WorldWideScience

Sample records for elemental mass concentration

  1. Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area

    Directory of Open Access Journals (Sweden)

    J. Smolík

    2003-01-01

    Full Text Available A Berner low pressure impactor was used to collect size-segregated aerosol samples at Finokalia, located on the north-eastern coast of Crete, Greece during July 2000 and January 2001. Several samples were also collected during the summer campaign aboard the research vessel "AEGAIEO" in the Aegean Sea. Gravimetric analysis and inversion techniques yielded daily PM1 and PM10 mass concentrations. The samples were also analysed by PIXE giving the elemental size distributions of Al, Si, K, Ca, Ti, Mn, Fe, Sr, S, Cl, Ni, V, Cu, Cr, Zn, and Pb. The crustal elements and sea-salt had a unimodal supermicron size distribution. Sulphur was found predominantly in submicron fractions. K, V, and Ni exhibited a bimodal distribution with a submicron mode produced by forest fires and oil combustion. The anthropogenic elements had broad and not well-defined distributions. The time series for PM1 and PM10 mass and elemental concentrations showed both daily and seasonal variation. Higher mass concentrations were observed during two incursions of Saharan dust, whilst higher concentrations of S, Cu, Zn, and Pb were encountered in samples collected in air masses arriving from northern Greece or the western coast of Turkey. Elevated concentrations of chlorine were found in samples with air masses either originating above the Atlantic Ocean and arriving at Finokalia via western Europe or recirculating over the western coast of the Black Sea.

  2. Using the ion microprobe mass analyser for trace element analysis

    International Nuclear Information System (INIS)

    Schilling, J.H.

    1978-01-01

    Most techniques for the analysis of trace elements are capable of determining the concentrations in a bulk sample or solution, but without reflecting their distribution. In a bulk analysis therefore elements which occur in high concentration in a few precipitates would still be considered trace elements even though their local concentration greatly exceed the normally accepted trace elements concentration limit. Anomalous distribution is also shown by an oxide layer, a few hundred Angstrom thick, on an aluminium sample. A low oxide concentration would be reported if it were included in the bulk analysis, which contradicts the high surface concentration. The importance of a knowledge of the trace element distribution is therefore demonstrated. Distributional trace element analysis can be carried out using the ion microprobe mass analyser (IMMA). Since the analytical technique used in this instrument, namely secondary ion mass spectrometry (SIMS), is not universally appreciated, the instrument and its features will be described briefly followed by a discussion of quantitative analysis and the related subjects of detection limit and sample consumption. Finally, a few examples of the use of the instrument are given

  3. Mass concentration and elemental composition of indoor PM 2.5 and PM 10 in University rooms in Thessaloniki, northern Greece

    Science.gov (United States)

    Gemenetzis, Panagiotis; Moussas, Panagiotis; Arditsoglou, Anastasia; Samara, Constantini

    The mass concentration and the elemental composition of PM 2.5 and PM 10 were measured in 40 rooms (mainly offices or mixed office-lab rooms, and photocopying places) of the Aristotle University of Thessaloniki, northern Greece. A total of 27 major, minor and trace elements were determined by ED-XRF analysis. The PM 2.5/PM 10 concentration ratios averaged 0.8±0.2, while the corresponding elemental ratios ranged between 0.4±0.2 and 0.9±0.2. The concentrations of PM 2.5 and PM 10 were significantly higher (by 70% and 50%, respectively) in the smokers' rooms compared to the non-smokers' places. The total elemental concentrations were also higher in the smokers' rooms (11.5 vs 8.2 μg m -3 for PM 2.5, and 10.3 vs 7.6 μg m -3 for PM 2.5-10). Fine particle concentrations (PM 2.5) were found to be quite proportional to smoking strength. On the contrary, the two environments exhibited similar coarse (PM 2.5-10) particle fractions not related to the number of cigarettes smoked. A slight decrease of particle concentrations with increasing the floor level was also observed, particularly for PM 2.5, suggesting that high-level floors are less impacted by near ground-level sources like traffic emissions. Finally, the removal efficiency of air purification systems was evaluated.

  4. Concentration and measuring Platinum Group Elements (PGE) Transfer Factor in soil and vegetations

    International Nuclear Information System (INIS)

    Adibah Sakinah Oyub

    2012-01-01

    This study was conducted to determine the concentration and to measure platinum group elements (PGE) transfer factor in environmental samples of roadside soil and vegetation. The use of vehicle catalytic converter has released platinum group elements (PGE) and other gases into the environment. Thus, roadside soil and plants were exposed to this element and has become the medium for the movement of this elements. Samples of roadside soil and vegetation were taken at various locations in UKM Bangi Toll and the concentration of platinum group elements (PGE) is determined using mass spectrometry-inductively coupled plasma (ICP-MS). Overall, the concentrations of platinum group elements (PGE), which is the element platinum (Pt) in soil was 0.016 ± 0.036 μgg -1 . While the concentration of the elements palladium (Pd) was 0.079 ± 0.019 μgg -1 and element rhodium (Rh) is at a concentration of 0.013 ± 0.020 μgg -1 . Overall, the transfer factor for the element platinum (Pt) is 1. While the transfer factor of the element palladium (Pd) is 0.96 and the element rhodium (Rh) is 1.11. In conclusion, the concentration of platinum group elements (PGE) in soils have increased. (author)

  5. PM mass and elemental species concentration data for I-96 monitoring sites

    Data.gov (United States)

    U.S. Environmental Protection Agency — PM2.5 (fine) and PM10-2.5 (coarse) mass concentrations for monitoring sites located 10 m, 100 m and 300 m north of Interstate I-96 in Detroit, the water-soluble and...

  6. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Rihwa Choi

    2015-07-01

    Full Text Available Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01. Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05. A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05. Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis.

  7. Characterization and mass balance of trace elements in an iron ore sinter plant

    Directory of Open Access Journals (Sweden)

    Lucas Ladeira Lau

    2016-04-01

    Full Text Available Environmental legislation is becoming more restrictive in several industrial sectors, especially in the steel industry, which is well known for its large pollution potential. With the recent growth of interest in effects of trace elements on the environment and health, the inclusion of emission limits on these elements in this legislation has become increasingly popular. This article aims to describe the partitioning of trace elements between the products (sinter and plant emissions in an iron ore sinter plant, aiming to better understand the behavior of these elements in the sintering process to eventually support interventions to modify these partitions. Chemical characterization of several sintering inputs was initially performed, revealing that the steel-making residues contained large concentrations of trace elements, whereas low concentrations were observed in the flux. Based on the trace element concentrations, we analyzed the injection of trace elements in a sintering pilot using a sintering mixture. Mass balance was then used to determine the theoretical partitioning of trace elements in the sinter and emissions; cadmium, nickel, lead, mercury, and copper exhibited greater tendencies to concentrate in atmospheric emissions.

  8. Mass and elemental concentrations of air bone particles at Kuala Lumpur site in 2000 to 2006

    International Nuclear Information System (INIS)

    Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2008-01-01

    Atmospheric Pollution due to air bone particle is a major concern to many cities in the Southeast Asian region, including Kuala Lumpur. Within the last six years air particulate samples have been collected from a site in Kuala Lumpur and measured for their PM10, PM2.5 and elemental concentrations. The results showed that the daily PM10 (<10μ diameter) concentrations were generally acceptable but the values occasionally very high, especially during the haze episodes. The PM10 annual average values were just below the national set standard and these values were mostly contributed by the fine particles (<2μ diameter) concentration. The annual average for PM2.5 (fine particle) concentrations over the past few years were considerably high where elemental carbon, sulfur and potassium were the main components. (Author)

  9. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    Science.gov (United States)

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Fabrication of fuel elements on the basis of increased concentration fuel composition

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    2004-01-01

    As a part of Russian Program RERTR Reduced Enrichment for Research and Test Reactors), at NCCP, Inc. jointly with the State Scientific Centre VNIINM the mastering in industrial environment of design and fabrication process of fuel elements (FE) with increased concentration fuel compositions is performed. Fuel elements with fuel composition on the basis of dioxide uranium with nearly 4 g/cm 3 fuel concentration have been produced thus confirming the principal possibility of fuel enrichment reduction down to 20% for research reactors which were built up according to the projects of the former USSR, by increasing the oxide fuel concentration in fuel assemblies (FAs). The form and geometrical dimensions of FEs and FAs shall remain unchanged, only uranium mass in FA shall be increased. (author)

  11. Quantitative assay of element mass inventories in single cell biological systems with micro-PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Ogrinc, Nina [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); LOTRIČ Metrology, Selca 163, SI-4227 Selca (Slovenia); Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša; Jeromel, Luka [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Tomić, Sergej [Medical Faculty of the Military Medical Academy, University of Defense, Crnotravska 17, Belgrade (Serbia); Čolić, Miodrag [Medical Faculty of the Military Medical Academy, University of Defense, Crnotravska 17, Belgrade (Serbia); Medical Faculty, University of Niš, Boulevard of Dr. Zoran Djindjić 81, 18000 Niš (Serbia); Beran, Alfred [Dipartimento di Oceanografia Biologica, Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Via Auguste Piccard 54, 34151 Trieste (Italy)

    2013-07-01

    Elemental concentrations in micro-PIXE (Particle Induced X-ray Emission) maps of elements in biological tissue slices have been determined using auxiliary information on the sample matrix composition from EBS (Elastic Backscattering Spectroscopy) and STIM (Scanning Transmission Ion Microscopy). The thin sample approximation may be used for evaluating micro-PIXE data in cases, where X-ray absorption in the sample can be neglected and the mass of elements in a selected area can be estimated. The resulting sensitivity amounts to an impressive 10{sup −12} g of the selected elements. Two cases are presented as examples. In the first, we determined the total mass of gold nanoparticles internalized by human monocyte-derived dendritic cells (MDDC). In the second, an inventory of the mass of elements in the micro-particulate material adsorbed at the wall of the lorica of the microzooplankton species Tintinnopsis radix has been created.

  12. Quantitative assay of element mass inventories in single cell biological systems with micro-PIXE

    International Nuclear Information System (INIS)

    Ogrinc, Nina; Pelicon, Primož; Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša; Jeromel, Luka; Tomić, Sergej; Čolić, Miodrag; Beran, Alfred

    2013-01-01

    Elemental concentrations in micro-PIXE (Particle Induced X-ray Emission) maps of elements in biological tissue slices have been determined using auxiliary information on the sample matrix composition from EBS (Elastic Backscattering Spectroscopy) and STIM (Scanning Transmission Ion Microscopy). The thin sample approximation may be used for evaluating micro-PIXE data in cases, where X-ray absorption in the sample can be neglected and the mass of elements in a selected area can be estimated. The resulting sensitivity amounts to an impressive 10 −12 g of the selected elements. Two cases are presented as examples. In the first, we determined the total mass of gold nanoparticles internalized by human monocyte-derived dendritic cells (MDDC). In the second, an inventory of the mass of elements in the micro-particulate material adsorbed at the wall of the lorica of the microzooplankton species Tintinnopsis radix has been created

  13. Concentration of stable elements in food products

    International Nuclear Information System (INIS)

    Montford, M.A.; Shank, K.E.; Hendricks, C.; Oakes, T.W.

    1980-01-01

    Food samples were taken from commercial markets and analyzed for stable element content. The concentrations of most stable elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Sr, Ta, Th, Ti, V, Zn, Zr) were determined using multiple-element neutron activation analysis, while the concentrations of other elements (Cd, Hg, Ni, Pb) were determined using atomic absorption. The relevance of the concentrations found are noted in relation to other literature values. An earlier study was extended to include the determination of the concentration of stable elements in home-grown products in the vicinity of the Oak Ridge National Laboratory. Comparisons between the commercial and local food-stuff values are discussed

  14. Factors that influence an elemental depth concentration profile

    International Nuclear Information System (INIS)

    McHugh, J.A.

    1975-01-01

    The use of secondary ion mass spectrometry in concentration profiling is discussed. Two classes of factors that influence an elemental concentration profile are instrumental effects and ion-matrix effects. Instrumental factors that must be considered are: (1) uniformity of the primary ion current density, (2) constancy of the primary ion current, (3) redeposition, (4) memory, (5) primary ion beam tailing and the nonfocused component, (6) chemical purity of the primary ion beam, and (7) residual gas impurities. Factors which can be classified as ion matrix effects are: (1) the mean escape depth of secondary ions, (2) recoil implantation, (3) molecular ion interferences, (4) primary ion beam induced diffusion of matrix species, (5) nonuniform sputter removal of matrix layers, and (6) implanted primary ion chemical and lattice damage effects

  15. Concentration of trace elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Suzuki, Hamaji; Iimura, Mitsue; Koyanagi, Taku

    1976-01-01

    Information on the quality and quantity of stable trace elements in marine environments is frequently required to analyze the radioecological behavior of radionuclides released from nuclear facilities into the sea. In the present work, special attention was concentrated in determination of stable Mn, Fe, Co, Zn, Rb and Cs in marine organisms to estimate the concentration factors for these elements and corresponding radionuclides. Marine organisms (fishes, marine invertebrates and seaweeds) were collected at the seashore of Ibaragi prefecture and provided for chemical analysis after dry-ashing and wet-ashing. Atomic absorption spectrophotometry and neutron activation analysis were applied to determine the concentration of elements. The concentration of stable elements in fish muscle was independent on species of the fishes though slightly higher trends were observed in ''Usumebaru'', Sebastes nivosus for Cs, ''Ishimochi'', Nibea mitsukurii for Zn and Fe compared with other species. The concentration of Co, Zn and Fe in muscle of marine invertebrates was one order of magnitude higher than fish muscles especially in shellfishes for Co. Seaweeds showed peculiar species specificity for the concentration of stable trace elements and remarkable differences was observed between the species even among the same genus. (auth.)

  16. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    OpenAIRE

    Yiqian Ma; Srecko Stopic; Lars Gronen; Milovan Milivojevic; Srdjan Obradovic; Bernd Friedrich

    2018-01-01

    Eudialyte is a promising mineral for rare earth elements (REE) extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time ...

  17. Study on element concentrations in aerosol in ambient air from Phnom Penh, Cambodia

    International Nuclear Information System (INIS)

    Kashima, Yuji; Sakai, Haruya; Matsui, Mitsuaki

    2004-01-01

    In order to accumulate basic information necessary for reduction of suspended particle materials (SPM) in Phnom Penh, various element concentrations were measured with ICP-mass spectrometry and neutron activation analysis, and some their sources were estimated. SPM were collected at a roadside area in the middle of the City (1 point, 11 samples of 24 hours and 14 samples of 7 ∼ 16 hours) and two residence areas (2 points, 13 samples of 24 hours and 1 sample of 16 hours) with membrane filters of air samplers set at the level of 8∼9 m height. For research SPM sources, two kinds of comparative samples were also collected from roadside dust and soil (2 points, 9 samples) and from exhaust deposit of vehicles (bicycle 11, gasoline automobile 7, diesel car 10 samples) and electric generator (6 samples). SPM concentrations measured were 67∼1,000 μg/m 3 (average 410 μg/m 3 ). The concentrations in the roadside area were several times higher than in the residence area. Toxic element concentrations were all higher in roadside with an exception of Cd. The concentrations of Pb was 44 ng/m 3 on the average, amounting to 1/10 of WHO Guidelines. Comparing element concentrations of SPM with those of the soils and deposits, factor analysis using 18 elements including Ba, V, Pb suggests three major sources of soil, vehicle exhaust, and oil burning. (H. Yokoo)

  18. Relationships among developmental stage, metamorphic timing, and concentrations of elements in bullfrogs (Rana catesbeiana)

    Energy Technology Data Exchange (ETDEWEB)

    Snodgrass, J.W.; Hopkins, W.A.; Roe, J.H. [Towson University, Towson, MD (United States). Dept. for Biological Science

    2003-07-01

    We collected bullfrog (Rana catesbeiana) larvae from a coal combustion waste settling basin to investigate the effects of developmental stage and timing of metamorphosis on concentrations of a series of trace elements in bullfrog tissues. Bullfrogs at four stages of development (from no hind limbs to recently metamorphosed juveniles) and bullfrogs that metamorphosed in the fall or overwintered in the contaminated basin and metamorphosed in the spring were analyzed for whole-body concentrations of Al, V, Cr, Ni, Cu, As, Pb, Cd, Zn, Ag, Sr, and Se. After the effects of dry mass were removed, tissue concentrations of six elements (Al, V, Cr, Ni, Cu, As, and Pb) decreased from the late larval stage through metamorphosis. Decreases in concentrations through metamorphosis ranged from 40% for Cu to 97% for Al. Tissue concentrations of these elements were also similar or higher in spring; Al and Cr concentrations were 34 and 90% higher in the spring, respectively, whereas As, Ni, Cu, and Pb concentrations were {lt} 10% higher. Concentrations of Cd, Se, and Ag varied among seasons but not among stages; Cd and Ag concentrations were 40 and 62% lower, respectively, and Se concentrations were 21% higher in spring. Concentrations of Zn varied only among stages; concentrations decreased gradually through late larval stage and then increased through metamorphosis. Concentrations of Sr varied among stages, but this variation was dependent on the season. Concentrations of Sr were higher in larval stages during the spring, but because concentrations of Sr increased 122% through metamorphosis in the fall and only 22% in the spring, concentrations were higher in fall metamorphs when compared with spring metamorphs. Our results indicate that metamorphosis and season of metamorphosis affects trace element concentrations in bullfrogs and may have important implications for the health of juveniles and the transfer of pollutants from the aquatic to the terrestrial environment.

  19. Analysis of trace elements by means of accelerator secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Ender, R.M.

    1997-01-01

    The analysis of material composition and trace element concentration is of increasing interest primarily in semiconductor technology but also in metallurgy, geology, biology and medicine. At present, Secondary Ion Mass Spectrometry (SIMS) is in many respects the best technique to provide 3-dimensional information on the distribution of trace elements with concentrations below 1 ppm. However, due to the presence of molecular ions the detectability of many trace elements it restricted because of molecular mass interferences. In addition, detectors used in SIMS have a background counting rate of 0.1-1 Hz, which further limits trace element analysis. In Accelerator Mass Spectrometry (AMS) long-lived radionuclides are detected free of molecular interferences and detector background at isotopic ratios as low as 10 -15 . Moreover, isobaric interferences can be reduced as well. In order to benefit from these advantages a combination of SIMS and AMS (Accelerator SIMS) has been proposed almost 20 years ago, but no facility has ever been fully developed. It has been the aim of this work to add a new sputtering chamber for AMS measurements of ultrapure semiconductor material to the existing PSI/ETH AMS facility. To fulfill the requirements of material analysis, an UHV chamber with special precautions against contamination has been built and adapted to the existing AMS setup. For sputtering, a commercial Cs gun with an ExB filter and a 1 o beam bend for neutral particle suppression is used to obtain a pure Cs ion beam. The gun is equipped with different apertures for varying the diameter of the beam spot. With the integrated scanning unit the 10 keV Cs beam can be rastered over approximately 1 mm 2 . This allows different applications such as bulk analysis, depth profiling and imaging. The secondary ion extraction is matched to the ion optical and geometrical requirements of the existing accelerator mass spectrometer. (author) figs., tabs., 67 refs

  20. Preliminary study of elemental mass size distribution of urban aerosol collected in Debrecen

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Borbely-Kiss, I.; Kiss, A.Z.; Koltay, E.; Szabo, Gy.

    2000-01-01

    Complete text of publication follows. Aerosol sampling campaigns were performed during January-February 1998 and August 1998 at an urban location (in the yard of the Institute of Nuclear Research), where aerosol sampling has been carried out continuously since 1991 with single stage Nuclepore filter holders, and since 1994 with 2-stage Gent stacked filter units (SFU). In the winter period in four weekdays 24-hours samplings were performed with a 7-stage PIXE International Cascade Impactor (PCI) and simultaneously with a SFU. On 19-25 August 1998, a week-long aerosol sampling campaign was carried out with the PCI (24-hour samplings), a SFU (24-hour samplings), and a streaker sampler (168-hour continuous sampling). For this period meteorological data were also obtained by a micro-meteorological station installed at the same location by the Radon Group. Elemental concentrations for Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Ba and Pb of the aerosol samples were determined by PIXE using the 2 MeV energy proton beam of the 5 MeV Van de Graaff accelerator of the Institute. The obtained average elemental concentrations and the seasonal variation in the elemental concentrations show good correlation with the results obtained from the analysis of the samples collected in previous years. In winter the elemental concentrations are usually lower than in summer, except Cl. The Cl concentration in the coarse fraction is higher with a factor of 10 than in summer due to the salting of the roads and pavements. The summer period included a long weekend with a national holiday. During the weekend the elemental concentrations and also the total mass decreased, and in the beginning of the following week it started to increase. Size distribution: the impactor we have used separate the aerosol within the size range of 0.25 μm and 30 μm into 7 fractions. The mass size distribution for elements of natural origin, like Si, Ca, Ti, Fe, and Mn has one mode: the coarse mode. The

  1. Multi-element determination in environmental samples by mass spectrometric isotope dilution analysis using thermal ionization. Pt. 2

    International Nuclear Information System (INIS)

    Hilpert, K.; Waidmann, E.

    1988-01-01

    An analytical procedure for the multi-element analysis of the elements Fe, Ni, Cu, Zn, Ga, Rb, Sr, Cd, Ba, Tl, and Pb in pine needles by mass spectrometric isotope dilution analysis using thermal ionization has been reported in Part I of this paper. This procedure is now transferred to the non-vegetable material 'Oyster Tissue' (Standard Reference Material 1566, National Bureau of Standards, USA). By a modification of the analytical procedure, it was possible to determine Cr in this material in addition to the aforementioned elements. No concentrations are certified for the elements Ga, Ba and Tl analyzed in this work. The concentrations of the remaining elements obtained by the multi-element analysis agree well with those certified. (orig.)

  2. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  3. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    Science.gov (United States)

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Elemental concentrations in tropospheric and lower stratospheric air in a Northeastern region of Poland

    Science.gov (United States)

    Braziewicz, Janusz; Kownacka, Ludwika; Majewska, Urszula; Korman, Andrzej

    Element concentrations of K, Ca, Ti, Cr, Fe, Ni, Cu, Zn, Se, Br, Sr and Pb as well as the activity of natural radionuclides 210Pb and 226Ra in air were measured. The aerosol samples were collected during tropospheric and stratospheric aircraft flights over the Northeastern region of Poland, which is mostly an agricultural and wooded area. The air volumes were filtered using Petrianov filters at 1, 3, 6, 9, 12 and 15 km above the ground level by special equipment attached to a jet plane. Aircraft flights were provided from September 1997 to August 1998 in 5 separate sampling runs. The long sampling distances served as a good representation of mean aerosol composition and distribution. Concentrations of the same elements were also measured using stationary equipment near the ground level at the outskirts of Warsaw. The vertical profiles of element concentration were obtained and the elemental compositions for the tropospheric and stratospheric aerosols were compared with those from the near-ground level. Contribution of K, Ca, Ti and Fe, which are the main components of soil, in total mass of all detected ones was estimated. Relative concentrations of all measured elements, which show any differences in the composition of the aerosol were calculated. The results obtained confirm the fact that the stratospheric reservoir is observed in the bottom stratosphere. The XRF method based on molybdenum X-ray tube was used as an analytical tool in the determination of aerosols trace elements. The altitude distributions of radioactivity of 226Ra and 210Pb were determined using radiochemical methods.

  5. ELEMENT MASSES IN THE CRAB NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M. [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii]  λ 7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  6. Radionuclides and selected trace elements in marine protein concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T M; Jokela, T A; Eagle, R J

    1971-12-01

    The concentrations of various trace elements and radionuclides have been measured in marine protein concentrates prepared from surface feeding fishes. As with concentrates prepared from benthic fishes, the /sup 210/Pb-/sup 210/Po pair are the most significant radionuclides present. Concentrations of stable Pb, Co and Ag in certain concentrates are sufficiently high to contribute substantially to estimated current intakes of these elements.

  7. Chemical characteristics and trace element concentration of non ...

    African Journals Online (AJOL)

    The present study investigates the details on the aspects of Coal quality such as proximate, ultimate, calorific value and trace element concentration and its impact on human health. Trace elements are present in very low percentage in coal but their concentration increases manifold after coal combustion and utilization.

  8. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals.

    Science.gov (United States)

    Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper

    2017-01-01

    The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating

  9. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  10. Determination of natural radioactivity and the concentration of elements in soil and plants at Krau Wildlife Reserve, Temerloh, Pahang

    International Nuclear Information System (INIS)

    Hafiz Hadzori

    2012-01-01

    This study was conducted to determine the natural radioactivity and the concentration of elements in soil and plants at Krau Wildlife Reserve, Pahang. Soil and plant samples collected were air dried and heated in the oven at temperature of 100 degree Celsius. Inductively Coupled Plasma Mass-Spectrometer (ICP-MS) was used to determine the natural radioactivity and elemental contents of each sample. Results showed that the concentration of U-238 and Th-232 varied from each sampling site. The concentration of Th-232 is higher than of U-238. For soil and plants samples, the natural radioactivity for both radionuclides were below 72 Bq/ kg. 15 elements present in both soil and plant samples, among other are Al, Fe, K, Mg, Mn, Ca, Zn, Co, Cd and As. The concentration of each elements differs for every sampling site. The elements with higher concentration are Al, Ca, Fe, K, Mg and Mn. This study showed that monocotyledon taking up more Mg than dicotyledons whereas dicotyledon plants taking up more Al. (author)

  11. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lorge, Susan Elizabeth [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 107-1010atoms/cm2 range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true

  12. Phosphogypsum analysis: total content and extractable element concentrations

    International Nuclear Information System (INIS)

    Gennari, Roseli F.; Medina, Nilberto H.; Garcia, Isabella; Silveira, Marcilei A.G.

    2011-01-01

    Phosphogypsum stand for the chemical origin gypsum generated in fertilizers production, in which phosphate rock is attacked by sulfuric acid resulting in phosphoric acid (H 3 PO 4 ) and phosphate fertilizers. Phosphogypsum is not a commercial product and it is stocked in large open areas or accumulated in lakes inducing to a major environmental problem due to the presence of toxic and radioactive elements. The increasing world agricultural demand is the real responsible for the severity of this environmental problem. Nevertheless, there are some possibilities for the application of this reject material, such as civil construction, waste water treatment, and in cultivated lands, etc. In the agriculture the phosphogypsum is commonly used as a nutrient source due to its large amounts of phosphorus, calcium and sulfur. However, there are still some environmental questions related to the use of this by-product since phosphogypsum is classified as TENORM (Technologically Enhanced Naturally Occurring Radioactive Material), which is a solid waste containing heavy metals and naturally occurring radioactive elements from the rock matrix. In this work, Plasma Mass Spectrometry (ICP-MS) was used to study phosphogypsum samples. Several acid solutions for samples digestion were evaluated in order to be feasible the chemical analysis. BCR sequential extractions were also performed. The results showed analyte concentrations are highly dependent on the acid solution used. The BCR guidelines could not be applied as used for soil, since the phosphogypsum solubility is different. So, it would be necessary to use different mass aliquots in the extractions, to be feasible an environmental evaluation. (author)

  13. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  14. Using trace element concentrations in Corbicula fluminea to identify potential sources of contamination in an urban river

    International Nuclear Information System (INIS)

    Loeffler Peltier, Gretchen; Meyer, Judith L.; Jagoe, Charles H.; Hopkins, William A.

    2008-01-01

    We used the biomonitor, Corbicula fluminea, to investigate the contributions of trace elements associated with different point sources and land uses in a large river. Trace elements were analyzed in tissues of clams collected from 15 tributary streams draining five land use or point source types: agriculture, forest, urban, coal-fired power plant (CFPP), and wastewater (WWTP). Clams from forested catchments had elevated Hg concentrations, and concentrations of arsenic and selenium were highest (5.0 ± 0.2 and 13.6 ± 0.9 μg g -1 dry mass (DM), respectively) in clams from CFPP sites. Cadmium concentrations were significantly higher in clams from urban and CFPP sites (4.1 ± 0.2 and 3.6 ± 0.9 μg g -1 DM, respectively). Non-metric multidimensional scaling (NMS) of tissue concentrations in clams clustered at CFPP and forest/agriculture sites at opposite ends of the ordination space, and the distribution of sites was driven by Cu, Zn, Cd, and Hg. - C. fluminea collected downstream of CFPPs had elevated tissue concentrations of trace elements

  15. Evaluation of minor element concentrations in potatoes using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Beldjilali, S.; Borivent, D.; Mercadier, L.; Mothe, E.; Clair, G.; Hermann, J.

    2010-01-01

    We have performed spectroscopic analysis of the plasma generated by Nd:YAG laser irradiation of flesh and skin of fresh potatoes. From the spectra recorded with an Echelle spectrometer 11 minor elements have been identified. Their relative concentrations were estimated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. According the moderate plasma temperature of about 6500 K at the time of spectroscopic observation, the electrons are essentially generated by the ionization of the minor metal atoms, making plasma modeling possible although the organic elements may be out of equilibrium. Among the spectral lines selected for the analysis, the Na I 588.99 and 589.59 nm doublet was found to be partially self-absorbed allowing us to estimate the number density of sodium atoms. The value was found to agree with the number density predicted by the plasma model. As a result, the relative concentrations of the detected minor elements have been estimated for both the flesh and skin of the potatoes. Among these, aluminum and silicon were found to have relatively large mass fractions in the potato skin whereas their presence was not detected in the flesh. The present study shows that laser-induced breakdown spectroscopy is a promising tool to measure the elemental composition of fresh vegetables without any sample preparation.

  16. Trace element concentrations in higher fungi

    International Nuclear Information System (INIS)

    Byrne, A.R.; Ravnik, V.; Kosta, L.

    1976-01-01

    The concentrations of ten trace elements, As, Br, Cd, Cu, Hg, I, Mn, Se, Zn and V, have been determined in up to 27 species of higher fungi from several sites in Slovenia, Yugoslavia. Analyses were based on destructive neutron activation techniques. Data are presented and compared with the concentrations found in soils. Previously values were non-existent or scanty for these elements, so that the data represent typical levels for basidiomycetes. In addition to confirming high levels of mercury in many species, the survey also found that cadmium is accumulated to a surprising extent by most fungi, the average value being 5 ppm. Among other accumulations found was bromine by the genus Amanita, and selenium by edible Boletus. Correlation analysis between all pairs of trace elements gave values for r of from 0.75 to 0.43 for 7 pairs (Cu and Hg, 0.75; Se and As, 0.69). As well as these features of biochemical interest, the values found and the pattern of accumulation suggest potential uses of fungi in environmental studies

  17. Analysis of Trace Elements in Rat Bronchoalveolar Lavage Fluid by Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A

    2017-08-01

    The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.

  18. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  19. Multi-elemental determination of trace elements in deep seawater by inductively coupled plasma mass spectrometry with resin preconcentration

    International Nuclear Information System (INIS)

    Sumida, Takashi; Nakazato, Tetsuya; Tao, Hiroaki

    2003-01-01

    A miniaturized column (ca. 3 mm i.d., 40 mm length), packed with a chelating resin (0.2 g) with iminodiacetic acid groups (Muromac A-1), was tested for the preconcentration of trace elements in seawater. After preconcentration, the column was washed with ammonium acetate buffer (pH 5.5) and water to remove the major elements, such as Ca and Mg, and was then eluted with 4 ml of 2 mol l -1 nitric acid. Twenty-six trace elements were determined by inductively coupled plasma mass spectrometry and inductively coupled plasma emission spectrometry. The necessary volume of the seawater sample was only 200 ml. The recoveries for most of the elements tested were over 90%, although those for Al, V and Th were around 70%. The trueness and precision were evaluated by analyzing a standard reference material of seawater (NASS-4, NRC Canada). The observed values obtained with the present method showed good agreement with the certified values. The present method was also applied to deep seawater samples collected at Muroto, Japan. A difference in the rare earth element pattern, especially the Ce anomaly, between the deep seawater sample and the surface seawater sample was observed, as well as the differences of the concentrations of many trace elements. (author)

  20. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    Science.gov (United States)

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  1. Elemental mass size distribution of the Debrecen urban aerosol

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Dobos, E.; Borbely-Kiss, I.

    2007-01-01

    Complete text of publication follows. Size distribution is one of the basic properties of atmospheric aerosol. It is closely related to the origin, chemical composition and age of the aerosol particles, and it influences the optical properties, environmental effects and health impact of aerosol. As part of the ongoing aerosol research in the Group of Ion Beam Applications of the Atomki, elemental mass size distribution of urban aerosol were determined using particle induced X-ray emission (PIXE) analytical technique. Aerosol sampling campaigns were carried out with 9-stage PIXE International cascade impactors, which separates the aerosol into 10 size fractions in the 0.05-30 ?m range. Five 48-hours long samplings were done in the garden of the Atomki, in April and in October, 2007. Both campaigns included weekend and working day samplings. Basically two different kinds of particles could be identified according to the size distribution. In the size distribution of Al, Si, Ca, Fe, Ba, Ti, Mn and Co one dominant peak can be found around the 3 m aerodynamic diameter size range, as it is shown on Figure 1. These are the elements of predominantly natural origin. Elements like S, Cl, K, Zn, Pb and Br appears with high frequency in the 0.25-0.5 mm size range as presented in Figure 2. These elements are originated mainly from anthropogenic sources. However sometimes in the size distribution of these elements a 2 nd , smaller peak appears at the 2-4 μm size ranges, indicating different sources. Differences were found between the size distribution of the spring and autumn samples. In the case of elements of soil origin the size distribution was shifted towards smaller diameters during October, and a 2 nd peak appeared around 0.5 μm. A possible explanation to this phenomenon can be the different meteorological conditions. No differences were found between the weekend and working days in the size distribution, however the concentration values were smaller during the weekend

  2. Element concentrations in the intestinal mucosa of the mouse as measured by X-ray microanalysis

    International Nuclear Information System (INIS)

    Zglinicki, T. von; Roomans, G.M.

    1989-01-01

    Subcellular ion distribution in villus, crypt, Paneth and smooth muscle cells of the mouse small intestine under resting conditions was investigated by X-ray microanalysis of ultrathin cryosections. In addition, the mass distribution was estimated by measuring the optical transmission of the compartments in transmission electron micrographs. Each cell type is characterized by a special composition in terms of the major monovalent ions Na, K, and Cl. In particular, among crypt epithelial cells, those cells containing small secretion granula (termed crypt A cells) also display cytoplasmic ion concentrations significantly different from crypt epithelial cells lacking secretion granula (crypt B cells). Monovalent ion concentrations in the cytoplasm of Paneth cells, muscle cells, and crypt epithelial cells lacking secretion granula are higher than expected from osmotic considerations. Hence, significant binding of ions to cytoplasmic polyelectrolytes is assumed in these cells. There are gradients of dry mass and K concentration from the luminal to the basal side of the cell, both in crypt and in villus cells. The terminal web in these cells is rich in Na and Cl. The elemental composition of the large, dark secretion granula in Paneth cells is similar to that of the small dark granula in crypt cells. However, the two morphologically different types of granula within the Paneth cells have a significantly different elemental composition, which might reflect maturation of secretion granula

  3. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    Science.gov (United States)

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The determination of low level trace elements in coals by laser ablation-inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C.A.; Spears, D.A.; Krause, P.; Cox, A.G. [University of Sheffield, Sheffield (United Kingdom). Dept. of Earth Sciences

    1999-11-01

    The rapid determination of elements present in low level concentrations in bituminous coals is possible using laser abalation-inductively coupled plasma-mass spectrometry (l.a.-i.c.p.-m.s.). A wide range of trace elements can routinely be determined using this technique but it is for environmentally sensitive elements, such as As, Cd, Mo, Sb, Se and Hg, that it is of most use due to the low levels of detection. Calibration of the i.c.p.-m.s. was achieved using a series of uncertified coals and the method evaluated using the South African certified coals, Sarm 18, 19 and 20. A critical evaluation of the data obtained shows that for many of the elements studied the results obtained are both accurate and precise, even at very low concentrations, with the limits of detection for all of the elements being in the {mu}g/kg (parts per billion) range. 6 refs., 3 figs., 9 tabs.

  5. Trace element concentrations of wild saltwater crocodile eggs

    International Nuclear Information System (INIS)

    Manolis, S.C.; Webb, G.J.; Britton, A.R.; Jeffree, R.A.; Markich, S.J.

    2002-01-01

    Saltwater crocodiles (Crocodylus porosus) accumulate trace elements from the environment into their flesh and bones (Jeffree et al., 2001a). Elevated levels of metals (e.g. Hg, Zn, Pb), organochlorines (e.g. DDT) and radionuclides (e.g. radiocesium) have been recorded in blood, tissues and eggs of several crocodilian species (Manolis et al., this volume). In this study the concentrations of various elements (including metals) were measured in the yolk of C. porosus eggs collected from the Finniss River and two other distant nesting sites (Melacca Swamp, a spring-fed freshwater swamp; Adelaide River, a tidal river) during the 2000- 01 nesting season. Infertile eggs from 30 clutches (Adelaide 12, Melacca 8, Finniss 10) were opened and the yolk contents removed (after Webb et al., 1987) and frozen. Samples of yolk were then oven-dried, digested in nitric acid and hydrogen peroxide. The digest solutions were then analysed for 20 elements (see Table 1) using inductively coupled plasma mass spectroscopy. Similarities between the elemental composition of eggs from the three areas suggests that downstream contamination from Rum Jungle Mine is not apparent in C. porosus nesting in the Finniss River. These nesting areas are some 60 km downstream of the mine site, and contaminants are probably greatly diluted during the wet season. C. porosus were also intensively hunted in the Finniss River area during the 1950s and 1960s, until their protection in 1971 (Webb et al. 1984). Some females would have been recruited into the population after the period of mining. Long-term effects of the mine may be apparent in areas with Australian freshwater crocodiles (C. johnstoni), mainly upstream of C. porosus nesting areas and up to the mine. Examination of tissues and eggs of C. johnstoni may provide more information on the historical effects of the mine

  6. Forensic discrimination of copper wire using trace element concentrations.

    Science.gov (United States)

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  7. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  8. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration

    International Nuclear Information System (INIS)

    Elteren, Johannes T. van; Tennent, Norman H.; Selih, Vid S.

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for quantitative analysis of ancient/historic glasses is subject to calibration issues which have been addressed in this work. Since ancient/historic glasses have widely ranging matrix compositions, a complementary analysis by an alternative method is generally employed to determine at least one major element which can be used as an internal standard. We demonstrate that such a complementary analysis is unnecessary using a so-called sum normalization calibration technique (mathematically formulated) by simultaneous measurement of 54 elements and normalizing them to 100% [w/w] based on their corresponding oxide concentrations. The crux of this approach is that by assuming a random internal standard concentration of a particular major oxide, e.g. SiO 2 , the normalization algorithm varies the internal standard concentration until the cumulated concentrations of all 54 elemental oxides reach 100% [w/w]. The fact that 54 elements are measured simultaneously predetermines the laser ablation mode to rastering. Nine glass standards, some replicating historic compositions, were used for calibration. The linearity of the calibration graphs (forced through the origin) represented by the relative standard deviations in the slope were between 0.1 and 6.6% using SiO 2 as an internal standard. This allows high-accuracy determination of elemental oxides as confirmed by good agreement between found and reported values for major and minor elemental oxides in some synthetic glasses with typical medieval composition (European Science Foundation 151 and 158). Also for trace elemental concentrations of lanthanides in a reference glass (P and H Developments Ltd. DLH7, a base glass composition with nominally 75 μg g -1 elements added) accurate data were obtained. Interferences from polyatomic species and doubly charged species on the masses of trace elements are possible, depending on the base composition of the

  9. Concentrations of major and trace elements in polished rice and paddy soils collected in Aomori, Japan

    International Nuclear Information System (INIS)

    Tsukada, H.; Hasegawa, H.; Takeda, A.; Hisamatsu, S.

    2005-01-01

    Rice is a staple food in most Asian countries including Japan, and it is important to evaluate the intake of elements through polished rice ingestion in daily life. Rice grain samples and surface paddy soil samples were collected from 20 sites throughout Aomori Prefecture, Japan. Rice grains were threshed and then polished to 90% of the total weight of brown rice. The polished rice samples for the determination of the neutron activation analysis (NAA) were dried at 50 degree C and those of the inductively coupled plasma-mass spectrometer (ICP-MS) were ashed at a temperature below 450 degree C to avoid loss of alkali metals. The soil samples were dried at 50 degree C and were pulverized with an agate ball mill. The concentrations of As, Cl and I in the polished rice and As, Cl, I, Ti and Zr in the soils were determined by the NAA. The concentrations of 22 elements in the polished rice and 28 elements in the soils were determined by the ICP-MS. The mean concentrations of essential elements in the polished rice such as K, Mg, Cl, Ca, Zn, Mn, Fe, Cu and Mo were 720, 270, 160, 54, 16, 9.7, 2.3, 21 and 0.47 mg kg -1 dry weight, respectively, and the range of each element was within one order of magnitude. However, the ranges of most trace elements in the polished rice including Al, Ni, Ba, Cd, Pb, Cr, I, Ag and Cs were more than one order of magnitude. The mean concentrations of non-essential elements in the polished rice were as follows: Na, 11; Al, 3.9; Rb, 1.2; Ni, 0.11; As, Sr, Ba, Cd, V and Pb, 0.1-0.01; Cr, I, Co, Ag, Se and Cs, O.Ol-0.001 mg kg -1 dry weight. The concentration ranges of elements, except for I, in the paddy soils were within one order of magnitude. The mean concentrations of elements in the soils were as follows: Al, Fe, Ca and Na, 100000-10000; Mg, K and Ti, 10000-1000; Mn, Ba, Cl, Zr, Sr and Zn, 1000-100; V, Ce, Cr, Rb, Cu, Pb, Sc, La, As and Ni, 100-10; Co, Th, Cs, I, U, Mo and Se, 10-1; Sb, Cd and Ag, 1-0.1 mg kg -1 . The mean concentrations of

  10. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    International Nuclear Information System (INIS)

    Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M.

    2008-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ∼103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent

  11. Concentrations of rare elements in some Australian soils

    International Nuclear Information System (INIS)

    Diatloff, E.; Smith, F.W.; Asher, C.J.

    1996-01-01

    Total, exchangeable, and soil solution concentrations were measured for 15 rare earth elements (REEs) in 9 soils from Queensland and New South Wales. In a further 10 acid soils, effects of amendment with CaCO 3 or CaSO 4 . 2H 2 O were measured on the concentrations of REEs in soil solution. The total concentration of the REEs in soil solutions from unamended soils ranged from below the detection limit (0.007 μM) to 0.64 μM. Lanthanum (La) and cerium (Ce) were the REEs present in the greatest concentrations, the highest concentrations measured in the diverse suite of soils being 0.13 μM La and 0.51 μM Ce. Rare earth elements with higher atomic numbers were present in very low concentrations. Exchangeable REEs accounted for 0.07 to 12.6% of the total REEs measured in the soils. Addition of CaCO 3 increased soil solution pH and decreased REE concentrations in soil solution, whilst CaSO 4 . 2H 2 O decreased soil solution pH and increased the concentrations of REEs in soil solution. Solubility calculations suggest that CePO 4 may be the phase controlling the concentration of Ce in soil solution. 33 refs., 6 tabs., 2 figs

  12. Stationary nonimaging concentrator as a second stage element in tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Kritchman, E.M.; O' Gallagher, J.; Snail, K.A.; Winston, R.

    1983-06-01

    The University of Chicago solar energy group and GTE Research have developed an Integrated Stationary Evacuated Concentration (ISEC) collector tube. In this paper the increase in concentration of line focus concentrators that can be achieved using the evacuated CPC collector tube as a second stage element is examined. Three primary elements of the overall concentration are analyzed: a flat parabolic absorber trough, a flat Fresnel lens, and a color and coma corrected Fresnel lens. The three examples demonstrate that high concentration ratios may be achieved by using the already fabricated ISEC as a second stage element. The ISEC also suppresses thermal losses due to conduction, convection, and infrared radiation.

  13. Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching

    Directory of Open Access Journals (Sweden)

    Yiqian Ma

    2018-04-01

    Full Text Available Eudialyte is a promising mineral for rare earth elements (REE extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time as the predictor variables, and the total rare earth elements (TREE extraction efficiency as the response were considered. After experimental work in laboratory conditions, according to design of experiment theory (DoE, the modeling process was performed using Multiple Linear Regression (MLR, Stepwise Regression (SWR, and Artificial Neural Network (ANN. The ANN model of REE extraction was adopted. Additional tests showed that values predicted by the neural network model were in very good agreement with the experimental results. Finally, the experiments were performed on a scaled up system under optimal conditions that were predicted by the adopted ANN model. Results at the scale-up plant confirmed the results that were obtained in the laboratory.

  14. Concentration of trace elements on branded cigarette in Malaysia

    International Nuclear Information System (INIS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Yasir, Muhamad Samudi; Rahman, Irman Abdul

    2016-01-01

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 10 12 n cm -2 s -1 . The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO)

  15. Concentration of trace elements on branded cigarette in Malaysia

    Science.gov (United States)

    Azman, Muhammad Azfar; Yasir, Muhamad Samudi; Rahman, Irman Abdul; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd

    2016-01-01

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 1012 n cm-2 s-1. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO).

  16. Concentration of trace elements on branded cigarette in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd [Blok 18, Makmal Kimia Analisis (ACA/BAS), Agensi Nuklear Malaysia, 43000 Kajang, Selangor (Malaysia); Yasir, Muhamad Samudi; Rahman, Irman Abdul [Bangunan Sains Nuklear, Fakulti Sains & Teknologi, UKM Bangi, 43600 Bangi, Selangor (Malaysia)

    2016-01-22

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 10{sup 12} n cm{sup -2} s{sup -1}. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO)

  17. Log-stable concentration distributions of trace elements in biomedical samples

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Kuternoga, E.; Braziewicz, J.; Pajek, M.

    2004-01-01

    In the present paper, which follows our earlier observation that the asymmetric and long-tailed concentration distributions of trace elements in biomedical samples, measured by the X-ray fluorescence techniques, can be modeled by the log-stable distributions, further specific aspects of this observation are discussed. First, we demonstrate that, typically, for a quite substantial fraction (10-20%) of trace elements studied in different kinds of biomedical samples, the measured concentration distributions are described in fact by the 'symmetric' log-stable distributions, i.e. the asymmetric distributions which are described by the symmetric stable distributions. This observation is, in fact, expected for the random multiplicative process, which models the concentration distributions of trace elements in the biomedical samples. The log-stable nature of concentration distribution of trace elements results in several problems of statistical nature, which have to be addressed in XRF data analysis practice. Consequently, in the present paper, the following problems, namely (i) the estimation of parameters for stable distributions and (ii) the testing of the log-stable nature of the concentration distribution by using the Anderson-Darling (A 2 ) test, especially for symmetric stable distributions, are discussed in detail. In particular, the maximum likelihood estimation and Monte Carlo simulation techniques were used, respectively, for estimation of stable distribution parameters and calculation of the critical values for the Anderson-Darling test. The discussed ideas are exemplified by the results of the study of trace element concentration distributions in selected biomedical samples, which were obtained by using the X-ray fluorescence (XRF, TXRF) methods

  18. Determination of isotope ratio of elements by mass distribution in molecules of varied chemical compounds

    International Nuclear Information System (INIS)

    Gladkikh, I.S.; Babichev, A.P.

    1999-01-01

    The procedure and program for calculation of isotope ratio of elements involving in the compound being studied using data of mass spectrometry were elaborated. The methods developed for the O 2 , SiH 4 , Cd(CH 3 ) 2 molecules were demonstrated for the illustration. The results of calculation provide support for the efficiency of the program and satisfactory reliability of the results during calculation of the isotope and complex compound concentrations. The program may be used for the estimation of the degree of nonequilibrium isotope distributions, it may indicate on the errors of the mass spectroscopy results [ru

  19. Major and trace element geochemistry and background concentrations for soils in Connecticut

    Science.gov (United States)

    Brown, Craig; Thomas, Margaret A.

    2014-01-01

    Soil samples were collected throughout Connecticut (CT) to determine the relationship of soil chemistry with the underlying geology and to better understand background concentrations of major and trace elements in soils. Soil samples were collected (1) from the upper 5 cm of surficial soil at 100 sites, (2) from the A horizon at 86 of these sites, and (3) from the deeper horizon, typically the C horizon, at 79 of these sites. The Ca, Fe, K, Na, and Ti, but element concentrations showed a relatively similar pattern in A-horizon and surficial soil samples among the underlying geologic provinces. Trace element concentrations, including Ba, W, Ga, Ni, Cs, Rb, Sr, Th, Sc, and U, also were higher in C-horizon soil samples than in overlying soil samples. Concentrations of Mg, and several trace elements, including Mn, P, As, Nb, Sn, Be, Bi, Hg, Se, Sb, La, Co, Cr, Pb, V, Y, Cu, Pb, and Zn were highest in some A-horizon or surficial soils, and indicate possible contributions from anthropogenic sources. Because element concentrations in soils above the C horizon are more likely to be affected by anthropogenic factors, concentration ranges in C-horizon soils and their spatially varying geologic associations should be considered when estimating background concentrations of elements in CT soils.

  20. Concentration of key elements in North American meat and bone meal

    International Nuclear Information System (INIS)

    Garcia, Rafael A.; Rosentrater, Kurt A.

