less than 10 or 5mg per lamp now. Occupational hygiene studies showed that mercury emissions occurred during fluorescent lamp production, particularly in the facilities using liquid mercury dosing, which polluted the environmental media at and surrounding the production sites and posed chronic health risk to the workers by causing neuropsychological and motor impairments. It is estimated that spent fluorescent lamps account for approximately 20% of mercury input in the MSW in China. Even though recycling of fluorescent lamps presents an important opportunity to capture the mercury they contain, it is difficult and not cost-effective at reducing the mercury risk under the broader context of mercury pollution control in China. In light of the significant mercury emissions associated with electricity generation in China, we propose that reduction of mercury emissions and risk associated with fluorescent lamps should be achieved primarily through lowering their mercury contents by the manufacturers while recycling programs should focus on elemental mercury-containing waste products instead of fluorescent lamps to recapture

  16. Exchange pattern of gaseous elemental mercury in landfill: mercury deposition under vegetation coverage and interactive effects of multiple meteorological conditions.

    Science.gov (United States)

    Tao, Zhengkai; Liu, Yang; Zhou, Meng; Chai, Xiaoli

    2017-12-01

    Landfill is known as a potential source of atmospheric Hg and an important component of the local or regional atmospheric Hg budget. This study investigated the gaseous elemental Hg surface-air fluxes under differing conditions at a typical municipal solid waste landfill site, highlighting the interactive effects of plant coverage and meteorological conditions. The results indicated that Hg fluxes exhibited a feature represented by diel variation. In particular, Hg deposition was observed under a condition of Kochia sieversiana coverage, whereas emission that occurred after K. sieversiana was removed. Hg emission was the dominant mode under conditions of Setaria viridis coverage and its removal; however, the average Hg emission flux with the S. viridis coverage was nearly four times lower than after its removal. These findings verified that the plant coverage should be a key factor influencing the Hg emission from landfills. In addition, Hg fluxes were correlated positively with solar radiation and air/soil temperature and correlated inversely with relative humidity under all conditions, except K. sieversiana coverage. This suggested that the interactive effects of meteorological conditions and plant coverage played a jointly significant role in the Hg emission from landfills. It was established that K. sieversiana can inhibit Hg emission efficiently, and therefore, it could potentially be suitable for use as a plant-based method to control Hg pollution from landfills.

  17. Vapor-phase elemental mercury adsorption by Ca(OH){sub 2} impregnated with MnO{sub 2} and Ag in fixed-bed system

    Energy Technology Data Exchange (ETDEWEB)

    Y.J. Wang; Y.F. Duan; Z.J. Huang; S.L. Meng; L.G. Yang; C.S. Zhao [Southeast University, Nanjing (China). School of Energy and Environment

    2010-05-15

    The ability of three sorbents (untreated Ca(OH){sub 2}, MnO{sub 2}-impregnated Ca(OH){sub 2} and Ag-impregnated Ca(OH){sub 2}) removing the elemental mercury had been studied using a laboratory-scale fixed-bed reactor at 80{sup o}C under simulated fuel gas conditions. The adsorption performance of the three sorbents was compared by mercury removal efficiency and adsorption capacity. The effect of acid gases such as HCl and SO{sub 2} on the mercury removal was investigated and presented in this article. The results showed that the mercury removal by Ca(OH){sub 2} was mainly controlled by physical mechanisms. In the case of Ca(OH){sub 2}, the presence of both SO{sub 2} and HCl promoted the Hg{sup 0} removal, and compared HCl with SO{sub 2}, HCl had a higher mercury removal than SO{sub 2}. Ca(OH){sub 2} impregnated with MnO{sub 2} had a slightly higher mercury removal than the original Ca(OH){sub 2}, but it was beneficial for mercury speciation. The presence of both SO{sub 2} and HCl promotes the Hg0 removal greatly, which was adsorbed by Ca(OH){sub 2} impregnated with MnO{sub 2}. The Ca(OH){sub 2} impregnated with MnO{sub 2} adsorbed more than 50% total Hg due to the occurrence of chemisorptions. The mercury removal by Ca(OH){sub 2} impregnated with Ag was the highest. This may be because mercury integrated with silver easily that could produce silver amalgam alloy.

  18. Electrospun metal oxide-TiO{sub 2} nanofibers for elemental mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yuan; Zhao, Yongchun [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li, Hailong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Li, Yang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Gao, Xiang [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zheng, Chuguang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhang, Junying, E-mail: jyzhang@hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Developed the metal oxides (CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O) doped TiO{sub 2} nanofibers. Black-Right-Pointing-Pointer The fibers are applied to control Hg{sup 0} from coal combustion flue gas. Black-Right-Pointing-Pointer WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} doped TiO{sub 2} greatly enhanced Hg{sup 0} removal under visible light irradiation. Black-Right-Pointing-Pointer TiO{sub 2}-Ag{sub 2}O showed a steady Hg{sup 0} removal efficiency of 95% without any light. - Abstract: Nanofibers prepared by an electrospinning method were used to remove elemental mercury (Hg{sup 0}) from simulated coal combustion flue gas. The nanofibers composed of different metal oxides (MO{sub x}) including CuO, In{sub 2}O{sub 3}, V{sub 2}O{sub 5}, WO{sub 3} and Ag{sub 2}O supported on TiO{sub 2} have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX) and UV-vis spectra. The average diameters of these nanofibers were about 200 nm. Compared to pure TiO{sub 2}, the UV-vis absorption intensity for MO{sub x}-TiO{sub 2} increased significantly and the absorption bandwidth also expanded, especially for Ag{sub 2}O-TiO{sub 2} and V{sub 2}O{sub 5}-TiO{sub 2}. Hg{sup 0} oxidation efficiencies over the MO{sub x}-TiO{sub 2} nanofibers were tested under dark, visible light (vis) irradiation and UV irradiation, respectively. The results showed that WO{sub 3} doped TiO{sub 2} exhibited the highest Hg{sup 0} removal efficiency of 100% under UV irradiation. Doping V{sub 2}O{sub 5} into TiO{sub 2} enhanced Hg{sup 0} removal efficiency greatly from 6% to 63% under visible light irradiation. Ag{sub 2}O doped TiO{sub 2} showed a steady Hg{sup 0} removal efficiency of around 95% without any light due to the formation of silver amalgam. An extended experiment

  19. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou, C.M.; Zerkin, V.

    2004-01-01

    The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low- and medium-flux research reactors: radiography and materials characterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal neutron capture gamma ray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA CRP on the subject. The International Nuclear Data Committee (INDC) is the primary advisory body to the IAEA Nuclear Data Section on their nuclear data programs. At a biennial meeting in 1997, the INDC strongly recommended that the Nuclear Data Section support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As a consequence of the various recommendations, a CRP on ''Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)'' was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method, capable of rapid or simultaneous ''in-situ'' multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data were a significant hindrance in the

  20. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.

    Science.gov (United States)

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin

    2016-09-06

    The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.

  1. Impacts of large-scale circulation on urban ambient concentrations of gaseous elemental mercury in New York, USA

    Directory of Open Access Journals (Sweden)

    H. Mao

    2017-09-01

    Full Text Available The impact of large-scale circulation on urban gaseous elemental mercury (GEM was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC, New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e., spring–summer 10–20 ppqv ( ∼  10–25 % higher than in cool seasons (i.e., fall–winter. This annual cycle was disrupted in 2011 by an anomalously strong influence of the US East Coast trough in that warm season and was reproduced in 2014 associated with a particularly strong Bermuda High. The US East Coast trough axis index (TAI and intensity index (TII were used to characterize the effect of the US East Coast trough on NYC GEM, especially in winter and summer. The intensity and position of the Bermuda High appeared to have a significant impact on GEM in warm seasons. Regional influence on NYC GEM was supported by the GEM–carbon monoxide (CO correlation with r of 0.17–0.69 (p ∼  0 in most seasons. Simulated regional and local anthropogenic contributions to wintertime NYC anthropogenically induced GEM concentrations were averaged at  ∼  75 % and 25 %, with interannual variation ranging over 67 %–83 % and 17 %–33 %, respectively. Results from this study suggest the possibility that the increasingly strong Bermuda High over the past decades could dominate over anthropogenic mercury emission control in affecting ambient concentrations of mercury via regional buildup and possibly enhancing natural and legacy emissions.

  2. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    Science.gov (United States)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter

  3. High-resolution measurements of elemental mercury in surface water for an improved quantitative understanding of the Baltic Sea as a source of atmospheric mercury

    Science.gov (United States)

    Kuss, Joachim; Krüger, Siegfried; Ruickoldt, Johann; Wlost, Klaus-Peter

    2018-03-01

    Marginal seas are directly subjected to anthropogenic and natural influences from land in addition to receiving inputs from the atmosphere and open ocean. Together these lead to pronounced gradients and strong dynamic changes. However, in the case of mercury emissions from these seas, estimates often fail to adequately account for the spatial and temporal variability of the elemental mercury concentration in surface water (Hg0wat). In this study, a method to measure Hg0wat at high resolution was devised and subsequently validated. The better-resolved Hg0wat dataset, consisting of about one measurement per nautical mile, yielded insight into the sea's small-scale variability and thus improved the quantification of the sea's Hg0 emission. This is important because global marine Hg0 emissions constitute a major source of atmospheric mercury. Research campaigns in the Baltic Sea were carried out between 2011 and 2015 during which Hg0 both in surface water and in ambient air were measured. For the former, two types of equilibrators were used. A membrane equilibrator enabled continuous equilibration and a bottle equilibrator assured that equilibrium was reached for validation. The measurements were combined with data obtained in the Baltic Sea in 2006 from a bottle equilibrator only. The Hg0 sea-air flux was newly calculated with the combined dataset based on current knowledge of the Hg0 Schmidt number, Henry's law constant, and a widely used gas exchange transfer velocity parameterization. By using a newly developed pump-CTD with increased pumping capability in the Hg0 equilibrator measurements, Hg0wat could also be characterized in deeper water layers. A process study carried out near the Swedish island Øland in August 2015 showed that the upwelling of Hg0-depleted water contributed to Hg0 emissions of the Baltic Sea. However, a delay of a few days after contact between the upwelled water and light was apparently necessary before the biotic and abiotic transformations

  4. Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil

    Science.gov (United States)

    Fragoso, Cynara Pedrosa; Bernini, Elaine; Araújo, Beatriz Ferreira; Almeida, Marcelo Gomes de; Rezende, Carlos Eduardo de

    2018-03-01

    Mercury and elemental and isotopic compositions of carbon and nitrogen were determined in litterfall and sediments from the mangrove of the Paraíba do Sul River, Rio de Janeiro, Brazil. Total mercury (THg) and monomethylmercury (MMHg) concentrations in sediment ranged from 33 to 123 ng g-1 and 0.20-1.38 ng g-1, respectively. The δ13C in sediment varied from -29.4 to -26.5‰ and from 2.4 to 5.8‰ in δ15N. The THg concentration in litterfall and its annual input to the mangrove was 21 ± 2 ng g-1 and 16 ± 4 μg m-2 for the species Laguncularia racemosa, 18 ± 1 ng g-1 and 17 ± 3 μg m-2 for Rhizophora mangle, and 53 ± 4 ng g-1 and 33 ± 4 μg m-2 for Avicennia germinans, respectively. The isotopic composition of leaf litter ranged from -28.6 to -26.9‰ for δ13C and 4.5-7.2‰ for δ15N. Both the highest annual Hg input via litterfall and highest sediment Hg concentration were observed in areas dominated by A. germinans. These results suggest that the rate of litterfall of plant species and the atmospheric deposition have played an important role in the Hg biogeochemical cycle in the mangrove ecosystem.

  5. Determining the Optimum Exposure and Recovery Periods for Efficient Operation of a QCM Based Elemental Mercury Vapor Sensor

    Directory of Open Access Journals (Sweden)

    K. M. Mohibul Kabir

    2015-01-01

    Full Text Available In recent years, mass based transducers such as quartz crystal microbalance (QCM have gained huge interest as potential sensors for online detection of elemental mercury (Hg0 vapor from anthropogenic sources due to their high portability and robust nature enabling them to withstand harsh industrial environments. In this study, we determined the optimal Hg0 exposure and recovery times of a QCM based sensor for ensuring its efficient operation while monitoring low concentrations of Hg0 vapor (<400 ppbv. The developed sensor was based on an AT-cut quartz substrate and utilized two gold (Au films on either side of the substrate which functions as the electrodes and selective layer simultaneously. Given the temporal response mechanisms associated with mass based mercury sensors, the experiments involved the variation of Hg0 vapor exposure periods while keeping the recovery time constant following each exposure and vice versa. The results indicated that an optimum exposure and recovery periods of 30 and 90 minutes, respectively, can be utilized to acquire the highest response magnitudes and recovery rate towards a certain concentration of Hg0 vapor whilst keeping the time it takes to report an accurate reading by the sensor to a minimum level as required in real-world applications.

  6. Plasma-assisted adsorption of elemental mercury on CeO2/TiO2 at low temperatures

    Science.gov (United States)

    Liu, Lu; Zheng, Chenghang; Gao, Xiang

    2017-11-01

    Mercury is a kind of pollutants contained in flue gas which is hazardous for human beings. In this work, CeO2 was packed in the discharge zone of a plasma reactor to adsorb elemental mercury at low temperatures. Plasma-catalyst reactor can remove Hg0 efficiently with CeO2/TiO2 catalysts packed in the discharge zone. The Hg0 concentration continued to decrease gradually when the plasma was turned on, but not sank rapidly. This tendency was different with other catalysts. The treatment of plasma to CeO2/TiO2 catalysts has a promotion effect on the adsorption of Hg0. Plasma has the effect of changing the surface properties of the catalysts and the changes would restitute if the condition changed. The long-running test demonstrated that this method is an effective way to remove Hg0. The removal efficiency remained at above 99% throughout 12 hours when plasma had been turned on (15kV, 0.5 g packed CeO2/TiO2).

  7. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  8. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas

    Energy Technology Data Exchange (ETDEWEB)

    An, Jiutao; Shang, Kefeng; Lu, Na [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Jiang, Yuze [Shandong Electric Power Research Institute, Jinan 250002 (China); Wang, Tiecheng [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Li, Jie, E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Wu, Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The use of non-thermal plasma injection approach to oxidize Hg{sup 0} in simulated flue gas at 110 °C was studied. • A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. • Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) contributed to Hg{sup 0} oxidation. • Mercury species mainly existed in the form of HgO(s) adhering to the suspended aerosols in the gas-phase. - Abstract: The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg{sup 0}) in simulated flue gas at 110 °C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg{sup 0} was oxidized and 20.5 μg kJ{sup −1} of energy yield was obtained at a rate of 3.9 J L{sup −1}. A maximal Hg{sup 0} oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) were found to contribute to Hg{sup 0} oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  9. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, Aurélie, E-mail: aurelie.goutte@ephe.sorbonne.fr [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360 Villiers-en-Bois (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Ponthus, Jean-Pierre [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Massé, Guillaume [Unité Mixte Internationale Takuvik, Pavillon Alexandre-Vachon, Université Laval, QC, Québec (Canada); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ{sup 13}C and δ{sup 15}N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ{sup 13}C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  10. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    International Nuclear Information System (INIS)

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-01-01

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ"1"3C and δ"1"5N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ"1"3C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  11. Chemical mechanisms in mercury emission control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.; Laumb, J.D.; Benson, S.A.; Dunham, G.E.; Sharma, R.K.; Mibeck, B.A.; Miller, S.J.; Holmes, M.J.; Pavlish, J.H. [University of North Dakota, Energy and Environmental Research Center, Grand Forks, ND (United States)

    2003-05-01

    The emission of elemental mercury in the flue gas from coal-burning power plants is a major environmental concern. Control technologies utilizing activated carbon show promise and are currently under intense review. Oxidation and capture of elemental mercury on activated carbon was extensively investigated in a variety of flue gas atmospheres. Extensive parametric testing with individual and a variety of combinations and concentrations of reactive flue gas components and spectroscopic examination of the sulfur and chlorine forms present before and after breakthrough have led to an improved model to explain the kinetic and capacity results. The improved model delineates the independent Lewis acid oxidation site as well as a zig-zag carbene site on the carbon edge that performs as a Lewis base in reacting with both the oxidized mercury formed at the oxidation site and with the acidic flue gas components in competing reactions to form organochlorine, sulfinate, and sulfate ester moieties on the carbon edge.

  12. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-470 Oyster Sample

    International Nuclear Information System (INIS)

    2016-01-01

    This publication describes the production of the IAEA-470 certified reference material, which was produced following ISO Guide 34:2009, General Requirements for the Competence of Reference Materials Producers. A sample of approximately 10 kg of dried oysters was taken from oysters collected, dissected and freeze-dried by the Korean Ocean Research and Development Institute, and was further processed at the IAEA Environment Laboratories to produce a certified reference material. The sample contained certified mass fractions for arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, methyl mercury, rubidium, selenium, silver, sodium, strontium, vanadium and zinc. The produced vials containing the processed oyster sample were carefully capped and stored for further certification studies. Between-unit homogeneity and stability during dispatch and storage were quantified in accordance with ISO Guide 35:2006, Reference Materials - General and Statistical Principles for Certification. The material was characterized by laboratories with demonstrated competence and adhering to ISO/IEC 17025:2005. Uncertainties of the certified values were calculated in compliance with the guide to the Expression of Uncerdainty in Measurement (JCGM 100:2008), including uncertainty associated with heterogeneity and instability of the material, and with the characterization itself. The material is intended for the quality control and assessment of method performance. As with any reference material, it can also be used for control charts or validation studies

  13. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  14. Biomonitoring of trace metal elements by lichens of the Western Pyrenees.Study of elemental and isotopic signature of mercury

    OpenAIRE

    Queipo Abad, Silvia

    2012-01-01

    The lichens, organisms originated by symbiotic relationship between an algae and a fungus, have shown good properties as biomonitors of pollution from Trace Metal Elements. They can be used as indicators of local and long-range atmospheric pollution. The assessment of deposition of atmospheric pollutants results difficult to know their long term impact. This happens specially when the study is focalized in remote areas. In this project it has been developed the elemental and isotopic analy...

  15. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    Science.gov (United States)

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Health Effects of Exposures to Mercury

    Science.gov (United States)

    ... IRIS database Top of Page Elemental (Metallic) Mercury Effects Exposures to metallic mercury most often occur when metallic ... poor performance on tests of mental function Higher exposures may also cause kidney effects, respiratory failure and death. Note that metallic mercury ...

  17. WE-D-207-02: Capturing Data Elements and the Role of Imaging Informatics

    International Nuclear Information System (INIS)

    Hsu, W.

    2015-01-01

    In the United States, Lung Cancer is responsible for more cancer deaths than the next four cancers combined. In addition, the 5 year survival rate for lung cancer patients has not improved over the past 40 to 50 years. To combat this deadly disease, in 2002 the National Cancer Institute launched a very large Randomized Control Trial called the National Lung Screening Trial (NLST). This trial would randomize subjects who had substantial risk of lung cancer (due to age and smoking history) into either a Chest X-ray arm or a low dose CT arm. In November 2010, the National Cancer Institute announced that the NLST had demonstrated 20% fewer lung cancer deaths among those who were screened with low-dose CT than with chest X-ray. In December 2013, the US Preventive Services Task Force recommended the use of Lung Cancer Screening using low dose CT and a little over a year later (Feb. 2015), CMS announced that Medicare would also cover Lung Cancer Screening using low dose CT. Thus private and public insurers are required to provide Lung Cancer Screening programs using CT to the appropriate population(s). The purpose of this Symposium is to inform medical physicists and prepare them to support the implementation of Lung Screening programs. This Symposium will focus on the clinical aspects of lung cancer screening, requirements of a screening registry for systematically capturing and tracking screening patients and results (such as required Medicare data elements) as well as the role of the medical physicist in screening programs, including the development of low dose CT screening protocols. Learning Objectives: To understand the clinical basis and clinical components of a lung cancer screening program, including eligibility criteria and other requirements. To understand the data collection requirements, workflow, and informatics infrastructure needed to support the tracking and reporting components of a screening program. To understand the role of the medical physicist in

  18. Elemental abundance analyses with coadded DAO spectrograms. VI - The mercury-manganese stars Nu Cancri, Iota Coronae Borealis and HR 8349

    Science.gov (United States)

    Adelman, Saul J.

    1989-01-01

    The elemental abundances of three mercury-manganese stars, Nu Cancri, Iota Coronae Borealis, and HR 8349, were found to be consistent with previous analyses of this series. As Iota CrB is a double-lined spectroscopic binary with a small velocity amplitude for most of its period, its study required determining whether the observed lines were produced in the primary or secondary or both. The derived abundances and effective termperatures were used along with those of mercury-manganese stars previously analyzed in order to extend the study of probable correlations between abundances, with the effective temperature and surface gravity in accordance with radiative diffusion explanations.

