WorldWideScience

Sample records for element nuclear chemistry

  1. Nuclear chemistry of transactinide elements

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    The current status on the nuclear chemistry studies of transactinide elements is reviewed. The production of transactinides in heavy ion reactions is briefly discussed, and nuclear properties on the stability of transactinides are presented. Chemical properties of the trans-actinide elements 104, 105 and 106, and a typical experimental technique used to study these properties on an atom-at-a-time base are introduced. (author)

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  3. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  4. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  5. Spallation RI beam facility and heavy element nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    An outline of the spallation RI (Radioactive Ion) beam facility is presented. Neutron-rich nuclides are produced in the reaction of high intensity (10-1000 {mu}A) protons with energy of 1.5 GeV and an uranium carbide target. Produced nuclides are ionized in an isotope separator on-line (ISOL) and accelerated by the JAERI tandem and the booster linac. Current progress and a future project on the development of the RI beam facility are given. Studies of transactinide elements, including the synthesis of superheavy elements, nuclear structure far from stability, and RI-probed material science are planned with RI beams. An outlook of the transactinide nuclear chemistry studies using neutron-rich RI beams is described. (author)

  6. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  7. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  8. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  9. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  10. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  11. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  12. Chemistry of the actinide elements. Second edition

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for σ- and π-bonded compounds, and some concluding remarks on the superheavy elements

  13. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  14. Introduction to nuclear chemistry

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1980-01-01

    The study in this book begins with the periodic system of elements (chapter 1). The physical fundamentals necessary to understand nuclear chemistry are dealt with in chapter 2. Chapter 3 and 4 treat the influence of the mass number on the chemical behaviour (isotope effect) and the isotope separation methods thus based on this effect. A main topic is studied in chapter 5, the laws of radioactive decay, a second main topic is dealt with in chapter 8, nuclear reactions. The chemical effects of nuclear reactions are treated on their own chapter 9. Radiochemical reactions which are partly closely linked to the latter are only briefly discussed in chapter 10. The following chapters discuss the various application fields of nuclear chemistry. The large apparatus indispensable for nuclear chemistry is dealt with in a special chapter (chapter 12). Chapter 15 summarizes the manifold applications. (orig.) [de

  15. Superheavy Elements Challenge Experimental and Theoretical Chemistry

    CERN Document Server

    Zvára, I

    2003-01-01

    When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.

  16. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  17. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  18. Superheavy element chemistry. Achievements and perspectives

    International Nuclear Information System (INIS)

    Schaedel, M.

    2007-01-01

    Superheavy elements have been synthesized and chemically characterized one-atom-at-a-time up to element 108. Presently, the quest for element 112 is one of the hottest topics in this field. The transactinide elements 104 to 108 are members of group 4 to 8 of the Periodic Table and element 112 belongs into group 12. Chemical properties of some of these elements, like elements 104 and 105, show stunning deviations from simple extrapolations within their respective group while others exhibit great similarities with their lighter homologues elements. First experiments to investigate seaborgium (Sg, element 106) in aqueous solution were performed. Again, in large international collaborations at the GSI, several gas-phase chemistry experiments were performed with hassium (Hs, element 108). Recently, the highly efficient and very clean separation of Hs was applied for nuclear studies of various Hs nuclides investigating their cross section and their nuclear decay properties in the region of the doubly-magic 270 Hs (Z=108, N=162). To overcome certain limitations of the presently used on-line chemical separations the new TransActinide Separation and Chemistry Apparatus (TASCA) - with a gas-filled recoil separator as a front-end tool - was designed and built at the GSI in a collaborative effort. Presently in its commissioning phase, TASCA shall be a key instrument for a big leap into quantitatively and qualitatively new experiments in the region of superheavy elements. (author)

  19. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  20. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  1. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  2. Automated rapid chemistry in heavy element research

    International Nuclear Information System (INIS)

    Schaedel, M.

    1994-01-01

    With the increasingly short half-lives of the heavy element isotopes in the transition region from the heaviest actinides to the transactinide elements the demand for automated rapid chemistry techniques is also increasing. Separation times of significantly less than one minute, high chemical yields, high repetition rates, and an adequate detection system are prerequisites for many successful experiments in this field. The development of techniques for separations in the gas phase and in the aqueous phase for applications of chemical or nuclear studies of the heaviest elements are briefly outlined. Typical examples of results obtained with automated techniques are presented for studies up to element 105, especially those obtained with the Automated Rapid Chemistry Apparatus, ARCA. The prospects to investigate the properties of even heavier elements with chemical techniques are discussed

  3. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  4. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  5. Actinide separation chemistry in nuclear waste streams, an OECD Nuclear Energy Agency review

    International Nuclear Information System (INIS)

    Madic, C.

    1997-01-01

    The separation of actinide elements from various waste materials, either produced in nuclear fuel cycle or in the past during nuclear weapon production, represent a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected from a better knowledge of the chemistry of these elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide chemistry to review the current and developing separation techniques and chemical processes. Recommendations were made for future research and development programs. This article presents briefly the work of the Task Force which will be published soon as an OECD/NEA/NSC Report. (author)

  6. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  7. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  8. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  9. Chemistry of the superheavy elements.

    Science.gov (United States)

    Schädel, Matthias

    2015-03-13

    The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  11. Chemistry of the redox sensitive elements. Literature review

    International Nuclear Information System (INIS)

    Suter, D.

    1991-10-01

    As a part of the safety assessment for a nuclear waste repository, the migration of the radioactive elements from the waste matrix to the biosphere has to be modelled. The geosphere is an important barrier and a consideration of the retention of the radioactive isotopes needs knowledge of sorption coefficients and solubilities. Important long-lived isotopes in the high level radioactive waste are the fission products selenium, technetium, palladium and tin, and the actinide neptunium, which are all redox sensitive elements. A transport model using conservative sorption values predicts mainly doses from these five elements. Since the individual oxidation states of the redox sensitive elements have different and largely unknown sorption properties and solubilities, the realistic doses might be far less. The relevant literature about the chemistry of the five elements is summarized and is planned to serve as the basis for an experimental programme. For every element, the literature about the general chemistry, selected sorption studies, geochemistry, and analytical methods is reviewed. It was found that the knowledge about some of these points is very limited. Even the general chemistry of some of the elements is not well known, because they have only limited applications and research concentrates only on certain aspects. Most of the sorption studies in the context of nuclear waste concentrate on a few of the relevant elements and others have been neglected up to now. The simulation of a realistic system in the laboratory poses some problems, which have to be solved as well. The literature about this subject is also critically reviewed. The elements which are most mobile under realistic far-field conditions are identified and it is recommended to concentrate research on these at the beginning. (author)

  12. Chemistry of the redox sensitive elements. Literature review

    International Nuclear Information System (INIS)

    Suter, D.

    1991-10-01

    As a part of the safety assessment for a nuclear waste repository, the migration of the radioactive elements from the waste matrix to the biosphere has to be modelled. The geosphere is an important barrier and a consideration of the retention of the radioactive isotopes needs knowledge of sorption coefficients and solubilities. Important long-lived isotopes in the high level radioactive waste are the fission products selenium, technetium, palladium and tin, and the actinide neptunium, which are all redox sensitive elements. A transport model using conservative sorption values predicts mainly doses from these five elements. Since the individual oxidation states of the redox sensitive elements have different and largely unknown sorption properties and solubilities, the realistic doses might be far less. The relevant literature about the chemistry of the five elements is summarized and is planned to serve as the basis for an experimental programme. For every element, the literature about the general chemistry, selected sorption studies, geochemistry, and analytical methods is reviewed. It was found that the knowledge about some of these points is very limited. Even the general chemistry of some of the elements in not well known, because they have only limited applications and research concentrates only on certain aspects. Most of the sorption studies in the context of nuclear waste concentrate on a few of the relevant elements and others have been neglected up to now. The simulation of a realistic system in the laboratory poses some problems, which have to be solved as well. The literature about this subject is also critically reviewed. The elements which are most mobile under realistic far-field conditions are identified and it is recommended to concentrate research on these at the beginning. (author) 9 figs., 192 refs

  13. Proceedings of 26. annual academic conference of China Chemical Society--modern nuclear chemistry and radiochemistry

    International Nuclear Information System (INIS)

    2008-08-01

    26. annual academic conference of China Chemical Society was held in Tianjing, 13-16 July, 2008. This proceedings is about modern nuclear chemistry and radiochemistry, the contents include: new elements and new nuclides; advanced nuclear chemistry; radiochemistry and national security; new radiopharmaceutical chemistry; modern radiological analytical chemistry and large scientific facilities; radiological environmental chemistry and nuclear radioactive waste; actinide chemistry and transactinide chemistry; radiochemistry and cross discipline, etc.

  14. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  15. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  16. Transactinide nuclear chemistry at JAERI

    International Nuclear Information System (INIS)

    Nagame, Y.; Haba, H.; Tsukada, K.

    2002-01-01

    Nuclear chemistry study of trans actinide elements in Japan is currently being in progress at JAERI (Japan Atomic Energy Research Institute). We have developed new experimental apparatuses: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber, a rotating wheel catcher apparatus for the measurement of α and spontaneous fission decay of the transactinides, MANON (Measurement system for Alpha particles and spontaneous fission events ON line), and an automated rapid chemical separation apparatus based on the high performance liquid chromatography, AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). The transactinide nuclei, 261 Rf and 262 Db, have been successfully produced via the reactions of 248 Cm( 18 O,5n) and 248 Cm( 19 F,5n), respectively, and the excitation functions for each reaction have been measured to evaluate the optimum irradiation condition for the production of these nuclei. The maximum cross sections in each reaction were 13 nb at the 18 O beam energy of 94-MeV and 1.5 Nb at the 103-MeV 19 F beam energy. On-line ion exchange experiments of Rf together with the lighter homologues Zr and Hf in the HCl, HNO 3 and HF solutions with AIDA have been carried out, and the results clearly show that the behavior of Rf is typical of the group-4 element. Relativistic molecular orbital calculations of the chloride and nitrate complexes of tetravalent Rf are also being performed to gain an understanding of the complex chemistry. Prospects and some recent experimental results for the nuclear chemistry study of the transactinide elements at JAERI are discussed. (author)

  17. Mainz University, Institute of Nuclear Chemistry. Annual report 1993

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1994-03-01

    The report presents the results achieved by the Institute's five working groups in the following fields: Development of chemical separation processes, chemistry of ultraheavy elements; Developments in instrumentation; Nuclear fission and heavy ion reactions; Nuclear astrophysics, decay characteristics, structure of atoms and nuclei; Environmental pollution analysis. (orig./EF) [de

  18. Advances in nuclear chemistry and its applications in the Philippines

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2015-01-01

    Nuclear chemistry was born almost 120 years ago with the discovery of radioactivity by Antoine Henry Becquerel in 1896. Nuclear chemistry is a subfield of chemistry that deals with radioactivity, nuclear reactions and processes, and nuclear properties. The composition of the nucleus and the changes that occur within the nucleus define the properties of the radioisotope and the nuclear reactions and processes it is involved in. Almost six decades ago, nuclear chemistry established its roots in the Philippines under the Philippine Atomic Energy Commission, presently the Philippine Nuclear Research Institute. The main areas of nuclear chemistry, namely, namely radiochemistry, radiation chemistry, radiation biology, and isotopic chemistry have been studies, and have found applications in food and agriculture, medicine and health, in idustry, and in the protection of the environment. Early work in nuclear chemistry utilized the Philippine Research Reactor (PRR-1) for the production of radioisotopes which were used in either research or direct applications in food and agriculture, health and medicine, and industry. The PRR-1 provided neutrons for the non destructive multi element analysis of various samples using the neutron activation analysis technique. Radioactive materials as sources of ionizing radiation are being used extensively to study the chemical and biological effects of radiation on matter. Current studies involve the irradiation of certain plants and insects causing changes in their DNA which result in mutation for better crop varieties and sterility in insects for quarantine treatment and pest management. Radiation can modify the properties of polymers. Natural polymers such as carrageenan, chitosan and cellulose in abaca and water hyacinth fibers are subjected to gamma irradiation changing their properties and resulting in new products such as wound drressing, hemostatic agents, plant growth promoters, and metal-chelating agents. Radioisotopes are also

  19. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  20. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  1. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    Barr, D.W.; Heiken, J.H.

    1988-05-01

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  2. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  3. Nuclear chemistry 1

    International Nuclear Information System (INIS)

    Macasek, F.

    2009-01-01

    This text-book (electronic book - multi-media CD-ROM) constitutes a course-book - author's collection of lectures. It consists of 9 lectures in which the reader acquaints with the basis of nuclear chemistry and radiochemistry: History of nucleus; Atomic nuclei; Radioactivity; Nuclear reactions and nucleogenesis; Isotopism; Ionizing radiation; Radiation measurement; Nuclear energetics; Isotopic indicators. This course-book may be interesting for students, post-graduate students of chemistry, biology, physics, medicine a s well as for teachers, scientific workers and physicians. (author)

  4. Isotope and Nuclear Chemistry Division annual report FY 1985, October 1984-September 1985

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1986-04-01

    This report describes progress in the major research and development programs carried out in FY 1985 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiations facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  5. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  6. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  7. Chemistry programmes at a technological and nuclear centre

    International Nuclear Information System (INIS)

    Servian, J.L.

    1984-01-01

    The application of chemical principles and techniques have played a major role in the development of nuclear sciences and technology. The discovery of radioactivity, the isolation of radium and polonium, the discovery of artificial radioactivity and nuclear fission and the production of transuranium elements are historical landmarks that show the prominent role performed by chemistry. The purpose of this paper is to summarize the chemistry areas and experimental facilities for programmes of training, research and development, and service that might be designed for implementation at the Centre when appropriate. Though the areas are separately presented for analysis, they are closely related among themselves and also related to other activities of the Centre. (author)

  8. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1979-01-01

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  9. Chemistry of the heaviest elements

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1996-01-01

    Studies of the chemical properties of the elements at the uppermost end of the periodic table are discussed. Some historical perspective is given, but major emphasis is on recent studies. Isotopes of these elements are short-lived and, therefore, must be studied near the site of production. They must be produced with charged-particle beams at accelerators rather than via neutron capture. The use of radioactive heavy actinide targets is often required and the number of atoms produced is so small that any chemistry to be performed must be done on an ''atom-at-a-time'' basis. Furthermore, a knowledge of their nuclear properties is required in order to identify and detect them. To date, both gas and aqueous phase properties of elements as heavy as element 104 (rutherfordium) and element 105 (hahnium) have been investigated, even though their longest-lived known isotopes have half-lives of only 65 and 35 seconds, respectively. The experimental results show that their chemical properties cannot be simply extrapolated from the known properties of their lighter homologs in the periodic table, emphasizing the importance of obtaining additional experimental information for the heaviest elements to compare with predictions and help assess the influence of relativistic effects. The feasibility of the extension of chemical studies to still heavier elements is also discussed. (orig.)

  10. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  11. Frontiers in nuclear chemistry

    International Nuclear Information System (INIS)

    Sood, D.D.; Reddy, A.V.R.; Pujari, P.K.

    1996-01-01

    This book contains articles on the landmarks in nuclear and radiochemistry which takes through scientific history spanning over five decades from the times of Roentgen to the middle of this century. Articles on nuclear fission and back end of the nuclear fuel cycle give an insight into the current status of this subject. Reviews on frontier areas like lanthanides, actinides, muonium chemistry, accelerator based nuclear chemistry, fast radiochemical separations and nuclear medicine bring out the multidisciplinary nature of nuclear sciences. This book also includes an article on environmental radiochemistry and safety. Chapters relevant to INIS are indexed separately

  12. Coordination chemistry of technetium as related to nuclear medicine

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.

    1982-01-01

    Significant advances have been made in the area of technetium coordination chemistry during the last five years. The main driving force behind this recent surge of interest in the field has been due to the practical application of technetium-99m in the rapidly growing speciality of nuclear medicine. Technetium-99 is one of the products of nuclear fission reactions, but it was the development of the molybdenum-99-technetium-99m generator about two decades ago that provided the basis for the development of radiopharmaceuticals routinely used in modern diagnostic applications. The chemistry of this element has proven to be quite rich owing to its multiple oxidation states and variable geometry. This can be attributed to its position in the middle of the periodic table. Diagnostic radiopharmaceuticals comprise predominantly III, IV and V oxidation states of Tc and involve a variety of coordination complexes. Even though the chemistry of Tc has been slow to evolve, recent synthetic advances have provided a more scientific basis for the study of a number of compounds with diverse coordination geometries and structures. Ligands with oxygen, nitrogen and sulfur donor atoms have been utilized to elucidate various aspects of the coordination chemistry of Tc. Single crystal X-ray structural analysis has been extensively used to characterize Tc complexes and thus construct a firm foundation for the study of synthetic and mechanistic aspects of the chemistry of this element. (author)

  13. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  14. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  15. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  16. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  17. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  18. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  19. The chemistry of the actinide elements. Volume I

    International Nuclear Information System (INIS)

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1986-01-01

    The Chemistry of the Actinide Elements is a comprehensive, contemporary and authoritative exposition of the chemistry and related properties of the 5f series of elements: actinium, thorium, protactinium, uranium and the first eleven. This second edition has been completely restructured and rewritten to incorporate current research in all areas of actinide chemistry and chemical physics. The descriptions of each element include accounts of their history, separation, metallurgy, solid-state chemistry, solution chemistry, thermo-dynamics and kinetics. Additionally, separate chapters on spectroscopy, magnetochemistry, thermodynamics, solids, the metallic state, complex ions and organometallic compounds emphasize the comparative chemistry and unique properties of the actinide series of elements. Comprehensive lists of properties of all actinide compounds and ions in solution are given, and there are special sections on such topics as biochemistry, superconductivity, radioisotope safety, and waste management, as well as discussion of the transactinides and future elements

  20. Nuclear fission and the transuranium elements

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs

  1. Nuclear fission and the transuranium elements

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1989-02-01

    Many of the transuranium elements are produced and isolated in large quantities through the use of neutrons furnished by nuclear fission reactions: plutonium (atomic number 94) in ton quantities; neptunium (93), americium (95), and curium (96) in kilogram quantities; berkelium (97) in 100 milligram quantities; californium (98) in gram quantities; and einsteinium (99) in milligram quantities. Transuranium isotopes have found many practical applications---as nuclear fuel for the large-scale generation of electricity, as compact, long-lived power sources for use in space exploration, as means for diagnosis and treatment in the medical area, and as tools in numerous industrial processes. Of particular interest is the unusual chemistry and impact of these heaviest elements on the periodic table. This account will feature these aspects. 9 refs., 5 figs.

  2. Nuclear Forensics and Radiochemistry: Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    The chemical behavior of radioactive elements can differ from conventional wisdom because the number of atoms can be unusually small. Kinetic effects and unusual oxidation states are phenomena that make radiochemistry different from conventional analytic chemistry. The procedures developed at Los Alamos are designed to minimize these effects and provide reproducible results over a wide range of sample types. The analysis of nuclear debris has the additional complication of chemical fractionation and the incorporation of environmental contaminants. These are dealt with through the use of three component isotope ratios and the use of appropriate end members.

  3. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  4. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  5. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    1969-01-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor [sr

  6. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  7. Nuclear Chemistry, exercises

    International Nuclear Information System (INIS)

    Savio, E.; Saucedo, E.

    2002-01-01

    Those exercises have as objective to introduce the student in the basic concepts of nuclear chemistry: a) way of decline b) balances of mass used in nuclear reactions c) how to calculate activities, activity concentrations and specific activity d) radiotracers use in biomedical sciences pharmaceutical

  8. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  9. Chemistry gains a new element: Z=106

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Eichler, B.; Tuerler, A.

    1997-01-01

    Even though 112 chemical elements are presently known, for elements with atomic numbers above 105 only nuclear decay properties have been investigated so far. Such data allow to proof the existence of a given nuclide, but they do not yield any information with respect to the position of a chemical element in the Periodic Table. We have performed ever first chemical investigations of element 106. According to the Periodic Table element 106 should be a member of group 6, having similar chemical properties as W, Mo and Cr. Two different techniques were applied to separate and identify element 106: a liquid chromatography system (ARCA = Automated Rapid Chemistry Apparatus) and a continuous isothermal chromatography device (OLGA = On-Line Gaschemistry Apparatus). With ARCA about 5'000 separations on small cation exchange columns (Aminex A6) with a 0.1 M HNO 3 /5.10 -4 M Hf solution were performed and with OLGA the gas adsorption behaviour of oxychlorides on quartz columns using Cl 2 /SOCl 2 /O 2 as reactive gas were studied. On the basis of only ten detected atoms, it was possible to proof that element 106 forms complexes which are eluted at positions similar to those of Mo and W. In addition, in the gas phase element 106 forms oxychlorides of lower volatility compared to those of Mo and W. (author) 1 ref

  10. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  11. The Living Textbook of Nuclear Chemistry

    International Nuclear Information System (INIS)

    Loveland, W.; Gallant, A.; Joiner, C.

    2005-01-01

    The Living Textbook of Nuclear Chemistry (http://livingtextbook.orst.edu) is a website, which is a collection of supplemental materials for the teaching of nuclear and radiochemistry. It contains audio-video presentations of the history of nuclear chemistry, tutorial lectures by recognized experts on advanced topics in nuclear and radiochemistry, links to data compilations, articles, and monographs, an audio course on radiochemistry, on-line editions of textbooks, training videos, etc. All content has been refereed. (author)

  12. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  13. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Robertson, J.D.; Missouri University, Columbia, MO; Kleppinger, E.W.

    2005-01-01

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  14. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2003-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high- ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will provide the basis for designing effective instrumentation for radioanalytical process monitoring. Specific analytical targets include 99 Tc, 90Sr and

  15. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2004-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles, which entails integration of sample treatment and separation chemistries and radiometric detection within a single functional analytical instrument. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high-ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid-state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will

  16. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  17. Past and present trends of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Kuruc, J.

    2007-01-01

    This book represents not only the papers and lectures presented on the Seminar at the occasion of forty years of foundation of the Department of Nuclear Chemistry which took place on October 3 - 5, 2006 in Kezmarske Zlaby (High Tatras). It also contains the papers and presentations of post-graduate students and workers of the Department of Nuclear Chemistry as well as colleagues working in different field of nuclear chemistry and radioecology on various workplaces in the Slovak Republic, too. The book contains 17 papers, 15 presentations, photographs and 3 short video recording

  18. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  19. Proceedings of the workshop on the nuclear sciences of the heaviest elements

    Energy Technology Data Exchange (ETDEWEB)

    Nagame, Yuichiro; Haba, Hiromitsu; Ikezoe, Hiroshi [eds.

    2000-03-01

    The workshop on the nuclear sciences of the heaviest elements took place on July 21-22, 1999 at the Japan Atomic Energy Research Institute (JAERI), Tokai. Approximately 40 scientists and 15 graduate students participated in the workshop which was organized by the Advanced Science Research Center, JAERI. The successful syntheses of three new super-heavy elements in 1999, Z=114 at the Joint Institute for Nuclear Research in Dubna, Russia, and Z=118 (with Z=116 following from {alpha}-decay of Z=118) at the Lawrence Berkeley National Laboratory (LBNL) in USA, are tremendous progress in the field of the heavy element research. The 1st International Conference on the Chemistry and Physics of the Transactinide Elements (TAN99) was held in Germany from September 26 to 30, 1999 to discuss in a larger context all scientific aspects of the heaviest elements. Thus, it was timely to hold the present domestic workshop to summarize what has been done in recent years, to see what has come true, and to discuss the perspectives in the near feature. The subjects in the workshop were classified into; (1) synthesis of heavy elements, (2) decay properties of heavy nuclei, (3) chemistry of the heaviest elements, and (4) future plans of the heavy element research in Japan. This volume contains the papers presented in the workshop. The 14 papers are indexed individually. (J.P.N.)

  20. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  1. The chemistry of transactinide elements. Experimental achievements and perspectives

    International Nuclear Information System (INIS)

    Schaedel, M.

    2002-01-01

    The chemistry of transactinides and superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. This development, its current status and future perspectives are reviewed from an experimental point of view. The atom-at-a-time situation of transactinide chemistry is briefly outlines. Experimental techniques and important results enlightening the chemical properties of elements 104 through 108 are presented in an exemplary way with emphasis on the aqueous chemistry of the lighter ones. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements into groups 4 through 8, respectively. However, strongly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements from this position. Perspectives for future research programs are given. (author)

  2. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  3. Nuclear analytical chemistry: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.