    2008-01-01

    Meat and bone meal (MBM) and related rendered protein commodities have potential for use in applications other than animal feed, including use as a fuel or a phosphorus fertilizer. In order to develop these applications, data on the elemental composition are required; the currently available elemental composition data have important limitations. To generate more appropriate and reliable data, MBM samples were collected from 17 North American rendering plants, carefully prepared and analyzed for 20 elements. Preliminary studies showed that the sample preparation process artificially increased levels of sulfur and nickel in a manner that was correctable. Concentrations of many elements were found to agree with previously published values, but concentrations of potassium, magnesium and copper were significantly different from the most authoritative reference. Concentrations of heavy metals tested for were low, and arsenic and cadmium were not detected in any sample. Among the elements tested, there were a number of pairs of elements whose concentration was correlated with high significance, which in some cases was due to the varying proportions of soft tissue and bone in the MBM. The data presented should allow the development of non-feed applications for MBM to proceed with increased confidence

  1. Investigation on concentration of elements in wetland sediments and aquatic plants

    Directory of Open Access Journals (Sweden)

    H. Janadeleh

    2016-01-01

    Full Text Available The major aim of the present study was to investigate element (Fe, Ni, Pb, V, Zn concentrations in sediment and different tissues of Phragmities australis and Typha latifolia in Hor al-Azim Wetland Southwest Iran. Sampling of sediments and aquatic plants was carried out during spring and summer 2014. Results showed that the mean  concentrations of elements in Phragmities australis  in root and stem-leaf were as follows: Iron:4448 mg/kg, Nickel: 28 mg/kg, Lead:8 mg/kg, Vanadium:10 mg/kg  and Zinc 15.5 mg/kg in root and: Fe:645 mg/kg, Ni:15 mg/kg, Pb:4 mg/kg, V:4 mg/kg and Zinc 16 mg/kg respectively. Also, the mean concentrations of Fe, Ni, Pb, V and Zn in roots of Typha latifolia were 8696 mg/kg, 34 mg/kg, 5 mg/kg, 19 mg/kg and 27 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb, Zn in stem-leaves of Typha latifolia were as follows: 321 mg/kg, 3 mg/kg, 7 mg/kg, 2 mg/kg and 14 mg/kg respectively. The mean concentrations of Fe, Ni, V, Pb and zinc were as: 40991 mg/kg, 65 mg/kg, 60 mg/kg, 31 mg/kg, 60 mg/kg respectively in surface sediment of study area. Concentration pattern of elements in sediment were as: Fe>Ni>Zn>V>Pb. The highest concentration of elements in the plant was seen in the roots. Also, Typha latifolia can uptake more concentration of elements than Phragmities australis. Based on the enrichment factor, Ni in summer had the highest EF values among the elements studied and it has a moderate enrichment.

  2. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-10-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  3. Elemental concentration distribution in human fingernails – A 3D study

    International Nuclear Information System (INIS)

    Pineda-Vargas, C.A.; Mars, J.A.; Gihwala, D.

    2012-01-01

    The verification of pathologies has normally been based on analysis of blood (serum and plasma), and physiological tissue. Recently, nails and in particular human fingernails have become an important medium for pathological studies, especially those of environmental origin. The analytical technique of PIXE has been used extensively in the analysis of industrial samples and human tissue specimens. The application of the analytical technique to nails has been mainly to bulk samples. In this study we use micro-PIXE and -RBS, as both complementary and supplementary, to determine the elemental concentration distribution of human fingernails of individuals. We report on the 3D quantitative elemental concentration distributions (QECDs) of various elements that include C, N and O as major elements (10–20%), P, S, Cl, K and Ca as minor elements (1–10%) and Fe, Mn, Zn, Ti, Na, Mg, Cu, Ni, Cr, Rb, Br, Sr and Se as trace elements (less than 1%). For PIXE and RBS the specimens were bombarded with a 3 MeV proton beam. To ascertain any correlations in the quantitative elemental concentration distributions, a linear traverse analysis was performed across the width of the nail. Elemental distribution correlations were also obtained.

  4. Concentration distribution of trace elements: from normal distribution to Levy flights

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Banas, D.; Braziewicz, J.; Majewska, U.; Pajek, M.

    2003-01-01

    The paper discusses a nature of concentration distributions of trace elements in biomedical samples, which were measured by using the X-ray fluorescence techniques (XRF, TXRF). Our earlier observation, that the lognormal distribution well describes the measured concentration distribution is explained here on a more general ground. Particularly, the role of random multiplicative process, which models the concentration distributions of trace elements in biomedical samples, is discussed in detail. It is demonstrated that the lognormal distribution, appearing when the multiplicative process is driven by normal distribution, can be generalized to the so-called log-stable distribution. Such distribution describes the random multiplicative process, which is driven, instead of normal distribution, by more general stable distribution, being known as the Levy flights. The presented ideas are exemplified by the results of the study of trace element concentration distributions in selected biomedical samples, obtained by using the conventional (XRF) and (TXRF) X-ray fluorescence methods. Particularly, the first observation of log-stable concentration distribution of trace elements is reported and discussed here in detail

  5. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.

    Science.gov (United States)

    Kondo, Michelle C; Sharma, Raghav; Plante, Alain F; Yang, Yunwen; Burstyn, Igor

    2016-01-01

    Green stormwater infrastructure (GSI) is designed to capture stormwater for infiltration, detention, evapotranspiration, or reuse. Soils play a key role in stormwater interception at these facilities. It is important to assess whether contamination is occurring in GSI soils because urban stormwater drainage areas often accumulate elements of concern. Soil contamination could affect hydrologic and ecosystem functions. Maintenance workers and the public may also be exposed to GSI soils. We investigated soil elemental concentrations, categorized as macro- and micronutrients, heavy metals, and other elements, at 59 GSI sites in the city of Philadelphia. Non-GSI soil samples 3 to 5 m upland of GSI sites were used for comparison. We evaluated differences in elemental composition in GSI and non-GSI soils; the comparisons were corrected for the age of GSI facility, underlying soil type, street drainage, and surrounding land use. Concentrations of Ca and I were greater than background levels at GSI sites. Although GSI facilities appear to accumulate Ca and I, these elements do not pose a significant human health risk. Elements of concern to human health, including Cd, Hg, and Pb, were either no different or were lower in GSI soils compared with non-GSI soils. However, mean values found across GSI sites were up to four times greater than soil cleanup objectives for residential use. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  7. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    International Nuclear Information System (INIS)

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  8. Simultaneous determination of picogram per gram concentrations of Ba, Pb and Pb isotopes in Greenland ice by thermal ionisation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jimi, Salah I.; Rosman, Kevin J.R.; Candelone, Jean-Pierre; Burn, Laurie J. [Curtin University of Technology, Department of Imaging and Applied Physics, Perth (Australia); Hong, Sungmin [Polar Research Centre, Korean Ocean Research and Development Institute, Ansan, P.O. Box 29, Seoul (Korea); Boutron, Claude F. [Domaine Universitaire, Laboratoire de Glaciologie et Geophysique du l' Environnement, 54 rue Moliere, Saint Martin d' Heres (France); UFR de Mecanique, Universite Joseph Fourier de Grenoble (Institut Universitaire de France), Domaine Universitaire, Grenoble (France)

    2008-01-15

    A technique has been developed to simultaneously measure picogram per gram concentrations of Ba and Pb by isotope dilution mass spectrometry, as well as Pb isotopic ratios in polar ice by thermal ionisation mass spectrometry. BaPO{sup +}{sub 2} and Pb{sup +} ions were employed for these determinations. A calibrated mixture of enriched {sup 205}Pb and {sup 137}Ba was added to the samples providing an accuracy of better than approximately 2% for Pb/Ba element ratio determinations. Interference by molecular ions in the Pb mass spectrum occurred only at {sup 204}Pb and {sup 205}Pb, but these contributions were negligible in terms of precisions expected on picogram-sized Pb samples. The technique is illustrated with measurements on Greenland firn, using a drill-core section that includes the Laki volcanic eruption of 1783-1784. The data show deviations from the element concentrations indicating volatile metal enrichments, but the Pb isotopic signature of the Laki lava could not be identified. (orig.)

  9. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were

  10. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cordeau

    Full Text Available In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC associated with elemental mass spectrometry (ICP-MS to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully

  11. STUDIES OF CHOSEN TOXIC ELEMENTS CONCENTRATION IN MULTIFLOWER BEE HONEY

    Directory of Open Access Journals (Sweden)

    Ewa Popiela

    2011-04-01

    Full Text Available 72 544x376 Normal 0 21 false false false  The aim of the study was to determine the bioaccumulation level of chosen toxic elements (Zn, Cu, Pb, As and Cd in multiflower honey collected from Brzeg area. Biological material (honey was mineralized using the microwave technique at an elevated pressure in the microprocessor station of pressure in the type Mars 5. Quantitative analysis of elements (As, Cd, Cu, Pb and Zn was performed by plasma spectrometry method using a Varian ICP-AES apparatus. The presence of toxic elements was determined in examined biological materials. The elements fallowed the fallowing decreasing order with respect to their content of honey: Zn>Cu>Pb>As>Cd. The average concentrations of studied elements observed in multi-flower honey were as follows: 6.24 mg.kg-1 of zinc, 2.75 mg.kg-1 of copper, 0.53, 0.071, 0.042 mg.kg-1of lead, arsenic and cadmium, respectively. Lead was the most problematic in bee honey because its average content exceeded the maximum acceptable concentration. Additionally, this metal concentration was 60% higher in studied samples than allowable standard of lead content.doi:10.5219/134 

  12. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  13. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment

    Directory of Open Access Journals (Sweden)

    Gian Maria BEONE

    2003-02-01

    Full Text Available This study was primarily designed to contribute to the debate "Do accumulator species reflect the element contamination level of their environment?" This research was carried out: 1 to know the distribution of 15 trace elements and calcium in shell and soft tissues of three species of freshwater mussels and macrophytes; 2 to compare the accumulation capacity of each trace element by mussels and by eight species of macrophytes and 3 to test the relationships between the metal concentrations in the mussels and macrophytes and those in water and sediments. The variability of element residues in the mussels is the major limit to accumulator monitoring. The most important causes are: seasonal cycle, physical environment and biological factors such as the size, age and growth rate. This research was designed to eliminate the consequence of variability deriving from the season and the environment. To this end the mussels and macrophytes were collected at the same time from the same habitat: Ranco Bay, Lago Maggiore, Northern Italy. In addition, the element concentrations in more size-classes of the most abundant mussel species (Unio pictorum and Dreissena polymorpha were measured. Trace elements were analyzed by Inductive Coupled Plasma-Mass Spectrometry (ICP-MS. By arranging the data in sequences of decreasing element concentrations in the organisms as well as in water and sediments, we were able to compare the accumulating ability of the tested species and evaluate their capacity to reflect environmental availability. Neither the sequences in the shell nor those in the tissues were similar to the sequence in the water. The differences between the sequences of the mussel tissues and those of the sediments were less striking than those between shells and sediments. Similar results were obtained by macrophytes. In conclusion, the results of this study (which mimics the monitoring practice prove that bioaccumulators cannot be used to evaluate the

  14. Mass spectrometric characterization of elements and molecules in cell cultures and tissues

    International Nuclear Information System (INIS)

    Arlinghaus, H.F.; Kriegeskotte, C.; Fartmann, M.; Wittig, A.; Sauerwein, W.; Lipinsky, D.

    2006-01-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and laser post-ionization secondary neutral mass spectrometry (laser-SNMS) have been used to image and quantify targeted compounds, intrinsic elements and molecules with subcellular resolution in single cells of both cell cultures and tissues. Special preparation procedures for analyzing cell cultures and tissue materials were developed. Cancer cells type MeWo, incubated with boronated compounds, were sandwiched between two substrates, cryofixed, freeze-fractured and freeze-dried. Also, after injection with boronated compounds, different types of mouse tissues were extracted, prepared on a special specimen carrier and plunged with high velocity into LN 2 -cooled propane for cryofixation. After trimming, these tissue blocks were freeze-dried. The measurements of the K/Na ratio demonstrated that for both cell cultures and tissue materials the special preparation techniques used were appropriate for preserving the chemical and structural integrity of the living cell. The boron images show inter- and intracellular boron signals with different intensities. Molecular images show distinct features partly correlated with the cell structure. A comparison between laser-SNMS and ToF-SIMS showed that especially laser-SNMS is particularly well-suited for identifying specific cell structures and imaging ultratrace element concentrations in tissues

  15. Food concentrations and dietary intakes of elements for Chinese man

    International Nuclear Information System (INIS)

    Zhu Hongda; Wang Jixian; Chen Rusong

    2000-01-01

    Objective: To obtain concentrations of elements in Chinese current foods and their dietary intakes by adult man in order to provide a basis on intake parameters of Chinese Reference Man and make related hygienic evaluation. Methods: With mixed food sample method of total diet study, determination of element concentrations in constituent foods of diets for 4 areas with different diet types was carried out by using NAA, ICP-MS, ICP-AES, AAS and necessary QA measures, and estimation of their daily intakes and hygienic evaluation were also made. Results: The concentrations of 42 elements in 12 categories of foods, their intakes and hygienic evaluation for adult man were obtained. Conclusion: The data on element concentrations in Chinese foods and their dietary intakes were updated and widened. These data provided a new basis for developing the parameters of Chinese Reference Man and revealed some current hygienic problems. For example, from viewpoint of nutrition hygiene the Ca, Zn, and Cu intakes for Chinese Reference Man are insufficient, and from consideration of food hygiene the intakes of Pb,Cd and Na are excessive.. Especially, and Cd average daily intakes of Pb, Cd and Hg have been increased during recent years, those of Pb exceed their ADIs, which should be paid attention to

  16. HEAVY-ELEMENT ENRICHMENT OF A JUPITER-MASS PROTOPLANET AS A FUNCTION OF ORBITAL LOCATION

    International Nuclear Information System (INIS)

    Helled, R.; Schubert, G.

    2009-01-01

    One possible mechanism for giant planet formation is disk instability in which the planet is formed as a result of gravitational instability in the protoplanetary disk surrounding the young star. The final composition and core mass of the planet will depend on the planet's mass, environment, and the planetesimal accretion efficiency. We calculate heavy-element enrichment in a Jupiter-mass protoplanet formed by disk instability at various radial distances from the star, considering different disk masses and surface density distributions. Although the available mass for accretion increases with radial distance (a) for disk solid surface density (σ) functions σ = σ 0 a -α with α 5 years of planetary evolution, when the planet is extended and before gap opening and type II migration take place. The accreted mass is calculated for disk masses of 0.01, 0.05, and 0.1 M sun with α = 1/2, 1, and 3/2. We show that a Jupiter-mass protoplanet can accrete 1-110 M + of heavy elements, depending on the disk properties. Due to the limitation on the accretion timescale, our results provide lower bounds on heavy-element enrichment. Our results can explain the large variation in heavy-element enrichment found in extrasolar giant planets. Since higher disk surface density is found to lead to larger heavy-element enrichment, our model results are consistent with the correlation between heavy-element enrichment and stellar metallicity. Our calculations also suggest that Jupiter could have formed at a larger radial distance than its current location while still accreting the mass of heavy elements predicted by interior models. We conclude that in the disk instability model the final composition of a giant planet is strongly determined by its formation environment. The heavy-element abundance of a giant planet does not discriminate between its origin by either disk instability or core accretion.

  17. Determination of rare earth elements, thorium and uranium by inductively coupled plasma mass spectrometry and strontium isotopes by thermal ionization mass spectrometry in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2001-01-01

    Inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1) is described. In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87 Sr/ 86 Sr ratio, was in the top layer soil sample relatively higher than in the lower layers. (author)

  18. Indoor/outdoor elemental concentration relationships at a nursery school

    International Nuclear Information System (INIS)

    Lannefors, H.; Hansson, H.C.

    1981-01-01

    Indoor and outdoor concentrations of lead and bromine have been measured at a nursery school, using streaker samplers with 2.4 h resolution. The observed variations in concentration were well-correlated with traffic intensity variations. In addition to their closely related time-variation curves, the bromine to lead ratios pointed to the emissions from leaded gasoline-powered vehicles as the main source of these elements both in and outdoors. Time-variation patterns on weekdays and during weekends indicated that the lead and bromine containing particles entered the nursery school mainly by leaking. Only a minor fraction seemed to be brought in and resuspended by the staff and children. The indoor concentrations of the elements studied were about 5 times lower than the outdoor levels thus considerably reducing the indoor exposure. (orig.)

  19. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  20. Temporal variations in elemental concentrations of atmospheric aerosols in Mexico City

    International Nuclear Information System (INIS)

    Aldape U, F.

    1992-05-01

    Measurements are reported of elemental concentrations of airborne particulates in Mexico City and their time variation over a one-week period in the spring of 1988. Proton-induced X-ray emission analysis, PIXE, was used to analyse the atmospheric aerosols which were bombarded with 2.5 MeV protons from the 12 MV Tandem Van de Graaff accelerator at the National Institute of Nuclear Research, ININ. Variations in the elemental concentrations were observed over the time period studied. An intercomparison was made in the case of the element lead with PIXE results obtained at the Crocker Nuclear Laboratory, CNL, University of California for the same set of samples. Excellent agreement was obtained both for the time variation of the relative concentration and the absolute lead concentrations. These results give added confidence to the protocol adopted at ININ. (Author)

  1. Non-destructive determination of trace-element concentrations. Annual progress report, August 1979

    International Nuclear Information System (INIS)

    Gordon, G.E.; Zoller, W.H.; Walters, W.B.

    1979-08-01

    Development and testing of the neutron-capture prompt γ-ray activation analysis method continued. A wide range of NBS Standard Reference Materials, USGS Standard Rocks, and other materials have been analyzed in order to identify elements whose lines can be observed, to determine interferences and detection limits for each important γ ray of observable elements and to measure concentrations of observable elements for comparison with certified or other previous results. In most crustal samples, concentrations of 16 to 20 elements can be determined

  2. Determination of trace elements concentrations in Grewia tenax plants collected from Darfur Region-Sudan

    International Nuclear Information System (INIS)

    Alzain, H. A; Ebrahim, A. M; Salih, A. M; Ali Altom, M. S.

    2016-01-01

    This study is aimed to determine trace elements concentrations (Ca, Cu, Cr, K,Fe, Mn, Ni, Sr and Zn) in Grewia tenax collected from Darfur state western of Sudan. X- ray fluorescence (X RF) technique was used to determine elements concentration. A series of plant standard reference materials(ISE 2012-1) were used to check the reliability of employed technique by comparing the obtained results with the certified values, to estimate possible factors for correcting the concentration of some elements. The results showed that, X RF is a suitable method for measuring Ca, Cu, K, Fe, Mn, Sr and Zn elements. On the other hand, X RF for Cr and Ni determination in plant samples, these elements have showed a deviation from their certified values. Concentration of Fe was about 35 mg/kg in Grewia tenax samples where as K and Ca showed maximum levels about 16000 and 8500 mg/kg respectively, Cu showed minimum concentration about 10 mg/kg. The effect of geographical location on trace elements concentration in plants has been examined through determination of element in different species of Grewia tenax that collected from different locations in Darfur region. Most of the measured elements showed that there is no significant impact of locations on the difference of element contents.(Author)

  3. Guideline on Isotope Dilution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Amy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-19

    Isotope dilution mass spectrometry is used to determine the concentration of an element of interest in a bulk sample. It is a destructive analysis technique that is applicable to a wide range of analytes and bulk sample types. With this method, a known amount of a rare isotope, or ‘spike’, of the element of interest is added to a known amount of sample. The element of interest is chemically purified from the bulk sample, the isotope ratio of the spiked sample is measured by mass spectrometry, and the concentration of the element of interest is calculated from this result. This method is widely used, although a mass spectrometer required for this analysis may be fairly expensive.

  4. Uniform elemental analysis of materials by sputtering and photoionization mass spectrometry

    International Nuclear Information System (INIS)

    Chun, He; Basler, J.N.; Becker, C.H.

    1997-01-01

    Analysis of the elemental composition of surfaces commonly involves techniques in which atoms or ions are ablated from the material's surface and detected by mass spectrometry. Secondary-ion mass spectrometry is widely used for detection with high sensitivity (down to a few parts per billion) but technical problems prevent it from being truly quantitative. Some of these problems are circumvented by nonresonant laser post-ionization of sputtered atoms followed by time-of-flight mass spectrometry (surface analysis by laser ionization: SALI). But when there are large differences in ionization probabilities amongst different elements in the material, the detection sensitivity can be non-uniform and accurate quantification remains out of reach. Here we report that highly uniform, quantitative and sensitive analysis of materials can be achieved using a high-energy (5-keV) ion beam for sputtering coupled with a very-high-intensity laser to induce multiphoton ionization of the sputtered atoms. We show uniform elemental sensitivity for several samples containing elements with very different ionization potentials, suggesting that this approach can now be regarded as quantitative for essentially any material. (author)

  5. Development of a High-Resolution Laser Absorption Spectroscopy Method with Application to the Determination of Absolute Concentration of Gaseous Elemental Mercury in Air.

    Science.gov (United States)

    Srivastava, Abneesh; Hodges, Joseph T

    2018-05-07

    Isotope dilution-cold-vapor-inductively coupled plasma mass spectrometry (ID-CV-ICPMS) has become the primary standard for measurement of gaseous elemental mercury (GEM) mass concentration. However, quantitative mass spectrometry is challenging for several reasons including (1) the need for isotopic spiking with a standard reference material, (2) the requirement for bias-free passive sampling protocols, (3) the need for stable mass spectrometry interface design, and (4) the time and cost involved for gas sampling, sample processing, and instrument calibration. Here, we introduce a high-resolution laser absorption spectroscopy method that eliminates the need for sample-specific calibration standards or detailed analysis of sample treatment losses. This technique involves a tunable, single-frequency laser absorption spectrometer that measures isotopically resolved spectra of elemental mercury (Hg) spectra of 6 1 S 0 ← 6 3 P 1 intercombination transition near λ = 253.7 nm. Measured spectra are accurately modeled from first-principles using the Beer-Lambert law and Voigt line profiles combined with literature values for line positions, line shape parameters, and the spontaneous emission Einstein coefficient to obtain GEM mass concentration values. We present application of this method for the measurement of the equilibrium concentration of mercury vapor near room temperature. Three closed systems are considered: two-phase mixtures of liquid Hg and its vapor and binary two-phase mixtures of Hg-air and Hg-N 2 near atmospheric pressure. Within the experimental relative standard uncertainty, 0.9-1.5% congruent values of the equilibrium Hg vapor concentration are obtained for the Hg-only, Hg-air, Hg-N 2 systems, in confirmation with thermodynamic predictions. We also discuss detection limits and the potential of the present technique to serve as an absolute primary standard for measurements of gas-phase mercury concentration and isotopic composition.

  6. Chemical element concentrations in four lichens on a transect entering Voyageurs National Park

    Science.gov (United States)

    Bennett, J.; Wetmore, C.M.

    1997-01-01

    A three factor transect study was conducted to test the hypothesis that chemical elements from air emissions in the vicinity of International Falls, Minnesota could not be detected in lichens along a 24 km transect reaching into Voyageurs National Park. It was hypothesized that element concentrations in lichens would decline exponentially downwind and would reach background values at a distance before the park boundary. Four species (Cladina rangiferina, Evernia mesomorpha, Hypogymnia physodes, and Parmelia sulcata) were sampled at ten sites for 3 years and 17 chemical elements were measured. The most notable result was a curvilinear geographic trend for many elements, which decreased from International Falls and then increased towards the park. This trend was significant for many anthropogenic elements, including S, Hg, Cd, and Cr, and for all four species. This type of distribution pattern has been observed in Hypogymnia physodes in other studies downwind of a steel mill and an oil refinery. Cladina, a ground-dwelling lichen, generally had lower tissue concentrations of the elements than the three epiphytic species. Tissue concentrations over the 3 years of sampling declined an average of 12%. Sufficient evidence exists to conclude that lichen tissue element concentrations in the vicinity of International Falls may be related to local air emissions, and that an exponential decline of element concentrations downwind of the sources does not apply to this situation.

  7. Dispersion and concentration of elements in the Earth's crust an overview

    International Nuclear Information System (INIS)

    Iiyama, J.T.

    1991-01-01

    During the Earth's history of 4,500 x 10 6 years, the distribution of elements in its crust is strongly modified from the initial pattern. The paper overlooks at first how and to what extent this modification could be take place. It is emphasized that water in deep as well as in shallow parts of the crust plays an essential role in the transportation of elements. Whether a particular element thus transported by water are concentrated in particular places or diluted and dispersed in the crust or brought to the surface and join into the surface water depends on the geological and geochemical condition of the passages of these waters acting as transporter of the elements. If there was no preferential passages for water, these elements and water will diffuse into the surroundings and no particular concentration of elements will be resulted. On the contrary, the presence of preferential conduit (such as fissure or faults) will offer the places adequate for this concentration provided that a favorable physical and chemical conditions are present. The review thus intends to point out the importance of the tectono-geochemical conditions to be taken into consideration for the planning of the nuclear wastes disposal and of the environmental protection. (author)

  8. Concentrations of radioactive elements in lunar materials

    Science.gov (United States)

    Korotev, Randy L.

    1998-01-01

    As an aid to interpreting data obtained remotely on the distribution of radioactive elements on the lunar surface, average concentrations of K, U, and Th as well as Al, Fe, and Ti in different types of lunar rocks and soils are tabulated. The U/Th ratio in representative samples of lunar rocks and regolith is constant at 0.27; K/Th ratios are more variable because K and Th are carried by different mineral phases. In nonmare regoliths at the Apollo sites, the main carriers of radioactive elements are mafic (i.e., 6-8 percent Fe) impact-melt breccias created at the time of basin formation and products derived therefrom.

  9. Essential and toxic element concentrations in monofloral honeys from southern Croatia.

    Science.gov (United States)

    Bilandžić, Nina; Tlak Gajger, Ivana; Kosanović, Marina; Čalopek, Bruno; Sedak, Marija; Solomun Kolanović, Božica; Varenina, Ivana; Luburić, Đurđica Božić; Varga, Ines; Đokić, Maja

    2017-11-01

    The concentrations of 24 elements in seven honey types (multifloral, heather, common heather, bearberry, sage, mandarin orange-blossom and honeydew) collected in southern Mediterranean regions of Croatia were determined using ICP-MS. Significant differences were found in the concentrations of Ag, As, Ba, Cu, Co, Fe, K, Mg, Mn, Mo, Na, Ni, Se, Sb, U and Th (p<0.05, all) among honeys. The highest element concentrations were determined in honeydew honeys, with the exception of multifloral (Ca, Cr, Mo, Se), common heather (Mg, Na), bearberry (Ba, Fe, Pb) and sage (Ag) honeys. Among the floral honeys, the highest concentrations were found in multifloral honey (Al, As, Be, Ca, Cr, Mn, Mo, Ni, Se, Th and U), common heather (Co, K, Mg, Na, V), sage (Ag, Cd, Cu), and bearberry (Ba, Fe, Pb, Sb, Zn). The results contribute to the evidence supporting the role of botanical origin on the elemental composition of honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effective beam method for element concentrations

    International Nuclear Information System (INIS)

    Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim

    2015-01-01

    A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)

  11. Dependence of soil-to-plant transfer factors of elements on their concentrations in soil

    International Nuclear Information System (INIS)

    Tsukada, Hirofumi; Watabe, Teruhisa.

    1996-01-01

    Transfer factors (TFs) of 31 stable elements from soil to plant were determined by neutron activation analysis. Soil and plant samples were collected from 112 farm fields in Aomori prefecture, Japan. The elements described are those that could be detected by this method, which include essential elements for plant growth and nonessential elements. Several of these elements were divided into two groups, each having different TF characteristics. In the first group of elements there was an inverse correlation between the TFs and the soil concentrations of the elements, especially for Cl, K and Ca. The concentrations of these elements in plants were independent of their soil concentrations. However, in the second group, especially Sc and Co, the TFs were independent of the soil concentrations of the elements. The fluctuation of TFs observed in this study was smaller than that previously reported. This may be attributed to the relatively narrow geographic area of the present study. In addition, the TFs for the stable elements in this study were generally one to three orders of magnitude lower than those compiled for radioactive isotopes in previous publications. (author)

  12. Fine particle number and mass concentration measurements in urban Indian households.

    Science.gov (United States)

    Mönkkönen, P; Pai, P; Maynard, A; Lehtinen, K E J; Hämeri, K; Rechkemmer, P; Ramachandran, G; Prasad, B; Kulmala, M

    2005-07-15

    Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.

  13. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    International Nuclear Information System (INIS)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plaß, W. R.; Scheidenberger, C.; Heßberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.

    2013-01-01

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  14. Determination of elemental concentrations in environmental plant samples by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Datta, J.; Chowdhury, D.P.; Verma, R.; Reddy, A.V.R.

    2012-01-01

    The intake of leafy vegetables in daily diet is very important to meet our nutritional needs. Vegetables provide the essential elements which are necessary and recommended for human growth. However, due to rapid industrialization and urbanization our environment becomes polluted and this affects the normal growth of agricultural products and composition of environmental species. The elemental concentrations present in the environmental samples are good indicators to assess the toxicological levels due to pollution affects. In the present work we have analysed several vegetable plant samples by instrumental neutron activation analysis to determine the elemental concentrations at major, minor and trace levels. The leafy vegetables like spinach, red leafy vegetable, pui, gourd leaf, lettuce and katoua were chosen as these are extensively consumed by local people in eastern part of India. We have determined 15 elements in the above mentioned vegetable samples and some of these are essential elements and some are toxic elements. It was found that Na and K were present as major elements, Fe and Zn as minor elements and As, Ce, Cr, Co, La, Mo, Rb, Sc, Sm, Sr as trace elements. The concentration level of Cr was found to be higher than that of recommended value certified by WHO and National environment quality control for human consumption. The validation of our analytical results have been performed by the Z-score tests through the determination of concentrations of the elements of interest in certified reference materials. (author)

  15. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    International Nuclear Information System (INIS)

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  16. TWO EXTRASOLAR ASTEROIDS WITH LOW VOLATILE-ELEMENT MASS FRACTIONS

    International Nuclear Information System (INIS)

    Jura, M.; Xu, S.; Klein, B.; Zuckerman, B.; Koester, D.

    2012-01-01

    Using ultraviolet spectra obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope, we extend our previous ground-based optical determinations of the composition of the extrasolar asteroids accreted onto two white dwarfs, GD 40 and G241-6. Combining optical and ultraviolet spectra of these stars with He-dominated atmospheres, 13 and 12 polluting elements are confidently detected in GD 40 and G241-6, respectively. For the material accreted onto GD 40, the volatile elements C and S are deficient by more than a factor of 10 and N by at least a factor of 5 compared to their mass fractions in primitive CI chondrites and approach what is inferred for bulk Earth. A similar pattern is found for G241-6 except that S is undepleted. We have also newly detected or placed meaningful upper limits for the amount of Cl, Al, P, Ni, and Cu in the accreted matter. Extending results from optical studies, the mass fractions of refractory elements in the accreted parent bodies are similar to what is measured for bulk Earth and chondrites. Thermal processing, perhaps interior to a snow line, appears to be of central importance in determining the elemental compositions of these particular extrasolar asteroids.

  17. Behaviour of trace element concentration in human organs in dependence of age and environment

    International Nuclear Information System (INIS)

    Persigehl, M.; Schicha, H.; Kasperek, K.; Feinendegen, L.E.; Kernforschungsanlage Juelich G.m.b.H.

    1977-01-01

    To study the behaviour of trace elements in dependence of age and environment, samples of skin, lung, heart, aorta, kidney, liver and brain were assayed for concentrations of Fe, Zn, Rb, Co, Cr, Se, Sc, Sb, Cs, Al and partly Eu. All samples were dried at 100 deg C for two days. Instrumental neutron-activation analysis was used to determine the element concentrations. The neutron flux was 5 x 10 13 n cm -2 sec -1 . After decay of the short lived radioisotopes, the Al-concentration was measured following a second irradiation of 1 minute and directly comparing with a standard sample. Nearly all element concentrations changed with processing age, but they showed no clear correlation to either parameter assessed. The non-essential elements Se, Sb and Sc were increasingly concentrated in all organs except the skin. Comparing lung samples of patients from highly industrialized regions with those of lesser industrialization, the elements Sc, Al, Sb, Eu and Co were accumulated by a factor of 10 to 100. Thus the concentrations of trace elements in human organism also depend on the degree of industrialization. (T.G.)

  18. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    Science.gov (United States)

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Circadian rhythm of elemental concentration in Japanese morning-glory revealed by neutron activation analysis

    International Nuclear Information System (INIS)

    Kobayashi, N.I.; Tanoi, K.; Nakanishi, T.M.

    2007-01-01

    Elemental concentration in each tissue of Japanese morning-glory (Pharbitis nil) during the growth was analyzed by INAA. Plants were grown in water culture for 4 days under 12-hour light and 12-hour dark condition. During the growth, 10 plants in the same developmental stage were periodically harvested. Then the plants were separated into 9 tissues to determine elemental concentration and water content. There was an elemental specific profile within the plant tissue, for example, Na and K concentrations were high in root whereas Mg and Ca concentrations were high at the upper part of the plants. Among the elements studied, Ca and Mg showed rhythmical change in concentration, increased during the day and decreased during the night. This tendency was especially noted at shoot apex. However, water content in all of the tissue was increased about 6 hours prior to the light period and showed maximum in the middle of the light period. About 6 hour difference of water content movement to those of Ca and Mg concentration suggested that water movement drives more dynamic change of each elemental concentration within a plant. (author)

  20. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    Science.gov (United States)

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  1. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  2. Real and imaginary elements of fermion mass matrices

    International Nuclear Information System (INIS)

    Masina, I.; Savoy, C.A.

    2006-01-01

    Prompted by the recent better determination of the angles of the unitarity triangle, we re-appraise the problem of finding simple fermion mass textures, possibly linked to some symmetry principle and compatible with grand unification. In particular, the indication that the angle α is close to rectangle turns out to be the crucial ingredient leading us to single out fermion mass textures whose elements are either real or purely imaginary. In terms of the five parameters ascribed to the quark sector, these textures reproduce the eight experimental data on quark mass ratios and mixings within 1σ. When embedded in an SU(5) framework, these textures suggest a common origin for quark and lepton CP violations, also linked to the spontaneous breaking of the gauge group

  3. Studies on concentration of minor stable elements in marine environmental samples

    International Nuclear Information System (INIS)

    Suzuki, Hamaji; Ishii, Toshiaki; Iimura, Mitsue; Koyanagi, Taku

    1978-01-01

    Information on the physico-chemical state and quantity of stable elements in marine environments is frequently required to analyze the radioecological behavior of radionuclides released from nuclear facilities into the sea. In this work, determination of stable Mn, Fe, Co, Zn, Zr, Rb, Cs and some rare earth elements (Ce, Eu, Tb, Yb and Lu) in seawater and marine organisms was carried out and the concentration factors were estimated. Seawater and marine organisms were collected on the seashore of Ibaraki Prefecture and analysed by means of neutron activation analysis or atomic absorption spectrometry depending on the elements or samples. Average concentration factors of the rare earth elements by marine organisms are estimated as 3 x 10 1 : muscle of fish, 5 x 10 2 : soft part of clams, and 2 x 10 2 : algae, respectively. Concentration factors by muscle of fishes were 10 3 : Fe, 2 x 10 2 : Co, 5 x 10 2 : Zn, and 5 x 10 1 : Cs, and those by soft part of shellfishes were 10 4 : Fe, 10 3 : Co, 2 x 10 3 : Zn, and 10 1 : Cs, whereas those by algae were 2 x 10 4 : Fe, 5 x 10 2 : Co, 10 3 : Zn, and 3 x 10 1 : Cs, respectively. The high concentration factors for numerous stable elements by shellfishes and algae suggested their suitabilities to the indicator organisms for monitoring of marine pollution by these heavy metals and corresponding radioisotopes and also their significant contribution to the internal radiation exposure to man as radioactive seafoods. (author)

  4. Analysis of elemental concentration censored distributions in breast malignant and breast benign neoplasm tissues

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Banas, D.; Braziewicz, J.; Gozdz, S.; Majewska, U.; Pajek, M.

    2007-01-01

    The total reflection X-ray fluorescence method was applied to study the trace element concentrations in human breast malignant and breast benign neoplasm tissues taken from the women who were patients of Holycross Cancer Centre in Kielce (Poland). These investigations were mainly focused on the development of new possibilities of cancer diagnosis and therapy monitoring. This systematic comparative study was based on relatively large (∼ 100) population studied, namely 26 samples of breast malignant and 68 samples of breast benign neoplasm tissues. The concentrations, being in the range from a few ppb to 0.1%, were determined for thirteen elements (from P to Pb). The results were carefully analysed to investigate the concentration distribution of trace elements in the studied samples. The measurements of concentration of trace elements by total reflection X-ray fluorescence were limited, however, by the detection limit of the method. It was observed that for more than 50% of elements determined, the concentrations were not measured in all samples. These incomplete measurements were treated within the statistical concept called left-random censoring and for the estimation of the mean value and median of censored concentration distributions, the Kaplan-Meier estimator was used. For comparison of concentrations in two populations, the log-rank test was applied, which allows to compare the censored total reflection X-ray fluorescence data. Found statistically significant differences are discussed in more details. It is noted that described data analysis procedures should be the standard tool to analyze the censored concentrations of trace elements analysed by X-ray fluorescence methods

  5. Determination of trace elements by resonant ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Ruster, W.; Ames, F.; Rehklau, D.; Mang, M.; Muehleck, C.; Rimke, H.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Kluge, H.J.; Otten, E.W.

    1988-01-01

    A resonant ionization mass spectrometer has been developed as an analytical tool for the detection of trace elements, especially of plutonium and other radionuclides. The sample, deposited on a rhenium filament, is evaporated by electrical heating and the atoms of the element under investigation are selectively ionized by laser light delivered from three dye lasers pumped by a copper vapour laser. The resulting photoions are detected in a time-of-flight spectrometer with a channelplate detector. For plutonium a mass resolution of M/ΔM=1500 was obtained and an overall detection efficiency of 4x10 -6 was determined for stepwise excitation and ionization via autoionizing states. With a laser light bandwidth of 3-5 GHz neighbouring isotopes could be suppressed by a factor of 20 due to isotope shifts in the excitation transitions. The isotope composition of synthetic samples was measured and good agreement was found with mass spectroscopic results. The influence of the hyperfine structure on the isotope ratios is discussed. (orig.)

  6. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  7. Dissolved Concentration Limits of Radioactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  8. Dissolved Concentration Limits of Radioactive Elements

    International Nuclear Information System (INIS)

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  9. The music of clash: predictions on the concentration-mass relation

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, M. [INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Rasia, E. [Physics Department, University of Michigan, 450 Church Avenue, Ann Arbor, MI 48109 (United States); Vega, J.; Yepes, G.; Sembolini, F. [Departamento de Fsica Terica, Universidad Autnoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Merten, J.; Ettori, S. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Postman, M.; Coe, D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Donahue, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Umetsu, K.; Czakon, N. [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan (China); Balestra, I. [INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Bartelmann, M. [Institut fur Theoretische Astrophysik, Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Benítez, N. [Instituto de Astrofísica de Andalucía (CSIC), E-18080 Granada (Spain); Biviano, A. [INAF/Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste (Italy); Bouwens, R. [Leiden Observatory, Leiden University, PO Box 9513, NL-2333 Leiden (Netherlands); Bradley, L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Broadhurst, T. [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, PO Box 644, E-48080 Bilbao (Spain); De Petris, M. [Dipartimento di Fisica, Sapienza Universit di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); and others

    2014-12-10

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  10. The music of clash: predictions on the concentration-mass relation

    International Nuclear Information System (INIS)

    Meneghetti, M.; Rasia, E.; Vega, J.; Yepes, G.; Sembolini, F.; Merten, J.; Ettori, S.; Postman, M.; Coe, D.; Donahue, M.; Umetsu, K.; Czakon, N.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; De Petris, M.

    2014-01-01

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ∼11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  11. The MUSIC of CLASH: Predictions on the Concentration-Mass Relation

    Science.gov (United States)

    Meneghetti, M.; Rasia, E.; Vega, J.; Merten, J.; Postman, M.; Yepes, G.; Sembolini, F.; Donahue, M.; Ettori, S.; Umetsu, K.; Balestra, I.; Bartelmann, M.; Benítez, N.; Biviano, A.; Bouwens, R.; Bradley, L.; Broadhurst, T.; Coe, D.; Czakon, N.; De Petris, M.; Ford, H.; Giocoli, C.; Gottlöber, S.; Grillo, C.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Lahav, O.; Lemze, D.; Medezinski, E.; Melchior, P.; Mercurio, A.; Molino, A.; Moscardini, L.; Monna, A.; Moustakas, J.; Moustakas, L. A.; Nonino, M.; Rhodes, J.; Rosati, P.; Sayers, J.; Seitz, S.; Zheng, W.; Zitrin, A.

    2014-12-01

    We present an analysis of the MUSIC-2 N-body/hydrodynamical simulations aimed at estimating the expected concentration-mass relation for the CLASH (Cluster Lensing and Supernova Survey with Hubble) cluster sample. We study nearly 1,400 halos simulated at high spatial and mass resolution. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White (NFW), the generalized NFW, and the Einasto density profiles. We derive concentrations and masses from these fits. We produce simulated Chandra observations of the halos, and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray-selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos that resembles the X-ray morphology of the CLASH clusters is composed mainly of relaxed halos, but it also contains a significant fraction of unrelaxed systems. For such a heterogeneous sample we measure an average two-dimensional concentration that is ~11% higher than is found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in three dimensions for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61.

  12. Determination of toxic and essential element concentrations in foodstuffs from local market

    International Nuclear Information System (INIS)

    Surtipanti; Suwirma; Yumiarti; June, M.; Syaifudin, S.

    1989-01-01

    Determination of toxic and essential elements concentrations in foodstuffs from local market in Jakarta. Concentration of toxic essential elements, such as, As, Hg, Cr, Pb, Cu, and Zn, in rice, corn bean, small green peas, wheat, vegetables, fruits, tea and coffee, have been determined. As, Hg, Sb, Cr, Se, and Zn, were determined using neutron activation analysis, after being irradiated at TRIGA-MARK II reactor, while Pb and Cu were determined using atomic absorption spectrophotometer. The results obtained were lower than the maximum permissible concentration allowed. (author). 8 refs

  13. Direct quantification of rare earth element concentrations in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Lawrence, Michael G.; Greig, Alan; Collerson, Kenneth D.; Kamber, Balz S.

    2006-01-01

    A direct quadrupole ICP-MS technique has been developed for the analysis of the rare earth elements and yttrium in natural waters. The method has been validated by comparison of the results obtained for the river water reference material SLRS-4 with literature values. The detection limit of the technique was investigated by analysis of serial dilutions of SLRS-4 and revealed that single elements can be quantified at single-digit fg/g concentrations. A coherent normalised rare earth pattern was retained at concentrations two orders of magnitude below natural concentrations for SLRS-4, demonstrating the excellent inter-element accuracy and precision of the method. The technique was applied to the analysis of a diluted mid-salinity estuarine sample, which also displayed a coherent normalised rare earth element pattern, yielding the expected distinctive marine characteristics

  14. Zinc and group V element co-implantation in indium phosphide

    International Nuclear Information System (INIS)

    Yu, Kin Man; Ridgway, M.C.

    2000-01-01

    Group V elements with mass ranging from 35 to 122 amu have been co-implanted with Zn in InP substrates. Co-implantation with all group V elements drastically reduced Zn out-diffusion and to a certain extent also inhibited Zn in-diffusion. The reduction in out-diffusion was insensitive to the group V element mass and thus, to implantation-induced damage. We believe the group V element excess created an In-vacancy excess that enhanced Zn substitution into the In sublattice. A maximum hole concentration of 7x10 18 cm -3 was achieved with P co-implantation. Electrochemical capacitance-voltage profiling clearly showed a decrease in hole concentration as a function of increasing group V element mass. This was attributed to differences in compensating residual implantation-induced damage

  15. Concentrations and geographical variations of selected toxic elements in meat from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in mid- and northern Norway: evaluation of risk assessment.

    Science.gov (United States)

    Hassan, Ammar Ali; Brustad, Magritt; Sandanger, Torkjel M

    2012-05-01

    Meat samples (n = 100) from semi-domesticated reindeer (Rangifer tarandus tarandus L.) were randomly collected from 10 grazing districts distributed over four Norwegian counties in 2008 and 2009. The main aim was to study concentrations and geographical variations in selected toxic elements; cadmium (Cd), lead (Pb), arsenic (As), copper (Cu), nickel (Ni) and vanadium (V) in order to assess the risk associated with reindeer meat consumption. Sample solutions were analysed using an inductively coupled plasma high resolution mass spectrometer (ICP-HRMS), whereas analysis of variance (ANOVA) was used for statistical analyses. Geographical variations in element concentrations were revealed, with As and Cd demonstrating the largest geographical differences. No clear geographical gradient was observed except for the east-west downward gradient for As. The As concentrations were highest in the vicinity of the Russian border, and only Cd was shown to increase with age (p < 0.05). Sex had no significant effect on the concentration of the studied elements. The concentrations of all the studied elements in reindeer meat were generally low and considerably below the maximum levels (ML) available for toxic elements set by the European Commission (EC). Thus, reindeer meat is not likely to be a significant contributor to the human body burden of toxic elements.

  16. Rare-earth elements in granites: concentration and distribution pattern

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1983-01-01

    The geochemistry of rare earth elements in granites is studied. The rare earth element (REE) distribution pattern in granites is characterized by a smooth curve with decreasing concentrations from La to Lu, and frequently a marked Eu negative anomaly. It seems to exist relationship between granite genesis and its REE pattern, in that bodies of primary (magmatic differentiation) origin always show this negative Eu anomaly, while those bodies generated by crustal anatexis do not show this anomaly. (E.G.) [pt

  17. Free and Forced Vibrations of an Axially-Loaded Timoshenko Multi-Span Beam Carrying a Number of Various Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Yusuf Yesilce

    2012-01-01

    Full Text Available In the existing reports regarding free and forced vibrations of the beams, most of them studied a uniform beam carrying various concentrated elements using Bernoulli-Euler Beam Theory (BET but without axial force. The purpose of this paper is to utilize the numerical assembly technique to determine the exact frequency-response amplitudes of the axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements (including point masses, rotary inertias, linear springs and rotational springs and subjected to a harmonic concentrated force and the exact natural frequencies and mode shapes of the beam for the free vibration analysis. The model allows analyzing the influence of the shear and axial force and harmonic concentrated force effects and intermediate concentrated elements on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT. At first, the coefficient matrices for the intermediate concentrated elements, an intermediate pinned support, applied harmonic force, left-end support and right-end support of Timoshenko beam are derived. After the derivation of the coefficient matrices, the numerical assembly technique is used to establish the overall coefficient matrix for the whole vibrating system. Finally, solving the equations associated with the last overall coefficient matrix one determines the exact dynamic response amplitudes of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force. Equating the determinant of the overall coefficient matrix to zero one determines the natural frequencies of the free vibrating system (the case of zero harmonic force and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. The calculated vibration amplitudes of the forced vibrating systems and the natural frequencies of the free vibrating systems are given in tables for different values of

  18. Evaluation of CF/CM, concentration ratios for elements in fetus to mother, using cord blood and maternal blood

    International Nuclear Information System (INIS)

    Watanabe, Y.; Yukawa, M.; Kim, H.S.; Nishimura, Y.; Osada, H.; Sekiya, S.

    2000-01-01

    ICRP recommends age-dependent dose evaluation for intakes of radionuclides by inhalation and ingestion, and gave age-specific biokinetic models and dose coefficients (doses per unit intake) for infants, children and adults in the publications. Dose coefficients are also needed for the assessment of exposures received in utero and after birth by the offspring of the woman who has received intakes of radionuclides. In the model that has been adopted by ICRP, the doses to the developing fetus are calculated using CF/CM values, concentration ratios for radionuclides in the fetus and the maternal tissues. The purpose of this study is to evaluate the CF/CM of each radionuclide by the measurement of element concentration in cord blood and maternal blood. Blood samples were obtained from 35 mothers who delivered in Department of Obstetrics and Gynecology of Chiba University. Just after the delivery, unbiblical cord blood was sampled. Maternal blood was also obtained from the arm vein within 30 minutes after the delivery. The serum was separated from the blood sample with centrifugation. About 50 mg of freezer-dried whole blood and serum were digested with 0.5 ml of 65% ultra-pure nitric acid and 0.2 ml of 30% hydrogen peroxide in a microwave digester. The diluted solutions were used for the determination of elements by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometry). The elements determined in these samples included Mg, K, Ca, Mn, Fe, Cu, Zn, Se, Rb, Sr and Cs. The concentration of Cu was higher in the maternal blood than in the cord blood in both whole blood and serum. On the other hand, Mn and Fe were higher in the cord blood. The differences of concentration ratios among elements and the differences among tissues will be discussed. (author)

  19. Direct gravimetric determination of aerosol mass concentration in central antarctica.

    Science.gov (United States)

    Annibaldi, Anna; Truzzi, Cristina; Illuminati, Silvia; Scarponi, Giuseppe

    2011-01-01

    In Antarctica, experimental difficulties due to extreme conditions have meant that aerosol mass has rarely been measured directly by gravimetry, and only in coastal areas where concentrations were in the range of 1-7 μg m(-3). The present work reports on a careful differential weighing methodology carried out for the first time on the plateau of central Antarctica (Dome C, East Antarctica). To solve problems of accurate aerosol mass measurements, a climatic room was used for conditioning and weighing filters. Measurements were carried out in long stages of several hours of readings with automatic recording of temperature/humidity and mass. This experimental scheme allowed us to sample from all the measurements (up to 2000) carried out before and after exposure, those which were recorded under the most stable humidity conditions and, even more importantly, as close to each other as possible. The automatic reading of the mass allowed us in any case to obtain hundreds of measurements from which to calculate average values with uncertainties sufficiently low to meet the requirements of the differential weighing procedure (±0.2 mg in filter weighing, between ±7% and ±16% both in aerosol mass and concentration measurements). The results show that the average summer aerosol mass concentration (aerodynamic size ≤10 μm) in central Antarctica is about 0.1 μg m(-3), i.e., about 1/10 of that of coastal Antarctic areas. The concentration increases by about 4-5 times at a site very close to the station.

  20. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  1. Analysis of Rare Earth Elements in Geologic Samples using Inductively Coupled Plasma Mass Spectrometry; US DOE Topical Report - DOE/NETL-2016/1794

    Energy Technology Data Exchange (ETDEWEB)

    Bank, Tracy L. [AECOM, Pittsburgh, PA (United States); Roth, Elliot A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Tinker, Phillip [AECOM, Pittsburgh, PA (United States); Granite, Evan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2016-04-17

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is used to measure the concentrations of rare earth elements (REE) in certified standard reference materials including shale and coal. The instrument used in this study is a Perkin Elmer Nexion 300D ICP-MS. The goal of the study is to identify sample preparation and operating conditions that optimized recovery of each element of concern. Additionally, the precision and accuracy of the technique are summarized and the drawbacks and limitations of the method are outlined.