  19. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    International Nuclear Information System (INIS)

    Li, Guoliang; Shen, Boxiong; Li, Yongwang; Zhao, Bin; Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min

    2015-01-01

    Highlights: • Both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg 0 removal by M6WN5. • The effect of NO, H 2 O, SO 2 and O 2 on Hg 0 removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg 0 sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH 4 Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg 0 occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH 4 Cl loading, and exothermic chemisorption process was a dominant route for Hg 0 removal. Microwave activation improved pore properties and NH 4 Cl impregnation introduced good active sites for biochars. The presence of NO and O 2 increased Hg 0 adsorption whereas H 2 O inhibited Hg 0 adsorption greatly. A converse effect of SO 2 was observed on Hg 0 removal, namely, low concentration of SO 2 promoted Hg 0 removal obviously whereas high concentration of SO 2 suppressed Hg 0 removal. The Hg 0 removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg 0 to form HgCl 2 , and the active state of C−Cl * groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg 0 sorbent in flue gas when compared with other sorbents

  20. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada

    International Nuclear Information System (INIS)

    Butler Walker, Jody; Houseman, Jan; Seddon, Laura; McMullen, Ed; Tofflemire, Karen; Mills, Carole; Corriveau, Andre; Weber, Jean-Philippe; LeBlanc, Alain; Walker, Mike; Donaldson, Shawn G.; Van Oostdam, Jay

    2006-01-01

    Maternal and umbilical cord blood levels of mercury (Hg), lead (Pb), cadmium (Cd), and the trace elements copper (Cu), zinc (Zn), and selenium (Se) are reported for Inuit, Dene/Metis, Caucasian, and Other nonaboriginal participants from Arctic Canada. This is the first human tissue monitoring program covering the entire Northwest Territories and Nunavut for multiple contaminants and establishes a baseline upon which future comparisons can be made. Results for chlorinated organic pesticides and PCBs for these participants have been reported elsewhere. Between May 1994 and June 1999, 523 women volunteered to participate by giving their written informed consent, resulting in the collection of 386 maternal blood samples, 407 cord samples, and 351 cord:maternal paired samples. Geometric mean (GM) maternal total mercury (THg) concentrations ranged from 0.87μg/L (SD=1.95) in the Caucasian group of participants (n=134) to 3.51μg/L (SD=8.30) in the Inuit group (n=146). The GM of the Inuit group was 2.6-fold higher than that of the Dene/Metis group (1.35μg/L, SD=1.60, n=92) and significantly higher than those of all other groups (P 8 cigarettes/day) was 7.4-fold higher and 12.5-fold higher, respectively, than in nonsmokers. The high percentage of smokers among Inuit (77%) and Dene/Metis (48%) participants highlights the need for ongoing public health action directed at tobacco prevention, reduction, and cessation for women of reproductive age. Pb and THg were detected in more than 95% of all cord blood samples, with GMs of 21 μg/L and 2.7μg/L, respectively, and Cd was detected in 26% of all cord samples, with a GM of 0.08μg/L. Cord:maternal ratios from paired samples ranged from 0.44 to 4.5 for THg, from 0.5 to 10.3 for MeHg, and 0.1 to 9.0 for Pb. On average, levels of THg, MeHg, and Zn were significantly higher in cord blood than in maternal blood (P<0.0001), whereas maternal Cd, Pb, Se, and Cu levels were significantly higher than those in cord blood (P<0

  1. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  2. Experimental study on ZnO-TiO{sub 2} sorbents for the removal of elemental mercury

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Kunzan; Zhou, Jinsong; Qi, Pan; Zhou, Qixin; Gao, Xiang; Luo, Zhongyang [Zhejiang University, Hangzhou (China)

    2017-09-15

    ZnO-TiO{sub 2} sorbents synthesized by an impregnation method were characterized through XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy) and EDS (Energy dispersive spectrometer) analyses. An experiment concerning the adsorption of Hg0 by ZnO-TiO{sub 2} under a simulated fuel gas atmosphere was then conducted in a benchscale fixed-bed reactor. The effects of ZnO loading amounts and reaction temperatures on Hg{sup 0} removal performance were analyzed. The results showed that ZnO-TiO{sub 2} sorbents exhibited excellent Hg removal capacity in the presence of H2S at 150 .deg. C and 200 .deg. C; 95.2% and 91.2% of Hg0 was removed, respectively, under the experimental conditions. There are two possible causes for the H{sub 2}S reacting on the surface of ZnO-TiO{sub 2}: (1) H{sub 2}S directly reacted with ZnO to form ZnS, (2) H{sub 2}S was oxidized to elemental sulfur (S{sub ad}) by means of active oxygen on the sorbent surface, and then Sad provided active absorption sites for Hg0 to form HgS. This study identifies three reasons why higher temperatures limit mercury removal. First, the reaction between Hg{sup 0} and H{sub 2}S is inhibited at high temperatures. Second, HgS, as the resulting product in the reaction of mercury removal, becomes unstable at high temperatures. Third, the desulfurization reaction strengthens at higher temperatures, and it is likely that H{sub 2}S directly reacts with ZnO, thus decreasing the Sad on the sorbent surfaces.

  3. New technique for quantification of elemental hg in mine wastes and its implications for mercury evasion into the atmosphere

    Science.gov (United States)

    Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.

    2011-01-01

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.

  4. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guoliang [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Shen, Boxiong, E-mail: shenbx@nankai.edu.cn [School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Li, Yongwang [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhao, Bin [School of Chemical Engineering, Hebei University of Technology, Tianjin 300401 (China); Wang, Fumei; He, Chuan; Wang, Yinyin; Zhang, Min [College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2015-11-15

    Highlights: • Both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5. • Chemisorption process was an absolute predominant route for Hg{sup 0} removal by M6WN5. • The effect of NO, H{sub 2}O, SO{sub 2} and O{sub 2} on Hg{sup 0} removal by M6WN5 was investigated. • M6WN5 demonstrated to be a promising Hg{sup 0} sorbent in flue gas. - Abstract: Pyrolyzed biochars from an industrial medicinal residue waste were modified by microwave activation and NH{sub 4}Cl impregnation. Mercury adsorption of different modified biochars was investigated in a quartz fixed-bed reactor. The results indicated that both physisorption and chemisorption of Hg{sup 0} occurred on the surface of M6WN5 which was modified both microwave and 5 wt.% NH{sub 4}Cl loading, and exothermic chemisorption process was a dominant route for Hg{sup 0} removal. Microwave activation improved pore properties and NH{sub 4}Cl impregnation introduced good active sites for biochars. The presence of NO and O{sub 2} increased Hg{sup 0} adsorption whereas H{sub 2}O inhibited Hg{sup 0} adsorption greatly. A converse effect of SO{sub 2} was observed on Hg{sup 0} removal, namely, low concentration of SO{sub 2} promoted Hg{sup 0} removal obviously whereas high concentration of SO{sub 2} suppressed Hg{sup 0} removal. The Hg{sup 0} removal by M6WN5 was mainly due to the reaction of the C−Cl with Hg{sup 0} to form HgCl{sub 2}, and the active state of C−Cl{sup *} groups might be an intermediate group in this process. Thermodynamic analysis showed that mercury adsorption by the biochars was exothermic process and apparent adsorption energy was 43.3 kJ/mol in the range of chemisorption. In spite of low specific surface area, M6WN5 proved to be a promising Hg{sup 0} sorbent in flue gas when compared with other sorbents.

  5. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    Science.gov (United States)

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  6. Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto

    2018-04-01

    Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.

  7. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury

    Directory of Open Access Journals (Sweden)

    Diana M. Narváez

    2017-09-01

    Full Text Available Mercury (Hg exposure is a public health concern due to its persistence in the environment and its high toxicity. Such toxicity has been associated with the generation of oxidative stress in occupationally exposed subjects, such as artisanal gold miners. In this study, we characterize occupational exposure to Hg by measuring blood, urine and hair levels, and investigate oxidative stress and DNA methylation associated with gold mining. To do this, samples from 53 miners and 36 controls were assessed. We show higher levels of oxidative stress marker 8-OHdG in the miners. Differences in LINE1 and Alu(Yb8 DNA methylation between gold miners and control group are present in peripheral blood leukocytes. LINE1 methylation is positively correlated with 8-OHdG levels, while XRCC1 and LINE1 methylation are positively correlated with Hg levels. These results suggest an effect of Hg on oxidative stress and DNA methylation in gold miners that may have an impact on miners’ health.

  8. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean.

    Science.gov (United States)

    Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig

    2017-08-01

    Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.

  9. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds

    International Nuclear Information System (INIS)

    Hargreaves, Anna L.; Whiteside, Douglas P.; Gilchrist, Grant

    2011-01-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  10. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, Anna L., E-mail: alhargreaves@gmail.com [Calgary Zoo, Centre for Conservation Research, 1300 Zoo Rd NE, Calgary, AB, T2E 7V6 (Canada); Whiteside, Douglas P. [Calgary Zoo, Animal Health Centre, 1300 Zoo Rd NE, Calgary, AB, T2E 7V6 (Canada); University of Calgary, Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, 2500 University Dr. NW, Calgary, AB, T2N 1N4 (Canada); Gilchrist, Grant [Carleton University, National Wildlife Research Centre, Ottawa, ON, KIA OH3 (Canada)

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  11. Elemental analysis of water and soil environmental samples in Tabuk area by neutron capture gamma-ray spectroscopy techniques

    International Nuclear Information System (INIS)

    Al-Aseery, Sh.M.; Alamoudi, Z.; Hassan, A.M.

    2006-01-01

    The prompt and delayed gamma-rays due to neutron capture in the nuclei of the constituent elements of three soil samples and one drinking water sample have been measured. The 252 Cf and 226 Ra/Be isotopic neutron sources are used for neutron irradiation. Also, the hyper pure germanium detection system is used. The soil samples were from Astra, Tadco and El-Gammaz farms, while the water sample was taken from Tabuk city. In case of prompt gamma-ray analysis, a total of 16 elements were identified and the concentration percentage values by weight were calculated for: C, Na, Mg, Al, Si, S, Cl,, Ca, Ti, Cr, Mn, Fe, Co, Zn, Sr ad Pb elements. A comparative study between the results obtained in this work and the results obtained by ICP-MS and EDX-Ray techniques for the same samples is given

  12. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds.

    Science.gov (United States)

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  13. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  14. Capture of elemental and organic iodine from dilute gas streams by silver-exchanged mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, S.H.; Jubin, R.T.; Jordan, J.A. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2016-07-01

    The treatment of off-gas streams arising from reprocessing of used nuclear fuel (UNF) is an area of active study by the U.S. Department of Energy. Such off-gas streams contain volatile fission products, including long-lived {sup 129}I. Although {sup 129}I is released into the off-gas at multiple points within the chemical reprocessing flowsheet, previous research has focused on removal from the dissolver off-gas stream (DOG). The DOG is expected to contain up to 98% of iodine in UNF at ppm levels within the stream. Other off-gas streams will also contain iodine but at substantially lower concentrations. Recent work has shown that compliance with U.S. regulations will likely require capture of iodine from these dilute streams in addition to capture from DOG. In particular, the vessel off-gas (VOG) stream is expected to contain 1-3% of the total iodine inventory at ppb concentrations. A review of literature also indicates that the speciation of iodine in the VOG stream will differ from that of the DOG, with the DOG containing primarily I{sub 2} and the VOG containing a mixture of I{sub 2} and organic iodine species. Silver-exchanged mordenite (AgZ) has been identified for use in the removal of iodine from off-gas streams. It is an effective capture material for I{sub 2} at the concentrations expected in the DOG, but little is known about its performance in gas streams that may contain both I{sub 2} and organic iodides at very dilute concentrations. The experiments to be described were designed to separately characterize the adsorption of I{sub 2} and methyl iodide on AgZ through extended duration testing. Simulated vessel off-gases containing low levels of either I{sub 2} or methyl iodide were contacted with AgZ sorbent beds for up to four months. Through the use of sorbent beds in series and varied sampling times, key parameters such as adsorption rate, decontamination factor, and performance over time could be determined for the capture of each species by AgZ. This

  15. Elemental abundances of mercury-manganese stars and the population 2-type star HD 109995

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1985-02-01

    Ultraviolet and optical data for the Hg-Mn stars Coronae Borealis and Cancri is being combined with data for the field-horizontal-branch population II star HD 109995 in order to derive the element abundances in their photospheres. Data collected by IUE is being utilized

  16. Transport of elemental mercury in the unsaturated zone from a waste disposal site in an arid region

    Science.gov (United States)

    Walvoord, Michelle Ann; Andraski, Brian J.; Krabbenhoft, D.P.; Striegl, Robert G.

    2008-01-01

    Mercury contained in buried landfill waste may be released via upward emission to the atmosphere or downward leaching to groundwater. Data from the US Geological Survey’s Amargosa Desert Research Site (ADRS) in arid southwestern Nevada reveal another potential pathway of Hg release: long-distance (102 m) lateral migration of elemental Hg (Hg0) through the unsaturated zone. Gas collected from multiple depths from two instrumented boreholes that sample the entire 110-m unsaturated zone thickness and are located 100 and 160 m away from the closest waste burial trench exhibit gaseous Hg concentrations of up to 33 and 11 ng m−3, respectively. The vertical distribution of gaseous Hg in the borehole closest to the disposal site shows distinct subsurface peaks in concentration at depths of 1.5 and 24 m that cannot be explained by radial diffusive transport through a heterogeneous layered unsaturated zone. The inability of current models to explain gaseous Hg distribution at the ADRS highlights the need to advance the understanding of gas-phase contaminant transport in unsaturated zones to attain a comprehensive model of landfill Hg release.

  17. Method for the removal and recovery of mercury

    Science.gov (United States)

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  18. Hg contents in soils and olive-tree (Olea Europea, L.) leaves from an area affected by elemental mercury pollution (Jódar, SE Spain).

    Science.gov (United States)

    López-Berdonces, Miguel Angel; María Esbrí, José; Amorós, José Angel; Lorenzo, Saturnino; Fernández-Calderón, Sergio; Higueras, Pablo; Perez-de-los-Reyes, Caridad

    2014-05-01

    Data from soil and olive tree leaves around a decommissioned chlor-alkali plant are presented in this communication. The factory was active in the period 1977-1991, producing during these years a heavily pollution of Guadalquivir River and hydrargyrism in more than local 45 workers. It is located at 7 km South of Jódar, a locality with some 12,120 inhabitants. Mercury usage was general in this type of plants, but at present it is being replaced by other types of technologies, due to the risks of mercury usage in personal and environment. A soil geochemistry survey was carried out in the area, along with the analysis of olive-tree leaves (in the plots with this culture) from the same area. 73 soil samples were taken at two different depths (0-15 cm and 15-30 cm), together with 41 olive tree samples. Mercury content of geologic and biologic samples was determined by means of Atomic Absorption Spectrometry with Zeeman Effect, using a Lumex RA-915+ device with the RP-91C pyrolysis attachment. Air surveys were carried our using a RA-915M Lumex portable analytical device. Soil mercury contents were higher in topsoil than in the deeper soil samples, indicating that incorporation of mercury was due to dry and wet deposition of mercury vapors emitted from the plant. Average content in topsoil is 564.5 ng g-1. Hg contents in olive-tree leaves were in the range 46 - 453 ng g-1, with an average of 160.6 ng g-1. This level is slightly lower than tolerable level for agronomic crops established by Kabata-Pendias (2001) in 200 ng g-1. We have also compared soil and leaf contents for each sampling site, finding a positive and significant correlation (R=0.49), indicating that Hg contents in the leaves are linked to Hg contents in the soils. BAC (Bioaccumulation Absorption Coefficient, calculated as ratio between soil and leaf concentration) is 0.28 (consistent with world references, BAC = 0.7), considered "medium" in comparison with other mineral elements. Main conclusions of this

  19. Certification for Trace Elements and Methyl Mercury Mass Fractions in IAEA-452 Scallop (Pecten maximus) Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA, particularly to its Environment Laboratories. The marine pollution assessments needed to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. Two fundamental requirements to ensure the reliability of analytical results are quality control (QC) and quality assurance (QA). Since the early 1970s, NAEL has been assisting national laboratories and regional laboratory networks through its reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Relevant activities include global interlaboratory comparison exercises and regional proficiency tests, the production of marine reference materials, and the development of reference methods for analysis of trace elements and organic pollutants in marine samples. QA, QC and associated good laboratory practice should be essential components of all marine environmental monitoring. QC procedures are commonly based on the analysis of reference materials to assess reproducibility and measurement bias. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparison exercises, which compare and evaluate the analytical performance and measurement capabilities of participating laboratories. The need for good QA/QC in the chemical analysis of marine environmental samples is widely recognized and has been tested in a number of international QA exercises. Such diligence also needs to be applied to other components of the monitoring exercise, since these may represent a greater source of error in many instances. Data that are not based on adequate QA/QC can be erroneous, and their misuse can lead

  20. 18 Sco: A solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Energy Technology Data Exchange (ETDEWEB)

    Meléndez, Jorge; Monroe, TalaWanda R.; Tucci Maia, Marcelo; Freitas, Fabrício C. [Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo, SP (Brazil); Ramírez, Iván [McDonald Observatory and Department of Astronomy, University of Texas at Austin (United States); Karakas, Amanda I.; Yong, David; Asplund, Martin [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Do Nascimento, José-Dias Jr.; Castro, Matthieu [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Alves-Brito, Alan, E-mail: jorge.melendez@iag.usp.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS (Brazil)

    2014-08-10

    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high-resolution (R ∼ 110,000), high signal-to-noise ratio (800-1,000) Very Large Telescope UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are T{sub eff} = 5823 ± 6 K and log g = 4.45 ± 0.02 dex, i.e., 18 Sco is 46 ± 6 K hotter than the Sun and log g is 0.01 ± 0.02 dex higher. Its metallicity is [Fe/H] = 0.054 ± 0.005 dex, and its microturbulence velocity is +0.02 ± 0.01 km s{sup –1} higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04 ± 0.02 M{sub ☉} and that it is ∼1.6 Gyr younger than the Sun. We use precise High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities to search for planets, but none are detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, thus showing higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (∼0.02 dex), we successfully reproduce the r-process pattern in the Solar System. This is independent evidence for the universality of the r process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.

  1. Recovery of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  2. Study on removal of elemental mercury from simulated flue gas over activated coke treated by acid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jinfeng [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zhang, Jie; Song, Jingke; Zeng, Guangming; Zhang, Xunan; Xie, Yine [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-02-28

    Highlights: • HClO{sub 4} treated AC was developed for effective Hg{sup 0} removal from simulated flue gas. • The exceptional effect of SO{sub 2} on Hg{sup 0} removal by AC{sub 4.5} was discussed. • Possible reaction mechanism of Hg{sup 0} removal over AC{sub 4.5} was put forward. - Abstract: This work addressed the investigation of activated coke (AC) treated by acids. Effects of AC samples, modified by ether different acids (H{sub 2}SO{sub 4}, HNO{sub 3} and HClO{sub 4}) or HClO{sub 4} of varied concentrations, on Hg{sup 0} removal were studied under simulated flue gas conditions. In addition, effects of reaction temperature and individual flue gas components including O{sub 2}, NO, SO{sub 2} and H{sub 2}O were discussed. In the experiments, Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were applied to explore the surface properties of sorbents and possible mechanism of Hg{sup 0} oxidation. Results showed that AC sample treated by HClO{sub 4} of 4.5 mol/L exhibited maximum promotion of efficiency on Hg{sup 0} removal at 160 °C. NO was proved to be positive in the removal of Hg{sup 0}. And SO{sub 2} displayed varied impact in capturing Hg{sup 0} due to the integrated reactions between SO{sub 2} and modified AC. The addition of O{sub 2} could improve the advancement further to some extent. Besides, the Hg{sup 0} removal capacity had a slight declination when H{sub 2}O was added in gas flow. Based on the analysis of XPS and FTIR, the selected sample absorbed Hg{sup 0} mostly in chemical way. The reaction mechanism, deduced from results of characterization and performance of AC samples, indicated that Hg{sup 0} could firstly be absorbed on sorbent and then react with oxygen-containing (C−O) or chlorine-containing groups (C−Cl) on the surface of sorbent. And the products were mainly in forms of mercuric chloride (HgCl{sub 2}) and mercuric oxide (HgO)

  3. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in florida

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Steven Eric [ORNL; Dong, Weijin [ORNL; Meyers, Tilden [NOAA, Oak Ridge, TN

    2002-07-01

    Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg{sup o}) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg{sup o} over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from {approx}20 (winter) to {approx}40 (summer) ng m{sup -2} h{sup -1}. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg{sup o} from the underlying water surface ({approx}1-2 ng m{sup -2} h{sup -1}) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO{sub 2} flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg{sup o} flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg{sup o} emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg{sup o} is the underlying sediments. The pattern of Hg{sup o} fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.

  4. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Braekman-Danheux, C.; Laurent, P.; Thiemann, T.; Fontana, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Mineralogy and Crystallography

    1999-08-01

    An investigation of refuse-derived char (RDC) generated by thermolysis of municipal solid waste (MSW) was undertaken to elucidate the behaviour of some toxic and potentially toxic trace elements (Cr, Cu, Mn, Ni, Pb, Sb and Zn) plus Fe during combustion of RDC. About 87% of Sb, 66% of Pb, 60% of Cu and significant parts of Fe{gt}Zn{gt}Ni{gt}Mn{gt}Cr from the RDC are volatile at 1200{degree}C, and their behaviour in the temperature interval 500-1200{degree}C is characterized. The use of sorbents (zeolite, kaolinite, montmorillonite, coals enriched in kaolinite and calcite, and lime plus portlandite) for capture, solidification and inertization of the most volatile elements during combustion of RDC is also described. Perspective sorbents and inertants for a retention of the most volatile Pb, Sb and Cu in RDC ash are kaolinite and montmorillonite or coals enriched in these minerals. In addition, when there is an effective RDC washing (dechlorination and desulphurization), the use of sorbents for capture of some metals could be reduced or even avoided. Recommendations are given for RDC utilization and improvisation of the collection, separation procedures and removal efficiency of some heavy-metal, chloride and sulphate compounds from MSW and RDC prior to their use. The results show that a long-term strategy based on detailed understanding of the source, formation, behaviour and fate of the elements and their modes of occurrence in MSW, RDC and combustion waste residues is required in order to validate a perspective waste pyrolytic processes development. 55 refs., 3 figs., 6 tabs.

  5. Effects of flue gas components on removal of elemental mercury over Ce–MnO_x/Ti-PILCs

    International Nuclear Information System (INIS)

    He, Chuan; Shen, Boxiong; Li, Fukuan

    2016-01-01

    Highlights: • Ce–MnO_x/Ti-PILC exhibited high Hg"0 removal activity. • SO_2 restrained Hg"0 oxidation and adsorption due to the formation of SO_4"2"−. • The formation of NH_3 to NH_4"+ restrained the Hg"0 adsorption and oxidation. - Abstract: The adsorption and oxidation of elemental mercury (Hg"0) under various flue gas components were investigated over a series of Ce–MnO_x/Ti-PILC catalysts, which were synthesized by an impregnation method. To discuss the mechanism, the catalysts were characterized by various techniques such as N_2 adsorption–desorption, scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) analysis and X-ray photoelectron spectroscopy (XPS). The results indicated that the presence of 500 ppm SO_2 in the flue gas significantly restrained the Hg"0 adsorption and oxidation over 6%Ce–6%MnO_x/Ti-PILC due to the formation of SO_4"2"− species. Hg"0 could be oxidized to HgCl_2 in the presence of HCl, because the Deacon process occurred. NO would react with active oxygen to form NO_2-containing species, which facilitated Hg"0 oxidation. While the presence of NO limited the Hg"0 adsorption on 6%Ce–6%MnO_x/Ti-PILC due to the competitive adsorption of NO with Hg"0. The addition of NH_3 in the flue gas significantly restrained Hg"0 adsorption and oxidation, because the formed NH_4"+ species covered the active adsorption sites on the surfaces, and further limited Hg"0 oxidation. However, when NO and NH_3 were simultaneously added into the flue gas, the Hg"0 oxidation efficiency of 6%Ce–6%MnO_x/Ti-PILC exhibited a relatively high value (72%) at 250 °C, which indicated the practicability to use Ce–MnO_x/Ti-PILC for Hg"0 removal under SCR conditions.

  6. Concentration differences between serum and plasma of the elements cobalt, iron, mercury, rubidium, selenium and zinc determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Kasperek, K.; Kiem, J.; Iyengar, G.V.; Feinendegen, L.E.