    2013-01-01

    Recent R and D studies on Nuclear Analytical Chemistry utilizing techniques like Neutron Activation Analysis (NAA), Prompt Gamma-ray NAA (PGNAA), Particle Induced Gamma Ray and X-Ray Emission (PICE/PIXE) for compositional analysis of materials have been summarized. The work includes developments and applications of (i) single comparator NAA, called as k 0 -NAA, (ii) k 0 -based internal monostandard NAA (IM-NAA), (iii) k 0 -based prompt gamma ray NAA (PGNAA) and (iv) instrumental NAA using thermal and epithermal neutrons and (v) PIGE and PIXE methods using proton beam for low Z and medium Z elements, respectively. (author)

  4. Proceedings of the specialists' meeting on the chemistry and technology of actinide elements 2011

    International Nuclear Information System (INIS)

    Ikeda, Yasuhisa; Yamana, Hajimu

    2012-07-01

    This report contains the Proceedings of the 17th Specialists' Meeting on the Chemistry and Technology of Actinide Elements, which was held at Research Reactor Institute, Kyoto University, on February 15, 2012. This specialists' meeting has been held annually since 1994, and this is the 17th meeting for the fiscal year 2011. The accident of Fukushima Daiich Nuclear Power Plant, which occurred on March 11, 2011, showed the presence of defect in Japanese past approach to keep nuclear system safe. There is the need to improve existing technological and operational problems, as well as regulatory problems, but we should be aware of the significance of recovering social trust and peoples' peace of mind with the nuclear power. It should be noted that public's anxiety on the backend issue of nuclear system is remarkably big, and thus we must try to provide an understandable solution to them. In this meeting, we dealt with actinide chemistry and technology, which are related to the advanced nuclear fuel cycle development and the disposal of the HLW or TRU wastes. This is because, in the backend of the nuclear system, Actinide and TRU elements have substantial importance, because all of reprocessing, geologic disposal, and partitioning and transmutation depend significantly on the chemistry and technology of Actinides. Therefore, we have continued discussion and information exchange on the Actinide issues over 16 years, and this year's 17th meeting had a special meaning as the first one after the accident. In this context in this 17th meeting, we tried to return to the fundamentals of molten salt chemistry, which is the base of the dry reprocessing development. In addition, in order to expand our attitude by crossing over the fence of nuclear society, we tried to explore the potential of the adoption of molten salt chemistry to the general industry. This was a small new attempt in compliance with the recent tendency to nuclear power reduction in

  5. Teaching aids for nuclear chemistry

    International Nuclear Information System (INIS)

    Atwood, C.H.

    1994-01-01

    This paper provides teachers with a set of resources to use in teaching modern nuclear chemistry in their classrooms. Included in the resources are references to recent articles on nuclear science, some preprints and abstracts of articles, ideas of where to go for help, lab experiments, and a videotape of simulated nuclear reactions

  6. Chemistry for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2011-01-01

    Chemistry - radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role in the nuclear power development. Even at present, the offered technology is well developed, but still several improvements are needed and proposed. These developments concern all stages of the technology; front end, reactor operation (coolant chemistry and installation components decontamination, noble gas release control), back end of fuel cycle, etc. Chemistry for a partitioning and a transmutation is a new challenge for the chemists and chemical engineers. The IV th generation of nuclear reactors cannot be developed without chemical solutions for fuel fabrication, radiation-coolants interaction phenomena understanding and spent fuel/waste treatment technologies elaboration. Radiochemical analytical methods are fundamental for radioecological monitoring of radioisotopes of natural and anthropological origin. This paper addresses just a few subjects and is not a detailed overview of the field, however it illustrates a role of chemistry for a safe and economical nuclear power development. (author)

  7. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1993-01-01

    Subjective remarks by the author on teaching of nuclear chemistry are presented. A historical overview of nuclear chemistry and radiochemistry education and research as well as an outline of their prospects are given. (R.P.)

  8. Nuclear fuel element

    International Nuclear Information System (INIS)

    Penrose, R.T.; Thompson, J.R.

    1976-01-01

    A method of protecting the cladding of a nuclear fuel element from internal attack and a nuclear fuel element for use in the core of a nuclear reactor are disclosed. The nuclear fuel element has disposed therein an additive of a barium-containing material and the barium-containing material collects reactive gases through chemical reaction or adsorption at temperatures ranging from room temperature up to fuel element plenum temperatures. The additive is located in the plenum of the fuel element and preferably in the form of particles in a hollow container having a multiplicity of gas permeable openings in one portion of the container with the openings being of a size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles. The additive is comprised of elemental barium or a barium alloy containing one or more metals in addition to barium such as aluminum, zirconium, nickel, titanium and combinations thereof. 6 claims, 3 drawing figures

  9. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  10. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  11. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  12. An introduction to serious nuclear accident chemistry

    Directory of Open Access Journals (Sweden)

    Mark Russell St. John Foreman

    2015-12-01

    Full Text Available A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  13. Molybdenum: the element and aqueous solution chemistry

    International Nuclear Information System (INIS)

    Sykes, A.G.

    1987-01-01

    This chapter on the chemistry of the coordination compounds of molybdenum concentrates on the element itself, its recovery from ores and its use in the manufacture of steels. Most of the chapter is devoted to the aqueous solution chemistry of molybdenum in oxidation states II, III and IV. (UK)

  14. The Chemistry of Superheavy Elements

    CERN Document Server

    Schädel, M

    2003-01-01

    The chemistry of transactinide or superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. The current status of this atom-at-a-time chemical research and its future perspectives are reviewed from an experimental point of view together with some of the interesting results from n -rich nuclides near and at the N=162 neutron shell. Experimental techniques and important results enlightening typical chemical properties of elements 104 through 108 are presented in an exemplary way. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements in to groups 4 through 8, respectively. However, mainly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements simply from this position.

  15. Isotope and Nuclear Chemistry Division annual report, FY 1988

    International Nuclear Information System (INIS)

    1989-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1988. The report includes articles on weapons chemistry, biochemistry and nuclear medicine, nuclear structure and reactions, and the INC Division facilities and laboratories

  16. Numerical verification of equilibrium chemistry software within nuclear fuel performance codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing transport source terms, material properties, and boundary conditions in heat and mass transport modules. Consequently, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method called the Gibbs Criteria is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes. (author)

  17. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.I.

    1990-01-01

    Otto Hahn's book, Applied Radiochemistry, published in 1936, marked the author's entry into this field. Notes concerning a lecture course, An Introduction to Nuclear Chemistry, given during the summer of 1942 at the University of Chicago, as an introduction to the Plutonium Project of the Manhattan District, were widely distributed for use by participants in the Project. Nuclear chemistry courses, undergraduate and graduate, instigated at Berkeley in 1946, were taken by large numbers of students many of who became pioneers in the field. Noteworthy is Friedlander's and Kennedy's 1949 textbook, Introduction to Radiochemistry (and subsequent revisions). These courses and this book serve as typical examples, many other such courses were taught and books published during the intervening years. More recently the Department of Energy Summer School in Nuclear Chemistry (for high school students) at San Jose State University has helped to revive student interest in nuclear chemistry

  18. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  19. American Chemical Society. Division of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The meeting of the 201st American Chemical Society Division of Nuclear Chemistry and Technology was comprised from a variety of topics in this field including: nuclear chemistry, nuclear physics, and nuclear techniques for environmental studies. Particular emphasis was given to fundamental research concerning nuclear structure (seven of the nineteen symposia) and studies of airborne particle monitoring and transport (five symposia). 105 papers were presented

  20. Nuclear chemistry and Radiochemistry in the USA

    International Nuclear Information System (INIS)

    Kronenberg, A.

    2004-01-01

    Nuclear chemistry and radiochemistry are very young sciences which developed at an extremely brisk pace within a very short period of time after the discovery of nuclear fission in 1938, and caused profound societal changes. In the United States, nuclear chemistry developed very differently from Germany, where nuclear research initially had been banned after the Second World War. The prime mover in the development in the United States was the Manhattan Project, the construction of the atomic bomb. The counteract the impending shortage of qualified personnel, important institutions have begun to establish training and support programs in the field. The National Laboratories in the United States introduced a National Security Internship Program, while the U.S. Department of Energy (DOE) tries to promote cooperation, and thus the training of personnel, by launching programs of its own. Yet, a greater shortage of qualified personnel is becoming apparent. The situation of nuclear chemistry and radiochemistry in the United States can be summarized in the finding that research at the National Laboratories is very wide ranging. It receives sufficient funds from the DOE. However, the National Laboratories show a very high proportion of elderly personnel, a problem which will have to be corrected in the years to come. This may be helped by the Summer Schools financed by the DOE, though a summer school of six weeks cannot replace a sound training in nuclear chemistry of the kind still to be found in Germany. (orig.) [de

  1. Chemistry evaluation in French EDF Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jacquier, Hervé

    2014-01-01

    The Nuclear Production Division of EDF is comprised of 19 power stations (58 PWR reactors) and 2 national engineering organisations. Nuclear Inspection (IN) is an internal assessment unit of the EDF Nuclear Production Directorate. At the request of the Directorate, it carries out periodic evaluations of all the units of the division. The evaluation of the nuclear sites (EGE: Overall Excellence Assessment) is carried out every 4 years, an intermediate evaluation is also carried out between each EGE. These evaluations are independent of the WANO and IAEA evaluations. Exchanges are carried out between Nuclear Inspection and the other international operators (for example, USA (INPO), England, China...) to share site evaluation methods. These evaluations are carried out by a team of 30 inspectors, reinforced during each evaluation by 10 peers who come from the various French nuclear sites. Nuclear Inspection produces a performance standards document for each FUNCTIONAL AREA, which is based on the requirements of the company. On the whole, 13 areas are evaluated during each inspection, in particular: Management, Operations, Maintenance, Engineering and Chemistry. The area of reactor plant chemistry has been evaluated since 2009. The Chemistry performance standards document is written from the EDF internal requirements and international references. During site evaluations, all the performance standards are assessed for compliance. The Chemistry performance standards document is comprised of 3 topics: Management of plant chemistry, The respect of the chemical and radiochemical specifications, The condition of the laboratories and the sampling lines, measuring equipment, and chemical products. The evaluations carried out make it possible to define strengths and weaknesses which the sites must address. After each evaluation, the assessment is presented to the site management and to the director of EDF Nuclear Production. For 4 years these evaluations have allowed progress to

  2. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  3. IAEA programme on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Nechaev, A.F.; Skjoeldebrand, R.

    1988-01-01

    The paper reviews the past future efforts of the IAEA, directed to ensure optimal water chemistry regimes in nuclear power plants. Corrosion of structural materials resulting from the interaction of the coolant with the internal surfaces comprising the primary heat transfer and auxiliary circuits of water reactors, creates two main problems. The first is an operational problem resulting in an increase in the core pressure drop or overheating of the fuel elements induced by crud buildup on the fuel cladding. The second problem is related to occupational radiation exposures arising from contamination of out-of-flux surfaces by corrosion products activated in the reactor core. These are the problems of reliability and safety which together with economics could be considered as the 'three whales' of nuclear power. The main goals of international cooperation in reactor water chemistry are: (1) to create a balanced and well-grounded methodological basis for corresponding regulatory and engineering solutions on a national level and (2) to improve 'the models and predictive capability of specialists for conditions that are different from or perhaps just beyond the realm of experience'. Continuing efforts are required to guarantee the highest reliability and safety standards under favorable economic indices of nuclear power plants, and to obtain understanding of such significant potential for solving the remaining problems. (Nogami, K.)

  4. Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study

    International Nuclear Information System (INIS)

    Schwerdtfeger, Peter; Seth, Michael

    2002-01-01

    The chemistry of superheavy element 114 is reviewed. The ground state of element 114 is closed shell [112]7s 2 7p 1/2 2 and shows a distinct chemical inertness (low reactivity). This inertness makes it rather difficult to study the atom-at-a-time chemistry of 114 in the gas or liquid phase. (author)

  5. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  6. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  7. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  8. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  9. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  10. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  11. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  12. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  13. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  14. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  15. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  16. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V.3. Main group and early transition elements

    International Nuclear Information System (INIS)

    Wilkinson, Geoffrey; Gillard, R.D.; McCleverty, J.A.

    1987-01-01

    Comprehensive coordination chemistry reviews the synthesis reactions and properties of coordination compounds. Their uses in such diverse fields as nuclear fuels, toxicology, medicine and biology are discussed. Volume three concentrates on the main group and early transition element coordination compounds. (UK)

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  18. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  19. Annual Report of Institute of Nuclear Chemistry and Technology 1997

    International Nuclear Information System (INIS)

    1998-06-01

    The report is the collection of short communications being the review of the scientific activity of Institute of Nuclear Chemistry and Technology - Warsaw in 1997. The papers are gathered in several branches as follows: radiation chemistry and physics; radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general; radiobiology; nuclear technologies and methods. The annual report of INCT-1997 contains also the general information about INCT as well as the full list of scientific papers being published by the staff in 1997

  20. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.4--Nuclear chemistry and radiation chemistry sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 24 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the fourth one, the content is about Nuclear chemistry and radiation chemistry sub-volume

  1. Nuclear Chemistry and Services

    International Nuclear Information System (INIS)

    Vandevelde, L.

    2002-01-01

    The objectives, the programme, and the achievements of R and D at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear chemistry and analytical techniques are summarized. Major achievement in 2001 included the completion of a project on the measurement of critical radionuclides in reactor waste fluxes (the ARIANE project), the radiochemical characterisation of beryllium material originating from the second matrix of the BR2 reactor as well as to a the organisation of a workshop on the analysis of thorium and its isotopes in workplace materials

  2. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  3. Nuclear Chemistry Institute, Mainz University. Annual Report 1995

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1996-03-01

    The annual report of the Institut fuer Kernchemie addresses inter alia three main research activities. The first belongs to the area of basic research, covering studies in the fields of nuclear fission, chemistry of the super-heavy elements and of heavy-ion reactions extending from the Coulomb barrier to relativistic energies, and nuclear astrophysics in connection with the ''r process''. By means of laser technology, high-precision data could be measured of the ionization energies of berkelium and californium. Studies of atomic clusters in the vacuum of an ionization trap revealed interesting aspects. The second major activity was devoted to the analysis of environmental media, applying inter alia neutron activation analysis and resonance ionization mass spectroscopy (RIMS). The third activity resulted in the development of novel processes, or the enhancement of existing processes or methods, for applications in basic research work and in environmental analytics. Another item of interest is the summarizing report on the operation of the TRIGA research reactor. (orig./SR) [de

  4. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  5. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  6. Highlights of nuclear chemistry 1995

    International Nuclear Information System (INIS)

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app

  7. Highlights of nuclear chemistry 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    In this report 9 topics of the work of the Nuclear Chemistry Group in 1995 are highlighted. A list of publications and an overview of the international cooperation is given. (orig.). 19 refs., 19 figs., 2 tabs., 2 app.

  8. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    International Nuclear Information System (INIS)

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  9. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    International Nuclear Information System (INIS)

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators

  10. Annual Report of Institute of Nuclear Chemistry and Technology 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The INCT 2002 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators.

  11. Annual Report of Institute of Nuclear Chemistry and Technology 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The INCT 1999 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology, Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  12. Few atom chemistry of the trans actinide element rutherfordium (Rf)

    International Nuclear Information System (INIS)

    Nagame, Y.

    2002-01-01

    Studies of chemical properties of the trans actinide elements - starting with element 104 (Rf) - offer the unique opportunity to obtain information about trends in the Periodic Table at the limits of nuclear stability and to assess the magnitude of the influence of relativistic effects on chemical properties. To explore experimentally the influence of relativistic effects of electron shell structure, we study the chemical properties of the trans actinide elements. So far, we have developed some experimental apparatuses for the study of chemical properties of the trans actinide elements: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber for the production of trans actinides, a rotating wheel catcher apparatus for the measurement of α particles and spontaneous fission decay of trans actinides and an automated rapid chemical separation apparatus based on high performance liquid chromatography. The trans actinide nuclide, the element 104, 261 Rf (t 1/2 = 78 s) has been successfully produced via the reactions of 248 Cm( 18 O,5n) at the JAERI (Japan Atomic Energy Research Institute) tandem accelerator. The evaluated production cross section was about 10 nb, indicating that the production rate was approximately 2 atoms per min. Because of the short half-life and the low production rate of Rf, each atom produced decays before a new atom is synthesized. It means that any chemistry to be performed must be done on an 'atom-at-a-time' basis. Therefore rapid, very efficient and selective chemical procedures are indispensable to isolate the desired trans actinide 261 Rf. To perform fast and repetitive ion-exchange separation of Rf, we have developed the apparatus AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). Recently, ion-exchange behavior of Rf in acidic solutions has been studied with AIDA, and the results indicate that anion-exchange behavior of Rf is quite similar

  13. Abstracts Book of 3. All-Polish Conference on Radiochemistry and Nuclear Chemistry

    International Nuclear Information System (INIS)

    2001-01-01

    The development of radiochemistry and nuclear chemistry in Poland have been presented during the 3. All-Polish Conference on Radiochemistry and Nuclear Chemistry held in Kazimierz Dolny in May 2001. The broad range of problems connected with radiochemistry and nuclear chemistry application in environmental protection and quality control, nuclear medicine and radiation protection, radioactive waste processing and many other scientific and everyday problems solution have been extensively presented and discussed

  14. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  15. Proceedings of the 37. Brazilian Congress on Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    This volume contains the summaries of the papers presented at the 37. Brazilian Congress on Chemistry. The topics include subjects about new technologies in the field of relevance for nuclear interest and energy field, involving environmental aspects, analytical chemistry and electrochemistry. The chemistry of elements of nuclear interest has been presented, and dissertations about rare earth elements were discussed. Studies about fuels, mainly petroleum, their products and biomass fuels, including their production, physical-chemical properties, structure studies and feasibility studies has also been comprehended

  16. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  17. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  18. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  19. Proceedings of the 4. National Meeting on Analytical Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    The 4. National Meeting on Analytical Chemistry includes analysis of nuclear interest elements with nuclear and non nuclear methods and the elements not interest of nuclear energy with nuclear methods. The materials analysed are rocks, ores, metals alloys, waters, plants and biological materials. (C.G.C.)

  20. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.) [pt

  1. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  2. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  3. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  4. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  5. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  6. On-line gas chemistry experiments with trans actinide elements

    International Nuclear Information System (INIS)

    Turler, A.; Gaguller, B.; Jost, D.T.

    1993-01-01

    The latest achievements in the gas phase chemistry studies of elements 104 and 105 and their lighter homologs are reviewed. Experimental techniques employed in the studies are described. Experimental data on chlorides and bromides of the groups 4, 5 elements and elements 104, 105 are compared with their theoretically predicted chemical properties. 45 refs

  7. Chemistry of actinides and fission products in the nuclear-fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This colloquium was held under the auspices of the French and Russian Academies of Sciences, from 21 to 23 May 2003, at the 'Ecole nationale superieure de chimie de Paris' (ENSCP), under the cooperative framework agreed between the two Academies. Fifteen specialists from each country were brought together to present their results concerning research in their respective fields (industrial considerations, fundamental chemistry, the environment, new conditioning systems, hydro- and pyro-chemical separation techniques), situating the results in the general context of the two countries'common strategy for closing the nuclear fuel cycle and for the management of radioactive waste. The colloquium brought together 26 oral presentations, and three round table discussions (theoretical chemistry and modelling, the frontiers of research on the nuclear cycle, elemental characterisation). The speakers chosen represented a large section of the organisations involved in the research on these topics, from each country. This thematic issue of the Comptes Rendus Chimie presents some new insights into these topics and some original results. The colloquium was supported financially par the DRI of the French Academy des sciences, CNRS, IN2P3, CEA, Cogema, EDF, and ENSCP. (authors)

  8. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators.

  9. Annual Report 2003 of the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    2004-01-01

    The INCT 2003 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies, nucleonic control systems and accelerators

  10. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  11. The Crisis in Radiochemistry and Nuclear Chemistry Education

    International Nuclear Information System (INIS)

    Hoffman, D C

    2005-01-01

    A brief summary of the current status of radiochemistry and nuclear chemistry in the U. S. and abroad will be given. Current and future needs for scientists in these fields, especially in the U. S., will be discussed. Challenges that must be met in order to reverse the ''catastrophic'' downward trend in the numbers of students, faculty, and university programs in radiochemistry and nuclear chemistry will be considered, and some potential ways to reinvigorate and expand relevant university research and educational programs will be suggested

  12. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    Full text: In the Laboratory of Chemistry and Radiochemistry, research on chemical properties of super heavy elements Rf, Db and Sg, in model systems with their homologs Zr, Hf, Nb, Ta, Mo and W in aqueous solutions, was continued. The main subject of study was sorption of these elements on ion exchange resins, on ferrocyanide sorbents and on liquid anion exchanger Aliquat 336. Simultaneously, experiments on ion exchange behaviour of Tc and Re as homologs of Bh (Z =107) and of Os as that of Hs (Z =108) in the online and offline systems were carried out. Experiments with Hg and Pb as analogs of elements Z=112 and Z=114, started only in 1999, resulted in elaboration of a very fast continuous method for isolation of short-lived (t 1/2 ≥ 3 s) mercury isotopes. The above studies were performed in cooperation with the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, the Technical University of Dresden, Germany, the University of Mainz, Germany and the GSI Darmstadt, Germany. The Laboratory of Environmental Radioactivity was continuing two main directions of their activities: weekly reports on continuous monitoring of the ground level air and research on the environmental radioactivity. The results of six years of systematic measurements of long-lived γ-emitters present in the ground level air were the subject of a PhD thesis defended in May 1999. The main project in the Laboratory in 1999 was that on accumulation of Pu, Am, Cm, Sr and Eu isotopes in bones of wild herbivorous animals. Its major part, devoted to the α-emitters, has been completed. Another important research (performed in collaboration with the Nuclear Spectroscopy Department of the Institute) concerned development of a method for determination of high-energy pure β - emitters via measurement of Bremsstrahlung photons produced on a metal absorber of optimised thickness. The Laboratory was also

  13. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  14. Isotope and Nuclear Chemistry Division annual report, FY 1990, October 1, 1989--September 30, 1990

    International Nuclear Information System (INIS)

    Heiken, J.; Minahan, M.

    1991-06-01

    This report describes some of the major research and development programs of the Isotope and Nuclear Chemistry Division during FY 1990. The report includes articles on weapons chemistry, environmental chemistry, actinide and transition metal chemistry, geochemistry, nuclear structure and reactions, biochemistry and nuclear medicine, materials chemistry, and INC Division facilities and laboratories

  15. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators.

  16. Annual Report of the Institute of Nuclear Chemistry and Technology 2000

    International Nuclear Information System (INIS)

    2001-06-01

    The INCT 2000 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics and nucleonic control systems and accelerators

  17. Chemistry of the heaviest elements--one atom at a time

    International Nuclear Information System (INIS)

    Hoffman, Darleane C.; Lee, Diana M.

    2000-01-01

    In keeping with the goal of the Viewpoint series of the Journal of Chemical Education, this article gives a 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years. A historical perspective of the importance of chemical separations in the discoveries of the transuranium elements from neptunium (Z=93) through mendelevium (Z=101) is given. The development of techniques for studying the chemical properties of mendelevium and still heavier elements on the basis of measuring the radioactive decay of a single atom (''atom-at-a-time'' chemistry) and combining the results of many separate experiments is reviewed. The influence of relativistic effects (expected to increase as Z 2 ) on chemical properties is discussed. The results from recent atom-at-a-time studies of the chemistry of the heaviest elements through seaborgium (Z=106) are summarized and show that their properties cannot be readily predicted based on simple extrapolation from the properties of their lighter homologues in the periodic table. The prospects for extending chemical studies to still heavier elements than seaborgium are considered and appear promising

  18. Qualifying works of the Department of nuclear chemistry (1963 - 2006)

    International Nuclear Information System (INIS)

    Kuruc, J.

    2007-01-01

    In this review qualifying works (theses - bachelor, master, PhD., DrSc., habilitation and inauguration theses) elaborated at the Department of nuclear chemistry, Faculty of Natural Chemistry, Comenius University in Bratislava during forty years (from origin of the Section of Nuclear chemistry in 1963 up to 2006 are presented. During this time, in totally, 3 bachelor theses, 265 master theses, 24 PhD. (CSc.) and 10 PhD. dissertanions, 2 DrSc. dissertanions as well as 8 habilitation and one inauguration these were defended (author)

  19. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  20. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  1. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  2. New horizons for nuclear and radioanalytical chemistry laboratories

    International Nuclear Information System (INIS)

    Bode, P.