  2. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Directory of Open Access Journals (Sweden)

    J. Ablinger

    2017-08-01

    Full Text Available Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=mc2/mb2∼1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  3. Study of elemental mass size distributions at Skukuza, South Africa, during the SAFARI 2000 dry season campaign

    International Nuclear Information System (INIS)

    Maenhaut, Willy; Schwarz, Jaroslav; Cafmeyer, Jan; Annegarn, Harold J.

    2002-01-01

    As part of the final dry season campaign of SAFARI 2000, a 12-stage small deposit area low pressure impactor (SDI) was operated at Skukuza, in the Kruger National Park, South Africa, from 17 August until 19 September 2000. Separate day and night samples were collected (64 in total), starting at about 7:00 and at about 18:00 local time, respectively. The samples were analysed for 28 elements by PIXE. The total concentrations (summed over all 12 stages) varied quite substantially during the campaign (up to a factor of 50), but no systematic day/night difference pattern was observed. Also the size distributions were rather similar during day and night. S, K, Zn, As, Se, Br, Rb and Pb had most of their mass in the submicrometre size range, with maximum typically at about 0.3 μm equivalent aerodynamic diameter. Several of those elements are good indicators for biomass burning. Mass median aerodynamic diameters (MMADs) were calculated for the various elements and compared with those obtained during SAFARI-92. During this earlier campaign, which also took place in the dry season, 41 daily samples were taken at Skukuza with a PIXE International cascade impactor (PCI). For the crustal and sea-salt elements, fairly similar MMADs were obtained in the two campaigns. For the fine-mode elements, however, the MMADs were substantially lower during SAFARI 2000 than during SAFARI-92. During this earlier campaign, the MMADs were most likely overestimated. Compared to the SDI, the PCI is much less appropriate for studying the size distribution in the submicrometre size range

  4. Investigation of Elemental Concentrations of Some Medicinal Herbs Collected from Kachin State

    International Nuclear Information System (INIS)

    Tint Lwin; Soe Myint; Tun Khin

    2006-06-01

    Five medicinal herbs, which are traditionally used in the Kachin State for the treatment of tuberculosis, different types of cancers, malaria and indigestion problem, were analyzed by the EDXRF techinque to determine the relative concentrations of elements contained in them. The major elements and the trace elements were thoroughly investigated for a comparison purpose

  5. Trace Elements Concentrations in Water and Aquatic Biota from Ase ...

    African Journals Online (AJOL)

    Trace Elements Concentrations in Water and Aquatic Biota from Ase Creek in Niger ... arsenic, chromium, lead, molybdenum, bismuth and cadmium using atomic ... metal pollution, metal variation, environmental monitoring, bioaccumulation.

  6. Mass spectrometry in clinical chemistry

    International Nuclear Information System (INIS)

    Pettersen, J.E.

    1977-01-01

    A brief description is given of the functional elements of a mass spectrometer and of some currently employed mass spectrometric techniques, such as combined gas chromatography-mass spectrometry, mass chromatography, and selected ion monitoring. Various areas of application of mass spectrometry in clinical chemistry are discussed, such as inborn errors of metabolism and other metabolic disorders, intoxications, quantitative determinations of drugs, hormones, gases, and trace elements, and the use of isotope dilution mass spectrometry as a definitive method for the establishment of true values for concentrations of various compounds in reference sera. It is concluded that mass spectrometry is of great value in clinical chemistry. (Auth.)

  7. Concentration of elements in atmospheric aerosol in Bratislava

    International Nuclear Information System (INIS)

    Meresova, J.; Florek, M.; Holy, K.; Sykora, I.; Frontasyeva, M.V.; Pavlov, S.S.

    2006-01-01

    The concentrations of 41 chemical elements (heavy metals, rare earths, and actinides) were determined in atmospheric aerosol using nuclear and related analytical techniques. The sampling location in Bratislava (Slovak Republic). The main goal of this study is the quantification of the atmospheric pollution and its trend. The elemental content in filters was measured using instrumental neutron activation analysis at IBR-2 reactor in JINR Dubna and by atomic absorption spectrometry in Bratislava. The obtained results confirm the decreasing trend of pollution by most of the heavy metals in Bratislava atmosphere, and they are compared with the contents of pollutants in atmosphere of other cities. We determined also the composition of clear filter materials. (Authors)

  8. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS -diurnal variations and PMF receptor modelling

    NARCIS (Netherlands)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-01-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time

  9. Pushing down the low-mass halo concentration frontier with the Lomonosov cosmological simulations

    Science.gov (United States)

    Pilipenko, Sergey V.; Sánchez-Conde, Miguel A.; Prada, Francisco; Yepes, Gustavo

    2017-12-01

    We introduce the Lomonosov suite of high-resolution N-body cosmological simulations covering a full box of size 32 h-1 Mpc with low-mass resolution particles (2 × 107 h-1 M⊙) and three zoom-in simulations of overdense, underdense and mean density regions at much higher particle resolution (4 × 104 h-1 M⊙). The main purpose of this simulation suite is to extend the concentration-mass relation of dark matter haloes down to masses below those typically available in large cosmological simulations. The three different density regions available at higher resolution provide a better understanding of the effect of the local environment on halo concentration, known to be potentially important for small simulation boxes and small halo masses. Yet, we find the correction to be small in comparison with the scatter of halo concentrations. We conclude that zoom simulations, despite their limited representativity of the volume of the Universe, can be effectively used for the measurement of halo concentrations at least at the halo masses probed by our simulations. In any case, after a precise characterization of this effect, we develop a robust technique to extrapolate the concentration values found in zoom simulations to larger volumes with greater accuracy. Altogether, Lomonosov provides a measure of the concentration-mass relation in the halo mass range 107-1010 h-1 M⊙ with superb halo statistics. This work represents a first important step to measure halo concentrations at intermediate, yet vastly unexplored halo mass scales, down to the smallest ones. All Lomonosov data and files are public for community's use.

  10. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)

    2017-05-15

    Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  11. Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Leitão, R.G.; Palumbo, A.; Souza, P.A.V.R.; Pereira, G.R.; Canellas, C.G.L.; Anjos, M.J.; Nasciutti, L.E.; Lopes, R.T.

    2014-01-01

    Prostate cancer (PCa) currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer, BPH and normal tissue were analyzed utilizing total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SR-TXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn and Rb. By using Mann–Whitney U test it was observed that almost all elements presented concentrations with significant differences (α=0.05) between the groups studied. - Highlights: ► Prostate cancer is the most frequently diagnosed form of cancer in men. ► Intracellular Zn is correlated with proliferation, differentiation, or apoptosis. ► The prostate gland accumulate high concentration of Zn. ► SR-TXRF is a technique widely used in the analysis of low concentration in samples

  12. Natural Elemental Concentrations and Fluxes: Their Use as Indicators of Repository Safety

    International Nuclear Information System (INIS)

    Miller, Bill; Lind, Andy; Savage, Dave; Maul, Philip; Robinson, Peter

    2002-03-01

    individual processes, such as groundwater discharge, river flow and erosion at specific locations. The approach can also be of value at the generic level of repository development, before site characterisation programmes have been undertaken. They could be used, for example, as a component in comparative evaluations of alternative generic disposal concepts. The objective at the generic level would be to define typical or average natural elemental concentrations and fluxes in geological systems representative of the environments which might host a repository, and to compare these with the outputs from the associated generic PAs. To facilitate the use of the natural safety indicators methodology at the generic level, this study has undertaken to bring together and to compile much of the required information. This information has been used to quantify average elemental mass fluxes at the global scale for a range of processes, including groundwater discharge, erosion and sediment transport. The point of these calculations is that they provide a baseline against which site or geological environment specific natural fluxes, from anywhere in the world, can be compared on an equal basis to evaluate if they are higher or lower than the global average and, thus, are useful for providing a broad natural context for predicted repository releases. In separate calculations, elemental mass fluxes were quantified for a number of reference environments which are chosen to be representative of the types of sites and geological systems which may host a deep repository. The reference environments were an inland pluton, basement under sedimentary cover and a sedimentary basin. The fluxes for these environments were calculated for systems with spatial scales of a few hundred square kilometres and, as such, approximate closely to the repository systems modelled in PAs because a reference environment represents the same system, with the same rock, groundwater and surface conditions as those

  13. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    Science.gov (United States)

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (pLA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    Science.gov (United States)

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright 2009 John Wiley & Sons, Ltd.

  15. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    Science.gov (United States)

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B

  16. Trace element concentrations in human bone using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    El-Amri, F.A.; El-Kabroun, M.A.R.

    1997-01-01

    Instrumental neutron activation analysis has been applied to analyze 23 bone samples obtained from Libyan patient aged (3-80) years for the study of the concentration levels of trace elements Ba, Br, Ca, Fe, Sr and Zn and their concentration patterns regarding to the age and sex of the patients. (author)

  17. Characterization of national food agency shrimp and plaice reference materials for trace elements and arsenic species by atomic and mass spectrometric techniques

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pedersen, Gitte Alsing; McLaren, J. W.

    1997-01-01

    , drying, milling and sieving to collect the fraction of particles less than 150 mu m in sizer In this fraction the trace elements were homogeneously distributed using a 400 mg sample intake for analysis, The total track element concentrations were determined by graphite furnace and cold vapour atomic...... mass spectrometry (MS/MS) for qualitative verification, Based on a rigorous statistical analysis of the analytical data using the DANREF software, it was decided to assign certified values for mercury, cadmium and arsenic in the NFA Shrimp, and mercury, selenium and arsenic in the NFA Plaice...

  18. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  19. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy).

    Science.gov (United States)

    De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio

    2017-06-01

    Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.

  20. Effect of soil moisture on trace elements concentrations using ...

    African Journals Online (AJOL)

    Portable X-ray fluorescence (PXRF) technology can offer rapid and cost-effective determination of the trace elements concentrations in soils. The aim of this study was to assess the influence of soil moisture content under different condition on PXRF measurement quality. For this purpose, PXRF was used to evaluate the soil ...

  1. Concentration of elements in suspended matter discharges to Lerma River, Mexico

    International Nuclear Information System (INIS)

    Avila-Perez, P.; Tejeda, S.; Carapia, L.; Barcelo-Quintal, I.; Martinez, T.

    2011-01-01

    The S, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Zn and Pb concentration and the elemental composition of particles in suspended matter from principal discharges to Lerma River, have been evaluated. The elemental concentration in suspended matter has been obtained by Energy Dispersive X-Ray Fluorescence Spectrometry. The elemental composition of particles has been obtained by means of Energy Dispersive X-Ray Spectrometry (EDS). The results show that K, Ca, Ti, Mn and Fe are mainly from natural origin in the Upper Course of the Lerma River (UCLR), where the principal contributions probably come from dragging of soils and sediments in the rainy season and Cr, Cu, Zn and Pb are mainly from anthropogenic origin where the principal contributions come from urban and industrial untreated discharge. The application of Energy Dispersive X-Ray Spectrometry plus Scanning Electron Microscopy is useful in the characterization of suspended matter in natural, anthropogenic and mixed water discharges. (author)

  2. Improvement in the determination of elemental concentrations in PIXE analyses using artificial neural system

    International Nuclear Information System (INIS)

    Correa, R.; Dinator, M.I.; Morales, J.R.; Miranda, P.A.; Cancino, S.A.; Vila, I.; Requena, I.

    2008-01-01

    An Artificial Neural System, ANS, has been designed to operate in the analysis of spectra obtained from a PIXE (Proton Induced X-ray Emissions) application. The special designed ANS was used in the calculation of the concentrations of the major elements in the samples. Neural systems using several feed-forward ANN of similar topology working in parallel were trained with error back propagation algorithm using sets of spectra of known elemental concentrations. Following the training phase of the neural networks, other PIXE spectra were analyzed with this methodology providing unknown elemental concentrations. ANS results were compared with results obtained by traditional computer codes like AXIL and GUPIX, obtaining correlations factors close to one. The rather short time required to process each spectrum, of the order of microseconds, allows fast analysis of a large number of samples. Here we present applications of ANS in the PIXE analyses of samples of organic nature like liver, gills and muscle from fishes. ANS results were compared with elemental concentrations obtained in a previous application where a single ANN was used for each analyzed element. PIXE analyses were performed at the Nuclear Physics Laboratory of the University of Chile, using 2.2 MeV proton beams provided by a Van de Graaff accelerator. (author)

  3. Mass transfer during sulfuric acid concentration by evaporation into the air flow

    Directory of Open Access Journals (Sweden)

    V. K. Lukashov

    2016-12-01

    Full Text Available This article shows the results of the study of mass transfer under periodic concentration of sulfuric acid by evaporation inthe gas flow, neutral with respect to the components of acid.Used mathematical model for mass transferbases on the proposed simplified physical representations.This model has allowed to construct an algorithm for calculation the coefficient of mass transfer from the liquid phase into the gas flow. The algorithm uses the experimental data of change the amount of acid and concentration of the water taken from the laboratory tests. Time-based Nusselt diffusion criterion represent the results of the study at different modes of the evaporation process.It has been found that the character of the influence of temperature and initial acid concentration on Nusselt diffusion criterion depends on the variation range of the mass fraction of water in the acid.It is shown that these dependences are well approximated by an exponential function from the dimensionless parameters of the process. This allows usingthem for calculation the mass transfer coefficient into the gas phase in a batch process of concentrating in the range of investigated modes.

  4. Determination of trace amounts of rare earth elements in various environmental samples by spark source mass spectrography

    International Nuclear Information System (INIS)

    Sugimae, Akiyoshi

    1978-01-01

    A chemical concentration-mass spectrographic procedure was described for the determination of trace amounts of rare earth elements in various environmental samples: airborne particulate matter, dustfall, soil and so forth. A 0.5 to 1 gram of sample material was decomposed by fusion with sodium carbonate. The silica dehydrated in the usual way was filtered off and the filtrate from the silica was then treated with ammonium hydroxide to precipitate the rare earth elements. After ignition of the precipitate, two ml of internal standard solution containing 20 μg/ml of silver were added and the mixture was then evaporated to dryness. The residue was mixed with an equal amount of graphite powder and then pressed into electrodes. Relative sensitivity coefficients (Ag=1.0) were determined by using Spex Mix and U. S. Geological Survey rock standard G-2. U. S. Geological Survey rock standard GSP-1 and N.B.S. coal fly ash SRM 1633 were analysed to evaluate the accuracy of the proposed method. Comparison of the mass spectral values with literature ones indicated a good agreement. The coefficient of variation obtained by replicate analysis of SRM 1633 was better than 25%. The proposed method was applied to the determination of rare earth elements in airborne particulate matter and dustfall collected on polystyrene filter and in dustjars, respectively. Results for the rare earth elements in the blank of glass fiber filter which was widely used for the collection of airborne particulate matter were also presented. (auth.)

  5. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands

    International Nuclear Information System (INIS)

    Zaichick, Vladimir; Zaichick, Sofia

    2014-01-01

    The variation with age of the mass fraction of 37 chemical elements in intact nonhyperplastic prostate of 65 healthy 21–87 year old males was investigated by instrumental neutron activation analysis with high resolution spectrometry of short- and long-lived radionuclides. Mean values (M±SΕΜ) for mass fractions (mg kg −1 , dry mass basis) of the chemical elements studied were: Ag—0.055±0.007, Br—33.2±3.3, Ca—2150±118, Cl—13014±703, Co—0.038±0.003, Cr—0.47±0.05, Fe—99.3±6.1, Hg—0.044±0.006, K—11896±356, Mg—1149±68, Mn—1.41±0.07, Na—10886±339, Rb—12.3±0.6, Sb—0.049±0.005, Sc—0.021±0.003, Se—0.65±0.03, and Zn—795±71. The mass fraction of other chemical elements measured in this study were lower than the corresponding detection limits (mg kg −1 , dry mass basis): As<0.1, Au<0.01, Ba<100, Cd<2, Ce<0.1, Cs<0.05, Eu<0.001, Gd<0.02, Hf<0.2, La<0.5, Lu<0.003, Nd<0.1, Sm<0.01, Sr<3, Ta<0.01, Tb<0.03, Th<0.05, U<0.07, Yb<0.03, and Zr<0.3. This work revealed that there is a significant trend for increase with age in mass fractions of Co (p<0.0085), Fe (p<0.037), Hg (p<0.035), Sc (p<0.015), and Zn (p<0.0014) and for a decrease in the mass fraction of Mn (p<0.018) in prostates, obtained from young adult up to about 60 years, with age. In the nonhyperplastic prostates of males in the sixth to ninth decades, the magnitude of mass fractions of all chemical element were maintained at near constant levels. Our finding of correlation between the prostatic chemical element mass fractions indicates that there is a great variation of chemical element relationships with age. - Highlights: • 37 trace elements were determined in prostate of 65 healthy 21–87 year old males by NAA. • Co, Fe, Hg, Sc, and Zn contents significantly increase with age. • Mn content significantly decreases with age. • All elemental contents in the sixth to ninth decades are near constant level. • There is a great disturbance of chemical element

  6. Hepatic element concentrations of lesser scaup (aythya affinis) during spring migration in the upper midwest

    Science.gov (United States)

    Pillatzki, A.E.; Neiger, R.D.; Chipps, S.R.; Higgins, K.F.; Thiex, N.; Afton, A.D.

    2011-01-01

    High concentrations of some hepatic elements might be contributing to the decline of the continental lesser scaup (Aythya affinis) population. We evaluated hepatic element concentrations of male and female lesser scaup collected from the upper Midwest (Iowa, Minnesota, North Dakota, and South Dakota) during the 2003 and 2004 spring migrations. We measured concentrations of 24 elements in livers of 117 lesser scaup. We found that only selenium concentrations were at levels (>3.0 ??g/g wet weight [ww)]) proposed to adversely affect reproduction. Approximately 49% of females (n = 61) had individual hepatic concentrations >3.0 ??g/g ww selenium (Se). Our observed hepatic concentration of Se was similar to that reported in lesser scaup collected from the mid-continental United States but less than Se concentrations reported from the Great Lakes region. We found that the liver cadmium (Cd) concentration for males was significantly higher than that for females. Gender differences in hepatic Cd concentrations have not been previously reported for lesser scaup, but Cd is known to have negative impacts on male reproduction. Our results indicate that lesser scaup migrating through the upper Midwest in spring have elevated Se levels and that males carry a significantly greater Cd burden than females. Moreover, elemental concentrations might be high enough to affect reproduction in both male and female lesser scaup, but controlled laboratory studies are needed to adequately assess the effects of Se and Cd on lesser scaup reproduction. ?? 2010 Springer Science+Business Media, LLC.

  7. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclocybe cylindracea.

    Science.gov (United States)

    Koutrotsios, Georgios; Danezis, Georgios P; Georgiou, Constantinos A; Zervakis, Georgios I

    2018-04-20

    Concentrations of 16 rare earth elements (REEs) and two actinides were determined for the first time both in cultivated mushrooms and in their production substrates by inductively coupled plasma mass spectroscopy. Moreover, the effect of REEs on cultivation parameters and composition of the final product was assessed, together with their potential use for authentication purposes. The concentrations of REEs varied greatly among seven cultivation substrates and correlated with measurements in Cyclocybe cylindracea mushrooms; no such correlation was established in Pleurotus ostreatus. Reduction of hemicellulose, cellulose, and lignin in substrates during P. ostreatus cultivation was positively correlated with REE concentrations, which also affected the production performance depending on the species examined. In all cases, a negative correlation was established between bioconcentration factors (BCF) in mushrooms and REE content in substrates, while the effect of substrate composition on BCF values varied according to the element studied. The estimated daily intake values of REEs through mushroom consumption was at much lower levels than those reported as potentially harmful for human health. The content of REEs in cultivation substrates and in mushrooms revealed that the bioaccumulation of elements differed in each fungus. The nature/origin of substrates seemed to affect the concentration of REEs in mushrooms to a considerable extent. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Drinking water quality from the aspect of element concentrations

    International Nuclear Information System (INIS)

    Chiba, M.; Shinohara, A.; Sekine, M.; Hiraishi, S.

    2006-01-01

    Drinking water in developed countries is usually treated by the water-purification system, while in developing countries untreated natural water such as well water, river water, rain water, or pond water are used. On the other hand, many kinds of mineral water bottled in plastic containers are sold as drinking water with or without gas in urban areas in many countries. Seawater under hundreds meters from the surface is also bottled and sold as drinking water with advertising good mineral balance. Various element concentrations in water samples for drinking were analyzed, and then it was considered the effects of elements on human health. (author)

  9. Zebra mussels (Dreissena polymorpha) as a biomonitor of trace elements along the southern shoreline of Lake Michigan.

    Science.gov (United States)

    Shoults-Wilson, W Aaron; Elsayed, Norhan; Leckrone, Kristen; Unrine, Jason

    2015-02-01

    The invasive zebra mussel (Dreissena polymorpha) has become an accepted biomonitor organism for trace elements, but it has yet to be studied along the Lake Michigan shoreline. Likewise, the relationships between tissue concentrations of elements, organism size, and sediment concentrations of elements have not been fully explained. The present study found that a variety of allometric variables such as length, dry tissue mass, shell mass, organism condition indices, and shell thickness index were useful in explaining intrasite variability in elemental concentrations. The flesh condition index (grams of tissue dry mass per gram of shell mass) explained variability at the most sites for most elements. Once allometric intrasite variability was taken into account, additional significant differences were found between sites, although the net effect was small. Significant positive relationships between sediment and tissue concentrations were found for Pb and Zn, with a significant negative relationship for Cd. It was also found that Cu and Zn concentrations in tissues increased significantly along the shoreline in the southeasterly direction, whereas Hg increased in a northwesterly direction. Opportunistic sampling found that zebra mussels accumulate significantly higher concentrations of nearly all elements analyzed compared to Asian clams (Corbicula fluminea) at the same site. The present study demonstrates the need to fully explain natural sources of variability before using biomonitors to explain spatial distributions of trace elements. © 2014 SETAC.

  10. Paradigms in isotope dilution mass spectrometry for elemental speciation analysis

    International Nuclear Information System (INIS)

    Meija, Juris; Mester, Zoltan

    2008-01-01

    Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method

  11. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  12. Radioactivity and concentration of some trace elements in sponges distributed along the Syrian coast

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Mamish, S.; Haleem, M. A.; Ammar, I.

    2009-07-01

    natural and artificial radionuclides ( 210 Po, 210 Pb, 40 K, 137 Cs, 234 U, 238 U) and concentration of some trace elements (Zn, Cu, Pb, Cd) in several types of sponges distributed along the Syrian coast have been studied. The samples were collected from four stations distributed at the Syrian coast (Al-Basset, Lattakia, Banise, Tartous). Concentration factors (CF) for the studied radionuclides and trace elements have been calculated in order to determine the sponges types to be used as biomonitors for the radionuclides and trace elements. (authors)

  13. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities

    Directory of Open Access Journals (Sweden)

    Nigel Cook

    2016-10-01

    Full Text Available Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS has rapidly established itself as the method of choice for generation of multi-element datasets for specific minerals, with broad applications in Earth science. Variation in absolute concentrations of different trace elements within common, widely distributed phases, such as pyrite, iron-oxides (magnetite and hematite, and key accessory minerals, such as apatite and titanite, can be particularly valuable for understanding processes of ore formation, and when trace element distributions vary systematically within a mineral system, for a vector approach in mineral exploration. LA-ICP-MS trace element data can assist in element deportment and geometallurgical studies, providing proof of which minerals host key elements of economic relevance, or elements that are deleterious to various metallurgical processes. This contribution reviews recent advances in LA-ICP-MS methodology, reference standards, the application of the method to new mineral matrices, outstanding analytical uncertainties that impact on the quality and usefulness of trace element data, and future applications of the technique. We illustrate how data interpretation is highly dependent on an adequate understanding of prevailing mineral textures, geological history, and in some cases, crystal structure.

  14. Elemental concentration analysis in PCa, BPH and normal prostate tissues using SR-TXRF

    International Nuclear Information System (INIS)

    Leitao, Roberta G.; Anjos, Marcelino J.; Canellas, Catarine G.L.; Lopes, Ricardo T.

    2009-01-01

    Prostate cancer (PCa) is one of the main causes of illness and death all over the world. In Brazil, prostate cancer currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer (PCa), BPH and normal tissue were analyzed utilizing the total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SRTXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-Ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, Sao Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn, Br and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences α = 0.05) between the groups studied. The elements and groups were: S, K, Ca, Fe, Zn, Br and Rb (PCa X Normal); S, Fe, Zn and Br (PCa X BPH); K, Ca, Fe, Zn, Br and Rb (BPH X Normal). (author)

  15. Trace elements distribution in environmental compartments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P., E-mail: suelip@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  16. Trace elements distribution in environmental compartments

    International Nuclear Information System (INIS)

    Queiroz, Juliana C. de; Peres, Sueli da Silva; Godoy, Maria Luiza D.P.

    2017-01-01

    Trace elements term defines the presence of low concentrations metals at environment. Some of them are considered biologically essential, as Co, Cu and Mn. Others can cause detriment to environment and human health, as Pb, Cd, Hg, As, Ti and U. A large number of them have radioactive isotopes, implying the evaluation of risks for human health should be done considering the precepts of environmental radiological protection. The ecosystem pollution with trace elements generates changes at the geochemistry cycle of these elements and in environmental quality. Soils have single characteristics when compared with another components of biosphere (air, water and biota), cause they introduce themselves not only as a drain towards contaminants, but also as natural buffer that control the transport of chemical elements and other substances for atmosphere, hydrosphere and biota. The main purpose of environmental monitoring program is to evaluate the levels of contaminants in the various compartments of the environment: natural or anthropogenic, and to assess the contribution of a potential contaminant source on the environment. Elemental Composition for the collected samples was determined by inductively coupled plasma mass spectroscopy. The main objective of this work was to evaluate the map baseline of concentration of interest trace elements in environmental samples of water, sediment and soil from Environmental Monitoring Program of Instituto de Radioprotecao e Dosimetria (IRD). The samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) at IRD. >From the knowledge of trace elements concentrations, could be evaluated the environmental quality parameters at the studied ecosystems. The data allowed evaluating some relevant aspects of the study of trace elements in soil and aquatic systems, with emphasis at the distribution, concentration and identification of main anthropic sources of contamination at environment. (author)

  17. Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria

    Energy Technology Data Exchange (ETDEWEB)

    Sures, B.; Steiner, W.; Rydlo, M.; Taraschewski, H.

    1999-11-01

    Concentrations of the elements Al, Ag, Ba, ca, Cd, Co, Cr, cu, Fe, Ga, Mg, Mn, Ni, Pb, Sr, Tl, and Zn were analyzed by inductively coupled plasma mass spectrometry in the acanthocephalan Acanthocephalus lucii (Mueller); in its host, Perca fluviatilis (L.), and in the soft tissue of the zebra mussel, Dreissena polymorpha (Pallas). All animals were collected from the same sampling site in a subalpine lake, Mondsee, in Austria. Most of the elements were found at significantly higher concentrations in the acanthocephalan than in different tissues (muscle, liver, and intestinal wall) of its perch host. Only Co was concentrated in the liver of perch to a level that was significantly higher than that found in the parasite. Most of the analyzed elements were also present at significantly higher concentrations in A. lucii than in D. polymorpha. Barium and Cr were the only elements recorded at higher concentrations in the mussel compared with the acanthocephalan. Thus, when comparing the accumulation of elements, the acanthocephalans appear to be even more suitable than the zebra mussels in terms of their use in the detection of metal contamination within aquatic biotopes. Spearman correlation analysis revealed that the concentrations of several elements within the parasites decreased with increasing infrapopulation. Furthermore, the levels of some elements in the perch liver were negatively correlated with the weight of A. lucii in the intestine. Thus, it emerged that not only is there competition for elements between acanthocephalans inside the gut but there is also competition for these elements between the host and the parasites. The elevated element concentrations demonstrated here in the parasitic worm A. lucii provide support for further investigations of these common helminthes and of their accumulation properties.

  18. Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

    International Nuclear Information System (INIS)

    Minaya Ramirez, E.; Ackermann, D.; Blaum, K.; Block, M.; Droese, C.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Herfurth, F.; Heßberger, F.P.

    2013-01-01

    Highlights: • Direct high-precision mass measurements of No and Lr isotopes performed. • High-precision mass measurements with a count rate of 1 ion/hour demonstrated. • The results provide anchor points for a large region connected by alpha-decay chains. • The binding energies determine the strength of the deformed shell closure N = 152. • Technical developments and new techniques will pave the way towards heavier elements. -- Abstract: Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further extend mass measurements to the region of superheavy elements, new technical developments are required to increase the performance of our setup. The sensitivity will increase through the implementation of a new detection method, where observation of one single ion is sufficient. Together with the use of a more efficient gas stopping cell, this will us allow to significantly enhance the overall efficiency of SHIPTRAP

  19. ISMAS international discussion meet on elemental mass spectrometry in health and environmental sciences

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Jaison, P.G.; Telmore, V.M.

    2011-04-01

    Mass spectrometry is an indispensable analytical tool associated with almost all branches of science including biology, chemistry, earth sciences, nuclear science, physics, etc. The technique holds tremendous potential owing to its high sensitivity, selectivity and its ability to measure small changes in the isotopic abundances of different elements. Innovations in mass spectrometry instrumentation are further widening the scope by making it possible to handle very large bio-molecules and polymers. New techniques for mass analysis, novel designs for ionization and developments in electronic accessories have contributed to elevate mass spectrometry to a position of prime importance in research. Development in mass spectrometry has revolutionized the study of micro-nutrient metabolism, of biologically active compounds and for drug discovery in pharmaceutical research. Elemental mass spectrometry is making major contributions to food toxicology, food forensics, and study of metabolism of nutrient minerals including Fe, Zn, Ca, Cu and Se. The area of speciation analysis using hyphenated techniques as well as electro-spray ionization have undergone a phenomenal evolution and development in the recent past. Impressive progress in mass spectrometry towards lower detection limits, higher resolution and molecule-specific detection at trace levels in complex matrices allows new frontiers to be crossed. Papers relevant to INIS are indexed separately

  20. Development and optimization of a nuclear method to determine the lead concentration as an ultra-trace element in ultra-pure water

    International Nuclear Information System (INIS)

    Amara, A.; Giovagnoli, A.; Barrandon, J.N.

    1994-01-01

    Here we intend to perfect a nuclear analytical technique for the determination of lead concentration as an ultra-trace element in ultra-pure water Inmost cases the analysis of an aqueous solution is made by non-nuclear methods, therefore methods which are sensitive to the chemical form of the element to be determined. To ovoid this problem we developed a nuclear technique using a cyclotron,which allows the determination of the lead concentration in any of its chemical forms. We studied the possibilities of several incident beams, like neutral particles and charged particles. Proton activation showed to be the most sensitive of all the irradiation procedures. Several points have though be studied and developed: - an irradiation cell for liquids irradiation under a strong proton current; - the bismuth chemical separation. This element has two radio-isotopes allowing the determination of lead;-optimize the experimental irradiation and measurements parameters in order to reach the lower detection limit. At last an intercomparison of several techniques has been made for different standards. It clearly showed that, contrary to atomic,potentiometric or mass spectrometry methods,only activation technique give accurate and reproducible results. (author).1 fig., 2 tabs., 4 refs

  1. Stationary nonimaging concentrator as a second stage element in tracking systems

    Science.gov (United States)

    Kritchman, E. M.; Snail, K. A.; Ogallagher, J.; Winston, R.

    1983-01-01

    An increase in the concentration in line focus solar concentrators is shown to be available using an evacuated compound parabolic concentrator (CPC) tube as a second stage element. The absorber is integrated into an evacuated tube with a transparent upper section and a reflective lower section, with a selective coating on the absorber surface. The overall concentration is calculated in consideration of a parabolic mirror in a trough configuration, a flat Fresnel lens over the top, or a color and coma corrected Fresnel lens. The resulting apparatus is noted to also suppress thermal losses due to conduction, convection, and IR radiation.

  2. Dataset on elemental concentration and group identification of ancient potteries from Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    A. Chandrasekaran

    2017-02-01

    Full Text Available The dataset contains concentration of major and trace elements of ancient potteries from Tamilnadu and grouping different potteries from the statistical techniques of factor and cluster analysis (Figs. 2, 3 and 4. The major and trace elemental concentration data generated using energy dispersive X-ray fluorescence technique (EDXRF and factor and cluster analysis data obtained using STATISTICA (10.0 version software. The concentration of major and trace elements determines the type of clay minerals (Calcareous/Non-Calcareous and either low or high refractory and firing atmosphere adopted by the artisans at the time of manufacture. The statistical tool examined graphically the grouping pattern of the samples in terms of chemical composition and extract information about their provenance. The compilation of this data provides a resource for the wider research community in archeology.

  3. Concentration of 24 Trace Elements in Human Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1964-06-15

    By means of neutron-activation analysis, human heart tissue from autopsy of 20 victims of traumatic accidents has been investigated with respect to the concentration of 24 different trace elements. A recently developed ion-exchange technique combined with gamma spectrometry has been used, which permits simultaneous determination of a large number of trace elements. The following trace elements have been determined quantitatively: Ag, As, Au, Ba, Br; Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Pt, Rb, Sb, Se, Se, Sm, Zn, W. In some heart samples, Hf and Os were determined qualitatively. The mean and standard deviation are given for the elements Cu, Fe, Se and Zn, Since none of the other quantitatively determined trace elements were normally distributed, the median is given as the central value. When possible, comparisons with values from other investigations have been made. No marked differences in the trace-element concentrations with age or sex could be detected.

  4. Concentration of 24 Trace Elements in Human Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1964-06-01

    By means of neutron-activation analysis, human heart tissue from autopsy of 20 victims of traumatic accidents has been investigated with respect to the concentration of 24 different trace elements. A recently developed ion-exchange technique combined with gamma spectrometry has been used, which permits simultaneous determination of a large number of trace elements. The following trace elements have been determined quantitatively: Ag, As, Au, Ba, Br; Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Hg, La, Mo, Pt, Rb, Sb, Se, Se, Sm, Zn, W. In some heart samples, Hf and Os were determined qualitatively. The mean and standard deviation are given for the elements Cu, Fe, Se and Zn, Since none of the other quantitatively determined trace elements were normally distributed, the median is given as the central value. When possible, comparisons with values from other investigations have been made. No marked differences in the trace-element concentrations with age or sex could be detected

  5. The determination of some trace elements in sulphide concentrates by spectrophotometry

    International Nuclear Information System (INIS)

    Shelton, B.J.; Komarkova, E.; Josephson, M.; Cook, E.B.T.; Dixon, K.

    1977-01-01

    The report describes the determination of trace amounts (as low as 1 to 10 p.p.m. depending on the element) of arsenic, germanium, molybdenum, nickel, phosphorus, selenium, tellurium, tin, and titanium in sulphide concentrates. The proposed methods, which are detailed in the appendices, are adaptations of established procedures that were modified to allow for the complex nature of the concentrates to be analysed

  6. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient

    International Nuclear Information System (INIS)

    Rautio, Pasi; Huttunen, Satu

    2003-01-01

    Different methods should be used for foliar analyses of trees used as bioindicators of pollution, than those analyses used in nutritional studies of trees. - Analysis of foliar elements is a commonly used method for studying tree nutrition and for monitoring the impacts of air pollutants on forest ecosystems. Interpretations based on the results of foliar element analysis may, however, be different in nutrition vs. monitoring studies. We studied the impacts of severe sulphur and metal (mainly Cu and Ni) pollution on the element concentrations (Al, Ca, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S and Zn) in Scots pine (Pinus sylvestris L.) foliage along an airborne sulphur and metal pollution gradient. Emphasis was put on determining the contribution of air-borne particles that have accumulated on needle surfaces to the total foliage concentrations. A comparison of two soil extraction methods was carried out in order to obtain a reliable estimate of plant-available element concentrations in the soil. Element concentrations in the soil showed only a weak relationship with internal foliar concentrations. There were no clear differences between the total and internal needle S concentrations along the gradient, whereas at the plot closest to the metal smelter complex the total Cu concentrations in the youngest needles were 1.3-fold and Ni concentrations over 1.6-fold higher than the internal needle concentrations. Chloroform-extracted surface wax was found to have Ni and Cu concentrations of as high as 3000 and 600 μg/g of wax, respectively. Our results suggest that bioindicator studies (e.g. monitoring studies) may require different foliar analysis techniques from those used in studies on the nutritional status of trees

  7. Determination of elemental composition of metals using ambient organic mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shiea, Christopher [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China); Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Cheng, Sy-Chyi; Chen, Yi-Lun [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Shiea, Jentaie, E-mail: jetea@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung 804, Taiwan (China); Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, Kaohsiung 807, Taiwan (China)

    2017-05-22

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  8. Determination of elemental composition of metals using ambient organic mass spectrometry

    International Nuclear Information System (INIS)

    Shiea, Christopher; Huang, Yeou-Lih; Cheng, Sy-Chyi; Chen, Yi-Lun; Shiea, Jentaie

    2017-01-01

    Conventional inorganic mass spectrometric (MS) analysis of metals can require time-consuming and tedious sample preparation. We thus report the novel and direct characterization of metals in solid samples using an organic MS technique known as electrospray laser desorption ionization mass spectrometry (ELDI/MS). No sample pretreatment was needed, and results were rapidly obtained due to the ambient and laser-based nature of ELDI/MS. Metals from samples were desorbed and ionized by laser irradiation, after which they reacted with EDTA and then post-ionized and detected as metal-EDTA complexes. Aluminum, copper, iron, lead, nickel, and zinc from plates, foils, and coins were characterized in seconds. This study demonstrates that an ESI/MS system can be easily modified to analyze metal elements in solids by involving a chelating agent, indicating a potentially promising development in MS towards the analysis of metals using organic MS. - Highlights: • “Organic MS” was utilized as “inorganic MS” to detect metal ions in solid samples. • Element ions desorbed by laser irradiation rapidly reacted with a chelating reagent before they were detected by MS. • Elemental composition of metals was determined by this “Organic MS” method.

  9. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    Science.gov (United States)

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  10. Analysis of bioaccessible concentration of trace elements in plant based edible materials by INAA and ICPMS methods

    International Nuclear Information System (INIS)

    Dutta, R.K.; Maharia, R.S.; Acharya, R.; Reddy, A.V.R.

    2014-01-01

    The total metal concentration and bioaccessible concentration of Cr, Mn, Fe, Cu, Zn, Se in Momordica charantia, Asparagus racemosus, Terminalia arjuna and Syzyzium cumini were measured by instrumental neutron activation analysis and by inductively coupled plasma mass spectrometry analysis (ICP-MS). The bioaccessible concentrations were determined in the gastrointestinal digest obtained after treating dried powdered samples sequentially in gastric and intestinal fluid of porcine origin at physiological conditions. The bioaccessible concentration of Fe was in the range of 58-67 mg kg -1 , Mn was 10.2-14.6 mg kg -1 , Cu was 3.7-4.8 mg kg -1 and Zn was 10.6-18.4 mg kg -1 , were within the safety limits set for vegetable food stuff set by Joint FAO/WHO. The bioaccessibility of Zn, an essential element, was high (40-50 %) in M. charantia and in S. cumini. In addition, the total metal contents and bioaccessible concentration of Ni, Se, Cd and Pb in these samples were measured by ICP-MS. The total Cd content in S. cumini (2.6 ± 0.2 mg kg -1 ) and its bioaccessible concentration (0.6 mg kg -1 ) were strikingly high as compared to the other samples. Though total Hg contents were determined by ICP-MS, but their bioaccessible concentrations were below the detection limit (0.036 mg kg -1 ). (author)

  11. Elements concentrations and relationship of whole blood and urine in 40 identical adult men in China

    International Nuclear Information System (INIS)

    Zhu, H.D.; Wu, Q; Fan, T.J.; Liu, Q.F; Wang, J.Y; Wang, N.F; Liu, H.S; Wang, X.Y; Ou-Yang, L.; Liu, Y.Q.; Xie, Q.

    2008-01-01

    Objective: To determine elemental concentrations in whole blood and 24 hr. urine of identical adult men, relative daily urinary excretion and verify relationship between both of concentrations in the blood and urine. Methods: During the same time as sampling organ or tissue samples from autopsy, whole blood and 24 hr. urine samples of identical subjects were obtained from each of 10 healthy adult male volunteers, living in 4 areas with different dietary types in China. The concentrations of 56 elements in both the two kinds of samples were analyzed by using ICP-MS as the principal, assisted with ICP-AES as well GFAAS techniques and necessary QC measures. The concentrations of urinary creatinine in the urine samples were determined by using spectrophotometric method. Results: Concentrations of both the 56 elements in these whole blood and urine samples of identical subjects and urinary creatinine and related daily urinary excretions were obtained. Conclusion: This research obtained the new data on both concentrations of these elements in whole blood and urine samples of identical subjects and their daily urinary excretions for the first time in China. These results have provided preliminary basis for understanding concentrations of these elements in the whole blood, daily urinary excretions of identical subjects as well their differences for different areas, and developing relative background values and parameters for Chinese Reference Man. Furthermore, the obtained results have been compared with both internal and external literature data and discussed. (author)

  12. The two-mass contribution to the three-loop pure singlet operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-11-15

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  13. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    International Nuclear Information System (INIS)

    Simon, Edina; Braun, Mihaly; Vidic, Andreas; Bogyo, David; Fabian, Istvan; Tothmeresz, Bela

    2011-01-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: → We studied the elements in dust and leaves along an urbanization gradient, Austria. → We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. → Elemental concentrations were higher in urban area than in the rural area. → Studied areas were separated by CDA based on the elemental concentrations. → Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  14. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Braun, Mihaly [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Vidic, Andreas [Department fuer Naturschutzbiologie, Vegetations- und Landschaftsoekologie, Universitat Wien, Althanstrasse 14, 1090 Wien (Austria); Bogyo, David [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Fabian, Istvan [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tothmeresz, Bela [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2011-05-15

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: > We studied the elements in dust and leaves along an urbanization gradient, Austria. > We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. > Elemental concentrations were higher in urban area than in the rural area. > Studied areas were separated by CDA based on the elemental concentrations. > Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  15. Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1990-01-01

    Many of the statistical characteristics of plant concentration ratios (CRs) and translocation factors (TFs) have not been critically assessed, especially in field surveys. The statistical characteristics, particularly the measures of variation, are important for stochastic modelling of plant uptake. The CR and TF values for 23 naturally occurring elements throughout the geographic range of one plant species, blueberries (Vaccinium angustifolium), in Canada were surveyed. Although the ratios imply linear relationships, the numerator concentrations were not closely correlated with the denominator concentrations. The variation in the ratios was not clearly related to the means or to characteristics of the elements. The overall geometric standard deviation for CRs was 2.5 and for TFs was 1.6. The values of CR were intercorrelated for certain groups of elements and these groups reflected the periodic classification of elements. Thus, correlation between elements in stochastic models, which may reduce overall variability, is valid. Site variables such as soil pH, soil bulk density, soil fertility and plant growth condition were only slightly useful in statistically explaining some of the variation in CR values. (author)

  16. Applications of mass spectrometry in the trace element analysis of biological materials

    International Nuclear Information System (INIS)

    Moens, L.

    1997-01-01

    The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used. (orig.)

  17. Elemental concentrations of aquatic insect larvae and attached algae on tone surfaces in an uncontaminated stream

    International Nuclear Information System (INIS)

    Momoshima, N.; Sugihara, S.; Hibino, K.; Nakamura, Y.

    2009-01-01

    Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k 0 -standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed int he elemental concentrations of aquatic insect larvae and attached algae long the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water. (author)

  18. Determination of the elemental composition of ferromanganese formations certified reference materials by mass-spectrometry with inductively coupled plasma

    Directory of Open Access Journals (Sweden)

    N. V. Zarubina

    2014-01-01

    Full Text Available Contents of 41 elements in the Russian standard samples of ferromanganese nodules OOPE 601, OOPE 602, OOPE 603 and ore crust OOPE 604 were identified by mass-spectrometry with inductively-coupled plasma. Content of W was firstly presented in the sample OOPE-603. Relative standard deviation for most elements was in the range of 3-10%. A description of ICP-MS technique including sample preparation procedure and other instrumental parameters were given as well as analysis of ferromanganese nodules standard samples NOD-A-1 and NOD-P-1 of U.S. Geological Survey was demonstrated for validation. Normalized to chondrite distribution curves of REE in the studied samples were shown as an indicator of the internal consistency offound concentrations. The available literature data on the content of a wide range of elements and its comparison with the matter obtained by us was produced. Measured contents of elements in the established CRM may be useful in the analytical practice to evaluate precision of results. There is a lack of relevant information on a variety of geochemically important elements in the Russian standard samples of OOPE series and the new data can be taken into account in their certification.

  19. Temporal and Spatial variations in Organic and Elemental carbon concentrations in PM10/PM2.5 in the Metropolitan Area of Costa Rica, Central America

    Science.gov (United States)

    Campos-Ramos, A.; Herrera Murillo, J.; Rodriguez-Roman, S.; Cardenas, B.; Blanco-Jimenez, S.

    2011-12-01

    During 2010-2011, as part of a Binational Cooperation Project between Mexico and Costa Rica, samples collected weekly in 15 and 5 sites for PM10 and PM2,5 respectively, in the Metropolitan area of Costa Rica, a region of 2.5 million habitants. Based on the high PM2.5 mass concentrations found (17-38 μg/m3), samples were analyzed to determinate the organic and elemental carbon concentrations using DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). Organic (OC) and Elemental (EC) carbon concentrations exhibited a clear seasonal pattern with higher concentrations in the rainy period than in the dry period, due to cooperative effects of changes in emission rates and seasonal meteorology. Spatial variations in carbonaceous species concentrations were observed mostly influenced by the local sources at the different sampling sites in the following magnitude of contribution: vehicle emissions > industrial > agricultural burning. Total carbonaceous aerosol accounted for 42.7% and 26.8% of PM2.5 mass in rainy and dry period, respectively. Good correlation (R = 0.87-0.93) between OC and EC indicated that they had common dominant sources of combustion such as heavy fuels used in industries and traffic emissions. The estimated secondary organic carbon (SOC) accounted for 46.9% and 35.3% of the total OC in the rainy and dry period, respectively, indicating that SOC may be an important contributor to fine organic aerosol in the Metropolitan Area of Costa Rica. These results will be used to improve the National Emissions Inventory, particularly for PM2.5.

  20. The Study of the Elemental Concentrations in the Some Rocks and Cements in Myanmar

    International Nuclear Information System (INIS)

    Khin Mar Kyu; Yi Yi Myint; San Yee

    2006-06-01

    X-ray fluorescence (XRF) spectrometry is an analytical technique widely used for elemental analysis in both industrial and research laboratories. In this paper, energy dispersive x-ray technique was used in nine rock samples and five cement samples to measure the elemental concentrations. By using EDX-700, silicon was found as major element containedin one rock sample, chorine was found as major element contained in four rock samples, calcium was found as major element contained in two rock samples and iron was found as major element contained in two rock samples. In all cement samples, calcium was found as major element

  1. Application of neutron activation analysis and inductively coupled plasma mass spectrometry to the determination of toxic and essential elements in Australian foods

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Bowles, C.J.; Warner, I.M.; Tan Mingguang

    1994-01-01

    Current Australian Legislation specifies the maximum permitted levels of nine toxic elements in food while the National Health and Medical Research Council (NH and MRC) has listed recommended daily intake figures for seven essential elements. This investigation examined the compliance of Australian foods with both these requirements. Australia-wide samples of representative foods from the diets of Australians were used in this study after the NH and MRC kindly permitted us to join their Market Basket (Noxious Substance) Survey. Both toxic and essential element concentrations in these foods were determined using the advanced analytical techniques of instrumental (INAA) and radiochemical neutron activation analysis (RNAA) and inductively coupled plasma mass spectrometry (ICP-MS). With very few exceptions, foods do not exceed the maximum permitted levels for toxic substances. Daily intake figures for essential elements generally lie close to the maximum recommended values listed by NH and MRC. Since another source of toxic element intake is drinking water, samples from different locations were analyzed by NAA and inductively coupled plasma atomic emission spectroscopy (ICP-AES). They were extremely low in trace elements with the exception of copper, iron, zinc and lead which approached the maximum permitted concentrations. The performance of NAA and ICP-MS for analyzing biological materials were compared. NAA cannot match the superior sensitivity for a wider range of elements obtained by ICP-MS. This has been verified for a wide range of food materials. While NAA is an inconvenient and time-consuming technique for many applications, it does not suffer from blank problems after irradiation of the sample and becomes the preferred technique where low limits of detection are required for trace concentrations in solid samples. (author). 22 refs, 27 figs, 21 tabs

  2. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Xiang Guoqiang; Jiang Zucheng; He Man; Hu Bin

    2005-01-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l -1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g -1 (Eu)-33.3 ng g -1 (Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 μg l -1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory

  3. Study on elements concentrations on seabird feathers by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Theophilo, Carolina Y.S.; Moreira, Edson G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil); Figueira, Rubens C.L.; Colabuono, Fernanda I., E-mail: carolina.theophilo@gmail.com, E-mail: emoreira@ipen.br, E-mail: rfigueira@usp.br, E-mail: ficolabuono@gmail.com [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Instituto Oceanográfico

    2017-07-01

    Seabirds are very sensitive to environmental changes and because of their large longevity they are also sensitive to cumulative impacts. These birds usually occupy the higher trophic levels. White-chinned petrel (Procellaria aequinoctialis) and black-browed albatross (Thalassarche melanophris) are Procellariiformes, which is a seabird order, composed of 4 families. In the last years, researches are being done and actions are being taken to reduce the mortality of albatrosses and petrels caused by human activities. Due to the great ecological importance of these birds and the developed work with Procellariiformes, this study purpose is to quantify the Br, Cl, Cu, K, Mg, Mn, Na and V elements in white-chinned petrel and black-browed albatross feathers. Bird specimens were killed accidentally by pelagic longline fisheries operating off southern Brazil. Feathers were cleaned with acetone and then milled in a cryogenic mill. Instrumental Neutron Activation Analysis (INAA) was used for quantification of the element concentrations and measurements of induced activities were performed in a HPGe detector for gamma ray spectrometry. The obtained results on feathers showed that concentrations in these birds are not higher than others studies with the same species and, with exception of Br, there are no significant differences between elements mean concentrations in the two seabirds. (author)

  4. Study on elements concentrations on seabird feathers by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Theophilo, Carolina Y.S.; Moreira, Edson G.; Figueira, Rubens C.L.; Colabuono, Fernanda I.