    1981-01-01

    The differences in concentrations of cesium, cobalt, iron, mercury, rubidium, selenium and zinc between serum and plasma were examined with the aid of instrumental neutron activation analysis. Eighty serum and plasma samples obtained from 13 donors were compared. Serum was prepared in plastic tubes immediately after clotting, and plasma was separated with heparin as anticoagulant. No significant differences in the concentrations of cesium, cobalt, mercury and selenium were observed. However, the concentrations of iron, rubidium and zinc were significantly higher in serum than in plasma. The average differences were 322, 12 and 20 ng/ml for iron, rubidium and zinc, respectively. The average differences found for cesium, rubidium and zinc were far below that which can be expected from a complete, or considerable release of these elements from platelets which aggregate or disintegrate during the clotting process in preparing serum. (orig.)

  7. Development of a High-Resolution Laser Absorption Spectroscopy Method with Application to the Determination of Absolute Concentration of Gaseous Elemental Mercury in Air.

    Science.gov (United States)

    Srivastava, Abneesh; Hodges, Joseph T

    2018-05-07

    Isotope dilution-cold-vapor-inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has become the primary standard for measurement of gaseous elemental mercury (GEM) mass concentration. However, quantitative mass spectrometry is challenging for several reasons including (1) the need for isotopic spiking with a standard reference material, (2) the requirement for bias-free passive sampling protocols, (3) the need for stable mass spectrometry interface design, and (4) the time and cost involved for gas sampling, sample processing, and instrument calibration. Here, we introduce a high-resolution laser absorption spectroscopy method that eliminates the need for sample-specific calibration standards or detailed analysis of sample treatment losses. This technique involves a tunable, single-frequency laser absorption spectrometer that measures isotopically resolved spectra of elemental mercury (Hg) spectra of 6 1 S 0 ← 6 3 P 1 intercombination transition near λ = 253.7 nm. Measured spectra are accurately modeled from first-principles using the Beer-Lambert law and Voigt line profiles combined with literature values for line positions, line shape parameters, and the spontaneous emission Einstein coefficient to obtain GEM mass concentration values. We present application of this method for the measurement of the equilibrium concentration of mercury vapor near room temperature. Three closed systems are considered: two-phase mixtures of liquid Hg and its vapor and binary two-phase mixtures of Hg-air and Hg-N 2 near atmospheric pressure. Within the experimental relative standard uncertainty, 0.9-1.5% congruent values of the equilibrium Hg vapor concentration are obtained for the Hg-only, Hg-air, Hg-N 2 systems, in confirmation with thermodynamic predictions. We also discuss detection limits and the potential of the present technique to serve as an absolute primary standard for measurements of gas-phase mercury concentration and isotopic composition.

  8. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  9. First principles study of elemental mercury (Hg{sup 0}) adsorption on low index CoMnO{sub 3} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fan, Maohong [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming, 82071 (United States); School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332 (United States)

    2017-06-30

    Highlights: • Hg{sup 0} adsorption on low index CoMnO{sub 3} surface was predicted by DFT method. • Hg{sup 0} is adsorbed on the CoMnO{sub 3} surface with chemisorption interaction. • Hg{sup 0} has highest adsorption energy on CoMnO{sub 3} (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg{sup 0} has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg{sup 0}) adsorption on CoMnO{sub 3} surface for the first time. GGA/PBE functional were selected to determine the potential Hg{sup 0} capture mechanisms. The results show that Hg{sup 0} has good affinity with CoMnO{sub 3} surfaces with chemical adsorption. The adsorption energy of Hg{sup 0}-CoMnO{sub 3} (1 0 0), Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg{sup 0} was oxidized to its valence state of 0.236 on Mn site in CoMnO{sub 3} (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) with 0.209e{sup −} and 0.189e{sup −} transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO{sub 3} catalyst performed excellent in Hg{sup 0} oxidation. Exposing CoMnO{sub 3} (1 0 0) is most favorable in Hg{sup 0} control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  10. African Dust Transport Captured by Rare Earth Elemental Concentrations in Coral Microatolls

    Science.gov (United States)

    Ouellette, G., Jr.; DeLong, K.; Herrmann, A.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    Winds are integral components of the climate system; unfortunately, windsare also among the climate variables that are most difficult to study prior to the instrumentalrecord. Paleoclimatologists use sedimentary dust records (e.g., lake and ocean cores) tounderstand past wind circulation conditions; however, these types of records typically are notamenable to sub-annual interpretation due to their limited temporal resolution. Here wedeveloped a coral-based dust-wind proxy to overcome these temporal limitations by usingtrace (nmol/mol) rare earth elemental concentrations recorded in the skeletons of coralmicroatolls. The rare earth elements (REE; the lanthanides as well as scandium and yttrium)behave similarly in geologic and geochemical systems, and have served as useful proxies ofgeological processes in both deep and shallow time. Corals incorporate REE as they deposittheir exoskeletons that extend incrementally with time forming annual density band couplets.Coral microatolls grow at or near the sea surface, where coral REE concentrations are mostsensitive to dust deposition. Our study site off the west coast of Haiti is down stream of light-REE depleted bedrock whereas REE in African dust, transported by the easterly trade winds,reflect average crustal abundances. This unique "upstream" source signature allows forterrestrial contamination of the dust-wind signal to be ruled out. Light REE concentrations (esp.Nd and Pr) demonstrate an order of magnitude increase within coral aragonite coincident withmajor African dust plume events throughout the past decade, with Nd/Ca and Pr/Ca increasingfrom an average of 27 nmol/mol to an average 144 nmol/mol and an average of 5 nmol/mol toan average of 37 nmol/mol, respectively, during major African dust plume events. Monthly-resolved REE analysis shows these REE peaks coincide with the summer dust season rather thanHaiti's two wet seasons in spring and autumn. Regression of our coral REE dust proxy tosatellite records of

  11. Optical breast shape capture and finite-element mesh generation for electrical impedance tomography

    International Nuclear Information System (INIS)

    Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D

    2011-01-01

    X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis

  12. Method for removal and stabilization of mercury in mercury-containing gas streams

    Science.gov (United States)

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  13. Apparatus for reducing pulse pileup in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances

    International Nuclear Information System (INIS)

    Marshall, J.H. III.

    1979-01-01

    The active reduction of the number of analyzed events with pulse amplitudes which pileup has distorted improves measurement accuracy and response time in an apparatus for neutron-capture-based on-line elemental analysis of bulk substances. Within the apparatus, the analyzed bulk substance is exposed to neutrons, and neutron capture generates prompt gamma rays therefrom. A detector interacts with some of these gamma rays to produce electrical signals used to measure their energy spectrum by pulse-height analysis. Circuits associated with this pulse-height analysis also detect the pileup of the signals of two or more independent gamma rays using one or more of several techniques. These techniques include multiple outputs from a special amplifier-discriminator system, which has been optimized for low pulse-pair resolving time and may have adaptive thresholds, and the requirement that the relative amplitudes of the outputs of slow and fast amplifiers be consistent with a single event producing both outputs. Pulse-width measurements are also included in the pileup detection

  14. Impact of mercury mine and smelter St. Ana – Podljubelj on spatial distribution of chemical elements in soil

    Directory of Open Access Journals (Sweden)

    Tamara Teršič

    2005-06-01

    Full Text Available The objective of the research project was to establish the extension of Hg pollution as a consequence of mining and smelting activities in a narrow Alpine valley. The St. Ana mine was first exploited as early as in 1557 and was finally abandoned in 1902. The entire operating period yielded about 110.000 tons of ore, from which 360 tons of Hg was produced. By soil sampling it was established that on about 9 ha the Hg contents in soil exceed the Slovenian critical values for soil (10 mg/kg. The estimated mercury mean for the studied area is 1.3 mg/kg (0.17 – 718 mg/kg. The highest contents of mercury in soilswere found in the area of the mercury smelter.That is a consequence of former atmospheric emissions and technological losses. High values of Hg were found also in soil on the mine and smelter waste dump. The highest determined contents of Hg (108 mg/kg in this area are almost 7-times lower than thecontents of Hg in the area of the smelter. Mercury in soils generally decrease with depth and distance from the mine and smelter. Apart from the area around the former mine and smelter, mercury appear in higher concentrations also along the road that runs along thevalley, which is due to the use of Hg bearing mine tailings in road construction.

  15. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  16. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    Elemental mercury is the well-known silver liquid and usually causes pulmonary, neurological and ... suicidal ideation or features of major depression. Clinically the patient was .... medically at this stage and consider surgical intervention later.

  17. Elemental composition of otoliths from migrating chum salmon, Oncorhynchus keta, captured at the Kitakami river and Ishinomaki Bay

    International Nuclear Information System (INIS)

    Kakuta, Izuru; Iizuka, Keiki; Sugawara, Yoshio; Tsuchiya, Takeshi; Ishii, Keizo

    2000-01-01

    The elemental composition (Ca, Sr, Zn and Fe) of otoliths from migrating chum salmon, Oncorhynchus keta, captured at the Kitakami river and Ishinomaki Bay was analyzed to understand the migratory history using a particle induced X-ray emission (PIXE) technique. The Sr/Ca ratio of salmon otoliths was lower (less than 1 x 10 -3 ) in the portion formed in a freshwater environment and higher (approximately 4.8 x 10 -3 ) in a sea water environment. When the fish migrated from sea water into a freshwater environment, the otoliths' Sr/Ca ratios significantly increased. The highest values were found in the fish captured at the lower part of the Kitakami river (about 20 km upriver from the mouth). The values from the fish captured at the upper part of the Kitakami river (about 200 km upriver from the mouth) were also not less than those of the fish captured at Ishinomaki Bay. Abnormally high otolith Sr/Ca ratios for these upriver-migrating fish, when compared to the values from non-migrating salmon inhabiting stable environmental (salinity and temperature) conditions, provided evidence that they were stressed. No significant changes in the otoliths' Zn/Ca ratios were found, while these values were inversely proportional to the Sr/Ca ratios. However, a rapid drop in the Zn/Ca ratio and an increase in the Sr/Ca ratio was observed in some individuals in which higher values for the Fe/Ca were found. These results suggest that these otolith parameters don't exactly reflect the salinity and temperature history in upriver-migrating chum salmon because the physiological mechanism of incorporation of Sr, Zn and Ca within the otolith of those fish is abnormal, though for fish in non-stressful conditions the Sr/Ca and the Zn/Ca ratios in otoliths are effective indices for predicting the history of environmental conditions experienced by the fish in the past. Regarding the relationship between the Sr/Ca and the Zn/Ca ratios, and also the Fe/Ca ratio, there is a possibility that they

  18. PCR and magnetic bead-mediated target capture for the isolation of short interspersed nucleotide elements in fishes.

    Science.gov (United States)

    Liu, Dong; Zhu, Guoli; Tang, Wenqiao; Yang, Jinquan; Guo, Hongyi

    2012-01-01

    Short interspersed nucleotide elements (SINEs), a type of retrotransposon, are widely distributed in various genomes with multiple copies arranged in different orientations, and cause changes to genes and genomes during evolutionary history. This can provide the basis for determining genome diversity, genetic variation and molecular phylogeny, etc. SINE DNA is transcribed into RNA by polymerase III from an internal promoter, which is composed of two conserved boxes, box A and box B. Here we present an approach to isolate novel SINEs based on these promoter elements. Box A of a SINE is obtained via PCR with only one primer identical to box B (B-PCR). Box B and its downstream sequence are acquired by PCR with one primer corresponding to box A (A-PCR). The SINE clone produced by A-PCR is selected as a template to label a probe with biotin. The full-length SINEs are isolated from the genomic pool through complex capture using the biotinylated probe bound to magnetic particles. Using this approach, a novel SINE family, Cn-SINE, from the genomes of Coilia nasus, was isolated. The members are 180-360 bp long. Sequence homology suggests that Cn-SINEs evolved from a leucine tRNA gene. This is the first report of a tRNA(Leu)-related SINE obtained without the use of a genomic library or inverse PCR. These results provide new insights into the origin of SINEs.

  19. PCR and Magnetic Bead-Mediated Target Capture for the Isolation of Short Interspersed Nucleotide Elements in Fishes

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2012-02-01

    Full Text Available Short interspersed nucleotide elements (SINEs, a type of retrotransposon, are widely distributed in various genomes with multiple copies arranged in different orientations, and cause changes to genes and genomes during evolutionary history. This can provide the basis for determining genome diversity, genetic variation and molecular phylogeny, etc. SINE DNA is transcribed into RNA by polymerase III from an internal promoter, which is composed of two conserved boxes, box A and box B. Here we present an approach to isolate novel SINEs based on these promoter elements. Box A of a SINE is obtained via PCR with only one primer identical to box B (B-PCR. Box B and its downstream sequence are acquired by PCR with one primer corresponding to box A (A-PCR. The SINE clone produced by A-PCR is selected as a template to label a probe with biotin. The full-length SINEs are isolated from the genomic pool through complex capture using the biotinylated probe bound to magnetic particles. Using this approach, a novel SINE family, Cn-SINE, from the genomes of Coilia nasus, was isolated. The members are 180–360 bp long. Sequence homology suggests that Cn-SINEs evolved from a leucine tRNA gene. This is the first report of a tRNALeu-related SINE obtained without the use of a genomic library or inverse PCR. These results provide new insights into the origin of SINEs.

  20. THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION

    Science.gov (United States)

    Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...

  1. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  2. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  3. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  4. Arsenic and mercury partitioning in fly ash at a Kentucky power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tanaporn Sakulpitakphon; James C. Hower; Alan S. Trimble; William H. Schram; Gerald A. Thomas [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2003-08-01

    Coal and fly ash samples were collected from a 500-MW unit at a Kentucky power plant, with the objective of studying the distribution of arsenic, mercury, and other trace elements in fly ash. The coal feed was low-sulfur, high volatile A bituminous central West Virginia coal. The plant produced a relatively low-carbon fly ash. In contrast to power plants with high-mercury feed coal, the fly ashes from the lower-mercury feed coal had low mercury values, generally not exceeding 0.01 ppm Hg. Mercury capture by fly ash varies with both the amount and type of carbon and the collection temperature; mercury capture is more efficient at lower temperatures. Arsenic in the feed coal and in the flue gas is of concern to the utility, because of the potential for catalyst poisoning in the selective catalytic reduction system (in the planning stage at the time of the sampling). Arsenic is captured in the fly ash, increasing in concentration in the more-distant (from the boiler) reaches of the electrostatic precipitator system. 16 refs., 2 figs., 5 tabs.

  5. 41 CFR 301-71.2 - What are the standard data elements and when must they be captured on a travel accounting system?

    Science.gov (United States)

    2010-07-01

    ... data elements and when must they be captured on a travel accounting system? 301-71.2 Section 301-71.2 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 71-AGENCY TRAVEL ACCOUNTABILITY REQUIREMENTS General § 301-71.2 What are...

  6. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago, Paula A. [Univ. of Utah, Salt Lake City, UT (United States); Morrill, Mike [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn S. [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey D. [Univ. of Utah, Salt Lake City, UT (United States)

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  7. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    Energy Technology Data Exchange (ETDEWEB)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  8. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  9. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    International Nuclear Information System (INIS)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-01

    Over 1,140 yd 3 of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations (approximately 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system

  10. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  11. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  12. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vitro exposure to mercury: A study using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, Andrea; Barroso, Regina C. [Physics Institute/State University of Rio de Janeiro (UERJ), RJ (Brazil); Almeida, Andre P. de; Braz, Delson [Nuclear Engineering Program/COPPE/Federal University of Rio de Janeiro, RJ (Brazil); Cardoso, Simone C. [Physics Institute/Federal University of Rio de Janeiro, RJ (Brazil); Penna, Patricia A.; Gonzalez, Marcelo S. [Laboratory of Biochemistry and Physiology of Insects/Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: In the last years have been studied the effects of the pollution of humans and others vertebrates, however, the effects on invertebrates are poorly knows. Some pollutants introduced in aquatic and terrestrial ecosystems are potentially toxic to living organisms. Almost the environmental pollutants, the heavy metals are not degradable and can persist during long time of many ecosystems causing ecologic changes often disastrous to species that habit there. Actually some works has shown that the heavy metals beyond be toxic and interfere on development and reproduction of some species of terrestrial and marine invertebrates. When are present in cells, the chemical form and connection type of metals are critical factors that determinate the toxicity. So, the ambient pollution has chronic effects and acute of animals health and can affect any systems and organs. The intoxications that current often are caused by aluminum, arsenic, barium, beryllium, cadmium, lead, mercury and nickel. Know that these elements can change cellular structures, enzymes and replace metal cofactors in enzyme activities. In insects, the effects of pollution change according to specie studied. The pollution can act on the weight reduction and increasing the relative growth rate. In this work, we investigated the effect of mercury exposure on the elemental content in hemolymph and urine of Rhodnius prolixus the insect vector of Chagas' disease, which is one of the most important vectors in Latin American and also, the most well-know studied insect in terms of both physiology and vector-parasite interactions. Five-stage nymphs of Rhodnius prolixus were collected from colony of a Laboratory Physiology and Biochemistry of Insects, Institute Oswaldo Cruz RJ. For treatment of insects, mercury chloride has been added to rabbit blood. After feeding the nymphs were separated and packed for two days for collection of hemolymph and urine. The SR-TXRF measurements were performed at the X

  13. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vitro exposure to mercury: A study using SR-TXRF

    International Nuclear Information System (INIS)

    Mantuano, Andrea; Barroso, Regina C.; Almeida, Andre P. de; Braz, Delson; Cardoso, Simone C.; Penna, Patricia A.; Gonzalez, Marcelo S.

    2011-01-01

    Full text: In the last years have been studied the effects of the pollution of humans and others vertebrates, however, the effects on invertebrates are poorly knows. Some pollutants introduced in aquatic and terrestrial ecosystems are potentially toxic to living organisms. Almost the environmental pollutants, the heavy metals are not degradable and can persist during long time of many ecosystems causing ecologic changes often disastrous to species that habit there. Actually some works has shown that the heavy metals beyond be toxic and interfere on development and reproduction of some species of terrestrial and marine invertebrates. When are present in cells, the chemical form and connection type of metals are critical factors that determinate the toxicity. So, the ambient pollution has chronic effects and acute of animals health and can affect any systems and organs. The intoxications that current often are caused by aluminum, arsenic, barium, beryllium, cadmium, lead, mercury and nickel. Know that these elements can change cellular structures, enzymes and replace metal cofactors in enzyme activities. In insects, the effects of pollution change according to specie studied. The pollution can act on the weight reduction and increasing the relative growth rate. In this work, we investigated the effect of mercury exposure on the elemental content in hemolymph and urine of Rhodnius prolixus the insect vector of Chagas' disease, which is one of the most important vectors in Latin American and also, the most well-know studied insect in terms of both physiology and vector-parasite interactions. Five-stage nymphs of Rhodnius prolixus were collected from colony of a Laboratory Physiology and Biochemistry of Insects, Institute Oswaldo Cruz RJ. For treatment of insects, mercury chloride has been added to rabbit blood. After feeding the nymphs were separated and packed for two days for collection of hemolymph and urine. The SR-TXRF measurements were performed at the X

  14. Monsoon-driven transport of atmospheric mercury to the South China Sea from the Chinese mainland and Southeast Asia-Observation of gaseous elemental mercury at a background station in South China.

    Science.gov (United States)

    Liu, Ming; Chen, Laiguo; Xie, Donghai; Sun, Jiaren; He, Qiusheng; Cai, Limei; Gao, Zhiqiang; Zhang, Yiqiang

    2016-11-01

    Concentrations of gaseous elemental mercury (GEM) were continuously monitored from May 2011 to May 2012 at the Wuzhishan State Atmosphere Background Monitoring Station (109°29'30.2″ E, 18°50'11.0″ N) located in Hainan Island. This station is an ideal site for monitoring long-range transport of atmospheric pollutants from mainland China and Southeast Asia to South China Sea. Annual average GEM concentration was 1.58 ± 0.71 ng m -3 during the monitoring period, which was close to background values in the Northern Hemisphere. GEM concentrations showed a clear seasonal variation with relatively higher levels in autumn (1.86 ± 0.55 ng m -3 ) and winter (1.80 ± 0.62 ng m -3 ) and lower levels in spring (1.16 ± 0.45 ng m -3 ) and summer (1.43 ± 0.46 ng m -3 ). Long-range atmospheric transport dominated by monsoons was a dominant factor influencing the seasonal variations of GEM. The GEM diel trends were related to the wind speed and long-range atmospheric mercury transport. We observed 30 pollution episodes throughout the monitoring period. The analysis of wind direction and backward trajectory suggested that elevated GEM concentrations at the monitoring site were primarily related to the outflows of atmospheric Hg from mainland China and the Indochina peninsula. The △GEM/△CO values also suggested that GEM was significantly affected by the long-range transport from the anthropogenic sources and biomass burning in Asia and Indochina peninsula.

  15. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  16. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    Science.gov (United States)

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  17. Concurrent removal of elemental mercury and SO2 from flue gas using a thiol-impregnated CaCO3-based adsorbent: a full factorial design study.

    Science.gov (United States)

    Balasundaram, Karthik; Sharma, Mukesh

    2018-03-22

    Mercury (Hg) emitted from coal-based thermal power plants (CTPPs) can accumulate and bio-magnify in the food chain, thereby posing a risk to humans and wildlife. The central idea of this study was to develop an adsorbent which can concurrently remove elemental mercury (Hg 0 ) and SO 2 emitted from coal-based thermal power plants (CTPPs) in a single unit operation. Specifically, a composite adsorbent of CaCO 3 impregnated with 2-mercaptobenimidazole (2-MBI) (referred to as modified calcium carbonate (MCC)) was developed. While 2-MBI having sulfur functional group could selectively adsorb Hg 0 , CaCO 3 could remove SO 2 . Performance of the adsorbent was evaluated in terms of (i) removal (%) of Hg 0 and SO 2 , (ii) adsorption mechanism, (iii) adsorption kinetics, and (iv) leaching potential of mercury from spent adsorbent. The adsorption studies were performed using a 2 2 full factorial design of experiments with 15 ppbV of Hg 0 and 600 ppmV of SO 2 . Two factors, (i) reaction temperature (80 and 120 °C; temperature range in flue gas) and (ii) mass of 2-MBI (10 and 15 wt%), were investigated for the removal of Hg 0 and SO 2 (as %). The maximum Hg 0 and SO 2 removal was 86 and 93%, respectively. The results of XPS characterization showed that chemisorption is the predominant mechanism of Hg 0 and SO 2 adsorption on MCC. The Hg 0 adsorption on MCC followed Elovich kinetic model which is also indicative of chemisorption on heterogeneous surface. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) leached mercury from the spent adsorbent were within the acceptable levels defined in these tests. The engineering significance of this study is that the 2-MBI-modified CaCO 3 -based adsorbent has potential for concurrent removal of Hg 0 and SO 2 in a single unit operation. With only minor process modifications, the newly developed adsorbent can replace CaCO 3 in the flue-gas desulfurization (FGD) system.