    2005-01-01

    Nuclear and radiochemistry are reported to suffer from a worldwide depression in support in the academic curriculum. The visibility of nuclear research groups is weak in general as can be illustrated by the low citation impact factors of the nuclear science related journals. Moreover, the use of nuclear techniques over other techniques is often insufficiently justified. Although in many countries a shortage in radiochemists is forecasted to occur by the end of this decade -and ample jobs becoming available-, students in chemistry and physics seem to prefer a career in contemporary sciences such as biotechnology, nanotechnology and genomics. Much of the research in these sciences is related to organic compounds and biomolecules or deals with elements that seemingly have little or no opportunities to be studied using radionuclides and (nuclear) radiation. Laboratories operating nuclear analytical techniques therefore need to use their creativity finding ways for participation in the scientific areas that are booming at the beginning of the 21st century. It requires an open mind on the strengths and weaknesses of existing techniques, and a departure from traditional views on measurement, analysis and even sources for activation. The unique features of using radiotracers and activatable tracers need again to be explored. Some radiochemistry laboratories at large (national) research centers have already converted their traditional technique-oriented research into more problem-oriented research, combining nuclear and complimentary non-nuclear techniques. Smaller laboratories have fewer opportunities for such holistic approaches but there are still a variety of nuclear and radiochemical techniques that fruitfully can be applied in these sciences and which also may turn attention towards the potentials of nuclear research reactor facilities, (nuclear) radiation and radionuclides, contributing to the sustainability of nuclear analytical groups. Advances in radiation

  3. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  4. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  5. Summer Schools In Nuclear Chemistry

    International Nuclear Information System (INIS)

    Clark, Sue; Herbert, Mieva; Mantica, Paul

    2006-01-01

    This the report for the 5 year activities for the ACS Summer Schools in Nuclear and Radiochemistry. The American Chemical Society's Summer Schools in Nuclear and Radiochemistry were held at Brookhaven National Laboratory (Upton, NY) and San Jose State University (San Jose, CA) during the award period February 1, 2002 to January 31, 2007. The Summer Schools are intensive, six-week program involving both a lecture component covering fundamental principles of nuclear chemistry and radiochemistry and a laboratory component allowing hands-on experience for the students to test many of the basic principles they learn about in lecture. Each site hosted 12 undergraduate students annually, and students received coursework credits towards their undergraduate degrees. Up to 7 student credit hours were earned at San Jose State University, and Brookhaven students received up to 6 college credits through BNL's management partner, SUNY Stony Brook. Funding from the award period covered travel, housing, educational expenses, and student stipends, for the 24 undergraduate participants. Furthermore, funding was also used to cover expenses for lecturers and staff to run the programs at the two facilities. The students were provided with nuclear and radiochemistry training equivalent to a three-hour upper-level undergraduate course along with a two-hour hands-on laboratory experience within the six-week summer period. Lectures were held 5 days per week. Students completed an extensive laboratory sequence, as well as radiation safety training at the start of the Summer Schools. The summer school curriculum was enhanced with a Guest Lecture series, as well as through several one-day symposia and organized field trips to nuclear-related research and applied science laboratories. This enrichment afforded an opportunity for students to see the broader impacts of nuclear science in today's world, and to experience some of the future challenges through formal and informal discussions with

  6. Nuclear fuel element leak detection system

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1978-01-01

    Disclosed is a leak detection system integral with a wall of a building used to fabricate nuclear fuel elements for detecting radiation leakage from the nuclear fuel elements as the fuel elements exit the building. The leak detecting system comprises a shielded compartment constructed to withstand environmental hazards extending into a similarly constructed building and having sealed doors on both ends along with leak detecting apparatus connected to the compartment. The leak detecting system provides a system for removing a nuclear fuel element from its fabrication building while testing for radiation leaks in the fuel element

  7. Separation chemistry for the nuclear industry

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Cuillerdier, C.

    1991-01-01

    A review of the actinide and Lanthanide extraction chemistry by N,N-dialkylamides and N,N'-tetraalkylamides is given. It includes the extraction equilibria of inorganic acids. The prospects of using these completely incinerable extractants in the nuclear fuels cycle is discussed

  8. Nuclear chemistry on the Czech Technical University in Prague after introduction of structured study and foundation of the Centre for Radiochemistry and Radiation Chemistry

    International Nuclear Information System (INIS)

    John, J.

    2007-01-01

    In this presentation the author (head of the Centre for Radiochemistry and Radiation Chemistry) give a short review of history of the Department of Nuclear Chemistry and of the Centre for Radiochemistry and Radiation Chemistry of the Czech Technical University in Prague. Education in structured study in specialisation of nuclear chemistry in bachelor level, master level, as well as post-graduate study in nuclear chemistry with academic degree PhD. are realised. Some scientific results are presented

  9. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  10. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  11. Proceedings of the 3rd international symposium on material chemistry in nuclear environment (MATERIAL CHEMISTRY '02)

    International Nuclear Information System (INIS)

    2003-03-01

    The volume contains all presented papers during the 3rd International Symposium on Material Chemistry in Nuclear Environment: MATERIAL CHEMISTRY 02 (MC'02), held March 13-15, 2002. The purpose of this symposium is to provide an international forum for the discussion of recent progress in the field of materials chemistry in nuclear environments. This symposium intends to build on the success of the previous symposiums held in Tsukuba in 1992 and 1996. The topics discussed in the symposium MC'02 are Chemical Reaction and Thermodynamics, Degradation Phenomena, New Characterization Technology, Fabrication and New Materials, Composite Materials, Surface Modification, and Computational Science. The 61 of the presented papers are indexed individually. (J.P.N.)

  12. NATO Advanced Study Institute on Fundamental and Technological Aspects of Organo-f-Element Chemistry

    CERN Document Server

    Fragalà, Ignazio

    1985-01-01

    The past decade has seen a dramatic acceleration of activity and interest in phenomena surrounding lanthanide and actinide organo­ metallic compounds. Around the world, active research in organo-f­ element synthesis, chemistry, catalysis, crystallography, and quantum chemistry is in progress. This activity has spanned a remarkably wide range of disciplines, from synthetic/mechanistic inorganic and organic chemistry to radiochemistry, catalytic chemistry, spectroscopy (vibra­ tional, optical, magnetic resonance, photoelectron, Mossbauer), X-ray and neutron diffraction structural analysis, as well as to crystal field and molecular orbital theoretical studies at the interface of chemistry and physics. These investigations have been motivated both by fundamental and applied goals. The evidence that f-element organo­ metallic compounds have unique chemical and physical properties which cannot be duplicated by organometallic compounds of d-block elements has suggested many new areas of endeavor and application....

  13. Nuclear reactor fuel element splitter

    International Nuclear Information System (INIS)

    Yeo, D.

    1976-01-01

    A method and apparatus are disclosed for removing nuclear fuel from a clad fuel element. The fuel element is power driven past laser beams which simultaneously cut the cladding lengthwise into at least two longitudinal pieces. The axially cut lengths of cladding are then separated, causing the nuclear fuel contained therein to drop into a receptacle for later disposition. The cut lengths of cladding comprise nuclear waste which is disposed of in a suitable manner. 6 claims, 10 drawing figures

  14. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  15. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  16. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Ainsworth, K.F.

    1979-01-01

    A nuclear fuel element is described having a cluster of nuclear fuel pins supported in parallel, spaced apart relationship by transverse cellular braces within coaxial, inner and outer sleeves, the inner sleeve being in at least two separate axial lengths, each of the transverse braces having a peripheral portion which is clamped peripherally between the ends of the axial lengths of the inner sleeve. (author)

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smallr than the size of the particles. The container is preferably held in the spring in the plenum of the fuel element. (E.C.B.)

  18. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  19. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  20. Regulatory oversight strategy for chemistry program at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Kameswaran; Ram

    2012-09-01

    Chemistry program is one of the essential programs for the safe operation of a nuclear power plant. It helps to ensure the necessary integrity, reliability and availability of plant structures, systems and components important to safety. Additionally, the program plays an important role in asset preservation, limiting radiation exposure and environmental protection. A good chemistry program will minimize corrosion of materials, reduce activation products, minimize of the buildup of radioactive material leading to occupational radiation exposure and it helps limit the release of chemicals and radioactive materials to the environment. The legal basis for the chemistry oversight at Canadian NPPs is established by the Nuclear Safety and Control Act and its associated regulations. It draws on the Canadian Nuclear Safety Commission's regulatory framework and NPP operating license conditions that include applicable standards such as CAN/CSA N286-05 Management System Requirements for Nuclear Power Plants. This paper focuses on the regulatory oversight strategy used in Canada to assess the performance of chemistry program at the nuclear power plants (NPPs) licensed by CNSC. The strategy consists of a combination of inspection and performance monitoring activities. The activities are further supported from information gathered through staff inspections of cross-cutting areas such as maintenance, corrective-action follow-ups, event reviews and safety related performance indicators. (authors)

  1. Incorporating nuclear and radiochemistry in the traditional undergraduate chemistry program

    International Nuclear Information System (INIS)

    Robertson, J.D.; Kleppinger, E.W.

    1994-01-01

    Although many areas of major national need depend critically on professionals trained in nuclear and radiochemistry, there has been a steady decline in both the educational opportunities and student interest in this area. One major factor that has contributed greatly to the lack of student interest in nuclear and radiochemistry is that most undergraduate students in chemistry and other sciences are no longer introduced to these topics. This deficiency in the traditional chemistry curriculum, coupled with the negative public perception towards all things open-quotes nuclear,close quotes has resulted in a serious shortage of individuals with a background in this area. The authors are trying to address this problem by open-quotes educating the educators.close quotes The authors are developing a set of summer workshops to provide faculty from four-year colleges with the curriculum materials, training, and motivation to incorporate these topics on a continuing basis in their traditional undergraduate chemistry curricula. The first series of workshops is scheduled for the summer of 1995

  2. Nuclear analytical chemistry 5. Tables, nomograms and schemes

    Energy Technology Data Exchange (ETDEWEB)

    Tolgyessy, J; Varga, S; Dillinger, P; Kyrs, M

    1976-01-01

    Tables, graphs and nomograms are given on aspects of nuclear analytical chemistry. The tables contain data on physical and chemical units and their conversion, exponential functions, the characteristics of radioactive nuclides, data on the interaction of nuclear radiation with matter, data useful in measuring nuclear radiation, in scintillation and semiconductor spectrometry, activation analysis, data on masking reactions of ions in chemical separation, on extraction, ion exchange, accuracy in applying the method of isotope dilution, on radiochemical analysis.

  3. 5. National Conference on Radiochemistry and Nuclear Chemistry. Abstracts

    International Nuclear Information System (INIS)

    Fuks, L.

    2009-01-01

    Held in Krakow-Przegorzaly (24-27 May 2009) 5. National Conference on Radiochemistry and Nuclear Chemistry focused on the following research topics: (a) radioanalytical methods; (b) environmental studies; (c) radiopharmacy; (d) isotopic effects; (e) nuclear safety. Participants presented 6 plenary lectures, 24 communications and 38 posters

  4. Importance of nuclear power for chemistry

    International Nuclear Information System (INIS)

    Kolotyrkin, J.

    1982-01-01

    Examples are given of the use of ionizing radiations in nuclear chemistry, in radiation cross-linking of polymers. The possibilities are also indicated of applications in the disinfection of wastes, in fertilizer production and packaging, in the production of cellulose and hydrogen. The implementation of the said technologies depends on the solution of a number organizational problems. (J.B.)

  5. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  6. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  7. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  8. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  9. Nuclear chemistry fifty years after the discovery of artificial radioactivity

    International Nuclear Information System (INIS)

    Lefort, M.

    1984-01-01

    In January 1934, the observation and the chemical identification of radiophosphorus as a reaction product in the bombardment of Aluminium by alpha particles have been the first step of a new scientific branch: Nuclear Chemistry. We describe here how this discovery in itself contains the frame of all the development which has followed. It consisted in four stages, each of them being a crucial starting point. The first one is the possibility for a total balance of the nuclear reaction in the exit channels, so that reaction mechanisms can be studied. The second, the most important perhaps, is the opening of nuclear synthesis. Nuclear chemists can now interfere into nuclear matter and instead of staying as observers of the radioactive decays of natural isotopes, they were able to build up a numerous chart of various nuclear species, going step by step further and further away from the nuclear stability conditions. The third aspect of the discovery was the appearance of a new mode of radioactive decay with the production of the first particle an antimater. 50 years later, the instability due to a much larger excess of protons is known to induce the proton emission radioactivity for new species like 109 I or 115 Cs, in the vicinity of proton unstability. Finally, the last point, so fertile for the future, was the observation of a neutron in the exit channel, so that neutron fluxes could result from alpha induced nuclear reactions and became such a strong tool for the production of transuranium elements and for nuclear fission. In the present survey, the wide interest of the second point, i.e. the nuclear synthesis, is emphasized, as well as the huge change in the technical methods

  10. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  11. Factor analytical approaches for evaluating groundwater trace element chemistry data

    International Nuclear Information System (INIS)

    Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Hodge, V.F.; Stetzenbach, K.J.

    2003-01-01

    The multivariate statistical techniques principal component analysis (PCA), Q-mode factor analysis (QFA), and correspondence analysis (CA) were applied to a dataset containing trace element concentrations in groundwater samples collected from a number of wells located downgradient from the potential nuclear waste repository at Yucca Mountain, Nevada. PCA results reflect the similarities in the concentrations of trace elements in the water samples resulting from different geochemical processes. QFA results reflect similarities in the trace element compositions, whereas CA reflects similarities in the trace elements that are dominant in the waters relative to all other groundwater samples included in the dataset. These differences are mainly due to the ways in which data are preprocessed by each of the three methods. The highly concentrated, and thus possibly more mature (i.e. older), groundwaters are separated from the more dilute waters using principal component 1 (PC 1). PC 2, as well as dimension 1 of the CA results, describe differences in the trace element chemistry of the groundwaters resulting from the different aquifer materials through which they have flowed. Groundwaters thought to be representative of those flowing through an aquifer composed dominantly of volcanic rocks are characterized by elevated concentrations of Li, Be, Ge, Rb, Cs, and Ba, whereas those associated with an aquifer dominated by carbonate rocks exhibit greater concentrations of Ti, Ni, Sr, Rh, and Bi. PC 3, and to a lesser extent dimension 2 of the CA results, show a strong monotonic relationship with the percentage of As(III) in the groundwater suggesting that these multivariate statistical results reflect, in a qualitative sense, the oxidizing/reducing conditions within the groundwater. Groundwaters that are relatively more reducing exhibit greater concentrations of Mn, Cs, Co, Ba, Rb, and Be, and those that are more oxidizing are characterized by greater concentrations of V, Cr, Ga

  12. Transactinide elements

    International Nuclear Information System (INIS)

    Hemingway, J.D.

    1975-01-01

    The review is covered in sections, entitled: predicted nuclear properties - including closed shells, decay characteristics; predicted chemical properties - including electronic structure and calculated properties, X-radiation, extrapolated chemical properties, separation chemistry; methods of synthesis; the natural occurrence of superheavy elements. (U.K.)

  13. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Basu, A.K.; Bhadkambekar, C.A.; Tripathi, A.B.R.; Chattopadhyay, N.; Ghosh, P.

    2010-01-01

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  14. The 40th AAAS Gordon Conference on nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1991-01-01

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968

  15. The 40th AAAS Gordon Conference on nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, G.T.

    1991-06-27

    I am pleased to speak at the Fortieth Gordon Conference on Nuclear Chemistry. I served as Chairman of the first Gordon Conference on Nuclear Chemistry held June 23--27, 1952, at New Hampton, New Hampshire. In my remarks, during which I shall quote from my journal, I shall describe some of the background leading up to the first Gordon Conference on Nuclear Chemistry and my attendance at the first seven Gordon Conferences during the period 1952 through 1958. I shall also quote my description of my appearance as the featured speaker at the Silver Anniversary of the Gordon Research Conferences on December 27, 1956 held at the Commodore Hotel in New York City. I shall begin with reference to my participation in the predecessor to the Gordon Conferences, the Gibson Island Research Conferences 45 years ago, on Thursday, June 20, 1946, as a speaker. This was 15 years after the start of these conferences in 1931. Neil Gordon played a leading role in these conferences, which were named (in 1948) in his honor -- the Gordon Research Conferences -- soon after they were moved to Colby Junior College, New London, New Hampshire in 1947. W. George Parks became Director in 1947, Alexander Cruickshank became Assistant Director in 1947 and Director in 1968.

  16. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  17. A coordination chemistry approach for modeling trace element adsorption

    International Nuclear Information System (INIS)

    Bourg, A.C.M.

    1986-01-01

    The traditional distribution coefficient, Kd, is highly dependent on the water chemistry and the surface properties of the geological system being studied and is therefore quite inappropriate for use in predictive models. Adsorption, one of the many processes included in Kd values, is described here using a coordination chemistry approach. The concept of adsorption of cationic trace elements by solid hydrous oxides can be applied to natural solids. The adsorption process is thus understood in terms of a classical complexation leading to the formation of surface (heterogeneous) ligands. Applications of this concept to some freshwater, estuarine and marine environments are discussed. (author)

  18. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  19. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  20. Chemistry of nuclear resources, technology, and waste

    International Nuclear Information System (INIS)

    Keller, O.L. Jr.

    1978-01-01

    Chemistry is being called on today to obtain useful results in areas that have been found very difficult for it in the past, but new instrumentation and new theories are allowing much progress. The area of hydrolytic phenomena and colloid chemistry, as exemplified by the plutonium polymer problem, is clearly entering a new phase in which it can be studied in a much more controlled and understandable manner. The same is true of the little studied interfacial regions, where so much important chemistry occurs in solvent extraction and other systems. The studies of the adsorption phenomena on clays are an illustration of the new and useful modeling of geochemical phenomena that is now possible. And finally, the chemist is called upon to participate in the developement and evaluation of models for nuclear waste isolation requiring extrapolations of hundreds to hundreds of thousands of years into the future. It is shown that chemistry may be useful in keeping the extrapolations in the shorter time spans, and also in selecting the best materials for containment. 36 figures

  1. Nuclear chemistry, the MET Lab, and Nathan Sugarman - A retrospective

    International Nuclear Information System (INIS)

    Steinberg, E.P.

    1991-01-01

    The evolution of nuclear chemistry will be traced briefly, with special emphasis on the exciting and highly productive period of the war-time Metallurgical Laboratory from 1942 to 1946. In particular, the Fission Product Radiochemistry section at The University of Chicago, which underwent sequential fissions of its own to Oak Ridge and Los Alamos, will provide a major focus. The post-war spread of nuclear chemistry throughout the country and the establishment of the National Laboratories provided the setting for the Golden Age of the field. Throughout this period, the personality and character of Nathan Sugarman was clearly evident. Whether as teacher, researcher, colleague, critic, counselor, friend, or acquaintance, Sug's intelligence, warmth, humor, high standards, and quiet leadership make a lasting impression on a generation of nuclear chemists

  2. Nuclear- and radiochemistry. Vol. 2. Modern applications

    International Nuclear Information System (INIS)

    Roesch, Frank

    2016-01-01

    This work is conceived to meet the demand of state-of-the-art literature to teach the fundamentals as well as the modern applications of nuclear chemistry. The work will consist of two volumes: the first one covering the basics of nuclear chemistry such as the relevant parameters of instable atomic nuclei, the various modi of radioactive transmutations, the corresponding types of radiation including their detection and dosimetry, and finally the mechanisms of nuclear reactions. The second volume addresses relevant fields of nuclear chemistry, such as the chemistry of radioactive elements, application of radioactive nuclei in life sciences, nuclear energy, waste managements and environmental aspects, radiochemical separations, radioanalytical and spectroscopic methods, etc. Here, leading experts will contribute up-to-date knowledge on the most important application of nuclear chemistry.

  3. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  4. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  5. Chemical identification and properties of element 112

    Czech Academy of Sciences Publication Activity Database

    Yakushev, AB.; Zvára, Ivo; Oganessian, YT.; Belozerov, AV.; Dmitriev, S. N.; Eichler, B.; Hubener, S.; Sokol, EA.; Turler, A.; Yeremin, AV.; Buklanov, GV.; Chelnokov, ML.; Chepigin, VI.; Gorshkov, VA.; Gulyaev, AV.; Lebedev, VY.; Malyshev, ON.; Popeko, AG.; Soverna, S.; Szeglowski, Z.; Timokhin, SN.; Tretyakova, SP.; Vasko, VM.; Itkis, MG.

    2003-01-01

    Roč. 91, č. 8 (2003), s. 433-439 ISSN 0033-8230 Institutional research plan: CEZ:AV0Z1048901 Keywords : element 112 * superheavy elements * transactinoids Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.940, year: 2003

  6. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  7. Chemistry of nuclear waste disposal

    International Nuclear Information System (INIS)

    Zimmer, E.

    1981-01-01

    In extractive purification of the low-enriched uranium fuel element (UO 2 -particle fuel element with SiC coating) no problems arise in the PUREX-process which have not already been solved when reprocessing LWR-type reactor and breeder fuel elements. Concerning the HTR-type reactor fuel elements containing thorium, there are two process cycles behind the head end; the pure U-235 is reprocessed in the same manner as the low-enriched uranium fuel, and the thorium, which is the bigger fraction, is reprocessed together with U-233 in the same manner as the mixed oxides. Only the CO 2 -off gas system, which contains krypton and carbon 14, leads to difficulties in nuclear waste disposal. (DG) [de

  8. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    In the Laboratory of Chemistry and Radiochemistry, research on chemistry of the transactinide elements 104(Rf), 105(Db) and 106(Sg) in model systems with their homologs (Zr, Hf, Nb, Ta, Mo, and W) was continued, and studies on ion-exchange and extraction behaviour of Tc, Re and Os as homologs of Bh(107) and Hs(108) were started. Basing on the law of periodicity, conditions for separation of superheavy elements Rf, Sg, and Bh were adjusted. A particularly important achievement was participation of our group in the third experiment in the world on aqueous chemistry of Sg, performed in the summer 1998 in GSI Darmstadt. The Environmental Radioactivity Laboratory, was continuing non-stop records of the ground-level atmospheric radioactivity. Besides, Pu content was determined in two-years collection of rainwater samples. An air monitoring station was recently equipped with a prototype γ-spectrometric scintillation system which, modem-coupled with the central server, will be tested in the Laboratory. For ultra-low-background measurements a muonic chamber was designed and made, and new spectrometer's background was recorded in various shielding configurations. Research on α-active and γ-active environmental contaminants in Antarctic samples, supplied by the Institute of Botany of the Jagiellonian University, resulted in an M.Sc. thesis defended in June 1998. Other cooperations of the Laboratory in 1998 have been the following: a) determination of 90 Sr and 137 Cs in wild animals bones (Institute of Nuclear Techniques, Technical University, Budapest, Hungary and Medical Academy, Bialystok, Poland); b) PIXE determinations of trace elements in ASS-500 air filters (Department 2 of the Institute) and mineralogical studies of collected dusts (Institute of Geological Sciences, Jagiellonian University and the Institute of Geography, Pedagogical University, Cracow); c) a-spectrometric determination of radium isotopes in river waters and bottom sediments (Institute of Geography

  9. Radioactive nuclides in nuclear reactors

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1982-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around nuclear reactors. The curricula of the courses contain also chemical subject materials. With reference to the foreign curricula, a plan of educational subject material of chemistry was considered for students of the school in the previous report (JAERI-M 9827), where the first part of the plan, ''Fundamentals of Reactor Chemistry'', was reviewed. This report is a review of the second part of the plan containing fission products chemistry, actinoids elements chemistry and activated reactor materials chemistry. (author)

  10. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  11. Radiochemistry and associated nuclear chemistry in the beginning of the twenty-first century

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de

    2002-01-01

    In many countries radiochemistry and associated nuclear chemistry are facing decreasing attention in scientific and technological education and training. In addition, research facilities involving radioactivity are dealing with growing difficulties, e.g. in respect to finances, staff, public support, and legislation. Quite often it is suggested that radiochemistry has matured and does not need any further development. Moreover, it is stated that radiochemical methods are out-run by new, non-nuclear methods, and thus have actually lost their raison d'etre. Altogether this leads to a situation where radioactivity and radiochemistry are partly vanishing both as a science and as a tool. This situation calls for a closer examination for areas where radiochemistry may continue to play a useful, if not a decisive role, and some guidelines were presented how to proceed in the near future. For that purpose a definition of radiochemistry is given to demarcate it from other areas. Nuclear chemistry as an adjacent field is strongly connected with radiochemistry, and in the frame of the presentation a relevant part of it is considered here as integrated in radiochemistry. The various areas of radiochemistry may be classified into three categories, which partly overlap. The first category is the field of the fundamental aspects of radiochemistry itself. This category covers among others nuclear reaction cross-sections, production routes with associated yields and radionuclidic impurities, decay schemes of radionuclides, radiochemical separations, recoil and hot-atom chemistry, isotope effects and fractionation, and interaction of radiation with matter and detection. The second category covers fields where radioactivity is inextricably bound to the subject involved. This holds e.g. for the entire nuclear fuel cycle, study of the very heavy elements (Z > 100), primordial radioactivity on earth, cosmogenic radioactivity in atmosphere and cosmos, and radionuclides for dating. The

  12. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  13. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  14. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  15. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1980-01-01

    The invention is of a nuclear fuel element which comprises a central core of a body of nuclear fuel material selected from the group consisting of compounds of uranium, plutonium, thorium and mixtures thereof, and an elongated composite cladding container comprising a zirconium alloy tube containing constituents other than zirconium in an amount greater than about 5000 parts per million by weight and an undeformed metal barrier of moderate purity zirconium bonded to the inside surface of the alloy tube. The container encloses the core so as to leave a gap between the container and the core during use in a nuclear reactor. The metal barrier is of moderate purity zirconium with an impurity level on a weight basis of at least 1000ppm and less than 5000ppm. Impurity levels of specific elements are given. Variations of the invention are also specified. The composite cladding reduces chemical interaction, minimizes localized stress and strain corrosion and reduces the likelihood of a splitting failure in the zirconium alloy tube. Other benefits are claimed. (U.K.)