    2017-01-01

    Seabirds are very sensitive to environmental changes and because of their large longevity they are also sensitive to cumulative impacts. These birds usually occupy the higher trophic levels. White-chinned petrel (Procellaria aequinoctialis) and black-browed albatross (Thalassarche melanophris) are Procellariiformes, which is a seabird order, composed of 4 families. In the last years, researches are being done and actions are being taken to reduce the mortality of albatrosses and petrels caused by human activities. Due to the great ecological importance of these birds and the developed work with Procellariiformes, this study purpose is to quantify the Br, Cl, Cu, K, Mg, Mn, Na and V elements in white-chinned petrel and black-browed albatross feathers. Bird specimens were killed accidentally by pelagic longline fisheries operating off southern Brazil. Feathers were cleaned with acetone and then milled in a cryogenic mill. Instrumental Neutron Activation Analysis (INAA) was used for quantification of the element concentrations and measurements of induced activities were performed in a HPGe detector for gamma ray spectrometry. The obtained results on feathers showed that concentrations in these birds are not higher than others studies with the same species and, with exception of Br, there are no significant differences between elements mean concentrations in the two seabirds. (author)

  5. Mass spectrometry in oceanography

    International Nuclear Information System (INIS)

    Aggarwal, Suresh K.

    2000-01-01

    Mass spectrometry plays an important role in oceanography for various applications. Different types of inorganic as well as organic mass spectrometric techniques are being exploited world-wide to understand the different aspects of marine science, for palaeogeography, palaeoclimatology and palaeoecology, for isotopic composition and concentrations of different elements as well as for speciation studies. The present paper reviews some of the applications of atomic mass spectrometric techniques in the area of oceanography

  6. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    Science.gov (United States)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace

  7. Effects of biochar addition on toxic element concentrations in plants

    DEFF Research Database (Denmark)

    Peng, Xin; Deng, Yinger; Peng, Yan

    2018-01-01

    Consuming food contaminated by toxic elements (TEs) could pose a substantial risk to human health. Recently, biochar has been extensively studied as an effective soil ameliorant in situ because of its ability to suppress the phytoavailability of TEs. However, despite the research interest......, the effects of biochar applications to soil on different TE concentrations in different plant parts remain unclear. Here, we synthesize 1813 individual observations data collected from 97 articles to evaluate the effects of biochar addition on TE concentrations in plant parts. We found that (1) the experiment...... type, biochar feedstock and pyrolysis temperature all significantly decreased the TE concentration in plant parts; (2) the responses of Cd and Pb concentrations in edible and indirectly edible plant parts were significantly more sensitive to the effect of biochar than the Zn, Ni, Mn, Cr, Co and Cu...

  8. Concentrations of some elements in the coastal sea sediments. Bays with marinas

    International Nuclear Information System (INIS)

    Obhodas, J.; Kutle, A.; Valkovic, V.

    2006-01-01

    Surface sediments and sediment cores from two bays in the Adriatic sea (Punat Bay and Soline Bay, Croatia) have been analyzed for a number of elements, in particular: Ti, V, Mn, Fe, Cu, Zn, As and Pb, by using XRF. Maps of elemental distribution in surface sediments show increased concentrations for some elements present in antifouling paints (Cu, Zn, Pb) near the service areas in the villages or marinas. Core profiles for these elements were used to evaluate the environmental impact of newly constructed marinas. Source partition indicates the influence of other sources located in near by villages. The critical factor in these considerations was shown to be water exchange with the open sea. (author)

  9. Application of neutron activation analysis and inductively coupled plasma mass spectrometry to the determination of toxic and essential elements in Australian foods

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Bowles, C.J.; Farrar, Y.J.; Warner, I.M.

    1990-01-01

    Current Australian legislation specifies the maximum permitted levels of nine toxic elements in foods while the National Health and Medical Research Council (NH and NRC) has listed recommended daily intake figures for seven essential elements. This investigation examined the compliance of Australian foods with both these requirements. Australia-wide samples of representative foods from the diets of Australians were used in this study after the NH and NRC kindly permitted us to join their Market Basket (Noxious Substance) Survey. Both toxic and essential element concentrations in these foods were determined using the advanced analytical techniques of instrumental and radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry. With very few exceptions foods do not exceed the maximum, permitted levels for toxic substances. Daily intake figures for essential elements generally lie close to the maximum recommended values listed by NH and NRC. (author). 11 refs, 22 figs, 17 tabs

  10. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mohiuddin, Kazi, E-mail: kazi.mohiuddin@students.mq.edu.au [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Strezov, Vladimir; Nelson, Peter F. [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Evans, Tim [Graduate School of the Environment, Department of Environment and Geography, Faculty of Science, Macquarie University, NSW (Australia)

    2014-07-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  11. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia

    International Nuclear Information System (INIS)

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F.; Stelcer, Eduard; Evans, Tim

    2014-01-01

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. - Highlights: • Urban and

  12. Concentrations of trace elements in human tissues and relation of ratios of mutual metals to the human health

    International Nuclear Information System (INIS)

    Ling-wei, X.; Shao-xian, L.; Xiao-juan, Z.

    1989-01-01

    According to the experimental results, the concentrations and concentrations in order, of trace elements in human tissues among Changsha's People in China are reported. The authors particularly present that the ratios of mutual metals (M/N) in normal physiological tissues and fluids are very important factors which indicate the metabolic situations of trace elements in the body and as the indices which evaluate the situation of human health. (M and N mean the concentrations of different trace elements in the tissues or fluids, respectively.) Up to now, it is still an interesting field to study the functions of trace elements for the human health. There are previously some reports about the concentrations of trace elements in normal physiological tissues/ or organs and fluids of human body. These provide very valuable data for biological medicine. In the study presented atomic absorption method was adopted in order to determine the concentrations of Zn, Cu, Mn, Ni, Pb and Cd in human tissues (liver, spleen, kidney, bone, lung, pancreas, heart and artery and muscle) at autopsy. The authors suggest that trace elements, are contained in the body in an aproportional way, in normal physiological tissues and fluids, and the ratios may directly indicate metabolic situation of trace elements in the body which further reveal the mystery of trace elements for human health. Therefore, the ratios M/N as an indicator of health is more proper than that only using concentrations of trace elements. Schroeder (1973) reported that incidence of heart disease is related to the imbalance of ration Zn/Cd and Zn/Cu rather than the concentrations of Zn, Cd, Cu, and the intellectual development also depends on the proper proportion among copper, cadmium, lead, zinc in the body

  13. Long-lived heavy mass elements half-lives (A > 125)

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    Reported values of half-lives of intermediate mass and heavy elements are evaluated. The evaluation analysis estimates the systematic error the resulting standard deviation. Recommended values are then presented for 128 Te, 130 Te, 129 I, 138 La, 144 Nd, 145 Nd, /sup 146,147,148/Sm, 152 Gd, 154 Dy, 176 Lu, 174 Hf, 180 Ta, 187 Re, 186 Os, 190 Pt, /sup 204,205/Pb, and /sup 230,232/Th. 103 refs., 21 tabs

  14. Mass concentration coupled with mass loading rate for evaluating PM_2_._5 pollution status in the atmosphere: A case study based on dairy barns

    International Nuclear Information System (INIS)

    Joo, HungSoo; Park, Kihong; Lee, Kwangyul; Ndegwa, Pius M.

    2015-01-01

    This study investigated particulate matter (PM) loading rates and concentrations in ambient air from naturally ventilated dairy barns and also the influences of pertinent meteorological factors, traffic, and animal activities on mass loading rates and mass concentrations. Generally, relationships between PM_2_._5 concentration and these parameters were significantly poorer than those between the PM loading rate and the same parameters. Although ambient air PM_2_._5 loading rates correlated well with PM_2_._5 emission rates, ambient air PM_2_._5 concentrations correlated poorly with PM_2_._5 concentrations in the barns. A comprehensive assessment of PM_2_._5 pollution in ambient air, therefore, requires both mass concentrations and mass loading rates. Emissions of PM_2_._5 correlated strongly and positively with wind speed, temperature, and solar radiation (R"2 = 0.84 to 0.99) and strongly but negatively with relative humidity (R"2 = 0.93). Animal activity exhibited only moderate effect on PM_2_._5 emissions, while traffic activity did not significantly affect PM_2_._5 emissions. - Highlights: • Sink PM_2_._5 loading rates correlate well with source PM_2_._5 emission rates. • Sink PM_2_._5 concentrations correlate poorly with source PM_2_._5 concentrations. • Mass loading rate complements mass concentration in appraising sink PM_2_._5 status. • PM_2_._5 emissions is dependent on wind speed, temp, solar strength, and RH. • Cow traffic activity affects PM_2_._5 emissions, while traffic activity does not. - Both PM mass loading rate and concentrations are required for comprehensive assessment of pollution potential of PM released into the atmosphere.

  15. Direct quantification of thorium, uranium and rare earth element concentration in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Palmieri, Helena E.L.; Knupp, Eliana A.N.; Auler, Lucia M.L.A.; Gomes, Luiza M.F.; Windmoeller, Claudia C.

    2011-01-01

    A direct quantification of the thorium, uranium and rare earth elements in natural water samples using inductively coupled plasma mass spectrometry (ICP-MS) was evaluated with respect to selection of isotopes, detection limits, accuracy, precision, matrix effects for each isotope and spectral interferences. Accuracy of the method was evaluated by analysis of Spectra pure Standards (SPS-SW1 Batch 116-Norway) for the rare earth elements (REEs), thorium, uranium, scandium and yttrium. The measurements were carried out for each of the following analytical isotopes: 139 La, 140 Ce, 141 Pr, 143 Nd, 147 Sm, 151 Eu, 160 Gd, 159 Tb, 163 Dy, 165 Ho, 167 Er, 16 9Tm, 174 Yb, 175 Lu, 45 Sc, 89 Y, 232 Th and 238 U. Recovery percentage values found in these certified samples varied between 95 and 107%. The method was applied to the analysis of spring water samples collected in fountains spread throughout the historical towns of Ouro Preto, Mariana, Sabara and Diamantina in the state of Minas Gerais, Brazil. In the past these fountains played an essential and strategic role in supplying these towns with potable water. Until today this water is used by both the local population and tourists who believe in its quality. REE were quantified at levels comparable to those found in estuarine waters, which are characterized by low REE concentrations. In two fountains analyzed the concentration of REEs presented high levels and thus possible health risks for humans may not be excluded. (author)

  16. Elemental composition of air masses under different altitudes in Azores, central north Atlantic

    International Nuclear Information System (INIS)

    Vieira, B.J.; Wolterbeek, H.Th.

    2012-01-01

    Between 8th July 2002 and 18th June 2004, aerosol samples were collected in Azores. Their inorganic composition was obtained by neutron activation analysis in order to study the differences of aerosols in two atmospheric altitudes of the central north Atlantic: (1) PICO-NARE observatory (Lower Free Troposphere-LFT) at Pico mountain summit (38,470 deg N, 28,404 deg W, 2,225 m a.s.l.) in Pico Island, Azores, where air masses from the surrounding continents (Africa, Europe, Central and North America) pass through, carrying aerosols with anthropogenic (Sb, Br, Mo, U, Se and Tb) and/or natural emissions (Fe, Co, La, Na, Sm, Cr, Zn, Hf, K and Th); (2) TERCEIRA-NARE station (Marine Boundary Layer) at Serreta (38,69 deg N, 27,36 deg W, 50 m a.s.l.), in Terceira Island, Azores, where natural aerosols (I, Cl, Na, Br and other soil related elements) are predominant. However, a combined interpretation of the data points out to a co-existence of the anthropogenic elements Sb and Mo, eventually with similar origins as the ones passing Pico Mountain summit. Very high concentrations and enrichment factors for Sb, Mo and Br in LFT, higher than the ones found in other areas, confirm atmospheric long-range transport mainly from the west boundary of north Atlantic; this may indicate eventual accumulation and persistence of those elements in the area due to the presence of Azores high pressures or the Hadley cells effect. A significant correlation between Fe and Yb and the enrichment of rare earth elements (La, Sm, Tb and Yb) and Th in LFT aerosols, both reflect a mineral dust intrusions from north Africa (Sahara and Sahel region). (author)

  17. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    Science.gov (United States)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  18. Assessment of metal element concentrations in mussel (M. Galloprovincialis) in Eastern Black Sea, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, U. [Karadeniz Technical University, Department of Physics, 61080 Trabzon (Turkey)], E-mail: berrenazli@yahoo.com; Damla, N.; Kobya, A.I. [Karadeniz Technical University, Department of Physics, 61080 Trabzon (Turkey); Bulut, V.N. [Giresun University, Department of Chemistry, 28049 Giresun (Turkey); Duran, C. [Karadeniz Technical University, Department of Chemistry, 61080 Trabzon (Turkey); Dalgic, G. [Rize University, Faculty of Fisheries, 53100 Rize (Turkey); Bozaci, R. [Karadeniz Technical University, Department of Physics, 61080 Trabzon (Turkey)

    2008-12-30

    The main goal of this work is to determine the effects of pollution of copper, lead and zinc mines on the Eastern Black Sea. Metal and heavy metal concentrations in the Eastern Black Sea mussels were measured using Energy Dispersive X-ray Fluorescence (EDXRF) and Flame Atomic Absorption Spectroscopy (FAAS). The analytical results showed that the tissue of mussel in Eastern Black Sea contains K, Ca, Fe, Cu, Zn, and Sr elements, and the shell of mussel contains Ca, Cu, Sr, and Ba elements. Due to the detection limit of EDXRF, the mussels were analyzed with FAAS for Cr, Mn, Ni, Cd and Pb elements. An ANOVA and Pearson correlation analyses were performed. The results showed although that the mean concentrations of Cu and Zn for the tissue of the mussels were markedly above the permissible levels of the Turkish regulations, Zn concentration is in the limits of the Food and Agriculture Organization (FAO)

  19. Major element concentrations in Mangrove Pore Water, Sepetiba Bay, Brazil

    Directory of Open Access Journals (Sweden)

    Christian J. Sanders

    2012-03-01

    Full Text Available Concentrations of cations and anions of major elements (Na+, Ca2+, Mg2+, K+, Cl-, SO4 2- were analyzed in the pore water of a mangrove habitat. Site specific major element concentrations were identified along a four piezometric well transect, which were placed in distinct geobotanic facies. Evapotranspiration was evident in the apicum station, given the high salinity and major element concentrations. The station landward of an apicum was where major element/Cl- ratios standard deviations are greatest, suggesting intense in situ diagenesis. Molar ratios in the most continental station (4 are significantly lower than the nearby freshwater source, indicating a strong influence of sea water flux into the outer reaches of the mangrove ecosystem and encroaching on the Atlantic rain forest. Indeed, the SO4 2-/Cl- and Ca2+/Cl- ratios suggest limited SO4 2- reduction and relatively high Ca2+/Cl- ratios indicate a region of recent saltwater contact.As concentrações dos elementos maiores (Na+, Ca2+, Mg2+, K+, Cl-, SO4(2- foram analisadas na água intersticial de poços piezométricos localizados em diferentes fácies geobotânicas ao longo de um transecto num ecossistema de manguezal na Baía de Sepetiba - Rio de Janeiro. Maiores salinidades e concentrações dos íons maiores são evidencias de evapotranspiração no fácies apicum. Ainda no apicum foram observados os maiores desvios padrão da razão elemento/Cl− durante o período do estudo, indicando intensa diagênese in situ. Razões molares no piezômetro, localizado na borda do manguezal foram consideravelmente menores do que a fonte de água doce, indicando forte influência do fluxo de água marinha. Os resultados das razões molares, SO4(2-/Cl− e Ca2+/Cl− na borda do manguezal adjacente ao continente sugerem limitada redução de SO4(2- enquanto os valores relativamente altos na razão Ca2+/Cl− indicam contacto recente com água marinha.

  20. Subclinical mastitis (SCM) and proinflammatory cytokines are associated with mineral and trace element concentrations in human breast milk.

    Science.gov (United States)

    Li, Chen; Solomons, Noel W; Scott, Marilyn E; Koski, Kristine G

    2018-03-01

    The possibility that either subclinical mastitis (SCM), an inflammatory condition of the breast, or elevations in breast milk proinflammatory cytokines alter breast milk mineral and trace element composition in humans has not been investigated. In this cross-sectional study, breast milk samples (n=108) were collected from Guatemalan Mam-Mayan mothers at one of three stages of lactation (transitional, early and established), and categorized as SCM (Na:K >0.6) or non-SCM (Na:K ≤0.6). Milk concentrations of 12 minerals (calcium, copper, iron, magnesium, manganese, phosphorus, potassium, rubidium, selenium, sodium, strontium, and zinc) and 4 proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) were measured by inductively coupled plasma mass spectrometry (ICP-MS), Lachat analyzer or Luminex multiplex bead cytokine assay. SCM was more prevalent during transitional (30%) than early (15.6%) and established (8.9%) lactation. Analysis of variance revealed that breast milk minerals differed by stage of lactation and SCM status. Breast milk minerals with the exception of magnesium were lower in established lactation, whereas SCM was associated with higher selenium and lower phosphorus. Regression models that controlled for lactation stage also confirmed that SCM was associated with lower milk phosphorus and higher milk selenium concentrations. Furthermore, cytokine concentrations were independently associated with several mineral concentrations: IL-1β with higher phosphorus and iron, IL-6 with higher calcium, magnesium, copper and manganese, IL-8 with higher calcium and zinc, and TNF-α with lower iron and manganese. We conclude that milk mineral and trace element concentrations are affected not only by the presence of SCM but also by proinflammatory cytokines in breast milk. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. HAIR HEAVY METAL AND ESSENTIAL TRACE ELEMENT CONCENTRATION IN CHILDREN WITH AUTISM SPECTRUM DISORDER.

    Science.gov (United States)

    Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T

    2015-11-01

    Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The

  3. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  4. Elemental and organic carbon in aerosols over urbanized coastal region (southern Baltic Sea, Gdynia).

    Science.gov (United States)

    Lewandowska, Anita; Falkowska, Lucyna; Murawiec, Dominika; Pryputniewicz, Dorota; Burska, Dorota; Bełdowska, Magdalena

    2010-09-15

    Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds. Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27+/-0.19 mmol m(-2) d(-1)). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03+/-0.04 mmol m(-2) d(-1). We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Elemental and isotopic characterization of Japanese and Philippine polished rice samples using instrumental neutron activation analysis and isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Pabroa, Preciosa Corazon B.; Sucgang, Raymond J.; Mendoza, Norman dS.; Ebihara, Mitsuru

    2011-01-01

    Rice is a staple food for most Asian countries such as the Philippines and Japan and as such its elemental and isotopic content are of interest to the consumers. Its elemental content may reflect the macro nutrient reduction during milling or probable toxic elements uptake. Three Japanese and four Philippine polished rice samples in his study mostly came from rice bought from supermarkets.These rice samples were washed, dried and ground to fine powder. Instrumental neutron activation analysis (INAA), a very sensitive non-destructive multi-element analytical technique, was used for the elemental analysis of the samples and isotope-ratio mass spectrometry (IRMS) was used to obtain the isotopic signatures of the samples. Results show that compared with the unpolished rice standard NIES CRM10b, the polished Japanese and Philippine rice sampled show reduced concentrations of elements by as much as 1/3 to 1/10 of Mg, Mn, K and Na. Levels of Ca and Zn are not greatly affected. Arsenic is found in all the Japanese rice tested at an average concentration of 0.103 μg/g and three out of four of the Philippine rice at an average concentration of 0.070 μg/g. Arsenic contamination may have been introduced from the fertilizer used in rice fields. Higher levels of Br are seen in two of the Philippine rice at 14 and 34 μg/g with the most probable source being the pesticide methyl bromide. Isotopic ratio of ae 13 C show signature of a C3 plant with possible narrow distinguishable signature of Japanese rice within -27.5 to -28.5 while Philippine rice within -29 to -30. More rice samples will be analyzed to gain better understanding of isotopic signatures to distinguish inter-varietal and/or geographical differences. Elemental composition of soil samples of rice samples sources will be determined for better understanding of uptake mechanisms. (author)

  6. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction

    Science.gov (United States)

    Takahashi, Satoshi; Yamasaki, Shin-ichi; Ogawa, Yasumasa; Kimura, Kazuhiko; Kaiho, Kunio; Yoshida, Takeyoshi; Tsuchiya, Noriyoshi

    2014-05-01

    We describe variations in trace element compositions that occurred on the deep seafloor of palaeo-superocean Panthalassa during the end-Permian mass extinction based on samples of sedimentary rock from one of the most continuous Permian-Triassic boundary sections of the pelagic deep sea exposed in north-eastern Japan. Our measurements revealed low manganese (Mn) enrichment factor (normalised by the composition of the average upper continental crust) and high cerium anomaly values throughout the section, suggesting that a reducing condition already existed in the depositional environment in the Changhsingian (Late Permian). Other redox-sensitive trace-element (vanadium [V], chromium [Cr], molybdenum [Mo], and uranium [U]) enrichment factors provide a detailed redox history ranging from the upper Permian to the end of the Permian. A single V increase (representing the first reduction state of a two-step V reduction process) detected in uppermost Changhsingian chert beds suggests development into a mildly reducing deep-sea condition less than 1 million years before the end-Permian mass extinction. Subsequently, a more reducing condition, inferred from increases in Cr, V, and Mo, developed in overlying Changhsingian grey siliceous claystone beds. The most reducing sulphidic condition is recognised by the highest peaks of Mo and V (second reduction state) in the uppermost siliceous claystone and overlying lowermost black claystone beds, in accordance with the end-Permian mass extinction event. This significant increase in Mo in the upper Changhsingian led to a high Mo/U ratio, much larger than that of modern sulphidic ocean regions. This trend suggests that sulphidic water conditions developed both at the sediment-water interface and in the water column. Above the end-Permian mass extinction horizon, Mo, V and Cr decrease significantly. On this trend, we provide an interpretation of drawdown of these elements in seawater after the massive element precipitation event

  7. MASS CONCENTRATIONS AND ELEMENTAL COMPOSITION OF ...

    African Journals Online (AJOL)

    Preferred Customer

    3Office of Research and Development, National Risk Management Research Laboratory, OH. 45268, USA ... the air quality in pollution control policy. .... houses, commercial firms, fuel depot, Addis Ababa cement factory and Moha Nefas Silk Soft ... practice of the site is dominated by manufacturing and processing industries.

  8. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk

    International Nuclear Information System (INIS)

    Saha, Priyanka; Sen Raychaudhuri, Sarmistha; Chakraborty, Anindita; Sudarshan, Mathummal

    2010-01-01

    Plantago ovata Forsk - an economically important medicinal plant - was analyzed for trace elements and chlorophyll in a study of the effects of gamma radiation on physiological responses of the seedlings. Proton-induced X-ray emission (PIXE) technique was used to quantify trace elements in unirradiated and gamma-irradiated plants at the seedling stage. The experiments revealed radiation-induced changes in the trace element and chlorophyll concentrations.

  9. Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (Kd) of 48 elements

    International Nuclear Information System (INIS)

    Kumblad, Linda; Bradshaw, Clare

    2008-08-01

    In this study the elemental composition of biota, water and sediment from a shallow bay in the Forsmark region have been determined. The report presents data for 48 different elements (Al, As, Ba, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Hg, Ho, I, K, Li, Lu, Mg, Mn, N, Na, Nd, Ni, P, Pb, Pr, Ra, Rb, S, Se, Si, Sm, Tb, Th, Ti, Tm, V, Yb, Zn, Zr) in all major functional groups of the coastal ecosystem (phytoplankton, zooplankton, benthic microalgae, macroalgae, macrophytes, benthic herbivores, benthic filter feeders, benthic detrivores, planktivorous fish, benthic omnivorous fish, carnivorous fish, dissolved and particulate matter in the water and the sediment) during spring 2005. The overall aim of the study is to contribute to a better understanding of ecological properties and processes that govern uptake and transfer of trace elements, heavy-metals, radionuclides and other non-essential elements/contaminants in coastal environments of the Baltic Sea. In addition, the data was collected to provide site-specific Bioconcentration Factors (BCF), Biomagnification Factors (BMF), partitioning coefficients (K d ) and element ratios (relative to carbon) for use in ongoing SKB safety assessments. All these values, as well as the element concentration data from which they are derived, are presented here. As such, this is mainly a data report, although initial interpretations of the data also are presented and discussed. Reported data include element concentrations, CNP-stoichiometry, and multivariate data analysis. Elemental concentrations varied greatly between organisms and environmental components, depending on the function of the elements, and the habitat, ecosystem function, trophic level and morphology (taxonomy) of the organisms. The results show for instance that food intake and metabolism strongly influence the elemental composition of organisms. The three macrophytes had quite similar elemental composition (despite their taxonomic differences

  10. Distribution of trace elements in Western Canadian coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B I; Brown, J R; Fyfe, W S; Peirce, M; Winder, C G

    1981-01-01

    Concentrations of 52 minor elements in coal ash were determined using spark source mass spectroscopy. Hg levels in raw coal were investigated by cold vapour atomic absorption spectrophotometry. The concentration of elements are compared to other available data and to levels in the Earth's crust. F levels in coal ash exceed 500/sub g-1/ and may be greater than 1 wt% om raw coal. Approximately half the elements (B, S, Ni, Zn, Ga, Se, Sr, Y, Mo, Sn, Sb, I, Ba, Pr, Nd, Sm, Eu, Ho, Hf, Pt, Hg, Pb, Tl, Bi, U) investigated are enriched in the coal ash with respect to the Earth's crust. The ranges in minor element concentrations in coal ash and coal from different global regions are very similar.

  11. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    Science.gov (United States)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2) by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3) a unique source of Pb-Cl (associated with

  12. Trace Elements in Teeth by ICPMS

    International Nuclear Information System (INIS)

    Zahran, N.F.; Helal, A.I.; Amr, M.A.; Amr, M.A.; Al-saad, K.A.

    2008-01-01

    Teeth are reported to be suitable indicators of trace element exposure from environment and nutritional status. Inductively coupled plasma mass spectrometry (ICP-MS) is used to compare the trace element content of children's primary teeth and adult teeth. Primary teeth are collected from 28 children and 42 adult from non-industrial City. The data are assessed statistically using t-tests. The adult teeth contained significantly greater concentrations of Na, Mg, Al, Fe, Ni, Cu, Sr, Cd, Ba, Pb and U and significantly less Mn, Co, As, Se, Mo and Bi than the children teeth. Additional measurements on adult teeth pulps are performed. Comparison between trace element concentrations in health and caries teeth pulps show that the mean concentrations of Na, Al, K, Cr, Mn, Co, Cu, Zn, Mo, Ag, Bi and U are lower in caries than healthy teeth pulps. On the other hand, the mean concentrations of Mg, Cd and Pb are higher in caries samples than healthy teeth pulps

  13. Lumped Mass Modeling for Local-Mode-Suppressed Element Connectivity

    DEFF Research Database (Denmark)

    Joung, Young Soo; Yoon, Gil Ho; Kim, Yoon Young

    2005-01-01

    connectivity parameterization (ECP) is employed. On the way to the ultimate crashworthy structure optimization, we are now developing a local mode-free topology optimization formulation that can be implemented in the ECP method. In fact, the local mode-freeing strategy developed here can be also used directly...... experiencing large structural changes, appears to be still poor. In ECP, the nodes of the domain-discretizing elements are connected by zero-length one-dimensional elastic links having varying stiffness. For computational efficiency, every elastic link is now assumed to have two lumped masses at its ends....... Choosing appropriate penalization functions for lumped mass and link stiffness is important for local mode-free results. However, unless the objective and constraint functions are carefully selected, it is difficult to obtain clear black-and-white results. It is shown that the present formulation is also...

  14. Estimation of atomic masses of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    1997-07-01

    To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)

  15. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, J.A.B.; Durazzo, M.

    2010-01-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 gU/cm 3 by using the U 3 Si 2 -Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 gU/cm 3 for the U 3 Si 2 -Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian-Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  16. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jose Antonio Batista de; Durazzo, Michelangelo, E-mail: jasouza@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN developed and made available for routine production the technology for manufacturing dispersion type fuel elements for use in research reactors. However, the fuel produced at IPEN is limited to the uranium concentration of 3.0 g U/c m3 by using the U{sub 3}Si{sub 2}-Al dispersion. Increasing the uranium concentration of the fuel is interesting by the possibility of increasing the reactor core reactivity and lifetime of the fuel. It is possible to increase the concentration of uranium in the fuel up to the technological limit of 4.8 g U/c m3 for the U{sub 3}Si{sub 2}-Al dispersion, which is well placed around the world. This new fuel will be applicable in the new Brazilian- Multipurpose Reactor RMB. This study aimed to develop the manufacturing process of high uranium concentration fuel, redefining the procedures currently used in the manufacture of IPEN. This paper describes the main procedures adjustments that will be necessary. (author)

  17. Trace element concentrations in the fruit peels and trunks of Musa paradisiaca.

    Science.gov (United States)

    Selema, M D; Farago, M E

    1996-08-01

    Chemical analyses for the elementary compositions of the ashes of the fruit peels and trunks of the tropical plantain Musa paradisiaca have been undertaken. The elements, categorized as trace elements, generally are found to have higher mean concentrations in the fruit peels than in the trunks (except in the case of Zn). Their peel-trunk uptake ratios have been calculated and range between 1 and 4, showing normal levels of accumulations in the fruit peels over the trunks.

  18. Baseline element concentrations in soils and plants, Bull Island, Cape Romain National Wildlife Refuge, South Carolina, U.S.A.

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1994-01-01

    Baseline element concentrations are given for Spanish moss (Tillandsia usneoides), loblolly pine (Pinus taeda), and associated soils. Baseline and variability data for ash, Al, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration among and within 0.5 km grid cells are given for each of the media. In general, only a few elements in Spanish moss showed statistically significant landscape patterns, whereas several elements in loblolly pine and in soils exhibited differences among sampling grids. Significant differences in the concentration of three elements in Spanish moss and eight elements (including total S) in loblolly pine were observed between two sampling dates (November and June); however, the absolute amount of these differences was small. Except for perhaps Ni and Pb concentrations in Spanish moss, element levels in all sample media exhibited ranges that indicate natural rather than anthropogenic additions of trace elements.

  19. Mineral Element Concentrations in Vegetables Cultivated in Acidic Compared to Alkaline Areas of South Sweden

    Directory of Open Access Journals (Sweden)

    Ingegerd Rosborg

    2009-01-01

    Full Text Available A study in 1997, on mineral levels in acidic compared to alkaline well waters, and in women’s hair, revealed higher concentrations of a number of mineral elements like Ca, Mo and Se in alkaline waters and hair. Thus, median Ca levels were six times higher in well water and five times higher in hair from the alkaline area compared to the acidic area. This finding raised the probability of similar differences in vegetables from these areas. Thus, in the year 2006, 60 women who had participated in the study in 1997 were asked to cultivate parsley, lettuce, carrot and chive. During the spring of 2006, the women from the water and hair study of 1997, 30 of them from the acidic area and 30 women from the alkaline district cultivated vegetables: carrot (Daucus carota L, parsley (Petroselinum crispum, chive (Allium schoenoprasum and lettuce (Eruca sativa. The vegetables were harvested, and rinsed in tap water from the kitchens of the participating women in August. The concentrations of about 35 elements and ions were determined by ICP OES and ICP-MS predominantly. In addition, soil samples from the different cultivators were also analyzed for a number of elements. Lettuce and parsley showed the highest concentrations of mineral elements per gram dry weight. Only Mo concentrations were significantly higher in all the different vegetables from the alkaline district compared to vegetables from the acidic areas. On the other hand, the concentrations of Ba, Br, Mn, Rb and Zn were higher in all the different vegetables from the acidic area. In the soil, only pH and exchangeable Ca from the alkaline area were higher than from the acidic area, while exchangeable Fe, Mn and Na concentrations were higher in soils from the acidic area. Soil elements like Al, Fe, Li, Ni, Pb, Si, Ti, V, Zn and Zr were found in higher concentrations in lettuce and parsley, which were attributed to soil particles being splashed on the plants by the rain and absorbed by the leaves

  20. Natural Elemental Concentrations and Fluxes: Their Use as Indicators of Repository Safety

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Bill; Lind, Andy; Savage, Dave; Maul, Philip; Robinson, Peter [EnvirosQuantisci, Melton Mowbray (United Kingdom)

    2002-03-01

    individual processes, such as groundwater discharge, river flow and erosion at specific locations. The approach can also be of value at the generic level of repository development, before site characterisation programmes have been undertaken. They could be used, for example, as a component in comparative evaluations of alternative generic disposal concepts. The objective at the generic level would be to define typical or average natural elemental concentrations and fluxes in geological systems representative of the environments which might host a repository, and to compare these with the outputs from the associated generic PAs. To facilitate the use of the natural safety indicators methodology at the generic level, this study has undertaken to bring together and to compile much of the required information. This information has been used to quantify average elemental mass fluxes at the global scale for a range of processes, including groundwater discharge, erosion and sediment transport. The point of these calculations is that they provide a baseline against which site or geological environment specific natural fluxes, from anywhere in the world, can be compared on an equal basis to evaluate if they are higher or lower than the global average and, thus, are useful for providing a broad natural context for predicted repository releases. In separate calculations, elemental mass fluxes were quantified for a number of reference environments which are chosen to be representative of the types of sites and geological systems which may host a deep repository. The reference environments were an inland pluton, basement under sedimentary cover and a sedimentary basin. The fluxes for these environments were calculated for systems with spatial scales of a few hundred square kilometres and, as such, approximate closely to the repository systems modelled in PAs because a reference environment represents the same system, with the same rock, groundwater and surface conditions as those

  1. Trace element concentration in soils and plants in the vicinity of Miduk copper mine

    Directory of Open Access Journals (Sweden)

    Farid Moore

    2014-10-01

    Full Text Available Introduction High concentrations of metals are usually encountered in surface soil and vegetation in areas affected by mining activity (Liu et al., 2006. Different distribution of elements in chemical fractions result in different bioavailability; therefore knowledge of the total content of an element in soil is not a sufficient criterion to estimate the environmental implications of trace metal presence (Maiz et al., 2000. Sequential extraction analysis gives information on the element distribution among different phases of soil. Several schemes of sequential extraction are used for the determination of commonly distinguished metal species, which are in general: (1 easily exchangeable or water soluble; (2 specifically sorbed; e.g., by carbonates or phosphates; (3 organically bound; (4 occluded by Fe-Mn oxides and hydroxides; and (5 structurally bound in minerals or residual (Kabata-Pendias and Mukherjee, 2007. The main objectives of this study are: (1 to describe the distribution pattern of elements in rocks and soils of the Miduk area; (2 to assess the fractionation of elements in soil and the mining impact on the mobility of trace elements; (3 to investigate the uptake of analyzed elements by selected indigenous plant species. Materials and Methods In this study, 32 soil samples at two depths (0-5 cm and 15-20 cm, were analyzed for total concentration of 45 elements. In order to assess the possible bioaccumulation of the elements, the roots and the overground parts of 3 plant species (Astragalus-Fabaceae, Acanthophyllum -Caryophyllaceae, Artemisia -Asteraceae were also collected and analyzed. Enrichment factors (EFs were calculated to assess whether the concentrations observed represent background or contaminated levels. The Tessier et al. method (Tessier et al., 1979 was chosen for sequential extraction of 6 subsoil samples. Correlation analysis was used to examine the relationship between the analyzed elements in soil. The plant’s ability

  2. Determination of long-lived radionuclide (10Be, 41Ca, 129I) concentrations in nuclear waste by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bertaux, Maite; Bourles, Didier; Arnold, Maurice

    2013-01-01

    Radiological characterization of nuclear waste is essential for storage sites management. However, most of Long-Lived Radionuclides (LLRN), important for long-term management, are difficult to measure since concentration levels are very low and waste matrices generally complex. In an industrial approach, LLRN concentrations are not directly measured in waste samples but assessed from scaling factors with respect to easily measured gamma emitters. Ideally, the key nuclide chosen ( 60 Co, 137 Cs) should be produced by a similar mechanism (fission or activation) as the LLRN of interest and should have similar physicochemical properties. However, the uncertainty on the scaling factors, determined from experimental and/or calculation data, can be quite important. Consequently, studies are performed to develop analytical procedures which would lead to determine precisely the concentration of LLRN in nuclear waste. In this context, the aim of this study was to determine the concentrations of three LLRN: 129 I (T 1/2 = 15.7*10 6 a), 41 Ca (T 1/2 = 9.94*10 4 a) and 10 Be (T 1/2 = 1.387*10 6 a) in spent resins used for primary fluid purification in Pressurized Water Reactors using Accelerator Mass Spectrometry (AMS) for measurement. The AMS technique combined mass spectrometry and nuclear physics to achieve highly efficient molecular and elemental isobars separation. Energies of several Million Electron-Volt transferred to the ions in the first accelerating part of specifically developed tandem accelerators lead to molecular isobars destruction through interaction with the argon gas used to strip the injected negative ions to positive ones. At the exit of the tandem accelerator, the energy acquired in both accelerating parts allows an elemental isobars separation based on their significantly different energy loss (dE) while passing through a thickness of matter dx that is proportional to their atomic number (Z) and inversely proportional to ions velocity (v) according to the

  3. Characterization of elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Toshiaki

    1994-01-01

    Characterization of elements was carried out to clarify the mechanisms of bioconcentration and the physiological roles of elements in marine organisms. The concentrations of 238 U in fifty-five species of marine organisms were measured by inductively coupled plasma mass spectrometry. The concentrations of 238 U in soft tissues of marine animals ranged from 0.076 to 500ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of 238 U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10 3 by comparing it with the concentration of 238 U (3.2 ± 0.2ng/ml) in coastal seawater of Japan. The concentrations of 238 U of twenty species of algae ranged from 10 to 3700ng/g dry wt. (author)

  4. Mass spectrographic analysis of selected chemical elements by microbial leaching of zircon

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.; Bullmann, M.; Iske, U.

    1986-01-01

    Spark source mass spectrometry is a useful method for chemical element analysis of geological and biological samples. This sensitive technique (detection limit down to the ppb-range) is used to analyze leaching processes by means of several microorganisms. The problem of microbial leaching of chemical resistent materials was tested under laboratory conditions with regard to possible analytical and technical applications. Leaching of metals with chemolithotrophic and heterotrophic, organic acids producing microorganisms has been investigated with zircon from the Baltic Shield containing 0.7% rare earth elements and 1.67% hafnium. When zircon is leached with strains of thiobacillus ferrooxidans about 80% of the rare earth elements, Hf, Th and U can be recovered. (orig.) [de

  5. Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters

    Energy Technology Data Exchange (ETDEWEB)

    McMeans, Bailey C. [Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada); Borga, Katrine [Norwegian Institute for Water Research, P.O. Box 173, Kjelsas, N-0411 Oslo (Norway); Bechtol, William R. [Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage, AK 99518-1599 (United States); Higginbotham, David [Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602-2152 (United States); Fisk, Aaron T. [Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada)]. E-mail: afisk@uwindsor.ca

    2007-07-15

    A number of elements/metals have increased in arctic biota and are of concern due to their potential toxicity. Most studies on elements in the Arctic have focused on marine mammals and seabirds, but concentrations in the Greenland shark (Somniosus microcephalus) and Pacific sleeper shark (Somniosus pacificus), the only two shark species known to regularly inhabit arctic waters, have never been reported. To address this data gap, concentrations and patterns of 25 elements were analyzed in liver of Greenland sharks collected about Cumberland Sound (n = 24) and Pacific sleeper sharks collected about Prince William Sound (n = 14). Several non-essential elements differed between species/locations, which could suggest geographical exposure differences or ecological (e.g., diet) differences between the species. Certain essential elements also differed between the two sleeper sharks, which may indicate different physiological requirements between these closely related shark species, although information on such relationships are lacking for sharks and fish. - Patterns of essential and non-essential elements provide insight into sleeper shark biology and physiology.

  6. Essential and non-essential element concentrations in two sleeper shark species collected in arctic waters

    International Nuclear Information System (INIS)

    McMeans, Bailey C.; Borga, Katrine; Bechtol, William R.; Higginbotham, David; Fisk, Aaron T.

    2007-01-01

    A number of elements/metals have increased in arctic biota and are of concern due to their potential toxicity. Most studies on elements in the Arctic have focused on marine mammals and seabirds, but concentrations in the Greenland shark (Somniosus microcephalus) and Pacific sleeper shark (Somniosus pacificus), the only two shark species known to regularly inhabit arctic waters, have never been reported. To address this data gap, concentrations and patterns of 25 elements were analyzed in liver of Greenland sharks collected about Cumberland Sound (n = 24) and Pacific sleeper sharks collected about Prince William Sound (n = 14). Several non-essential elements differed between species/locations, which could suggest geographical exposure differences or ecological (e.g., diet) differences between the species. Certain essential elements also differed between the two sleeper sharks, which may indicate different physiological requirements between these closely related shark species, although information on such relationships are lacking for sharks and fish. - Patterns of essential and non-essential elements provide insight into sleeper shark biology and physiology

  7. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    Science.gov (United States)

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.

  8. Enhancing effect of marine oligotrophy on environmental concentrations of particle-reactive trace elements

    International Nuclear Information System (INIS)

    Jeffree, R.A.; Szymczak, R.

    2000-01-01

    A biogeochemical model has been previously developed that explains the inverse and nonlinear relationship between Po-210 concentration in zooplankton and their biomass, under oligotrophic conditions in French Polynesia. In this study the model structure was reviewed to determine a set of biogeochemical behaviors of Po-210, proposed to be critical to its environmental enhancement under oligotrophy: this set was then used to identify 25 other elements with comparable behaviors to Po-210. Field investigation in the Timor Sea showed that four of these a priori identified elements, viz. Cd, Co, Pb, and Mn as well as Cr and Ni, showed elevated water concentrations with reduced particle removal rates in the euphotic zone, results that are consistent with those previously obtained for Po-210 and the proposed explanatory model. These findings point to the enhanced susceptibility to contamination with particle-reactive elements of oligotrophic marine systems, whose degree and geographic extent may be enhanced by projected increases in sea surface temperatures from global warming

  9. A comparison of the performance of a fundamental parameter method for analysis of total reflection X-ray fluorescence spectra and determination of trace elements, versus an empirical quantification procedure

    Science.gov (United States)

    W(egrzynek, Dariusz; Hołyńska, Barbara; Ostachowicz, Beata

    1998-01-01

    The performance has been compared of two different quantification methods — namely, the commonly used empirical quantification procedure and a fundamental parameter approach — for determination of the mass fractions of elements in particulate-like sample residues on a quartz reflector measured in the total reflection geometry. In the empirical quantification procedure, the spectrometer system needs to be calibrated with the use of samples containing known concentrations of the elements. On the basis of intensities of the X-ray peaks and the known concentration or mass fraction of an internal standard element, by using relative sensitivities of the spectrometer system the concentrations or mass fractions of the elements are calculated. The fundamental parameter approach does not require any calibration of the spectrometer system to be carried out. However, in order to account for an unknown mass per unit area of a sample and sample nonuniformity, an internal standard element is added. The concentrations/mass fractions of the elements to be determined are calculated during fitting a modelled X-ray spectrum to the measured one. The two quantification methods were applied to determine the mass fractions of elements in the cross-sections of a peat core, biological standard reference materials and to determine the concentrations of elements in samples prepared from an aqueous multi-element standard solution.

  10. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    Science.gov (United States)

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The

  11. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    International Nuclear Information System (INIS)

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-01-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  12. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna.

    Science.gov (United States)

    Simon, Edina; Braun, Mihály; Vidic, Andreas; Bogyó, Dávid; Fábián, István; Tóthmérész, Béla

    2011-05-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Mass, black carbon and elemental composition of PM{sub 2.5} at an industrial site in Kingston, Jamaica

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Johan, E-mail: johan.boman@chem.gu.se; Gaita, Samuel M.

    2015-11-15

    An estimated three million premature deaths yearly can be attributed to ambient particulate pollution, a majority of them in low and middle income countries. The rapid increase in the vehicle fleet in urban areas of the Caribbean countries have experienced contributes to the bad urban air quality. In this study aerosol particles with an aerodynamic diameter smaller than, or equal to, 2.5 μm (PM{sub 2.5}) were collected over 24 h at a site along Spanish Town Road, one of the main commuter roads in Kingston, Jamaica. The study was aimed at determining the mass, black carbon and elemental composition of PM{sub 2.5} in Kingston. Although lead in the gasoline was phased out in the year 2000, up to 5000 ppm of sulfur is still allowed in the diesel, leading to an extensive secondary particle formation. PM{sub 2.5} samples were collected using a Mini-vol sampler between 12 December 2013 and 21 March 2014 and analyzed for trace elements using the Particle-Induced X-ray Emission (PIXE) facility at Lund University, Sweden. Concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Br and Pb were determined. Elemental concentrations showed a high temporal variation and the average PM{sub 2.5} concentration (44 μg m{sup −3}) is higher than the air quality standards that apply in the European Union (25 μg m{sup −3}) and in the USA (12 μg m{sup −3}). From this we can conclude that the air quality in the area is severely influenced by PM{sub 2.5} pollution and that there is a need to develop plans for improving the air quality in Kingston city.

  14. Concentrations of radionuclides and selected stable elements in fruits and vegetables

    International Nuclear Information System (INIS)

    Oakes, T.W.; Shank, K.E.

    1977-01-01

    Twenty-two types of fruits and vegetables collected from two commercial supermarkets have been analyzed for their radionuclidic and stable-element composition. A specific gamma-emitting isotope analysis was performed on each sample for 40 K, 60 Co, 95 Zr-Nb, 106 Ru, 137 Cs, 226 Ra, and 232 Th. The concentration of the stable elements in each sample were determined using multi-element neutron-activation analysis (Al, Ag, Au, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Cu, Eu, Fe, Hf, I, K, La, Mn, Mo, Mg, Na, Rb, Sb, Sc, Se, Sr, Ta, Te, Th, Ti, Zn, Zr) and atomic absorption (Cd, Ni, Pb). Information on the composition of a typical diet is used to estimate the radiological dose to man subsequent to ingestion of these fruits and vegetables. The stable-elemental compositions of the foodstuffs analyzed were compared with estimated values assuming foliar deposition and long-term buildup of effluents from a large modern coal-fired steam plant. It is tentatively concluded that for the general case of a precipitator-equipped, coal-fired steam plant, no toxic levels of trace elements in foodstuffs are expected as a result of the plant operation

  15. Results of fuel elements fabrication on the basis of increased concentration dioxide fuel for research reactors

    International Nuclear Information System (INIS)

    Alexandrov, A.B.; Afanasiev, V.L.; Enin, A.A.; Suprun, V.B.

    1996-01-01

    According to the Russian Reduced Enrichment for Research and Test Reactors (RERTR) program, that were constructed under the Russian projects, at the Novosibirsk Chemical Concentrates Plant the pilot series of different configuration (WR-M2, MR, IRT-4M) fuel elements, based on increased concentration uranium dioxide fuel, have been fabricated for reactor tests. Comprehensive fabricated fuel elements quality estimation has been carried out. (author)

  16. The time series variations of tritium concentration in precipitation and its relationships to the rainfall-inducing air mass

    International Nuclear Information System (INIS)

    Shimada, Jun

    1978-01-01

    The author measured the tritium concentration in precipitation of Tokyo for every ten-day period from August 1972 to May 1974. Judging from the daily synoptic weather chart, the rainfall-inducing air masses in Japan were classified into five types; polar maritime air mass (Pm), polar continental air mass (Pc), tropical maritime air mass (Tm), tropical continental air mass (Tc), and equatorial maritime air mass (Em). And the precipitation for every ten-day period sampled for tritium measurement were classified into these five types. Based on this classification, it is confirmed that there exist clear difference in the tritium concentration between the rainfall from the continental air mass and ones from the maritime air mass. It is characteristic that the tritium concentration in rainfall induced by equatorial maritime air mass such as typhoon in summer and early fall season is very low whereas the tritium concentration in rainfall and snowfall induced directly by the polar continental air mass in late winter season is very high. The regional difference of the tritium concentration in intermonthly precipitation could considerably be explained by this synoptic meteological classification of rainfall-inducing air mass. In spite of these regional difference of tritium concentration in precipitation, use of the tritium concentration of Tokyo as a representative value of Japan may be allowed because of the similarities of the changing pattern and annual mean tritium concentration. The time series variations of tritium concentration in precipitation of Tokyo from August 1972 to December 1977, Tsukuba from December 1976 to April 1978, and Nagaoka from April 1977 to March 1978 are listed. (author)

  17. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    Science.gov (United States)

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  18. The plasma leptin concentration is closely associated with the body fat mass in nondiabetic uremic patients

    DEFF Research Database (Denmark)

    Clausen, P; Nielsen, P K; Olgaard, K

    1999-01-01

    filtration rate seemed to have a limited influence on the plasma leptin concentration in nondiabetic uremic subjects matched by body fat mass to controls. The plasma leptin concentration was closely associated with the body fat mass, and the leptin level might, therefore, be useful as an indicator of the fat......Plasma leptin is associated with the body mass index and, more precisely, with the body fat mass. Plasma leptin has been found to be elevated in uremic patients. This study aimed at investigating the plasma leptin concentration and associations between plasma leptin, body fat mass, and glomerular.......4 (3.1-59.5) ng/ml versus 5.4 (1.6-47.5) ng/ml (median and range in parentheses; p

  19. Fabrication procedures for manufacturing high uranium concentration dispersion fuel elements

    International Nuclear Information System (INIS)

    Souza, Jose Antonio Batista de

    2011-01-01

    IPEN-CNEN/SP developed the technology to produce the dispersion type fuel elements for research reactors and made it available for routine production. Today, the fuel produced in IPEN-CNEN/SP is limited to the uranium concentration of 3.0 gU/cm 3 for U 3 Si 2 -Al dispersion-based and 2.3 gU/cm 3 for U 3 O 8 -Al dispersion. The increase of uranium concentration in fuel plates enables the reactivity of the reactor core reactivity to be higher and extends the fuel life. Concerning technology, it is possible to increase the uranium concentration in the fuel meat up to the limit of 4.8 gU/cm 3 in U 3 Si 2 -Al dispersion and 3.2 gU/cm 3 U 3 O 8 -Al dispersion. These dispersions are well qualified worldwide. This work aims to develop the manufacturing process of both fuel meats with high uranium concentrations, by redefining the manufacturing procedures currently adopted in the Nuclear Fuel Center of IPEN-CNEN/SP. Based on the results, it was concluded that to achieve the desired concentration, it is necessary to make some changes in the established procedures, such as in the particle size of the fuel powder and in the feeding process inside the matrix, before briquette pressing. These studies have also shown that the fuel plates, with a high concentration of U 3 Si 2 -Al, met the used specifications. On the other hand, the appearance of the microstructure obtained from U 3 O 8 -Al dispersion fuel plates with 3.2 gU/cm 3 showed to be unsatisfactory, due to the considerably significant porosity observed. The developed fabrication procedure was applied to U 3 Si 2 production at 4.8 gU/cm 3 , with enriched uranium. The produced plates were used to assemble the fuel element IEA-228, which was irradiated in order to check its performance in the IEA-R1 reactor at IPEN-CNEN/SP. These new fuels have potential to be used in the new Brazilian Multipurpose Reactor - RMB. (author)

  20. Variation of elemental concentration in hair of the Japanese in terms of age, sex and hair treatment

    International Nuclear Information System (INIS)

    Takeuchi, T.; Hayashi, T.; Takada, J.; Hayashi, Y.; Koyama, M.; Shinogi, M.; Aoki, A.; Tomiyama, T.; Katayama, K.