  18. Geochemistry of Mercury and other trace elements in fluvial tailings upstream of Daguerre Point Dam, Yuba River, California, August 2001

    Science.gov (United States)

    Hunerlach, Michael P.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Taylor, Howard E.; DeWild, John F.

    2004-01-01

    This study was designed to characterize the particle-size distribution and the concentrations of total mercury (HgT), methylmercury (MeHg), and other constituents in sediments trapped behind Daguerre Point Dam, a 28-foot-high structure on the lower Yuba River in California. The results of the study will assist other agencies in evaluating potential environmental impacts from mobilization of sediments if Daguerre Point Dam is modified or removed to improve the passage of anadromous fish. Methylmercury is of particular concern owing to its toxicity and propensity to bioaccumulate. A limited amount of recent work on hydraulic and dredge tailings in other watersheds has indicated that mercury and MeHg concentrations may be elevated in the fine-grained fractions of placer mining debris, particularly clay and silt. Mercury associated with tailings from placer gold mines is a source of continued contamination in Sierra Nevada watersheds and downstream water bodies, including the Sacramento?San Joaquin Delta and the San Francisco Bay of northern California. Churn drilling was used to recover sediments and heavy minerals at 5-foot intervals from six locations upstream of Daguerre Point Dam. Maximum depth of penetration ranged from 17.5 to 35 feet below land surface, resulting in 31 discreet drilled intervals. Drilling in permeable, unconsolidated sediments below the streambed of the Yuba River released a significant volume of water along with the sediment, which complicated the sampling and characterization effort. Overflow of a silty fraction sampled at the drill site contained suspended sediment consisting predominantly of silt and clay, with HgT concentration ranging from 33 to 1,100 ng/g (nanogram per gram) dry weight. A sandy fraction, collected after sieving sediment through a 2-millimeter vibratory screen, contained from 14 to 82 percent sand and 1 to 29 percent silt plus clay, and had HgT concentrations ranging from 6.8 to 81 ng/g dry weight. A clay-silt fraction

  19. Bench-scale studies with mercury contaminated SRS soil

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1995-01-01

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na 2 CO 3 and 16 weight percent CaCO 3 . Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na 2 S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na 2 S, where it would be converted to Hg 2 S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na 2 S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury

  20. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  1. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    Energy Technology Data Exchange (ETDEWEB)

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  2. A Plasma Based OES-CRDS Dual-mode Portable Spectrometer for Trace Element Detection: Emission and Ringdown Measurements of Mercury

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan; Wang, Chuji

    2012-10-01

    Design and development of a plasma based optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode portable spectrometer for in situ monitoring of trace elements is described. A microwave plasma torch (MPT) has been utilized, which serves both as an atomization and excitation source for the two modes, viz. OES and CRDS, of the spectrometer. Operation of both modes of the instrument is demonstrated with initial measurements of elemental mercury (Hg). A detection limit of 44 ng mL-1 for Hg at 253.65 nm was determined with the emission mode of the instrument. Severe radiation trapping of 253.65 nm line hampers the measurement of Hg in higher concentration region (> 50 μg ml-1). Therefore, a different wavelength, 365.01 nm, is suggested to measure Hg in that region. Ringdown measurements of the metastable 6s6p ^3P0 state of Hg in the plasma using a 404.65 nm palm size diode laser was conducted to demonstrate the CRDS mode of the instrument. Along with being portable, dual-mode, and self-calibrated, the instrument is capable of measuring a wide range of concentration ranging from sub ng mL-1 to several μg ml-1 for a number of elements.

  3. Planet Mercury

    Science.gov (United States)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  4. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  5. Mercurial poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gorton, B

    1924-01-01

    Cats which had been kept in a thermometer factory to catch rats were afflicted with mercury poisoning. So were the rats they were supposed to eat. The symptoms of mercury poisoning were the same in both species. The source of mercury for these animals is a fine film of the metal which coats floors, a result of accidental spills during the manufacturing process.

  6. Continuous mercury monitors conditioning/conversion systems : what we have learned

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Dunham, G.E.; Thompson, J.S. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    2006-07-01

    The challenges of continuous mercury monitoring (CMM) in flue gas were discussed with reference to conditioning/conversion systems where a sample of gas of an unknown composition is conditioned to elemental mercury. Flue gas composition varies greatly depending on coal type and plant configuration. The widely used wet-chemistry systems remove interfering gas constituents by bubbling the sample gas through reactive solutions. Some concerns with the wet systems are the amount of chemicals used and the volume of the waste generated; capture of CO{sub 2} which affects the sample volume; mercury hang-up; condensation of flue gas constituents; and, potential for unidentified chemical reactions. The advantages of dry systems were discussed, such as the ability to convert all of the mercury present in the flue gas to elemental mercury. Some of the main concerns with dry systems are that some systems will require a correction for moisture, which means installing a moisture monitor. Dry systems can also be prone to mercury hang-up and calibration of some of the dilution systems remains a concern. The systems can also be susceptible a significant decrease in catalyst life. figs.

  7. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    Science.gov (United States)

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  9. Health and safety in the dental clinic - Hygiene regulations for use of elemental mercury in the protection of rights, safety and well-being of the patients, workers and the environment.

    Science.gov (United States)

    Ngim, Chunhan; Ngim, Allister Daquan

    2013-12-01

    The rules governing the use of metallic mercury, a toxic and hazardous chemical, is in most jurisdictions identical to widely accepted standards and practices for handling the same chemical in industry for the protection of humans and their work environment. There cannot be exceptions solely for the practitioner dentists and their patients. Any workplace must be safe for both workers and visitors. The latter being dental patients waiting in the dentist's work environment. We reviewed the literature for toxic health effects of elemental mercury upon humans and present information about the Minimata Convention convened by the United Nations Environment Programme. A study conducted among dentists in Singapore and their personal work environment almost 30 years ago contributed to the workplace standard for elemental mercury, which was reduced, and is still currently enforced as a global standard. We recommend that dentists, with a large alternative battery of restorative materials today, make selection of a restorative material a more seriously considered choice, and not to make use of amalgam without the proper use of personal protective equipment for themselves (members of the dental operating team) and their patients, (amalgam traps and judicious monitoring of their workplace air quality). Mercury is ubiquitous in our presence due to human activities; any reduction in the dentists' workplace contributes to a global reduction. © 2013 Published by Elsevier (Singapore) Pte Ltd.

  10. Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and their eggs.

    Science.gov (United States)

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2010-07-15

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and this is of particular concern in the arctic. However, little information exists on contaminant levels in arctic-breeding shorebirds, especially in Canada. We studied potential contaminants in three biparental shorebird species nesting in Nunavut, Canada: ruddy turnstones (Arenaria interpres), black-bellied plovers (Pluvialis squatarola) and semipalmated plovers (Charadrius semipalmatus). Blood, feathers and eggs were analyzed for As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn. We assessed whether element concentrations a) differed among species and sexes, b) were correlated among pairs and their eggs, and c) were related to fitness endpoints, namely body condition, blood-parasite load, nest survival days, and hatching success. Non-essential elements were found at lower concentrations than essential elements, with the exception of Hg. Maximum Hg levels in blood approached those associated with toxicological effects in other bird species, but other elements were well below known toxicological thresholds. Reproductive success was negatively correlated with paternal Hg and maternal Pb, although these effects were generally weak and varied among tissues. Element levels were positively correlated within pairs for blood-Hg (turnstones) and feather-Ni and Cr (semipalmated plovers); concentrations in eggs and maternal blood were never correlated. Concentrations of many elements differed among species, but there was no evidence that any species had higher overall exposure to non-essential metals. In conclusion, whereas we found little evidence that exposure to the majority of these elements is leading to declines of the species studied here, Hg levels were of potential concern and both Hg and Pb warrant further monitoring. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Electrospun cerium-based TiO2 nanofibers for photocatalytic oxidation of elemental mercury in coal combustion flue gas.

    Science.gov (United States)

    Wang, Lulu; Zhao, Yongchun; Zhang, Junying

    2017-10-01

    Photocatalytic oxidation is an attractive method for Hg-rich flue gas treatment. In the present study, a novel cerium-based TiO 2 nanofibers was prepared and selected as the catalyst to remove mercury in flue gas. Accordingly, physical/chemical properties of those nanofibers were clarified. The effects of some important parameters, such as calcination temperature, cerium dopant content and different illumination conditions on the removal of Hg 0 using the photocatalysis process were investigated. In addition, the removal mechanism of Hg 0 over cerium-based TiO 2 nanofibers focused on UV irradiation was proposed. The results show that catalyst which was calcined at 400 °C exhibited better performance. The addition of 0.3 wt% Ce into TiO 2 led to the highest removal efficiency at 91% under UV irradiation. As-prepared samples showed promising stability for long-term use in the test. However, the photoluminescence intensity of nanofibers incorporating ceria was significantly lower than TiO 2 , which was attributed to better photoelectron-hole separation. Although UV and O 2 are essential factors, the enhancement of Hg 0 removal is more obviously related to the participation of catalyst. The coexistence of Ce 3+ and Ce 4+ , which leads to the efficient oxidation of Hg 0 , was detected on samples. Hg 2+ is the final product in the reaction of Hg 0 removal. As a consequence, the emissions of Hg 0 from flue gas can be significantly suppressed. These indicate that combining photocatalysis technology with cerium-based TiO 2 nanofibers is a promising strategy for reducing Hg 0 efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gaseous elemental mercury emissions and CO2 respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    International Nuclear Information System (INIS)

    Obrist, Daniel; Fain, Xavier; Berger, Carsen

    2010-01-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO 2 ) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r 2 = 0.49) between Hg and CO 2 emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO 2 respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N 2 /O 2 (80% and 20%, respectively) to pure N 2 . Unexpectedly, Hg emissions almost quadrupled after O 2 deprivation while oxidative mineralization (i.e., CO 2 emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg 2+ by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg 2+ reduction, is related to O 2 availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O 2 levels and possibly low soil redox potentials lead to increased Hg volatilization from soils.

  13. Mass loads of dissolved and particulate mercury and other trace elements in the Mt. Amiata mining district, Southern Tuscany (Italy)

    Science.gov (United States)

    Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A.

    2014-01-01

    Total dissolved and particulate mercury (Hg), arsenic (As), and antimony (Sb) mass loads were estimated in different seasons (March and September 2011 and March 2012) in the Paglia River basin (PRB) (central Italy). The Paglia River drains the Mt. Amiata Hg district, one of the largest Hg-rich regions worldwide. Quantification of Hg, As, and Sb mass loads in this watershed allowed (1) identification of the contamination sources, (2) evaluation of the effects of Hg on the environment, and (3) determination of processes affecting Hg transport. The dominant source of Hg in the Paglia River is runoff from Hg mines in the Mt. Amiata region. The maximum Hg mass load was found to be related to runoff from the inactive Abbadia San Salvatore Mine (ASSM), and up to 30 g day−1 of Hg, dominantly in the particulate form, was transported both in high and low flow conditions in 2011. In addition, enrichment factors (EFs) calculated for suspended particulate matter (SPM) were similar in different seasons indicating that water discharge controls the quantities of Hg transported in the PRB, and considerable Hg was transported in all seasons studied. Overall, as much as 11 kg of Hg are discharged annually in the PRB and this Hg is transported downstream to the Tiber River, and eventually to the Mediterranean Sea. Similar to Hg, maximum mass loads for As and Sb were found in March 2011, when as much as 190 g day−1 each of As and Sb were measured from sites downstream from the ASSM. Therefore, the Paglia River represents a significant source of Hg, Sb, and As to the Mediterranean Sea.

  14. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  15. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  16. Mercury and halogens in coal: Chapter 2

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  17. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    Science.gov (United States)

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  18. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  19. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  20. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  1. Fully non-destructive elemental analyses of copper-alloy artefacts with neutron resonance capture between 1 eV and 10 keV

    International Nuclear Information System (INIS)

    Postma, H.; Blaauw, M.; Corvi, F.

    2002-01-01

    Neutron capture resonance analysis (NRCA) using a pulsed neutron beam and the time-of-flight (ToF) technique is a new method to determine the elemental compositions of artifacts. Neutron capture by an object can be observed by detecting the prompt capture gamma-radiation. Energies of resonance peaks in the ToF spectrum are the 'fingerprints' for elements. Since it is not necessary to determine the energy of the gamma-rays with any precision, it is possible to use a detector system with high detection efficiency. It is not necessary to take parts from an object for the analysis or to clean the surface or to do other things which might damage the object. Therefore NRCA is especially of interest for studying fragile, small or valuable objects from which one does not want to, or cannot take samples, or for which cleaning of even a small part of a surface is not desirable. Knowledge of the elemental composition of artifacts might be useful for archaeological or historical studies or to check the authenticity of an artifact. Recent experiments at the GELINA facility in Geel, Belgium show that indeed NRCA is a useful way to recognize elements on the basis of the energies of resonance in the ToF spectrum. We applied NRCA to several copper-alloy artifacts. In the studied objects very little activity was induced, which also disappeared quickly. Thus resonance energies allow us to recognize elements of an object. In addition, a quantitative analysis is possible on the basis of resonance areas. In the case of our artefacts the amounts of several elements (notably Sn, As, Zn, Fe, Sb, Ag, Au) were determined as ratios to copper. For a strong resonance it is necessary to take self-shielding into account. The effect of self-shielding made it possible to determine the absolute amount of copper by comparing the areas of a weak and a strong copper resonance, and thus also absolute amounts of the other components could be determined. The method of NRCA is discussed in relation to the

  2. Spatial distribution of mercury and other trace elements in recent lake sediments from central Alberta, Canada: An assessment of the regional impact of coal-fired power plants

    International Nuclear Information System (INIS)

    Sanei, H.; Goodarzi, F.; Outridge, P.M.

    2010-01-01

    These have been growing concerns over the environmental impacts of the coal-fired power plants in the western Canadian province of Alberta, which collectively comprise one of the largest point sources of Hg and other trace elements nationally. The overall cumulative impact of the power plants since the beginning of their activities several decades ago has been a critical question for industry, government agencies, and the research community. This paper aims to delineate the cumulative geographic extent of impact by investigating the spatial distribution of mercury and other trace elements of environmental concern in nine freshwater lakes, which cover the large area surrounding the coal-fired power plants in central Alberta, Canada. 210-Lead dating was used in conjunction with physical evidence of deposited fly ash to determine the sediments' age and hence the depths corresponding to the onset of coal-fired power generation in 1956. Total mean concentrations and fluxes of elements of environmental concern with integrated values since 1956 were then determined. The concentration values do not reflect the catastrophic oil spill at Lake Wabamun in 2005. The post-1956 flux rates of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, V, W, and Zn were generally highest in sediment cores obtained from two lakes adjacent to power plants. However, the variable prevailing wind directions played an important role in determining the aerial distribution of Hg and other trace elements to the southeast and to the west of the power plants. Post-1956 fluxes of most elements declined downwind (westward), consistent with strong easterly winds transporting metal pollution further to the west of the power plants. However, spatial interpolation of the data suggested a major southern extension to the area of maximum metal deposition, which has not been sampled by this or previous studies in the region. An atmospheric model estimate of total Hg flux in 2007 near the Genesee power plant was

  3. Evaluation of the trace elements and the total mercury concentration in fishes commercialized at the Cubatao city, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Fonseca, Barbara C.; Farias, Luciana A.; Curcho, Michel R.M.; Favaro, Debora I.T.; Braga, Elisabete S.

    2009-01-01

    This paper evaluates the total Hg and the trace elements As, Br, Co, Cr and Rb concentrations in muscle of commercially important fishes at the Cubatao, Sao Paulo, Brazil, region. The following carnivore species were analysed: jew fish (Micropogonias furnieri), girl leg (Menticirrhus americanus), hake (Macrodon ancylodon), and plant eaters, sardine (Sardella braziliensis) and grey mullet (Mugil liza), representing a total of 58 samples. The analysed trace elements were determined through the neutron analysis activation (NAA) and total Hg, through the atomic absorption spectrometry with cold vapor generation (CV AAS). The analysed elements present a great concentration variation, not only among individuals of the same specie, but also among all the analysed species. The total Hg concentration were highly significant, with the predator species jew fish, girl leg and hake presenting concentrations larger than the non predator species sardine and grey mullet. Nevertheless, the content of total Hg remained bellow the limits established by the Brazilian legislation which is the 500 μg kg -1 for the non predator species, and the 1000 μg -1 for the predator species (humid weight)

  4. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  5. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  6. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  7. THE ABUNDANCES OF LIGHT NEUTRON-CAPTURE ELEMENTS IN PLANETARY NEBULAE. III. THE IMPACT OF NEW ATOMIC DATA ON NEBULAR SELENIUM AND KRYPTON ABUNDANCE DETERMINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, N. C. [Department of Physics, University of West Georgia, 1601 Maple Street, Carrollton, GA 30118 (United States); Porter, R. L. [Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, GA 30602 (United States); Dinerstein, Harriet L., E-mail: nsterlin@westga.edu, E-mail: ryanlporter@gmail.com, E-mail: harriet@astro.as.utexas.edu [Department of Astronomy, University of Texas, 2515 Speedway, C1400, Austin, TX 78712-1205 (United States)

    2015-06-22

    The detection of neutron(n)-capture elements in several planetary nebulae (PNe) has provided a new means of investigating s-process nucleosynthesis in low-mass stars. However, a lack of atomic data has inhibited accurate trans-iron element abundance determinations in astrophysical nebulae. Recently, photoionization (PI) and recombination data were determined for Se and Kr, the two most widely detected n-capture elements in nebular spectra. We have incorporated these new data into the photoionization code Cloudy. To test the atomic data, numerical models were computed for 15 PNe that exhibit emission lines from multiple Kr ions. We found systematic discrepancies between the predicted and observed emission lines that are most likely caused by inaccurate PI and recombination data. These discrepancies were removed by adjusting the Kr{sup +}–Kr{sup 3+} PI cross sections within their cited uncertainties and the dielectronic recombination rate coefficients by slightly larger amounts. From grids of models spanning the physical conditions encountered in PNe, we derive new, broadly applicable ionization correction factor (ICF) formulae for calculating Se and Kr elemental abundances. The ICFs were applied to our previous survey of near-infrared [Kr iii] and [Se iv] emission lines in 120 PNe. The revised Se and Kr abundances are 0.1–0.3 dex lower than former estimates, with average values of [Se/(O, Ar)] = 0.12 ± 0.27 and [Kr/(O, Ar)] = 0.82 ± 0.29, but correlations previously found between their abundances and other nebular and stellar properties are unaffected. We also find a tendency for high-velocity PNe that can be associated with the Galactic thick disk to exhibit larger s-process enrichments than low-velocity PNe belonging to the thin-disk population.

  8. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel.

    Science.gov (United States)

    Liao, Yong; Xiong, Shangchao; Dang, Hao; Xiao, Xin; Yang, Shijian; Wong, Po Keung

    2015-12-15

    A magnetic Fe-Ti-Mn spinel was developed to adsorb gaseous Hg(0) in our previous study. However, it is currently extremely restricted in the control of Hg(0) emission from the flue gas for at least three reasons: sorbent recovery, sorbent regeneration and the interference of the chemical composition in the flue gas. Therefore, the effect of SO2 and H2O on the adsorption of gaseous Hg(0) on the Fe-Ti-Mn spinel and the regeneration of spent Fe-Ti-Mn spinel were investigated in this study. Meanwhile, the procedure of the centralized control of Hg(0) emission from the flue gas by the magnetic Fe-Ti-Mn spinel has been analyzed for industrial application. The spent Fe-Ti-Mn spinel can be regenerated by water washing followed by the thermal treatment at 450 °C with no obvious decrease of its ability for Hg(0) capture. Meanwhile, gaseous Hg(0) in the flue gas can be remarkably concentrated during the regeneration, facilitating its safe disposal. Initial pilot test demonstrated that gaseous Hg(0) in the real flue gas can be concentrated at least 100 times by the Fe-Ti-Mn spinel. Therefore, Fe-Ti-Mn spinel was a novel magnetic regenerable sorbent, which can be used for the centralized control of Hg(0) emission from the flue gas. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mercury and other element exposure in tree swallows nesting at low pH and neutral pH lakes in northern Wisconsin USA

    International Nuclear Information System (INIS)

    Custer, Thomas W.; Custer, Christine M.; Thogmartin, Wayne E.; Dummer, Paul M.; Rossmann, Ronald; Kenow, Kevin P.; Meyer, Michael W.

    2012-01-01

    The primary objective of this study was to determine whether tree swallows (Tachycineta bicolor) demonstrate similar responses to lake pH and mercury (Hg) contamination in northern Wisconsin as do common loons (Gavia immer). Similar to common loons, Hg concentrations in the blood of tree swallow nestlings were higher, Hg concentrations in eggs tended to be higher, and egg size tended to be smaller at low (<6.2) pH lakes. In contrast to common loons, tree swallow nestling production was not lower at low pH lakes. Based on modeling associations, Hg concentrations in tree swallow eggs and nestling blood can be used to predict Hg concentrations in common loons without the invasive or destructive sampling of loons. Mean concentrations of cadmium, manganese, and mercury in nestling livers were higher at low pH lakes than neutral pH lakes. Concentrations of cadmium, chromium, mercury, selenium, and zinc were not at toxic levels. - Highlights: ► Mercury concentrations in tree swallow nestling livers were higher in low than neutral pH lakes. ► Tree swallow eggs were smaller at low than neutral pH lakes. ► Tree swallow hatching success was not correlated with mercury concentrations in eggs. ► Mercury concentrations in tree swallows can be used to predict common loon exposure. - Mercury concentrations in tree swallows were higher at low pH lakes.