  16. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  17. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  18. Status: nuclear and radiochemistry discipline

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2013-01-01

    There is no universally accepted definition for the term 'nuclear chemistry'. We may regard nuclear chemistry as an interdisciplinary subject with roots in physics, biology, and chemistry. The basic aspects include among others (i) nuclear reactions and energy levels, (ii) the types and energetics of radioactive decay, (iii) the formation and properties of radioactive elements, (iv) the effect of individual isotopes on chemical and physical properties, and (v) the effects of nuclear radiation on matter. Research in (i) and (ii) is often indistinguishable in purpose and practice from that in nuclear physics, although for nuclear chemists, chemical techniques may play a significant role. (iii) and (iv) can be classified as radiochemistry and isotope chemistry, while (v) falls in the classification of radiation chemistry. There is an urgent need in India also to have similar mechanism. Different universities, research organizations and the education administrators should join hands to address this issue in a focused manner. This is all the more needed urgently as the nuclear power programme and other applications are expected to increase many fold in coming years

  19. Gas phase chemistry studies of transactinoid elements and the relativistic effects

    Czech Academy of Sciences Publication Activity Database

    Zvára, Ivo

    1999-01-01

    Roč. 49, č. 2 (1999), s. 563-571 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : transactinoid * relativistic effects * chemical properties Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.328, year: 1999

  20. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  1. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  2. Chemistry aided nuclear physics studies

    NARCIS (Netherlands)

    Even, Julia

    2016-01-01

    Studies of the superheavy elements bring several challenges through low production yields, short half-lives, and high background rates. This paper describes the possibilities of chemical separations as techniques to overcome the background problematic and to investigate the nuclear properties of the

  3. Proceedings of the 32. Brazilian Congress on Chemistry; 5. Brazilian Meeting of Scientific Initiation on Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1992-01-01

    This 32. Brazilian Congress on Chemistry happened in Belem, Para State, was important, considering the actual moment where the Amazonia assume a role in the international view. Works about synthesis, characterization and uses of nuclear materials and elements are presented. (C.G.C.)

  4. Rack for nuclear fuel elements

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gordon, C.B.; Robison, A.; Clark, P.M.

    1977-01-01

    Disclosed is a rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed spent fuel elements. Each fuel element is supported at the lower end thereof by a respective support that rests on the floor of the spent fuel pool for a nuclear power plant. An open rack frame is employed as an upright support for the enclosures containing the spent fuel elements. Legs at the lower corners of the frame rest on the floor of the pool to support the frame. In one exemplary embodiment, the support for the fuel element is in the form of a base on which a fuel element rests and the base is supported by legs. In another exemplary embodiment, each fuel element is supported on the pool floor by a self-adjusting support in the form of a base on which a fuel element rests and the base rests on a ball or swivel joint for self-alignment. The lower four corners of the frame are supported by legs adjustable in height for leveling the frame. Each adjustable frame leg is in the form of a base resting on the pool floor and the base supports a threaded post. The threaded post adjustably engages a threaded column on which rests the lower end of the frame. 16 claims, 14 figures

  5. Nuclear chemistry project. Progress report, January 1, 1978--December 31, 1978

    International Nuclear Information System (INIS)

    Naumann, R.A.

    1978-01-01

    Research on the nuclear chemistry project is summarized including Coulomb capture of negative muons by atoms and molecules, nuclear structure and spectroscopy, and the preparation and use of radioactive targets both to study the internal electric fields acting on the nuclei of foreign atoms introduced in metallic solids by radioactive decay and determination of nuclear moments by optical hyperfine spectroscopy

  6. General Chemistry Exercises Focused on the Professional Profile on Nuclear Careers

    International Nuclear Information System (INIS)

    Lau-González, Maritza; Jáuregui-Haza, Ulises; Corona-Hernández, José Ángel; Santamaría-Arbona, María Teresa; Abreu-Díaz, Aidamary

    2016-01-01

    The subject General Chemistry is part of the base curriculum of the nuclear profile careers: Radiochemistry Careers and Engineering on Nuclear Technologies and Energetics. It has as main objectives the complementing, the deep analysis and integration of the basic principles of chemistry as a science, and due to its content, it constitutes an excellent platform to settle inter-subject relationships with those of the nuclear specialties. The aim of this paper is presenting linking examples among the subjects, through exercises that are supported in the Moodle Platform, conceived for the independent work of students, which besides facilitating the consolidation of the received knowledge in high school, and those ones in the first year of the career, allow them to be familiar with the future of their profession. (author)

  7. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  8. Aspects of chemistry in management of radioactive liquid wastes from nuclear installations

    International Nuclear Information System (INIS)

    Yeotikar, R.G.

    2007-01-01

    Nuclear energy is the only source available to the mankind to fulfill the continuous and ever increasing demand of energy. The public acceptance and popularity of nuclear energy depends to a large extent on management of radioactive waste. The nuclear waste management demands eco-friendly process/systems. This article highlights the sources of different types of radioactive liquid wastes generated in the nuclear installation and their treatment process. The radioactive liquid waste is classified mainly into three categories based on activity levels e.g. low, intermediate and high level. The management of radioactive liquid waste is very critical because of its 'mobility and liquid' nature. Secondly the liquid wastes have wide range of activity and chemistry spectrum and their volumes are also different. Hence the methods for management of different types of liquid wastes are also different. Mostly the treatment and conditioning processes are chemical processes. The chemistry involved in the treatment and conditioning of these wastes, problems related with chemistry for each processes and efforts to solve these problems, aspects of adoption on plant scale, etc., have been discussed in this article. (author)

  9. Discussion meeting on nuclear-, radio- and radiation chemistry - basics and applications

    International Nuclear Information System (INIS)

    1982-01-01

    The following fields have been represented at this meeting: 1. nuclear reactions and properties of the formed products; 2. geo- and cosmochemistry; 3. chemistry of actinides and other radioisotopes; 4. radioanalysis; 5. isotope applications; 6. nuclear fuel cycle. Single papers are listed under appropriate categories. (RB)

  10. Nuclear responses in INTOR plasma stabilization elements

    International Nuclear Information System (INIS)

    Gohar, Y.; Gilligan, J.; Jung, J.; Mattas, R.F.; Miley, G.H.; Wiffen, F.W.; Yang, S.

    1985-01-01

    Nuclear responses in the plasma stabilization elements were studied in a parametric fashion as a part of the transient electromagnetics critical issue C of ETR/INTOR activity. The main responses are neutron fluence and radiation dose in the insulator material, induced resistivity and atomic displacement in the conductor material, nuclear heating and life analysis for the elements. Copper and aluminum conductors with either MgAl 2 O 4 or MgO insulating material were investigated. Radiation damage and life analysis for these elements were also discussed

  11. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  12. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  13. Gas-phase chemistry of element 114, flerovium

    Directory of Open Access Journals (Sweden)

    Yakushev Alexander

    2016-01-01

    Full Text Available Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of the valence shell 7s27p21/2 is expected due to the orbital splitting and the contraction not only of the 7s2 but also of the spherical 7p21/2 closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature.

  14. Current status of neutron activation analysis and applied nuclear chemistry

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1990-01-01

    A review of recent scientometric studies of citations and publication data shows the present state of NAA and applied nuclear chemistry as compared to other analytical techniques. (author) 9 refs.; 7 tabs

  15. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  17. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    Lindner, L.

    1975-01-01

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  18. System for assembling nuclear fuel elements

    International Nuclear Information System (INIS)

    1980-01-01

    An automatic system is described for assembling nuclear fuel elements, in particular those employing mixed oxide fuels. The system includes a sealing mechanism which allows movement during the assembling of the fuel element along the assembly stations without excessive release of contaminants. (U.K.)

  19. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirama, H.

    1978-01-01

    A nuclear fuel element comprises an elongated tube having upper and lower end plugs fixed to both ends thereof and nuclear fuel pellets contained within the tube. The fuel pellets are held against the lower end plug by a spring which is supported by a setting structure. The setting structure is maintained at a proper position at the middle of the tube by a wedge effect caused by spring force exerted by the spring against a set of balls coacting with a tapered member of the setting structure thereby wedging the balls against the inner wall of the tube, and the setting structure is moved free by pushing with a push bar against the spring force so as to release the wedge effect

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  2. Directions for nuclear research in the transplutonium elements

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Chasman, R.R.; Friedman, A.M.; Ahmad, I.

    1983-01-01

    The study of the heavy nuclides has played a vital role in our understanding of the alpha decay process, nuclear fission, nuclear binding energies and the limits of nuclear stability. This study has led to the understanding of novel shape degrees of freedom, such as the very large quadrupole deformations associated with the fission isomer process, and the very recently discovered octupole deformation. The existence of these unique phenomena in the heavy element region is not accidental. Fission isomerism is due to the delicate balance between nuclear forces holding the nucleus together and Coulomb forces causing nuclear fission. Octupole deformation arises from the increasing strength of matrix elements with increasing oscillator shell. Both illustrate the unique features of the heavy element region. Fission studies have given us information about large collective aspects in nuclei and the importance that nuclear structural effects can play in altering these macro properties. A new class of atomic studies has become possible with the availability of heavy elements. With these isotopes, we are now able to produce electric fields of such magnitude that it becomes possible to spontaneously create positron-electron pairs in the vacuum. We have organized this presentation into three major sections: nuclear structure, fission studies and atomic studies of supercritical systems. In each we will try to emphasize the new directions which can benefit from the continued availability of isotopes supplied by the Trans-plutonium Production Program. 117 references

  3. Proceedings of the 3. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1987-01-01

    The works of 3. Meeting on Chemistry in Northeast are presented, including topics about elements determination with nuclear techniques. The use of these techniques in soil and food studies are also cited. (C.G.C.) [pt

  4. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  5. The Nuclear Science Facility at San Jose State University and the U.S. Department of Energy sponsored Summer School in Nuclear Chemistry

    International Nuclear Information System (INIS)

    Ling, A.C.

    1990-01-01

    The Nuclear Science Facility at SJSU was first opened for classes in 1975. It is designed primarily for undergraduate teaching of nuclear chemistry, radiochemistry, tracer techniques, and radiation safety. Utilizing nearly $1.5 million in counting equipment alone, but excluding a reactor or accelerator, it allows simultaneous use of multiple counting assemblages for up to 20 individual students, even for advanced experiments with Ge/MCA units. Current academic programs include a B.S. Degree in Radiochemistry, an M.S. in Radiological Health Physics, and community outreach to grade schools (nearly 2,000 student-experiments for grades 7-12 were performed in AY88/89). To encourage nuclear chemistry as a potential area of study in graduate school, the US Department of Energy funded a special national Summer School in Nuclear Chemistry. This was first held at SJSU in 1984; summer 1990 will see the seventh such program taught

  6. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  7. The role of post accident chemistry data in nuclear safety

    International Nuclear Information System (INIS)

    Bradshaw, R.W.; Caruthers, G.F.

    1982-01-01

    The NRC instituted the NUREG-0737 requirements as implementation of the Post-TMI Action Plan in October, 1980. Among these requirements was the capability to obtain chemistry samples of the reactor coolant and containment building atmosphere under post accident conditions. The quantitative criteria were, in general, beyond the capabilities of existing plant systems. As a consequence the nuclear industry expended substantial efforts to design and install the post-accident sampling systems necessary to comply with these criteria. With such efforts essentially complete, the task remains to establish the role that data provided by these systems would play in mitigating the consequences of a nuclear plant accident. This role definition must include a characterization of the timing and priority for the post accident chemistry data. This paper defines that role using the Safety Level and Safety Function concepts as a matrix

  8. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  9. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    Bond, W.D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  10. Apparatus for locating defective nuclear fuel elements

    International Nuclear Information System (INIS)

    Lawrie, W.E.

    1979-01-01

    An ultrasonic search unit for locating defective fuel elements within a fuel assembly used in a water cooled nuclear reactor is presented. The unit is capable of freely traversing the restricted spaces between the fuel elements

  11. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  12. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  13. Frontiers of heavy element nuclear and radiochemistry

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1999-01-01

    The production and half-lives of the heaviest chemical elements, now known through Z=112, are reviewed. Recent experimental evidence for the stabilization of heavy element isotopes due to proximity to deformed nuclear shells at Z=108 and N=162 is compared with the theoretical predictions. The possible existence of isotopes of elements 107-110 with half-lives of seconds or longer, and production reactions and experimental techniques for increasing the overall yields of such isotopes in order to study both their nuclear and chemical properties are discussed. The present status of studies of the chemical properties of Rf, Ha, and Sg is briefly summarized and prospects for extending chemical studies beyond Sg are considered. (author)

  14. Superheavy Element Synthesis and Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.

    2009-01-01

    The search for the next closed proton and neutron shells beyond 2 08P b has yielded a number of exciting results in terms of the synthesis of new elements [1,2,3]. The superheavy elements (SHE), however, are a nuclear structure phenomenon. They owe their existence to the quantum mechanical origin of shell correction energies without which they would not be bound. In recent years the development of efficient experimental set-ups including separators and advanced particle and photon detection arrangements allowed for more and more detailed nuclear structure studies for nuclei at and beyond Z=100. A review of those recent achievements is given in ref. [4]. Among the most interesting features is the observation of K-isomeric states. Experimentally about 14 cases have been identified in the region of Z>96 as shown in Fig. 1. K-isomers or indications of their existence have been found for almost all even-Z elements in the region Z=100 to 110. We could recently establish and/or confirm such states in the even-even isotopes 2 52,254N o [5]. The heaviest nucleus where such a state was found is 2 70D s with Z=110 as we reported in 2001 [6]. Those nuclear structure studies lay out the grounds for a detailed understanding of these heavy and high-Z nuclear systems, and contribute at the same time valuable information to preparation of strategies to successfully continue the hunt for the localisation of the next spherical proton and neutron shells after 2 08P b. The recent activities for both SHE synthesis and nuclear structure investigations at GSI will be reported.(author)

  15. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.

    1991-08-01

    During the past year the Nuclear Chemistry Group at Indiana University has concentrated its efforts on (1) the analysis and publication of previous experimental studies and (2) the design and construction of ISiS, a 4π detector for multifragment emission studies. No new experiments were undertaken, rather all of our experimental effort has been directed toward component tests of ISiS, with a goal of beginning measurements with this device in 1992. Research projects that have been largely completed during the last year include: (1) multiple fragment emission studies of the 0.90 and 3.6 GeV 3 He + nat Ag reaction; (2) intermediate-mass-fragment (IMF: 3 ≤ Z ≤ 15) excitation function measurements for the E/A = 20-to-100 MeV 14 N + nat Ag and 197 Au reactions, and (3) particle-particle correlation studies for the determination of space-time relationships energy collisions

  16. First attempt to chemically identify element 112

    Czech Academy of Sciences Publication Activity Database

    Yakushev, AB.; Buklanov, GV.; Chelnokov, ML.; Chepigin, VI.; Dmitriev, S. N.; Gorshkov, VA.; Hubener, S.; Malyshev, ON.; Oganessian, YT.; Popeko, AG.; Sokol, EA.; Timokhin, SN.; Turler, A.; Vasko, VM.; Yeremin, AV.; Zvára, Ivo

    2001-01-01

    Roč. 89, 11/12 (2001), s. 743-745 ISSN 0033-8230 Institutional research plan: CEZ:AV0Z1048901 Keywords : superheavy elements * actionoid * transactinoids Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.660, year: 2001

  17. Monitoring arrangement for vented nuclear fuel elements

    International Nuclear Information System (INIS)

    Campana, R.J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180 0 rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements

  18. Chemistry of pyroprocessing for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P. [Argonne National Laboratory, IL (United States)

    1995-10-01

    Pyrochemical treatment of spent nuclear fuel is an attractive approach for separating the transuranium (TRU) elements neptunium, plutonium, americium, and curium because of its simplicity, diversion resistance, and potentially low cost.

  19. Chemistry technician performance evaluation program Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Shawver, J.M.

    1992-01-01

    The Arizona Nuclear Power Project (ANPP), a three-reactor site located 50 miles west of Phoenix, Arizona, has developed and implemented a program for evaluating individual chemistry technician analytical performance on a routine basis. About 45 chemistry technicians are employed at the site, 15 at each operating unit. The technicians routinely perform trace level analyses for impurities of concern to PWRs. Each month a set of blind samples is provided by an outside vendor. The blind samples contain 16 parameters which are matrixed to approximate the PWR's primary and secondary cycles. Nine technicians receive the samples, three from each operating unit, and perform the required analyses. Acceptance criteria for successful performance on the blind parameters is based on the values found in the Institute of Nuclear Power Operations (INPO) Document 83-016, Revision 2, August 1989, Chemistry Quality Control Program. The goal of the program is to have each technician demonstrate acceptable performance on each of 16 analytical parameters. On completion of each monthly set, a summary report of all of the analytical results for the sample set is prepared. From the summary report, analytical bias can be detected, technician performance is documented, and overall laboratory performance can be evaluated. The program has been very successful at satisfying the INPO requirement that the analytical performance of each individual technician should be checked on at least a six-month frequency for all important parameters measured. This paper describes the program as implemented at the Palo Verde Nuclear Generating Station and provides a summary report and trend and bias graphs for illustrative purposes

  20. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  1. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Kawada, Toshiyuki; Hirayama, Satoshi; Yoneya, Katsutoshi.

    1980-01-01

    Purpose: To enable load-depending operation as well as moderation for the restriction of operation conditions in the present nuclear reactors, by specifying the essential ingredients and the total weight of the additives to UO 2 fuel substances. Constitution: Two or more additives selected from Al 2 O 3 , B 2 O, CaO, MgO, SiO 2 , Na 2 O and P 2 O 5 are added by the total weight of 2 - 5% to fuel substances consisting of UO 2 or a mixture of UO 2 and PuO 2 . When the mixture is sintered, the strength of the fuel elements is decreased and the fuel-cladding interactions due to the difference in the heat expansion coefficients between the ceramic fuel elements and the metal claddings are decreased to a substantially harmless degree. (Horiuchi, T.)

  2. A nuclear chocolate box: the periodic table of nuclear medicine.

    Science.gov (United States)

    Blower, Philip J

    2015-03-21

    Radioisotopes of elements from all parts of the periodic table find both clinical and research applications in radionuclide molecular imaging and therapy (nuclear medicine). This article provides an overview of these applications in relation to both the radiological properties of the radionuclides and the chemical properties of the elements, indicating past successes, current applications and future opportunities and challenges for inorganic chemistry.

  3. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  4. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia; Dvadeset godina hemije vezane za potrebe i koriscenje nuklearnih reaktora u Institutu za nuklearne nauke 'Boris kidric' i Vinci

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-07-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor. [Serbo-Croat] Ova publikacija obuhvata devet radova, po sledecim naslovima, a odnose se na potrebe i uslove nuklearnih reaktora u Institutu za nuklearne nauke 'Boris Kidric' tokom prethodnih dvadeset godina: radiohemija, hemija vruceg atoma, proizvodnja radioaktivnih izotopa, prerada isluzenog nuklearnog goriva, hemija transuranskih elemenata, obrada radioaktivnih otpadnih voda, preciscavanje vode za hladjenje nuklearnih reaktora pomocu neorganskih jonoizmenjivaca, istrazivanje procesa za koncentrovanje deuterijuma i hemijska dozimetrija reaktora RA.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  6. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a metal liner disposed between the cladding and the nuclear fuel material and a high lubricity material in the form of a coating disposed between the liner and the cladding. The liner preferably has a thickness greater than the longest fission product recoil distance and is composed of a low neutron capture cross-section material. The liner is preferably composed of zirconium, an alloy of zirconium, niobium or an alloy of niobium. The liner serves as a preferential reaction site for volatile impurities and fission products and protects the cladding from contact and reaction with such impurities and fission products. The high lubricity material acts as an interface between the liner and the cladding and reduces localized stresses on the cladding due to fuel expansion and cracking of the fuel

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  8. LAMPF nuclear chemistry data acquisition system

    International Nuclear Information System (INIS)

    Giesler, G.C.

    1983-01-01

    The LAMPF Nuclear Chemistry Data Acquisition System (DAS) is designed to provide both real-time control of data acquisition and facilities for data processing for a large variety of users. It consists of a PDP-11/44 connected to a parallel CAMAC branch highway as well as to a large number of peripherals. The various types of radiation counters and spectrometers and their connections to the system will be described. Also discussed will be the various methods of connection considered and their advantages and disadvantages. The operation of the system from the standpoint of both hardware and software will be described as well as plans for the future

  9. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  10. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1984-09-01

    The activities of the nuclear chemistry group at Indiana University during the period September 1, 1983 to August 31, 1984, are summarized. The primary thrust of our research program has continued to be the investigation of damped collision mechanisms at near-barrier energies and of linear momentum and energy transfer in the low-to-intermediate energy regime. In addition, during the past year we have initiated studies of complex fragment emission from highly excited nuclei and have also completed measurements relevant to understanding the origin and propagation of galactic cosmic rays. Equipment development efforts have resulted in significantly improving the resolution and solid-angle acceptance of our detector systems. The experimental program has been carried out at several accelerators including the Indiana University Cyclotron Facility, the Lawrence Berkeley Laboratory SuperHILAC, the Holifield Heavy-Ion Research Facility and the National Superconducting Cyclotron Laboratory at Michigan State University. Publications and activities are listed

  11. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  12. Nuclear synergism of the light elements

    International Nuclear Information System (INIS)

    Harms, A.A.

    1983-05-01

    Some basic issues concerning accelerator initiated and fusion sustained nuclear energy systems are examined. For this purpose we identify selected nuclear fusion reactions characterized by a variable ion-to-neutron content and explore their intrinsic couplings and regenerative features. These are then related to particular systems concepts which emphasize fusion physics and accelerator technology. It is concluded that several light-element reaction systems possess appealing and interesting properties and can further be associated with selected advanced nuclear technologies. Their eventual implementation as nuclear energy systems requires further research in fusion physics, accelerator technology and mathematical physics. Because of the substantial potential benefits of such nuclear energy systems, it is concluded that research in this area should be pursued with much vigour. (orig.)

  13. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  14. Fuel element for a nuclear reactor

    International Nuclear Information System (INIS)

    Linning, D.L.

    1977-01-01

    An improvement of the fuel element for a fast nuclear reactor described in patent 15 89 010 is proposed which should avoid possible damage due to swelling of the fuel. While the fuel element according to patent 15 89 010 is made in the form of a tube, here a further metal jacket is inserted in the centre of the fuel rod and the intermediate layer (ceramic uranium compound) is provided on both sides, so that the nuclear fuel is situated in the centre of the annular construction. Ceramic uranium or plutonium compounds (preferably carbide) form the fuel zone in the form of circular pellets, which are surrounded by annular gaps, so that gaseous fission products can escape. (UWI) [de

  15. Institute of Nuclear Chemistry, Mainz University. Annual report 1991

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1992-03-01

    Brief reports summarise the 1991 achievements of the four departments of the Institute relating to the subject areas: chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  16. Institute of Nuclear Chemistry, Mainz University. Annual report 1992

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1993-03-01

    Brief reports summarise the 1992 achievements of the four departments of the Institute relating to the subject areas: Chemistry of most heavy elements, fast separation methods, equipment development, decay properties and structures of nuclei, heavy ion reactions, environmental analytics. The list of publications and lectures of Institute members is given in an annex. (orig.) [de

  17. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry

    International Nuclear Information System (INIS)

    Collins, E.D.; DelCul, G.D.; Spencer, B.B.; Jubin, R.T.; Maher, C.; Kim, I.-T.; Lee, H.; Federov, Yu. S.; Saprykin, V.F.; Beznosyuk, V.I.; Kolyadin, A.B.; Baron, P.; Miguirditchian, M.; Sorel, C.; Morita, Y.; Taylor, R.; Khaperskaya, A.; Hill, C.; Malmbeck, R.; Law, J.; Angelis, G. de; Boucher, L.; Xeres, X.; Collins, E.; Mendes, E.; Lee, H.-S.; Inoue, T.; Glatz, J.P.; Kormilitsyn, M.; Uhlir, J.; Ignatiev, V.; Serp, J.; Delpech, S.

    2018-01-01

    The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the long-term risks associated with nuclear power generation. R and D programs worldwide are attempting to address such challenges, and many processes for advanced reprocessing and partitioning minor actinides are being developed. This report provides a comprehensive overview of progress on separation chemistry processes, and in particular on the technologies associated with the separation and recovery of minor actinides for recycling so as to help move towards the implementation of advanced fuel cycles. The report examines both aqueous and pyro processes, as well as the status of current and proposed technologies described according to the hierarchy of separations targeting different fuel components. The process criteria that will affect technology down-selection are also reviewed, as are non-proliferation requirements. The maturity of different reprocessing techniques are assessed using a scale based on the technology readiness level, and perspectives for future R and D are reviewed

  18. Ageing evaluation model of nuclear reactors structural elements

    International Nuclear Information System (INIS)

    Ziliukas, A.; Jutas, A.; Leisis, V.