    1982-01-01

    Instrumental neutron activation analysis has been performed on human hair of the normal Japanese individuals to define the baseline levels of trace elements. A statistical analysis which is not influenced by detection limits, has been carried out to elucidate the variations of elemental concentrations in terms of age, sex and hair treatment. Correlation coefficients have been calculated between the logarithmic concentrations of the elements determined in the groups classified according to sex, age and hair treatment. Their significant levels have been evaluated. (author)

  1. A compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC)

    International Nuclear Information System (INIS)

    Yeghicheyan, Delphine; Cloquet, Christophe; Bossy, Cecile; Bouhnik Le Coz, Martine; Douchet, Chantal; Granier, Guy; Heimburger, Alexie; Losno, Remi; Lacan, Francois; Labatut, Marie; Pradoux, Catherine; Lanzanova, Aurelie; Candaudap, Frederic; Chmeleff, Jerome; Rousseau, Tristan C.C.; Seidel, Jean-Luc; Delpoux, Sophie; Tharaud, Mickael; Sivry, Yann; Sonke, Jeroen E.

    2013-01-01

    The natural river water certified reference material SLRS-5 (NRC-CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP-MS. Because no certified values are assigned by NRC-CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given. (authors)

  2. Characterization of elements in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Toshiaki [National Inst. of Radiological Sciences, Nakaminato, Ibaraki (Japan). Nakaminato Lab. Branch Office

    1994-03-01

    Characterization of elements was carried out to clarify the mechanisms of bioconcentration and the physiological roles of elements in marine organisms. The concentrations of {sup 238}U in fifty-five species of marine organisms were measured by inductively coupled plasma mass spectrometry. The concentrations of {sup 238}U in soft tissues of marine animals ranged from 0.076 to 500ng/g wet wt. Especially, the branchial heart of cephalopod molluscs showed the specific accumulation of {sup 238}U. The concentration factor of the branchial heart of Octopus vulgaris, which indicated the highest value, was calculated to be about 10{sup 3} by comparing it with the concentration of {sup 238}U (3.2 {+-} 0.2ng/ml) in coastal seawater of Japan. The concentrations of {sup 238}U of twenty species of algae ranged from 10 to 3700ng/g dry wt. (author).

  3. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    Science.gov (United States)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  4. Arsenic and Other Elemental Concentrations in Mushrooms from Bangladesh: Health Risks

    Directory of Open Access Journals (Sweden)

    Md Harunur Rashid

    2018-05-01

    Full Text Available Mushroom cultivation has been increasing rapidly in Bangladesh. Arsenic (As toxicity is widespread in the world and Bangladesh faces the greatest havoc due to this calamity. Rice is the staple food in Bangladesh and among all the crops grown, it is considered to be the main cause of As poisoning to its population after drinking water. Consequently, rice straw, an important growing medium of mushrooms in Bangladesh, is known to have high As content. The objective of this study was, therefore, to determine the concentrations of As in mushrooms cultivated in Bangladesh and to assess the health risk as well. It also considered other elements, including Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, and Zn concentrations in mushrooms from Bangladesh. The mean concentrations (mg/kg of As, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, and Zn in mushrooms were 0.51, 0.38, 0.28, 0.01, 13.7, 0.31, 11.7, 0.12, 0.28, and 53.5, respectively. Based on the dietary intake of mushrooms, the weekly intakes of As, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, and Zn from mushrooms for adults were 0.0042, 0.0030, 0.0024, 0.0001, 0.1125, 0.0019, 0.1116, 0.0011, 0.0023, and 0.4734 mg, respectively. Due to the low concentrations of As and other trace elements observed in mushrooms from Bangladesh, as well as relatively lower consumption of this food in people’s diet, it can be inferred that consumption of the species of mushrooms analysed will cause no toxicological risk.

  5. Reference Materials for Trace Element Microanalysis of Carbonates by SIMS and other Mass Spectrometric Techniques

    Science.gov (United States)

    Layne, G. D.

    2009-12-01

    Today, many areas of geochemical research utilize microanalytical determinations of trace elements in carbonate minerals. In particular, there has been an explosion in the application of Secondary Ion Mass Spectrometry (SIMS) to studies of marine biomineralization. SIMS provides highly precise determinations of Mg and Sr at the concentration levels normally encountered in corals, mollusks or fish otoliths. It is also a highly effective means for determining a wide range of other trace elements at ppm levels (e.g., Na, Fe, Mn, Ba, REE, Pb, Th, and U) in a variety of naturally occurring calcite and aragonite matrices - and so is potentially valuable in studies of diagenesis, hydrothermal fluids and carbonatitic magmas. For SIMS, modest time per spot (often sputtered ion yields of most elements with the major element composition of the sample matrix, accuracy of SIMS depends intimately on matrix-matched solid reference materials. Despite its rapidly increasing use for trace element analyses of carbonates, there remains a dearth of certified reference materials suitable for calibrating SIMS. The pressed powders used by some analysts to calibrate LA-ICP-MS do not perform well for SIMS - they are not perfectly dense or homogeneous to the desired level at the micron scale of sampling. Further, they often prove incompatible with the sample high vacuum compatibility requirement for stable SIMS analysis (10-8 to 10-9 torr). Some naturally occurring calcite has apparent utility as a reference material. For example, equigranular calcite from some zones of carbonatite intrusions (sovites) and recrystallized calcites from highly metamorphosed metallic ore deposits. Most calcite marbles, though possibly appropriate as Sr standards, show substantial inhomogeneity in Mg, Mn and Ba. Some hydrothermal “Iceland Spar” calcite may prove useful as a reference for extremely low concentrations of Mg, Sr and Ba. The best carbonatitic calcites currently in use appear homogeneous to

  6. Automatic data acquisition and on-line analysis of trace element concentration in serum samples

    International Nuclear Information System (INIS)

    Lecomte, R.; Paradis, P.; Monaro, S.

    1978-01-01

    A completely automated system has been developed to determine the trace element concentration in biological samples by measuring charged particle induced X-rays. A CDC-3100 computer with ADC and CAMAC interface is employed to control the data collection apparatus, acquire data and perform simultaneously the analysis. The experimental set-up consists of a large square plexiglass chamber in which a commercially available 750H Kodak Carousel is suitably arranged as a computer controlled sample changer. A method of extracting trace element concentrations using reference spectra is presented and an on-line program has been developed to easily and conveniently obtain final results at the end of each run. (Auth.)

  7. Size Resolved Mass Concentration and Elemental Composition of Atmospheric Aerosols over the Eastern Mediterranean Area

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ždímal, Vladimír; Schwarz, Jaroslav; Lazaridis, M.; Havránek, Vladimír; Eleftheriadis, K.; Mihalopoulos, N.; Bryant, C.; Colbeck, I.

    2003-01-01

    Roč. 3, - (2003), s. 2547-2573 ISSN 1680-7367 Grant - others:ENVK2(XE) 1999/00052 Institutional research plan: CEZ:AV0Z1048901; CEZ:AV0Z4072921 Keywords : atmospheric particles * PM1 * elemental composition Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Concentration levels of rare-earth elements and thorium on plants from the Morro de Ferro environment as an indicator for the biological availability of transuranium elements

    International Nuclear Information System (INIS)

    Miekeley, N.; Casartelli, E.A.; Dotto, R.M.

    1994-01-01

    Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of μg/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing for Solanum ciliatum in the sequence: leaves -3 to 10 -2 . Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed. (author) 26 refs.; 5 figs.; 5 tabs

  9. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D.

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs

  10. SITE-94. Natural elemental mass movement in the vicinity of the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.M.; Smith, G.M.; Towler, P.A.; Savage, D. [QuantiSci, Melton Mowbray (United Kingdom)

    1997-05-01

    The primary objective of this study is to quantify natural elemental fluxes at a location exhibiting typical characteristics of a site for a spent fuel repository in Sweden. The relevant pathways are considered to be: Groundwater transport; Glacial erosion; Non-glacial weathering; River transport. Calculations are made of elemental mass fluxes from a volume of rock equivalent to that which would hold a KBS-3 style repository. In addition, the radioactive flux associated with the natural series radionuclide mass fluxes from the repository are also calculated. These can be compared directly to performance assessment predictions of the releases from a repository. 88 refs, 13 figs, 24 tabs.

  11. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana

    2018-05-15

    Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A free vibration of beams carrying a concentrated mass under distributed axial forces

    International Nuclear Information System (INIS)

    Nagai, Ken-ichi; Nagaya, Kosuke; Takeda, Sadahiko; Arai, Noriyuki.

    1988-01-01

    The free bending vibrations of beams with a concentrated mass subjected to axial forces caused by axial acceleration are analyzed by the Galerkin method, introducing the mode shape functions which are the sum of the products of the finite power series and the trigonometrical function. This analytical method makes it easy to construct the equations of motion in each boundary condition only by exchanging the coefficients of the finite power series. Numerical calculations are carried out under four sets of boundary conditions combined with simply supported and clamped edges. The natural frequencies and the corresponding modes of vibration are determined under both various locations of the concentrated mass and axial forces. it is found that the transverse inertia force and the axial force, due to the concentrated mass, have significant effects on the change of the natural frequencies for beams. Furthermore the distinction of boundary conditions gives predominant influence to the variation of natural frequencies. (author)

  13. Element composition of biota, water and sediment in the Forsmark area, Baltic Sea. Concentrations, bioconcentration factors and partitioning coefficients (K{sub d}) of 48 elements

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda; Bradshaw, Clare (Dept. of Systems Ecology, Stockholm Univ. (Sweden))

    2008-08-15

    In this study the elemental composition of biota, water and sediment from a shallow bay in the Forsmark region have been determined. The report presents data for 48 different elements (Al, As, Ba, Br, C, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Gd, Hg, Ho, I, K, Li, Lu, Mg, Mn, N, Na, Nd, Ni, P, Pb, Pr, Ra, Rb, S, Se, Si, Sm, Tb, Th, Ti, Tm, V, Yb, Zn, Zr) in all major functional groups of the coastal ecosystem (phytoplankton, zooplankton, benthic microalgae, macroalgae, macrophytes, benthic herbivores, benthic filter feeders, benthic detrivores, planktivorous fish, benthic omnivorous fish, carnivorous fish, dissolved and particulate matter in the water and the sediment) during spring 2005. The overall aim of the study is to contribute to a better understanding of ecological properties and processes that govern uptake and transfer of trace elements, heavy-metals, radionuclides and other non-essential elements/contaminants in coastal environments of the Baltic Sea. In addition, the data was collected to provide site-specific Bioconcentration Factors (BCF), Biomagnification Factors (BMF), partitioning coefficients (K{sub d}) and element ratios (relative to carbon) for use in ongoing SKB safety assessments. All these values, as well as the element concentration data from which they are derived, are presented here. As such, this is mainly a data report, although initial interpretations of the data also are presented and discussed. Reported data include element concentrations, CNP-stoichiometry, and multivariate data analysis. Elemental concentrations varied greatly between organisms and environmental components, depending on the function of the elements, and the habitat, ecosystem function, trophic level and morphology (taxonomy) of the organisms. The results show for instance that food intake and metabolism strongly influence the elemental composition of organisms. The three macrophytes had quite similar elemental composition (despite their taxonomic

  14. Design of a gigawatt space solar power satellite using optical concentrator system

    Science.gov (United States)

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  15. Multi-element analyses of Vietnamese environmental samples for radiation protection

    International Nuclear Information System (INIS)

    Mai, T.H.; Nguyen, T.B.; Nguyen, T.N.; Yoshida, S.

    2005-01-01

    The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) were used for measuring 8 major and 27 trace elements in food and soil samples collected in Vietnam. The concentration of elements in food samples was different from different locations and also from different food groups. Depth profiles of the elements were discussed for soil samples. (author)

  16. Detection and quantification of proteins and cells by use of elemental mass spectrometry: progress and challenges.

    Science.gov (United States)

    Yan, Xiaowen; Yang, Limin; Wang, Qiuquan

    2013-07-01

    Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.

  17. Determination of changes in the concentration and distribution of elements within olive drupes (cv Leccino) from Se-biofortified plants, using LA ICP-MS.

    Science.gov (United States)

    D'Amato, Roberto; Petrelli, Maurizio; Proietti, Primo; Onofri, Andrea; Regni, Luca; Perugini, Diego; Businelli, Daniela

    2018-03-25

    Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Therefore, Se-biofortification programs should include the routine assessment of the overall mineral composition of enriched plants. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with Na-selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g -1 (39% of the RDA for 5 olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. The technique of biofortification of olive plants has allowed the enrichment of fruits in Selenium. The enrichment with Selenium has also caused the increase of the concentration of other elements that can change the impact on the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. This article is protected by copyright. All rights reserved.

  18. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials

    Science.gov (United States)

    Ahmed, Nasar; Ahmed, Rizwan; Umar, Z. A.; Aslam Baig, M.

    2017-08-01

    In this paper we present the construction and modification of a linear time-of-flight mass spectrometer to improve its mass resolution. This system consists of a laser ablation/ionization section based on a Q-switched Nd:YAG laser (532 nm, 500 mJ, 5 ns pulse duration) integrated with a one meter linear time-of-flight mass spectrometer coupled with an electric sector and a magnetic lens and outfitted with a channeltron electron multiplier for ion detection. The resolution of the system has been improved by optimizing the accelerating potential and inserting a magnetic lens after the extraction region. The isotopes of lithium, lead and cadmium samples have been resolved and detected in accordance with their natural abundance. The capability of the system has been further exploited to determine the elemental composition of a brass alloy, having a certified composition of zinc and copper. Our results are in excellent agreement with its certified composition. This setup is found to be extremely efficient and convenient for fast analyses of any solid sample.

  19. Interannual heavy element and nutrient concentration trends in the top sediments of Venice Lagoon (Italy)

    International Nuclear Information System (INIS)

    Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno

    2014-01-01

    Highlights: • Heavy element concentrations in sediments of a transitional system were studied. • Element contamination in the recent years has generally declined. • Mercury and cadmium contamination still remain above the limits in hot spots. • The role of sediment resuspension due to anthropogenic activity is discussed. • A basic knowledge to assess the impact of the MOSE construction is provided. - Abstract: The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered

  20. Examination of rare earth element concentration patterns in freshwater fish tissues.

    Science.gov (United States)

    Mayfield, David B; Fairbrother, Anne

    2015-02-01

    Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Size Resolved Mass Concentration and Elemental Composition of Atmospheric Aerosols over the Eastern Mediterranean Area

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ždímal, Vladimír; Schwarz, Jaroslav; Lazaridis, M.; Havránek, Vladimír; Eleftheriadis, K.; Mihalopoulos, N.; Bryant, C.; Colbeck, I.

    2003-01-01

    Roč. 3, - (2003), s. 2207-2216 ISSN 1680-7324 Grant - others:ENVK2(XE) 1999/00052 Institutional research plan: CEZ:AV0Z1048901; CEZ:AV0Z4072921 Keywords : atmospheric particles * elemental composition * PM1 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.317, year: 2003

  2. Particulate Matter Mass Concentration in Residential Prefabricated Buildings Related to Temperature and Moisture

    Science.gov (United States)

    Kraus, Michal; Juhásová Šenitková, Ingrid

    2017-10-01

    Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.

  3. Variation in the mineral element concentration of Moringa oleifera Lam. and M. stenopetala (Bak. f.) Cuf.: Role in human nutrition.

    Science.gov (United States)

    Kumssa, Diriba B; Joy, Edward Jm; Young, Scott D; Odee, David W; Ander, E Louise; Broadley, Martin R

    2017-01-01

    Moringa oleifera (MO) and M. stenopetala (MS) (family Moringaceae; order Brassicales) are multipurpose tree/shrub species. They thrive under marginal environmental conditions and produce nutritious edible parts. The aim of this study was to determine the mineral composition of different parts of MO and MS growing in their natural environments and their potential role in alleviating human mineral micronutrient deficiencies (MND) in sub-Saharan Africa. Edible parts of MO (n = 146) and MS (n = 50), co-occurring cereals/vegetables and soils (n = 95) underneath their canopy were sampled from localities in southern Ethiopia and Kenya. The concentrations of seven mineral elements, namely, calcium (Ca), copper (Cu), iodine (I), iron (Fe), magnesium (Mg), selenium (Se), and zinc (Zn) in edible parts and soils were determined using inductively coupled plasma-mass spectrometry. In Ethiopian crops, MS leaves contained the highest median concentrations of all elements except Cu and Zn, which were greater in Enset (a.k.a., false banana). In Kenya, Mo flowers and MS leaves had the highest median Se concentration of 1.56 mg kg-1 and 3.96 mg kg-1, respectively. The median concentration of Se in MS leaves was 7-fold, 10-fold, 23-fold, 117-fold and 147-fold more than that in brassica leaves, amaranth leaves, baobab fruits, sorghum grain and maize grain, respectively. The median Se concentration was 78-fold and 98-fold greater in MO seeds than in sorghum and maize grain, respectively. There was a strong relationship between soil total Se and potassium dihydrogen phosphate (KH2PO4)-extractable Se, and Se concentration in the leaves of MO and MS. This study confirms previous studies that Moringa is a good source of several of the measured mineral nutrients, and it includes the first wide assessment of Se and I concentrations in edible parts of MO and MS grown in various localities. Increasing the consumption of MO and MS, especially the leaves as a fresh vegetable or in powdered form

  4. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios

    Directory of Open Access Journals (Sweden)

    Byrne Robert H

    2002-01-01

    Full Text Available Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A and lower (B solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MOx(OHy or hydroxy complexes (M(OHn, C is written as pKn = -log Kn or pKn* = -log Kn* respectively, where Kn and Kn* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K2lKn [HCO3-] where K2l is the HCO3 - dissociation constant, Kn is a cation complexation constant and [HCO3-] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.

  5. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Perdian, David C. [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  6. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    Science.gov (United States)

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  7. Trace element concentrations in barramundi (Lates calcarifer) collected along the coast of Vietnam

    International Nuclear Information System (INIS)

    Tu, Nguyen Phuc Cam; Ha, Nguyen Ngoc; Haruta, Shinsuke; Takeuchi, Ichiro

    2014-01-01

    Highlights: • We analyzed 23 trace elements in barramundi collected along the coast of Vietnam. • Isotope signatures (δ 15 N and δ 13 C) helped us track the feeding habitats of barramundi. • We found clear geographic zone-dependent differences for Mn, As, Sr and Tl. • Consumption of barramundi may be safe for Vietnamese people. - Abstract: We determined concentrations of 23 trace elements (TEs), and stable carbon and nitrogen isotope (δ 13 C and δ 15 N) signatures in barramundi (Lates calcarifer) specimens collected along the coast of Vietnam in the Northern (NCZ), Central (CCZ) and Southern (SCZ) zones in the period 2007–2010. A combination of δ 13 C and δ 15 N signatures provided insight into ontogenetic shifts in barramundi foraging choices. There were clear zone-dependent differences in Mn, As, Sr and Tl concentrations; levels of Tl were highest in the NCZ, As in the CCZ, and Mn and Sr in the SCZ. Lowest concentrations of Rb occurred in the NCZ, Bi was lowest in the CCZ, and Cd and Cs were lowest in the SCZ. δ 15 N values significantly increased with increasing Zn, Se, Sn and Cs. Concentrations of TEs in barramundi from Vietnam were below worldwide guidelines for human consumption

  8. Stellar Mass-gap as a Probe of Halo Assembly History and Concentration: Youth Hidden among Old Fossils

    Science.gov (United States)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-01

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  9. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    International Nuclear Information System (INIS)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    Highlights: ► Survey of bio-analytical approaches utilizing biomolecule labelling. ► Detailed discussion of methodology and chemistry of elemental labelling. ► Biomedical and bio-analytical applications of elemental labelling. ► FI-ICP-MS and LC–ICP-MS for quantification of elemental labelled biomolecules. ► Review of selected applications. - Abstract: This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given.

  10. Determination of low concentrations of iron, arsenic, selenium, cadmium, and other trace elements in natural samples using an octopole collision/reaction cell equipped quadrupole-inductively coupled plasma mass spectrometer.

    Science.gov (United States)

    Dial, Angela R; Misra, Sambuddha; Landing, William M

    2015-04-30

    Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements

    Directory of Open Access Journals (Sweden)

    Jia-Jang Wu

    2013-01-01

    Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.

  12. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-456 Marine Sediment Samples

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of prime concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess t h e reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. A marine sediment sample with certified mass amount contents for aluminium, arsenic, cadmium chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, vanadium and zinc was recently produced by the IAEA Environment Laboratories. This publication presents the sample preparation methodology, including material homogeneity and the stability study, the selection of laboratories, the evaluation of results from the certification campaign, and the assignment of property values and their associated uncertainty. As a result, certified values for mass fractions and associated expanded uncertainty were

  13. Intra-clutch and inter-colony variability in element concentrations in eggshells of the black-headed gull, Chroicocephalus ridibundus, in northern Poland.

    Science.gov (United States)

    Kitowski, Ignacy; Indykiewicz, Piotr; Wiącek, Dariusz; Jakubas, Dariusz

    2017-04-01

    Eggshells are good bioindicators of environmental contamination, and therefore, the concentrations of 17 trace elements in 87 eggshells of black-headed gulls, Chroicocephalus ridibundus, were determined in five breeding colonies in an area dominated by farmland in northern Poland. The intra-clutch variability in the eggshell concentrations of heavy metals and other elements was also investigated, and the concentrations of the elements showed the following pattern: Ca > Mg > Sr > Fe > Zn > Al > Cr > Se > Mn > Cu > Pb > As > Ni > Mo = V > Sc > Cd. The concentrations of Fe, Al, and Mn decreased with the order in which the eggs were laid, but Sr concentrations increased. In contrast, the concentration of Cu significantly increased with the laying date. The concentrations of all elements significantly differed among the studied colonies; the highest concentration of eight elements was found in the eggshells from the Kusowo colony, which may have resulted from the intensive use of fertilizers, manure, and slurry in the surrounding agricultural region. The concentrations of Mg, Sr, and Zn in the eggshells from Skoki Duże were higher than those of the other studied colonies, which may have occurred because the gulls were nesting in a functioning gravel pit; soil and the parent rock are natural reservoirs of these elements. The observed element levels indicate that the environment where the black-headed gull eggs were formed, i.e., primarily near the breeding colonies, remains in a relatively unpolluted state, which was reflected by the low levels of Cd, Ni, and Pb and the lack of measurable levels of Hg.

  14. Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Moeller, P.; Dulski, P.; Luck, J.

    1992-01-01

    Shortly after sampling, rare earth elements (REEs) from 11.5 l of seawater were concentrated in 35 ml solutions by ion exchange chromatography on board the German research vessel ''Sonne'' using Chelex 100 chelating resin for preconcentration. Two millilitres of a 0.2 μg g -1 Lu spike was added to the seawater samples (i) for monitoring the chemical yield which was always found to vary between 85 and 112% (mean: 100±6) and (ii) as an internal standard. Rare earth elements have been determined by ICP-MS, with REE concentrations ranging from 100 (La) to 1 (Eu) pmol kg -1 . La in blanks can be as high as 30 pmol kg -1 , but blank concentrations for other REEs range between 0.5 and 0.01 pmol kg -1 . The trend of the precision of relative response factors varies between 12% (La) and 4% (Yb). The accuracy is estimated to be about 10% with the exception of La and Ce. Methodology improvements are suggested. (author)

  15. Measurement of particle size distribution and mass concentration of nuclear fuel aerosols

    International Nuclear Information System (INIS)

    Pickering, S.

    1982-01-01

    The particle size distribution and particle mass concentration of a nuclear fuel aerosol is measured by admitting the aerosol into a vertically-extending container, positioning an alpha particle detector within the container so that its window is horizontal and directed vertically, stopping the admission of aerosol into the container, detecting the alpha-activity of the particles of the aerosol sedimenting onto the detector window (for example in a series of equal time intervals until a constant level is reached), and converting the alpha-activity measurements into particle size distribution and/or particle mass concentration measurements. The detector is attached to a pivotted arm and by raising a counterweight can be lowered from the container for cleaning. (author)

  16. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  17. Arsenic, cadmium and lead concentrations in Yerba mate commercialized in Southern Brazil by inductively coupled plasma mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lisia Maria Gobbo dos Santos

    2017-12-01

    Full Text Available ABSTRACT: “Mate” or “Yerba Mate” (Ilex paraguariensis is a native South American plant, commonly consumed in Argentina, Paraguay, Uruguay and southern Brazil. Recent research has detected the presence of many vitamins and metals in this plant. Theses metals are also part of yerba mate’s mineral composition, due to soil and water contamination by pesticides and fertilizers, coal and oil combustion, vehicle emissions, mining, smelting, refining and the incineration of urban and industrial waste. Regardless of their origin, some inorganic elements, such as arsenic, cadmium and lead, are considered toxic, since they accumulate in all plant tissues and are, thus, introduced into the food chain. In this context, the aim of the present study was to determine and compare arsenic, cadmium, lead concentrations in 104 samples of yerba mate (Ilex paraguariensis marketed, and consumed in three southern Brazilian States, namely Paraná (PR, Santa Catarina (SC and Rio Grande do Sul (RS. Each element was determined by inductively coupled plasma mass spectrometry (ICP-MS, on a Nexion 300D equipment (Perkin Elmer. As, Cd and Pb concentrations in yerba mate leaves ranged from 0.015 to 0.15mg kg-1, 0.18 to 1.25mg kg-1 and 0.1 to 1.20mg kg-1, respectively. Regarding Cd, 84% of the samples from RS, 63% from PR and 75% from SC showed higher concentrations than the maximum permissible limit of 0.4mg kg-1 established by the Brazilian National Sanitary Surveillance Agency (ANVISA, while 7% of the samples from RS and 5% from PR were unsatisfactory for Pb. Concentrations were below the established ANVISA limit of 0.6mg kg-1 for all samples.

  18. Atmospheric aerosol sampling campaign in Budapest and K-puszta. Part 1. Elemental concentrations and size distributions

    International Nuclear Information System (INIS)

    Dobos, E.; Borbely-Kiss, I.; Kertesz, Zs.; Szabo, Gy.; Salma, I.

    2004-01-01

    Complete text of publication follows. Atmospheric aerosol samples were collected in a sampling campaign from 24 July to 1 Au- gust, 2003 in Hungary. The sampling were performed in two places simultaneously: in Budapest (urban site) and K-puszta (remote area). Two PIXE International 7-stage cascade impactors were used for aerosol sampling with 24 hours duration. These impactors separate the aerosol into 7 size ranges. The elemental concentrations of the samples were obtained by proton-induced X-ray Emission (PIXE) analysis. Size distributions of S, Si, Ca, W, Zn, Pb and Fe elements were investigated in K-puszta and in Budapest. Average rates (shown in Table 1) of the elemental concentrations was calculated for each stage (in %) from the obtained distributions. The elements can be grouped into two parts on the basis of these data. The majority of the particle containing Fe, Si, Ca, (Ti) are in the 2-8 μm size range (first group). These soil origin elements were found usually in higher concentration in Budapest than in K-puszta (Fig.1.). The second group consisted of S, Pb and (W). The majority of these elements was found in the 0.25-1 μm size range and was much higher in Budapest than in K-puszta. W was measured only in samples collected in Budapest. Zn has uniform distribution in Budapest and does not belong to the above mentioned groups. This work was supported by the National Research and Development Program (NRDP 3/005/2001). (author)

  19. Straightened cervical lordosis causes stress concentration: a finite element model study

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)

    2013-03-15

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  20. Straightened cervical lordosis causes stress concentration: a finite element model study

    International Nuclear Information System (INIS)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui

    2013-01-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  1. Stiffness and Mass Matrices of FEM-Applicable Dynamic Infinite Element with Unified Shape Basis

    International Nuclear Information System (INIS)

    Kazakov, Konstantin

    2009-01-01

    This paper is devoted to the construction and evaluation of mass and stiffness matrices of elastodynamic four and five node infinite elements with unified shape functions (EIEUSF), recently proposed by the author. Such elements can be treated as a family of elastodynamic infinite elements appropriate for multi-wave soil-structure interaction problems. The common characteristic of the proposed infinite elements is the so-called unified shape function, based on finite number of wave shape functions. The idea and the construction of the unified shape basis are described in brief. This element belongs to the decay class of infinite elements. It is shown that by appropriate mapping functions the formulation of such an element can be easily transformed to a mapped form. The results obtained using the proposed infinite elements are in a good agreement with the superposed results obtained by a series of standard computational models. The continuity along the finite/infinite element line (artificial boundary) in two-dimensional substructure models is also discussed in brief. In this type of computational models such a line marks the artificial boundary between the near and the far field of the model.

  2. Measurement of the top quark mass in the dilepton final state using the matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Grohsjean, Alexander [Ludwig Maximilian Univ., Munich (Germany)

    2008-12-15

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb-1. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be mtopRun IIa = 170.6 ± 6.1(stat.)-1.5+2.1(syst.)GeV; mtopRun IIb = 174.1 ± 4.4(stat.)-1.8+2.5(syst.)GeV; m

  3. Characterization of elements in marine organisms

    International Nuclear Information System (INIS)

    Ishii, Toshiaki

    1993-01-01

    Characterization of elements in marine organisms was carried out to estimate the behavior of radionuclides in marine ecosystem or to clarify the physiological roles of elements in marine organisms. The concentrations of 238 U in fifty-five species of marine organisms were measured by inductively coupled plasma mass spectrometry. The concentrations of 238 U in soft tissues of marine animals ranged from 0.076 to 5000ng/g wet wt. Especially, the branchial heart of octopus vulgaris showed the specific accumulation of 238 U. The kidney granules of bivalve molluscs showed very high concentrations of Mn, Zn, 210 Pb, 210 Po etc. The XAFS study for the granules of Cyclosunetta menstrualis indicated that the chemical form of metals in the granules was phosphate (e. g. Mn 3 (PO 4 ) 2 · 4H 2 O). (author)

  4. Factors Affecting Element Concentrations in Eggshells of Three Sympatrically Nesting Waterbirds in Northern Poland.

    Science.gov (United States)

    Kitowski, Ignacy; Jakubas, Dariusz; Indykiewicz, Piotr; Wiącek, Dariusz

    2018-02-01

    Avian eggshells are convenient samples in biomonitoring studies, because they are easily accessible, especially from colonially or semicolonially breeding birds. In the present study, concentrations of 17 elements, including heavy metals and essential elements in post-hatch eggshells, were compared among three species of waterbirds of differing strategies for gaining reserves for egg production and diet: mallard, Anas platyrhynchos (ML, a capital breeder, mainly herbivorous), common tern, Sterna hirundo (CT, an income breeder, piscivorous) and black-headed gull, Chroicocephalus ridibundus (BHG, mixed strategy, omnivorous) and breeding sympatrically in three sites in North Poland. Analyses revealed that Fe, Zn, and Cu levels differed the most in the studied species, which may be explained by various contributions of fish, aquatic plants, and soil invertebrates in their diets. Generally, the studied species' eggshells accumulated amounts of elements comparable to those reported for other waterbirds without putting the growth and development of the embryo at risk. The only exception was very high levels of Cr in ML and CT, which may be explained by their foraging on aquatic organisms in waterbodies polluted by this element. Intersite differences in eggshell concentrations of Ni, Sr, Hg and Cr in CT (an income breeder) may be explained by the influence of local pollution sources (small factories, polluted river).

  5. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  6. Determination of impurity elements in steel by spark source mass spectrometry using powdered salts

    International Nuclear Information System (INIS)

    Saito, Morimasa; Sudo, Emiko

    1975-01-01

    Determination of impurity elements in steel by speak source mass spectrometry using powdered salts sample electrode was studied. The instrument used in this study was an AEI MS-7 mass spectrograph and the ion detector was Ilford Q2 photograph. Sample, (0.5--1) gram, was dissolved in hydrochloric acid (1 : 1) or nitric acid (1 : 1) together with yttrium of 1 microgram as the internal standard and then the solution was evaporated to dryness without baking. The salt residues were dried at 70 0 C for 30 minutes under vacuum. They were mixed with an equal amount of graphite powder for 5 minutes in a mixer mill, and then pressed into electrodes. When the relative sensitivity coefficient (Fe=1) was determined by using NBS 460 series standard samples, the results obtained by the proposed method for elements of Mo, Sn, Cu, Cr, Co, Ni, Mn, V, P, Si, and B were in good agreement with those obtained by the conventional method using solid sample electrodes (the solid method) and the precision of this method for 11 elements mentioned above was about 10% better than those of the solid method. However, both the accuracy and precision for elements of Nb, Ti, S and W were not good. This method was applied to the determination of impurities in NBS stainless steel and others. The relative standard deviations were within 20%. (auth.)

  7. Survey of elemental concentrations in lichen samples collected from Sao Paulo State

    International Nuclear Information System (INIS)

    Saiki, M.; Horimoto, L.K.; Vasconcellos, M.B.A.; Coccaro, D.M.B.; Marcelli, M.P.

    2001-01-01

    Samples of the lichen Canoparmelia texana collected in seven different sites of Sao Paulo State and one site of the Parana State were analysed by neutron activation analysis in order to obtain information on the air quality in these regions and also to select a region of interest for the evaluation of baseline level of elements in lichen species. Concentrations of the elements Al, As, Br, Ca, Cd, Cl, Co, Cs, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Se, Ti, Th, U, V, Zn and lanthanides were determined and a preliminary comparisons was made between the results obtained for samples collected in different sites. (author)

  8. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean

    Science.gov (United States)

    Jeandel, C.; Delattre, H.; Grenier, M.; Pradoux, C.; Lacan, F.

    2013-02-01

    vertical profiles of rare earth element concentrations and Nd isotopic compositions have been measured in the remote southeast Pacific Ocean. The three stations represent contrasting environments: the oligotrophic center of the gyre (station GYR), the "transition zone" east of the South Tropical Front (station EGY), and the Peru-Chile upwelling marked by a pronounced oxygen minimum (station UPX). Rare earth concentrations display nutrient like vertical profiles except at UPX where surface waters are enriched. At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes. Unexpected radiogenic values (ɛNd reaching -3.7) are also observed at 2000 m at station GYR in the Upper Circumpolar Deep Water that commonly have ɛNd values around -6. Exchange processes related to hydrothermal activity are suspected to produce this increase in ɛNd in the vicinity of the East Pacific Rise. These results provide some guidance for higher resolution studies planned in this region by the international GEOTRACES program.

  9. Distribution of indoor radon concentrations and elements of a strategy for control

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1986-05-01

    Indoor radon concentrations vary widely in the US housing stock, with normal concentrations estimated to cause a significant risk of lung cancer by comparison with environmental exposures normally considered, and high concentrations causing risks that exceed even those from cigarette smoking. The probability distribution, i.e., the number of houses at various concentrations, can be estimated from an analysis of the US indoor radon data accumulated to date. Such an analysis suggests that in about a million houses, occupants are receiving exposures greater than those experienced by uranium miners. The form of the frequency distribution, including not only the average concentration, but also the number of houses with high levels, has substantial influence on strategies for control of indoor radon. Such strategies require three major elements: formulation of control objectives in terms of guidelines for remedial action and for new houses; selection of means for identifying homes with high concentrations; and a framework for deciding what types of control measures are appropriate to particular circumstances and how rapidly they should be employed

  10. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  11. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  12. The significance of pancreatic juice trace-element concentration in chronic pancreatitis

    International Nuclear Information System (INIS)

    Persigehl, M.; Loeffler, A.; Hoeck, A.

    1979-01-01

    The diagnosis of exocrine pancreas insufficiency in patients with chronic pancreatitis is still not easy. The best-suited method to confirm the diagnosis seems to be the secretin pancreozymin test (SPT). As previous results have shown, the determination of trace elements in the pancreatic juice can improve the diagnostic value of the SPT. During the SPT, the concentrations of Zn, Fe, Rb, Co, Cr, Se, Sb, Cs, Sc and Ag were measured in the duodenal aspirate of 50 patients by instrumental neutron activation analysis. Of the 50 patients, 24 suffered from pancreatic insufficiency in chronic pancreatitis and 26 had no signs of pancreatic insufficiency. Only the concentration of zinc differed significantly in the two groups; the other elements showed a similar behaviour. In patients without disease of the exocrine pancreas the zinc content of the pancreatic juice during the SPT ws 0.46+-0.13μg/ml, whereas in patients with pancreatic insufficiency it was only 0.18+-0.07μg/ml. The corresponding output was 171+-49.3μg zinc in controls and 41+-17.4μg in patients. After stimulation with pancreozymin the concentrations of zinc increased in normal patients to 1.13+-0.14μg/ml and to 0.22+-0.12μg/ml in patients with pancreatic insufficiency. The data demonstrate that the measurement of zinc in the duodenal juice during the SPT improves the diagnostic value of the test and that zinc should also be determined in doubtful cases of pancreatic insufficiency. (author)

  13. Vaporization of elemental mercury from pools of molten lead at low concentrations

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    Should coolant accidentally be lost to the APT (Accelerator Production of Tritium) blanket and target, and the decay heat in the target be deposited in the surrounding blanket by thermal radiation, temperatures in the blanket modules could exceed structural limits and cause a physical collapse of the blanket modules into a non-coolable geometry. Such a sequence of unmitigated events could result in some melting of the APT blanket and create the potential for the release of mercury into the target-blanket cavity air space. Experiments were conducted which simulate such hypothetical accident conditions in order to measure the rate of vaporization of elemental mercury from pools of molten lead to quantify the possible severe accident source term for the APT blanket region. Molten pools of from 0.01% to 0.10% mercury in lead were prepared under inert conditions. Experiments were conducted, which varied in duration from several hours to as long as a month, to measure the mercury vaporization from the lead pools. The melt pools and gas atmospheres were held fixed at 340 C during the tests. Parameters which were varied in the tests included the mercury concentration, gas flow rate over the melt and agitation of the melt, gas atmosphere composition and the addition of aluminum to the melt. The vaporization of mercury was found to scale roughly linearly with the concentration of mercury in the pool. Variations in the gas flow rates were not found to have any effect on the mass transfer, however agitation of the melt by a submerged stirrer did enhance the mercury vaporization rate. The rate of mercury vaporization with an argon (inert) atmosphere was found to exceed that for an air (oxidizing) atmosphere by as much as a factor of from ten to 20; the causal factor in this variation was the formation of an oxide layer over the melt pool with the air atmosphere which served to retard mass transfer across the melt-atmosphere interface. Aluminum was introduced into the melt to

  14. Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements

    International Nuclear Information System (INIS)

    Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters

  15. Elemental concentration and chemical parameters of drinking water of Patiala City, India

    International Nuclear Information System (INIS)

    Sharma, H.K.; Singh, B.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Neutron activation analysis and energy dispersive x-ray fluorescence techniques have been used to determine 28 major and trace element concentrations in drinking water. Conductivity, pH, hardness, alkalinity, chlorides and sulphates were also measured. The majority of the concentrations are well below the ISI/WHO recommended values. However cadmium, mercury, total dissolved solids (TDS) conductivity and alkalinity were found to be higher in about half the cases compared to ISI/WHO recommended values, whereas sodium was found to be higher in almost all the cases. A linear relationship was observed between TDS and conductivity. (author)

  16. Spatial and seasonal variability of trace-element concentrations in sediments from the Santos-Cubatao estuarine system, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Luiz-Silva, Wanilson; Matos, Rosa Helena Ribeiro; Kristosch, Giane Chaves; Machado, Wilson

    2006-01-01

    Multi-element analyses of sediment samples from the Santos-Cubatao Estuarine System were carried out to investigate the spatial and seasonal variability of trace-element concentrations. The study area contains a rich mangrove ecosystem that is a habitat for tens of thousands of resident and migratory birds, some of them endangered globally. Enrichments of metals in fine-grained surface sediments are, in decreasing order, Hg, Mn, La, Ca, Sr, Cd, Zn, Pb, Ba, Cu, Cr, Fe, Nb, Y, Ni and Ga, relative to pre-industrial background levels. The maximum enrichment ranged from 49 (Hg) to 3.1 (Ga). Mercury concentrations were greater in the Cubatao river than in other sites, while the other elements showed greater concentrations in the Morrao river. Concentrations of Mn were significantly greater in winter and autumn than in summer and spring. However, other elements (e.g. Cd and Pb) showed the opposite, with greater concentrations in summer and spring. This study suggests that seasonal changes in physical and chemical conditions may affect the degree of sediment enrichment and therefore make the assessment of contamination difficult. Consequently, these processes need to be considered when assessing water quality and the potential contamination of biota.(author)

  17. The concentration of Cs, Sr and other elements in water samples collected in a paddy field

    International Nuclear Information System (INIS)

    Ban-nai, Tadaaki; Hisamatsu, Shun'ichi; Yanai-Kudo, Masumi; Hasegawa, Hidenao; Torikai, Yuji

    2000-01-01

    To research elemental concentrations in soil water in a paddy field, samples of the soil water were collected with porous Teflon resin tubes which were buried in the field. The soil water collections were made at various depth, 2.5, 12.5, 25 and 35 cm from the surface in the paddy field, located in Rokkasho, Aomori, once every two weeks during the rice cultivation period, from May to October in 1998. The paddy field was irrigated from May 7th to July 20th, dried from July 20th to August 5th, then again irrigated until September 16th. Drastic changes of the alkaline earth metal elements, Fe and Mn in soil water samples were seen at the beginning and end of the midsummer drainage. The concentrations of Cs, Fe, Mn and NH 4 in soil water samples showed a similar variation pattern to that of alkaline earth metal elements in the waterlogged period. The change of redox potential was considered a possible cause for the concentration variation for these substances. (author)

  18. Concentrations of metallic elements in kidney, liver, and lung tissue of Indo-Pacific bottlenose dolphin Tursiops aduncus from coastal waters of Zanzibar, Tanzania.

    Science.gov (United States)

    Mapunda, Edgar C; Othman, Othman C; Akwilapo, Leonard D; Bouwman, Hindrik; Mwevura, Haji

    2017-09-15

    Concentrations of metallic elements in kidney, liver and lung tissues of Indo-Pacific bottlenose dolphins Tursiops aduncus from coastal waters of Zanzibar were determined using inductively coupled plasma - optical emission spectroscopy. Cadmium, chromium, copper, and zinc were quantifiable in all tissues at concentration ranges of 0.10-150, 0.08-3.2, 1.1-88 and 14-210μg/g dry mass, respectively. Copper and zinc was significantly higher in liver, and females had significantly higher Cd in liver, and chromium in lung. Generally, T. aduncus dolphins from coastal waters around Zanzibar carry low concentrations of metals compared with dolphins from other areas. Cadmium increased significantly with age in kidney and lung. Copper decreased significantly with age in liver, probably due to foetal metallothionein. This study supplied baseline data against which future trends in marine mammals in the Indian Ocean, the world's third largest, can be assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Trace-element analysis of uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Coetzee, P.P.; De Villiers, W.v Z.

    1985-01-01

    The determination of seventeen trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Sr, Th, U, V, Y, Zn, and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated. For the elements with analyte lines in the vicinity of the U-L lines, large overlap corrections were necessary and only a few completely interference-free background positions were available. Consequently, the Feather and Willis method was used for determining the background intensity at the peak positions as well as mass absorption coefficients. As a result of the presence of the U-L absorption edges, both primary and secondary mass absorption coefficients had to be used for matrix corrections. Furthermore, it was observed that the background intensity in the region of the uranium lines increased with increasing uranium content of the sample, instead of the expected decrease due to the increasing mass absorption coefficient. This was attributed to the scattering of uranium lines in the spectrometer chamber. A method was developed to correct the measured intensities for this effect. The contribution from the scattering of uranium lines to the measured intensity at the various 20 positions was determined on samples with different uranium concentrations and for which the mass absorption coefficients and concentrations of the various elements were known

  20. The measurements of critical mass with uranium fuel elements and thorium rods

    International Nuclear Information System (INIS)

    Yao Zhiquan; Chen Zhicheng; Yao Zewu; Ji Huaxiang; Bao Borong; Zhang Jiahua

    1991-01-01

    The critical experiments with uranium elements and Thorium rods have been performed in zero power reactor at Shanghai Institute of Nuclear Research. The critical masses have been measured in various U/Th ratios. The fuels are 3% 235 U-enriched uranium. The Thorium rods are made from power of ThF 4 . Ratios of calculated values to experimental values are nearly constant at 0.995

  1. Chronological development of element concentrations in grapes during growth and ripeness and during fermentation of must determined by instrumental neutron-activation analyses

    Energy Technology Data Exchange (ETDEWEB)

    Feige, Markus; Hampel, Gabriele; Kratz, Jens Volker; Wiehl, Norbert [Mainz Univ. (Germany). Inst. fuer Kernchemie; Koenig, Helmut [Mainz Univ. (Germany). Inst. fuer Mikrobiologie und Weinforschung; Wagner, Andreas [Weingut Wagner, Essenheim (Germany)

    2014-07-01

    The chronological development of element concentrations during growth and ripeness of grapes described in the literature has only been concerned with the macro elements Mg, K, and Ca. Concentrations of trace elements in must are only described as a snapshot at the end of the ripeness. Therefore, the motivation for the present work was to accompany the growth and the ripening process of grapes successively by systematically determining element concentrations in grapes of Riesling and Cabernet Sauvignon by neutron-activation analyses. While for a number of elements, the concentrations in the grapes increased as a function of grape development (e.g., Na, K, Rb, Al), other concentrations decreased (e.g., Mg, Ca, Mn). These decreases are not only to be attributed to a dilution by an increasing uptake of water during growth, but also by an active transport of the cations out of the berries. Furthermore, the interest focused on the influence of mineral substances on the process of fermentation and on the uptake of trace elements by the yeasts. (orig.)

  2. Chronological development of element concentrations in grapes during growth and ripeness and during fermentation of must determined by instrumental neutron-activation analyses

    International Nuclear Information System (INIS)

    Feige, Markus; Hampel, Gabriele; Kratz, Jens Volker; Wiehl, Norbert

    2014-01-01

    The chronological development of element concentrations during growth and ripeness of grapes described in the literature has only been concerned with the macro elements Mg, K, and Ca. Concentrations of trace elements in must are only described as a snapshot at the end of the ripeness. Therefore, the motivation for the present work was to accompany the growth and the ripening process of grapes successively by systematically determining element concentrations in grapes of Riesling and Cabernet Sauvignon by neutron-activation analyses. While for a number of elements, the concentrations in the grapes increased as a function of grape development (e.g., Na, K, Rb, Al), other concentrations decreased (e.g., Mg, Ca, Mn). These decreases are not only to be attributed to a dilution by an increasing uptake of water during growth, but also by an active transport of the cations out of the berries. Furthermore, the interest focused on the influence of mineral substances on the process of fermentation and on the uptake of trace elements by the yeasts. (orig.)

  3. Comparison of the concentrations of metal elements and isotopes of lead found in rice and rice bran.

    Science.gov (United States)

    Dai, Shouhui; Yang, Hui; Yang, Lan; Wang, Fuhua; Du, Ruiying; Wen, Dian

    2014-08-01

    Very few studies have investigated the difference in the distribution of metal elements between rice and rice bran samples. In this study, the concentrations of 27 metal elements (Li, Be, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Tl, Pb, and U) in 56 polished rice and their corresponding bran samples were determined. A significant difference in concentrations of all elements except Ag and Cd was found between rice and bran (P rice ratios of 1.21 to 36.3. High concentrations of metal elements, especially that of the heavy metal Cr, in bran samples present a potential safety issue for bran products, such as food and feed containing bran. Pb isotope ((204)Pb, (206)Pb, (207)Pb, and (208)Pb) ratios also were determined. The (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in bran were generally higher than those in rice (P rice and bran samples were distinctly different from each other, indicating that Pb isotope composition is an effective for discriminating between bran and rice samples.

  4. Hepatic and renal concentrations of 10 trace elements in crocodiles (Crocodylus niloticus) in the Kafue and Luangwa rivers in Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Almli, Bjorn [National Veterinary Institute, POB 8156 Dep., N-0033 Oslo (Norway)]. E-mail: bjorn.almli@vetinst.no; Mwase, Maxwell [Samora Machel School of Veterinary Medicine, University of Zambia, POB 32379, Lusaka (Zambia); Sivertsen, Tore [Norwegian School of Veterinary Science, POB 8146 Dep., N-0033 Oslo (Norway); Musonda, Mike [Samora Machel School of Veterinary Medicine, University of Zambia, POB 32379, Lusaka (Zambia); Flaoyen, Arne [National Veterinary Institute, POB 8156 Dep., N-0033 Oslo (Norway); Norwegian School of Veterinary Science, POB 8146 Dep., N-0033 Oslo (Norway)

    2005-01-20

    Hepatic and renal concentrations of the elements arsenic, cadmium, cobalt, copper, lead, manganese, mercury, molybdenum, selenium and zinc were determined in samples collected from four crocodiles from the Kafue River, Kafue National Park and five crocodiles from the Luangwa River, Luangwa National Park, Zambia. The concentrations of the essential elements were similar to those reported in other vertebrates. Arsenic and cadmium concentrations were low (medians below 0.05 {mu}g As/g and below 0.16 {mu}g Cd/g, wet wt.). Mercury and lead concentrations were several orders of magnitude higher (medians up to 3.7 {mu}g Hg/g, and up to 8.7 {mu}g Pb/g, all wet wt.) than in hippopotami from the same rivers, probably as a result of food-chain biomagnification. Judging by the results obtained in this study, pollution from the mining activity around the Kafue River drainage area in the Copperbelt region has not significantly influenced the trace element concentrations in tissues of the crocodiles in the Kafue National Park. The trace element concentrations measured may serve as reference values in future studies on crocodilians.