  10. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  11. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  13. Mercury species in formerly contaminated soils and released soil gases

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Kučera, Jan; Drtinová, B.; Červenka, R.; Zvěřina, O.; Komárek, J.; Kameník, Jan

    2017-01-01

    Roč. 584, APR (2017), s. 1032-1039 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : mercury contaminated soils * total mercury * elemental mercury * methylmercury * phynelmercury * gaseous elemental mercury Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.900, year: 2016

  14. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis

    Science.gov (United States)

    Roederer, Ian U.; Karakas, Amanda I.; Pignatari, Marco; Herwig, Falk

    2016-04-01

    We present a detailed analysis of the composition and nucleosynthetic origins of the heavy elements in the metal-poor ([Fe/H] = -1.62 ± 0.09) star HD 94028. Previous studies revealed that this star is mildly enhanced in elements produced by the slow neutron-capture process (s process; e.g., [Pb/Fe] = +0.79 ± 0.32) and rapid neutron-capture process (r process; e.g., [Eu/Fe] = +0.22 ± 0.12), including unusually large molybdenum ([Mo/Fe] = +0.97 ± 0.16) and ruthenium ([Ru/Fe] = +0.69 ± 0.17) enhancements. However, this star is not enhanced in carbon ([C/Fe] = -0.06 ± 0.19). We analyze an archival near-ultraviolet spectrum of HD 94028, collected using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, and other archival optical spectra collected from ground-based telescopes. We report abundances or upper limits derived from 64 species of 56 elements. We compare these observations with s-process yields from low-metallicity AGB evolution and nucleosynthesis models. No combination of s- and r-process patterns can adequately reproduce the observed abundances, including the super-solar [As/Ge] ratio (+0.99 ± 0.23) and the enhanced [Mo/Fe] and [Ru/Fe] ratios. We can fit these features when including an additional contribution from the intermediate neutron-capture process (I process), which perhaps operated through the ingestion of H in He-burning convective regions in massive stars, super-AGB stars, or low-mass AGB stars. Currently, only the I process appears capable of consistently producing the super-solar [As/Ge] ratios and ratios among neighboring heavy elements found in HD 94028. Other metal-poor stars also show enhanced [As/Ge] ratios, hinting that operation of the I process may have been common in the early Galaxy. These data are associated with Program 072.B-0585(A), PI. Silva. Some data presented in this paper were obtained from the Barbara A. Mikulski Archive for Space Telescopes (MAST). The Space Telescope Science Institute is

  15. Neutron activation analysis of several elements in the unicellular alga Cyanidium caldarium irradiated by α particles from neutron captured boron

    International Nuclear Information System (INIS)

    Yamaguchi, Shuho; Oota, Tadachika; Otani, Mayumi; Aso, Sueo

    1984-01-01

    The TRIGA MARK 2 atomic reactor was used not only for instrumental neutron activation analysis (INAA) but also as the irradiation source of α particles derived from the 10 B(n, α) 7 Li reaction for biological samples. The acidophilic and thermophilic unicellular alga (Cyanidium caldarium Geitler) was incubated for 20 hours after irradiation and then its elemental concentrations were analysed by INAA. An increase in the quantities of 56 Mn, 28 Al and 38 Cl, and a decrease of 27 Mg and 42 K were detected in the irradiated cells in contrast to non-irradiated cells. (author)

  16. Legislation, standards and methods for mercury emissions control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Mercury is an element of growing global concern. The United Nations Environment Programme plans to finalise and ratify a new global legally-binding convention on mercury by 2013. Canada already has legislation on mercury emissions from coal-fired utilities and the USA has recently released the new Mercury and Air Toxics Standard. Although other countries may not have mercury-specific legislation as such, many have legislation which results in significant co-benefit mercury reduction due to the installation of effective flue-gas cleaning technologies. This report reviews the current situation and trends in mercury emission legislation and, where possible, discusses the actions that will be taken under proposed or impending standards globally and regionally. The report also reviews the methods currently applied for mercury control and for mercury emission measurement with emphasis on the methodologies most appropriate for compliance. Examples of the methods of mercury control currently deployed in the USA, Canada and elsewhere are included.

  17. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  18. Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): an updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works.

    Science.gov (United States)

    Higueras, Pablo; Esbrí, José María; Oyarzun, Roberto; Llanos, Willans; Martínez-Coronado, Alba; Lillo, Javier; López-Berdonces, Miguel Angel; García-Noguero, Eva Maria

    2013-08-01

    Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as 'mercury-free', the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of "tens of thousands" to mere "tens" nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE-European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800μgg(-1) Hgsoil and 300ngm(-3) Hggas. However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW-SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La Vieja Concepción and El

  19. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  20. The synthetic evaluation of CuO-MnOx-modified pinecone biochar for simultaneous removal formaldehyde and elemental mercury from simulated flue gas.

    Science.gov (United States)

    Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming

    2018-02-01

    A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .

  1. Gradient measurements of gaseous elemental mercury (Hg0) in the marine boundary layer of the northwest Sea of Japan (East Sea).

    Science.gov (United States)

    Kalinchuk, Viktor; Lopatnikov, Evgeny; Astakhov, Anatoly

    2018-06-01

    Gaseous elemental mercury (Hg 0 ) is a prolific and persistent contaminant in the atmosphere. Atmospheric concentrations of Hg 0 were determined from 17 September to 7 October 2015 in the northwest Sea of Japan aboard the Russian research vessel Professor Gagarinsky. Simultaneous measurements of Hg 0 concentrations were performed 2 m and 20 m above the sea surface using automatic Hg 0 analysers RA-915M and RA-915+, respectively. Concentrations ranged from 0.3 to 25.9 ng/m 3 (n = 5207) and from 0.3 to 27.8 ng/m 3 (n = 4415), with medians of 1.7 and 1.6 ng/m 3 , respectively. Elevated Hg 0 was observed during three episodes from 19 to 22 September, likely caused by one or more of the following factors: 1) atmospheric transport of Hg 0 from the west and south-west (from N. Korea, China, and the Yellow Sea region); 2) Hg 0 emission from the sea due to pollution by water from the Tumannaya River; or 3) underwater geological activities. Increased Hg 0 concentration was observed during periods when air masses flowed from the south, and low concentrations were observed when air masses came from the north. A daytime increase of Hg 0 concentrations at a height of 2 m occurred simultaneously with decreasing Hg 0 at a height of 20 m. These diurnal variations suggest that two contrasting processes occur during the daytime in the marine boundary layer (MBL): Hg 0 emission from the sea surface and Hg 0 oxidation in the MBL by active halogens formed by photolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  3. Reducing Mercury Pollution from Artisanal and Small-Scale Gold Mining

    Science.gov (United States)

    To reduce airborne mercury emissions from these Gold Shops, EPA and the Argonne National Laboratory (ANL) have partnered to design a low cost, easily constructible technology called the Gold Shop Mercury Capture System (MCS).

  4. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  5. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  6. Global Mercury Pathways in the Arctic Ecosystem

    Science.gov (United States)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  7. Spin-orbit evolution of Mercury revisited

    Science.gov (United States)

    Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael

    2014-10-01

    Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin-orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2, provided we use a realistic tidal model based on the Darwin-Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin-orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10-20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not

  8. Mercury Control With The Advanced Hybrid Particulate Collector

    International Nuclear Information System (INIS)

    Stanley J. Miller; Ye Zhuang; Jay C. Almlie

    2004-01-01

    evaluate the mercury capture effectiveness of the AHPC when used with elemental mercury oxidation additives. This project, which is now in the final report phase, demonstrated at the pilot-scale level a technology that provides a cost-effective technique to control mercury and, at the same time, greatly enhances fine particulate collection efficiency. The technology can be used to retrofit systems currently employing inefficient ESP technology as well as for new construction, thereby providing a solution for improved fine particulate control combined with effective mercury control for a large segment of the U.S. utility industry as well as other industries

  9. Mercury kinetics in marine zooplankton

    International Nuclear Information System (INIS)

    Fowler, S.W.; Heyraud, M.; LaRosa, J.

    1976-01-01

    Mercury, like many other heavy metals, is potentially available to marine animals by uptake directly from water and/or through the organisms food. Furthermore, bioavailability, assimilation and subsequent retention in biota may be affected by the chemical species of the element in sea water. While mercury is known to exist in the inorganic form in sea water, recent work has indicated that, in certain coastal areas, a good portion of the total mercury appears to be organically bound; however, the exact chemical nature of the organic fraction has yet to be determined. Methyl mercury may be one constituent of the natural organically bound fraction since microbial mechanisms for in situ methylation of mercury have been demonstrated in the aquatic environment. Despite the fact that naturally produced methyl mercury probably comprises only a small fraction of an aquatic ecosystem, the well-documented toxic effects of this organo-mercurial, caused by man-made introductions into marine food chains, make it an important compound to study

  10. Volcanic mercury in Pinus canariensis

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg-1) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg-1). Thus, mercury emissions originating from the eruption remained only as a mark—in pyroclastic wounds—and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg-1) and bark (6.0 μg kg-1) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  11. Volcanic mercury in Pinus canariensis.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos; Miranda, José Carlos; Carbonell, Gregoria; Gil, Luis

    2013-08-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere by both human activities and natural processes. Volcanic emissions are considered a natural source of mercury in the environment. In some cases, tree ring records taken close to volcanoes and their relation to volcanic activity over time are contradictory. In 1949, the Hoyo Negro volcano (La Palma-Canary Islands) produced significant pyroclastic flows that damaged the nearby stand of Pinus canariensis. Recently, 60 years after the eruption, we assessed mercury concentrations in the stem of a pine which survived volcano formation, located at a distance of 50 m from the crater. We show that Hg content in a wound caused by pyroclastic impacts (22.3 μg kg(-1)) is an order of magnitude higher than the Hg concentrations measured in the xylem before and after the eruption (2.3 μg kg(-1)). Thus, mercury emissions originating from the eruption remained only as a mark-in pyroclastic wounds-and can be considered a sporadic and very high mercury input that did not affect the overall Hg input in the xylem. In addition, mercury contents recorded in the phloem (9.5 μg kg(-1)) and bark (6.0 μg kg(-1)) suggest that mercury shifts towards non-living tissues of the pine, an aspect that can be related to detoxification in volcanism-adapted species.

  12. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  13. A Challenging Case of Acute Mercury Toxicity

    Directory of Open Access Journals (Sweden)

    Ali Nayfeh

    2018-01-01

    Full Text Available Background. Mercury exists in multiple forms: elemental, organic, and inorganic. Its toxic manifestations depend on the type and magnitude of exposure. The role of colonoscopic decompression in acute mercury toxicity is still unclear. We present a case of acute elemental mercury toxicity secondary to mercury ingestion, which markedly improved with colonoscopic decompression. Clinical Case. A 54-year-old male presented to the ED five days after ingesting five ounces (148 cubic centimeters of elemental mercury. Examination was only significant for a distended abdomen. Labs showed elevated serum and urine mercury levels. An abdominal radiograph showed radiopaque material throughout the colon. Succimer and laxatives were initiated. The patient had recurrent bowel movements, and serial radiographs showed interval decrease of mercury in the descending colon with interval increase in the cecum and ascending colon. Colonoscopic decompression was done successfully. The colon was evacuated, and a repeat radiograph showed decreased hyperdense material in the colon. Three months later, a repeat radiograph showed no hyperdense material in the colon. Conclusion. Ingested elemental mercury can be retained in the colon. Although there are no established guidelines for colonoscopic decompression, our patient showed significant improvement. We believe further studies on this subject are needed to guide management practices.

  14. Defining fish community structure in Lake Winnipeg using stable isotopes (δ{sup 13}C, δ{sup 15}N, δ{sup 34}S): Implications for monitoring ecological responses and trophodynamics of mercury and other trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Ofukany, Amy F.A. [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3 (Canada); Wassenaar, Leonard I. [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada); Bond, Alexander L., E-mail: alex.bond@rspb.org.uk [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada); Hobson, Keith A. [Environment Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5 (Canada)

    2014-11-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km{sup 2} watershed and the arrival of non-native zooplankters and fishes. We measured δ{sup 13}C, δ{sup 15}N, and δ{sup 34}S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ{sup 13}C and δ{sup 34}S, and lower δ{sup 15}N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations. - Highlights: • Anthropogenic eutrophication and non-native species affect Lake Winnipeg’s ecosystem. • We measured stable isotopes and trace elements in 15 native fish species. • There was more evidence for growth dilution than biomagnification for most elements. • The trophic structures of the north and south basins were different. • These results will help determine the effects of recent arrival of zebra mussels.

  15. Defining fish community structure in Lake Winnipeg using stable isotopes (δ13C, δ15N, δ34S): Implications for monitoring ecological responses and trophodynamics of mercury and other trace elements

    International Nuclear Information System (INIS)

    Ofukany, Amy F.A.; Wassenaar, Leonard I.; Bond, Alexander L.; Hobson, Keith A.

    2014-01-01

    The ecological integrity of freshwater lakes is influenced by atmospheric and riverine deposition of contaminants, shoreline development, eutrophication, and the introduction of non-native species. Changes to the trophic structure of Lake Winnipeg, Canada, and consequently, the concentrations of contaminants and trace elements measured in tissues of native fishes, are likely attributed to agricultural runoff from the 977,800 km 2 watershed and the arrival of non-native zooplankters and fishes. We measured δ 13 C, δ 15 N, and δ 34 S along with concentrations of 15 trace elements in 17 native fishes from the north and south basins of Lake Winnipeg in 2009 and 2010. After adjusting for differences in isotopic baseline values between the two basins, fishes in the south basin had consistently higher δ 13 C and δ 34 S, and lower δ 15 N. We found little evidence of biomagnification of trace elements at the community level, but walleye (Sander vitreus) and freshwater drum (Aplodinotus grunniens) had higher mercury and selenium concentrations with increased trophic position, coincident with increased piscivory. There was evidence of growth dilution of cobalt, copper, manganese, molybdenum, thallium, and vanadium, and bioaccumulation of mercury, which could be explained by increases in algal (and consequently, lake and fish) productivity. We conclude that the north and south basins of Lake Winnipeg represent very different communities with different trophic structures and trace element concentrations. - Highlights: • Anthropogenic eutrophication and non-native species affect Lake Winnipeg’s ecosystem. • We measured stable isotopes and trace elements in 15 native fish species. • There was more evidence for growth dilution than biomagnification for most elements. • The trophic structures of the north and south basins were different. • These results will help determine the effects of recent arrival of zebra mussels

  16. A review of events that expose children to elemental mercury in the United States Uma revisão dos eventos que expõem as crianças ao elemento mercúrio nos Estados Unidos

    Directory of Open Access Journals (Sweden)

    Robin Lee

    2010-03-01

    Full Text Available Concern for children exposed to elemental mercury prompted the Agency for Toxic Substances and Disease Registry and the Centers for Disease Control and Prevention to review the sources of elemental mercury exposures in children, describe the location and proportion of children affected, and make recommendations on how to prevent these exposures. In this review, we excluded mercury exposures from coal-burning facilities, dental amalgams, fish consumption, medical waste incinerators, or thimerosal-containing vaccines. We reviewed federal, state, and regional programs with data on mercury releases along with published reports of children exposed to elemental mercury in the United States. We selected all mercury-related events that were documented to expose (or potentially expose children. Primary exposure locations were at home, at school, and at others such as industrial property not adequately remediated or medical facilities. Exposure to small spills from broken thermometers was the most common scenario; however, reports of such exposures are declining. The information reviewed suggests that most releases do not lead to demonstrable harm if the exposure period is short and the mercury is properly cleaned up. Primary prevention should include health education and policy initiatives.Uma preocupação pela exposição de crianças ao elemento mercúrio estimulou a Agência para Substâncias Tóxicas e Registro de Doenças e os Centros para Controle e Prevenção de Doenças a rever as fontes de exposição a este elemento por crianças, descrever a locação e proporção de crianças afetadas e fazer recomendações de como prevenir essas exposições. Nesta análise, foi excluída a exposição a mercúrio em instalações de queima de carvão, amálgamas dentários, consumo de peixes, incineradores de lixo hospitalar ou vacinas contendo timerosal. Analisamos programas regionais, estaduais e federais com dados sobre liberação de merc

  17. Mercury absorption in aqueous hypochlorite

    International Nuclear Information System (INIS)

    Zhao, L.L.; Rochelle, G.T.

    1999-01-01

    The absorption of elemental Hg vapor into aqueous hypochlorite was measured in a stirred tank reactor at 25 and 55C. NaOCl strongly absorbs Hg even at high pH. Low pH, high Cl - and high-temperature favor mercury absorption. Aqueous free Cl 2 was the active species that reacted with mercury. However, chlorine desorption was evident at high Cl - and pH 15 M -1 s -1 at 25C and 1.4x10 17 M -1 s -1 at 55C. Gas-phase reaction was observed between Hg and Cl 2 on apparatus surfaces. Strong mercury absorption in water was also detected with Cl 2 present. Results indicate that the chlorine concentration, moisture, and surface area contribute positively to mercury removal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  19. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  20. Risk assessment of mercury contaminated sites

    International Nuclear Information System (INIS)

    Hempel, M.

    1993-01-01

    At two sites, highly contaminated with mercury, risk assessment was executed. Methods were developed to determine organomercury compounds in water, air and soil. Toxicity tests demonstrated the high toxicity of organomercury compounds compared to inorganic mercury. Besides highly toxic methylmercury, ethylmercury was found in soils close to a chemical plant in Marktredwitz. In ultrafiltration-experiments mercury showed great affinity to high molecular substances in water. Lysimeter-experiments proved, that organomercury compounds are adsorbed and transformed to inorganic and elemental mercury. (orig.) [de

  1. In-duct removal of mercury from coal-fired power plant flue gas by activated carbon: assessment of entrained flow versus wall surface contributions

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R.; Lancia, A. [CNR, Naples (Italy). Institute for Research on Combustion

    2008-12-15

    In-duct mercury capture efficiency by activated carbon from coal-combustion flue gas was investigated. To this end, elemental mercury capture experiments were conducted at 100 C in a purposely designed 65-mm ID labscale pyrex apparatus operated as an entrained flow reactor. Gas residence times were varied between 0.7 and 2.0 s. Commercial-powdered activated carbon was continuously injected in the reactor and both mercury concentration and carbon elutriation rate were followed at the outlet. Transient mercury concentration profiles at the outlet showed that steady-state conditions were reached in a time interval of 15-20 min, much longer than the gas residence time in the reactor. Results indicate that the influence of the walls is non-negligible in determining the residence time of fine carbon particles in the adsorption zone, because of surface deposition and/or the establishment of a fluid-dynamic boundary layer near the walls. Total mercury capture efficiencies of 20-50% were obtained with carbon injection rates in the range 0.07-0.25 g/min. However, only a fraction of this capture was attributable to free-flowing carbon particles, a significant contribution coming from activated carbon staying near the reactor walls. Entrained bed experiments at lab-scale conditions are probably not properly representative of full-scale conditions, where the influence of wall interactions is lower. Moreover, previously reported entrained flow lab-scale mercury capture data should be reconsidered by taking into account the influence of particle-wall interactions.

  2. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  3. Assessment of the content of mercury, methylmercury and other elements of interest in fish, hair and diets of pre-school children of the Amazon region

    International Nuclear Information System (INIS)

    Farias, Luciana Aparecida

    2006-01-01

    Studies show that some regions of the Amazon region suffer mercury (Hg) impacts as a direct result of both natural and anthropogenic processes. Jau National Park (PNJ) is the only National Park in Brazil that protects an entire black water basin (Jau River), flood land and tropical reserve. These conditions favor Hg methylation in the aquatic biota. This in turn, exposes living on the river populations to Hg contamination as well as the adjacent regions. Preliminary studies of pre-school children diets from PNJ communities have shown that these diets have a worrisome high Hg content. The present study assessed total Hg content, micro nutrients (Ca, Fe, K, Na, Se and Zn) and macro nutrients (proteins, lipids, ash, energy, carbohydrate) in pre-school diets in the PNJ and surrounding communities. Furthermore, total and Me Hg levels were also determined in hair samples of these children as well as those living in several neighborhoods of the city of Manaus. Included in this determination were the fish most consumed by these populations. From these results it was possible to evaluate the nutritional content of the diets and the exposure of the children to Hg and Se Hg. Cold vapor atomic absorption spectrometry was used to quantify total and Me Hg. Micro nutrient determination was performed using neutron activation analysis technique (NAA) and Macro nutrient through AOAC methodologies (USA). All analytical methods were developed and validated for precision and accuracy by means of reference materials analyses with certified values for the determined elements. Furthermore, the uncertainty sources for Hg and Me Hg determination were assessed and the expanded uncertainties were calculated. Total Hg levels in diets and total and Me Hg levels for hair samples, were well above those values found in different localities of the Amazon region. This also holds true for those surrounding areas of the JNP. For many children Hg intake values passed the 5 mug Hg/body weigh/week (PTWI

  4. Application of neutron activation analysis to the determination of total mercury and other elements of interest in soil and sediment samples from Serra do Navio and Vila Nova River Basin, Amapa, Brazil

    International Nuclear Information System (INIS)

    Goncalves, Cristina

    1997-01-01

    In this work it is presented a survey on total mercury determination by a radiochemical method in sediment and soil samples from two regions, in the state of Amapa: Serra do Navio (background area) and Vila Nova river basin (gold mining area). The method consisted in leaching of the irradiated samples with acqua regia in a Parr bomb, and heating in microwave oven, for one minute. Then the solvent extraction technique was applied, using bismuth diethyldithiocarbamate (Bi(DDC) 3 ) as extractant agent. The organic phase, containing 197 Hg and 203 Hg radioisotopes, was measured in a gamma spectrometer with hyper pure Ge detector. This method eliminated the interference of the 279.54 keV photopeak of 75 Se on 279.2 keV photopeak of 203 Hg, besides improving counting statistics of both Hg radioisotopes. The elements As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ho, K, La, Lu, Mg, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, Ti, U, V, W, Yb, Zn and Zr were also determined by the instrumental neutron activation analysis. Two irradiation series were carried out to quantify these elements in soil and sediment samples; a short term irradiation allowed to evaluate Mg, Mn, Na, Ti and V levels, and by long term irradiation, the other elements were determined. Precision and accuracy of radiochemical procedure were verified by means of analysis of the reference materials Buffalo River Sediment and Lake Sediment, for sediments and GXR-5, for soils. For the instrumental analysis, the reference materials Buffalo River Sediment, Soil 7, JB-1 and Oyster Tissue were used. The samples were also submitted to X ray diffraction, in Instituto de Geoscience-USP, to observe mercury behaviour with mineralogy. Aluminium concentration was determined by X ray fluorescence method, in the Department of Materials, IPEN/CNEN-SP, making possible enrichment factor calculation so that mercurial contamination in the gold mining area (Vila Nova river basin) could be evaluated. The mercury levels obtained in this

  5. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  6. Integrated criteria document mercury

    International Nuclear Information System (INIS)

    Sloof, W.; Beelan, P. van; Annema, J.A.; Janus, J.A.

    1995-01-01

    The document contains a systematic review and a critical evaluation of the most relevant data on the priority substance mercury for the purpose of effect-oriented environmental policy. Chapter headings are: properties and existing standards; production, application, sources and emissions (natural sources, industry, energy, households, agriculture, dental use, waste); distribution and transformation (cinnabar; Hg 2+ , Hg 2 2+ , elemental mercury, methylmercury, behavior in soil, water, air, biota); concentrations and fluxes in the environment and exposure levels (sampling and measuring methods, occurrence in soil, water, air etc.); effects (toxicity to humans and aquatic and terrestrial systems); emissions reduction (from industrial sources, energy, waste processing etc.); and evaluation (risks, standards, emission reduction objectives, measuring strategies). 395 refs

  7. Mercury sorbent delivery system for flue gas

    Science.gov (United States)

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  8. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes

    Science.gov (United States)

    Garetano, Gary; Gochfeld, Michael; Stern, Alan H.