    2002-01-01

    In this article the estimation of non-failure probability by random faults on the structural elements of nuclear reactors is presented. Ageing is certainly a significant factor in determining the limits of nuclear plant lifetime or life extensions. Usually the non failure probability rates failure intensity, which is characteristic for structural elements ageing in nuclear reactors. In practice the reliability is increased incorrectly because not all failures are fixed and cumulated. Therefore, the methodology with using the fine parameter of the failures flow is described. The comparison of non failure probability and failures flow is carried out. The calculation of these parameters in the practical example is shown too. (author)

  19. Crystal chemistry, properties and synthesis of microporous silicates containing transition elements

    International Nuclear Information System (INIS)

    Chukanov, Nikita V; Pekov, Igor V; Rastsvetaeva, Ramiza K

    2004-01-01

    The review surveys and generalises recent data on synthesis methods, physicochemical properties and crystal chemistry of silicate microporous materials containing transition elements (amphoterosilicates). The frameworks of these materials, unlike those of usual aluminosilicate zeolites, are built from tetrahedrally coordinated atoms along with atoms of various elements (Ti, Nb, Zr, Ta, Sn, W, Fe, Mn, Zn, etc.) with coordination numbers of 6 or 5. Many amphoterosilicates possess ion-exchange properties and can serve as catalysts for redox reactions, sorbents, etc. The structural diversity of synthetic and natural amphoterosilicates provides the basis for the preparation of microporous materials with different properties.

  20. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  1. Institute for Nuclear Chemistry of the University of Mainz. Annual report 1986

    International Nuclear Information System (INIS)

    Weber, M.

    1987-01-01

    The report summarizes the points of main efforts of the Institute for Nuclear Chemistry during 1986: A. Rapid separations (thermochromatography of platinum elements; ICP source for the HELIOS mass separator; oxidation states of Lr; ionic radii of Lr 3+ and Md 3+ ; heats of hydration). B. Exotic nuclei and nuclear structure (lifetime of the 167 keV level of 97 Sr; description of the K=3/2 + side band in 99 Y with the IBF/PTQ model; pairing-free K π =1 + -rotational bands in deformed odd/odd A ≅ 100 nuclei; proton particle states in 103,105 Rh; β-decay of the 110,112 Rh isomers; β-decay half-life of 130 48 Cd and its importance for astrophysical r-process scenarios; alpha burning of 14 O; β-decay half-lives of nuclei far from stability for astrophysical application; beta delayed neutron energy spectra for application in reactor physics). C. Nuclear fission (charge distribution in the reaction 232 Th(n R ,f); isomeric ratios and decay properties of 96m,g Y, 97m,g Y and 134m,g I). D. Heavy ion reactions (quasi fission in the reaction 40 Ar + 208 Pb near the Coulomb barrier; unusual excitation-energy distribution in quasi-fission reactions; competition of direct reactions with fusion; nucleon transfer in the reaction 40 Ar + 235 U; nuclear reactions and nuclear contact in U+U collisions below the barrier; deflection function and fragmentation in the system 197 Au → 197 Au; search for exotic heavy nuclei using Rutherford backscattering). E. Ecology of radionuclides (preparation of plutonium samples for laser spectroscopy; laser resonance-ionization mass spectrometry on uranium and plutonium; capture of externally produced ions in a high frequency quadrupole trap; Chernobyl fallout in the Mainz area). (orig./RB) [de

  2. Proceedings of BARC golden jubilee year DAE-BRNS topical symposium on role of analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Swain, K.K.; Venkataramani, B.

    2007-01-01

    Among the various disciplines in Chemistry, Analytical Chemistry is unique, because it is an integral part of every aspect of technology- product and process development and deployment. In Nuclear Industry, the quality assurance criteria are very stringent. And truly, Analytical Chemistry has continued to play a pivotal role in the entire nuclear fuel cycle, since the beginning of the Indian Atomic Energy Programme. The conference covers invited talk, nuclear materials, reactor systems, thorium technology, alternate energy sources, biology, agriculture and environment, water technology, isotope, radiation and laser technology, development of analytical instruments, and reference materials and inter-comparison exercises. Papers relevant to INIS are indexed separately. (author)

  3. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  4. Introducing the "Human Element" in Chemistry by Synthesizing Blue Pigments and Creating Cyanotypes in a First-Year Chemistry Course

    Science.gov (United States)

    Morizot, Olivier; Audureau, Eric; Briend, Jean-Yves; Hagel, Gaetan; Boulc'h, Florence

    2015-01-01

    In this article, we present two concrete applications of the concept of the human element to chemistry education; starting with a course and experimental project on blue pigment synthesis and concluding with cross-disciplinary lessons and experiments on blue photography. In addition to the description of the content of these courses, we explore…

  5. Recent development and application of radioanalytical chemistry in China

    International Nuclear Information System (INIS)

    Su Khun guj.

    1996-01-01

    A brief description of the recent investigations and different applications of the methods of radioanalytical chemistry in China is given in the paper. The various important aspects (activation analysis, determination of actinide elements, analysis of nuclear reaction products and environmental samples) have been emphasized. 40 refs

  6. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    Taub, J.M.

    1975-06-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 2500 0 C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO 2 , pyrocarbon-coated UC 2 , or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  7. Nuclear power plant conference 2010 (NPC 2010): International conference on water chemistry of nuclear reactor systems and 8th International radiolysis, electrochemistry and materials performance workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The Nuclear Plant Chemistry Conference was held in Quebec City, Quebec, Canada on October 3-7, 2010. It was hosted by the Canadian Nuclear Society and was held in Canada for the first time. This international event hosted over 300 attendees, two thirds from outside of Canada, mostly from Europe and and Far East. The conference is formally known as the International Conference on Water Chemistry of Nuclear Reactor Systems and is the 15th of a series that began in 1977 in Bournemouth, UK. The conference focussed on the latest developments in the science and technology of water chemistry control in nuclear reactor systems. Utility scientists, engineers and operations people met their counterparts from research institutes, service organizations and universities to address the challenges of chemistry control and degradation management of their complex and costly plants for the many decades that they are expected to operate. Following the four day conference, the 8th International Radiolysis, Electrochemistry and Materials Performance Workshop was held as associated, but otherwise free-standing event on Friday, October 8, 2010. It was also well attended and the primary focus was the effect of radiation on corrosion. When asked about the importance of chemistry in operating nuclear power plants, the primary organizers summarized it in the following statement: 'Once a nuclear plant is in operation, chemistry improvement is the only way to increase the longevity of the plant and its equipment'. The organisers of the 2010 Workshop and the NPC 2010 conference decided that these two events would be held consecutively, as previous, but for the first time the organization and registration would be shared, which proved to be a winning combination by the attendance.

  8. MADNESS applied to density functional theory in chemistry and nuclear physics

    International Nuclear Information System (INIS)

    Fann, G I; Harrison, R J; Beylkin, G; Jia, J; Hartman-Baker, R; Shelton, W A; Sugiki, S

    2007-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  9. Chemistry in nuclear power plants from the point of view of OSART

    International Nuclear Information System (INIS)

    Winkler, R.

    1990-01-01

    The standard programme of OSART (Operational Safety Review Team), a programme of the International Atomic Energy Agency, is divided into eight test areas. Chemistry as one of those areas is considered under the following aspects: Organization, personnel qualification, monitoring programmes, working rules, limit values, layout and equipment of laboratories, data acquisition and reporting, safety provisions and quality assurance in laboratories. At least one chemist belongs to the teams usually consisting of 10 to 15 experts and several observers. The author of this paper participated in various missions and in the periodical summary of OSART results. Here he speaks about the status and trends of chemistry in nuclear power plants with light water reactors. Following the principle of OSART, none of the nuclear power plants is named. (orig./BBR) [de

  10. HMI Department of Nuclear Chemistry and Reactor. Scientific report 1984

    International Nuclear Information System (INIS)

    1985-01-01

    The report gives an account of ongoing R and D work in the following fields: 1) Neutron scattering (method development, crystallography); 2) Damage to solids due to radiation (i.a. reactions to failure, atom transport, changes in material properties); 3) Reactor chemistry (solidification products far radioactive wastes; gas/graphite reactions within the first wall of a fusion reactor); 4) Biomedical trace element research (transport and storage of bioelements, trace element analytics); 5) Geochemical reservoir exploration technique (distribution of elements, complexing etc.); 6) Reactor operation, utilization and possible extensions. Furthermore, a survey is given on publications and lectures as well as on correlations with other fields of research. (RB) [de

  11. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  12. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  13. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  14. Vented nuclear fuel element

    International Nuclear Information System (INIS)

    Oguma, M.; Hirose, Y.

    1976-01-01

    A description is given of a vented nuclear fuel element having a plenum for accumulation of fission product gases and plug means for delaying the release of the fission product gases from the plenum, the plug means comprising a first porous body wettable with a liquid metal and a second porous body non-wettable with the liquid metal, the first porous body being impregnated with the liquid metal and in contact with the liquid metal

  15. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  16. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  17. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  18. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  19. Nuclear fuel element recovery using PEDSCO RMI Unit

    International Nuclear Information System (INIS)

    Martin, D.G.; Pedersen, B.V.

    1984-01-01

    In September 1982, a PEDSCO Remote Mobile Investigation Unit was used to recover damaged irradiated fuel elements from a fueling machine and trolley deck at Bruce Nuclear Generating Station 'A'. This Canadian-made remote controlled vehicle was originally designed for explosive ordinance disposal by law enforcement agencies. This paper describes its adaptation to nuclear service and its first mission, within a nuclear facility

  20. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  1. Nuclear microprobe and Raman investigation of the chemistry of the shell of the pacific oyster, Crassostrea gigas

    International Nuclear Information System (INIS)

    Markwitz, A.; Gauldie, R.W.; Pithie, J.; Sharma, S.K.; Jamieson, D.J.

    1999-01-01

    High-resolution nuclear microscopy was used to study the layered structure in the shell of the pacific oyster, Crassostrea gigas. In cross section, the layers appear as opaque white zones and clearer translucent zones. Raman spectroscopy indicates that the zones consist of alternating layers of the aragonite and calcite morphs of calcium carbonate, the mineral constituent of the shell. The chemistry of the shell varies from individual to individual but generally the predominant metal ion is Ca, with varying amounts of Si, Cl, Cr, Mn, Fe, Zn, Sb, Ni, Fe, As and Sr. Two dimensional maps of these major, minor and trace elements were measured in many shells with nuclear microscopy to identify the patterns of Zn and Sr deposition reflecting the calcite and aragonite layers. The significant difference in the patterns identified by ion beam analyses are possibly a result of isostructural exclusion of these metal ions between the different aragonite and calcite polymorphic forms of calcium carbonate. (author)

  2. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  3. George de Hevesy (1885 - 1966), founder of radioanalytical chemistry

    International Nuclear Information System (INIS)

    Niese, S.

    2006-01-01

    George de Hevesy has founded Radioanalytical Chemistry and Nuclear Medicine, discovered the element hafnium and first separated stable isotopes. For all these different important achievements he was nominated for the Nobel Prize. On occasion of his discovery of activation analysis 70 years ago his life and work will be illustrated. (author)

  4. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  5. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  6. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  7. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  8. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  9. On elastic structural elements for nuclear reactors

    International Nuclear Information System (INIS)

    Povolo, F.

    1978-03-01

    The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de

  10. Process to separate transuranic elements from nuclear waste

    Science.gov (United States)

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  11. Process to separate transuranic elements from nuclear waste

    International Nuclear Information System (INIS)

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-01-01

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs

  12. Development of nuclear standard filter elements for PWR plant

    International Nuclear Information System (INIS)

    Weng Minghui; Wu Jidong; Gu Xiuzhang; Zhang Jinghua

    1988-11-01

    Model FRX-5 and FRX-10 nuclear standard filter elements are used for the fluid clarification of the chemical and volume control system (CVCS), boron recycle system (BRS), spent fuel pit cooling system (SFPCS) and steam generator blowdown system (SGBS) in Qinshan Nuclear Power Plant. The radioactive contaminant, fragment of resin and impurity are collected by these filter elements, The core of filter elements consists of polypropylene frames and paper filter medium bonded by resin. A variety of filter papers are tested for optimization. The flow rate and comprehensive performance have been measured in the simulation condition. The results showed that the performance and lifetime have met the designing requirements. The advantages of the filter elements are simple in manufacturing, less expense and facilities for waste-disposal. At present, some of filter elements have been produced and put in operation

  13. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of nuclear electricity generation in Mexico in 1976 is described: two nuclear reactors were under construction but no definite programme on the type and start-up dates for the next power plants existed. However, the existence of a general plan on nuclear power plants is mentioned, which, according to the latest estimates, will provide 10,000MW installed by 1990. The national intention, as laid down in an appropriate Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reloading of the two BWRs at the first national station in Laguna Verde, required at the end of 1981 and 1982, respectively. Before this can be achieved and to provide the relatively small amounts of fuel elements for the two reactors, Mexico must adopt a strategy of fuel elements fabrication. The two main options are analysed: (1) to delay local fabrication until a national nuclear programme has been defined, meanwhile purchasing abroad the necessary initial cores and refuelling; (2) to start local fabrication of fuel elements as soon as possible in order to provide the first refuelling of the first unit of Laguna Verde, confronting the economic risks of such a decision with the advantages of immediate action. Both options are analysed in detail, comparing them especially from the economic point of view. Current information from potential licensors for design and manufacture are used in the analysis. (author)

  14. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    Science.gov (United States)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  15. Chemistry Optimitation of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Frandrich, J.; Ramminger, U.

    2015-01-01

    One of the main objectives for the plant operator of a Nuclear Power Plant is to protect the Steam Generators (SG) during the lifetime of the plant by ensuring a safe and reliable operation. The SGs serve as an important barrier to prevent the spread of contamination out of the primary circuit. One the other hand impurities are accumulated within the SGs leading to extreme chemical and physical conditions. The application of an optimized water chemistry treatment of the secondary side is essential to ensure a good performance of the steam generators. (Author)

  16. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  17. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  18. Foreword of the Fifth Symposium on Nuclear Analytical Chemistry (NAC-V)

    International Nuclear Information System (INIS)

    Acharya, R.; Goswami, A.; Reddy, A.V.R.

    2014-01-01

    The Fifth Symposium on Nuclear Analytical Chemistry (NAC-V) was organized at BARC, Mumbai during January 20-24, 2014 with more than 300 participants. It was sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India and organized in cooperation with the IAEA and coorganized by the IANCAS. A total of 240 contributed abstracts along with 27 invited talks and 10 invited short talks were presented in 15 technical sessions. Selected 54 full papers of NAC-V have been accepted after review for publication in special issue of JRNC. (author)

  19. Shock buffer for nuclear control element assembly

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1977-01-01

    A shock buffer for a control element assembly in a nuclear reactor is described, comprising a piston and a cylinder. The piston is affixed to and extends upward from the control rod guide structure; the cylinder is supported by the upper portion of the control element assembly and is vertically oriented with open end downward for receiving the piston. Coolant liquid normally has free access to the cylinder. The piston displaces liquid from the cylinder when inserted, thereby decelerating the control element assembly near its lower extent of travel. (LL)

  20. Nuclear reactor fuel element assemblies

    International Nuclear Information System (INIS)

    Raven, L.F.

    1975-01-01

    A spacer grid for a nuclear fuel element comprises a plurality of cojointed cylindrical ferrules adapted to receive a nuclear fuel pin. Each ferrule has a pair of circumferentially spaced rigid stop members extending inside the ferrule and a spring locating member attached to the ferrule and also extending from the ferrule wall inwardly thereof at such a circumferential spacing relative to the rigid stop members that the line of action of the spring locating member passes in opposition to and between the rigid stop members which lie in the same diametric plane. At least some of the cylindrical ferrules have one rim shaped to promote turbulence in fluid flowing through the grid. (Official Gazette)

  1. Improved moulding material for addition to nuclear fuel particles to produce nuclear fuel elements

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1976-01-01

    A suggestion is made to improve the moulding materials used to produce carbon-contained nuclear fuel particles by a coke-reducing added substance. The nuclear fuel particles are meant for the formation of fuel elements for gas-cooled high-temperature nuclear reactors. The moulding materials are above all for the formation of coated particles which are burnt in situ in nuclear fuel element chambers out of 'green' nuclear fuel bodies. The added substance improves the shape stability of the particles forming and prevents a stiding or bridge formation between the particles or with the surrounding walls. The following are named as added substances: 1) Polystyrene and styrene-butadiene-Co polymers (mol. wt. between 5oo and 1,000,000), 2) aromatic compounds (mol. wt. 75 to 300), 3) saturated hydrocarbon polymers (mol. wt. 5,000 to 1,000,000). Additional release agents further improve the properties in the same direction (e.g. alcohols, fatty acids, amines). (orig.) [de

  2. Damper mechanism for nuclear reactor control elements

    International Nuclear Information System (INIS)

    Taft, W.E.

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke is described. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping. 3 claims, 2 figures

  3. Americium-241: the most useful isotope of the actinide elements

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1984-01-01

    Used extensively in nuclear gauges and in many other areas, this man-made element (Atomic Number 95) was first isolated in weighable amounts during World War II. Americium is now a very useful by-product of the nuclear industry and is produced in kilogram amounts by appropriate recovery, separation and purification processes. A review will be presented of its discovery, nuclear and chemical properties, and uses, with emphasis on its production process and separations chemistry

  4. Bibliography on transuranium elements

    International Nuclear Information System (INIS)

    Sood, D.D.

    1991-01-01

    A selective bibliography of prominent publications on transuranium elements is compiled. Heading papers, symposia proceedings and the textbooks are included in the bibliography. The bibliography is arranged under the headings: (1)Books, Symposia Proceedings, Reviews etc., (2)Discovery, (3)Weighable Isolation, (4)Metal Preparation, (5)Nuclear Properties, (6)Plutonium as Reactor Fuel, (7)Fuel Reprocessing, (8)Solid State Chemistry, Thermochemistry and Spectroscopy, (9)Radiation Safety, (10)Applications, and (11)Some Typical Indian Papers. Total number of references cited are 298. The bibliography, though selective, will serve as a starting point for comprehensive literature search on transuranium elements. (author)

  5. Hydration energies and specific influence of oxo complexes and high coordination numbers on the predicted chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Jorgensen, C.K.; Penneman, R.A.

    1975-01-01

    On the basis of an analysis of the known ionization energies of gaseous ions and aqua ions of the 3d, 4f, and 6d transition groups and the radius effects, the chemistry of the superheavy elements is predicted. The formation of aqua ion and oxo complexes in the elements with Z below 121 is considered. It is probable that the series from 123 to 140 constitute a close analogy to the lanthanides with Th-like chemistry. Above Z = 140 the elements will probably displace a transition group behavior. A brief comment is made on the analytical aspects to be expected. (U.S.)

  6. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  7. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  8. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei; Xu, Yuming

    2015-01-01

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is also a preferred path to achieve both safety and economy for operating NPPs. In recent years, an increased attention has been paid to fundamental research and engineering application of PWR primary water chemistry in China. The present talk mainly consists of four parts: (1) development status of China's nuclear power industry; (2) safety of nuclear power and operating water chemistry; (3) fundamental research progress on Zn-injected water chemistry in China; (4) summary and future. (author)

  9. The role of NAA in nuclear chemistry education

    International Nuclear Information System (INIS)

    Meyer, G.; Vivier, A.

    2007-01-01

    One of the missions of our Institute is the promotion of basic nuclear teaching for students as well as professional teaching for workers in nuclear industry and research. For nuclear chemistry education, we present here a one day teaching course on radioactive decay and nuclear reactions, and a two or three days course based on reactor irradiation of uranium oxide, instrumental and radiochemical analysis of fission products. In the first experiment, the neutron capture is presented as an example of nuclear reaction; the neutron activation of a silver coin with a Am-Be neutron source, followed by γ-ray spectrometry, is used to identify three radionuclides of silver and to calculate their half-lives. In the second experiment, our teaching reactor is used as a neutron source with a flux about 10 10 n x cm -2 x s -1 at a low thermal power (10 kW). This low flux allows us to irradiate a small uranium sample which is usable for spectrometry after a short cooling time of about two hours. The first day is reserved for instrumental analysis of the fission products and a second day for the radiochemical separation of a fission radionuclides. With these experimental results, the students have to calculate the number of fissions in the irradiated sample. On optional third day for postgraduate students is devoted to the presentation of NAA and some applications as uranium determination by the fission product spectrometry. (author)

  10. Elements of a nuclear criticality safety program

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1995-01-01

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance

  11. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  12. Industrial and natural nuclear reactors; Industrielle und natuerliche Kernreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Binnewies, Michael [Hannover Univ. (Germany); Willner, Helge; Woenckhaus, Juergen

    2015-08-15

    As described in the preceding article, all elements with atomic masses above that of iron and also the radioactive elements thorium and uranium have been formed by a supernova star explosion. Their long-lived isotopes of thorium and uranium are now distributed in the earth crust. The chemistry of uranium and thorium is of less importance, but these elements can be used to produce enormous amounts of energy in nuclear power stations. It will be described how it works. Surprisingly, small natural nuclear reactors were producing heat during hundreds of thousand years. Subsequently, we are dealing with this phenomenon, the principle of nuclear fission, the different types of nuclear reactors, security aspects and new developments.

  13. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  14. Assistance in chemistry and chemical processes related to primary, secondary and ancillary systems of nuclear power plants

    International Nuclear Information System (INIS)

    Chocron, Mauricio A.; Becquart, Elena T.; Iglesias, Alberto M.; La Gamma, Ana M.; Villegas, Marina

    2003-01-01

    Argentina is currently running two nuclear power plants: Atucha I (CNA I) and Embalse (CNE) operated by Nucleoelectrica Argentina (NASA) whereas the National Atomic Energy Commission (CNEA), among other activities, is responsible for research and development in the nuclear field, operates research reactors and carries out projects related to them. In particular, the Reactor Chemistry Section personnel (currently part of the Chemistry Dept.) has been working on the field of reactor water chemistry for more than 25 years, on research and support to the NPPs chemistry department. Though the most relevant tasks have been connected to primary and secondary circuits chemistry, ancillary systems show along the time unexpected problems or feasible improvements originated in the undergoing operating time as well as in phenomena not foreseen by the constructors. In the present paper are presented the tasks performed in relation to the following systems of Embalse NPP: 1) Heavy water upgrade column preliminary water treatment; 2) Liquid waste system preliminary water treatment; and 3) Primary heat transport system coolant crud composition. (author)

  15. Operational experience, evolution and developments in water chemistry in Indian Nuclear Power Plants - an overview

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    2000-01-01

    Lessons learnt from the experiences at nuclear power plants have enriched the understanding of corrosion behaviour in water systems. The need for proper water chemistry control not only during operation but also during fabrication and preoperational tests is clearly seen. It should not be construed that maintenance of proper water chemistry is a panacea for all corrosion and other associated problems. Unless adequate care is taken in selection of material and sound design and fabrication practices are followed, no regime of water chemistry can help in eliminating failure due to corrosion

  16. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  17. 3D finite element analysis of a nuclear fuel rod with gap elements between the pellet and the cladding

    International Nuclear Information System (INIS)

    Kang, Chang-Hak; Lee, Sung-Uk; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2016-01-01

    Nuclear fuel rods which comprises an important component of a nuclear power plant are composed of nuclear fuel and cladding. Simulating the nuclear fuel rod using a computer program is the universal method to verify its safety. The computer program used for this is called the fuel performance code. The main objective of this study is to simulate the nuclear fuel rod behavior considering the gap conductance using three-dimensional gap elements. Gap elements are used because, unlike other methods, this approach does not require special methods or other variables such as the Lagrange multiplier. In this work, a nuclear fuel rod has been simulated and the results are compared with the experimental results. (author)

  18. Double β-decay nuclear matrix elements and lepton conservation

    International Nuclear Information System (INIS)

    Vergados, J.D.

    1976-01-01

    The nuclear matrix elements involved in the double β-decay of 48 Ca, 130 Te, and 128 Te were calculated using realistic nuclear interactions and shell model nuclear wave functions. The double doorway state is not appreciably mixed in the ground state of the final nuclei. So the ground state transitions contain a small fraction of the sum rule. A lepton nonconservation parameter eta -4 was deduced

  19. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  20. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  1. Method of manufacturing nuclear fuel elements

    International Nuclear Information System (INIS)

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  2. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  3. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    International Nuclear Information System (INIS)

    Emrich, William J. Jr.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts

  4. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases

  5. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E. D.

    1984-01-01

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value

  6. Nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, E. D.

    1984-10-16

    An array of rods is assembled to form a fuel element for a pressurized water reactor, the rods comprising zirconium alloy sheathed nuclear fuel pellets and containing helium. The helium gas pressure is selected for each rod so that it differs substantially from the helium gas pressure in its closest neighbors. In a preferred arrangement the rods are arranged in a square lattice and the helium gas pressure alternates between a relatively high value and a relatively low value so that each rod has as its closest neighbors up to four rods containing helium gas at the other pressure value.

  7. Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator

    Science.gov (United States)

    Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.

    2015-01-01

    The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at

  8. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    Struble, G.

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  9. Handling system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Hawke, B.C.; Goldman, L.A.