  5. Differences in trace element concentrations between Alzheimer and 'normal' human brain tissue using instrumental neutron activation analysis (INAA)

    International Nuclear Information System (INIS)

    Panayi, A.E.; Spyrou, N.M.

    2001-01-01

    Brain samples obtained from the Netherlands Brain Bank were taken from the superior frontal gyrus, superior parietal gyrus and medial temporal gyrus of 'normal' and Alzheimer's disease subjects in order to determine elemental concentrations and compare elemental composition. Brain samples from the cortex were taken from 18 subjects, eight 'normals' (6 males and 2 females) and eleven with Alzheimer's disease, (1 male and 10 females) and the following elemental concentrations, Na, K, Fe, Zn, Se, Br, Rb, Ag, Cs, Ba, and Eu were determined by instrumental neutron activation analysis (INAA). The element which showed the greatest difference was Br, which was found to be significantly elevated in the cortex of Alzheimer's disease brains as compared to the 'normals' at significance (p < 0.001). (author)

  6. Preliminary application of tapered glass capillary microbeam in MeV-PIXE mapping of longan leaf for elemental concentration distribution analysis

    Science.gov (United States)

    Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.

    2017-09-01

    This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.

  7. Analysis of humic colloid borne trace elements by flow field-flow fractionation, gel permeation chromatography and icp-mass spectrometry

    International Nuclear Information System (INIS)

    Ngo, Manh Thang; Beck, H.P; Geckeis, H.; Kim, J.I.

    1999-01-01

    Groundwater samples containing aquatic humic substances are analyzed by flow field- flow fractionation (FFFF) and gel permeation chromatography (GPC). Natural concentrations of U, Th and rare earth elements (REE) in a size-fractionated groundwater sample are analyzed by on-line coupling of inductively coupled plasma-mass spectrometry (ICP-MS) to either FFFF or GPC. The uranium, thorium, and REE are found to be quantitatively attached to colloidal species in the investigated groundwater sample. Their distribution in different colloid size fractions, however, is quite heterogeneous. Both, FFFF and GPC reveal that Th and REE are preferentially located in the size fraction > 50 kDalton. U is also attached to low molecular weight humic acid, similar to Fe and Al. This finding could be qualitatively reproduced by sequential ultrafiltration. The results are interpreted in terms of different binding mechanisms for the individual elements in the heterogeneous humic macromolecules. The inclusion of actinides into larger aggregates of aquatic humic acid might explain the considerable kinetic hindrance of actinide-humic acid dissociation reactions described in the literature. (authors)

  8. Volume concentration of 41 elements in ground level of atmosphere in Bratislava

    International Nuclear Information System (INIS)

    Florek, M.; Meresova, J.; Holy, K.; Sykora, I.; Frontasyeva, M. V.; Pavlov, S. S.

    2006-01-01

    The concentrations of 41 chemical elements (heavy metals, rare earths, and actinides) were determined in atmospheric aerosol using nuclear and related analytical techniques. The sampling location was in Bratislava (Slovak Republic). The main goal of this study is the quantification of the atmospheric pollution and its trend. The elemental content in filters was measured using instrumental neutron activation analysis at IBR-2 reactor in JINR Dubna and by atomic absorption spectrometry in Bratislava. The obtained results confirmed the decreasing trend of pollution by most of the heavy metals in Bratislava atmosphere, and they are compared with the contents of pollutants in atmosphere of other cities. We determined also the composition of clear filter materials. (authors)

  9. Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and their eggs.

    Science.gov (United States)

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2010-07-15

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and this is of particular concern in the arctic. However, little information exists on contaminant levels in arctic-breeding shorebirds, especially in Canada. We studied potential contaminants in three biparental shorebird species nesting in Nunavut, Canada: ruddy turnstones (Arenaria interpres), black-bellied plovers (Pluvialis squatarola) and semipalmated plovers (Charadrius semipalmatus). Blood, feathers and eggs were analyzed for As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn. We assessed whether element concentrations a) differed among species and sexes, b) were correlated among pairs and their eggs, and c) were related to fitness endpoints, namely body condition, blood-parasite load, nest survival days, and hatching success. Non-essential elements were found at lower concentrations than essential elements, with the exception of Hg. Maximum Hg levels in blood approached those associated with toxicological effects in other bird species, but other elements were well below known toxicological thresholds. Reproductive success was negatively correlated with paternal Hg and maternal Pb, although these effects were generally weak and varied among tissues. Element levels were positively correlated within pairs for blood-Hg (turnstones) and feather-Ni and Cr (semipalmated plovers); concentrations in eggs and maternal blood were never correlated. Concentrations of many elements differed among species, but there was no evidence that any species had higher overall exposure to non-essential metals. In conclusion, whereas we found little evidence that exposure to the majority of these elements is leading to declines of the species studied here, Hg levels were of potential concern and both Hg and Pb warrant further monitoring. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  11. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  12. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    Science.gov (United States)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  13. Trace metallic elements in Helix aspersa terrestrial snails of a semiarid ecosystem

    International Nuclear Information System (INIS)

    Gaso P, M.I.; Segovia, N.; Zarazua, G.; Montes, F.; Morton, O.; Armienta, M.A.; Hernandez, E.

    2001-01-01

    The concentration of some major elements and traces in soil samples and of Helix aspersa eatable terrestrial snails were analysed at the Radioactive Wastes Storage Center (CADER) and in other reference sites. The methodology includes the use of an atomic absorption spectrophotometer, an X-ray fluorescence equipment and an Icp-mass spectroscope. The concentrations of some toxic elements (Ba, Cd, Cr, Ni, Pb and V) in the soft tissue of the snails were greater than the toxic levels reported in the literature for such trace elements. The snails compared with another wild eatable foods present transfer coefficients soil-snail high relatively. (Author)

  14. Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants.

    Science.gov (United States)

    Moore, Katie L; Lombi, Enzo; Zhao, Fang-Jie; Grovenor, Chris R M

    2012-04-01

    The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.

  15. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    International Nuclear Information System (INIS)

    Roe, John H.; Hopkins, William A.; Jackson, Brian P.

    2005-01-01

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats

  16. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, John H. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States); Hopkins, William A. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)]. E-mail: hopkins@srel.edu; Jackson, Brian P. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)

    2005-07-15

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats.

  17. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    Science.gov (United States)

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities

  18. Concentrations of stable elements and uranium in estuarine areas of Japan

    International Nuclear Information System (INIS)

    Takata, Hyoe; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    The geochemistry of stable elements can be a good analogue for understanding the behavior of radionuclides in estuarine and coastal environments. In this study, the behavior of nutrients (NO 3 + NO 2 , PO 4 , Si(OH) 4 ), heavy metals, and U was observed in several estuarine and coastal waters of Japan. We also collected data on salinity, pH, and suspended particle matter (SPM). Nutrient concentrations followed conservative dilution lines in these estuaries, and concentrations of dissolved Fe decreased as salinity increased from 0 to 20. In general, most of the dissolved Fe in estuaries is in colloidal form. The behavior of dissolved Fe might reflect a loss of colloidal Fe through coagulation in this salinity range. Dissolved Co and Ni concentrations followed approximate dilution lines from the rivers to the seawater end-members, suggesting that they were quasi-conservative in these estuarine systems. A rapid increase in dissolved Cd concentrations was observed at low levels of salinity (<4). Estimated fluxes of dissolved Cd to the estuarine and coastal waters showed that the salt-induced desorption of Cd from particles constitutes a significant source of dissolved Cd in the estuarine and coastal waters. (author)

  19. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  20. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  1. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    Science.gov (United States)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  2. Concentrations and distributions of trace and minor elements in Chinese and Canadian coals and ashes

    International Nuclear Information System (INIS)

    Sun Jingxin; Jervis, R.E.

    1987-01-01

    A total of 35 trace and minor elements including some of environmental significance were determined in each of a selection of 15 Chinese and 6 Canadian thermal coals and their ashes by using the SLOWPOKE-2 nuclear reactor facility of the University of Toronto. The concentrations and distributions of these constituents among the coals and their combustion products (viz. ash and volatile matter) are presented. The detailed results showed wide variations in trace impurity concentrations (up to a factor of 100 and more) among the coals studied. Values for elemental enrichment factors (EF) relative to normal crustal abundances indicated that only As(EF=13), Br(5.7), I(16), S(230), Sb(11) and Se(320) were appreciably enriched in coal. (author) 14 refs.; 5 tabs

  3. Mass Spectrometric Analysis for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Boulyga, S.

    2013-01-01

    The release of man-made radionuclides into the environment results in contamination that carries specific isotopic signatures according to the release scenarios and the previous usage of materials and facilities. In order to trace the origin of such contamination and/or to assess the potential impact on the public and environmental health, it is necessary to determine the isotopic composition and activity concentrations of radionuclides in environmental samples in an accurate and timely fashion. Mass spectrometric techniques, such as thermal ionization mass spectrometry (TIMS), secondary ion mass spectrometry (SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) belong to the most powerful methods for analysis of nuclear and related samples in nuclear safeguards, forensics, and environmental monitoring. This presentation will address the potential of mass spectrometric analysis of actinides at ultra-trace concentration levels, isotopic analysis of micro-samples, age determination of nuclear materials as well as identification and quantification of elemental and isotopic signatures of nuclear samples in general. (author)

  4. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  5. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Grupo Tecnicas Analiticas Nucleares], E-mail: jasan@cae.cnea.gov.ar, E-mail: rpla@cae.cnea.gov.ar; Santos, Marina dos [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Constituyentes. Lab. de Contaminacion del Aire], E-mail: mdossant@cnea.gov.ar

    2007-07-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  6. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Jasan, Raquel C.; Pla, Rita R.; Invernizzi, Rodrigo; Santos, Marina dos

    2007-01-01

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  7. What concentration of actinides can be packed into calcite? Hints from rare earth element (REE) composition

    International Nuclear Information System (INIS)

    Christiansen, J.; Stipp, S.L.S.; Waight, T.; Baker, J.A.

    2005-01-01

    Full text of publication follows: For reliable modelling of actinide mobility in the event of spent fuel repository failure, we need data describing the uptake capacity of the minerals likely to find themselves in the transport path. Calcite (CaCO 3 ) is a common secondary mineral in fractures and pore fillings, especially downstream from degrading concrete facilities, so it is a likely candidate for incorporation. Investigations made under ACTAF, a 5. Framework EURATOM integrated project, as well as some other research studies, have shown that actinides are successfully incorporated as substituting ions within the calcite mineral structure. The question remaining, is how much can calcite take up. Geologists routinely use relative concentrations of rare Earth elements (REE's), the lanthanides, for interpreting rock genesis and history. One can also adopt them as analogues for the radioactive elements because their f-orbital electron configuration makes them behave very much like actinides. We collected and analysed a suite of 70 calcite samples from a great number of possible formation environments, geological ages and geographical locations, for the purpose of finding the range and maximum of total f-orbital substitution possible in calcite, under natural conditions. We analysed them using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The maximum concentration found was about 5 x 10 -3 mole/kg total REE in a sample that had a geological history of formation where REE fluids played a role. Over the whole suite, total REE ranged from less than 10 -4 moles/kg for limestone samples formed from biogenic calcite where REE-enriched fluids would have played a negligible role. Thus, in natural calcite, REE's are present and all evidence points to a structural incorporation within the mineral rather than as a separate REE-rich phase. These data compare favourably with mole fractions from calcite grown synthetically, where as much as 6 x 10 -3

  8. Mass spectrometry in nuclear technology - a review of application of thermal ionization mass spectrometry in fuel reprocessing plants. PD-7-1

    International Nuclear Information System (INIS)

    Dakshinamoorthy, A.

    2007-01-01

    Mass spectrometry finds the widespread application in nuclear science and technology due to the fact that it can be employed for isotope composition measurements of different elements of interest and also concentration measurements of these elements using isotope dilution techniques. Thermal ionization mass spectrometer (TIMS), Inductively coupled plasma mass spectrometer (ICP-MS) and gas chromatography mass spectrometer (GC-MS) are the different types of mass spectrometers used in nuclear industry for the analyses of isotope composition of special nuclear material, trace impurities in nuclear fuels and components and characterization of various solvents respectively. Among them, TIMS plays a vital role in the nuclear fuel cycle in determining precisely the isotope composition of uranium, plutonium, D/H ratio in heavy water etc. TIMS is an indispensable analytical tool for nuclear material accounting at the input stage of a reprocessing plant by carrying out precise and accurate concentration measurement of plutonium and uranium by isotope dilution mass spectrometry (IDMS). It is the only accepted measurement technique for the purpose because of its high precision, better sensitivity and no quantitative separation is needed. The isotope abundance measurements of uranium and plutonium at this point are also useful for burn-up studies and isotope correlations. Mass spectrometric analysis of uranium and plutonium is also required for nuclear data measurements and calibrating other chemical methods

  9. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...

  10. Use of neutron activation analysis to measure the variation in trace element concentrations in a coal seam

    International Nuclear Information System (INIS)

    Fardy, J.J.; Swaine, D.J.

    1985-01-01

    Trace element concentrations were measured by neutron activation on 57 run-of-mine coal samples from several locations in seven mines located in the Lithgow seam in the Western Coalfield, Sydney Basin. Results were tabulated as ratios of the highest to the lowest variance for each element

  11. Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk.

    Science.gov (United States)

    Rahman, Mohammad Mahmudur; Dong, Zhaomin; Naidu, Ravi

    2015-11-01

    We investigated the concentrations of 23 elements in groundwater from arsenic (As) contaminated areas of Bangladesh and West Bengal, India to determine the potential human exposure to metals and metalloids. Elevated concentrations of As was found in all five study areas that exceeded the World Health Organization (WHO) guideline value of 10μg/L. The mean As concentrations in groundwater of Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur were 297μg/L, 262μg/L, 115μg/L, 161μg/L and 349μg/L, respectively. Elevated concentrations of Mn were also detected in all areas with mean concentrations were 139μg/L, 807μg/L, 341μg/L, 579μg/L and 584μg/L for Noakhali, Jalangi and Domkal, Dasdia Nonaghata, Deganga and Baruipur, respectively. Daily As intakes from drinking water for adults and the potential cancer risk for all areas was also estimated. Results suggest that mitigation activities such as water treatment should not only be focused on As but must also consider other elements including Mn, B and Ba. The groundwater used for public drinking purposes needs to be tested periodically for As and other elements to ensure the quality of drinking water is within the prescribed national guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, J.H.; Hopkins, W.A.; Jackson, B.P. [University of Georgia, Aiken, SC (US)

    2005-07-01

    Information on species- and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged.

  13. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 1. Soil samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The Iron Quadrangle, Minas Gerais, Brazil, is rich in mineral occurrences and is considered one of the richest mineral-bearing regions in the world. Most investigations in this region have dealt with the determination of arsenic and mercury but so far few studies have been carried out aiming at determining other important elements. Having in mind the potential risk caused by mineral activities, this study was developed in order to assess the potential influence of the soil on foodstuffs. The soil samples were collected from three sites inside and outside the Iron Quadrangle. The samples were analyzed at the Laboratory for Neutron Activation Analysis, CDTN/CNEN by the k 0 -instrumental neutron activation analysis. This paper reports the elemental concentration determined in soil and emphasises the elements cited in the Brazilian environmental legislation for soil. This work also confirms the high elemental concentration of several minerals, however, it is difficult to distinguish the contamination from anthropogenic activities from the natural occurrence. (author)

  14. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica?

    Science.gov (United States)

    Kroflič, Ana; Germ, Mateja; Golob, Aleksandra; Stibilj, Vekoslava

    2018-04-15

    The present study describes the influence of extensive agriculture on the concentrations of As, Cr, Cu, Cd, Se, Pb and Zn in sediments and in the aquatic plant Veronica anagallis-aquatica. The investigation, spanning 4 years, was conducted on three watercourses in Slovenia (Pšata, Lipsenjščica and Žerovniščica) flowing through agricultural areas. The different sampling sites were chosen on the basis of the presence of different activities in these regions: dairy farming, stock raising and extensive agriculture. The concentrations of the selected elements in sediments and V. anagallis-aquatica were below the literature background values. The distribution of the selected elements among different plant parts (roots, stems and leaves) were also investigated. The majority of the studied elements, with the exception of Zn and Cu, were accumulated mainly in root tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. RELATIONS AMONG WESTERN CORN ROOTWORM RESISTANCE TRAITS AND ELEMENTS CONCENTRATION IN MAIZE GERMPLASM ROOTS

    Directory of Open Access Journals (Sweden)

    Andrija Brkić

    2015-06-01

    Full Text Available Western corn rootworm – WCR (Diabrotica virgifera virgifera LeConte is an important maize pest in Croatia. Using native resistance of maize germplasm could reduce chemical treatments and other costs in maize production. Objectives of this study were: i to assess variability of WCR resistance traits (root injury, regrowth and size and concentrations of nine elements in roots of 128 maize genotypes, and ii to determine correlations among the traits and ion concentrations. Results revealed high variability of maize genotypes for both WCR resistance traits and ion concentrations. Significant moderate negative correlations (>-0.4 were detected between root injury and boron as well as between root regrowth and iron, manganese and zinc concentrations in root. Consequently, ion concentration in maize roots might have an impact on WCR resistance research.

  16. Simulation of incompressible flows with heat and mass transfer using parallel finite element method

    Directory of Open Access Journals (Sweden)

    Jalal Abedi

    2003-02-01

    Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.

  17. Determination of trace and ultra-trace elements in Dergaon meteorite by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Balaram, V.; Gnaneswara Rao, T.; Anjaiah, K.V.; Phukon, N.; Majumdar, A.C.

    2003-01-01

    In this paper, a detailed methodology for high precision measurement of several trace and ultra-trace elements including REE and PGE have been presented using effective sample preparation techniques and inductively coupled plasma mass spectrometry. Discussion is focussed on aspects, such as total dissolution and recovery of all elements, minimization of oxide and doubly-charged and other polyatomic ion interferences, calibration by matrix matching standards, accuracy and precision

  18. FEHMN 1.0: Finite element heat and mass transfer code

    International Nuclear Information System (INIS)

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1991-04-01

    A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs

  19. Element concentrations in candidate biological and environmental reference materials by k0-standardized INAA

    International Nuclear Information System (INIS)

    Freitas, M.C.

    1993-01-01

    K 0 -Based Neutron Activation Analysis (k 0 INAA) was used to analyze the candidate reference materials Apple Leaves and Peach Leaves, and Oriental Tobacco Leaves and Virginia Tobacco Leaves. Concentration values for 27 elements were measured. The accuracy was ascertained by analysis of two certified reference materials. NIST 1572 Citrus Leaves and 1573 Tomato Leaves. The homogeneity test of the IAEA Evernia prunastri candidate reference material in aliquots ≥ 100 mg is extended to the elements Sc, Cr, Fe, Co, Zn, Rb, Sb, Cs, Ba, Ce and Th. (orig.)

  20. [Inductively coupled plasma mass spectrometry for the simultaneous determination of thirty metals and metalloids elements in blood samples].

    Science.gov (United States)

    Ding, Chun-guang; Zhu, Chun; Liu, De-ye; Dong, Ming; Zhang, Ai-hua; Pan, Ya-juan; Yan, Hui-fang

    2012-08-01

    To establish an inductively coupled plasma mass spectrometry(ICP-MS) method for determination of 30 trace elements including As, Ba, Be, Bi, Ni, Cd, Co, Cr, Cs, Cu, Ga, Mn, Pb, Sr, Tl, V, Ge, Mo, Nb, Ti, W, Te, Se, Zr, In, Sb, Hg, Ce, La, and Sm in human blood. The blood samples were analyzed by ICP-MS after diluted 1/10 with 0.01% Triton-X-100 and 0.5% nitric acid solution. Y, Rh and Lu were selected as internal standard in order to correct the matrix interference of Cr, As, Se, and Hg by a hex pole-based collision-reaction cell. Other elements were determined with standard method. The limits of detection, precision and accuracy of the method were evaluated. The accuracy was validated by the determination of the whole blood reference material. All the 30 trace elements have good linearity in their determination range, with the correlation coefficient > 0.9999. The limits of detection of the 30 trace elements were in the range of 1.19 - 2.15 µg/L and the intra-precision and inter-precision (relative standard deviation, RSD) were less than 14.3% (except Hg RSD < 21.2%, and Ni RSD < 15.4%). The spiked recovery for all elements fell within 59.3% - 119.2%. Among the 13 whole blood reference materials, V, Cr, Mn, Co, Ni, Cu, As, Se, Cd, Te, and Pb (1.45, 1.19, 18.40, 0.18, 1.57, 591.00, 2.97, 61.00, 0.35, 1.86, and 9.70 µg/L respectively) fell within the acceptable range and the detection results of Hg (0.59 µg/L) and Mo (1.59 µg/L) were slightly beyond the range. This method was simple, fast and effective. It can be used to monitor the multi-elementary concentration in human blood.

  1. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.; Wallenius, M.; Mayer, K. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2010-07-01

    The rare-earth element pattern was used as an additional tool for the identification and origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. By this means, the source of an unknown material can be straightforwardly verified by comparing the pattern with that of a known or declared sample. In contrast to other indicators used for nuclear forensic studies, the provenance of the material can also be assessed in several cases even if no comparison sample is available due to the characteristic pattern. The milling process was found not to change the pattern and no significant elemental fractionation occurs between the rare-earth elements, thus the pattern in the yellow cakes corresponds to that found in the uranium ore. (orig.)

  2. Determination of trace element concentration in infant head hair of Rawalpindi/Islamabad area using INAA technique

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Gill, K.P.

    2004-01-01

    The concentration of 18 minor and trace elements (essential, toxic and nonessential) in infant head hair was determined. The data provide the base-line values of these elements in head hair of infants of low- and medium-income group subjects. The statistical results show that there are significant correlations between some elements such as: Ca-Zn, Ca-Fe, Mg-Ca, Mg-Mn and Mg-Fe. The results obtained have been compared with the data reported in the literature. Our data show compatibility of elemental contents of infant head hair with those from some of the other geological regions but also deviate in some cases. (orig.)

  3. Biological variables and health status affecting inorganic element concentrations in harbour porpoises (Phocoena phocoena) from Portugal (western Iberian Peninsula)

    International Nuclear Information System (INIS)

    Ferreira, Marisa; Monteiro, Silvia S.; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo

    2016-01-01

    The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. - Highlights: • High levels of mercury in harbour porpoises from Portugal. • Evidence of bioaccumulation of non-essential trace elements. • Presence of parasites influenced some essential trace elements. • Evidence of nutritional state effect on Zn levels. • Presence of gross pathologies influenced Zn and Hg levels. - The small harbour

  4. Resin bead-thermal ionization mass spectrometry for determination of plutonium concentration in irradiated fuel dissolver solution

    International Nuclear Information System (INIS)

    Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer

  5. Air mass origins by back trajectory analysis for evaluating atmospheric 210Pb concentrations at Rokkasho, Aomori, Japan

    International Nuclear Information System (INIS)

    Akata, N.; Kawabata, H.; Hasegawa, H.; Kondo, K.; Chikuchi, Y.; Hisamatsu, S.; Inaba, J.; Sato, T.

    2009-01-01

    Atmospheric concentrations of 210 Pb change with various factors such as meso-scale meteorological conditions. We have already reported the biweekly atmospheric 210 Pb concentrations in Rokkasho, Japan for 5 years and found that they had clear seasonal variations: low concentrations in summer and high values in winter to spring. To study the reasons for the seasonal variations, the origins of the air mass flowing to Rokkasho were analyzed by 3-D backward air mass trajectory analysis. Routes of the calculated trajectories were classified into four regions: northeastern and southeastern Asian Continent, sea and other regions. The atmospheric 210 Pb concentrations were well correlated with the frequency of the routes through the northeastern Asian Continent. A non-linear multiple regression analysis of the 210 Pb concentrations and the relative frequencies of the four routes showed good fitting of the predicted values to the observed ones, and indicated that the atmospheric 210 Pb concentrations in Rokkasho depended on the frequency of the air mass from the northeastern Asian Continent. (author)

  6. Inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Price Russ, G. III

    1993-01-01

    Inductively coupled plasma source mass spectrometry (ICP-MS) is a relatively new (5 y commercial availability) technique for simultaneously determining the concentration and isotopic composition of a large number of elements at trace levels. The principle advantages of ICP-MS are the ability to measure essentially all the metallic elements at concentrations as low as 1 part in 10 12 by weight, to analyse aqueous samples directly, to determine the isotopic composition of essentially all the metallic elements, and to analyse samples rapidly (minutes). The history of the development of ICP-MS and discussions of a variety of applications have been discussed in detail in Date and Gray (1988). Koppenaal (1988, 1990) has reviewed the ICP-MS literature. In that ICP-MS is a relatively new and still evolving technique, this chapter will discuss potential capability more than proven performance. (author). 24 refs

  7. Thermal ionisation mass spectrometry (TIMS): what, how and why?

    International Nuclear Information System (INIS)

    Aggarwal, S.K.

    2002-01-01

    Thermal ionisation mass spectrometry (TIMS) is one of the oldest mass spectrometric techniques, which has been used for determining the isotopic composition and concentration of different elements using isotope dilution. In spite of the introduction of many other inorganic mass spectrometric techniques like spark source mass spectrometry (SSMS), glow discharge mass spectrometry (GDMS), inductively coupled plasma-mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS), the TIMS technique plays the role of a definitive analytical methodology and still occupies a unique position in terms of its capabilities with respect to precision and accuracy as well as sensitivity

  8. Minor elements in magnetic concentrates from the Syenite-Shonkinite Province, southern Asir, Kingdom of Saudi Arabia

    Science.gov (United States)

    Overstreet, W.C.; Day, G.W.; Botinelly, Theodore; VanTrump, George

    1987-01-01

    Magnetic concentrates from 106 localities in three plutons of syenite and one pluton of shonkinite in the southern Asir were analyzed spectrographically for 31 elements to determine if anomaly-enhancement techniques would identify mineralization not disclosed by conventional geochemical sample media. Positive anomalies are lacking for all elements except vanadium. Vanadium contents as high as 0.7 percent were identified in magnetic concentrates from the syenite pluton to the southeast of Suq al Ithnayn, but magnetite is sparse. This observation indicates a need to reexamine magnetite-rich drill core for possible ore-grade tenors in vanadium from the zoned pluton at Lakathah. Experimental analyses for platinum-group metals in magnetic concentrates from layered mafic plutons at Jabal Sha'i', Jabal al Ashshar, and Hishshat al Hawi should be performed to determine whether micron-size particles of the platinum-group metals are present in mafic rocks of the Arabian Shield.

  9. A positron emission tomography analysis of glucose metabolism in Alzheimer's disease brain using [18F] fluorodeoxyglucose. A parallel study with elemental concentrations

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.; Stedman, J.D.

    2000-01-01

    Alzheimer's disease (AD) is a debilitating form of dementia which leads to impaired memory, thinking and behavior. Elemental concentrations between 'normal' and AD subjects as well as the hemispherical differences within the brain were examined. Tissue samples from both hemispheres of the frontal lobe in both AD and normal subjects were examined for their trace element concentrations using PIXE and RBS analyses. Elemental concentrations were seen to differ between AD and normal brain tissue samples. While in the normal group concentrations were found to be significantly higher in the right hemisphere than in the left the converse was tru in AD. A change in elemental concentrations may indicate possible alterations in the function of the blood brain barrier. This was examined by determining regional cerebral metabolic rates of glucose (rCMRGlu) using the in vivo technique of positron emission tomography (PET). Again variations between both hemispheres and between AD and normal were found. (author)

  10. Effect of constituent elements in wood on X-ray densitometry measurements

    International Nuclear Information System (INIS)

    Kouris, K.; Tout, R.E.; Gilboy, W.B.; Spyrou, N.M.

    1981-01-01

    Small concentrations of elements introduced into a wood matrix have been shown by calculation to measurably influence the photon mass attenuation coefficient although the corresponding changes in the physical density are negligible. This has implications in dendrochronology where the interpretation of densitometric data is based on X-ray radiographs of wood. The magnitude of such effects has been evaluated for selected elements by simulating various botanical matrices. Significant matrix to matrix differences in the mass attenuation coefficient, in the energy range of interest (5 to 25 keV), have been established as being due to variations in the mineral composition. (author)

  11. Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach

    Directory of Open Access Journals (Sweden)

    J. Czerny

    2013-05-01

    Full Text Available Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation, all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC, nitrogen (DON and particulate organic phosphorus (POP were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon

  12. Relations between Scots pine needle element concentrations and decreased needle longevity along pollution gradients

    International Nuclear Information System (INIS)

    Lamppu, Jukka; Huttunen, Satu

    2003-01-01

    Deceased needle longevity was related to increased heavy metal concentrations. - Scots pine (Pinus sylvestris L.) shoots were sampled along transects near one urban pollution source and two smelters. Needle Mg, P and K concentrations decreased from the second to the fourth age class linearly with needle survival along the urban pollution gradient. Still, over 80% of the average concentration of these nutrients remained in the fourth needle age class. Decreased needle longevity was closely related to the increased heavy metal concentrations near the smelters. Near the urban pollution source, it was related to the increased annual needle mass and the increased needle nutrient concentrations. Decreased Mn accumulation along with needle age was detected near all pollution sources. Leaching of Mn from needles and especially from soil as a cause of decreased needle concentrations is discussed

  13. Elemental concentration of zooplankton and their particulate products

    International Nuclear Information System (INIS)

    Fowler, S.W.; Oregioni, B.

    1974-01-01

    Since zooplankton fecal pellets and molts are major vectors in the vertical transport of zinc in the sea, analyses have been made also for other trace metals in these particulate products. Euphausiids and pelagic shrimp were collected live off the Monaco coast by taking several short oblique tows with an Issacs-Kidd midwater trawl. Animals were placed in clean sea water, sorted according to species and immediately transported to the laboratory in plastic containers filled with filtered sea water taken at the collection site. Samples of microplankton, which serve as food for the macroplankton were also taken. Elemental concentrations in whole euphausiids and shrimp were measured. It was observed that molt analyses strongly support the contention that crustacean molts play an important role in the transport of metals and radionuclides in marine ecosystems. Molts can release metals to the water column or sediments upon decomposition or serve as a rich source of metals for organisms of other trophic levels which ingest them

  14. Application of slurry nebulization to trace elemental analysis of some biological samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mochizuki, T.; Sakashita, A.; Iwata, H.; Ishibashi, Y.; Gunji, N.

    1991-01-01

    The application of slurry nebulization/inductively coupled plasma mass spectrometry (ICP-MS) to trace elemental analysis of biological samples has been investigated. Three standard samples of the National Institute of Standards and Technology (NIST) were dispersed in 1% aqueous Triton X-100 solution by grinding with a planetary micronizing mill. The resulting slurries were nebulized into an ICP without any additional treatments. The 1% (m/v) slurry of the NIST bovine liver showed no significant influence on cone blockage and signal suppression/enhancement. Detection limit, precision and accuracy were discussed for the determination of 24 elements of interest in bovine liver, rice flour and pine needles. Detection limits ranged from 0.0001 μg g -1 for U to 0.52 μg g -1 for Zn at the effective integrating time of 10 s. For high mass elements, low blank values were obtained, yielding excellent limits ( -1 ). Acceptable accuracy and precision were obtained for most of the elements in the NIST bovine liver and rice flour, even for the volatile elements, such as As, Se and Br. However, relatively poor accuracy was obtained for the analysis of pine needles. (orig.)

  15. Development of filter element from nanocomposites of ultra high molar mass polyethylene having silver nanoparticles

    International Nuclear Information System (INIS)

    Bizzo, Maurizio A.; Wang, S. Hui

    2015-01-01

    The production of polymer based filter elements for water is widespread in the market but has an undesirable characteristic, they are not always efficient and capable of retaining or eliminating microorganisms. This paper proposes the production of filters with biocidal activity, comprised by nanocomposites of ultra-high molar mass polyethylene (UHMMPE) containing silver nanoparticles. The polymer is responsible for the uniform porous structure of the filter element and the Ag nanoparticles for its biocidal action. The filter elements were produced from two kinds of UHMMPE particles with different particle size distributions, one in the range of 150 to 200μm and the other of 300 to 400μm. Samples were collected from the obtained filter elements and characterized by X-ray diffractometry, scanning electron microscopy and microanalysis. The results indicated the formation of nanocomposite containing silver nanoparticles. (author)

  16. Mass: Fortran program for calculating mass-absorption coefficients

    International Nuclear Information System (INIS)

    Nielsen, Aa.; Svane Petersen, T.

    1980-01-01

    Determinations of mass-absorption coefficients in the x-ray analysis of trace elements are an important and time consuming part of the arithmetic calculation. In the course of time different metods have been used. The program MASS calculates the mass-absorption coefficients from a given major element analysis at the x-ray wavelengths normally used in trace element determinations and lists the chemical analysis and the mass-absorption coefficients. The program is coded in FORTRAN IV, and is operational on the IBM 370/165 computer, on the UNIVAC 1110 and on PDP 11/05. (author)

  17. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  18. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    Directory of Open Access Journals (Sweden)

    Pingping Han

    2016-06-01

    Full Text Available Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

  19. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    Science.gov (United States)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  20. Trace element concentration in head hair of the inhabitans of the Rawalpindi-Islamabad area

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Chaudhary, M.S.; Ahmad, S.

    1982-01-01

    Instrumental neutron activation analysis technique has been used to determine the concentration levels of 12 trace elements in human head hair samples collected from 105 individuals living in various areas of Rawalpindi-Islamabad. The data show that the average concentrations of Mn, Co, Ag and Au are higher in the female group as compared to the male group. Four individuals were found to have elevated levels of Se due to the use of anti-dandruff shampoos, whereas two individuals had elevated levels of Hg. (author)

  1. Determination of sixteen elements and arsenic species in brown, polished and milled rice.

    Science.gov (United States)

    Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu

    2014-01-01

    The concentrations of 16 elements in 10 rice flour samples and the distribution of the elements in the rice grains from which the flour were made were determined by ICP-MS and ICP-OES after microwave-assisted digestion of the samples. Arsenic speciation analysis was carried out by HPLC-ICP-MS following heat-assisted extraction of the sample. The concentrations of inorganic As (As(III) and As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) and their distribution in the rice grains were determined. Portions of the brown rice were polished/milled to different degrees to yield milled off samples and polished rice samples. All samples were powdered and analyzed for 16 elements and for As species. The recoveries and mass balances for all elements in all samples showed good agreements with the starting materials. As(III), As(V), MMAA and DMAA were detected, and the sums of the concentrations of all species in the extract were 86-105% of the total As concentration in each case.

  2. Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China.

    Science.gov (United States)

    Liu, Xiao-huan; Wai, Ka-ming; Wang, Yan; Zhou, Jie; Li, Peng-hui; Guo, Jia; Xu, Peng-ju; Wang, Wen-xing

    2012-07-01

    Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534m a.s.l.)-the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3gm(-3). Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Factors affecting neutron measurements and calculations. Part C. Trace element concentrations in granite and their impact on thermal neutron activation

    International Nuclear Information System (INIS)

    Ruehm, Werner; Huber, Thomas; Nolte, Eckehart; Kato, Kazuo; Imanaka, Tetsuji; Egbert, Stephen D.

    2005-01-01

    Trace elements such as Li, B, Sm, and Gd can, despite their low elemental concentration in mineral materials, influence thermal neutron activation in Hiroshima and Nagasaki samples, due to their high thermal neutron absorption cross sections. This was demonstrated for a granite core, where the addition of those trace elements to the elemental composition of granite reduces the production of 152 Eu by some 25% at a depth of 25 cm from the surface. If typical concentrations of those trace elements are added to DS02 reference soil, however, the production of 152 Eu one meter above ground is not changed significantly, because of the high water content of the soil. This indicates that DS02 soil represents a reasonable reference material for the air-over-ground transport calculations. It must be kept in mind, however, that the local environment of any sample investigated for thermal neutron activation might be characterized by other elemental compositions. In particular, trace element and hydrogen concentrations could be considerably different from those used for DS02 reference soil. As an example it was demonstrated that in a granite gravestone thermal neutron activation of 36 Cl close to the surface might be, in the worst case, reduced by some 30%, due to increased local granite concentration in this type of environment. Beside other parameters such as, for example, individual sample geometry, the variability of trace elements in soil might be one reason for the variability that is observed in the individual thermal neutron activation measurements (Gold 1995). It is necessary, therefore, to carefully model the exposure geometry of the exposed material, its chemical composition, and the surrounding interface materials in order to obtain the best possible agreement in comparisons between calculated and measured data for thermal neutrons. (author)

  4. The Rengen Grassland experiment: bryophytes biomass and element concentrations after 65 years of fertilizer application.

    Science.gov (United States)

    Hejcman, Michal; Száková, Jirina; Schellberg, Jürgen; Srek, Petr; Tlustos, Pavel; Balík, Jirí

    2010-07-01

    The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4). The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K(2)SO(4) treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m(-2)) followed by Ca (46 g m(-2)), CaNP (25 g m(-2)), CaNP-KCl (15 g m(-2)), CaNP-K(2)SO(4) (9 g m(-2)), and CaN (2 g m(-2)) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m(-2). Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.

  5. Determination of some micro and macro element concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Sarheel, A.; Al-Samel, N.; Khalifa, K.

    2004-01-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared with cultivated soils already planted by cotton and others which are considered Fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. On the other side, concentration of some elements was higher in soil cultivated by cotton compared with the fallow soil. The study has shown that a decrease in the concentration of some elements in the location of region is directed towards northeast. Result reveal a clear absorption phenomena of some elements by cotton when compared with fallow soil. It is important to consider the presented result as a first indicator which needs more studies to confirm its results in other region planted by cotton in Syria. (author)

  6. Determination of some micro and macro element's concentrations in cotton-cultivated and fallow soils in the rural area of Damascus using neutron activation analysis

    International Nuclear Information System (INIS)

    Khamis, I.; Khalifa, K.; Sarheel, A.; Al-Samel, N.

    2003-12-01

    This study was conducted in the rural area of Damascus in the region where cotton is frequently planted. The aim of the study is to determine the concentration of some trace elements and other important elements for soil such as (Fe, Ca, As, Ba, Co, Cr, Mn, Ni, Sr, V, Zn, Zr). In order to demonstrate the depletion of such elements by absorption in cotton, results are compared between cultivated soils already planted by cotton and others which is considered fallow soil. Results, for four regions under investigation, showed that concentration of most elements in fallow soil is higher than that cultivated by cotton. However, concentration of some elements were close in two different soil samples in each region. on the other side , concentration of some elements were higher in cultivated soil by cotton compared to the one fallow soil. The study has shown that a decrease in the concentration of some elements are noticeable as the location of region is directed towards north-east. Results reveal a clear absorption phenomena of some elements by cotton when compared to fallow soil. It is important to consider the presented results as a first indicator which needs more studies to confirm its results in other regions being planted by cotton in Syria. (author)

  7. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Gladney, E.S.

    1980-07-01

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  8. A measurement of the top quark mass with a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Adam Paul [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb-1 dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t$\\bar{t}$ and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb-1 dataset they extract a top quark mass of 172.0 ± 2.6(stat) ± 3.3(syst) GeV/c2 from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c2 for m $\\bar{t}$ = 178 GTeV/c2 and 3.1 GeV/c2 for m $\\bar{t}$ = 172.5 GeV/c2. The systematic error is dominated by the uncertainty of the jet energy scale.

  9. Quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry

    International Nuclear Information System (INIS)

    Ure, A.M.; Bacon, J.R.

    1978-01-01

    Experimental details are given of the quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry. The effects of interfering species, and corrections that can be applied, are discussed. (U.K.)

  10. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Steinhof, A.

    1989-05-01

    Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de

  11. Dual reciprocity boundary element analysis for the laminar forced heat convection problem in concentric annulus

    International Nuclear Information System (INIS)

    Choi, Chang Yong

    1999-01-01

    This paper presents a study of the Dual Reciprocity Boundary Element Method (DRBEM) for the laminar heat convection problem in a concentric annulus with constant heat flux boundary condition. DRBEM is one of the most successful technique used to transform the domain integrals arising from the nonhomogeneous term of the poisson equation into equivalent boundary only integrals. This recently developed and highly efficient numerical method is tested for the solution accuracy of the fluid flow and heat transfer study in a concentric annulus. Since their exact solutions are available, DRBEM solutions are verified with different number of boundary element discretization and internal points. The results obtained in this study are discussed with the relative error percentage of velocity and temperature solutions, and potential applicability of the method for the more complicated heat convection problems with arbitrary duct geometries

  12. Characterization of flux-grown Trace-element-doped titanite using the high-mass-resolution ion microprobe (SHRIMP-RG)

    Science.gov (United States)

    Mazdab, F.K.

    2009-01-01

    Crystals of titanite can be readily grown under ambient pressure from a mixture of CaO, TiO2 and SiO2 in the presence of molten sodium tetraborate. The crystals produced are euhedral and prismatic, lustrous and transparent, and up to 5 mm in length. Titanite obtained by this method contains approximately 4300 ppm Na and 220 ppm B contributed from the flux. In addition to dopant-free material, titanite containing trace alkali and alkaline earth metals (K, Sr, Ba), transition metals (Sc, Cr, Ni, Y, Zr, Nb, Hf and Ta), rare-earth elements (REE), actinides (Th, U) and p-block elements (F, S, Cl, Ge, Sn and Pb) have been prepared using the same procedure. Back-scattered electron (BSE) imaging accompanied by ion-microprobe (SHRIMP-RG) analysis confirms significant incorporation of selected trace-elements at structural sites. Regardless of some zonation, the large size of the crystals and broad regions of chemical homogeneity make these crystals useful as experimental starting material, and as matrix-matched trace-element standards for a variety of microbeam analytical techniques where amorphous titanite glass, heterogeneous natural titanite or a non-titanite standard may be less than satisfactory. Trace-element-doped synthetic crystals can also provide a convenient proxy for a better understanding of trace-element incorporation in natural titanite. Comparisons with igneous, authigenic and high-temperature metasomatic titanite are examined. The use of high-mass-resolution SIMS also demonstrates the analytical challenges inherent to any in situ mass-spectrometry-based analysis of titanite, owing to the production of difficult-to-resolve molecular interferences. These interferences are dominated by Ca-Ca, Ca-Ti and Ti-Ti dimers that are significant in the mass range of 80-100, affecting all isotopes of Sr and Zr, as well as 89Y and 93Nb. Methods do exist for the evaluation of interferences by these dimers and of polyatomic interferences on the LREE.

  13. The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans.

    Science.gov (United States)

    Kuriyan, Rebecca; Lokesh, Deepa P; Selvam, Sumithra; Jayakumar, J; Philip, Mamatha G; Shreeram, Sathyavageeswaran; Kurpad, Anura V

    2016-08-01

    The maintenance of muscle mass and muscle strength is important for reducing the risk of chronic diseases. The age- related loss of muscle mass and strength is associated with adverse outcomes of physical disability, frailty and death. β-Hydroxy β-Methyl Butyrate (HMB), a metabolite of leucine, has beneficial effects on muscle mass and strength under various catabolic conditions. The objectives of the present study were to determine if age- related differences existed in endogenous plasma HMB levels, and to assess if HMB levels correlated to total appendicular lean mass and forearm grip strength. Anthropometry, dietary and physical activity assessment, and the estimation of fasting plasma HMB concentrations and handgrip strength were performed on the 305 subjects (children, young adults and older adults). Lean mass, which serves as a surrogate for muscle mass was measured using dual energy X-ray absorptiometry (DEXA). Mean plasma HMB concentrations were significantly lower with increasing age groups, with children having highest mean HMB concentration (pHMB concentrations. A significant positive correlation between HMB concentrations and appendicular lean mass normalized for body weight (%), appendicular lean mass (r=0.37; pHMB concentrations in young adults (r=0.58; pHMB concentrations in humans and the HMB concentrations were positively correlated with appendicular lean mass and hand grip strength in young adults and older adults group. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The Effects of Musical Elements in Mass Media and Internet on the Social Development of Children and Adolescents

    Science.gov (United States)

    Celasin, Cenk

    2013-01-01

    In this qualitative study, musical elements in mass media and internet mostly intended to children and adolescents, were examined in the context of the dimensions of the social development of them in a general approach, through scientific literature and written, audio, visual and audio-visual documents regarding mass media and internet. Purpose of…

  15. Cognitive impairment related changes in the elemental concentration in the brain of old rat

    International Nuclear Information System (INIS)

    Serpa, R.F.B.; Jesus, E.F.O. de; Anjos, M.J.; Lopes, R.T.; Carmo, M.G.T. do; Rocha, M.S.; Rodrigues, L.C.; Moreira, S.; Martinez, A.M.B.

    2006-01-01

    In order to evaluate the elemental concentration as a function of learning and memory deficiency, six different structures of the brain were analyzed by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). To evaluate the cognitive processes, the animals were tested in an adaptation of the Morris water maze. After the test, the animals were divided into two groups: cognitively healthy (control group) and cognitively impaired. The measurements were carried out at XRF beam line at Light Synchrotron Brazilian laboratory, Campinas, Brazil. The following elements were identified: Al, P, S, Cl, K, Ca, Ti, Cr, Fe, Cu, Zn, Br and Rb. K concentration was higher in all regions of the brain studied for control group than the cognitively impaired group. Moreover, the control group presented higher levels for P and Fe in the entorhinal cortex, in the temporal cortex (only P), in the hypothalamus and in the thalamus, than the cognitively impaired group. Br concentration in the animals which presented cognitive impairment was three times larger in the hypothalamus and thalamus, twice larger in temporal cortex and higher in visual cortex than the cognitively healthy group. Cu was more remarkable in the hippocampus and hypothalamus from the animals with cognitive impairment than the control group. We observed that the cognitively impaired group presented highest concentrations of Br and Cu in certain areas than the control group, on the other hand, this group presented highest levels of K for all brain areas studied

  16. Cognitive impairment related changes in the elemental concentration in the brain of old rat

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, R.F.B. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil)]. E-mail: renata@lin.ufrj.br; Jesus, E.F.O. de [University of Rio de Janeiro State, Physics Institute, RJ (Brazil); Anjos, M.J. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil); University of Rio de Janeiro State, Physics Institute, RJ (Brazil); Lopes, R.T. [Federal University of Rio de Janeiro/COPPE, Nuclear Instrumentation Laboratory, P.O. Box: 68509, Zip Code: 21941-972, Rio de Janeiro (Brazil); Carmo, M.G.T. do [Federal University of Rio de Janeiro, Nutrition Institute, RJ (Brazil); Rocha, M.S. [Federal University of Rio de Janeiro, Department of Basics and Clinic Pharmacy, RJ (Brazil); Rodrigues, L.C. [Federal University of Rio de Janeiro, Department of Basics and Clinic Pharmacy, RJ (Brazil); Moreira, S. [University of Campinas State, Civil Engineering Department, SP (Brazil); Martinez, A.M.B. [Federal University of Rio de Janeiro, Department of Histology and Embryology, RJ (Brazil)

    2006-11-15

    In order to evaluate the elemental concentration as a function of learning and memory deficiency, six different structures of the brain were analyzed by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). To evaluate the cognitive processes, the animals were tested in an adaptation of the Morris water maze. After the test, the animals were divided into two groups: cognitively healthy (control group) and cognitively impaired. The measurements were carried out at XRF beam line at Light Synchrotron Brazilian laboratory, Campinas, Brazil. The following elements were identified: Al, P, S, Cl, K, Ca, Ti, Cr, Fe, Cu, Zn, Br and Rb. K concentration was higher in all regions of the brain studied for control group than the cognitively impaired group. Moreover, the control group presented higher levels for P and Fe in the entorhinal cortex, in the temporal cortex (only P), in the hypothalamus and in the thalamus, than the cognitively impaired group. Br concentration in the animals which presented cognitive impairment was three times larger in the hypothalamus and thalamus, twice larger in temporal cortex and higher in visual cortex than the cognitively healthy group. Cu was more remarkable in the hippocampus and hypothalamus from the animals with cognitive impairment than the control group. We observed that the cognitively impaired group presented highest concentrations of Br and Cu in certain areas than the control group, on the other hand, this group presented highest levels of K for all brain areas studied.

  17. HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance.

    Science.gov (United States)

    Wakeford, Hannah R; Sing, David K; Kataria, Tiffany; Deming, Drake; Nikolov, Nikolay; Lopez, Eric D; Tremblin, Pascal; Amundsen, David S; Lewis, Nikole K; Mandell, Avi M; Fortney, Jonathan J; Knutson, Heather; Benneke, Björn; Evans, Thomas M

    2017-05-12

    A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System and has served as a cornerstone of planet-formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 micrometers, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H 2 O absorption bands with a maximum base-to-peak amplitude of 525 parts per million in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26b's atmospheric heavy element content ([Formula: see text] times solar). This likely indicates that HAT-P-26b's atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals. Copyright © 2017, American Association for the Advancement of Science.

  18. Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

    CERN Document Server

    Abazov, Victor Mukhamedovich

    2016-08-18

    We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

  19. Elemental Constituents of Particulate Matter and Newborn's Size in Eight European Cohorts

    DEFF Research Database (Denmark)

    Pedersen, Marie; Gehring, Ulrike; Beelen, Rob

    2016-01-01

    cohorts comprising 34,923 singleton births in 1994-2008. Annual average concentrations of elemental constituents of PM smaller than 2.5 and 10 µm (PM2.5 and PM10) at maternal home addresses during pregnancy were estimated using land-use regression models. Adjusted associations between each birth...... measurement and concentrations of eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc) were calculated using random-effects regression on pooled data. RESULTS: A 200 ng/m(3) increase in sulfur in PM2.5 was associated with an increased risk of LBW (adjusted odds ratio, 1.36, 95......% confidence interval: 1.17, 1.58). Increased nickel and zinc in PM2.5 concentrations were also associated with an increased risk of LBW. Head circumference was reduced at higher exposure to all elements except potassium. All associations with sulfur were most robust to adjustment for PM2.5 mass concentration...