    2006-01-01

    Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659

  9. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  10. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    Science.gov (United States)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  11. Industrial and natural sources of gaseous elemental mercury in the Almadén district (Spain): An updated report on this issue after the ceasing of mining and metallurgical activities in 2003 and major land reclamation works

    International Nuclear Information System (INIS)

    Higueras, Pablo; María Esbrí, José; Oyarzun, Roberto; Llanos, Willans; Martínez-Coronado, Alba

    2013-01-01

    Two events during the last decade had major environmental repercussions in Almadén town (Spain). First it was the ceasing of activities in the mercury mine and metallurgical facilities in 2003, and then the finalization of the restoration works on the main waste dump in 2008. The combination of both events brought about a dramatic drop in the emissions of gaseous elemental mercury (GEM) to the atmosphere. Although no one would now call the Almadén area as ‘mercury-free’, the GEM levels have fallen beneath international reference safety levels for the first time in centuries. This has been a major breakthrough because in less than one decade the site went from GEM levels in the order of “tens of thousands” to mere “tens” nanogram per cubic meter. Although these figures are per se a remarkable achievement, they do not mark the end of the environmental concerns in the Almadén district. Two other sites remain as potential environmental hazards. (1) The Las Cuevas mercury storage complex, a partially restored ex-mining site where liquid mercury is being stored. The MERSADE Project (LIFE—European Union) has tested the Las Cuevas complex as a potential site for the installation of a future European prototype safe deposit of surplus mercury from industrial activities. Despite restoration works carried out in 2004, the Las Cuevas complex can still be regarded as hotspot of mercury contamination, with high concentrations above 800 μg g −1 Hg soil and 300 ng m −3 Hg gas . However, as predicted by air contamination modeling using the ISC-AERMOD software, GEM concentrations fade away in a short distance following the formation of a NW–SE oriented narrow plume extending for a few hundred meters from the complex perimeter. (2) Far more dangerous from the human health perspective is the Almadenejos area, hosting the small Almadenejos village, the so-called Cerco de Almadenejos (CDA; an old metallurgical precinct), and the mines of La Nueva Concepción, La

  12. Biosensors for detection of mercury in contaminated soils

    International Nuclear Information System (INIS)

    Bontidean, Ibolya; Mortari, Alessia; Leth, Suzanne; Brown, Nigel L.; Karlson, Ulrich; Larsen, Martin M.; Vangronsveld, Jaco; Corbisier, Philippe; Csoeregi, Elisabeth

    2004-01-01

    Biosensors based on whole bacterial cells and on bacterial heavy metal binding protein were used to determine the mercury concentration in soil. The soil samples were collected in a vegetable garden accidentally contaminated with elemental mercury 25 years earlier. Bioavailable mercury was measured using different sensors: a protein-based biosensor, a whole bacterial cell based biosensor, and a plant sensor, i.e. morphological and biochemical responses in primary leaves and roots of bean seedlings grown in the mercury-contaminated soil. For comparison the total mercury concentration of the soil samples was determined by AAS. Whole bacterial cell and protein-based biosensors gave accurate responses proportional to the total amount of mercury in the soil samples. On the contrary, plant sensors were found to be less useful indicators of soil mercury contamination, as determined by plant biomass, mercury content of primary leaves and enzyme activities

  13. Technical report: mercury in the environment: implications for pediatricians.

    Science.gov (United States)

    Goldman, L R; Shannon, M W

    2001-07-01

    Mercury is a ubiquitous environmental toxin that causes a wide range of adverse health effects in humans. Three forms of mercury (elemental, inorganic, and organic) exist, and each has its own profile of toxicity. Exposure to mercury typically occurs by inhalation or ingestion. Readily absorbed after its inhalation, mercury can be an indoor air pollutant, for example, after spills of elemental mercury in the home; however, industry emissions with resulting ambient air pollution remain the most important source of inhaled mercury. Because fresh-water and ocean fish may contain large amounts of mercury, children and pregnant women can have significant exposure if they consume excessive amounts of fish. The developing fetus and young children are thought to be disproportionately affected by mercury exposure, because many aspects of development, particularly brain maturation, can be disturbed by the presence of mercury. Minimizing mercury exposure is, therefore, essential to optimal child health. This review provides pediatricians with current information on mercury, including environmental sources, toxicity, and treatment and prevention of mercury exposure.

  14. Mercury emission from a temperate lake during autumn turnover

    International Nuclear Information System (INIS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-01-01

    Lakes in temperate regions stratify during summer and winter months, creating distinct layers of water differentiated by their physical and chemical characteristics. When lakes mix in autumn and spring, mercury cycling may be affected by the chemical changes that occur during mixing. Sampling was conducted in Lake Lacawac, Eastern Pennsylvania, USA, throughout the autumn of 2007 to characterize changes in emission of gaseous elemental mercury (Hg 0 ) from the lake surface and dissolved mercury profiles in the water column during mixing. Water chemistry and weather parameters were also measured, including dissolved organic carbon (DOC), iron, and solar radiation which have been shown to interact with mercury species. Results indicate that emission of Hg 0 from the lake to the atmosphere during turnover was controlled both by solar radiation and by surface water mercury concentration. As autumn turnover progressed through the months of October and November, higher mercury concentration water from the hypolimnion mixed with epilimnetic water, increasing mercury concentration in epilimnetic waters. Dissolved absorbance was significantly correlated with mercury concentrations and with iron, but DOC concentrations were essentially constant throughout the study period and did not exhibit a relationship with either dissolved mercury concentrations or emission rates. Positive correlations between dissolved mercury and iron and manganese also suggest a role for these elements in mercury transport within the lake, but iron and manganese did not demonstrate a relationship with emission rates. This research indicates that consideration of seasonal processes in lakes is important when evaluating mercury cycling in aquatic systems

  15. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  16. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  17. Mercury speciation analysis in marine samples by HPLC-ICPMS

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Svendsen, Maja Erecius; Herbst, M. Birgitte Koch

    Mercury (Hg) is a naturally occurring element, which is found in the earth’s crust and can be released into the environment through both natural and anthropogenic processes. Mercury exists as elemental mercury (metallic), inorganic mercury and organic mercury (primarily methylmercury......). Methylmercury is highly toxic, particularly to the nervous system, and the developing brain is thought to be the most sensitive target organ for methylmercury toxicity. Methylmercury bioaccumulates and biomagnifies along the food chain and it is the most common mercury species in fish and seafood. Human...... hydrochloric acid by sonication. Hereby the protein-bound mercury species are released. The extracts were then centrifuged (10 min at 3170 x g) and the supernatant decanted (extraction step was repeated twice). The combined extracts were added 10 M sodium hydroxide to increase pH, following further dilution...

  18. Mercury recycling in the United States in 2000

    Science.gov (United States)

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    mercury is estimated because it is a low-volume commodity and its production, use, and disposal is difficult to track. The prices and volumes of each category of mercury-containing material may change dramatically from year to year. For example, the average price of mercury was approximately $150 per flask from 2000 until 2003 and then rose sharply to $650 per flask in fall 2004 and approximately $850 per flask in spring 2005. Since 1927, the common unit for measuring and pricing mercury has been the flask in order to conform to the system used at Almaden, Spain (Meyers, 1951). One flask weighs 34.5 kilograms, and 29 flasks of mercury are contained in a metric ton. In the United States, the chlorine-caustic soda industry, which is the leading end-user of elemental mercury, recycles most of its mercury in-plant as home scrap. Annual purchases of replacement mercury by the chlorine-caustic soda industry indicate that some mercury may be lost through evaporation to the environment, put into a landfill as industrial waste, or trapped within pipes in the plant. Impending closure of domestic and foreign mercury-cell chlorine-caustic soda plants and the shift to nonmercury technology for chlorine-caustic soda production could ultimately result in a significant volume of elemental mercury for recycling, sale, or storage. Globally, mercury is widely used in artisanal, or small-scale, gold mining. Most of that mercury is lost to the environment and is not recycled. The recycling rate for mercury was not available owing to insufficient data in 2000, and the efficiency of mercury recycling was estimated to be 62 percent.

  19. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  20. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  1. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    Science.gov (United States)

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  2. Occupational Metallic Mercury Poisoning in Gilders

    Directory of Open Access Journals (Sweden)

    M Vahabzadeh

    2016-04-01

    Full Text Available Occupational exposure to elemental mercury vapor usually occurs through inhalation during its utilizations. This leads to a variety of adverse health effects. In some Islamic cities, this type of poisoning may occur during gilding of shrines using elemental mercury with gold. Herein, we report on three male patients aged 20–53 years, who were diagnosed with occupational metallic mercury poisoning due to gilding of a shrine. All patients presented with neuro-psychiatric disorders such as anxiety, loss of memory and concentration, and sleep disorders with high urinary mercury concentrations of 326–760 μg/L upon referring, 3–10 days after cessation of elemental mercury exposure. Following chelating therapy, the patients recovered clinically and their mercury concentrations declined to non-toxic level (<25 μg/L. Health, environmental and labor authorities, as well as the gilders should be aware of the toxicity risk of exposure to metalic mercury during gilding in closed environments and act accordingly.

  3. Focus on CSIR research in pollution waste: South African mercury assessment (SAMA) programme

    CSIR Research Space (South Africa)

    Leaner, J

    2007-08-01

    Full Text Available Mercury pollution is a world-wide problem requiring attention at global, regional and national levels. Various anthropogenic activities release mercury into the atmosphere. It can occur as both elemental and oxidized forms, and is removed from...

  4. Tolerance to various toxicants by marine bacteria highly resistant to mercury

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.; Mesquita, A.; Verlecar, X.N.

    of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids...

  5. Evaluation of potential for mercury volatilization from natural and FGD gypsum products using flux-chamber tests.

    Science.gov (United States)

    Shock, Scott S; Noggle, Jessica J; Bloom, Nicholas; Yost, Lisa J

    2009-04-01

    Synthetic gypsum produced by flue-gas desulfurization (FGD) in coal-fired power plants (FGD gypsum) is put to productive use in manufacturing wallboard. FGD gypsum wallboard is widely used, accounting for nearly 30% of wallboard sold in the United States. Mercury is captured in flue gas and thus is one of the trace metals present in FGD gypsum; raising questions about the potential for mercury exposure from wallboard. Mercury is also one of the trace metals present in "natural" mined gypsum used to make wall board. Data available in the literature were not adequate to assess whether mercury in wallboard from either FGD or natural gypsum could volatilize into indoor air. In this study, mercury volatilization was evaluated using small-scale (5 L) glass and Teflon flux chambers, with samples collected using both iodated carbon and gold-coated sand traps. Mercury flux measurements made using iodated carbon traps (n=6) were below the detection limit of 11.5 ng/m2-day for all natural and synthetic gypsum wallboard samples. Mercury flux measurements made using gold-coated sand traps (n=6) were 0.92 +/- 0.11 ng/m2-day for natural gypsum wallboard and 5.9 +/- 2.4 ng/m2-day for synthetic gypsum wallboard. Room air mercury concentrations between 0.028 and 0.28 ng/m3 and between 0.13 and 2.2 ng/m3 were estimated based on the flux-rate data for natural and synthetic gypsum wallboard samples, respectively, and were calculated assuming a 3 m x 4 m x 5 m room, and 10th and 90th percentile air exchange rates of 0.18/hour and 1.26/hour. The resulting concentration estimates are well below the U.S. Environmental Protection Agency (EPA) reference concentration for indoor air elemental mercury of 300 ng/m3 and the Agency for Toxic Substances and Disease Registry minimal risk level (MRL) of 200 ng/m3. Further, these estimates are below background mercury concentrations in indoor air and within or below the range of typical background mercury concentrations in outdoor air.

  6. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review.

    Science.gov (United States)

    Alves, Georgina M S; Rocha, Luciana S; Soares, Helena M V M

    2017-12-01

    Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantitative determination of selenium and mercury, and an ICP-MS semi-quantitative scan of other elements in samples of eagle tissues collected from the Pacific Northwest--Summer 2011

    Science.gov (United States)

    May, Thomas; Walther, Mike; Brumbaugh, William

    2013-01-01

    Eagle tissues from dead eagle carcasses were collected by U.S. Fish and Wildlife Service personnel at various locations in the Pacific Northwest as part of a study to document the occurrence of metal and metalloid contaminants. A group of 182 eagle tissue samples, consisting of liver, kidney, brain, talon, feather, femur, humerus, and stomach contents, were quantitatively analyzed for concentrations of selenium and mercury by atomic absorption techniques, and for other elements by semi-quantitative scan with an inductively coupled plasma-mass spectrometer. For the various tissue matrices analyzed by an ICP-MS semiquantitative scan, some elemental concentrations (micrograms per gram dry weight) were quite variable within a particular matrix; notable observations were as follows: lead concentrations ranged from 0.2 to 31 in femurs, 0.1 to 29 in humeri, 0.1 to 54 in talons, less than (<) 0.05 to 120 in livers, <0.05 to 34 in kidneys, and 0.05 to 8 in brains; copper concentrations ranged from 5 to 9 in feathers, 8 to 47 in livers, 7 to 43 in kidneys, and 7 to 28 in brains; cadmium concentrations ranged from 0.1 to 10 in kidneys. In stomach contents, concentrations of vanadium ranged from 0.08 to 5, chromium 2 to 34, manganese 1 to 57, copper 2 to 69, arsenic <0.05 to 6, rubidium 1 to 13, and barium <0.5 to 18. Selenium concentrations from highest to lowest based on the matrix mean were as follows: kidney, liver, feather, brain, stomach content, talon, femur, and humerus. For mercury, the highest to lowest concentrations were feather, liver, talon, brain, stomach content, femur, and humerus.

  8. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-05-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  9. Mercury Spill Responses - Five States, 2012-2015.

    Science.gov (United States)

    Wozniak, Ryan J; Hirsch, Anne E; Bush, Christina R; Schmitz, Stuart; Wenzel, Jeff

    2017-03-17

    Despite measures to educate the public about the dangers of elemental mercury, spills continue to occur in homes, schools, health care facilities, and other settings, endangering the public's health and requiring costly cleanup. Mercury is most efficiently absorbed by the lungs, and exposure to high levels of mercury vapor after a release can cause cough, sore throat, shortness of breath, nausea, vomiting, diarrhea, headaches, and visual disturbances (1). Children and fetuses are most susceptible to the adverse effects of mercury vapor exposure. Because their organ systems are still developing, children have increased respiratory rates, and they are closer to the ground where mercury vapors are most highly concentrated (2). To summarize key features of recent mercury spills and lessons learned, five state health departments involved in the cleanup (Iowa, Michigan, Missouri, North Carolina, and Wisconsin) compiled data from various sources on nonthermometer mercury spills from 2012 to 2015. The most common sites of contamination were residences, schools and school buses, health care facilities, and commercial and industrial facilities. Children aged mercury exposure. To protect the public's health after a mercury spill, it is important that local, state, and federal agencies communicate and coordinate effectively to ensure a quick response, and to minimize the spread of contamination. To reduce the number of mercury spills that occur in the United States, public health officials should increase awareness about exchange programs for mercury-containing items and educate school and health care workers about sources of mercury and how to dispose of them properly.

  10. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  11. Mercury contamination extraction

    Science.gov (United States)

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  12. Gravitational capture

    International Nuclear Information System (INIS)

    Bondi, H.

    1979-01-01

    In spite of the strength of gravitational focres between celestial bodies, gravitational capture is not a simple concept. The principles of conservation of linear momentum and of conservation of angular momentum, always impose severe constraints, while conservation of energy and the vital distinction between dissipative and non-dissipative systems allows one to rule out capture in a wide variety of cases. In complex systems especially those without dissipation, long dwell time is a more significant concept than permanent capture. (author)

  13. Recent Advances in Atmospheric Chemistry of Mercury

    Directory of Open Access Journals (Sweden)

    Lin Si

    2018-02-01

    Full Text Available Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate back to the ground. Modeling efforts to assess global cycling of mercury require an accurate understanding of atmospheric mercury chemistry. Yet, there are several key uncertainties precluding accurate modeling of physical and chemical transformations. We focus this article on recent studies (since 2015 on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in determining the dominant atmospheric oxidant of elemental mercury (Hg0 and understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3—in the aqueous reduction of oxidized mercury compounds (HgII as well as in the heterogeneous reactions of Hg on atmospheric-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.

  14. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  15. Mercury in Some Lakes of Gold Mining Area of the Southern Ural

    Directory of Open Access Journals (Sweden)

    Tatsy Y. G.

    2013-04-01

    Full Text Available The mercury content in bottom sediments of Kalkan Lake, of the Uchala district, the Southern Ural. It was assumed that high concentrations of mercury in fish due to pollution of bottom sediments as a result of amalgamation at developing of gold placers. Detailed study of distribution of different elements in sediments show close association Hg with the chalcophylic elements, whose anomalies do not have technogenic nature. Association of mercury with the elements-companions of gold placers is evidence of basic contribution of natural mercury to its anomalous accumulation in sediments and fish. This is result of steady long-term natural mercury pollution.

  16. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  17. Thief carbon catalyst for oxidation of mercury in effluent stream

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  18. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  19. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark – the chemical life history hypothesis

    DEFF Research Database (Denmark)

    Rasmussen, Kaare Lund; Skytte, Lilian; Pilekær, Christian

    2013-01-01

    performed on a single sample from a tooth or a long bone. In this paper we investigate how a suite of elements (Mg, Al, Ca, Mn, Fe, Zn, As, Sr, Ba, Hg and Pb) are distributed in two medieval skeletons excavated at the laymen cemetery at the Franciscan Friary in Svendborg, Denmark.The analyses have been...... individuals can be clearly distinguished by Principal Component Analysis of all the measured trace elements.Our data support a previously published hypothesis that the elemental ratios Sr/Ca, Ba/Ca and Mg/Ca are indicative of provenance. Aluminium, Fe and Mn can be attributed to various forms of diagenesis...

  20. Baleen as a biomonitor of mercury content and dietary history of North Atlantic Minke Whales (Balaenopetra acutorostrata): combining elemental and stable isotope approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hobson, K.A.; Riget, F.F.; Outridge, P.M.; Dietz, R.; Born, E

    2004-09-20

    Baleen is an incrementally-growing tissue of balaenopteran whales which preserves relatively well over time in museums and some archeological sites, and, therefore might be useful for studies examining long-term changes of metal levels in whales. This study examined Hg and stable C and N isotopic composition of baleen plates of the North Atlantic minke whale (Balaenoptera acutorostrata), which continues to be a food source for people in Greenland and elsewhere. We compared the Hg levels and stable isotopes of major tissues (kidney, liver and muscle) with those of baleen plates to see whether baleen could be used as a biomonitor of variations of Hg intake and diet both between individuals and within individuals over time. Mercury was significantly correlated with concentrations in all tissues (kidney, liver and muscle). Stable C and N isotopes in baleen were generally similar to those of muscle, which reflects the recent (approximately one month) feeding of the whale, but in some individuals there were significant differences between baleen and muscle. Sectioning of baleen into 1 cm longitudinal increments showed that these differences were due to marked dietary shifts by some individuals over time that had been recorded in the baleen but were lost from the muscle record. Whole baleen C and N isotopes were better correlated with tissue Hg levels, suggesting that baleen may provide a more reliable indicator of long-term average diet, which in turn may be better related to Hg accumulation in tissues than the shorter-term diet record contained in muscle.

  1. Baleen as a biomonitor of mercury content and dietary history of North Atlantic Minke Whales (Balaenopetra acutorostrata): combining elemental and stable isotope approaches

    International Nuclear Information System (INIS)

    Hobson, K.A.; Riget, F.F.; Outridge, P.M.; Dietz, R.; Born, E.

    2004-01-01

    Baleen is an incrementally-growing tissue of balaenopteran whales which preserves relatively well over time in museums and some archeological sites, and, therefore might be useful for studies examining long-term changes of metal levels in whales. This study examined Hg and stable C and N isotopic composition of baleen plates of the North Atlantic minke whale (Balaenoptera acutorostrata), which continues to be a food source for people in Greenland and elsewhere. We compared the Hg levels and stable isotopes of major tissues (kidney, liver and muscle) with those of baleen plates to see whether baleen could be used as a biomonitor of variations of Hg intake and diet both between individuals and within individuals over time. Mercury was significantly correlated with concentrations in all tissues (kidney, liver and muscle). Stable C and N isotopes in baleen were generally similar to those of muscle, which reflects the recent (approximately one month) feeding of the whale, but in some individuals there were significant differences between baleen and muscle. Sectioning of baleen into 1 cm longitudinal increments showed that these differences were due to marked dietary shifts by some individuals over time that had been recorded in the baleen but were lost from the muscle record. Whole baleen C and N isotopes were better correlated with tissue Hg levels, suggesting that baleen may provide a more reliable indicator of long-term average diet, which in turn may be better related to Hg accumulation in tissues than the shorter-term diet record contained in muscle

  2. Mercury Pollution Studies of Some Rivers Draining the Bibiani-Anwiaso-Bekwai Mining Community of South Western Ghana

    OpenAIRE

    V.K. Nartey; L.K. Doamekpor; S. Sarpong-Kumankuma; T. Akabzaa; F.K. Nyame; J.K. Kutor; D. Adotey

    2011-01-01

    The project assessed the extent of mercury pollution of some rivers that drain the Bibiani-Anwiaso- Bekwai district which is a typical mining community in the south western part of Ghana. In the study, surfacewater and sediment samples were collected from seven streams that drain this mining community and analyzed for total mercury, organic mercury and elemental mercury. Mercury concentrations of non-filtered water was determined using the ICP-OES after reduction with stannous chloride (SnCl2...

  3. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    OpenAIRE

    Faïn, X.; Obrist, D.; Hallar, A. G.; Mccubbin, I.; Rahn, T.

    2009-01-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m

  4. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    Directory of Open Access Journals (Sweden)

    J. Bieser

    2017-06-01

    Full Text Available Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  5. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  6. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    Science.gov (United States)

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Mercury speciation during in situ thermal desorption in soil

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Min, E-mail: cmpark80@gmail.com; Katz, Lynn E.; Liljestrand, Howard M.

    2015-12-30

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg{sup 0} gas until the temperature reached 358.15 K. • Phase change of HgCl{sub 2(s)} completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg{sup 0}) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  8. Mercury speciation during in situ thermal desorption in soil

    International Nuclear Information System (INIS)

    Park, Chang Min; Katz, Lynn E.; Liljestrand, Howard M.