    1980-01-01

    A system for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor is described. The canning mechanism operates in a sealed gaseous environment and visual and mechanical inspection of the elements is possible by an operator from a remote shielded area. (UK)

  10. The Zintl Chemistry of the Heavy Tetrel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael Thomas [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    Exploration of the alkali metal/alkaline-earth metal/heavy tetrel (Sn or Pb) systems has revealed a vast array of new chemistry and novel structure types. The structures and properties of these new materials have been studied in an attempt to understand the chemistry of these and other related systems. The first phase reported is Rb4Pb9 (K4Pb9 type). The compound contains two different types of Pb94- deltahedra, a monocapped square pyramid and a distorted tricapped trigonal prism. Both cluster geometries correspond to a nido assignment even though the tricapped trigonal prism is not the classic Wade's rules nido deltahedron expected for a monocapped square antiprism. Also, a series of compounds that contain square pyramidal Tt5 polyanions of tin and lead has been obtained in alkaline-earth or rare-earth metal-tetrel systems by direct fusion of the elements to yield Sr3Sn5, Ba3Pb5, and La3Sn5. These phases contain square pyramidal clusters of the tetrel elements that are weakly interlinked into chains via two types of longer intercluster interactions that are mediated by bridging cations and substantially influenced by cation size and the free electron count. Attempts at incorporating another main-group element to form heteroatomic clusters were also successful. In the case of A5InPb8 (A = K, Rb), the compounds contain clusters composed of two Pb4 tetrahedra that are interbridged by a lone μ6-In atom. The InPb8 units are weakly interlinked into sheets in the ab plane by long intercluster Pb-Pb interactions. Using As led to the formation of the compound K5As3Pb3 which is made up of As3Pb35- crown clusters that can be likened to a 6-atom hypho-cluster based on the tricapped trigonal parent as the closo

  11. Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents 218 abstracts of contributions by researchers working in the analytical chemistry field of nuclear technology. The majority of the papers deal with analysis with respect to process control in fuel reprocessing plants, fission and corrosion product characterization throughout the fuel cycle as well as studies of the chemical composition of radioactive wastes. Great interest is taken in the development and optimization of methods and instrumentation especially for in-line process control. About 3/4 of the papers have been entered into the data base separately. (RB)

  12. Key elements of a sustainable nuclear business case

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, D [Nuclear Consultants International - South Africa and AMEC Nuclear - United Kingdom, 20-35th Avenue, Umhlatuzana, Chatsworth, Durban (South Africa)

    2008-07-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  13. Key elements of a sustainable nuclear business case

    International Nuclear Information System (INIS)

    Naidoo, D

    2008-01-01

    The argument for nuclear power generation grows stronger internationally. Its increasing acceptance is attributable to scarcity of fossil fuel resources and environmental concerns. However, the potential implementation of nuclear power plants to solve our energy need has become an economic issue. The relatively high capital costs, the need to internalise all waste disposal and decommissioning costs are perceived barriers to the expansion of the nuclear industry. South Africa has embarked on an ambitious plan to provide 20 GW of electricity through the use of nuclear power by 2025. The success of the governments drive to stabilise electricity supply shall depend on the socio-economic conditions prevalent in the country over the stipulated period, but more specifically on the execution of a sustainable nuclear business model beyond the initial nuclear plant construction phases. This paper shall examine briefly, the key elements of a nuclear business case within the South African context. (authors)

  14. Climate and chemistry effects of a regional scale nuclear conflict

    OpenAIRE

    Stenke A.; Hoyle C. R.; Luo B.; Rozanov E.; Groebner J.; Maag L.; Broennimann S.; Peter T.

    2013-01-01

    Previous studies have highlighted the severity of detrimental effects for life on Earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a...

  15. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  16. Quality assurance in nuclear fuel element component supply

    International Nuclear Information System (INIS)

    Jenkins, B.P.

    1987-01-01

    The paper describes the application of Quality Assurance to nuclear fuel element component supply. The Quality Assurance programme includes integrated procurement, purchasing, surveillance and receipt inspection functions. Purchasing policy is based on a consistent preference for competitive tendering. Multiple sourcing is used to encourage competitive pricing and increase security of supply. A receipt inspection facility is maintained to ensure the high product quality levels demanded by the nuclear industry. (U.K.)

  17. Getter for nuclear fuel elements

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has disposed therein an improved getter capable of gettering reactive gases including a source of hydrogen. The getter comprises a composite with a substrate having thereon a coating capable of gettering reactive gases. The substrate has a greater coefficient of thermal expansion than does the coating, and over a period of time at reactor operating temperatures any protective film on the coating is fractured at various places and fresh portions of the coating are exposed to getter reactive gases. With further passage of time at reactor operating temperatures a fracture of the protective film on the coating will grow into a crack in the coating exposing further portions of the coating capable of gettering reactive gases. 13 claims, 5 drawing figures

  18. Nuclear chemistry and Radiochemistry in the USA; Kern- und Radiochemie in den USA

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A. [Los Alamos National Lab., NM (United States). Isotope and Nuclear Chemistry Div.; Stoyer, M. [Lawrence Livermore National Lab., CA (United States)

    2004-04-01

    Nuclear chemistry and radiochemistry are very young sciences which developed at an extremely brisk pace within a very short period of time after the discovery of nuclear fission in 1938, and caused profound societal changes. In the United States, nuclear chemistry developed very differently from Germany, where nuclear research initially had been banned after the Second World War. The prime mover in the development in the United States was the Manhattan Project, the construction of the atomic bomb. The counteract the impending shortage of qualified personnel, important institutions have begun to establish training and support programs in the field. The National Laboratories in the United States introduced a National Security Internship Program, while the U.S. Department of Energy (DOE) tries to promote cooperation, and thus the training of personnel, by launching programs of its own. Yet, a greater shortage of qualified personnel is becoming apparent. The situation of nuclear chemistry and radiochemistry in the United States can be summarized in the finding that research at the National Laboratories is very wide ranging. It receives sufficient funds from the DOE. However, the National Laboratories show a very high proportion of elderly personnel, a problem which will have to be corrected in the years to come. This may be helped by the Summer Schools financed by the DOE, though a summer school of six weeks cannot replace a sound training in nuclear chemistry of the kind still to be found in Germany. (orig.) [German] Kern- und Radiochemie sind sehr junge Wissenschaften, die sich nach der Entdeckung der Kernspaltung 1938 innerhalb kuerzester Zeit extrem rasant entwickelt und tiefe gesellschaftliche Veraenderungen bewirkt haben. In den USA hat sich die Kernchemie sehr unterschiedlich im Vergleich zu Deutschland entwickelt, wo die Kernforschung nach dem 2. Weltkrieg vorerst verboten war. Massgeblich in den USA war dabei das Manhatten-Projekt zum Bau von Nuklearwaffen

  19. Nuclear chemistry research. Progress report, November 1, 1974--October 31, 1975

    International Nuclear Information System (INIS)

    Sugarman, N.; Turkevich, A.

    1975-01-01

    The major effort in the high-energy nuclear chemistry program was the study of cross sections and kinematic properties of products formed from the interaction of 1- to 300-GeV protons with heavy- (Bi and U) and medium-mass (Cu, Ag) nuclei. The products studied ranged in mass from approximately 20 to that of the target nucleus. Except in the case of near-target product nuclei (ΔA approximately 10 to 20), no substantial change in cross section or recoil properties was observed at 300 GeV from those measured at 11.5 GeV. New experiments are in progress to relate the production mechanisms of selected products to fundamental particle interactions and the production of exotic particles. Extensive preparations were made for another experiment to be performed soon at higher intensity on the search for polyneutron aggregates at the LAMPF Accelerator. Work is continuing on the use of stable isotope tracers (methane-20 and 21) for the study of long-range transport and diffusion phenomena in the atmosphere. A collaborative effort on the study of extraterrestrial objects (meteorites and lunar samples) is continuing. The work has involved correlations among trace and minor elements, the evolution of the lunar regolith, differentiation of lunar magmas, and a study of lunar agglutinates

  20. Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals

    International Nuclear Information System (INIS)

    2013-01-01

    The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of

  1. Application of finite element numerical technique to nuclear reactor geometries

    Energy Technology Data Exchange (ETDEWEB)

    Rouai, N M [Nuclear engineering department faculty of engineering Al-fateh universty, Tripoli (Libyan Arab Jamahiriya)

    1995-10-01

    Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs.

  2. Application of finite element numerical technique to nuclear reactor geometries

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1995-01-01

    Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs

  3. 8. All Polish Conference on Analytical Chemistry: Analytical Chemistry for the Community of the 21. Century

    International Nuclear Information System (INIS)

    Koscielniak, P.; Wieczorek, M.; Kozak, J.

    2010-01-01

    Book of Abstracts contains short descriptions of lectures, communications and posters presented during 8 th All Polish Conference on Analytical Chemistry (Cracow, 4-9.07.2010). Scientific programme consisted of: basic analytical problems, preparation of the samples, chemometry and metrology, miniaturization of the analytical procedures, environmental analysis, medicinal analyses, industrial analyses, food analyses, biochemical analyses, analysis of relicts of the past. Several posters were devoted to the radiochemical separations, radiochemical analysis, environmental behaviour of the elements important for the nuclear science and the professional tests.

  4. Nuclear reaction analysis (NRA) for trace element detection

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Noll, K. [Bern Univ. (Switzerland)

    1997-09-01

    Ion beam induced nuclear reactions can be used to analyse trace element concentrations in materials. The method is especially suited for the detection of light contaminants in heavy matrices. (author) 3 figs., 2 refs.

  5. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  6. Multidisciplinary approach and multi-scale elemental analysis and separation chemistry

    International Nuclear Information System (INIS)

    Mariet, Clarisse

    2014-01-01

    The development of methods for the analysis of trace elements is an important component of my research activities either for a radiometric measure or mass spectrometric detection. Many studies raise the question of the chemical signature of a sample or a process: eruptive behavior of a volcano, indicator of pollution, ion exchange in vectors vesicles of active principles,... Each time, highly sensitive analytical procedures, accurate and multi-elementary as well as the development of specific protocols were needed. Neutron activation analysis has often been used as reference procedure and allowed to validate the chemical lixiviation and the measurement by ICP-MS. Analysis of radioactive samples requires skills in analysis of trace but also separation chemistry. Two separation methods occupy an important place in the separation chemistry of radionuclides: chromatography and liquid-liquid extraction. The study of extraction of Lanthanide (III) by the oxide octyl (phenyl)-n, N-diisobutyl-carbamoylmethyl phosphine (CMPO) and a calixarene-CMPO led to better understand and quantify the influence of operating conditions on their performance of extraction and selectivity. The high concentration of salts in aqueous solutions required to reason in terms of thermodynamic activities in relying on a comprehensive approach to quantification of deviations from ideality. In order to reduce the amount of waste generated and costs, alternatives to the hydrometallurgical extraction processes were considered using ionic liquids at low temperatures as alternative solvents in biphasic processes. Remaining in this logic of effluent reduction, miniaturization of the liquid-liquid extraction is also study so as to exploit the characteristics of microscopic scale (very large specific surface, short diffusion distances). The miniaturization of chromatographic separations carries the same ambitions of gain of volumes of wastes and reagents. The miniaturization of the separation Uranium

  7. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  8. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  9. Measurement and analysis of γ-spectra in the research of nuclear chemistry

    International Nuclear Information System (INIS)

    Li Wenxin; Sun Tongyu

    1990-01-01

    Measurement of γ-ray spectra and method of data analysis are described for the research of nuclear chemistry. Gamma-ray spectra are collected as a function of time and are analysed by the computer codes GAMA33 or LEONE. Decay curves are constructed by selection of characteristic γ-ray using the computer code SORT. The analysis of half-life and identification of nuclides are performed with the interactive computer code TAU85 and Tektronix graphics terminal. Nuclear reaction cross-sections are calculated on weighted average of all the observed γ-rays for each nuclide after duplicate or erroneous identifications are screened

  10. Nuclear structure notes on element 115 decay chains

    International Nuclear Information System (INIS)

    Rudolph, D.; Sarmiento, L. G.; Forsberg, U.

    2015-01-01

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory

  11. Nuclear structure notes on element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, D., E-mail: Dirk.Rudolph@nuclear.lu.se; Sarmiento, L. G.; Forsberg, U. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  12. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  13. Nuclear chemistry

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Topics covered include: mass asymmetry and total kinetic energy release in the spontaneous fission of 262 105; calculation of spontaneous fission properties of very heavy nuclei - 98 less than or equal to Z less than or equal to 106 and 150 less than or equal to N less than or equal to 164; energy losses for 84 Kr ions in nickel, aluminium and titanium; differences in compound nuclei formed with 40 Ar and 84 Kr projectiles; measurement of the energy division vs. mass in highly damped reactions; ambiguities in the inference of precompound emission from excitation function analysis; selective laser one-atom detection of neutral prompt fission fragments; laser induced nuclear polarization - application to the study of spontaneous fission isomers; quadrupole and hexadecapole deformations in the actinide nuclei; high-spin states in 164 Yb; contrasting behavior of h/sub 9/2/ and i/sub 13/2/ bands in 185 Au; multiple band crossings in 164 Er; recoil-distance measurement of lifetimes of rotational states in 164 Dy, lifetimes of ground-band states in 192 Pt and 194 Pt and application of the rotation-alignment model; coulomb excitation of vibrational nuclei with heavy ions; surface structure of deformed nuclei; valency contribution to neutron capture in 32 S; neutron capture cross section of manganese; search for superheavy elements in natural samples by neutron multiplicity counting; and gamma-ray studies on the geochemistry of achondritic meteorites

  14. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1983-09-01

    The activities of the nuclear chemistry program at Indiana University during the period September 1, 1982 to August 31, 1983 are reviewed. As in the past, these investigations have focused on understanding the properties of nucleus-nucleus collisions at low-to-intermediate energies. During the past year new programs have been initiated at the National Superconducting Cyclotron Laboratory at Michigan State University and the Hollifield Heavy-Ion Research Facility at Oak Ridge. With the unique beams provided by these accelerators we have extended our previous studies of energy dissipation phenomena into new energy regimes. The MSU measurements, performed with E/A = 15 to 30 MeV 14 N beams, combined with recent results we have obtained at IUCF, have indicated the existence of a saturation in the average amount of linear momentum that can be transferred in nucleus-nucleus collisions. This saturation value is about 140 (MeV/C)/A and occurs at beam energies in the E/A approx. 30 to 50 MeV range for 3 He- to 20 Ne-projectiles. At HHIRF, studies of the 56 Fe + 56 Fe reaction at E/A = 14.6 MeV have provided additional evidence for structure in the energy spectra of projectile-like fragments formed in symmetric collisions. Studies of near-barrier 56 Fe-induced reactions have continued at the Lawrence Berkeley Laboratory SuperHILAC

  15. Investigation on laser welding characteristics for appendage of bearing pads of nuclear fuel element

    International Nuclear Information System (INIS)

    Kim, S. S.; Kim, W. K.; Park, C. H.; Ko, J. H.; Lee, J. W.; Yang, M. S.

    2001-01-01

    In CANDU nuclear fuel manufacturing the brazing technology has been adopted conventionally to attach the bearing pads of nuclear fuel elements. However, in order to meet good performance of nuclear fuel and improved working efficiency, we started developing the laser welding technology for attachments of the bearing pads. Since the YAG laser can be suitable for small parts and transmit the beam through the optical fiber, the process is corresponding to mass-production with working shops. Making the most of this feature, we have developed the laser welding for appendage of the bearing pads of nuclear fuel elements, and has studied on the laser welding characterisitcs of appendages for nuclear fuel element

  16. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluid pressure method for recovering fuel pellets from nuclear fuel elements

    International Nuclear Information System (INIS)

    John, C.D. Jr.

    1979-01-01

    A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed

  18. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    1989-06-01

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  19. Determination of elemental impurities in polymer materials of electrical cables for use in safety systems of nuclear power plants and for data transfer in the Large Hadron Collider by instrumental neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Cabalka, M.; Ferencei, Jozef; Kubešová, Marie; Strunga, Vladimír

    2016-01-01

    Roč. 309, č. 3 (2016), s. 1341-1348 ISSN 0236-5731 R&D Projects: GA TA ČR TA02010218; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : instrumental neutron activation analysis * polymer materials * undesired elements * nuclear power plant * Large Hadron Collider Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.282, year: 2016

  20. Nuclear microprobe studies of elemental distribution in the seagrass Thalassodendron ciliatum

    Energy Technology Data Exchange (ETDEWEB)

    Barnabas, A.D. E-mail: alban@pixie.udw.ac.za; Przybylowicz, W.J.; Mesjasz-Przybylowicz, J.; Pineda, C.A

    1999-09-02

    Elemental levels and distributions in various organs (leaves, upright stems, rhizomes and roots) of the seagrass Thalassodendron ciliatum were determined using the NAC nuclear microprobe. Elemental distributions were obtained using the true elemental imaging system Dynamic Analysis (DA). Cl was the most abundant element present in the organs, occurring in all tissues, but present in relatively low concentrations in epidermal cells of leaves and roots. Na, K, S and Mg were also abundant and occurred in all organ tissues. Ca concentration was highest in the leaves, especially in the epidermis. Low concentrations of P were found and its tissue distribution was limited. Although Fe, Cu, Zn, Mn, Br, Ti and Si were present in relatively small amounts, enrichment of the epidermis with Fe, Ti and Si in all organs, was observed. Fe concentration was the highest in rhizomes while Si concentration was highest in upright stems. The significance of these elemental distribution patterns and the value of the nuclear microprobe in elemental analysis of seagrasses are discussed.

  1. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  2. End plug welding of nuclear fuel elements-AFFF experience

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Singh, S.; Aniruddha Kumar; Amit; Arun Kumar; Panakkal, J.P.; Kamath, H.S.

    2004-01-01

    Advanced Fuel Fabrication Facility is engaged in the fabrication of mixed oxide (U,Pu)O 2 fuel elements of various types of nuclear reactors. Fabrication of fuel elements involves pellet fabrication, stack making, stack loading and end plug welding. The requirement of helium bonding gas inside the fuel elements necessitates the top end plug welding to be carried out with helium as the shielding gas. The severity of the service conditions inside a nuclear reactor imposes strict quality control criteria, which demands for almost defect free welds. The top end plug welding being the last process step in fuel element fabrication, any rejection at this stage would lead to loss of effort prior to this step. Moreover, the job becomes all the more difficult with mixed oxide (MOX) as the entire fabrication work has to be carried out in glove box trains. In the case of weld rejection, accepted pellets are salvaged by cutting the clad tube. This is a difficult task and recovery of pellets is low (requiring scrap recovery operation) and also leads to active metallic waste generation. This paper discusses the experience gained at AFFF, in the past 12 years in the area of end plug welding for different types of MOX fuel elements

  3. Chemical and nuclear properties of Rutherfordium (Element 104)

    International Nuclear Information System (INIS)

    Kacher, C.D.

    1995-01-01

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr∼Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d 5/2 shell and a stabilization of the 7p l/2 shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr∼Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr∼Hf>Ti. An attempt was made to produce 263 Rf (a) via the 248 Cm( 22 Ne, α3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the 249 Bk( 18 O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to 256 Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the 248 Cm( 22 Ne, α3n) 263 Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A

  4. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  5. International conference on nuclear analytical methods in the life sciences (NAMLS) (abstracts)

    International Nuclear Information System (INIS)

    1999-01-01

    The International Conference on Nuclear Analytical Methods in the Life Sciences (NAMLS) was hold on October 26-30, 1998 in Beijing, China, which was organized by China Institute of Atomic Energy in Cooperation with IAEA, National Science Foundation of China, China National Nuclear Cooperation, Chinese Academy of Sciences, Institute of High Energy Physics, Shanghai Institute for Nuclear Research, Chinese Nuclear Society, Nuclear Physics Society of China and Nuclear Chemistry Society of China. the contents of this Conference include: 1. QA-QC and CRM studies; 2. Elemental speciation and localization; 3. Health-related environmental studies; 4. Recent development in nuclear and related analytical techniques; 5. Trace elements in health and diseases; 6. Miscellaneous applications of NAT in the life sciences

  6. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-first annual progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Fink, R.W.

    1985-01-01

    The nuclear chemistry group in the School of Chemistry continues investigating the radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility [HHIRF] and studied on-line with the University Isotope Separator at Oak Ridge [UNISOR]. Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, etc., multiparameter coincidence spectrometry; (2) on-line laser hyperfine structure [hfs] and isotope shift measurements for the determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei; and (3) theoretical calculations of predictions of nuclear models for comparison with experimental level structures in nuclei studied at UNISOR. 20 refs., 9 figs., 2 tabs

  7. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?

    Science.gov (United States)

    Sturrock, A M; Trueman, C N; Darnaude, A M; Hunter, E

    2012-07-01

    Otolith microchemistry can provide valuable information about stock structure and mixing patterns when the magnitude of environmental differences among areas is greater than the cumulative influence of any vital effects. Here, the current understanding of the underlying mechanisms governing element incorporation into the otolith is reviewed. Hard and soft acid and base (HSAB) theory is employed to explore the differences in chemical behaviours, distributions and affinities between elements. Hard acid cations (e.g. Mg(2+) , Li(+) and Ba(2+) ) tend to be less physiologically influenced and accepted more readily into the otolith crystal lattice but are relatively homogeneous in seawater. Soft acid cations (e.g. Zn(2+) and Cu(2+) ) on the other hand, exhibit more varied distributions in seawater, but are more likely to be bound to blood proteins and less available for uptake into the otolith. The factors influencing the geographical distribution of elements in the sea, and their incorporation into the otoliths of marine fishes are reviewed. Particular emphasis is placed on examining physiological processes, including gonad development, on the uptake of elements commonly used in population studies, notably Sr. Finally, case studies are presented that either directly or indirectly compare population structuring or movements inferred by otolith elemental fingerprints with the patterns indicated by additional, alternative proxies. The main obstacle currently limiting the application of otolith elemental microchemistry to infer movements of marine fishes appears to lie in the largely homogeneous distribution of those elements most reliably measured in the otolith. Evolving technologies will improve the discriminatory power of otolith chemistry by allowing measurement of spatially explicit, low level elements; however, for the time being, the combination of otolith minor and trace element fingerprints with alternative proxies and stable isotopic ratios can greatly extend the

  8. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  9. Applications of a global nuclear-structure model to studies of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1993-01-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, α-decay properties, β-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements

  10. Relativistic pseudopotential model for superheavy elements: applications to chemistry of eka-Hg and eka-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsevskii, Andrei V [Institute of Hydrogen Energetics and Plasma Technologies, Russian Research Centre ' Kurchatov Institute' (Russian Federation); Wuellen, C van [Technische Universitaet Kaiserslautern (Germany); Titov, A V [B P Konstantinov Petersburg Nuclear Physics Institute, Russian Academy of Sciences (Russian Federation)

    2009-12-31

    Relativistic pseudopotential approach to the electronic structure simulation of superheavy elements (SHE) compounds is presented. Advanced formulations of this approach leaving both valence and outer-core electronic shells for explicit treatment give rise to simple and efficient computational techniques ensuring highly accurate description of most chemical properties of SHE. At present, the errors due to the use of approximate methods for solving the correlation problem for a subsystem of valence electrons are much larger than those stemming from the pseudopotential approximation itself. Recent applications to the studies of the chemistry of elements 112 (eka-Hg) and 114 (eka-Pb) are reviewed; properties of these elements and their lighter homologues, Hg and Pb, are compared.

  11. Progress report 1985-1986 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1987-12-01

    The report of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission, during the period 1985-1986, covers works of investigation, development and service related to the Argentine Nuclear Power Plants. The main subjects are the experimental and theoretical studies about physical chemistry and chemistry control at the moderators and heat transport system of the nuclear power plants. The more relevant topics are related to: 1: Behaviour of gases, electrolites and other additives for nuclear power plants, at high temperature and pressure; 2: Ionic exchangers of nuclear degree; 3: Electrochemistry studies connected with the constitutive materials' corrosion and with the nuclear power plants decontamination processes; 4: Behaviour of suspensions and colloids in nuclear power plants; 5: Use of new additives for chemistry control of the oxides which are in the circuits of nuclear power plants; 6: Research methods that allow to check reactor's control quality; 7: Study of the radiolytic behaviour of nuclear reactor's solutions. (M.E.L.) [es

  12. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-05-01

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  13. Non-invasive Morphological and Elemental Analysis of Ivory Plate for Artworks\

    Czech Academy of Sciences Publication Activity Database

    Tihlaříková, Eva; Neděla, Vilém; Hradilová, J.; Hradil, David

    2017-01-01

    Roč. 23, S1 (2017), s. 1832-1833 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR(CZ) GA17-25687S Institutional support: RVO:68081731 ; RVO:61388980 Keywords : ESEM * EDS * non-invasive morphological analysis * non-invasive elemental analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Microbiology; Inorganic and nuclear chemistry (UACH-T) Impact factor: 1.891, year: 2016

  14. The fabrication of nuclear fuel elements in Mexico

    International Nuclear Information System (INIS)

    Guerrero Morillo, H.L.