  20. Study of quantitative analysis of rare earth elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in soil samples by inductively couple plasma mass spectrometry

    International Nuclear Information System (INIS)

    Truong Duc Toan; Nguyen Giang; Vo Tran Quang Thai; Do Tam Nhan; Nguyen Le Anh; Nguyen Viet Duc; Luong Thi Tham; Truong Thi Phuong Mai

    2015-01-01

    Method for the determination of 16 rare earth elements (REEs) in soil samples without separating by inductively coupled plasma mass spectrometry (ICP-MS) has been studied at Dalat Nuclear Research Institute. The optimal conditions for ICP-MS NexION 300X with three modes: Standard, Collision (KED), and Reaction (DRC) have been studied on the Montana II soil reference material. The result analysis shows that: DRC mode only gives good analysis result for Sc, Y, La, Ce, Pr, Nd, Tm, Yb, and Lu; Standard mode exhibits good analysis results for all elements with error from 1.2 - 29.0% and KED mode is the best one with error less than 15%. The concentrations of elements in the soil samples of Cau Dat, Bao Loc, and Da Lat were determined, which concentrations of REEs in soil samples of Cau Dat are higher than that of the other areas in Lam Dong Province. (author)

  1. Extractable trace elements and sodium in Illinois coal-cleaning wastes: correlation with concentrations in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.G.

    1983-07-01

    Trace element concentrations in shoots of tall fescue (Festuca arundinacea Schreb.) were correlated with extractable element concentrations in five southern Illinois coal-cleaning wastes limed to pH 6.5, in a greenhouse study to determine applicability of soil tests to coal-waste evaluation. There was little or no correlation between shoot concentrations of Fe, and Fe extracted from the wastes by dilute acid (r equals 0.60), DTPA at pH 6.4 (r equals 0.47) or DTPA at pH 8.4 (r equals -0.17). The corresponding r values for Mn were 0.94, 0.97, and 0.96; for Zn, 0.96, 0.96, and 0.88; and for Cu, 0.67, 0.90, and 0.88, respectively. Shoot B correlated well with hot water-soluble B(r equals 0.96) and acid-soluble B(r equals 0.91). Correlations for shoot Na were also good with water-soluble Na and acid-soluble Na (r equals 0.96 in both cases). Concentrations of Al, As, Cd, Ni, Pb, and Se in the shoots were well below reported upper critical levels, and similar to concentrations in the grass grown on a silt loam under the same greenhouse conditions. 21 references.

  2. Selected Trace Element Concentrations in Peat Used for Cosmetic Production – A Case Study from Southern Poland

    Directory of Open Access Journals (Sweden)

    Glina Bartłomiej

    2016-12-01

    Full Text Available The aim of the study was to assess the concentration of selected trace elements in organic soils used as a source to obtain a unique peat extract for cosmetics production. Peat material for laboratory analysis were collected from fen peatland located in the Prosna River Valley (Borek village. Studied peatland is managed by “Torf Corporation” company as a source of material to obtain peat extract for cosmetics production. In the collected soil samples (four soil profiles Zn, Cu and Pb concentrations were determined by using atomic absorption spectrometer SpectraAA 220 (Varian, after acid digestion. Obtained results showed that the highest concentrations of selected trace elements were recorded in the surface horizons of organic soils. This fact might be the results of Prosna river flooding or air deposition. Howevere, according to the new Polish regulations (Ordinance of the Minister for Environment 01.09.2016 - the way of conducting contamination assessment of the earth surface, the content of trace elements in the examined soils was greatly belowe the permissible limit for areas from group IV (mine lands. Thus, described soils are proper to obtain peat extract used as a component in cosmetic production.

  3. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS – diurnal variations and PMF receptor modelling

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-04-01

    Full Text Available Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb were obtained by time (1 h and size (PM2.5 particulate matter 2.5 mass fraction simultaneously measured at the UB and RS sites: (1 the regional aerosol sources impact both monitoring sites at similar concentrations regardless their different ventilation conditions; (2 by contrast, local industrial aerosol plumes associated with shipping oil combustion and smelters activities have a higher impact on the more ventilated UB site; (3 a unique source of Pb-Cl (associated with combustion emissions is found to be the major (82% source of fine Cl in the urban agglomerate; (4 the mean diurnal variation of PM2.5 primary traffic non-exhaust brake dust (Fe-Cu suggests that this source is mainly emitted and not resuspended, whereas PM2.5 urban dust (Ca is found mainly resuspended by both traffic vortex and sea breeze; (5 urban dust (Ca is found the aerosol source most affected by land wetness, reduced by a factor of eight during rainy days and suggesting that wet roads may be a solution for reducing urban dust concentrations.

  4. Effects of depuration on the element concentration in bivalves: Comparison between sympatric Ruditapes decussatus and Ruditapes philippinarum

    Science.gov (United States)

    Freitas, R.; Ramos Pinto, L.; Sampaio, M.; Costa, A.; Silva, M.; Rodrigues, A. M.; Quintino, V.; Figueira, E.

    2012-09-01

    Organisms living in coastal ecosystems are frequently subjected to anthropogenic pressures such as metals. Metals, especially those not required for metabolic activity (e.g. mercury, lead and cadmium) can be toxic even at quite low concentrations not only to organisms that accumulate them, but also to their consumers. Throughout the world, Ruditapes decussatus and Ruditapes philippinarum have been successfully commercialised for human consumption and for monitoring environmental conditions such as contamination. These two clam species share similar habitats and requirements, successfully competing both in the natural environment and in aquaculture farms. Because differences in metal accumulation may exist between R. decussatus and R. philippinarum, different risks to public health may overcome as well as distinct ecological implications. The effect of depuration on the metal burden and biochemical status of both clams species may also diverge and since the information available is subjective and scarce, the aims of the present study were to: 1) assess the total metal accumulation and intracellular partitioning, at natural conditions, in the two clam species collected at the same site; 2) evaluate the effect of depuration as a mean of reducing the levels of distinct elements, assessing also the effect of depuration time (2 and 7 days); 3) investigate the efficiency of depuration by biochemical status of the two bivalve species, evaluating changes in lipid peroxidation and activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and of glutathione S-transferase (GST). Metal chelation by metallothioneins (MTs) was also determined. The results obtained showed that concentration of elements in clams was low, presenting very similar concentration levels for all elements. The present work further demonstrated that the total element concentration decreased in the shorter depuration period (2 days) and that R. decussatus and R. philippinarum partitioned

  5. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  6. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1964-12-01

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied

  7. Validity of M-3Y force equivalent G-matrix elements for calculations of the nuclear structure in heavy mass region

    International Nuclear Information System (INIS)

    Cheng Lan; Huang Weizhi; Zhou Baosen

    1996-01-01

    Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region

  8. Determination of the distribution of uranium and the transuranic elements in the environment by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Chastagner, P.

    1987-01-01

    Protection of the world population from releases of uranium, plutonium, and other transuranic materials requires, among other things, a knowledge of the sources, transport, and distribution of these elements in the environment. Both isotopic and quantitative analytical data are required in the determination of these factors. Also, the analyses must be precise and accurate enough to distinguish newly released material from older material such as the worldwide deposits from atmospheric weapons testing. For this reason, uranium, neptunium, and plutonium and other transuranic elements in the environment are routinely determined by high-sensitivity thermal ionization mass spectrometric techniques. With current instrumentation and techniques, routine isotope dilution and isotopic analyses are made with purified elemental samples as small as 2 x 10 -14 g. The detection limit for uranium and most of the transuranic isotopes is ∼ 5 x 10 18 g (∼ 13,000 atoms), which is at least an order of magnitude better than the detection limits of the radiometric counting techniques normally employed. The mass spectral sensitivities are equal for all of the isotopes of a given element but vary from element to element. Thus, each elemental sample must be highly purified. Separation techniques recover ∼ 80% of the uranium and the transuranic material from soils and other materials. Interelement separation factors > 10 5 are achieved with advanced ion exchange methods. Results of recent application of these techniques at the Savannah River Lab. and other laboratories are include

  9. Mortandad Canyon: Elemental concentrations in vegetation, streambank soils, and stream sediments - 1979

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Gladney, E.S.

    1997-06-01

    In 1979, stream sediments, streambank soils, and streambank vegetation were sampled at 100 m intervals downstream of the outfall of the TA-50 radioactive liquid waste treatment facility in Mortandad Canyon. Sampling was discontinued at a distance of 3260 m at the location of the sediment traps in the canyon. The purpose of the sampling was to investigate the effect of the residual contaminants in the waste treatment facility effluent on elemental concentrations in various environmental media

  10. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    Science.gov (United States)

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations.

  11. Assessment of trace element concentration distribution in human placenta by wavelength dispersive X-ray fluorescence: Effect of neonate weight and maternal age

    International Nuclear Information System (INIS)

    Ozdemir, Yueksel; Boerekci, Buenyamin; Levet, Aytac; Kurudirek, Murat

    2009-01-01

    Trace element status in human placenta is dependent on maternal-neonatal characteristics. This work was undertaken to investigate the correlation between essential trace element concentrations in the placenta and maternal-neonatal characteristics. Placenta samples were collected from total 61 healthy mothers at gestation between 37 and 41 weeks. These samples were investigated with the restriction that the mother's age was 20-40 years old and the neonate's weight was 1-4 kg. Percent concentrations of trace elements were determined using wavelength dispersive X-ray fluorescence (WDXRF). The placenta samples were prepared and analyzed without exposure to any chemical treatment. Concentrations of Fe, Cu and Zn in placenta tissues were found statistically to vary corresponding to the age of the mother and weight of the neonate. In the subjects, the concentration of Fe and Cu were increased in heavier neonates (p<0.05) and the concentration of Zn was increased with increasing mother age (p<0.05). Consequently, the Fe, Cu and Zn elements appear to have interactive connections in human placenta.

  12. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE

    International Nuclear Information System (INIS)

    Calva-Vazquez, G.; Razo-Angel, G.; Rodriguez-Fernandez, L.; Ruvalcaba-Sil, J.L.

    2006-01-01

    The concentration of elements with Z > 18 is measured in tree rings from forests at the surroundings of the Mexico Valley: El Chico National Park (ECP) and Desierto de los Leones National Park (DLP). The analysis was done by simultaneous PIXE-RBS using an external proton beam on tree rings of Pine and Sacred fir (species Pinus montezumae and Abies religiosa, respectively). This study provides information about the elemental concentration in trees of those parks during the years from 1965 to 2003. Typical elements such as K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb were detected using PIXE technique while the wood matrix composition (mainly C and O) was determined by RBS. In general, elemental contents present large variations but concentrations oscillate around the mean value during this period of time. Nevertheless, the measurements showed some trends for Fe and Zn in the tree-rings elemental composition that may be correlated to recent volcanic activities in the region. The low Mn contents indicate soil acidification in DLP from 1968 and the forest decline in ECP during the last 15 years

  13. Microwave dissolution of plant tissue and the subsequent determination of trace lanthanide and actinide elements by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Alvarado, J.S.; Neal, T.J.; Smith, L.L.; Erickson, M.D.

    1997-01-01

    Recently there has been much concern with the ability of plants to uptake heavy metals from their surroundings. With the development of instrumental techniques with low detection limits such as inductively coupled plasma-mass spectrometry (ICP-MS), attention is shifting toward achieving faster and more elegant ways of oxidizing the organic material inherent in environmental samples. Closed-vessel microwave dissolution was compared with conventional methods for the determination of concentrations of cerium, samarium, europium, terbium, uranium and thorium in a series of samples from the National Institute of Standards and Technology and from fields in Idaho. The ICP-MS technique exhibited detection limits in parts-per-trillion and linear calibration plots over three orders of magnitude for the elements under study. The results obtained by using nitric acid and hydrogen peroxide in a microwave digestion system for the analysis of reference materials showed close agreement with the accepted values. These values were compared with results obtained from dry- and wet-ashing procedures. The findings from an experiment comparing radiometric techniques for the determination of actinide elements to ICP-MS are reported

  14. Assessment of metal and trace element concentrations in the Cananeia estuary, Brazil, by neutron activation and atomic absorption techniques

    International Nuclear Information System (INIS)

    Amorim, E.P.; Favaro, D.I.T.; Berbel, G.B.B.; Braga, E.S.

    2008-01-01

    Twenty six bottom sediment samples were collected from the Cananeia estuary in summer and winter of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis. Total mercury was determined by cold vapor atomic absorption. As, Cr, Hg and Zn concentrations were compared to the Canadian oriented values (TEL and PEL). Sample points 4 and 9 presented higher concentration for most elements and As and Cr exceeded the TEL values. Organic matter (>10%) associated with siltic and clay sediments was observed. Climatic conditions, hydrodynamic and biogeochemical processes promote differences in seasonal concentrations of elements at some points, which contribute to special distributions. (author)

  15. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    International Nuclear Information System (INIS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-01-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO) 6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data. - Highlights: ► APs were directly introduced into ICP-MS and real-time analysis was performed. ► The real-time data were calibrated by a multi-element standard solution from USN. ► During real

  16. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the multi-element analysis of polymers

    International Nuclear Information System (INIS)

    Resano, M.; Garcia-Ruiz, E.; Vanhaecke, F.

    2005-01-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g -1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g -1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g -1 level to tens of thousands of μg g -1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g -1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g -1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due to the

  17. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    Science.gov (United States)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  18. Effect of long-term intake of lanthanum chloride on the concentrations of some macro- and trace elements in rat brains using NAA

    International Nuclear Information System (INIS)

    Yu Tong; Li Yaming; Ren Yan; Wang Enbo; Xu Hongying; Wang Wenzhong

    2005-01-01

    Effects of long-term intake of lanthanum in drinking water on the concentrations of twelve kinds of macro- and trace elements in rat brains were primarily studied by neutron activation analysis. The results show that, along with the elevation of the dose of lanthanum, more and more elements were affected in the rat brain tissues. Compared with control group, the concentrations of five elements were changed in the 1000 mg/L group. These elements have close relations with brain function. Accordingly, intake of lanthanum may have negative effects on brain function. (authors)

  19. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds.

    Science.gov (United States)

    Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  20. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  1. Elemental analysis of Scottish populations of the ectoparasitic copepod Lepeophtheirus salmonis

    NARCIS (Netherlands)

    Shinn, A.P.; Bron, J.E.; Gray, D.J.; Sommerville, C.

    2000-01-01

    Conventional nebulisation ICPMS (Inductively Coupled Plasma Mass Spectrometry), was used to determine the concentration of a broad range of elements in the salmon louse Lepeophtheirus salmonis. Lice samples were collected from Atlantic salmon in seven localities (4 fish farms and 3 wild salmon

  2. Concentration and distributions of the natural radioactives elements in tropical and semi-arid soils, Fazenda Bela Vista-Bahia

    International Nuclear Information System (INIS)

    Azevedo, A.M.R. de.

    1975-01-01

    U, th and K concentrations were determinated on 239 samples collected from a grid of 3 km 3 in a part of the Bela Vista Farm, Jaguarari County, Bahia. The samples are mainly surface soils and rocks, but includes a few ones from trenches as well. This area consist of metamorphic rocks of granulitic facies, pait of the precambrian migmatitic complex of Bahia, with banded gneisses, pyroxenites and amphibolites. Since the area studied is closer to a cupriferous district, in addition to the radioactive elements determined by gamma-ray spectrometry, the samples were also analysed for copper and nickel content by flame atomic absorption in order to abtain complementary geochemical information. Correlation between elements as well as with local geology studied and its was found that: a) except for uranium, the isoconcentration for all elements were aproximately parallel to the geological structure and geophysical anomaly. b) potassium showed an irregular distribution. c) uranium concentration were in general very low. d) The U/Th ratios were very high. Indicating a probable low geochemical evolution. e) The concentration found for C, Ni and Th were closer to average concentrations of intermediate igneous rocks than those of basic and ultra basic rocks. (C.D.G.) [pt

  3. Trace element concentrations in wild mussels from the coastal area of the southeastern Adriatic, Montenegro

    Directory of Open Access Journals (Sweden)

    Markovic Jelena

    2012-01-01

    Full Text Available The aim of the present investigation was to quantify the levels of trace elements (Zn, Cu, As, Pb, Cd and total Hg in the Mediterranean mussel, Mytilus galloprovincialis (L.. Based on their levels, the quality of Montenegro seawater for future mussel farming was estimated. The mussel M. galloprovincialis (L. was collected from four sites in the Montenegrin costal area in the period of two years to determine trace element concentrations and to classify the quality of the coastal water and possible health risks from its consumption. The mean metal concentrations in the mussels ranged from 133.5-205.9 for Zn, 7.50-14.5 for Cu, 4.42-13.3 for As, 4.70-12.9 for Pb, 1.73-2.41 for Cd and 0.07-0.59 for total Hg in mg/kg dry weight. The levels of toxic metals (except for Pb in the mussels were within the maximum residual levels prescribed by the laws of Montenegro, the EU and the USFDA. In addition, the trace metal concentrations found in the mussels in this study were similar to regional data using this mussel as a biomonitoring agent of seawater quality.

  4. Microwave assisted digestion of atmospheric aerosol samples followed by inductively coupled plasma mass spectrometry determination of trace elements

    Energy Technology Data Exchange (ETDEWEB)

    Swami, K.; Judd, C.D.; Orsini, J.; Yang, K.X. [New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Labs. and Research; Husain, L. [New York State Dept. of Health, Albany, NY (United States). Wadsworth Center for Labs. and Research; Dept. of Environmental Health and Toxicology, State Univ. of New York, Albany (United States)

    2001-01-01

    A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO{sub 3}/H{sub 2}O{sub 2}gave good recoveries (90%-108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO {sub 3}/H {sub 2}O {sub 2}/HF/H {sub 3}BO {sub 3} yielded higher recoveries (82%-103%) for the lighter elements (V - Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90-1.00 and R {sup 2} values of 0.96-1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R {sup 2} values of 0.83 and 0.82, respectively. Addition of HF/H {sub 3}BO {sub 3} did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO {sub 2} oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the

  5. Determination of the concentration profile of chemical elements in superheater pipes

    International Nuclear Information System (INIS)

    Aldape U, F.; Aspiazu F, J.

    1986-05-01

    This work has for object to determine the profile of concentration of chemical elements at trace level in a superheater pipe of Thermoelectric Plants using the X-ray emission spectroscopy technique induced by protons coming from the Accelerator of the Nuclear Center. In the X-ray detection, a Si Li detector was used. The technique was chosen because it allows a multielemental analysis, of high sensitivity and precision. The results can help to understand the problems that are had in the change of flexibility or of corrosion. This will be from utility to the Federal Electricity Commission (CFE). (Author)

  6. Mass spectrometry of long-lived radionuclides

    International Nuclear Information System (INIS)

    Becker, Johanna Sabine.

    2003-01-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated--therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129 Xe + for the determination of 129 I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  7. Certification of Trace Element Mass Fractions in IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories in Monaco (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA and its Environment Laboratories. Given that marine pollution assessments of such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments, the NAEL has assisted national laboratories and regional laboratory networks through its Reference Products for Environment and Trade programme since the early 1970s. Quality assurance (QA), quality control (QC) and associated good laboratory practice are essential components of all marine environmental monitoring studies. QC procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess reliability and comparability of measurement data. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparisons, which compare and evaluate analytical performance and measurement capabilities of participating laboratories. Data that are not based on adequate QA/QC can be erroneous and their misuse can lead to incorrect environmental management decisions. A marine sediment sample with certified mass fractions for Ag, Al, As, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sn, Sr, V and Zn was recently produced by the NAEL in the frame of a project between the IAEA and the Korea Institute of Ocean Science and Technology. This report describes the sample preparation methodology, the material homogeneity and stability study, the selection of laboratories, the evaluation of results from the certification campaign and the assignment of property values and their associated uncertainty. As a result, reference values for mass fractions and associated expanded

  8. A new XRF probe for in-situ determining concentration of multi-elements in ocean sediments

    International Nuclear Information System (INIS)

    Ge Liangquan; Lai Wanchang; Zhou Sichun; Lin Ling; Lin Yanchang; Ren Jiafu

    2001-01-01

    The author introduces a new X-ray fluorescence probe for in-situ determining the concentration of multi-elements in ocean sediments. The probe consists of Si-Pin X-ray detector with an electro-thermal colder, two isotope sources, essential electrical signal processing units and a notebook computer. More than 10 elements can be simultaneously determined at a detection limit of (10-200) x 10 -6 and precision of 5%-30% without liquid Nitrogen supply. tests show that the probe can perform the analytical tasks under the water at the depth of less than 1000 meters

  9. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Meirong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Oropeza, Dayana [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Chirinos, José [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041a (Venezuela, Bolivarian Republic of); González, Jhanis J. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Lu, Jidong [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Mao, Xianglei [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: RERusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-07-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal.

  10. Elemental analysis of coal by tandem laser induced breakdown spectroscopy and laser ablation inductively coupled plasma time of flight mass spectrometry

    International Nuclear Information System (INIS)

    Dong, Meirong; Oropeza, Dayana; Chirinos, José; González, Jhanis J.; Lu, Jidong; Mao, Xianglei; Russo, Richard E.

    2015-01-01

    The capabilities and analytical benefits of combined LIBS and LA-ICP-MS were evaluated for the analysis of coal samples. The ablation system consisted of a Nd:YAG laser operated 213 nm. A Czerny-turner spectrograph with ICCD detector and time-of-flight based mass spectrometer were utilized for LIBS and ICP-MS detection, respectively. This tandem approach allows simultaneous determination of major and minor elements (C, Si, Ca, Al, Mg), and trace elements (V, Ba, Pb, U, etc.) in the coal samples. The research focused on calibration strategies, specifically the use of univariate and multivariate data analysis on analytical performance. Partial least square regression (PLSR) was shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The correlation between measurements from these two techniques demonstrated that mass spectral data combined with LIBS emission measurements by PLSR improved the accuracy and precision for quantitative analysis of trace elements in coal. - Highlights: • Tandem LIBS LA-ICP-MS • Simultaneous determination of major and minor elements and trace elements in the coal samples. • Extended Dynamic Range • Correlation between LIBS with LA-ICP-MS demonstrated improved the accuracy and precision for quantitative analysis of coal

  11. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, Anna L., E-mail: alhargreaves@gmail.com [Calgary Zoo, Centre for Conservation Research, 1300 Zoo Rd NE, Calgary, AB, T2E 7V6 (Canada); Whiteside, Douglas P. [Calgary Zoo, Animal Health Centre, 1300 Zoo Rd NE, Calgary, AB, T2E 7V6 (Canada); University of Calgary, Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, 2500 University Dr. NW, Calgary, AB, T2N 1N4 (Canada); Gilchrist, Grant [Carleton University, National Wildlife Research Centre, Ottawa, ON, KIA OH3 (Canada)

    2011-09-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  12. Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds

    International Nuclear Information System (INIS)

    Hargreaves, Anna L.; Whiteside, Douglas P.; Gilchrist, Grant

    2011-01-01

    Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and is also an increasing concern in the Arctic. We assessed potential contaminants (As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn) at a shorebird breeding site in Nunavut, Canada. We compared element levels in soil, invertebrates and shorebird blood to assess evidence for bioconcentration and biomagnification within the Arctic-based food chain. We tested whether elements in blood, feathers and eggs of six shorebird species (Pluvialis squatarola, Calidris alpina, C. fuscicollis, Phalaropus fulicarius, Charadrius semipalmatus, and Arenaria interpres) were related to fitness endpoints: adult body condition, blood-parasite load, egg size, eggshell thickness, nest duration, and hatching success. To facilitate comparison to other sites, we summarise the published data on toxic metals in shorebird blood and egg contents. Element concentrations and invertebrate composition differed strongly among habitats, and habitat use and element concentrations differed among shorebird species. Hg, Se, Cd, Cu, and Zn bioconcentrated from soil to invertebrates, and Hg, Se and Fe biomagnified from invertebrates to shorebird blood. As, Ni, Pb, Co and Mn showed significant biodilution from soil to invertebrates to shorebirds. Soil element levels were within Canadian guidelines, and invertebrate Hg levels were below dietary levels suggested for the protection of wildlife. However, maximum Hg in blood and eggs approached levels associated with toxicological effects and Hg-pollution in other bird species. Parental blood-Hg was negatively related to egg volume, although the relationship varied among species. No other elements approached established toxicological thresholds. In conclusion, whereas we found little evidence that exposure to elements at this site is leading to the declines of the species studied, Hg, as found elsewhere in the Canadian Arctic, is of potential

  13. Concentration and distribution of elements in plants and soils near phosphate processing factories, Pocatello, Idaho

    International Nuclear Information System (INIS)

    Severson, R.C.; Gough, L.P.

    1976-01-01

    The processing of phosphatic shale near Pocatello, Idaho has a direct influence on the element content of local vegetation and soil. Samples of big sagebrush (Artemisia tridentata Nutt. subsp. tridentata) and cheatgrass (Bromus tectorum L.) show important negative relations between the concentration of certain elements (Cd, Cr, F, Ni, P, Se, U, V, and Zn) and distance from phosphate processing factories. Plant tissues within 3 km of the processing factories contain unusually high amounts of these elements except Ni and Se. Important negative relations with distance were also found for certain elements (Be, F, Fe, K, Li, Pb, Rb, Th, and Zn) in A-horizon soil. Amounts of seven elements (Be, F, Li, Pb, Rb, Th, and Zn) being contributed to the upper 5 cm of the soil by phosphate processing, as well as two additional elements (U and V) suspected as being contributed to soil, were estimated, with F showing the greatest increase (about 300 kg/ha) added to soils as far as 4 km downwind from the factories. The greatest number of important relations for both plants and soils was found downwind (northeast) of the processing factories

  14. Direct gas injection method: A simple modification to an elemental analyzer/isotope ratio mass spectrometer for stable isotope analysis of N and C from N2O and CO2 gases in nanomolar concentrations

    Science.gov (United States)

    A simple modification to the Elemental Analyzer coupled to Isotope Ratio Mass-Spectrometer (EA-IRMS) setup is described. This modification allows the users to measure nitrous oxide (N2O) and carbon dioxide (CO2) by injecting the gases directly into an online injector placed befor...

  15. Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Farmer, D. K.; Rizzo, L. V.; Pauliqueivis, T.; Kuwata, Mikinori; Karl, Thomas G.; Guenther, Alex B.; Allan, James D.; Coe, H.; Andreae, M. O.; Poeschl, U.; Jiminez, J. L.; Artaxo, Paulo; Martin, Scot T.

    2015-01-01

    Real-time mass spectra of non-refractory component of submicron aerosol particles were recorded in a tropical rainforest in the central Amazon basin during the wet season of 2008, as a part of the Amazonian Aerosol Characterization Experiment (AMAZE-08). Organic components accounted on average for more than 80% of the non-refractory submicron particle mass concentrations during the period of measurements. Ammonium was present in sufficient quantities to halfway neutralize sulfate. In this acidic, isoprene-dominated, low-NOx environment the high-resolution mass spectra as well as mass closures with ion chromatography measurements did not provide evidence for significant contributions of organosulfate species, at least at concentrations above uncertainty levels. Positive-matrix factorization of the time series of particle mass spectra identified four statistical factors to account for the variance of the signal intensities of the organic constituents: a factor HOA having a hydrocarbon-like signature and identified as regional emissions of primary organic material, a factor OOA-1 associated with fresh production of secondary organic material by a mechanism of BVOC oxidation followed by gas-to-particle conversion, a factor OOA-2 consistent with reactive uptake of isoprene oxidation products, especially epoxydiols by acidic particles, and a factor OOA-3 associated with long range transport and atmospheric aging. The OOA-1, -2, and -3 factors had progressively more oxidized signatures. Diameter-resolved mass spectral markers also suggested enhanced reactive uptake of isoprene oxidation products to the accumulation mode for the OOA-2 factor, and such size partitioning can be indicative of in-cloud process. The campaign-average factor loadings were in a ratio of 1.1:1.0 for the OOA-1 compared to the OOA-2 pathway, suggesting the comparable importance of gas-phase compared to particle-phase (including cloud waters) production pathways of secondary organic material during

  16. Status and interrelationship of toenail elements in Pacific children.

    Science.gov (United States)

    Karatela, Shamshad; Ward, Neil I; Zeng, Irene Suilan; Paterson, Janis

    2018-03-01

    Elemental deficiencies or in excess effects growth and development. Pacific population are at a disadvantage due to food insecurity as compared to New Zealand European households. This study aims to evaluate the status and interrelationship of elements (essential, non-essential and toxic) in nine-year-old Pacific children who were part of the Pacific Island Families Study living in New Zealand. This observational study included 278 eligible nine-year-old children. Essential elements (including calcium, chromium, cobalt, copper, iodine, iron, magnesium, manganese, selenium, zinc, molybdenum), non-essential and toxic elements (arsenic, aluminum, antimony, boron, cadmium, lead, mercury, nickel,) were determined in toenails and after acid digestion, analysed using inductively coupled plasma mass spectrometry. Principal component analysis and multivariate analysis of covariance was used to identify differences in the groups of elements and the inter-correlations between elements. The mean calcium (868μg/g Ca), selenium (0.35μg/g Se) and zinc (129μg/g Zn) concentrations were lower while the mean cadmium (0.21μg/g Cd) lead (0.86μg/g Pb) and mercury (0.72μg/g Hg) concentrations were higher than the optimal health requirements. Ethnic differences in relation to toenail elemental concentrations were observed for aluminium and iron. Gender differences were observed for aluminium, antimony, arsenic and lead. Selenium and molybdenum were inversely associated with mercury. Manganese, zinc and calcium were positively associated. This research contributes to the understanding of the elemental concentrations for Pacific children by using tissue samples from toenails, which improves the completeness of sampling than other tissues and provides a longer exposure time frame. The study also reports several inter-correlations between essential, non-essential and toxic elements in Pacific Island population. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Annemarie [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden)], E-mail: wagnera@chalmers.se; Boman, Johan [Department of Chemistry, Atmospheric Science, Goeteborg University, SE-412 96 Goeteborg (Sweden); Gatari, Michael J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi (Kenya)

    2008-12-15

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 {mu}m aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.

  18. Elemental analysis of size-fractionated particulate matter sampled in Goeteborg, Sweden

    International Nuclear Information System (INIS)

    Wagner, Annemarie; Boman, Johan; Gatari, Michael J.

    2008-01-01

    The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Goeteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 μm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers

  19. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    Science.gov (United States)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  20. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  1. Elemental labelling combined with liquid chromatography inductively coupled plasma mass spectrometry for quantification of biomolecules: A review

    Science.gov (United States)

    Kretschy, Daniela; Koellensperger, Gunda; Hann, Stephan

    2012-01-01

    This article reviews novel quantification concepts where elemental labelling is combined with flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS) or liquid chromatography inductively coupled plasma mass spectrometry (LC–ICP-MS), and employed for quantification of biomolecules such as proteins, peptides and related molecules in challenging sample matrices. In the first sections an overview on general aspects of biomolecule quantification, as well as of labelling will be presented emphasizing the potential, which lies in such methodological approaches. In this context, ICP-MS as detector provides high sensitivity, selectivity and robustness in biological samples and offers the capability for multiplexing and isotope dilution mass spectrometry (IDMS). Fundamental methodology of elemental labelling will be highlighted and analytical, as well as biomedical applications will be presented. A special focus will lie on established applications underlining benefits and bottlenecks of such approaches for the implementation in real life analysis. Key research made in this field will be summarized and a perspective for future developments including sophisticated and innovative applications will given. PMID:23062431

  2. Device for determining element contents of lignite mass flows by activation analysis

    International Nuclear Information System (INIS)

    Goeldner, R.; Maul, E.; Rose, W.; Wagner, D.

    1987-01-01

    A simple device is presented, apt for continuous operation, to determine the element contents of bulk goods of flowable materials with a suitable granularity, in particular of lignite mass flows to assess the coal quality. Several kilograms of samples can be reproducibly dosed and homogeneously activated by a device consisting of a shielding container with activation chamber and radiation source, a measuring unit with detectors, and a source container, and characterized by a blade wheel in the activation chamber which causes the dosing and homogeneous activation of the sample

  3. Multielement determination of rare earth elements in rock sample by liquid chromatography / inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hamanaka, Tadashi; Itoh, Akihide; Itoh, Shinya; Sawatari, Hideyuki; Haraguchi, Hiroki.

    1995-01-01

    Rare earth elements in geological standard rock sample JG-1 (granodiolite)issued from the Geological Survey of Japan have been determined by a combined system of liquid chromatography and inductively coupled plasma mass spectrometry. (author)

  4. Can laser-ionisation time-of-flight mass spectrometry be a promising alternative to laser ablation/inductively-coupled plasma mass spectrometry and glow discharge mass spectrometry for the elemental analysis of solids?

    NARCIS (Netherlands)

    Sysoev, AA; Sysoev, AA

    2002-01-01

    At the beginning of the age of laser-ionisation mass spectrometry (LIMS) increasing numbers of publications were observed. However, later the method began to run into obstacles associated with poor reproducibility of analysis and large variations in elemental sensitivities so that the wide interest

  5. Uranium hydrogeochemical and stream sediment reconnaissance of the Dixon Entrance NTMS and Prince Rupert D-6 quadrangles, Alaska, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; Hensley, W.K.; Hanks, D.E.

    1980-09-01

    During August 1978, sediment and water samples were collected from 203 lakes, streams, and springs in the Dixon Entrance and Prince Rupert D-6 quadrangles, Alaska. Variations in concentrations of all 43 elements among the five sieve fractions at each location are generally less than analytical uncertainty. Therefore, elemental analyses are generally comparable for a wide range in sieve fractions for sediment sample locations in southeastern Alaska. However, at some few locations, several elemental concentrations increase with finer mesh size; for uranium, such an increase may be associated with mineralization. Waterborne sediment samples collected from the center of a stream yield analyses essentially identical to those collected from the adjacent bank for most elements. Chlorine concentrations are generally higher in bank sediments, probably as a result of concentration of halogens in the vegetation that stabilizes the bank. At a few locations, concentrations of the ferrous elements, particularly Mn and Co, differ notably between the stream center and bank: such behavior is characteristic of mineralized areas. Concentrations of the ferrous elements, particularly Mn and Co, are strikingly enriched in the stream sediments compared either to lake sediments or to crustal abundances. This suggests that this area might be a favorable location for strategic resources of these elements. Uranium concentrations in all 950 sediment samples of all sieve fractions range from 0.54 to 22.80 ppM, with a median of 2.70 ppM

  6. Influences mass concentration of P3HT and PCBM to application of organic solar cells

    International Nuclear Information System (INIS)

    Supriyanto, A.; Maya; Iriani, Y.; Ramelan, A. H.; Nurosyid, F; Rosa, E. S.

    2016-01-01

    Poly (3-hexylthiophene) (P3HT) and [6, 6] -phenyl-C61-butyric acid methyl ester (PCBM) are used for the organic solar cell applications. P3HT and PCBM act as donors and acceptors, respectively. In this study the efficiency of the P3HT: PCBM organic solar cells as function of the mass concentration of the blend P3HT: PCBM with 1, 2, 8, 16 mg/ml. Deposition P3HT:PCBM film using spin coating with a rotary speed of 2500 rpm for 10 seconds. Optical properties of absorption spectra characteristic using a UV-Visible Spectrometer Lambda 25 and electrical properties of I-V characteristic using Keithley 2602 instrument. The results of absoption spectra for P3HT:PCBM within different mass concentration obtained 500-600 nm wavelengths. The Energy-gap obtained about 1.9eV. The organic solar cells device performance were investigated using I-V cahractyeristic. For mass concentration of 1, 2, 8 and 16 mg/ml P3HT:PCBM were obtained 0.5×10 -3 %, 2.2×10 -3 %, 5.9×10 -3 %, and 6.1×10 -3 % efficiency of organics solar cells respectively. (paper)

  7. Mass and element balance in food waste composting facilities.

    Science.gov (United States)

    Zhang, Huijun; Matsuto, Toshihiko

    2010-01-01

    The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined. Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities. 2010 Elsevier Ltd. All rights reserved.

  8. Assessment of elements in coal related to environmental concern

    International Nuclear Information System (INIS)

    Diah Dwiana Lestiani; Muhayatun Santoso; Natalia Adventini

    2010-01-01

    National energy consumption increases rapidly in line with the economic growth and population. Indonesian government plans to develop electrical power plant 10 000 MW program to anticipate this matter, first step of which is focused on coal power plant. In this study, coal combustion was assessed on its environmental impact. Determination of trace and toxic elements was applied by instrumental neutron activation analysis. Samples were irradiated in Rabbit System at GA Siwabessy, Serpong, in reactor with neutron flux ~10 13 n.cm -2 .s -1 , then counted using HPGe detector. The method was validated by analysis of standard reference material NIST SRM 1633b coal fly ash. The results showed that Al and Cr concentrations were 2.1 0±0.80 and 7.63±1.45 mg/kg, respectively, and other elements such as Al, Co, Cs, Ce, Fe, K, La, Mn, Na, Sc, Sm, Ti, and V were still in the range of those in other world coals. Comparison the elements in coal with the elements in fly ash and bottom ash for relative enrichment index, mass balance calculation and mass flow estimation using assumption was also carried out to estimate the total emission estimation related the environmental concerned elements. The total emission of As, Co and Cr were in the range of 0.84-2.28 kg/day or equivalent to 0.49-1.23 % of total elemental mass content in coal. This also indicated that these elements were captured 98-99 % before released to the environment. (author)

  9. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  10. Mass concentrations of BTEX inside air environment of buses in Changsha, China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaokai; Zhang, Guoqiang; Zhang, Quan [College of Civil Engineering, Hunan University, Changsha 410082, Hunan (China); Chen, Hong [College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan (China)

    2011-02-15

    In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 {mu}g/m{sup 3} for benzene, from 53.5 to 266.0 {mu}g/m{sup 3} for toluene, from 19.6 to 95.9 {mu}g/m{sup 3} for ethylbenzene and from 46.9 to 234.8 {mu}g/m{sup 3} for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 {mu}g/m{sup 3}, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses. (author)

  11. Potential in using elemental concentrations in radial increments of old growth eastern red cedar to examine the chemical history of the environment

    International Nuclear Information System (INIS)

    Guyette, R.; McGinnes, E.A. Jr.

    1987-01-01

    Research examines the potential of utilizing elemental concentrations in the wood of eastern red cedar (Juniperus virginiana L.) to make inferences about past changes in atmospheric and site chemistry. Crossdated growth increments from live trees and remnant wood are analyzed by neutron activation analysis (NAA) and inductively coupled plasma optical emission spectroscopy (ICP Scan) for elements with potential environmental information. Radial heartwood ring series from 300 to 700 years in length are analyzed in 20 year increments for 37 different elements. Evidence for minimal radial translocation of elements in the heartwood is presented. The radial concentration of elements in the bole is found to be coincident with early smelting activities. 7 references, 4 figures

  12. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    Science.gov (United States)

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  13. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    International Nuclear Information System (INIS)

    Liszewski, M.J.; Mann, L.J.

    1993-01-01

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey's National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels

  14. Concentrations of 23 trace elements in ground water and surface water at and near the Idaho National Engineering Laboratory, Idaho, 1988--91

    Energy Technology Data Exchange (ETDEWEB)

    Liszewski, M.J.; Mann, L.J.

    1993-12-31

    Analytical data for 23 trace elements are reported for ground- and surface-water samples collected at and near the Idaho National Engineering Laboratory during 1988--91. Water samples were collected from 148 wells completed in the Snake River Plain aquifer, 18 wells completed in discontinuous deep perched-water zones, and 1 well completed in an alluvial aquifer. Surface-water samples also were collected from three streams, two springs, two ponds, and one lake. Data are categorized by concentrations of total recoverable of dissolved trace elements. Concentrations of total recoverable trace elements are reported for unfiltered water samples and include results for one or more of the following: aluminum, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc. Concentrations of dissolved trace elements are reported for water samples filtered through a nominal 0.45-micron filter and may also include bromide, fluoride, lithium, molybdenum, strontium, thallium, and vanadium. Concentrations of dissolved hexavalent chromium also are reported for many samples. The water samples were analyzed at the US Geological Survey`s National Water Quality Laboratory in Arvada, Colorado. Methods used to collect the water samples and quality assurance instituted for the sampling program are described. Concentrations of chromium equaled or exceeded the maximum contaminant level at 12 ground-water quality monitoring wells. Other trace elements did not exceed their respective maximum contaminant levels.

  15. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  16. Determining Mass and Persistence of a Reactive Brominated-Solvent DNAPL Source Using Mass Depletion-Mass Flux Reduction Relationships During Pumping

    Science.gov (United States)

    Johnston, C. D.; Davis, G. B.; Bastow, T.; Annable, M. D.; Trefry, M. G.; Furness, A.; Geste, Y.; Woodbury, R.; Rhodes, S.

    2011-12-01

    Measures of the source mass and depletion characteristics of recalcitrant dense non-aqueous phase liquid (DNAPL) contaminants are critical elements for assessing performance of remediation efforts. This is in addition to understanding the relationships between source mass depletion and changes to dissolved contaminant concentration and mass flux in groundwater. Here we present results of applying analytical source-depletion concepts to pumping from within the DNAPL source zone of a 10-m thick heterogeneous layered aquifer to estimate the original source mass and characterise the time trajectory of source depletion and mass flux in groundwater. The multi-component, reactive DNAPL source consisted of the brominated solvent tetrabromoethane (TBA) and its transformation products (mostly tribromoethene - TriBE). Coring and multi-level groundwater sampling indicated the DNAPL to be mainly in lower-permeability layers, suggesting the source had already undergone appreciable depletion. Four simplified source dissolution models (exponential, power function, error function and rational mass) were able to describe the concentration history of the total molar concentration of brominated organics in extracted groundwater during 285 days of pumping. Approximately 152 kg of brominated compounds were extracted. The lack of significant kinetic mass transfer limitations in pumped concentrations was notable. This was despite the heterogeneous layering in the aquifer and distribution of DNAPL. There was little to choose between the model fits to pumped concentration time series. The variance of groundwater velocities in the aquifer determined during a partitioning inter-well tracer test (PITT) were used to parameterise the models. However, the models were found to be relatively insensitive to this parameter. All models indicated an initial source mass around 250 kg which compared favourably to an estimate of 220 kg derived from the PITT. The extrapolated concentrations from the

  17. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    Science.gov (United States)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  18. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-01-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates

  19. The element analysis of high purity beryllium by method of laser mass-spectrometry

    International Nuclear Information System (INIS)

    Virich, V.D.; Kisel', O.V.; Kovtun, K.V.; Pugachev, N.S.; Yakobson, L.A.

    2003-01-01

    The operation is devoted to examination of a possibility of the analysis of element composition pure and high purity model of a beryllium is model by a method of laser mass spectrometry. The advantages of a method in a part of finding of a small amount of admixtures in comparison with other modes of the analysis are exhibited. The possibility of quantitative definition of a content in beryllium samples of gas-making admixtures-C,N,O surveyed

  20. Evaluation of concentrations of major and trace elements in human lung using INAA and PIXE

    International Nuclear Information System (INIS)

    Altaf, W.J.; Spyrou, N.M.

    1997-01-01

    The elemental concentrations of Br, Ca, Ce, Cl, Co, Cr, Cs, F, Fe, Hf, K, Mg, Mn, Na, O, Rb, Sb, Sc, Se, V and Zn in 15 human lung autopsy samples, taken from subjects aged more than fifty years old, were determined by instrumental neutron activation analysis (INAA) using reactor neutrons in conjunction with a high resolution detection system. Two modes of irradiation and counting were applied; namely cyclic neutron activation analysis (CNAA) and conventional neutron activation analysis. Proton induced X-ray emission (PIXE) analysis, using a proton beam emerging from a 2 MV Van de Graaff accelerator, was additionally employed and Ge, Ni, P and Ti were also identified in the lung tissue. Detection of the X-ray spectra was performed using a high resolution Si(Li) semiconductor. The relevance of these results, including a comparison between the concentrations of elements measured in a pig's lung using CNAA and those found in the human lung is discussed. (author)

  1. Evaluation of the trace elements and the total mercury concentration in fishes commercialized at the Cubatao city, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Fonseca, Barbara C.; Farias, Luciana A.; Curcho, Michel R.M.; Favaro, Debora I.T.; Braga, Elisabete S.

    2009-01-01

    This paper evaluates the total Hg and the trace elements As, Br, Co, Cr and Rb concentrations in muscle of commercially important fishes at the Cubatao, Sao Paulo, Brazil, region. The following carnivore species were analysed: jew fish (Micropogonias furnieri), girl leg (Menticirrhus americanus), hake (Macrodon ancylodon), and plant eaters, sardine (Sardella braziliensis) and grey mullet (Mugil liza), representing a total of 58 samples. The analysed trace elements were determined through the neutron analysis activation (NAA) and total Hg, through the atomic absorption spectrometry with cold vapor generation (CV AAS). The analysed elements present a great concentration variation, not only among individuals of the same specie, but also among all the analysed species. The total Hg concentration were highly significant, with the predator species jew fish, girl leg and hake presenting concentrations larger than the non predator species sardine and grey mullet. Nevertheless, the content of total Hg remained bellow the limits established by the Brazilian legislation which is the 500 μg kg -1 for the non predator species, and the 1000 μg -1 for the predator species (humid weight)

  2. Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation

    Science.gov (United States)

    Egger, Philipp; Caracoglia, Luca

    2015-09-01

    Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.

  3. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences

    Energy Technology Data Exchange (ETDEWEB)

    Jerez, Silvia [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Motas, Miguel, E-mail: motas@um.es [Area de Toxicologia, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Palacios, Maria Jose; Valera, Francisco [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Cuervo, Jose Javier; Barbosa, Andres [Departamento de Ecologia Funcional y Evolutiva, Estacion Experimental de Zonas Aridas, CSIC, Carretera de Sacramento s/n, 04120 La Canada de San Urbano, Almeria (Spain); Departamento de Ecologia Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2011-10-15

    Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adelie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 {mu}g g{sup -1} dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 {mu}g g{sup -1} dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine. - Highlights: > We study levels of trace elements in feathers of Antarctic penguins. > Eight different rookeries throughout the Antarctic Peninsula were sampled. > Interspecific (gentoo, chinstrap, Adelie) and geographical differences were tested. > Relatively high metal levels were found in areas with major human presence. > Penguin feather can be useful for metals monitoring in the Antarctic environment. - Trace element levels in feathers of three penguin species from the Antarctic Peninsula indicate the presence of pollution in certain locations.

  4. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences

    International Nuclear Information System (INIS)

    Jerez, Silvia; Motas, Miguel; Palacios, Maria Jose; Valera, Francisco; Cuervo, Jose Javier; Barbosa, Andres

    2011-01-01

    Antarctica is often considered as one of the last pristine regions, but it could be affected by pollution at global and local scale. Concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were determinated by ICP-MS in feathers (n = 207 individuals) of gentoo, chinstrap and Adelie penguin collected in 8 locations throughout the Antarctic Peninsula (2006-2007). The highest levels of several elements were found in samples from King George Island (8.08, 20.29 and 1.76 μg g -1 dw for Cr, Cu and Pb, respectively) and Deception Island (203.13, 3.26 and 164.26 μg g -1 dw for Al, Mn and Fe, respectively), where probably human activities and large-scale transport of pollutants contribute to increase metal levels. Concentrations of Cr, Mn, Cu, Se or Pb, which are similar to others found in different regions of the world, show that some areas in Antarctica are not utterly pristine. - Highlights: → We study levels of trace elements in feathers of Antarctic penguins. → Eight different rookeries throughout the Antarctic Peninsula were sampled. → Interspecific (gentoo, chinstrap, Adelie) and geographical differences were tested. → Relatively high metal levels were found in areas with major human presence. → Penguin feather can be useful for metals monitoring in the Antarctic environment. - Trace element levels in feathers of three penguin species from the Antarctic Peninsula indicate the presence of pollution in certain locations.

  5. Development of realtime monitoring technology for laser photoreaction product - Development of glow discharge-mass spectrometry (GD-MS) hybrid techniques for trace analysis of refractory elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chun [Kyungnam University, Masan (Korea); Kim, Ha Suck [Seoul National University, Seoul (Korea); Kim, Hyo Jin [Dongduk Women' s University, Seoul (Korea)

    2000-04-01

    This research is focusing on development of hybrid techniques of glow discharge-mass spectrometry for the trace analysis of refractory elements. At first, we developed a glow discharge(GD) ionization cell and its characteristics was investigated. The new GD cell was designed based on direct current hollow cathode glow discharge and it is used for quadrupole mass analyzer and time-of-flight mass analyzer. Currently, GD-quadrupole mass spectrometry is working for the analysis of refractory elements. The experimental results show relatively good for trace analysis. In addition, ion mobile spectrometry using plasma and liquid discharge technique were investigated for the analysis of refractory elements and both techniques need more investigation to deduce the their usefulness. 30 refs., 67 figs., 4 tabs. (Author)

  6. On the prospects to detect superheavy elements (SHE) in the earth's crust using the high energy synchrotron radiation and the mass spectrometry

    International Nuclear Information System (INIS)

    Schnier, C.

    2001-01-01

    There are many indications for the existence of superheavy elements (SHE) in the Earth's crust. The appropriate detection methods are X-ray fluorescence (XRF) using the high energy synchrotron radiation and the mass spectrometry. The characteristic X-rays of each element up to Z >120 (corresponding binding energy of the K-electrons E b >230 keV) can be precisely excited with synchrotron XRF. Up to now, the XRF with high energy photons has never been applied to the quest for SHE. New methods of mass spectrometry eg using resonance ionization (RIMS) are promising to detect unambiguously atomic masses about 300 in solid matrices. It is proposed to restart the quest for SHE in the nature. Finding a SHE in the Earth's crust would be very important, because of what it will tell us about the origin of the elements eg about the nucleosynthesis during a super nova explosion, the structure of the atomic nuclei and the site of SHE in the periodic table of elements. (orig.) [de

  7. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Butte NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Broxton, D.E.; George, W.E.; Montoya, J.V.; Martell, C.J.; Hensley, W.K.; Hanks, D.