    2015-01-01

    Highlights: • Impact of soil conditions on distribution and phase transitions of Hg was identified. • Metallic Hg was slowly transformed to Hg"0 gas until the temperature reached 358.15 K. • Phase change of HgCl_2_(_s_) completely occurred without decomposition at 335.15 K. • HgS remained solid in dry soil sharply decreased in the narrow temperature range. • Hg gas can be easily captured with higher vapor pressures of soil compositions. - Abstract: Metallic mercury (Hg"0) and its compounds are highly mobile and toxic environmental pollutants at trace level. In situ thermal desorption (ISTD) is one of the soil remediation processes applying heat and vacuum simultaneously. Knowledge of thermodynamic mercury speciation is imperative to understand the fate and transport of mercury during thermal remediation and operate the treatment processes in a cost-effective manner. Hence, speciation model for inorganic mercury was developed over a range of environmental conditions to identify distribution of dissolved mercury species and potential transformations of mercury at near source environment. Simulation of phase transitions for metallic mercury, mercury(II) chloride and mercury sulfide with temperature increase showed that complete vaporization of metallic mercury and mercury(II) chloride were achieved below the boiling point of water. The effect of soil compositions on mercury removal was also evaluated to better understand thermal remediation process. Higher vapor pressures expected both from soil pore water and inorganic carbonate minerals in soil as well as creation of permeability were significant for complete vaporization and removal of mercury.

  9. A thin, dense crust for Mercury

    Science.gov (United States)

    Sori, Michael M.

    2018-05-01

    Crustal thickness is a crucial geophysical parameter in understanding the geology and geochemistry of terrestrial planets. Recent development of mathematical techniques suggests that previous studies based on assumptions of isostasy overestimated crustal thickness on some of the solid bodies of the solar system, leading to a need to revisit those analyses. Here, I apply these techniques to Mercury. Using MESSENGER-derived elemental abundances, I calculate a map of grain density (average 2974 ± 89 kg/m3) which shows that Pratt isostasy is unlikely to be a major compensation mechanism of Mercury's topography. Assuming Airy isostasy, I find the best fit value for Mercury's mean crustal thickness is 26 ± 11 km, 25% lower than the most recently reported and previously thinnest number. Several geological implications follow from this relatively low value for crustal thickness, including showing that the largest impacts very likely excavated mantle material onto Mercury's surface. The new results also show that Mercury and the Moon have a similar proportion of their rocky silicates composing their crusts, and thus Mercury is not uniquely efficient at crustal production amongst terrestrial bodies. Higher resolution topography and gravity data, especially for the southern hemisphere, will be necessary to refine Mercury's crustal parameters further.

  10. Global Trends in Mercury Management

    Science.gov (United States)

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  11. Capture cross-section measurements for different elements at neutron energies between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Grenier, Gerard; Voignier, Jacques; Joly, Serge.

    1981-03-01

    Neutron capture cross-sections have been measured for the nuclides: Rb, Y, Nb, Gd, W, Pt, Tl, and for the isotopes 155 Gd, 156 Gd, 157 Gd, 158 Gd, 160 Gd, 182 W, 183 W, 184 W, 186 W, 203 Tl and 205 Tl in the 0.5 MeV to 3.0 MeV neutron energy range. Neutron capture cross-sections are determined through direct γ-ray spectrum emitted by the sample. The gamma-rays are detected by a NaI scintillator surrounded by an annular NaI detector. The time-of-flight method is used. Our results are compared with previous data, evaluations and statistical model calculations [fr

  12. 21 CFR 872.3070 - Dental amalgam, mercury, and amalgam alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental amalgam, mercury, and amalgam alloy. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3070 Dental amalgam, mercury... elemental mercury, supplied as a liquid in bulk, sachet, or predosed capsule form, and amalgam alloy...

  13. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  14. Dynamics of snow-air mercury exchange at Ny Ålesund during springtime 2011

    Directory of Open Access Journals (Sweden)

    Manca G.

    2013-04-01

    Full Text Available Continuous time series of flux measurements were carried out in Ny Ålesund, Spitsbergen, during a springtime field campaign from 31 of March to 3 of May, 2011. Flux measurements were integrated with mercury speciation analysis in order to understand the fate of mercury during atmospheric elemental gaseous mercury depletion events (AMDEs. Moreover a methodology for quality assurance of flux measurements is presented. Measurements were made at Gruvebadet, 1 km west from the Ny-Ålesund village (78˚55' N, 11˚56' E at an elevation of 18 m above sea level. Ambient concentrations of gaseous elemental mercury, divalent reactive gaseous mercury and particulate phase mercury were semicontinuously measured using an integrated Tekran system. Mercury depletion events were observed during the month of April and were characterized by an incomplete mercury destruction. Indeed Hg0 concentration was never below 0.49 ng m−3.

  15. Method for removal of mercury from various gas streams

    Science.gov (United States)

    Granite, E.J.; Pennline, H.W.

    2003-06-10

    The invention provides for a method for removing elemental mercury from a fluid, the method comprising irradiating the mercury with light having a wavelength of approximately 254 nm. The method is implemented in situ at various fuel combustion locations such as power plants and municipal incinerators.

  16. Basic Information about Mercury

    Science.gov (United States)

    ... or metallic mercury is a shiny, silver-white metal and is liquid at room temperature. It is ... releases can happen naturally. Both volcanoes and forest fires send mercury into the atmosphere. Human activities, however, ...

  17. Minamata Convention on Mercury

    Science.gov (United States)

    On November 6, 2013 the United States signed the Minamata Convention on Mercury, a new multilateral environmental agreement that addresses specific human activities which are contributing to widespread mercury pollution

  18. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    sources of mercury in the cement kiln flue gas. Cement plants are quite different from power plants and waste incinerators regarding the flue gas composition, temperature, residence time, and material circulation. Cement kiln systems have some inherent ability to retain mercury in the solid materials due...... to the adsorption of mercury on the solids in the cold zone. However, recirculation of the kiln dust to the kiln will cause release of the captured mercury. The mercury chemistry in cement kiln systems is complicated and knowledge obtained from power plants and incinerators cannot be directly applied in cement...

  19. Evaluation of potential toxicity from mercury in ayurvedic preparations

    International Nuclear Information System (INIS)

    Subramanian, Suresh; Maral, Anand; Mukherjee, Archana; Patankar, A.V.; Sarma, H.D.; Pillai, M.R.A.; Venkatesh, Meera

    2003-01-01

    Kajjali - which is a defined combination of purified elemental mercury and sulphur is used in Ayurvedic prescriptions. Kajjali is claimed to accelerate the therapeutic effects of various medicinal components. The exact role of Kajjali in this process is not as yet ascertained. Ayurveda literature claims that toxic effects of mercury are neutralised in the presence of sulphur. Mercury is known for its toxicity especially with respect to the nervous system and the amount of mercury used in the preparation of Kajjali is quite high. Hence, to study the pharmaco-kinetics of the preparation, bio-distribution studies using 203 Hg as a tracer in Kajjali were carried out in Wistar rats. (author)

  20. Diagnostic and therapeutic methods for occupational mercury poisoning

    International Nuclear Information System (INIS)

    Liu Zhanqi; Wang Xiuqin; Luo Futang

    2003-01-01

    A method of diagnosing and treating occupational mercury poisoning is reviewed in this paper. The treating measures for the chelating syndrome are also described. Based on his exposure history, urinary mercury, and clinical symptom, the employee who exposed occupationally to mercury can be diagnosed to a certain degree according to the related diagnostic standards. The chelating agent, such as meso-2, 3-dimercapto-succinicacid (DMSA), is used for mercury-lustrating treatment. By reducing the chelating agent dose and supplying necessary trace element, the side effect of chelating treatment is decreased. (authors)

  1. Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption

    OpenAIRE

    Gilman, Christy L.; Soon, Reni; Sauvage, Lynnae; Ralston, Nicholas V.C.; Berry, Marla J.

    2015-01-01

    Seafood is an important source of nutrients for fetal neurodevelopment. Most individuals are exposed to the toxic element mercury through seafood. Due to the neurotoxic effects of mercury, United States government agencies recommend no more than 340 g (12 oz) per week of seafood consumption during pregnancy. However, recent studies have shown that selenium, also abundant in seafood, can have protective effects against mercury toxicity. In this study, we analyzed mercury and selenium levels an...

  2. Natural and anthropogenic atmospheric mercury in the European Arctic: a fractionation study

    OpenAIRE

    A. O. Steen; T. Berg; A. P. Dastoor; D. A. Durnford; O. Engelsen; L. R. Hole; K. A. Pfaffhuber

    2011-01-01

    Gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Events (AMDE).

    This study reports the longest time series of GEM, RGM and particle-bound mercury (PHg) concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg measurements were conducted in Ny-Ålesund (78° 54′ N, 11° 53′ E). The average concentrations of t...

  3. Mercury in Your Environment

    Science.gov (United States)

    Basic information about mercury, how it gets in the air, how people are exposed to it and health effects associated with exposure; what EPA and other organizations are doing to limit exposures; what citizens should know to minimize exposures and to reduce mercury in the environment; and information about products that contain mercury.

  4. Intoxication with metallic mercury

    International Nuclear Information System (INIS)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-01-01

    Intoxications by metallic mercury are extremely rare. Report of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism. (orig.) [de

  5. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Ritzau, F.; Assmann, H.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  6. Intoxication with metallic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Fichte, B.; Assmann, H.; Ritzau, F.

    1984-02-01

    Intoxications by metallic mercury are extremely rare. Report is given of a patient, who tried to commit suicide by subcutaneous injection of 500 g of metallic mercury. He died 16 months later in the course of the intoxication. A short review is given of effects and reactions of metallic mercury in the human organism.

  7. Gaseous elemental mercury emissions and CO{sub 2} respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Obrist, Daniel, E-mail: daniel.obrist@dri.edu [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States); Fain, Xavier; Berger, Carsen [Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, Nevada, 89512 (United States)

    2010-03-01

    Mercury (Hg) levels in terrestrial soils are linked to the presence of organic carbon (C). Carbon pools are highly dynamic and subject to mineralization processes, but little is known about the fate of Hg during decomposition. This study evaluated relationships between gaseous Hg emissions from soils and carbon dioxide (CO{sub 2}) respiration under controlled laboratory conditions to assess potential losses of Hg to the atmosphere during C mineralization. Results showed a linear correlation (r{sup 2} = 0.49) between Hg and CO{sub 2} emissions in 41 soil samples, an effect unlikely to be caused by temperature, radiation, different Hg contents, or soil moisture. Stoichiometric comparisons of Hg/C ratios of emissions and underlying soil substrates suggest that 3% of soil Hg was subject to evasion. Even minute emissions of Hg upon mineralization, however, may be important on a global scale given the large Hg pools sequestered in terrestrial soils and C stocks. We induced changes in CO{sub 2} respiration rates and observed Hg flux responses, including inducement of anaerobic conditions by changing chamber air supply from N{sub 2}/O{sub 2} (80% and 20%, respectively) to pure N{sub 2}. Unexpectedly, Hg emissions almost quadrupled after O{sub 2} deprivation while oxidative mineralization (i.e., CO{sub 2} emissions) was greatly reduced. This Hg flux response to anaerobic conditions was lacking when repeated with sterilized soils, possibly due to involvement of microbial reduction of Hg{sup 2+} by anaerobes or indirect abiotic effects such as alterations in soil redox conditions. This study provides experimental evidence that Hg volatilization, and possibly Hg{sup 2+} reduction, is related to O{sub 2} availability in soils from two Sierra Nevada forests. If this result is confirmed in soils from other areas, the implication is that Hg volatilization from terrestrial soils is partially controlled by soil aeration and that low soil O{sub 2} levels and possibly low soil redox

  8. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    adsorption on unburned carbon and minimizing the concentration of sulfuric acid vapor in the flue gas. Equipment options for improving Hg capture include addition of fabric filters, use of halogenated sorbents, and addition of flue gas desulfurization (FGD) scrubbers, listed in order of increasing cost. The capital cost of adding FGD scrubbers to existing plants is probably too high to be justified on the grounds of Hg removal alone. However, if future regulations require reductions in sulfur dioxide emissions, and FGDs are installed to meet these standards, further reduction in Hg emissions will be a co-benefit of this installation.In this revised version, corrected results for the suite of 42 samples of feed coal and 8 density separates determined by inductively coupled plasma-mass spectrometry (ICP-MS) replace results originally reported in the 2014 version of this report. In many cases, especially for the transition metals, values reported here are lower than those originally reported, and in some cases, the corrected results are less than 50 percent of their original values. Note that results for mercury (Hg) and halogens contained in the original report are unaffected by revisions to ICP-MS data included here. This revised version also includes the following updates: (1) data for selenium, which were not available for inclusion in the original publication, are now provided; (2) results for ICP-MS trace element data are expressed here on a whole-coal dry basis to facilitate comparison with published results for coals elsewhere; and (3) the text has been updated to take into account the U.S. Supreme Court decision of June 29, 2015, which puts on hold implementation of U.S. Environmental Protection Agency Mercury and Air Toxics Standards in the United States.

  9. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Durham

    2004-10-01

    ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process

  10. Synthesis of attapulgite clay at the rate of Fe/sub 2/O/sub 3/ composite via ionic liquid and its application in the oxidation of elemental mercury

    International Nuclear Information System (INIS)

    Cang, H.; Jing, Y.L.; Shao, J.L.; Xu, Q.

    2013-01-01

    Attapulgite clay at the rate Fe/sub 2/O/sub 3/ (ATP at the rate Fe/sub 2/O/sub 3/) composite was prepared by a one-pot calcination process via the ionic liquid (IL), (bmim)PF6, using two cheap, ecofriendly materials (i.e., Fe(NO/sub3/)sub 3/9H/sub 2/O and ATP, which is a magnesium aluminum silicate that is abundant in nature). The resulting composite was characterized by different techniques. IR spectra indicated that the ATP clay has been successfully modified by the functional Fe/sub 2/O/sub 3/ species. X-ray diffraction analysis demonstrated that the natural ATP still existed in ATP at the rate Fe/sub 2/O/sub 3/ composite and plays the role as a template. The specific surface areas determined by the BET method from N2 sorption isotherms decreased with the entrance of Fe/sub 2/O/sub 3/. The activity for oxidation of elemental mercury (Hg) in flue gases was investigated, which exhibited the highest efficiency value of 91% at 220 degree C. The results showed that this composite was qualified for controlling and removing Hg in flue gases as a low-cost, sustainable, effective catalyst. (author)

  11. Monitoring of mercury concentration in atmosphere in Usti nad Labem

    International Nuclear Information System (INIS)

    Synek, V.; Baloch, T.; Otcenasek, J.; Kremlova, S.; Subrt, P.

    2007-01-01

    This study elaborates the observation of mercury pollution of the atmosphere in the city of Usti nad Labem. The biggest source of the polluting mercury in Usti nad Labem is the chlor-alkali production in the factory of Spolchemie Inc. The method of mercury determination applied is based on capturing the mercury contented in a volume of the air on an amalgamator and measuring the mercury by an atomic absorption spectrometer (Perkin -Elmer 4100ZL) equipped with a special adapter after a thermal release of the mercury from the amalgamator. The basic characteristics of this method were evaluated; e.g. the limit of detection and limit of determination are, respectively, 0.43 and 1.4 ng/m 3 , the relative expanded uncertainty is 28 %. The work gives results of long-term (1998-2006) observations in a few localities in Usti nad Labem situated in various distances from the mercury source (e.g. means of 28.6 and 14.1 ng/m3 were obtained, respectively, in places 350 and 700 m far from the electrolysis plant) and also in a different city (Duchcov). The cases with a higher mercury concentration are very frequent so the sets of the obtained results have lognormal distributions. This study statistically compares the total level and variability of the mercury concentrations in the time series. It also investigates their trends, correlations between them and meteorological influences upon the levels of mercury concentration in the air. The effect of the mercury emission from the chlor-alkali plant is dominant. It as the only factor determines when the cases with a high mercury concentration in the atmosphere occur. (author)

  12. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  13. Amended Silicated for Mercury Control

    Energy Technology Data Exchange (ETDEWEB)

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where

  14. Global Mercury Observation System (GMOS) surface observation data.

    Data.gov (United States)

    U.S. Environmental Protection Agency — GMOS global surface elemental mercury (Hg0) observations from 2013 & 2014. This dataset is associated with the following publication: Sprovieri, F., N. Pirrone,...

  15. Radiochemical aspects of liquid mercury spallation targets

    CERN Document Server

    Neuhausen, Joerg; Eichler, Bernd; Eller, Martin; Horn, Susanne; Schumann, Dorothea; Stora, Thierry

    2012-01-01

    Liquid metal spallation targets using mercury as target material are used in state-of-the-art high power pulsed neutron sources that have been constructed in the USA and Japan within the last decade. Similar target concepts were also proposed for next generation ISOL, beta-beam and neutrino facilities. A large amount of radioactivity will be induced in the liquid metal during operation caused by the interaction of the target material with the intense proton beam. This radioactivity - carried by a wide range of radioisotopes of all the elements of the periodic table from hydrogen up to thallium - must be considered for the assessment of safe operation and maintenance procedures as well as for a final disposal of the used target material and components. This report presents an overview on chemical investigations performed in our laboratory that deal with the behavior of radionuclides in proton irradiated mercury samples. The solubility of elements in mercury was calculated using thermodynamical data obtained by...

  16. Detection of concealed mercury with thermal neutrons

    International Nuclear Information System (INIS)

    Bell, Z.W.

    1994-01-01

    In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D ampersand D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them

  17. Effect of oxygen potential on sulphur dioxide activation of oil sands fluid coke and characteristics of activated coke in mercury adsorption

    International Nuclear Information System (INIS)

    Morris, E.A.; Jia, C.Q.; Tong, S.

    2007-01-01

    A sulphur-impregnated activated carbon (SIAC) technology was modified for use in copper smelters in order to mitigate mercury and sulphur dioxide (SO 2 ) emissions. Elemental sulphur was captured as a co-product. The study examined the feasibility of reducing levels of SO 2 using fluid coke in the copper smelter flue. SIAC properties were optimized in order to capture vapour phase mercury. Raw fluid coke samples were used to measure SO 2 flow rates. Gas composition was varied to mimic concentrations found during normal operation of copper converters. Gas chromatography was used to analyze reactions products and to prove the hypothesis that mercury capacity is influenced by the oxygen potential of the activation gas due to changes in surface sulphur types developed from reduced sulphur species. Results of the study showed that oxygen levels at 5 per cent did not play a significant role in pore development. It was concluded that increased residence times contributed to reductions in SO 2 and elemental S yields. 13 refs., 1 tab., 7 figs

  18. A neutron capture gamma-ray system using isotopic neutron sources and its application for elemental analysis of some saudi samples

    International Nuclear Information System (INIS)

    Bahareth, R.; Alamoudi, Z.; Hassan, A.M.

    2005-01-01

    The design and construction of a prompt gamma-ray spectrometer using 226 R a/Be and 252 C f isotopic neutron sources are described. The characteristic curves of the system for energy and efficiency are presented. Elemental investigations of three Saudi samples [Table salt, Glass and Lubrication oil] have been done. For sake of comparison, the data obtained is compared with the results obtained for the same samples using different techniques. A discussion on the results as well as on the comparative studies is given

  19. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  20. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    Science.gov (United States)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  1. Vertical Distribution of Total Mercury and Mercury Methylation in a Landfill Site in Japan

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2018-06-01

    Full Text Available Mercury is a neurotoxin, with certain organic forms of the element being particularly harmful to humans. The Minamata Convention was adopted to reduce the intentional use and emission of mercury. Because mercury is an element, it cannot be decomposed. Mercury-containing products and mercury used for various processes will eventually enter the waste stream, and landfill sites will become a mercury sink. While landfill sites can be a source of mercury pollution, the behavior of mercury in solid waste within a landfill site is still not fully understood. The purpose of this study was to determine the depth profile of mercury, the levels of methyl mercury (MeHg, and the factors controlling methylation in an old landfill site that received waste for over 30 years. Three sampling cores were selected, and boring sampling was conducted to a maximum depth of 18 m, which reached the bottom layer of the landfill. Total mercury (THg and MeHg were measured in the samples to determine the characteristics of mercury at different depths. Bacterial species were identified by 16S rRNA amplification and sequencing, because the methylation process is promoted by a series of genes. It was found that the THg concentration was 19–975 ng/g, with a geometric mean of 298 ng/g, which was slightly less than the 400 ng/g concentration recorded 30 years previously. In some samples, MeHg accounted for up to 15–20% of THg, which is far greater than the general level in soils and sediments, although the source of MeHg was unclear. The genetic data indicated that hgcA was present mostly in the upper and lower layers of the three cores, merA was almost as much as hgcA, while the level of merB was hundreds of times less than those of the other two genes. A significant correlation was found between THg and MeHg, as well as between MeHg and MeHg/THg. In addition, a negative correlation was found between THg and merA. The coexistence of the three genes indicated that both

  2. Mercury accumulation in placenta and foetal membranes. A study of dental workers and their babies

    Energy Technology Data Exchange (ETDEWEB)

    Wannag, A; Skjaerasen, J

    1975-01-01

    To investigate the hazards of exposure to levels of elementary mercury lower than the present TLV value (0.05 mg/m/sup 3/) a group of dental workers and a nonexposed group were studied. The amount of mercury in blood from mothers and babies at the time of delivery was similar. The exposed group had increased mercury content in placenta and fetal membranes. Mercury accumulation in these organs might serve as a protection for the fetus against mercury exposure. Since exposure to sub-TLV concentrations of elemental mercury during pregnancy will not be reflected in blood mercury content at the time of delivery, the amount of mercury in placenta and fetal membranes might serve as a biological indicator of such exposure.

  3. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  4. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wilmarth, W. R.

    2016-01-01

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%, though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements

  5. Mercury-impacted scrap metal: Source and nature of the mercury.

    Science.gov (United States)

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  6. Mercury and other trace elements in Ohio River fish collected near coal-fired power plants: Interspecific patterns and consideration of consumption risks.