    1977-01-01

    The situation of the nucleoelectrical generation in Mexico by 1976 is described: two nuclear reactors under construction but no defined program on the type and start-up dates for the next power plants. However the existence of a general plan on nuclear power plants is mentioned, which, according to the last estimates reaches to 10,000 MW installed by 1990. The national intension, definitely expressed in the Law, is to supply domestic nuclear fuel to the power reactors operating in the country, starting with the first reload for the two BWR's at the first national station in Laguna Verde, which will be required at the end of 1981 and of 1982, respectively. Before such circumstances and the relatively short amounts of fuel elements that should be produced for those two unique reactors, Mexico already has to adopt a strategy to follow in respect to fuel elements fabrication. The two main options are analyzed: 1. To delay the local fabrication until a National Nuclear Program may be defined, meanwhile purchasing abroad the necessary reloads and initial cores; and 2. To start as soon as possible the local fuel elements fabrication in order to supply fuel for the first reload of the first unit of Laguna Verde, confronting the economical risks of such posture with the advantages of an immediate action. Both options are analyzed in detail comparing them specially under the economic point of view, standing out immediately the big effect of some factors which are economically imponderable, as experience and independance that would be gained with the second option. Emphasis is made on the advantages and risks of any case. According to the first option and once a National Program is defined, the work would be heavy but of simple strategy. On the contrary, the second option requires the adoption of a more complicated strategy, as either the project of the factory as its initial operation should be made under transient conditions, in view of the expected future expansion still

  15. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part II : Nuclear Chemistry and Process Technology

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Nuclear Chemistry and Process Technology and there are 47 papers which have separated index. The proceedings is the second part of the three parts which published in series. (PPIN)

  16. Climate and chemistry effects of a regional scale nuclear conflict

    Science.gov (United States)

    Stenke, A.; Hoyle, C. R.; Luo, B.; Rozanov, E.; Gröbner, J.; Maag, L.; Brönnimann, S.; Peter, T.

    2013-10-01

    Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a

  17. Climate and chemistry effects of a regional scale nuclear conflict

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2013-10-01

    Full Text Available Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size" against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North

  18. Diverse applications of radiation chemistry

    International Nuclear Information System (INIS)

    Cooper, R.

    1998-01-01

    Radiation chemistry began as early radiotherapists needed a reliable and appropriate dosimeter. The iron sulphate dosimeter, using ferrous iron in sulphuric acid and oxidation by irradiation, was a nasty brew of chemicals but it was sensitive, reliable and conveniently had the same density as human tissue. Water irradiation chemistry studies were driven by the need to understand the fundamental processes in radiotherapy; to control the corrosion problems in the cooling/ heat exchange systems of nuclear reactors and to find stable solvents and reagents for use in spent fuel element processing. The electrical and mechanical stability of materials in high radiation fields stimulated the attention of radiation chemists to the study of defects in solids. The coupled use of radiation and Electron Spin Resonance (ESR) enabled the identity of defect structures to be probed. This research led to the development of the sensitive Thermoluminescent Dosimeters, TLD's and a technique for dating of archaeological pottery artefacts. Radiation chemistry in the area of medicine is very active with fundamental studies of the mechanism of DNA strand breakage and the development of radiation sensitisers and protectors for therapeutic purposes. The major area of polymer radiation chemistry is one which Australia commands great international respect

  19. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  20. Nuclear Technology Programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product 99 Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  1. Nuclear technology programs

    International Nuclear Information System (INIS)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R ampersand D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories

  2. Nuclear Technology Programs

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, J.E. (ed.)

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  3. Nuclear fuel element containing particles of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Levin, H.A.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of particles in a hollow gas permeable container having a multiplicity of openings of size smaller than the size of the particles. The openings permit gases and liquids entering the plenum to contact the particles of alloy. The container is preferably held in the spring in the plenum of the fuel element. (Official Gazette)

  4. Finite element modeling of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Tinic, S.; Orr, R.

    2003-01-01

    The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)

  5. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-second annual progress report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Fink, R.W.

    1986-01-01

    The nuclear chemistry group in the School of Chemistry continues investigations of radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research interest encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, αγt multiparameter coincidence spectrometry; (2) measurements of single γ-ray angular distributions and magnetic moments of mass separated low-temperature oriented nuclei, using the helium dilution refrigerator ''ORIENT'' being installed on-line to the isotope separator; and (3) on-line laser hyperfine structure (hfs) and isotope shift measurements for determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei. 35 refs., 8 figs., 1 tab

  6. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  7. Nuclear fuel element nut retainer cup

    International Nuclear Information System (INIS)

    Walton, L.A.

    1977-01-01

    A typical embodiment has an end fitting for a nuclear reactor fuel element that is joined to the control rod guide tubes by means of a nut plate assembly. The nut plate assembly has an array of nuts, each engaging the respective threaded end of the control rod guide tubes. The nuts, moreover, are retained on the plate during handling and before fuel element assembly by means of hollow cylindrical locking cups that are brazed to the plate and loosely circumscribe the individual enclosed nuts. After the nuts are threaded onto the respective guide tube ends, the locking cups are partially deformed to prevent one or more of the nuts from working loose during reactor operation. The locking cups also prevent loose or broken end fitting parts from becoming entrained in the reactor coolant

  8. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  9. Fuel element for nuclear reactors

    International Nuclear Information System (INIS)

    Cadwell, D.J.

    1982-01-01

    The invention concerns a fuel element for nuclear reactors with fuel rods and control rod guide tubes, where the control rod guide tubes are provided with flat projections projecting inwards, in the form of local deformations of the guide tube wall, in order to reduce the radial play between the control rod concerned and the guide tube, and to improve control rod movement. This should ensure that wear on the guide tubes is largely prevented which would be caused by lateral vibration of the control rods in the guide tubes, induced by the flow of coolant. (orig.) [de

  10. Proceedings of the Scientific Meeting and Presentation on Basic Researchin Nuclear Science and Technology part II: Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment

    International Nuclear Information System (INIS)

    Sukarsono, R.; Karmanto, Eko-Edy; Suradjijo, Ganang

    2000-01-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Scienceand Technology is an annual activity held by Centre for Research and Development of Advanced Technology, National Nuclear Energy Agency, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings. These are the second part of the proceedings that contain 71 articles in the fields of nuclear chemistry, process technology, radioactive waste management, and environment (PPIN).

  11. Nuclear chemistry counting facilities: requirements definition

    International Nuclear Information System (INIS)

    O'Brien, D.W.; Baker, J.

    1979-01-01

    In an effort to upgrade outdated instrumentation and to take advantage of current and imminent technologies the Nuclear Chemistry Division at Lawrence Livermore Laboratory is about to undertake a major upgrade of their low level radiation counting and analysis facilities. It is expected that such a project will make a more coordinated data acquisition and data processing system, reduce manual data handling operations and speed up data processing throughput. Before taking on a systems design it is appropriate to establish a definition of the requirements of the facilities. This report examines why such a project is necessary in the context of the current and projected operations, needs, problems, risks and costs. The authors also address a functional specification as a prelude to a system design and the design constraints implicit in the systems implementation. Technical, operational and economic assessments establish necessary boundary conditions for this discussion. This report also establishes the environment in which the requirements definition may be considered valid. The validity of these analyses is contingent on known and projected technical, scientific and political conditions

  12. The needs of basic chemistry studies for nuclear waste management issues

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2004-01-01

    There are several strategies to manage the radioactive matter which has taken the status of 'ultimate radwaste'. They are based on combinations of the three primary strategies: 'Wait for Decay', 'Concentrate and Confine' and 'Disperse and Dilute' the radio-toxic radionuclides and chemo-toxic elements. They are, or will be used for safe storage (interim and long term) or safe disposal of nuclear wastes. The chemical needs to apply these strategies are on materials for isolation, matrices for confinement and on the numerous aspects of the migration of the elements, both in the lithosphere and in the biosphere. According to the ultimate fate of long lived radionuclides which will be finally released into the environment, migration studies of elements are, or should be, the driving force of research in nuclear wastes management. The chemical needs for improving our present basic knowledge related to this field will be reviewed, with emphasis on some new topics and on the effects of concentration of the elements when they migrate. The necessity to open some 'dark boxes' will be outlined. The paper does not intend to give programs of researches but only tracks for future research. (authors)

  13. Soil solution chemistry and element fluxes in three European heathlands and their responses to warming and drought

    DEFF Research Database (Denmark)

    Schmidt, I.K.; Tietema, A.; Williams, D.

    2004-01-01

    Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution...

  14. Assembly for transport and storage of radioactive nuclear fuel elements

    International Nuclear Information System (INIS)

    Myers, G.

    1978-01-01

    The invention concerns the self-control of coolant deficiencies on the transport of spent fuel elements from nuclear reactors. It guarantees that drying out of the fuel elements is prevented in case of a change of volume of the fluid contained in storage tanks and accumulators and serving as coolant and shielding medium. (TK) [de

  15. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  16. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  17. Nuclear fuel element containing strips of an alloyed Zr, Ti, and Ni getter material

    International Nuclear Information System (INIS)

    Grossman, L.N.; Packard, D.R.

    1975-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. The nuclear fuel element has disposed therein an alloy having the essential components of nickel, titanium and zirconium, and the alloy reacts with water, water vapor and reactive gases at reactor ambient temperatures. The alloy is disposed in the plenum of the fuel element in the form of strips and preferably the strips are positioned inside a helical member in the plenum. The position of the alloy strips permits gases and liquids entering the plenum to contact and react with the alloy strips. (U.S.)

  18. Proceedings of the symposium on the joint research program between JAERI and Universities. Current status and future perspectives of the chemistry research in the nuclear fuel cycle back end field

    International Nuclear Information System (INIS)

    1999-10-01

    The first Symposium on the Joint Research Project between JAERI and Universities was held in Tokyo, January 27, 1999, to present the main achievements of the project in these 5 years and to discuss future perspectives of the chemistry research relating to the nuclear fuel cycle. The areas covered by the Joint Research Project are (1) Nuclear Chemistry for TRU Recycling, (2) Solid State Chemistry on Nuclear Fuels and Wastes, (3) Solution Chemistry on Fuel Reprocessing and Waste Management, and (4) Fundamental Chemistry on Radioactive Waste Disposal. The 8 papers are indexed individually. (J.P.N.)

  19. Incorporating nuclear chemistry as an education tool in the undergraduate chemistry curriculum. A description of the curriculum project

    International Nuclear Information System (INIS)

    Kleppinger, E.W.; Robertson, J.D.

    1997-01-01

    Although many areas of major national need depend critically on professionals trained in nuclear and radiochemistry, educational opportunities and student interest in this area have declined steadily for the last twenty years. One major contributing factor to the lack of student interest is that most students in science and chemistry courses are never introduced to these topics. This deficiency in sciences curricula, coupled with the negative public perception towards all things 'nuclear', has resulted in a serious shortage of individuals with a background in this area. We propose to address this problem by 'educating the educators' - providing faculty from two- and four-year colleges and high school science teachers with the curriculum materials, training, and motivation to incorporate these topics on a continuing basis in their curricula. Two advantages of this approach are; it will generate scientists with a basic understanding of this field and as teachers incorporate nuclear topics, many students will have the opportunity to reflect on the role of science in a technological society. (author)

  20. Teaching nuclear science: A cosmological approach

    International Nuclear Information System (INIS)

    Viola, V.E.

    1994-01-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level

  1. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  2. Nuclear fuel element, and method of producing same

    International Nuclear Information System (INIS)

    Armijo, J.S.; Esch, E.L.

    1986-01-01

    This invention relates to an improvement in nuclear fuel elements having a composite container comprising a cladding sheath provided with a protective barrier of zirconium metal covering the inner surface of the sheath, rendering such fuel elements more resistant to hydrogen accumulation in service. The invention specifically comprises removing substantially all zirconium metal of the barrier layer from the part of the sheath surrounding and defining the plenum region. Thus the protective barrier of zirconium metal covers only the inner surface of the fuel container in the area immediately embracing the fissionable fuel material

  3. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  4. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  5. Anatomy of double beta decay nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr, E-mail: pxv@caltech.ed [Kellogg Radiation Laboratory 106-38 Caltech. Pasadena, CA 91125 (United States)

    2009-06-01

    The necessary ingredients for a realistic evaluation of the 0vbetabeta nuclear matrix elements are reviewed. It is argued that the short range nucleon correlations, nucleon finite size, and higher order nuclear currents need to be included in the calculation, even though a consensus on the best way to treat all of these effects has not been reached. Another positive development is the realization that the two alternative and complementary methods, the Quasiparticle Random Phase Approximation and the Nuclear Shell Model, agree on many aspects of the calculation, in particular on the competition, or cancelation, between the contribution of nuclear pairing on one hand, and the other pieces of interaction that result in admixtures of broken pairs or higher seniority states on the other hand. The relatively short range (r <= 2-3 fm) of the effective 0vbetabeta operator found in both methods is a consequence of that competition.

  6. Nuclear fuel element and container

    International Nuclear Information System (INIS)

    Grubb, W.T.; King, L.H.

    1981-01-01

    The invention is based on the discovery that a substantial reduction in metal embrittlement or stress corrosion cracking from fuel pellet-cladding interaction can be achieved by the use of a copper layer or liner in proximity to the nuclear fuel, and an intermediate zirconium oxide barrier layer between the copper layer and the zirconium cladding substrate. The intermediate zirconia layer is a good copper diffusion barrier; also, if the zirconium cladding surface is modified prior to oxidation, copper can be deposited by electroless plating. A nuclear fuel element is described which comprises a central core of fuel material and an elongated container using the system outlined above. The method for making the container is again described. It comprises roughening or etching the surface of the zirconium or zirconium alloy container, oxidizing the resulting container, activating the oxidized surface to allow for the metallic coating of such surfaces by electroless deposition and further coating the activated-oxidized surface of the zirconium or zirconium alloy container with copper, iron or nickel or an alloy thereof. (U.K.)

  7. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Even, Julia

    2011-01-01

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  8. Solving the geologic issues in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1979-01-01

    Technical problems with nuclear waste disposal are largely geological. If these are not solved, curtailment of nuclear power development may follow, resulting in loss of an important element in the national energy supply. Present knowledge and credible advances are capable of solving these problems provided a systems view is preserved and a national development plan is followed. This requires identification of the critical controllable elements and a systematic underground test program to prove those critical elements. Waste migration can be understood and controlled by considering the key elements in the system: the system geometry, the hydrology, and the waste-rock-water chemistry. The waste program should: (1) identify and attack the critical problems first; (2) provide tests and demonstration at real disposal sites; and (3) schedule elements with long lead-times for early start and timely completion

  9. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  10. Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals (Chinese Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of

  11. Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of

  12. Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals (Spanish Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objeurity Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit

  13. Objective and Essential Elements of a State's Nuclear Security Regime. Nuclear Security Fundamentals (French Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    The possibility that nuclear material or other radioactive material could be used for criminal purposes or intentionally used in an unauthorized manner cannot be ruled out in the current global situation. States have responded to this risk by engaging in a collective commitment to strengthen the protection and control of such material and to respond effectively to nuclear security events. States have agreed to strengthen existing instruments and have established new international legal instruments to enhance nuclear security worldwide. Nuclear security is fundamental in the management of nuclear technologies and in applications where nuclear material or other radioactive material is used or transported. Through its nuclear security programme, the IAEA supports States to establish, maintain and sustain an effective nuclear security regime. The IAEA has adopted a comprehensive approach to nuclear security. This recognizes that an effective national nuclear security regime builds on: the implementation of relevant international legal instruments; information protection; physical protection; material accounting and control; detection of and response to trafficking in such material; national response plans; and contingency measures. With its Nuclear Security Series, the IAEA aims to assist States in implementing and sustaining such a regime in a coherent and integrated manner. The IAEA Nuclear Security Series comprises: Nuclear Security Fundamentals, which include the objective and essential elements of a State's nuclear security regime; Recommendations; Implementing Guides; and Technical Guidance. Each State carries the full responsibility for nuclear security. Specifically, each State has the responsibility to provide for the security of nuclear material and other radioactive material and their associated facilities and activities; to ensure the security of such material in use, storage, or in transport; to combat illicit trafficking and the inadvertent movement of

  14. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  15. Chemical and nuclear properties of Rutherfordium (Element 104)

    Energy Technology Data Exchange (ETDEWEB)

    Kacher, Christian D. [Univ. of California, Berkeley, CA (United States)

    1995-10-30

    The chemical-properties of rutherfordium (Rf) and its group 4 homologs were studied by sorption on glass support surfaces coated with cobalt(II)ferrocyanide and by solvent extraction with tributylphosphate (TBP) and triisooctylamine (TIOA). The surface studies showed that the hydrolysis trend in the group 4 elements and the pseudogroup 4 element, lb, decreases in the order Rf>Zr≈Hf>Th. This trend was attributed to relativistic effects which predicted that Rf would be more prone to having a coordination number of 6 than 8 in most aqueous solutions due to a destabilization of the 6d5/2 shell and a stabilization of the 7pI/2 shell. This hydrolysis trend was confirmed in the TBP/HBr solvent extraction studies which showed that the extraction trend decreased in the order Zr>Hf>Rf?Ti for HBr, showing that Rf and Ti did not extract as well because they hydrolyzed more easily than Zr and Hf. The TIOA/HF solvent extraction studies showed that the extraction trend for the group 4 elements decreased in the order Ti>Zr≈Hf>Rf, in inverse order from the trend of ionic radii Rf>Zr≈Hf>Ti. An attempt was made to produce 263Rf (a) via the 248Cm(22Ne, α3n) reaction employing thenoyltrifluoroacetone (TTA) solvent extraction chemistry and (b) via the 249Bk(18O,4n) reaction employing the Automated Rapid Chemistry Apparatus (ARCA). In the TTA studies, 16 fissions were observed but were all attributed to 256Fm. No alpha events were observed in the Rf chemical fraction. A 0.2 nb upper limit production cross section for the 248Cm(22Ne, α3n)263Rf reaction was calculated assuming the 500-sec half-life reported previously by Czerwinski et al. [CZE92A].

  16. Relationship of microbial processes to the fate and behavior of transuranic elements in soils, plants, and animals

    International Nuclear Information System (INIS)

    Wildung, R.E.; Garland, T.R.

    1980-01-01

    Soil physicochemical and microbial processes influence the long-term solubility, form, and bioavailability of plutonium and other transuranic elements important in the nuclear fuel cycle. Consideration is given to the chemistry/microbiology of the transuranic elements in soil, emphasizing possible organic complexation reactions in soils and plants and the relationship of these phenomena to gastrointestinal absorption

  17. Proposal of a system for fuel elements inspection of CDTN TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio Rivail; Mesquita, Amir Zacarias

    2013-01-01

    The CDTN has in its facilities a TRIGA-type nuclear reactor. The reactor's cooling water must be treated and managed with the goal of keeping its low conductivity to minimize corrosion of the reactor components, mainly of fuel elements (FE), and reduce the level of radioactivity. The aim of this paper is to present a proposal for the development of a system for verification of some possible leaks in FE nuclear research reactors, based on the sipping test. This type of testing is a way to check for leaks of fission products from fuel element of nuclear research reactor. In the future, when the test will do, it will have a correlation between the components found in the reactor cooling water pool and integrity of nuclear fuel elements. The device development and its application will be presented here, covering results that were not previously investigated yet, giving originality to this project. (author)

  18. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  19. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  20. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  1. The needs of basic chemistry studies for nuclear waste management issues

    Energy Technology Data Exchange (ETDEWEB)

    Guillaumont, R

    2004-07-01

    There are several strategies to manage the radioactive matter which has taken the status of 'ultimate radwaste'. They are based on combinations of the three primary strategies: 'Wait for Decay', 'Concentrate and Confine' and 'Disperse and Dilute' the radio-toxic radionuclides and chemo-toxic elements. They are, or will be used for safe storage (interim and long term) or safe disposal of nuclear wastes. The chemical needs to apply these strategies are on materials for isolation, matrices for confinement and on the numerous aspects of the migration of the elements, both in the lithosphere and in the biosphere. According to the ultimate fate of long lived radionuclides which will be finally released into the environment, migration studies of elements are, or should be, the driving force of research in nuclear wastes management. The chemical needs for improving our present basic knowledge related to this field will be reviewed, with emphasis on some new topics and on the effects of concentration of the elements when they migrate. The necessity to open some 'dark boxes' will be outlined. The paper does not intend to give programs of researches but only tracks for future research. (authors)

  2. Contributions to the chemistry of lanthanides and transplutonium elements

    International Nuclear Information System (INIS)

    Bruchertseifer, H.; Constantinescu, M.; Constantinescu, O.

    1984-01-01

    In order to find the conditions for the fast and selective chemical separation of individual nuclides from a group of transfermium elements the following experiments has been carried out: extraction of bivalent ions as kryptate complexes taking strontium as an example and the electro-chemical reduction of europium(III) and stabilization of the formed europium(II) with kryptands. The results obtained has been applied to separate bivalent ions from aqueous solutions for analysing the products of the nuclear reaction 249 Bk + 22 Ne. Finally, first quantitative data are presented for the hydrolysis of Md 3+ in aqueous solution

  3. HMI Department of Nuclear Chemistry and Reactor. Scientific report 1983

    International Nuclear Information System (INIS)

    1984-01-01

    In the reported year of 1983, R and D work was carried out in the following work groups and fields: 1. 'Neutron scattering' (questions of crystal physics for elastic and inelastic neutron scattering, crystal analysis, development work for the extension of BER-II); 2. 'Damage to solids due to radiation' (reactions to failure, atom transport in irradiated materials under mechanical stress, surface effects, materials development for fusion technology etc.); 3. 'Reactor Chemistry' (development and characterization of solidification products for radioactive wastes, induced activity and corrosion of materials for fusion technology, etc.); 4. 'Trace element research in biomedicine' (transport and storage of bioelements in the organism, and related analyses); 5. 'Geochemistry' (geochemistry of reservoirs, trace element distribution and complexing in geochemically relevant systems). Operational and utilization data are given for the BER-II in tables; scientific publications and lectures made members of the institute and by guests are listed. (RB) [de

  4. Canning and inspection system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Goldman, L.A.; Hawke, B.C.

    1980-01-01

    A system is disclosed for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor. The system includes a transfer chute, environmental chamber, conveyor and canning mechanism operative to remove and replace closures on containers into which fuel and reflector elements are inserted or from which stored elements are removed while maintaining a sealed gaseous environment and permitting visual and mechanical inspection of the elements by an operator located in a remote shielded area

  5. Exploring hypothetical learning progressions for the chemistry of nitrogen and nuclear processes

    Science.gov (United States)

    Henry, Deborah McKern

    Chemistry is a bridge that connects a number of scientific disciplines. High school students should be able to determine whether scientific information is accurate, how chemistry applies to daily life, and the mechanism by which systems operate (NRC, 2012). This research focuses on describing hypothetical learning progressions for student understanding of the chemical reactions of nitrogen and nuclear processes and examines whether there is consistency in scientific reasoning between these two distinct conceptual areas. The constant comparative method was used to analyze the written products of students including homework, formative and summative tests, laboratory notebooks, reflective journals, written presentations, and discussion board contributions via Edmodo (an online program). The ten participants were 15 and 16 year old students enrolled in a general high school chemistry course. Instruction took place over a ten week period. The learning progression levels ranged from 0 to 4 and were described as missing, novice, intermediate, proficient, and expert. The results were compared to the standards set by the NRC with a lower anchor (expectations for grade 8) and upper anchor (expectations for grade 12). The results indicate that, on average, students were able to reach an intermediate level of understanding for these concepts.

  6. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  7. Uranium - the element: its occurrence and uses

    International Nuclear Information System (INIS)

    Awan, I. Z.

    2015-01-01

    Uranium metal and its compounds have been of great interest to physicists and chemists due to its use for both civil and military applications, e.g. production of electricity, use in the medical field and for making nuclear weapons. This review paper describes the occurrence, chemistry and metallurgy of the element 'uranium', its conversion to stable compounds such as yellow cake, uranium tetrafluoride and uranium hexafluoride and the enrichment technologies and uses for both civil and military purposes. The paper is meant for ready reference for students and teachers in connection with the recent spate of interest shown in nuclear power generation in Pakistan and abroad. (author)

  8. Memory list for the ordering of nuclear fuel elements with UO2 fuel

    International Nuclear Information System (INIS)

    1977-01-01

    The memory list will help to simplify and speed up the technical procedure of fuel element supply for nuclear reactors. Operators of nuclear power plants take great interest in the latest state of thechnology, if sufficiently tested, being applied with regard to material, manufacturing and testing methods. In order to obtain an unlimited availability of the nuclear plant in the future, this application of technology should be taken care of when designing and producing fuel elements. When ordering fuel elements special attention should be drawn to the interdependence of reactor and fuel element with reqard to design and construction, about which, howevers, no further details are given. When ordering fuel elements the operator give the producer all design data of the reactor core and the fuel elements as well as the planned operation mode. He also hands in the respective graphs and the required conditions for design so that a correct and detailed offer can be supplied. An exemplary extent of supply is shown in the given memory list. The regulations required herefore on passing technical material to the fuel element producers have to be established by agreements made by the customer. The order to be given should be itemized as follows: requirements, quality controland quality assurance, warranties and conditions, limits and extent of supply, terms of delivery. (orig./HP) [de

  9. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  10. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  11. Superheavy Element Synthesis And Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J.; Antalic, S.; Saro, S.; Venhart, M.; Hofmann, S.; Leino, M.; Uusitalo, J.; Nishio, K.; Popeko, A. G.; Yeremin, A. V.