    1980-05-01

    This report contains data collected during a geochemical survey for uranium in the Butte National Topographic Map Series (NTMS) quadrangle of west-central Montana. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. A supplemental report containing the results of multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given

  8. Inductively coupled plasma-mass spectrometry for elemental analysis and isotope ratio determinations in individual organic compounds separated by gas chromatography

    International Nuclear Information System (INIS)

    Chong, N.S.; Houk, R.S.

    1987-01-01

    A gas chromatograph (GC) with a packed column was interfaced to an inductively coupled plasma-mass spectrometer (ICP-MS) to yield atomic mass spectra from volatile organic compounds. Atomization of injected compounds was nearly complete and independent of molecular structure, so that elemental ratios could be determined. Detection limits were in the range 0.001 to 400 ng s -1 , depending on the ionization energy of the element and its abundance in the background spectrum. The relative standard deviation of measured isotope ratios varied from 0.4% for Br (i.e., a ratio close to unity) to 18% for N (a very large ratio). Thus, GC-ICP-MS provides elemental and isotope ratio information that is complementary to the molecular information derived from GC-MS with conventional ionization methods

  9. Determination of light elements concentration in aerosols by X emission induced by deuteron

    International Nuclear Information System (INIS)

    Morales, J.R.; Romo, C.

    1983-01-01

    Absolute concentrations for Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe and Cu were obtained in the range from 10 ng/m 3 to 10 4 ng/m 3 in aerosols from Santiago. A 4,2 MeV deuteron beam was used to induce characteristic X-ray emission. It was found that relative abundance of these elements is maintained for days of high and low total suspended particulates. (Author)

  10. Profiling elements in Puerh tea from Yunnan province, China.

    Science.gov (United States)

    Zhang, Jianyang; Ma, Guicen; Chen, Liyan; Liu, Ting; Liu, Xin; Lu, Chengyin

    2017-09-01

    Puerh tea, as the most representative Chinese dark tea, has attracted global interest in recent years. Profiling the levels of metal elements in Puerh tea is very important since its presence is related to human health. In this study, 41 elements in 98 Puerh tea samples from Yunnan province, China including Puerh raw tea and Puerh ripe tea were evaluated by microwave digestion combined with inductively coupled plasma mass spectrometry . The content of toxic elements, essential elements and rare earth elements of Puerh tea from different regions was discussed in detail. The concentrations of Ba, Cr, As, Pb, Bi, Fe, Zn, V, Mn, Be, Ag and Tl showed significant differences (p tea from different regions. This study provided a comprehensive database for Puerh tea quality control and intake risk assessment.

  11. Elemental analysis and nutritional value of edible Trifolium (clover) species.

    Science.gov (United States)

    Gounden, Thaveshan; Moodley, Roshila; Jonnalagadda, Sreekantha B

    2018-04-30

    Trifolium species, commonly known as clover species, have a cosmopolitan distribution and, as such, are used in many different traditional systems of medicine and consumed by many communities all over the world. In this study, the elemental distribution and nutritional value of five edible Trifolium species, namely, Trifolium africanum, Trifolium burchellianum, Trifolium repens, Trifolium dubium and Trifolium pratense were investigated to evaluate the potential of these plant species to alleviate malnutrition, thereby contributing toward the fight against food insecurity. Trifolium species were found to be a rich alternate source of essential nutrients with concentrations of elements being in decreasing order of Ca > Mg > Fe > Mn > Zn > Se > Cu > Cr > Pb > Ni > Co > Cd > As and with adequate levels of lipids (4.2 to 8.6%), proteins (35.1 to 45.4%) and carbohydrates (26.7 to 47.0%). Trifolium species were found to be rich in Se (contributing greater than 516% toward its RDA) with T. dubium having a concentration of 0.53 mg 10 g -1 , dry mass, which is higher than Brazil nuts. T. pratense was found to be the most suitable species for human consumption due to it having low levels of toxic metals (As, Cd and Pb) while being rich in macro- and micro-elements, especially Fe (7.84 mg 10 g -1 , dry mass) and Se (0.36 mg 10 g -1 , dry mass).

  12. PHARMACOPOEIA METHODS FOR ELEMENTAL ANALYSIS OF MEDICINES: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Tetiana M. Derkach

    2018-01-01

    Full Text Available The article is devoted to the problem of quality assurance of medicinal products, namely the determination of elemental impurity concentration compared to permitted daily exposures for and the correct choice analytical methods that are adequate to the formulated tasks. The paper goal is to compare characteristics of four analytical methods recommended by the Pharmacopoeia of various countries to control the content of elemental impurities in medicines, including medicinal plant raw materials and herbal medicines. Both advantages and disadvantages were described for atomic absorption spectroscopy with various atomising techniques, as well as atomic emission spectroscopy and mass spectrometry with inductively coupled plasma. The choice of the most rational analysis method depends on a research task and is reasoned from the viewpoint of analytical objectives, possible complications, performance attributes, and economic considerations. The methods of ICP-MS and GFAAS were shown to provide the greatest potential for determining the low and ultra-low concentrations of chemical elements in medicinal plants and herbal medicinal products. The other two methods, FAAS and ICP-AES, are limited to the analysis of the main essential elements and the largest impurities. The ICP-MS is the most efficient method for determining ultra-low concentrations. However, the interference of mass peaks is typical for ICP-MS. It is formed not only by impurities but also by polyatomic ions with the participation of argon, as well as atoms of gases from the air (C, N and O or matrices (O, N, H, P, S and Cl. Therefore, a correct sample preparation, which guarantees minimisation of impurity contamination and loss of analytes becomes the most crucial stage of analytical applications of ICP-MS. The detections limits for some chemical elements, which content is regulated in modern Pharmacopoeia, were estimated for each method and analysis conditions of medicinal plant raw

  13. Concentration factors of stable elements and radionuclides in Po river fish

    International Nuclear Information System (INIS)

    Achilli, M.; Ciceri, G.; Bozzani, A.; Guzzi, L.; Queirazza, G.

    1988-01-01

    The concentration factors (CF) of stable Co, Cs, Mn, Fe, Zn and Sr in different fish from six stretches in the middle course of the Po river (N. Italy) have been investigated. The space-time variation in water has been followed for 14 months. The investigation has been undertaken to study CF variations in the same fish species as a function of the physico-chemical form of the different elements in water (dissolved, dissolved and exchangeable fraction of the particulate, total). CF values of 103 Ru, 131 I and 134 - 137 Cs were also investigated for Cyprinus carpio reared, with artificial food, in two semi-natural environments

  14. A new XRF probe for in-situ determining concentration of multi-elements in ocean sediments

    CERN Document Server

    Ge Liang Quan; Zhou Si Chun; Lin Ling; Lin Yan Chang; Ren Jia Fu

    2001-01-01

    The author introduces a new X-ray fluorescence probe for in-situ determining the concentration of multi-elements in ocean sediments. The probe consists of Si-Pin X-ray detector with an electro-thermal colder, two isotope sources, essential electrical signal processing units and a notebook computer. More than 10 elements can be simultaneously determined at a detection limit of (10-200) x 10 sup - sup 6 and precision of 5%-30% without liquid Nitrogen supply. tests show that the probe can perform the analytical tasks under the water at the depth of less than 1000 meters

  15. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 2. Kale samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The objective of this study was to evaluate the influence of mining activity on elemental concentrations in kale grown around a mining area. Two sites studied are in the Iron Quadrangle, Minas Gerais, Brazil, considered one of the richest mineral-bearing regions in the world. One site is near mineral exploration activity and the other is an ecological area. A comparator site outside the Iron Quadrangle was also analyzed. This work focused on the determination of the elemental concentrations in kale applying the k 0 -instrumental neutron activation analysis. As the Brazilian legislation specifies values for soil only, the results for kale were compared to the literature values and it was found that the vegetable does not present any health risks. (author)

  16. Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis1953@gmail.com; Balasubramanian, R., E-mail: rbs@igcar.gov.in; Darwin Albert Raj, D., E-mail: darwinalbertraj1953@gmail.com; Sai Baba, M., E-mail: msb@igcar.gov.in; Lakshmi Narasimhan, T.S., E-mail: tslak@igcar.gov.in

    2014-08-01

    Highlights: • A detailed KEMS study of vaporization of elemental tellurium and selenium systems. • Clusters Te{sub i}(g) (i = 2 to 7) and Se{sub i}(g) (i = 2 to 9) identified over Te(s) and Se(s). • p–T relations for Te{sub i}(g) (590 to 690 K) and Se{sub i}(g) (380 to 480 K). • Vapor phase of Te dominated by Te{sub 2}(g) (∼95%) while that of Se by Se{sub 6}(g) (∼50%) and Se{sub 5}(g) (∼25%). • Sublimation and atomization enthalpies deduced for Te{sub i}(g) and Se{sub i}(g). - Abstract: Vaporization studies on elemental tellurium and selenium were conducted by Knudsen effusion mass spectrometry in the temperature range of 590–690 K and 380–480 K, respectively. The ionic species Te{sub i}{sup +} (i = 1–7) and Se{sub i}{sup +}(g) (i = 1–9) were detected in the mass spectra over these two condensed phases. Measurement of ion intensities were performed as a function of electron impact energy and as a function of temperature (at different electron impact energies) for identifying the gaseous precursor species as well as for determining the partial pressure–temperature relations and sublimation enthalpies for these species. While the major species over elemental tellurium was confirmed to be Te{sub 2}(g) (with all other gaseous species Te{sub 3}–Te{sub 7} put together constituting less than 5%), the major species over elemental selenium was found to be Se{sub 6}(g), closely followed by Se{sub 5}(g) (with other gaseous species Se{sub 2}–Se{sub 4} and Se{sub 7}–Se{sub 9} put together also moderately constituting ∼25%). From the partial pressures, the thermodynamic data for the sublimation reactions i Te(s) = Te{sub i}(g) and i Se(s) = Se{sub i}(g) were deduced by second- and third-law methods. The atomization enthalpies of tellurium and selenium clusters were also deduced by using the recommended enthalpies of formation of monomeric species. Comparison of the findings obtained in the present study with those in previous studies revealed

  17. Distribution and concentration evaluation of trace and rare earth elements in sediment samples of the Billings and Guarapiranga reservoir systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Larissa S.; Fávaro, Déborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (LAN-CRPq/IPEN/CNEN-SP), São Paulo(Brazil). Lab. de Análise por Ativação Neutrônica; Ferreira, Francisco J. [Companhia Ambiental do Estado de São Paulo (ELAI/CETESB), Sao Paulo, SP (Brazil). Setor de Química Inorgânica

    2017-07-01

    Concentration and distribution of trace and rare earth elements in bottom sediment samples collected in the Billings System (including Rio Grande and Guarapiranga Reservoirs) were assessed by using Instrumental Neutron Activation (INAA). To evaluate the sources of anthropogenic contamination the enrichment factor (FE) and the geoacumulation index (IGeo) were calculated using NASC and Guarapiranga Park Soil as Reference Values. Results were compared to the concentration guideline values established by CCME (Canadian Council of Ministers of the Environment) environmental agency for As, Cr and Zn, and values in other published studies. Most points exceeded TEL values and, in some points, PEL values for these elements, indicating poor sediment quality in these reservoirs. In general terms, the elements As, Cr, Sb and Zn through EF and IGeo calculations present enrichment at all points analyzed, in both collection campaigns, except for the Rio Grande Reservoir points. The region where the reservoirs are located receive untreated sewage as well as pollution from urban occupation, industrial and mining activities, making it difficult to accurately identify the pollution sources. This study found higher concentrations of the elements analyzed in the Billings Reservoir, indicating a greater contamination level in relation to the other reservoirs. (author)

  18. Distribution and concentration evaluation of trace and rare earth elements in sediment samples of the Billings and Guarapiranga reservoir systems

    International Nuclear Information System (INIS)

    Silva, Larissa S.; Fávaro, Déborah I.T.; Ferreira, Francisco J.

    2017-01-01

    Concentration and distribution of trace and rare earth elements in bottom sediment samples collected in the Billings System (including Rio Grande and Guarapiranga Reservoirs) were assessed by using Instrumental Neutron Activation (INAA). To evaluate the sources of anthropogenic contamination the enrichment factor (FE) and the geoacumulation index (IGeo) were calculated using NASC and Guarapiranga Park Soil as Reference Values. Results were compared to the concentration guideline values established by CCME (Canadian Council of Ministers of the Environment) environmental agency for As, Cr and Zn, and values in other published studies. Most points exceeded TEL values and, in some points, PEL values for these elements, indicating poor sediment quality in these reservoirs. In general terms, the elements As, Cr, Sb and Zn through EF and IGeo calculations present enrichment at all points analyzed, in both collection campaigns, except for the Rio Grande Reservoir points. The region where the reservoirs are located receive untreated sewage as well as pollution from urban occupation, industrial and mining activities, making it difficult to accurately identify the pollution sources. This study found higher concentrations of the elements analyzed in the Billings Reservoir, indicating a greater contamination level in relation to the other reservoirs. (author)

  19. In situ measurement of the mass concentration of flame-synthesized nanoparticles using quartz-crystal microbalance

    International Nuclear Information System (INIS)

    Hevroni, A; Golan, H; Fialkov, A; Tsionsky, V; Markovich, G; Cheskis, S; Rahinov, I

    2011-01-01

    A novel in situ method for measurement of mass concentration of nanoparticles (NPs) formed in flames is proposed. In this method, the deposition rate of NPs collected by a molecular beam sampling system is measured by quartz-crystal microbalance (QCM). It is the only existing method which allows direct measurement of NP mass concentration profiles in flames. The feasibility of the method was demonstrated by studying iron oxide NP formation in low-pressure methane/oxygen/nitrogen flames doped with iron pentacarbonyl. The system was tested under fuel-lean and fuel-rich flame conditions. Good agreement between measured QCM deposition rates and their estimations obtained by the transmission electron microscopy analysis of samples collected from the molecular beam has been demonstrated. The sensitivity of the method is comparable to that of particle mass spectrometry (PMS). Combination of the QCM technique with PMS and/or optical measurements can provide new qualitative information which is important for elucidation of the mechanisms governing the NP flame synthesis

  20. Elemental distribution patterns in the skins of false killer whales (Pseudorca crassidens) from a mass stranding in South Africa, analysed using micro-PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Mouton, M., E-mail: marnel@sun.ac.za [Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7600 (South Africa); Botha, A., E-mail: abo@sun.ac.za [Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7600 (South Africa); Thornton, M., E-mail: meredith@sharkwatchsa.com [Mammal Research Institute, University of Pretoria, c/o Iziko South African Museum, P.O. Box 61, Cape Town 8000 (South Africa); Mesjasz-Przybyłowicz, J., E-mail: mesjasz@tlabs.ac.za [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Przybyłowicz, W.J., E-mail: przybylowicz@tlabs.ac.za [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2015-11-15

    Several studies revealed that anthropogenic activities often cause toxic concentrations of some elements, such as mercury, which bio-accumulate through the marine food chain, impacting negatively on the health of animals in the top trophic levels, such as a variety of marine mammals. Moreover, analysis of cetacean skin has been reported to be a reliable, long-term and mostly non-invasive method to monitor bio-accumulation of chemicals in cetacean populations. Several elements, including trace elements, occur naturally in cetacean skin, although nothing is known about their distribution patterns and little about safe base line concentrations. In May 2009, 42 false killer whales (FKWs) beached and died at Kommetjie in the Western Cape of South Africa. Skin samples of these FKWs were collected and analysed to determine elemental distribution patterns. The concentrations and distribution patterns of the major, as well as detectable trace elements were determined in skin samples from ten randomly selected FKW individuals, using micro-PIXE (particle-induced X-ray emission) analysis. Results revealed differences between the distribution patterns of elements in the skin sections. Fe, for example, was found to be concentrated in the dermal papillae, whereas the highest Zn concentrations occurred in the epidermis and particularly in the epidermal papillae. Since these essential elements mediate factors such as host immunity, from skin integrity to humoral immunity, knowledge of their typical distribution patterns can be of great value in studies of bio-accumulation. This is the first report of micro-PIXE being employed to study elemental distribution in cetacean skin and the resulting elemental distribution maps can serve as reference in future environmental pollution studies.

  1. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    Science.gov (United States)

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  2. Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acid-soluble Component with Inductively Coupled Plasma-Mass Spectrometry.

    Science.gov (United States)

    Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro

    2018-01-01

    Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.

  3. Classification of archaeological pieces into their respective stratum by a chemometric model based on the soil concentration of 25 selected elements

    International Nuclear Information System (INIS)

    Carrero, J.A.; Goienaga, N.; Fdez-Ortiz de Vallejuelo, S.; Arana, G.; Madariaga, J.M.

    2010-01-01

    The aim of this work was to demonstrate that an archaeological ceramic piece has remained buried underground in the same stratum for centuries without being removed. For this purpose, a chemometric model based on Principal Component Analysis, Soft Independent Modelling of Class Analogy and Linear Discriminant Analysis classification techniques was created with the concentration of some selected elements of both soil of the stratum and soil adhered to the ceramic piece. Some ceramic pieces from four different stratigraphic units, coming from a roman archaeological site in Alava (North of Spain), and its respective stratum soils were collected. The soil adhered to the ceramic pieces was removed and treated in the same way as the soil from its respective stratum. The digestion was carried out following the US Environmental Pollution Agency EPA 3051A method. A total of 54 elements were determined in the extracts by a rapid screening inductively coupled plasma mass spectrometry method. After rejecting the major elements and those which could have changed from the original composition of the soils (migration or retention from/to the buried objects), the following elements (25) were finally taken into account to construct the model: Li, V, Co, As, Y, Nb, Sn, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Au, Th and U. A total of 33 subsamples were treated from 10 soils belonging to 4 different stratigraphic units. The final model groups and discriminate them in four groups, according to the stratigraphic unit, having both the stratum and soils adhered to the pieces falling down in the same group.

  4. The concentration ratio of alkaline earth elements calcium, barium and strontium in grains of diploid, tetraploid and hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Maksimović Ivana V.

    2017-01-01

    Full Text Available Even though calcium (Ca, strontium (Sr and barium (Ba belong to the same group of the periodic table of elements, and thus have similar chemical features, their importance for plants differs greatly. Since plants do not have the ability to completely dis­criminate between essential (e.g. Ca and non-essential elements (e.g. Sr and Ba, they read­ily take all of them up from soil solution, which is reflected in the ratios of concentrations of those elements in plant tissues, and it influences their nutritive characteristics. The ability of plant species and genotypes to take up and accumulate chemical elements in their different tissues is related to their genetic background. However, differences in chemical composition are the least reflected in their reproductive parts. Hence, the aim of this study was to evaluate ratios of concentrations of Ca, Sr and Ba in the whole grain of diploid and tetraploid wheat - ancestors of common wheat, as well as in hexaploid commercial cultivars, grown in the field, at the same location, over a period of three years. The investigated genotypes accumulated Ca, Sr and Ba at different levels, which is reflected in the ratio of their concentrations in the grain. The lowest ratio was established between Ba and Sr, followed by Ca and Ba, while the highest ratio was between Ca and Sr. Moreover, the results have shown that the year of study, genotype and the combination highly significantly affected the ratio of the concentration Ca:Sr, Ca:Ba, and Ba:Sr.

  5. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Science.gov (United States)

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  6. Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry-A review

    International Nuclear Information System (INIS)

    Popp, Maximilian; Hann, Stephan; Koellensperger, Gunda

    2010-01-01

    In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing 'classic' elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC.

  7. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: an example from the Swallow Wood coal bed, Yorkshire, UK

    Science.gov (United States)

    Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.

    1990-01-01

    A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of

  8. Certification of Trace Element Mass Fractions in IAEA-458 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA and its Environment Laboratories. Given that marine pollution assessments of such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments, the NAEL has assisted national laboratories and regional laboratory networks through its Reference Products for Environment and Trade programme since the early 1970s. Quality assurance (QA), quality control (QC) and associated good laboratory practice are essential components of all marine environmental monitoring studies. QC procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess reliability and comparability of measurement data. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparisons, which compare and evaluate the analytical performance and measurement capabilities of participating laboratories. Data that are not based on adequate QA/QC can be erroneous, and their misuse can lead to incorrect environmental management decisions. This report describes the sample preparation methodology, material homogeneity and stability study, selection of laboratories, evaluation of results from the certification campaign and assignment of property values and their associated uncertainty. As a result, reference values for mass fractions and associated expanded uncertainty for 16 trace elements (Al, As, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sr, Sn, V and Zn) in marine sediment were established

  9. A Comparative Study of Selected Trace Element Content in Malay and Chinese Traditional Herbal Medicine (THM Using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS

    Directory of Open Access Journals (Sweden)

    Sharifah Mohamad

    2013-02-01

    Full Text Available A total of 60 products of traditional herbal medicine (THM in various dosage forms of herbal preparation were analyzed to determine selected trace elements (i.e., Zn, Mn, Cu, Cd, and Se using ICP-MS. Thirty types of both Chinese and Malay THMs were chosen to represent each population. The closed vessel acid microwave digestion method, using CEM MARS 5, was employed for the extraction of the selected trace elements. The digestion method applied was validated by using certified reference material from the Trace Element in Spinach Leaves (SRM1570a. The recoveries of all elements were found to be in the range of 85.3%–98.9%. The results indicated that Zn, Mn, Cu, Cd and Se have their own trends of concentrations in all samples studied. The daily intake concentrations of the elements were in the following order: Mn > Zn > Cu > Se > Cd. Concentrations of all five elements were found to be dominant in Chinese THMs. The essentiality of the selected trace elements was also assessed, based on the recommended daily allowance (RDA, adequate intake (AI and the United States Pharmacopeia (USP for trace elements as reference. The concentrations of all elements studied were below the RDA, AI and USP values, which fall within the essential concentration range, except for cadmium.

  10. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  11. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    International Nuclear Information System (INIS)

    Camp, D.C.

    1984-07-01

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10 4 ; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated

  12. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    Science.gov (United States)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  13. Effect of Intestinal Tapeworm Clestobothrium crassiceps on Concentrations of Toxic Elements and Selenium in European Hake Merluccius merluccius from the Gulf of Lion (Northwestern Mediterranean Sea).

    Science.gov (United States)

    Torres, Jordi; Eira, Catarina; Miquel, Jordi; Ferrer-Maza, Dolors; Delgado, Eulàlia; Casadevall, Margarida

    2015-10-28

    The capacity for heavy metal bioaccumulation by some fish parasites has been demonstrated, and their contribution to decreasing metal concentrations in tissues of parasitized fish has been hypothesized. The present study evaluated the effect of the cestode Clestobothrium crassiceps on the accumulation of trace elements in 30 European hake, Merluccius merluccius, in Spain (half of them infested by C. crassiceps). Tissue samples from all M. merluccius and specimens of C. crassiceps from the infected hakes were collected and stored until element analysis by inductively coupled plasma mass spectrometry (ICP-MS). Arsenic, mercury, and selenium were generally present in lower levels in the cestode than in all hake tissues. The mean value of the muscular Se:Hg molar ratio in the infested subsample was higher than that in hakes without cestodes. Values indicate that the edible part of infested hakes presents a lower amount of Cd and Pb in relation to noninfested hakes.

  14. Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (Côte d'Ivoire)

    Science.gov (United States)

    Djossou, Julien; Léon, Jean-François; Barthélemy Akpo, Aristide; Liousse, Cathy; Yoboué, Véronique; Bedou, Mouhamadou; Bodjrenou, Marleine; Chiron, Christelle; Galy-Lacaux, Corinne; Gardrat, Eric; Abbey, Marcellin; Keita, Sékou; Bahino, Julien; Touré N'Datchoh, Evelyne; Ossohou, Money; Awanou, Cossi Norbert

    2018-05-01

    Air quality degradation is a major issue in the large conurbations on the shore of the Gulf of Guinea. We present for the first time PM2.5 time series collected in Cotonou, Benin, and Abidjan, Côte d'Ivoire, from February 2015 to March 2017. Measurements were performed in the vicinity of major combustion aerosol sources: Cotonou/traffic (CT), Abidjan/traffic (AT), Abidjan/landfill (AL) and Abidjan/domestic fires (ADF). We report the weekly PM2.5 mass and carbonaceous content as elemental (EC) and organic (OC) carbon concentrations. We also measure the aerosol optical depth (AOD) and the Ångström exponent in both cities. The average PM2.5 mass concentrations were 32 ± 32, 32 ± 24 and 28 ± 19 µg m-3 at traffic sites CT and AT and landfill site AL, respectively. The domestic fire site shows a concentration of 145 ± 69 µg m-3 due to the contribution of smoking and roasting activities. The highest OC and EC concentrations were also measured at ADF at 71 ± 29 and 15 ± 9 µg m-3, respectively, while the other sites present OC concentration between 8 and 12 µg m-3 and EC concentrations between 2 and 7 µg m-3. The OC / EC ratio is 4.3 at CT and 2.0 at AT. This difference highlights the influence of two-wheel vehicles using gasoline in Cotonou compared to that of four-wheel vehicles using diesel fuel in Abidjan. AOD was rather similar in both cities, with a mean value of 0.58 in Cotonou and of 0.68 in Abidjan. The seasonal cycle is dominated by the large increase in surface mass concentration and AOD during the long dry season (December-February) as expected due to mineral dust advection and biomass burning activities. The lowest concentrations are observed during the short dry season (August-September) due to an increase in surface wind speed leading to a better ventilation. On the other hand, the high PM2.5 / AOD ratio in the short wet season (October-November) indicates the stagnation of local pollution.

  15. Exploring the uncertainty in attributing sediment contributions in fingerprinting studies due to uncertainty in determining element concentrations in source areas.

    Science.gov (United States)

    Gomez, Jose Alfonso; Owens, Phillip N.; Koiter, Alex J.; Lobb, David

    2016-04-01

    One of the major sources of uncertainty in attributing sediment sources in fingerprinting studies is the uncertainty in determining the concentrations of the elements used in the mixing model due to the variability of the concentrations of these elements in the source materials (e.g., Kraushaar et al., 2015). The uncertainty in determining the "true" concentration of a given element in each one of the source areas depends on several factors, among them the spatial variability of that element, the sampling procedure and sampling density. Researchers have limited control over these factors, and usually sampling density tends to be sparse, limited by time and the resources available. Monte Carlo analysis has been used regularly in fingerprinting studies to explore the probable solutions within the measured variability of the elements in the source areas, providing an appraisal of the probability of the different solutions (e.g., Collins et al., 2012). This problem can be considered analogous to the propagation of uncertainty in hydrologic models due to uncertainty in the determination of the values of the model parameters, and there are many examples of Monte Carlo analysis of this uncertainty (e.g., Freeze, 1980; Gómez et al., 2001). Some of these model analyses rely on the simulation of "virtual" situations that were calibrated from parameter values found in the literature, with the purpose of providing insight about the response of the model to different configurations of input parameters. This approach - evaluating the answer for a "virtual" problem whose solution could be known in advance - might be useful in evaluating the propagation of uncertainty in mixing models in sediment fingerprinting studies. In this communication, we present the preliminary results of an on-going study evaluating the effect of variability of element concentrations in source materials, sampling density, and the number of elements included in the mixing models. For this study a virtual

  16. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  17. Elemental concentrations in deposited dust on leaves along an urbanization gradient.

    Science.gov (United States)

    Simon, Edina; Baranyai, Edina; Braun, Mihály; Cserháti, Csaba; Fábián, István; Tóthmérész, Béla

    2014-08-15

    Environmental health is an essential component of the quality of life in modern societies. Monitoring of environmental quality and the assessment of environmental risks are often species based on the elemental concentration of deposited dust. Our result suggested that stomata size and distribution were the most important factors influencing the accumulation of air contaminants in leaves. We found that the leaves' surfaces of Acer negundo and Celtis occidentalis were covered by a large number of trichomes, and these species have proven to be suitable biomonitors for atmospheric pollution difficult; these can be overcome using bioindicator species. Leaves of Padus serotina, Acer campestre, A. negundo, Quercus robur and C. occidentalis were used to assess the amount of deposited dust and the concentration of contaminants in deposited dust in and around the city of Debrecen, Hungary. Samples were collected from an urban, suburban and rural area along an urbanization gradient. The concentrations of Ba, Cu, Fe, Mn, Ni, Pb, S, Sr and Zn were determined in deposited dust using ICP-OES. Scanning electron microscopy (SEM) was used to explore the morphological structure and dust absorbing capacity of leaves. We found significant differences in dust deposition among species, and dust deposition correlated with trichomes' density. Principal component analysis (PCA) also showed a total separation of tree. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Agricultural management, season and trace elements effects on volatile oil production from Melissa officinalis L. (Lemon balm)

    International Nuclear Information System (INIS)

    Sussa, Fabio Vitorio; Duarte, Celina Lopes; Silva, Paulo Sergio Cardoso da; Furlan, Marcos Roberto

    2016-01-01

    The objective of this study was to provide information about organic and mineral fertilization, season and trace elements effects on volatile oil production by the species Melissa officinalis. Elemental concentration was determined by instrumental neutron activation analysis and atomic absorption spectrometry. The volatile oil was extracted by hydrodistillation and analyzed by gas chromatography coupled to a mass spectrometer. The elemental content and the main compounds vary according to agricultural management and season. The results indicate that the production of volatile oil main compounds from M. officinalis is correlated with the concentrations of Na, Co, Rb, Cd, Cs, La, Sm and Hf. (author)

  19. Speciation of selected trace elements in three Ethiopian Rift Valley Lakes (Koka, Ziway, and Awassa) and their major inflows

    International Nuclear Information System (INIS)

    Masresha, Alemayehu E.; Skipperud, Lindis; Rosseland, Bjorn Olav; Zinabu, G.M.; Meland, Sondre; Teien, Hans-Christian; Salbu, Brit

    2011-01-01

    The Ethiopian Rift Valley Lakes (ERVLs) are water resources which have considerable environmental, economic and cultural importance. However, there is an increasing concern that increasing human activities around these lakes and their main inflows can result in increased contamination of these water bodies. Information on total concentrations of some trace elements is available for these lakes and their inflows; however, data on the trace element speciation is lacking. Therefore, the objective of this study was to determine the low molecular mass (LMM) trace element species and also, evaluate the influence of flooding episodes on the LMM trace element fractions. At-site size and charge fractionation system was used for sampling of water from the lakes Koka, Ziway and Awassa and their main inflows during the dry and wet seasons. The results showed that chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and lead (Pb) in Lake Koka and its inflows as well as in Lake Ziway were predominantly present as HMM (high molecular mass, i.e., > 10 kDa) forms, while arsenic (As), selenium (Se), cadmium (Cd) were more mobile during the dry season. In Lake Awassa, all except Cr and Mn were predominantly found as LMM species (low molecular mass, i.e. < 10 kDa) which can be attributed to the high concentrations of LMM DOC (dissolved organic carbon). During the wet season, results from the Lake Koka and its inflows showed that all trace elements were predominantly associated with HMM forms such as colloids and particles, demonstrating that the mobility of elements was reduced during the wet season. The colloidal fraction of elements such as Cr, Ni, and Cd was also correlated with dissolved Fe. As the concentration of LMM trace element species are very low, the mobility, biological uptake and the potential environmental impact should be low.

  20. Single-experiment simultaneous-measurement of elemental mass-attenuation coefficients of hydrogen, carbon and oxygen for 0.123-1.33 MeV gamma rays

    International Nuclear Information System (INIS)

    Teli, M.T.; Nathuram, R.; Mahajan, C.S.

    2000-01-01

    As it is inconvenient to use elements like hydrogen, carbon and oxygen in pure forms for measurement of their gamma mass-attenuation coefficients, the measurements are to be done indirectly, by using compounds of the elements or a mixture of them. We give here a simple method of measuring the total mass-attenuation coefficients μ/ρ of the elements in a compound simultaneously and in a single experiment through the measurements of the μ/ρ values of the concerned compounds and using the mixture rule. The method is applied for the measurement of μ/ρ of hydrogen, carbon and oxygen by using acetone, ethanol and 1-propanol. Our results (for E γ =0.123-1.33 MeV) are seen to be in better agreement with the theoretical values of Hubbell and Seltzer (1995) [Hubbell J.H. and Seltzer S.M. (1995). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632] as compared to the results of El-Kateb and Abdul-Hamid (1991) [El-Kateb, A.H., Abdul-Hamid, A.S., 1991. Photon attenuation coefficient study of some materials containing hydrogen, carbon, and oxygen. Appl. Rad. Isot. 42, 303-307

  1. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    Science.gov (United States)

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  2. Concentrations of Chemical Elements in Willow Biomass Depend on Clone, Site and Management in the Field

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    Eight willow (Salix) clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) were planted on two soil types in Denmark. The biomass quality was evaluated after 3 years of growth by measuring differences in concentrations of 14 elements associated with ash behavior during combus...

  3. Non-constant relative atomic masses due to varying isotopic abundance of polynuclidic elements and their effect on the accuracy of analytical results

    International Nuclear Information System (INIS)

    Gerstenberger, H.

    1981-01-01

    Alterations of actual relative atomic masses occur in natural samples by natural isotope ratio shifts of polynuclidic elements. Therefore, using nuclear properties for gaining a measuring signal, isotopic shifts of certain elements may lead to significant measuring errors

  4. Discriminant analysis of normal and malignant breast tissue based upon INAA investigation of elemental concentration

    International Nuclear Information System (INIS)

    Kwanhoong Ng; Senghuat Ong; Bradley, D.A.; Laimeng Looi

    1997-01-01

    Discriminant analysis of six trace element concentrations measured by instrumental neutron activation analysis (INAA) in 26 paired-samples of malignant and histologically normal human breast tissues shows the technique to be a potentially valuable clinical tool for making malignant-normal classification. Nonparametric discriminant analysis is performed for the data obtained. Linear and quadratic discriminant analyses are also carried out for comparison. For this data set a formal analysis shows that the elements which may be useful in distinguishing between malignant and normal tissues are Ca, Rb and Br, providing correct classification for 24 out of 26 normal samples and 22 out of 26 malignant samples. (Author)

  5. Determination of trace elements in KRISS biological CRMs by INAA

    International Nuclear Information System (INIS)

    Cho, Kyung Haeng; Park, Kwang Won; Zeisler, Rolf

    2005-01-01

    Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS) during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in determination of certified values. INAA procedure was used in determination of 20 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values

  6. Disposal of flow-level radioactive waste in Belgium: A safety analysis for inorganic chemotoxic elements

    International Nuclear Information System (INIS)

    Mallants, D.; Volckaert, G.; Marivoet, J.; Neerdael, B.

    2000-01-01

    Low-level radioactive waste often contains large quantities of inorganic chemical substances. Due attention should therefore be given to the safety implications of both the radiological and chemical substances in the waste. Our study develops the safety assessment methodology for surface disposal with emphasis on the potential effects of inorganic nonradiological elements on human health. Contamination of groundwater was considered as the major exposure pathway. The applied methodology first screens all elements on the basis of five criteria. Conservative screening calculations were used to screen out the elements that do not pose danger to humans, and to select those that could have a negative impact and thus require further analysis. The latter was done by first calculating the elemental mass fluxes out of the repository and into the aquifer followed by the calculation of groundwater concentrations. The results showed that on the basis of the screening calculations, 75% of all elements could be classified as non-hazardous. The detailed calculations showed that the majority of the remaining elements had groundwater concentrations below the drinking water or groundwater standards. The results further showed that for a few elements the maximum groundwater concentration was above the standard, but below the background concentrations. (author)

  7. Redox speciation of final repository relevant elements using separation methods in combination with ICP mass spectrometry

    International Nuclear Information System (INIS)

    Graser, Carl-Heinrich

    2015-01-01

    The long-term safety assessment for nuclear waste repositories requires a detailed understanding of the chemistry of actinide elements in the geosphere. The development of advanced analytical tools is required to gain detailed insights into actinide redox speciation in a given system. The mobility of radionuclides is mostly determined by the geochemical conditions which control the redox state of radionuclides. Besides the longlived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox related geochemical processes. Analytical techniques for determining oxidation state distribution for redox sensitive radionuclides and other metal ions often have a lack of sensitivity. The detection limits of these methods (i.e. UV/vis, TRLFS, XANES) are in general in the range of ≥ 10 -6 mol.L -1 . As a consequence ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) and ion chromatography (IC) are powerful separation methods for metal ions. In the course of this thesis different speciation method for iron, neptunium and plutonium were optimized. With the optimized setup redox speciation analysis of these elements in different samples were done. Furthermore CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE - ICP - SF - MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI) and Fe (II, III) at concentrations lower than 10 -7 mol.L -1 . CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. The methodes detection limits are 10 -12 mol.L -1 for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate based electrolyte system. The separation of Fe (II

  8. Elemental composition of Malawian rice.

    Science.gov (United States)

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2017-08-01

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg -1 , dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg -1 , and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg -1 , dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied

  9. Stable Chlorine Isotopes and Elemental Chlorine by Thermal Ionization Mass Spectrometry and Ion Chromatography; Martian Meteorites, Carbonaceous Chondrites and Standard Rocks

    Science.gov (United States)

    Nakamura, N.; Nyquist, L. E.; Reese, Y.; Shih, C.-Y.; Fujitani, T.; Okano, O.

    2011-01-01

    Recently significantly large mass fractionation of stable chlorine isotopes has been reported for terrestrial and lunar samples [1,2]. In addition, in view of possible early solar system processes [3] and also potential perchlorate-related fluid/microbial activities on the Martian surface [4,5], a large chlorine isotopic fractionation might be expected for some types of planetary materials. Due to analytical difficulties of isotopic and elemental analyses, however, current chlorine analyses for planetary materials are controversial among different laboratories, particularly between IRMS (gas source mass spectrometry) and TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1,6,7] for isotopic analyses, as well as between those doing pyrohydrolysis and other groups [i.e. 6,8]. Additional careful investigations of Cl isotope and elemental abundances are required to confirm real chlorine isotope and elemental variations for planetary materials. We have developed a TIMS technique combined with HF-leaching/ion chromatography at NASA JSC that is applicable to analysis of small amounts of meteoritic and planetary materials. We present here results for several standard rocks and meteorites, including Martian meteorites.

  10. Accurate determination of 41Ca concentrations in spent resins from the nuclear industry by Accelerator Mass Spectrometry

    International Nuclear Information System (INIS)

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-01-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long‐Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low 41 Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). 41 Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF 2 precipitations. Measured 41 Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The 41 Ca/ 60 Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. - Highlights: • In the context of radioactive waste management, this study aimed at measuring 41 Ca in spent resins using Accelerator Mass Spectrometry. • A chemical treatment procedure was developed to quantitatively recover calcium in solution and selectively extract it. • Developed firstly on synthetic matrices, the chemical treatment procedure was then successfully applied to real resin samples. • Accelerator mass spectrometry allowed measuring concentrations of 41 Ca in spent resins as low as 0.02 ng/g of dry resin. • Final results are in agreement with current data used for spent resins management

  11. Bio- and toxic elements in mushrooms from the city of Umeå and outskirts, Sweden.

    Science.gov (United States)

    Mędyk, Małgorzata; Grembecka, Małgorzata; Brzezicha-Cirocka, Justyna; Falandysz, Jerzy

    2017-08-03

    Edible mushrooms (Albatrellus ovinus, Boletus edulis, Clitocybe odora, Gomphidius glutinosus, Leccinum scabrum, Leccinum versipelle, Lycoperdon perlatum, Suillus bovinus, Suillus luteus, and Xerocomus subtomentosus) collected from unpolluted areas of the city of Umeå and its outskirts in the northern part of Sweden were examined for contents of toxic metallic elements (Cd, Pb, and Ag) and essential macro- and microelements (K, Na, Ca, Mg, Cu, Fe, Mn, and Zn) using a validated method and a final measurement by flame atomic absorption spectroscopy (F-AAS). The median values of the toxic metallic element concentrations (in mg kg -1 dry biomass, db) ranged from: 0.12-3.9, 0.46-5.1, and 0.91-6.2 for Ag, Cd and Pb, respectively. For the essential metallic elements, the median values of concentrations ranged from: 24000-58000, 15-2000, 59-610, 520-1900, 2.0-97, 16-150, 15-120, and 4.3-26 mg kg -1 db for K, Na, Ca, Mg, Cu, Zn, Fe, and Mn, respectively. The baseline concentrations of the metallic elements determined in mushrooms were mainly affected by the fungal species. The assessed probable maximal dietary intake of Cd (0.002 mg kg -1 body mass) solely from a mushroom meal was only slightly below a revised value of the tolerable weekly intake for this element, while for Pb (0.003 mg kg -1 body mass) it was tenfold below the provisionally tolerable weekly intake.

  12. Concentration and characterization of airborne particles in Tehran's subway system.

    Science.gov (United States)

    Kamani, Hosein; Hoseini, Mohammad; Seyedsalehi, Mahdi; Mahdavi, Yousef; Jaafari, Jalil; Safari, Gholam Hosein

    2014-06-01

    Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran's subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4 ± 26.3 and 52.3 ± 16.5 μg m(-3) in the platform and 81.8 ± 22.2 and 35 ± 17.6 μg m(-3) in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6 ± 23 and 41.3 ± 20.4 μg m(-3) in the platform and 73.9 ± 17.3 and 30 ± 15 μg m(-3), in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43% (PM10) and 47.7% (PM2.5) in platform of Imam Khomeini station and 15.9% (PM10) and 18.5% (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6% (PM10) and 39.8% (PM2.5) in platform and was 11.7% (PM10) and 14.3% (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3% in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8% of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5% in the outdoor air, respectively. Other major crustal elements were 5.8% (PM10) and 5.3% (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4% in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7% in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.

  13. A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods

    International Nuclear Information System (INIS)

    Inakollu, Prasanthi; Philip, Thomas; Rai, Awadhesh K.; Yueh Fangyu; Singh, Jagdish P.

    2009-01-01

    A comparative study of analysis methods (traditional calibration method and artificial neural networks (ANN) prediction method) for laser induced breakdown spectroscopy (LIBS) data of different Al alloy samples was performed. In the calibration method, the intensity of the analyte lines obtained from different samples are plotted against their concentration to form calibration curves for different elements from which the concentrations of unknown elements were deduced by comparing its LIBS signal with the calibration curves. Using ANN, an artificial neural network model is trained with a set of input data of known composition samples. The trained neural network is then used to predict the elemental concentration from the test spectra. The present results reveal that artificial neural networks are capable of predicting values better than traditional method in most cases

  14. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Lewistown NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Shannon, S.S. Jr.

    1980-08-01

    Totals of 758 water and 1170 sediment samples were collected from 1649 locations in the Levistown quadrangle. Water samples were collected at streams, springs, wells, ponds, and marshes; sediment samples were obtained from streams, springs, and ponds. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. All samples were collected at the nominal reconnaissance density of one sample location per 10 km 2 . Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium to thorium (U/Th) ratios for sediment samples are included. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB U were reanalyzed by delayed-neutron counting. Sediments were analyzed for U and Th as well as Al, Sb, Ba, Be, Bi, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Dy, Eu, Au, Hf, Fe, La, Pb, Li, Lu, Mg, Mn, Ni, Nb, K, Rb, Sa, Sc, Ag, Na, Sr, Ta, Tb, Sn, Ti, W, V, Yb, and Zn. All sediments were analyzed for U by delayed neutron counting. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results are reported as parts per million. Descriptions of procedures used for analysis of water and sediments samples as well as analytical precisions and detection limits are given

  15. Soil concentrations and source apportionment of polybrominated diphenyl ethers (PBDEs) and trace elements around a heavily industrialized area in Kocaeli, Turkey.

    Science.gov (United States)

    Cetin, Banu

    2014-01-01

    Air pollutants are transported by dry deposition, wet deposition, and gas exchange accumulated in soil. Therefore, soil is an important environmental medium reflecting the level and the spatial distribution of air pollutants such as polybrominated diphenyl ethers (PBDEs) and heavy metals. Soil concentrations of seven PBDE congeners and 21 trace elements were determined in a heavily industrialized region (Dilovasi) in Kocaeli, Turkey. At all sites, Σ7PBDE concentrations ranged from 0.70 to 203 with a mean value of 26.3 μg kg(-1) (dry weight). The congener profiles and mass inventories of PBDEs and their interactions with soil organic matter (SOM) were also investigated. BDE-209 was the dominant congener at all sites, followed by BDE-99 and/or -47. The estimated inventory of PBDEs for the Dilovasi district was 310 kg. However, there are several additional industrial regions in Kocaeli city. Considering the total land area, the potential inventory would be much larger for this city. The relationship between the PBDE concentrations in soil and SOM content indicated that factors other than soil properties have a greater influence on soil concentrations. Crustal enrichment factors (EFs) were determined; correlation analysis and factor analysis (FA) were also applied to generated data set to identify and apportion the sources polluting the soil. Sn, Mn, Ca, As, Zn, Pb, and Cd had significantly high average EF values, indicating that their soil concentrations were mainly influenced by anthropogenic activities. In FA, six factors were extracted with a cumulative variance of 84.4 % and industrial activities and traffic were found to be the main factors affecting the soil profile.

  16. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road.

    Science.gov (United States)

    Mleczek, Patrycja; Borowiak, Klaudia; Budka, Anna; Niedzielski, Przemysław

    2018-06-05

    Rare earth elements (REEs) are a group of elements whose concentration in numerous environmental matrices continues to increase; therefore, the use of biological methods for their removal from soil would seem to be a safe and reasonable approach. The aim of this study was to estimate the phytoextraction efficiency and distribution of light and heavy (LREEs and HREEs) rare earth elements by three herbaceous plant species: Artemisia vulgaris L., Taraxacum officinale F.H. Wigg. and Trifolium repens L., growing at a distance of 1, 10, and 25 m from the edge of a frequented road in Poland. The concentration of REEs in soil and plants was highly correlated (r > 0.9300), which indicates the high potential of the studied plant species to phytoextraction of these elements. The largest proportion of REEs was from the group of LREEs, whereas HREEs comprised only an inconsiderable portion of the REEs group. The dominant elements in the group of LREEs were Nd and Ce, while Er was dominant in the HREEs group. Differences in the amounts of these elements influenced the total concentration of LREEs, HREEs, and finally REEs and their quantities which decreased with distance from the road. According to the Friedman rank sum test, significant differences in REEs concentration, mainly between A. vulgaris L., and T. repens L. were observed for plants growing at all three distances from the road. The same relation between A. vulgaris L. and T. officinale was observed. The efficiency of LREEs and REEs phytoextraction in the whole biomass of plants growing at all distances from the road was A. vulgaris L. > T. officinale L. > T. repens L. For HREEs, the same relationship was recorded only for plants growing at the distance 1 m from the road. Bioconcentration factor (BCF) values for LREEs and HREEs were respectively higher and lower than 1 for all studied plant species regardless of the distance from the road. The studied herbaceous plant species were able to effectively phytoextract

  17. An application of a relational database system for high-throughput prediction of elemental compositions from accurate mass values.

    Science.gov (United States)

    Sakurai, Nozomu; Ara, Takeshi; Kanaya, Shigehiko; Nakamura, Yukiko; Iijima, Yoko; Enomoto, Mitsuo; Motegi, Takeshi; Aoki, Koh; Suzuki, Hideyuki; Shibata, Daisuke

    2013-01-15

    High-accuracy mass values detected by high-resolution mass spectrometry analysis enable prediction of elemental compositions, and thus are used for metabolite annotations in metabolomic studies. Here, we report an application of a relational database to significantly improve the rate of elemental composition predictions. By searching a database of pre-calculated elemental compositions with fixed kinds and numbers of atoms, the approach eliminates redundant evaluations of the same formula that occur in repeated calculations with other tools. When our approach is compared with HR2, which is one of the fastest tools available, our database search times were at least 109 times shorter than those of HR2. When a solid-state drive (SSD) was applied, the search time was 488 times shorter at 5 ppm mass tolerance and 1833 times at 0.1 ppm. Even if the search by HR2 was performed with 8 threads in a high-spec Windows 7 PC, the database search times were at least 26 and 115 times shorter without and with the SSD. These improvements were enhanced in a low spec Windows XP PC. We constructed a web service 'MFSearcher' to query the database in a RESTful manner. Available for free at http://webs2.kazusa.or.jp/mfsearcher. The web service is implemented in Java, MySQL, Apache and Tomcat, with all major browsers supported. sakurai@kazusa.or.jp Supplementary data are available at Bioinformatics online.

  18. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus

    International Nuclear Information System (INIS)

    Tzortzis, Michalis; Tsertos, Haralabos

    2004-01-01

    A comprehensive study was conducted to determine thorium, uranium and potassium elemental concentrations in surface soils throughout the accessible area of Cyprus using high-resolution γ-ray spectrometry. A total of 115 soil samples was collected from all over the bedrock surface of the island based on the different lithological units of the study area. The soil samples were air-dried, sieved through a fine mesh, sealed in 1000-ml plastic Marinelli beakers, and measured in the laboratory in terms of their gamma radioactivity for a counting time of 18 h each. From the measured γ-ray spectra, elemental concentrations were determined for thorium (range from 2.5x10 -3 to 9.8 μg g -1 ), uranium (from 8.1x10 -4 to 3.2 μg g -1 ) and potassium (from 1.3x10 -4 to 1.9%). The arithmetic mean values (A.M.±S.D.) calculated from all samples are: (1.2±1.7) μg g -1 , (0.6±0.7) μg g -1 and (0.4±0.3)%, for thorium, uranium and potassium, respectively, which are by a factor of three-six lower than the world average values of 7.4 μg g -1 (Th), 2.8 μg g -1 (U) and 1.3% (K) derived from all data available worldwide. The best-fitting relation between the concentrations of Th and K versus U and also of K versus Th, is essentially of linear type with a correlation coefficient of 0.93, 0.84 and 0.90, respectively. The Th/U, K/U and K/Th ratios (slopes) extracted are equal to 2.0, 2.8x10 3 and 1.4x10 3 , respectively

  19. Software requirements, design, and verification and validation for the FEHM application - a finite-element heat- and mass-transfer code

    International Nuclear Information System (INIS)

    Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.

    1997-07-01

    The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered

  20. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    Science.gov (United States)

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.