    Science.gov (United States)

    Reash, Robin J; Brown, Lauren; Merritt, Karen

    2015-07-01

    Many coal-fired electric generating facilities in the United States are discharging higher loads of Hg, Se, and other chemicals to receiving streams due to the installation of flue gas desulfurization (FGD) air pollution control units. There are regulatory concerns about the potential increased uptake of these bioaccumulative trace elements into food webs. We evaluated the concentrations of As, total Hg (THg), methylmercury (MeHg), and Se in Ohio River fish collected proximal to coal-fired power plants, of which 75% operate FGD systems. Fillet samples (n = 50) from 6 fish species representing 3 trophic levels were analyzed. Geometric mean fillet concentrations of THg (wet wt), MeHg (wet wt), and Se (dry wt) in 3 species were 0.136, 0.1181, and 3.19 mg/kg (sauger); 0.123, 0.1013, and 1.56 mg/kg (channel catfish); and 0.127, 0.0914, and 3.30 mg/kg (hybrid striped bass). For all species analyzed, only 3 fillet samples (6% of total) had MeHg concentrations that exceeded the US Environmental Protection Agency (USEPA) human health criterion (0.3 mg/kg wet wt); all of these were freshwater drum aged ≥ 19 y. None of the samples analyzed exceeded the USEPA proposed muscle and whole body Se thresholds for protection against reproductive effects in freshwater fish. All but 8 fillet samples had a total As concentration less than 1.0 mg/kg dry wt. Mean Se health benefit values (HBVSe ) for all species were ≥ 4, indicating that potential Hg-related health risks associated with consumption of Ohio River fish are likely to be offset by adequate Se concentrations. Overall, we observed no measurable evidence of enhanced trace element bioaccumulation associated with proximity to power plant FGD facilities, however, some enhanced bioaccumulation could have occurred in the wastewater mixing zones. Furthermore, available evidence indicates that, due to hydraulic and physical factors, the main stem Ohio River appears to have low net Hg methylation potential. © 2015 SETAC.

  7. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  8. Mercury (Environmental Health Student Portal)

    Science.gov (United States)

    ... in contact with) to mercury is by eating fish or shellfish that have high levels of mercury. You can also get sick from: Touching it Breathing it in Drinking contaminated water How can mercury ...

  9. Mercury exposure in young children living in New York City.

    Science.gov (United States)

    Rogers, Helen S; Jeffery, Nancy; Kieszak, Stephanie; Fritz, Pat; Spliethoff, Henry; Palmer, Christopher D; Parsons, Patrick J; Kass, Daniel E; Caldwell, Kathy; Eadon, George; Rubin, Carol

    2008-01-01

    Residential exposure to vapor from current or previous cultural use of mercury could harm children living in rental (apartment) homes. That concern prompted the following agencies to conduct a study to assess pediatric mercury exposure in New York City communities by measuring urine mercury levels: New York City Department of Health and Mental Hygiene's (NYCDOHMH) Bureau of Environmental Surveillance and Policy, New York State Department of Health/Center for Environmental Health (NYSDOHCEH), Wadsworth Center's Biomonitoring Program/Trace Elements Laboratory (WC-TEL), and Centers for Disease Control and Prevention (CDC). A previous study indicated that people could obtain mercury for ritualistic use from botanicas located in Brooklyn, Manhattan, and the Bronx. Working closely with local community partners, we concentrated our recruiting efforts through health clinics located in potentially affected neighborhoods. We developed posters to advertise the study, conducted active outreach through local partners, and, as compensation for participation in the study, we offered a food gift certificate redeemable at a local grocer. We collected 460 urine specimens and analyzed them for total mercury. Overall, geometric mean urine total mercury was 0.31 microg mercury/l urine. One sample was 24 microg mercury/l urine, which exceeded the (20 microg mercury/l urine) NYSDOH Heavy Metal Registry reporting threshold for urine mercury exposure. Geometric mean urine mercury levels were uniformly low and did not differ by neighborhood or with any clinical significance by children's ethnicity. Few parents reported the presence of mercury at home, in a charm, or other item (e.g., skin-lightening creams and soaps), and we found no association between these potential sources of exposure and a child's urinary mercury levels. All pediatric mercury levels measured in this study were well below a level considered to be of medical concern. This study found neither self-reported nor measured

  10. RECOVERY OF MERCURY FROM CONTAMINATED PRIMARY AND SECONDARY WASTES

    International Nuclear Information System (INIS)

    A. Faucette; J. Bognar; T. Broderick; T. Battaglia

    2000-01-01

    industrial waters, including Hg 21 , elemental mercury, methyl mercury, and colloidal mercury. The process is also showing very fast kinetics, which allows for higher flow rates and smaller treatment units

  11. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  12. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    Science.gov (United States)

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials

  13. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  14. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    Science.gov (United States)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  15. Health impacts of mercury cycling in contaminated environments in China studied by nuclear techniques

    International Nuclear Information System (INIS)

    Wang Dingyong; Qing Changle; Shi Xiaojun; Zheng Yonghua; Li Bo; Yang Xuechun

    2001-01-01

    Mercury is a highly toxic non-essential element. The mercury cycling in natural environments is a complex process. In recent years, the stable mercury isotope tracer and related analytical techniques have been developed. They offer unique possibility to understand the biogeochemistry of mercury in various environmental conditions. So a new co-ordinated research project (CRP) on health impacts of mercury cycling in contaminated environments studied by nuclear techniques has been supported by the IAEA. This paper introduces the research project whose IAEA research contract number is CPR-10874. It includes the scientific background, scope of the project, methods, some results related to this CRP and the plans for future work. (author)

  16. Health impacts of mercury cycling in contaminated environments in China studied by nuclear techniques

    International Nuclear Information System (INIS)

    Wang Dingyong; Shi Xiaojun; Wei Shiqiang; Zheng Yonghua; Qing Changle

    2002-01-01

    Mercury is a highly toxic non-essential element. The mercury cycling in natural environments is a complex process. In recent years, the stable mercury isotope tracer and related analytical techniques have been developed. They offer unique possibility to understand the biogeochemistry of mercury in various environmental conditions. So a new coordinated research project (CRP), on health impacts of mercury cycling in contaminated environments studied by nuclear techniques, has been supported by the IAEA. This paper introduces the research project which is IAEA research contract number CPR-10874. It includes the scientific background, scope of the project, methods, some results related to this CRP and the plans for future work. (author)

  17. Apparatus and method for identification of matrix materials in which transuranic elements are embedded using thermal neutron capture gamma-ray emission

    Science.gov (United States)

    Close, D.A.; Franks, L.A.; Kocimski, S.M.

    1984-08-16

    An invention is described that enables the quantitative simultaneous identification of the matrix materials in which fertile and fissile nuclides are embedded to be made along with the quantitative assay of the fertile and fissile materials. The invention also enables corrections for any absorption of neutrons by the matrix materials and by the measurement apparatus by the measurement of the prompt and delayed neutron flux emerging from a sample after the sample is interrogated by simultaneously applied neutrons and gamma radiation. High energy electrons are directed at a first target to produce gamma radiation. A second target receives the resulting pulsed gamma radiation and produces neutrons from the interaction with the gamma radiation. These neutrons are slowed by a moderator surrounding the sample and bathe the sample uniformly, generating second gamma radiation in the interaction. The gamma radiation is then resolved and quantitatively detected, providing a spectroscopic signature of the constituent elements contained in the matrix and in the materials within the vicinity of the sample. (LEW)

  18. Mercury in Nelson's Sparrow subspecies at breeding sites.

    Directory of Open Access Journals (Sweden)

    Virginia L Winder

    Full Text Available BACKGROUND: Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. METHODOLOGY/PRINCIPAL FINDINGS: From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick and sampled breast feathers, the first primary feather (P1, and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84 ± 0.37 to 1.65 ± 1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (P<0.01. Breast feather mercury did not vary among sites within a given sampling year (site means ranged from 0.98 ± 0.69 to 2.71 ± 2.93 ppm. Mean P1 mercury in alterus (2.96 ± 1.84 ppm fw was significantly lower than in any other sampled population (5.25 ± 2.24-6.77 ± 3.51 ppm; P ≤ 0.03. CONCLUSIONS/SIGNIFICANCE: Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure.

  19. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  20. Dynamic measurement of mercury adsorption and oxidation on activated carbon in simulated cement kiln flue gas

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...... are still under development and are investigated in this work. A commercial red brass converter was tested at 180°C and it was found that the red brass chips work in nitrogen atmosphere only, but do not work properly under simulated cement kiln flue gas conditions. Test of the red brass converter using only...... elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...

  1. Analysis of Halogen-Mercury Reactions in Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation

  2. On the ''memory'' effect and its relation to the mechanism of formation of mercury-graphite electrode in inversion voltammetry

    International Nuclear Information System (INIS)

    Nejman, E.Ya.; Petrova, L.G.; Dolgopolova, G.M.; Ignatov, V.I.

    1977-01-01

    Simultaneous discharge ionization of lead-copper and cadmium-copper systems on the surface of mercury-plated graphite and graphite electrodes has been studied. A model is suggested of the preparation process of a mercury-plated graphite electrode obtained in simultaneous electroposition of mercury and elements determined as microimpurities. Processes, which occur on the electrode during relaxation time between electrolysis beginning and formation of the mercury phase, may be probable reasons for mutual effects of elements of the mercury-plated graphite electrode

  3. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    2011-01-01

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area ...... in feed as well as initiatives for the establishment of standardized methods for determination of inorganic arsenic and methylmercury are presented.......The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area...... of toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...

  4. The fate of Mercury in Arctic regions: New understanding of atmospheric chemical processes and mercury stability in snow.

    Science.gov (United States)

    Steffen, A.; Ferrari, C.; Dommergue, A.; Scherz, T.; Lawson, G.; Leiatch, R.

    2006-12-01

    period. Additionally, information from these data demonstrates that the primary product of the oxidation of gaseous elemental mercury (GEM) is RGM which will associate to the particles and exist as PHg when these particles are available in the atmosphere. The oxidation of GEM is, therefore, a result of homogeneous chemistry. Results from this ongoing study and the impacts of this pollutant to the Arctic environment will be presented.

  5. Mercury emission and speciation of coal-fired power plants in China

    Science.gov (United States)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  6. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  7. Intentional intravenous mercury injection

    African Journals Online (AJOL)

    In this case report, intravenous complications, treatment strategies and possible ... Mercury toxicity is commonly associated with vapour inhalation or oral ingestion, for which there exist definite treatment options. Intravenous mercury ... personality, anxiousness, irritability, insomnia, depression and drowsi- ness.[1] However ...

  8. Mercury's shifting, rolling past

    OpenAIRE

    Trulove, Susan

    2008-01-01

    Patterns of scalloped-edged cliffs or lobate scarps on Mercury's surface are thrust faults that are consistent with the planet shrinking and cooling with time. However, compression occurred in the planet's early history and Mariner 10 images revealed decades ago that lobate scarps are among the youngest features on Mercury. Why don't we find more evidence of older compressive features?

  9. Global Mercury Assessment 2013

    International Development Research Centre (IDRC) Digital Library (Canada)

    mercury pollution. This summary report and the accompanying. Technical Background Report for the Global. Mercury Assessment 2013 are developed in response to Decision 25/5, paragraph ... The use of different pollution control technologies in different ...... vegetation, snow, freshwater, and seawater. One of the largest ...

  10. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  11. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    Science.gov (United States)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  12. Mercury extraction by the TRUEX process solvent. II. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.; Todd, T.A.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 , from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . Because experiments described here show that mercury can be extracted from SBW and stripped from the solvent, a process has been developed to partition mercury from the actinides in SBW. 10 refs., 3 figs., 10 tabs

  13. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decrease of emissions in Europe (Waengberg et al., 2007). For mercury in air (TGM), the geographical pattern is less pronounced indicating the influence of mercury emissions and distribution over a larger geographical area (i.e. hemispherical transport). Comparison of recent (surficial) and historical lake sediments show significantly elevated concentrations of mercury most likely caused by anthropogenic atmospheric deposition over the past century. The highest pollution impact was observed in the coastal areas of southern Norway, in south western Finland and in Sweden from the coastal areas in the southwest across the central parts to the north-east. The general increase in recent versus old sediments was 2-5 fold. Data on mercury in Nordic freshwater fish was assembled and evaluated with respect to geographical variations. The fish data were further compared with temporal and spatial trends in mercury deposition and mercury contamination of lake sediments in order to investigate the coupling between atmospheric transport and deposition of mercury and local mercury

  14. Mercury use in small scale gold mining in Ghana: an assessment of its impact on miners

    International Nuclear Information System (INIS)

    Biagya, Robert Yakubu

    2002-12-01

    Small scale gold mining is responsible for about 5% of Ghana’s annual gold production. It is estimated that between 80,000 and 100,000 people are engaged in small scale gold mining either on part-time or permanent basis. Amalgamation is the preferred method used by small scale gold miners for extracting free gold from its ores. The rate at which mercury, an important input in this method, is discharged into the atmosphere and water bodies is alarming. This research describes the various mining and processing methods in small scale gold mining and the extent of mercury use and releases to the environment. It discusses mercury and its human and environmental effects. It defines the various forms of mercury, routes of exposure, toxic effects. The levels of exposure to mercury by all groups of small scale gold miners are determined, and the impacts on the miners and the environment are assessed. It concludes that: • Mercury is mainly released into the environment as a result of small scale gold mining through spillage of elemental mercury and evaporation of mercury from the amalgam and sponge gold when they are heated on open fire. • Mercury in environmental samples from small scale gold mining areas is well above standard limit values. • Mercury released into the environment through small scale gold mining impacts negatively on the miners themselves and the general environment. Finally, it recommends the need for the adoption of mercury emission reduction strategies for dealing with the mercury problem. (au)

  15. Enzymatic oxidation of mercury vapor by erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, S; Clarkson, T W

    1978-01-01

    The formation of glutathione radicals, the evolution of nascent oxygen or the peroxidatic reaction with catalase complex I are considered as possible mechanisms for the oxidation of mercury vapor by red blood cells. To select among these, the uptake of atomic mercury by erythrocytes from different species was studied and related to their various activities of catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase, EC 1.11.1.6) and glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9). A slow and continuouus infusion of diluted H/sub 2/O/sub 2/ was used to maintain steady concentrations of complex I. 1% red cell suspensions were found most suitable showing high rates of Hg uptake and yielding still enough cells for subsequent determinations. The results indicate that the oxidation of mercury depends upon the H/sub 2/O/sub 2/-generation rate and upon the specific acticity of red-cell catalase. The oxidation occurred in a range of the catalase-H/sub 2/O/sub 2/ reaction where the evolution of oxygen could be excluded. Compounds reacting with complex I were shown to be effective inhibitors of the mercury uptake. GSH-peroxidase did not participate in the oxidation but rather, was found to inhibit it by competing with catalase for hydrogen peroxide. These findings support the view that elemental mercury is oxidized in erythrocytes by a peroxidatic reaction with complex I only.

  16. Getting Mercury out of Schools.

    Science.gov (United States)

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  17. Elevated mercury concentrations in humans of Madre de Dios, Peru.

    Directory of Open Access Journals (Sweden)

    Katy Ashe

    Full Text Available The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05 higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population.

  18. Elevated mercury concentrations in humans of Madre de Dios, Peru.

    Science.gov (United States)

    Ashe, Katy

    2012-01-01

    The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population.

  19. Permafrost stores a globally significant amount of mercury

    Science.gov (United States)

    Schaefer, K. M.; Schuster, P. F.; Antweiler, R.; Aiken, G.; DeWild, J.; Gryziec, J. D.; Gusmeroli, A.; Hugelius, G.; Jafarov, E.; Krabbenhoft, D. P.; Liu, L.; Herman-Mercer, N. M.; Mu, C.; Roth, D. A.; Schaefer, T.; Striegl, R. G.; Wickland, K.; Zhang, T.

    2017-12-01

    Changing climate in northern regions is causing permafrost to thaw with major implications for the cycling of mercury in arctic and subarctic ecosystems. Permafrost occurs in nearly one quarter of the Earth's Northern Hemisphere. We measured total soil mercury concentration in 588 samples from 13 soil permafrost cores from the interior and the North Slope of Alaska. The median concentration was 47.7±23.4 ng Hg g soil-1 and the median ratio of Hg to carbon was 1.56±0.86 µg Hg g C-1. We estimate Alaskan permafrost stores 56±32 kilotons of mercury and the entire northern hemisphere permafrost land mass stores 773±441 kilotons of mercury. This increases estimates of mercury stored in soils by 60%, making permafrost the second largest reservoir of mercury on the planet. Climate projections indicate extensive permafrost thawing, releasing mercury into the environment through a variety of mechanisms, for example, terrestrial transport via dissolved organic carbon (DOC), gaseous elemental mercury (GEM) evasion, forest fires, atmospheric mixing processes with ozone, and Springtime atmospheric Hg depletion after the polar sunrise. These findings have major implications for terrestrial and aquatic life, the world's fisheries, and ultimately human health.

  20. Behavior of mercury in high-temperature vitrification processes

    International Nuclear Information System (INIS)

    Goles, R.W.; Holton, K.K.; Sevigny, G.J.

    1992-01-01

    This paper reports that the Pacific Northwest Laboratory (PNL) has evaluated the waste processing behavior of mercury in simulated defense waste. A series of tests were performed under various operating conditions using an experimental-scale liquid-fed ceramic melter (LFCM). This solidification technology had no detectable capacity for incorporating mercury into its product, borosilicate glass. Chemically, the condensed mercury effluent was composed almost entirely of chlorides, and except in a low-temperature test, Hg 2 Cl 2 was the primary chloride formed. As a result, combined mercury accounted for most of the insoluble mass collected by the process quench scrubber. Although macroscopic quantities of elemental mercury were never observed in process secondary waste streams, finely divided and dispersed mercury that blackened all condensed Hg 2 Cl 2 residues was capable of saturating the quenched process exhaust with mercury vapor. The vapor pressure of mercury, however, in the quenched melter exhaust was easily and predictably controlled with the off-gas stream chiller

  1. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  2. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  3. Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    Science.gov (United States)

    Winder, Virginia L.; Emslie, Steven D.

    2012-01-01

    Background Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. Methodology/Principal Findings From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick) and sampled breast feathers, the first primary feather (P1), and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84±0.37 to 1.65±1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (Pmercury did not vary among sites within a given sampling year (site means ranged from 0.98±0.69 to 2.71±2.93 ppm). Mean P1 mercury in alterus (2.96±1.84 ppm fw) was significantly lower than in any other sampled population (5.25±2.24–6.77±3.51 ppm; P≤0.03). Conclusions/Significance Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure. PMID:22384194

  4. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  5. Mercury's Dynamic Magnetic Tail

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  6. The reliability of mercury analysis in environmental materials

    International Nuclear Information System (INIS)

    Heinonen, J.; Suschny, O.

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10 9 parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material

  7. The reliability of mercury analysis in environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, J.; Suschny, O

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10{sup 9} parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material.

  8. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  9. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  10. Total Mercury content of skin toning creams

    African Journals Online (AJOL)

    Administrator

    2008-04-01

    Apr 1, 2008 ... used it for cosmetics (Silberberg, 1995). Mercury- ... Cosmetic preparations containing mercury com- pounds are .... mercury determination by a modified version of an open .... level mercury exposure, which could lead to a.

  11. Selenium's importance in regulatory issues regarding mercury

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Laura J.; Ralston, Nicholas V.C. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Current seafood safety and health risk assessment criteria use mercury concentrations as their sole basis. This unfortunate limitation omits consideration of selenium, an essential trace element that appears to be the primary molecular target of mercury toxicity. Although selenium has been recognized for decades as a means of counteracting mercury toxicity, its effects have often been overlooked or misunderstood. Experimental animal studies have demonstrated that increasing concentrations of selenium throughout the normal dietary range increasingly counteracts methylmercury toxicity. Dietary concentrations of selenium that are slightly less than the average amount present in ocean fish have been shown to completely prevent the onset of toxic symptoms of mercury toxicity, while animals fed lesser amounts of selenium rapidly sickened and died. Dietary selenium from a variety of sources including ocean fish such as tuna, swordfish, menhaden, and rockfish has been shown to counteract mercury toxicity. Since ocean fish are among the richest sources of dietary selenium, it is important to include selenium concentration measurements in future mercury risk assessments and seafood safety criteria. Mercury:selenium molar ratios in blood provide far more consistent and physiologically meaningful risk assessments. Comprehensive seafood safety criteria such as the Selenium Health Benefit Value enable clear differentiation between seafoods that are safe and those that are hazardous for human consumption. Use of parameters that integrate mercury-selenium relationships also make it easy to understand the differences between the findings of maternal mercury exposure studies that have been performed in New Zealand, the Faroes, the Seychelles, and the United Kingdom. Development of criteria for evaluating mercury-selenium interactions will enhance environmental protection and improve public safety. (author)

  12. Detecting Airborne Mercury by Use of Palladium Chloride

    Science.gov (United States)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  13. The method of determination of mercury adsorption from flue gases

    Directory of Open Access Journals (Sweden)

    Budzyń Stanisław

    2017-01-01

    Full Text Available For several recent years Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow conduct intensive studies on the occurrence of mercury contained in thermal and coking coals, as well as on the possible reduction of fossil-fuel mercury emissions. This research focuses, among others, on application of sorbents for removal of mercury from flue gases. In this paper we present the methodology for testing mercury adsorption using various types of sorbents, in laboratory conditions. Our model assumes burning a coal sample, with a specific mercury content, in a strictly determined time period and temperature conditions, oxygen or air flow rates, and the flow of flue gases through sorbent in a specific temperature. It was developed for particular projects concerning the possibilities of applying different sorbents to remove mercury from flue gases. Test stand itself is composed of a vertical pipe furnace inside which a quartz tube was mounted for sample burning purposes. At the furnace outlet, there is a heated glass vessel with a sorbent sample through which flue gases are passing. Furnace allows burning at a defined temperature. The exhaust gas flow path is heated to prevent condensation of the mercury vapor prior to contact with a sorbent. The sorbent container is positioned in the heating element, with controlled and stabilized temperature, which allows for testing mercury sorption in various temperatures. Determination of mercury content is determined before (coal and sorbent, as well as after the process (sorbent and ash. The mercury balance is calculated based on the Hg content determination results. This testing method allows to study sorbent efficiency, depending on sorption temperature, sorbent grain size, and flue-gas rates.

  14. Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Morris, M.I.

    2002-02-06

    The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA

  15. Natural and anthropogenic atmospheric mercury in the European Arctic: a speciation study

    OpenAIRE

    Steen, Anne Orderdalen; Berg, Torunn; Dastoor, Ashu P.; Durnford, Dorothy, A.; Hole, Lars Robert; Pfaffhuber, Katrine Aspmo

    2010-01-01

    It is agreed that gaseous elemental mercury (GEM) is converted to reactive gaseous mercury (RGM) during springtime Atmospheric Mercury Depletion Event (AMDE). RGM is associated with aerosols (PHg) provided that there are sufficient aerosols available for the conversion from RGM to PHg to occur.

    This study reports the longest time series of GEM, RGM and PHg concentrations from a European Arctic site. From 27 April 2007 until 31 December 2008 composite GEM, RGM and PHg meas...

  16. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  17. Metallic mercury recyc