    2009-01-01

    After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-α-α and ER-α-γ coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in 252,254 No and in 270 Ds.

  12. The permission of transport of irradiated nuclear fuel elements

    International Nuclear Information System (INIS)

    Klomberg, T.J.M.

    2000-01-01

    In July and October 2000 the Dutch government granted permits for the transportation of irradiated nuclear fuel elements. The environmental organization Greenpeace objected against the permit, but that was rejected by the Dutch Council of State. A brief overview is given of the judgements and the state-of-the-art with respect to the transportation of the elements from Dutch reactors and storage facilities in Petten, Dodewaard and Borssele to Cogema in La Hague, France and BNFL in Sellafield, England

  13. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  14. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    Science.gov (United States)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  15. Social representation for future teachers on the nuclear energy: probable implications of the public opinion

    International Nuclear Information System (INIS)

    Ayllon, Rafaella Menezes; Farias, Luciana Aparecida; Favaro, Deborah I.T.

    2013-01-01

    This study aimed to study the SR (social representation) regarding the 'Nuclear Energy' (NW) and 'Nuclear Chemistry' (NC) of students of Science - Bachelor of Federal University of Sao Paulo - UNIFESP. Individual questionnaires to research the topic, followed by the presentation of seminars with the focus of the research were applied. The methodology used was the technique of free word (Abric ,1994) which gives the frequency of each element that was mentioned and their average order of evocation, as well as semi -structured questionnaire with questions. Among the first results, it was found that the words 'Bomb' and 'Reactor' were the most mentioned by the group when asked evocations related to 'NE', while the terms 'Health' and 'Safety' are among the least mentioned. When referring to 'NC' the most frequent terms were 'Chemistry' and 'Atoms/Elements and 'Reactor' and 'Development' were less frequent. However, even though as a possible central core elements that match a negative SR theme, these students indicated Nuclear Energy as a strong option/option for diversifying the Brazilian energy matrix

  16. The speciation of dissolved elements in aquatic solution. Radium and actinides

    International Nuclear Information System (INIS)

    Haesaenen, E.

    1994-01-01

    In the publication, the chemistry and speciation of radium, thorium, protactinium, uranium, neptunium, lutonium, americium and curium in ground-water environment is reviewed. Special attention is given to the transuranium elements, which have a central role in the repository of nuclear wastes. The most important methods used in the speciation of these elements is presented. The laser-induced methods, developed in the 1980's, are especially discussed. These have made it possible, e.g., to speciate the transuranium elements in their very low, actual repository ground-water concentrations (10-100 ng/l). (54 refs., 10 figs., 3 tabs.)

  17. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  18. Chemistry of the transactinide elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    1995-01-01

    The experimentally known chemical properties of the transactinide elements 104 and 105, and the experimental techniques used to study these properties on an atom-at-a-time base, are reviewed. The production of transactinides in heavy ion reactions and the specific aspects of chemical separations with single atoms is briefly discussed. The chemical properties of the first two transactinide elements are compared with the lighter element homologs in group 4 and 5 of the Periodic Table and with the expected behaviour obtained from most recent atomic and molecular calculations which take the increasingly strong relativistic effect into account. Elements 104 and 105 behave as transactinide elements and, in general, exhibit properties characteristic of their position in group 4 and 5 of the Periodic Table. However, surprising deviations of the chemical properties from expectations based on simple extrapolations have been observed. It is shown that the chemical properties of the heaviest elements cannot reliably be predicted by simple extrapolations. Prospects to extend our chemical knowledge at the top end of the Periodic Table are discussed. (orig.)

  19. Recent studies of nuclear and chemical properties of elements 103, 104 and 105

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1990-08-01

    Information obtained since 1983 on the nuclear and chemical properties of element 103, the last on the actinide series, and elements 104 and 105, at the beginning of the transactinide series, is reviewed. Their chemical properties are compared with their lanthanide and lighter group 4 and 5 homologs and evidence for possible relativistic effects is discussed. The current knowledge of the nuclear properties of these elements and how these affect of the study of chemical properties is discussed. Some of the challenges involved in the study of short-lived isotopes which can only be produced an ''atom-at-a-time'' at an appropriate accelerator and the prognosis for future studies of these and still heavier elements are considered. 40 refs., 4 figs

  20. Social representation for future teachers on the nuclear energy: probable implications of the public opinion; Representacoes sociais de futuros professores a respeito da energia nuclear: possiveis implicacoes na opiniao publica

    Energy Technology Data Exchange (ETDEWEB)

    Ayllon, Rafaella Menezes; Farias, Luciana Aparecida, E-mail: rafaellayllon@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil); Favaro, Deborah I.T., E-mail: ditfavaro@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This study aimed to study the SR (social representation) regarding the 'Nuclear Energy' (NW) and 'Nuclear Chemistry' (NC) of students of Science - Bachelor of Federal University of Sao Paulo - UNIFESP. Individual questionnaires to research the topic, followed by the presentation of seminars with the focus of the research were applied. The methodology used was the technique of free word (Abric ,1994) which gives the frequency of each element that was mentioned and their average order of evocation, as well as semi -structured questionnaire with questions. Among the first results, it was found that the words 'Bomb' and 'Reactor' were the most mentioned by the group when asked evocations related to 'NE', while the terms 'Health' and 'Safety' are among the least mentioned. When referring to 'NC' the most frequent terms were 'Chemistry' and 'Atoms/Elements and 'Reactor' and 'Development' were less frequent. However, even though as a possible central core elements that match a negative SR theme, these students indicated Nuclear Energy as a strong option/option for diversifying the Brazilian energy matrix.

  1. Astronomy Matters for Chemistry Teachers

    Science.gov (United States)

    Huebner, Jay S.; Vergenz, Robert A.; Smith, Terry L.

    1996-11-01

    The purpose of this paper is to encourage more chemistry teachers to become familiar with some of the basic ideas described in typical introductory astronomy courses (1 - 9), including those about the origin of elements and forms of matter. These ideas would enrich chemistry courses and help resolve some basic misconceptions that are expressed in many introductory texts (10 - 16) and journal articles for chemistry teachers (17, 18). These misconceptions are typified by statements such as "we can classify all substances as either elements or compounds," and "nature has provided 92 elements out of which all matter is composed." If students accept these misconceptions, they could be deprived of (i) an appreciation of the history of elements and knowing that the elemental composition of the universe continues to evolve, (ii) knowing that of the first 92 elements in the periodic table, technetium and promethium do not occur naturally on Earth, and (iii) understanding that there are forms of matter other than elements and compounds. This paper briefly explores these ideas.

  2. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book II. Nuclear Chemistry, Process Technology, and Radioactive Waste Processing and Environment

    International Nuclear Information System (INIS)

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is second part of two books published for the meeting contains papers on nuclear chemistry, process technology, and radioactive waste management and environment. There are 62 papers indexed individually. (ID)

  3. HMI Department of Nuclear Chemistry and Reactor. Scientific report 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The annual report presents the results of the R and D activities in the following fields of work: 1) Neutron scattering (crystals physics, crystal structure and chemical bonding, studies for developments and modifications in the BER-2), 2) Radiation-induced damage to solids (defect reactions, atomic transport, change of mechanical properties of materials, or stability of alloys, development of thermonuclear reactor materials). 3) Reactor chemistry (solidification of radioactive wastes, corrosion and behaviour of gases in graphite). 4) Trace elements and their significance for health and food (transport and accumulation in the organism, development of analytical methods for diagnostic and therapy control purposes). 5) Geochemical prospecting of deposits (element abundance in earth crust or deposits, geochemical indicators, complex forming constants and distribution coefficients in geochemical systems). 6. Neutron scattering II (spectrometer equipment for inelastic neutron scattering experiments in the BER-2). The report also lists publications, lectures, and other scientific literature prepared by HMI members in 1985, and work performed by guest scientists. (RB) [de

  4. Coprecipitation experiment with Sm hydroxide using a multitracer produced by nuclear spallation reaction: A tool for chemical studies with superheavy elements

    International Nuclear Information System (INIS)

    Kasamatsu, Yoshitaka; Yokokita, Takuya; Toyomura, Keigo; Shigekawa, Yudai; Haba, Hiromitsu; Kanaya, Jumpei; Huang, Minghui; Ezaki, Yutaka; Yoshimura, Takashi; Morita, Kosuke; Shinohara, Atsushi

    2016-01-01

    To establish a new methodology for superheavy element chemistry, the coprecipitation behaviors of 34 elements with samarium hydroxide were investigated using multitracer produced by a spallation of Ta. The chemical reactions were rapidly equilibrated within 10 s for many elements. In addition, these elements exhibited individual coprecipitation behaviors, and the behaviors were qualitatively related to their hydroxide precipitation behaviors. It was demonstrated that the ammine and hydroxide complex formations of superheavy elements could be investigated using the established method. - Highlights: • We established a new methodology for superheavy element (SHE) chemistry. • Coprecipitation behaviors of 34 elements with Sm hydroxide could be simultaneously investigated by using multitracer. • The complex formations were investigated from the coprecipitation behaviors. • The established method will lead to the study on various precipitates of SHEs.

  5. Store for burnt-up fuel elements of nuclear reactors

    International Nuclear Information System (INIS)

    Kumpf, H.

    1981-01-01

    Burnt-up fuel elements of nuclear reactors have to be cooled during storage. For this reason the boxes which surround the fuel elements can have cooling air flowing round them in natural flow. This air is taken through the walls of a storage building through zones of parallel pipes, whose diameter and spacing are in the ratio of 1 : 0.5 to 1 : 2. The pipes have dust filters. Prefilters with fan drive are situated in parallel with the inlet pipe zones. (orig.) [de

  6. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  7. Study on the high-precision laser welding technology of nuclear fuel elements processing

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y.

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry

  8. Department of Chemistry, progress report

    International Nuclear Information System (INIS)

    1989-05-01

    The research activities in Department of Chemistry during the last 3 years from 1986 to 1988 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to the further development of the nuclear fuels and materials, to the establishment of the nuclear fuel cycle, and to the acquisition of data for the environmental safety studies. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  9. Redox reactivity and coordination chemistry of uranium

    International Nuclear Information System (INIS)

    Nocton, G.

    2009-09-01

    The study and the understanding of actinides chemistry have important implications in the nuclear field both for the development of new actinides materials and the retreatment of the nuclear wastes. One of the major issues in that chemistry is that the actinides elements are known to undergo redox reaction and to form assemblies of different size and different topologies. In that context uranium can be a good model of the heavier radioelement because it is much less radioactive. So, this work concerns the synthesis and the study of the spectroscopy and the magnetic properties of several uranium based polymetallic assemblies synthesized by taking advantage of the redox properties and the coordination chemistry of uranium. The hydrolysis reactivity of trivalent uranium has been studied in absence of sterically hindered ligands and led to the synthesis of oxo/hydroxo uranium assemblies with different sizes by changing the starting complex or the reaction conditions. By following the same strategy, the controlled oxidation of trivalent uranium complexes led to an original azido/nitrido uranium complex. The coordination chemistry of the pentavalent uranyl polymer {[UO 2 py 5 ][KI 2 py 3 ]} n has also been studied with different ligand and in different conditions and led to several cation-cation complexes for which the stability is sufficient for studying there dismutation by proton NMR. By changing the ancillary ligands stable monomeric complexes of pentavalent uranyl complexes were also obtained. The magnetic properties of all the complexes, monomers and polymetallic complexes were studied and an antiferromagnetic coupling was observed for the cation-cation pentavalent uranyl dimer [UO 2 (dbm) 2 (K 18 C 6 )] 2 . (author)

  10. Table of isotopes for the 1998/99 handbook of chemistry and physics

    International Nuclear Information System (INIS)

    Holden, N.E.

    1998-03-01

    Non-neutron nuclear data have been reviewed and recommended values are presented in the Table of the Isotopes to be published in the Chemical Rubber Company's 1998--1999 Handbook of Chemistry and Physics. The information, which is presented in the Isotopes Table for each known chemical element and for each ground state and long-lived isomeric state nuclide of each element includes the atomic weight of the element and the atomic mass of the ground state nuclide, isotopic abundance value (if the nuclide is stable) or the radioactive half-life (if the nuclide is not stable), the mode of decay, branching ratio and the total disintegration energy, the discrete energies of the alpha particles, protons or neutrons and end point energies of beta transitions and their respective intensities. The following additional information is also included, the nuclear spin and parity, the magnetic dipole moment and the electrical quadrupole moment and the gamma ray energies and intensities

  11. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  12. Nuclear chemical engineering

    International Nuclear Information System (INIS)

    Lee, Geon Jae; Shin, Young Jun

    1989-08-01

    The contents of this book are introduction of chemical engineering and related chemistry on an atomic reactor, foundation of the chemistry nuclear chemical engineering, theory on nuclear engineering, the cycle of uranium and nuclear fuel, a product of nuclear division, nuclear reprocessing, management of spent fuel separation of radioisotope, materials of an atomic reactor, technology and chemistry related water in atomic reactors and utilization of radioisotope and radiation. This book has the exercises and reference books for the each chapter.

  13. Public information - the crucial element in nuclear power acceptance

    International Nuclear Information System (INIS)

    Hayes, R.; Middlemiss, N.

    1996-01-01

    The British nuclear industry approach to the public information is described as the crucial element in nuclear power acceptance. The industry need to be a reliable, trustworthy source of information. There is evidence that when issues are examined in court or in quasi-judicial contexts, the public gains a better appreciation of the issues. The media report both sides of debate more evenly. Therefore the best way to deal with the most hostile opposition may be to take into a legal framework, rather than engage in hand-to-hand battle

  14. Public information - the crucial element in nuclear power acceptance

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R; Middlemiss, N [British Nuclear Industry Forum, London (United Kingdom)

    1996-07-01

    The British nuclear industry approach to the public information is described as the crucial element in nuclear power acceptance. The industry need to be a reliable, trustworthy source of information. There is evidence that when issues are examined in court or in quasi-judicial contexts, the public gains a better appreciation of the issues. The media report both sides of debate more evenly. Therefore the best way to deal with the most hostile opposition may be to take into a legal framework, rather than engage in hand-to-hand battle.

  15. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    Science.gov (United States)

    Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  16. Use of nuclear and nuclear-related analytical techniques in studies of trace and minor elements in air pollution

    International Nuclear Information System (INIS)

    Smodis, Borut; Stropnik, Boris

    1994-01-01

    Among nuclear and nuclear-related analytical techniques, neutron activation and X-ray fluorescence analysis are particularly useful for environmental studies owing to their non-destructive character and multi-element capability. In this work, procedures for k o -standardized instrumental neutron activation analysis (INAA) and energy-dispersive X-ray fluorescence (EDXRF) spectrometry for trace and minor elements in air pollution studies were investigated. The methods applied were validated by the analysis of suitable reference materials. Using INAA, 20 experimentally obtained elemental values out of 21 certified and all 29 experimentally obtained values compared with 'consensus' values (for the elements where no certified numbers are available) in two SRMs were statistically indistinguishable. Also, the contents of 28 elements in candidate NIST SRM 1573a Tomato Leaves are reported. The EDXRF results were statistically indistinguishable from certified values for eight out of nine elements in NIST SRM 3087. The detection limit for this method is around at 0.1 μg cm -2 per element, so in BCR CRM No. 128, which is intended for ambient air pollution data, only Fe and Zn out of 14 elements reported in the certificate were detected with acceptable precision (i.e., 10%) owing to the very low air particulate matter loading, lying in the region of only 250 μg cm -2 . (Author)

  17. Department of Chemistry Progress Report (January 1989 - December 1991)

    International Nuclear Information System (INIS)

    1992-03-01

    The research activities in Department of Chemistry during the last 3 years from 1989 to 1991 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to further development of nuclear fuels and materials, to establishment of the nuclear fuel cycle, and to new development of advanced nuclear researches such as laser, ion-beam and photo-chemistry. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  18. Analog elements for transuranic chemistries

    International Nuclear Information System (INIS)

    Weimer, W.C.

    1982-01-01

    The analytical technique for measuring trace concentrations of the analog rare earth elements has been refined for optimal detection. The technique has been used to determine the rare earth concentrations in a series of geological and biological materials, including samples harvested from controlled lysimeter investigations. These studies have demonstrated that any of the trivalent rare earth elements may be used as analog elements for the trivalent transuranics, americium and curium

  19. Proceedings of 4. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1989-01-01

    The works of IV Meeting on Chemistry in Northeast are presented, including topics about compounds determination by nuclear analytical techniques and the non-nuclear techniques and physical-chemistry studies of chemical compounds. (C.G.C.)

  20. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  1. The development of the nuclear physics in Latvia II. The building of the Research Nuclear Reactor IRT

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2004-01-01

    Nuclear research reactor IRT of the Academy of Sciences was built near Riga in Salaspils. IRT is pool aqueous - aqueous reactor with nuclear fuel U-235 contained elements, located in the core at a depth of ∼ 7 m under distilled water. Ten horizontal and 10-15 vertical experimental channels are employed in experimental research with the use of neutron fluxes. For the research with gamma rays is constructed radiation loop facility with liquid In-Ga-SN solid solution as intensive gamma-ray sources. Main activities of IRT are to conduct research in nuclear spectroscopy, neutron activation analysis, neutron diffraction and radiation physics, chemistry and biology. (authors)

  2. Device for preventing spontaneous repositioning of a control element of a nuclear reactor

    International Nuclear Information System (INIS)

    Maslenok, B.A.; Chegaj, A.S.; Slobin, W.G.; Mednickij, W.G.; Genkin, L.I.; Petritschenko, N.F.; Mitrofanow, B.I.

    1976-01-01

    The invention concerns the control element of a nuclear reactor. The vertical connecting rod is to be prevented from spontaneous repositioning if the pressurized housing which encloses the control element becomes leaky. It is proposed to provide spheres as wedging elements locking the connecting rod, but also allowing easy loosening. (UWI) [de

  3. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  4. Activation analysis in water chemistry

    International Nuclear Information System (INIS)

    Szabo, A.; Toth, A.

    1978-01-01

    The potential applications of activation analysis in water chemistry are discussed. The principle, unit operations, the radiation sources and measuring instruments of activation analysis are described. The sensitivity of activation analysis is given in tabulated form for some elements of major importance in water chemistry and the elements readily accessible to determination by measurement of the spontaneous gamma radiation are listed. A few papers selected from the recent international professional literature are finally reviewed, in which the authors report on the results obtained by activation analysis applied to water chemistry. (author)

  5. Incorporation of transuranic elements in titanate nuclear waste ceramics

    International Nuclear Information System (INIS)

    Matzke, H.J.; Ray, I.L.F.; Theile, H.; Trisoglio, C.; Walker, C.T.; White, T.J.

    1990-01-01

    The incorporation of actinide elements and their rare-earth element analogues in titanate nuclear waste forms in reviewed. New partitioning data are presented for three waste forms containing Purex waste simulant in combination with either NpO 2 , PuO 2 , or Am 2 O 3 . The greater proportion of transuranics partition between perovskite and zirconolite, while some americium may enter loveringite. Autoradiography revealed clusters of plutonium atoms which have been interpreted as unreacted dioxide or sesquioxide. It is concluded that the solid-state behavior of transuranic elements in titanate waste forms is poorly understood, certainly not well enough to tailor a ceramic for the incorporation of waste from reprocessing of fast breeder reactor fuel in which transuranic species are more abundant than in Purex waste

  6. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  7. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  8. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  9. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  10. Aqueous chemistry of transactinides

    International Nuclear Information System (INIS)

    Schaedel, M.

    2001-01-01

    The aqueous chemistry of the first three transactinide elements is briefly reviewed with special emphasis given to recent experimental results. Short introductory remarks are discussing the atom-at-a-time situation of transactinide chemistry as a result of low production cross-sections and short half-lives. In general, on-line experimental techniques and, more specifically, the automated rapid chemistry apparatus, ARCA, are presented. Present and future developments of experimental techniques and resulting perspectives are outlined at the end. The central part is mainly focussing on hydrolysis and complex formation aspects of the superheavy group 4, 5, and 6 transition metals with F - and Cl - anions. Experimental results are compared with the behaviour of lighter homologous elements and with relativistic calculations. It will be shown that the chemical behaviour of the first superheavy elements is already strongly influenced by relativistic effects. While it is justified to place rutherfordium, dubnium and seaborgium in the Periodic Table of the Elements into group 4, 5 and 6, respectively, it is no more possible to deduce from this position in detail the chemical properties of these transactinide or superheavy elements. (orig.)

  11. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Scientific and Technology Part II : Nuclear Chemistry; Process Technology and Radioactive Waste Management; Environment

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Endang-Supartini

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by Yogyakarta Nuclear Research Centre, National Atomic Energy Agency (BATAN) for monitoring the research activity which achieved in BATAN. The Proceeding contains a proposal about basic which has Nuclear Chemistry, Process Technology, Radioactive Waste Management and Environment. This proceeding is the second part from two part which published in series. There are 61 articles which have separated index

  12. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  13. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  14. Computer-based system for inspection of water chemistry regimes in WWER-type nuclear power plants

    International Nuclear Information System (INIS)

    Burcl, R.; Novak, M.; Malenka, P.

    1993-01-01

    The unsatisfactory situation in water chemistry testing at nuclear power plants with WWER type reactors is described. The testing primarily relies on laboratory analyses of manually taken samples. About 40 samples from one unit are tested per shift, which comprises approximately 250 determinations of various parameters. The time between two determinations is no shorter than 4 to 6 hours, thus rapid parameter changes between two determinations fail to be monitored. A novel system of automated chemistry monitoring is outlined, feasible for WWER type reactors. The system comprises 10 sets of sensors for monitoring all the relevant chemistry parameters of both the primary and secondary coolant circuits. Each sensor set has its own autonomous computer which secures its function even in case of loss of the chemical information network. The entire system is controlled by a master computer which also collects the results and provides contact with the power plant's information system. (Z.S.). 1 fig

  15. Six key elements' analysis of FAC effective management in nuclear power plant

    International Nuclear Information System (INIS)

    Zhong Zhaojiang; Chen Hanming

    2010-01-01

    Corporate Commitment, Analysis, Operating Experience, Inspection, Training and Engineering Judgment, Long-Term Strategy are the six key elements of FAC effective management in nuclear power plant. Corporate commitment is the economy base of FAC management and ensure of management system, Analysis is the method of FAC's optimization and consummation, Operating experience is the reference and complementarity of FAC, Inspection is the base of accumulating FAC data, Training and engineering judgment is the technical complementarity and deepening, Long-term strategy is successful key of FAC management. Six key elements supplement each other, and make up of a full system of FAC effective management. For present FAC management in our national nuclear power plant, six key elements are the core and bring out the best in each other to found the FAC effective management system and prevent great FAC occurrence. (authors)

  16. MicroSISAK for the chemistry of the heaviest elements

    International Nuclear Information System (INIS)

    Hild, Daniel

    2012-01-01

    This thesis describes experiments with an apparatus called MicroSISAK which is able to perform liquid-liquid-extraction on a microliter-scale. Two immiscible liquids are mixed in a microstructured mixer unit and separated again via a Teflon membrane. In the first experiments, different extraction systems were explored for elements of the groups 4 and 7 of the periodic table. Their results were compared with those from batch experiments. The initial achieved extraction yields were insufficient for the envisaged experiments, for which reason different modifications were arranged to obtain improvements. With the aid of a heating element, which was connected to the MicroSISAK apparatus, one was able to rise the temperature for the extraction inside. This led to the expected increasing of the extraction yield. Furthermore the MikroSISAK apparatus was modified by the Institut fuer Mikrotechnik Mainz, which had developed and constructed this apparatus. The contact time of the two phases between the mixer and the separation unit was extended. This also led to an increased yield. Now the performance appeared to be sufficient to connect the apparatus to the TRIGAreactor Mainz to perform online-experiments. Fission products (technetium) produced in a nuclear reaction were guided to the MicroSISAK apparatus to separate them and to detect their decay in a γ-ray detector. Apart from the successful separations, the experiments also proved the functionality of a new degasser system and that an adequate detection system can be coupled to MicroSISAK. With this, the prerequisites for the vision of an application of MicroSISAK are realised: The investigation of the chemical properties of short-lived superheavy elements (SHE) at a heavy-ion accelerator. It is obvious to plan such an experiment for the heavy homolog of technetium, element 107, bohrium.

  17. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  18. Optimization of secondary side water chemistry in TQNPC

    International Nuclear Information System (INIS)

    Fang Lan

    2007-01-01

    This article briefly introduces the types of corrosion that may be happened on steam generator heat exchange tubes in Qinshan CANDU6 nuclear power station and chemical effects on corrosion. The water chemistry optimization on minimzing deposition and corrosion of steam generators are introduced. The article summarizes the experiences of plant chemistry control and morpholine operation, providing guidance for optimizing secondary side water chemistry in the future, giving reference on selection of secondary side alkali agent and setting water chemistry specifications for other nuclear power stations. (authors)

  19. Experimental study of water flow in nuclear fuel elements

    International Nuclear Information System (INIS)

    Rodrigues, Lorena Escriche; Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos

    2013-01-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured

  20. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    Science.gov (United States)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit