Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-02-01
We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Directory of Open Access Journals (Sweden)
Changyong Cao
2015-01-01
Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.
Development of polygon elements based on the scaled boundary finite element method
International Nuclear Information System (INIS)
Chiong, Irene; Song Chongmin
2010-01-01
We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.
Piezoelectric Accelerometers Modification Based on the Finite Element Method
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.
2000-01-01
The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...
Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method
DEFF Research Database (Denmark)
Goo, Seongyeol; Wang, Semyung; Kook, Junghwan
2017-01-01
This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...
Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method
Directory of Open Access Journals (Sweden)
Claudiu Iavornic
2011-01-01
Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Reliability-Based Shape Optimization using Stochastic Finite Element Methods
DEFF Research Database (Denmark)
Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.
1991-01-01
stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...
Directory of Open Access Journals (Sweden)
Z. Long
2017-09-01
Full Text Available Considering the lack of quantitative criteria for the selection of elements in cartographic generalization, this study divided the hotspot areas of passengers into parts at three levels, gave them different weights, and then classified the elements from the different hotspots. On this basis, a method was proposed to quantify the priority of elements selection. Subsequently, the quantitative priority of different cartographic elements was summarized based on this method. In cartographic generalization, the method can be preferred to select the significant elements and discard those that are relatively non-significant.
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-01-01
. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
International Nuclear Information System (INIS)
Ostachowicz, W; Kudela, P
2010-01-01
A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.
A local level set method based on a finite element method for unstructured meshes
International Nuclear Information System (INIS)
Ngo, Long Cu; Choi, Hyoung Gwon
2016-01-01
A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time
A local level set method based on a finite element method for unstructured meshes
Energy Technology Data Exchange (ETDEWEB)
Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)
2016-12-15
A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
Energy Technology Data Exchange (ETDEWEB)
Toshimitsu, Fujisawa [Tokyo Univ., Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science (Japan); Genki, Yagawa [Tokyo Univ., Department of Quantum Engineering and Systems Science (Japan)
2003-07-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
Node-based finite element method for large-scale adaptive fluid analysis in parallel environments
International Nuclear Information System (INIS)
Toshimitsu, Fujisawa; Genki, Yagawa
2003-01-01
In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
International Nuclear Information System (INIS)
Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo
2015-01-01
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
Energy Technology Data Exchange (ETDEWEB)
Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-02-15
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-01-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...
Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems
Directory of Open Access Journals (Sweden)
Xuehai Huang
2013-01-01
Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.
Energy Technology Data Exchange (ETDEWEB)
Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu
2010-07-01
An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)
A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport
International Nuclear Information System (INIS)
Le Tellier, R.; Fournier, D.; Ruggieri, J. M.
2009-01-01
This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Dynamic analysis of suspension cable based on vector form intrinsic finite element method
Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun
2017-10-01
A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.
Face-based smoothed finite element method for real-time simulation of soft tissue
Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane
2017-03-01
In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.
Gear hot forging process robust design based on finite element method
International Nuclear Information System (INIS)
Xuewen, Chen; Won, Jung Dong
2008-01-01
During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled
KIN SP: A boundary element method based code for single pile kinematic bending in layered soil
Directory of Open Access Journals (Sweden)
Stefano Stacul
2018-02-01
Full Text Available In high seismicity areas, it is important to consider kinematic effects to properly design pile foundations. Kinematic effects are due to the interaction between pile and soil deformations induced by seismic waves. One of the effect is the arise of significant strains in weak soils that induce bending moments on piles. These moments can be significant in presence of a high stiffness contrast in a soil deposit. The single pile kinematic interaction problem is generally solved with beam on dynamic Winkler foundation approaches (BDWF or using continuous models. In this work, a new boundary element method (BEM based computer code (KIN SP is presented where the kinematic analysis is preceded by a free-field response analysis. The analysis results of this method, in terms of bending moments at the pile-head and at the interface of a two-layered soil, are influenced by many factors including the soil–pile interface discretization. A parametric study is presented with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution, for typical pile–soil relative stiffness values as a function of the pile diameter, the location of the interface of a two-layered soil and of the stiffness contrast. KIN SP results have been compared with simplified solutions in literature and with those obtained using a quasi-three-dimensional (3D finite element code.
International Nuclear Information System (INIS)
Koch, Stephan
2009-01-01
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
Directory of Open Access Journals (Sweden)
Bo Li
2014-01-01
Full Text Available The lack of evaluation standard for safety coefficient based on finite element method (FEM limits the wide application of FEM in roller compacted concrete dam (RCCD. In this paper, the strength reserve factor (SRF method is adopted to simulate gradual failure and possible unstable modes of RCCD system. The entropy theory and catastrophe theory are used to obtain the ultimate bearing resistance and failure criterion of the RCCD. The most dangerous sliding plane for RCCD failure is found using the Latin hypercube sampling (LHS and auxiliary analysis of partial least squares regression (PLSR. Finally a method for determining the evaluation standard of RCCD safety coefficient based on FEM is put forward using least squares support vector machines (LSSVM and particle swarm optimization (PSO. The proposed method is applied to safety coefficient analysis of the Longtan RCCD in China. The calculation shows that RCCD failure is closely related to RCCD interface strength, and the Longtan RCCD is safe in the design condition. Considering RCCD failure characteristic and combining the advantages of several excellent algorithms, the proposed method determines the evaluation standard for safety coefficient of RCCD based on FEM for the first time and can be popularized to any RCCD.
Analysis of elastic-plastic problems using edge-based smoothed finite element method
International Nuclear Information System (INIS)
Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.
2009-01-01
In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-05-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.
Directory of Open Access Journals (Sweden)
Xia Xiaozhou
2013-01-01
Full Text Available In the frame of the extended finite element method, the exponent disconnected function is introduced to reflect the discontinuous characteristic of crack and the crack tip enrichment function which is made of triangular basis function, and the linear polar radius function is adopted to describe the displacement field distribution of elastoplastic crack tip. Where, the linear polar radius function form is chosen to decrease the singularity characteristic induced by the plastic yield zone of crack tip, and the triangle basis function form is adopted to describe the displacement distribution character with the polar angle of crack tip. Based on the displacement model containing the above enrichment displacement function, the increment iterative form of elastoplastic extended finite element method is deduced by virtual work principle. For nonuniform hardening material such as concrete, in order to avoid the nonsymmetry characteristic of stiffness matrix induced by the non-associate flowing of plastic strain, the plastic flowing rule containing cross item based on the least energy dissipation principle is adopted. Finally, some numerical examples show that the elastoplastic X-FEM constructed in this paper is of validity.
Directory of Open Access Journals (Sweden)
Marco Gonzalez
Full Text Available Abstract The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs. The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has become very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes.
3D airborne EM modeling based on the spectral-element time-domain (SETD) method
Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.
2017-12-01
In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays
A New Method for 3D Finite Element Modeling of Human Mandible Based on CT Data
Institute of Scientific and Technical Information of China (English)
于力牛; 叶铭; 王成焘
2004-01-01
This study presents a reliable method for the semi-automatic generation of an FE model, which determines both geometrical data and bone properties from patient CT scans.3D FE analysis is one of the best approaches to predict the stress and strain distribution in complex bone structures, but its accuracy strongly depends on the precision of input information. In geometric reconstruction, various methods of image processing, geometric modeling and finite element analysis are combined and extended. Emphasis is given to the assignment of the material properties based on the density values computed from CT data. Through this technique, the model with high geometric and material similarities were generated in an easy way. Consequently, the patient-specific FE model from mandible CT data is realized also.
A Kriging Model Based Finite Element Model Updating Method for Damage Detection
Directory of Open Access Journals (Sweden)
Xiuming Yang
2017-10-01
Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.
Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method
International Nuclear Information System (INIS)
Xiao, D; Qian, Z; Li, W; Qian, L
2011-01-01
This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60 deg. C, 65 deg. C, 70 deg. C, 75 deg. C, 80 deg. C, 85 deg. C and 90 deg. C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.
Leak-Before-Break assessment of a welded piping based on 3D finite element method
International Nuclear Information System (INIS)
Chen, Mingya; Yu, Weiwei; Chen, Zhilin; Qian, Guian; Lu, Feng; Xue, Fei
2017-01-01
Highlights: • The effects of load reduction, strength match, welding width, load level, crack size and constraint are studied. • The results show that the LBB margin is dependent on the load level. • The results show that higher strength-match of WPJs will have higher crack-front constraints. • The results show that the engineering method has a high precision only if the width of weld is comparable to the crack depth. - Abstract: The paper studies the effects of the load reduction (discrepancy between designing and real loadings), strength match of the welded piping joint (WPJ), welding width, crack size and crack tip constraint on the Leak-Before-Break (LBB) assessment of a welded piping. The 3D finite element (FE) method is used in the study of a surge line of the steam generator in a nuclear power plant. It is demonstrated that the LBB margin is dependent on the loading level and the load reduction effect should be considered. When the loading is high enough, there is a quite large deviation between the J-integral calculated based on the real material property of WPJ and that calculated based on the engineering method, e.g. Zahoor handbook of Electric Power Research Institute (EPRI). The engineering method assumes that the whole piping is made of the unique welding material in the calculation. As the influence of the strength matching and welding width is ignored in the engineering method for J-integral calculation, the engineering method has a sufficient precision only if the width of welding is comparable to the crack depth. Narrower welding width leads to higher constraint of the plastic deformation in the welding and larger high stress areas in the base for the low strength-match WPJ. Higher strength matching of WPJs has higher crack-front constraints.
Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method
Directory of Open Access Journals (Sweden)
Rui Zhang
2016-01-01
Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian
2018-06-01
This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Computational statics and dynamics an introduction based on the finite element method
Öchsner, Andreas
2016-01-01
This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.
Mixed finite element-based fully conservative methods for simulating wormhole propagation
Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing
2015-01-01
Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.
Mixed finite element-based fully conservative methods for simulating wormhole propagation
Kou, Jisheng
2015-10-11
Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.
Directory of Open Access Journals (Sweden)
Yuan Chen
2017-01-01
Full Text Available Spiral bevel gears occupy several advantages such as high contact ratio, strong carrying capacity, and smooth operation, which become one of the most widely used components in high-speed stage of the aeronautical transmission system. Its dynamic characteristics are addressed by many scholars. However, spiral bevel gears, especially tooth fracture occurrence and monitoring, are not to be investigated, according to the limited published issues. Therefore, this paper establishes a three-dimensional model and finite element model of the Gleason spiral bevel gear pair. The model considers the effect of tooth root fracture on the system due to fatigue. Finite element method is used to compute the mesh generation, set the boundary condition, and carry out the dynamic load. The harmonic response spectra of the base under tooth fracture are calculated and the influence of main parameters on monitoring failure is investigated as well. The results show that the change of torque affects insignificantly the determination of whether or not the system has tooth fracture. The intermediate frequency interval (200 Hz–1000 Hz is the best interval to judge tooth fracture occurrence. The best fault test region is located in the working area where the system is going through meshing. The simulation calculation provides a theoretical reference for spiral bevel gear system test and fault diagnosis.
3D CSEM inversion based on goal-oriented adaptive finite element method
Zhang, Y.; Key, K.
2016-12-01
We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with
DEFF Research Database (Denmark)
2014-01-01
A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception...... and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation....
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
International Nuclear Information System (INIS)
Kim, Jin Kyu; Kim, Dong Keon
2016-01-01
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)
2016-09-15
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.
Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization
Morency, C.
2017-12-01
Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh
International Nuclear Information System (INIS)
Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao
2008-01-01
A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions
International Nuclear Information System (INIS)
Chaudhri, M. Anwar
2006-01-01
Full text: Various nuclear analytical methods have been developed and applied to determine the elemental composition of calcified tissues (teeth and bones). Fluorine was determined by prompt gamma activation analysis through the 19 F(p,αγ) 16 O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues: enamel, dentine, cementum, and their junctions, as well as different parts of the same tissue, were examined separately. Furthermore, using a Proton Microprobe, we measured the surface distribution of F and other elements on and around carious lesions on the enamel. The depth profiles of F, and other elements, were also measured right up to the amelodentin junction. (author)
An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1
Directory of Open Access Journals (Sweden)
Hai Guo
2015-01-01
Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
Verschoor, M.; Jalba, A.C.
2012-01-01
Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important
Numerical Simulation of Recycled Concrete Using Convex Aggregate Model and Base Force Element Method
Directory of Open Access Journals (Sweden)
Yijiang Peng
2016-01-01
Full Text Available By using the Base Force Element Method (BFEM on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ, and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.
Finite Element Method Based Modeling of Resistance Spot-Welded Mild Steel
Directory of Open Access Journals (Sweden)
Miloud Zaoui
Full Text Available Abstract This paper deals with Finite Element refined and simplified models of a mild steel spot-welded specimen, developed and validated based on quasi-static cross-tensile experimental tests. The first model was constructed with a fine discretization of the metal sheet and the spot weld was defined as a special geometric zone of the specimen. This model provided, in combination with experimental tests, the input data for the development of the second model, which was constructed with respect to the mesh size used in the complete car finite element model. This simplified model was developed with coarse shell elements and a spring-type beam element was used to model the spot weld behavior. The global accuracy of the two models was checked by comparing simulated and experimental load-displacement curves and by studying the specimen deformed shapes and the plastic deformation growth in the metal sheets. The obtained results show that both fine and coarse finite element models permit a good prediction of the experimental tests.
Fwu, Peter Tramyeon
The medical image is very complex by its nature. Modeling built upon the medical image is challenging due to the lack of analytical solution. Finite element method (FEM) is a numerical technique which can be used to solve the partial differential equations. It utilized the transformation from a continuous domain into solvable discrete sub-domains. In three-dimensional space, FEM has the capability dealing with complicated structure and heterogeneous interior. That makes FEM an ideal tool to approach the medical-image based modeling problems. In this study, I will address the three modeling in (1) photon transport inside the human breast by implanting the radiative transfer equation to simulate the diffuse optical spectroscopy imaging (DOSI) in order to measurement the percent density (PD), which has been proven as a cancer risk factor in mammography. Our goal is to use MRI as the ground truth to optimize the DOSI scanning protocol to get a consistent measurement of PD. Our result shows DOSI measurement is position and depth dependent and proper scanning scheme and body configuration are needed; (2) heat flow in the prostate by implementing the Penne's bioheat equation to evaluate the cooling performance of regional hypothermia during the robot assisted radical prostatectomy for the individual patient in order to achieve the optimal cooling setting. Four factors are taken into account during the simulation: blood abundance, artery perfusion, cooling balloon temperature, and the anatomical distance. The result shows that blood abundance, prostate size, and anatomical distance are significant factors to the equilibrium temperature of neurovascular bundle; (3) shape analysis in hippocampus by using the radial distance mapping, and two registration methods to find the correlation between sub-regional change to the age and cognition performance, which might not reveal in the volumetric analysis. The result gives a fundamental knowledge of normal distribution in young
DEFF Research Database (Denmark)
Cai, Hongzhu; Xiong, Bin; Han, Muran
2014-01-01
This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of...... are in a good agreement with the solutions obtained by the integral equation method....
Bending Moment Calculations for Piles Based on the Finite Element Method
Directory of Open Access Journals (Sweden)
Yu-xin Jie
2013-01-01
Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.
DEFF Research Database (Denmark)
Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard
2015-01-01
shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates......The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained...... an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation....
Some Applications of X-Ray Based Elemental Analysis Methods for Romanian Gold Minerals Studies
International Nuclear Information System (INIS)
Stan, D.; Constantinescu, B.; Pauna, C.; Neacsu, A.; Popescu, G.
2009-01-01
The elemental composition of gold, gold minerals and gold associated minerals releases important information's both from scientific (geologic) and economic point of view. In the present work, we focused on samples from Rosia Montana and Musariu ore deposits, from so called T ransylvanian gold of the golden q uadrilateral , Metaliferi Mountains. Our investigation started using optical microscopy. On the sample from Rosia Montana native gold band could be macroscopically seen. Gold occurs also like native gold in carbonate minerals, or associated with galena, sphalerite, chalcopyrite and quartz. The sample from Musariu shows native gold distributed at the border of sphalerite, native gold enclosed and along the margins of sphalerite and native gold between quartz grains. Three X-ray (the emission of characteristic lines spectra for each element present in the sample) based elemental analysis methods were also used: X-Ray Fluorescence (XRF), micro Synchrotron Radiation induced X-Ray Fluorescence (micro-SR-XRF) and micro Proton Induced X-Ray Emission (micro-PIXE). Our XRF methods are based on Xray tube spectrometers: a portable one - X-MET 3000TX and a stationary one - Spectro MIDEX. The two Rosia Montana and Musariu gold samples were studied using the micro-PIXE technique at the AN2000 accelerator of Laboratory Nazionale di Legnaro (LNL), INFN, Italy - maps and point spectra. The experiment was carried out with a 2 MeV proton microbeam (9 μm 2 beam area), maximum beam current 400 pA. The characteristic X-rays were measured with a Canberra HPGe detector (with 180 eV FWHM at 5.9 keV). Complementary experiments on the samples due the improved condition offered by the high energy X-rays, namely -Sb, Sn, Te detection, were performed at BESSY Synchrotron Radiation Facility, Berlin - point spectra. During the experiment, point spectra were acquired at 35 keV, excitation energy, using a spatially resolved synchrotron-radiation XRF setup detected to analyses. The XRF
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong; Sun, Shuyu; Xie, Xiaoping
2015-01-01
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong
2015-10-26
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Complex wavenumber Fourier analysis of the B-spline based finite element method
Czech Academy of Sciences Publication Activity Database
Kolman, Radek; Plešek, Jiří; Okrouhlík, Miloslav
2014-01-01
Roč. 51, č. 2 (2014), s. 348-359 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315; GA ČR GPP101/10/P376; GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : elastic wave propagation * dispersion errors * B-spline * finite element method * isogeometric analysis Subject RIV: JR - Other Machinery Impact factor: 1.513, year: 2014 http://www.sciencedirect.com/science/article/pii/S0165212513001479
A finite element method based microwave heat transfer modeling of frozen multi-component foods
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a
International Nuclear Information System (INIS)
Fujimura, Toichiro
1996-01-01
A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)
Directory of Open Access Journals (Sweden)
Siqi Li
2017-11-01
Full Text Available Energy sustainability is of vital importance to regional sustainability, because energy sustainability is closely related to both regional economic growth and social stability. The existing energy sustainability evaluation methods lack a unified system to determine the relevant influencing factors, are relatively weak in quantitative analysis, and do not fully describe the ‘paradoxical’ characteristics of energy sustainability. To solve those problems and to reasonably and objectively evaluate energy sustainability, we propose an energy sustainability evaluation model based on the matter-element extension method. We first select energy sustainability evaluation indexes based on previous research and experience. Then, a variation coefficient method is used to determine the weights of these indexes. Finally, the study establishes the classical domain, joint domain, and the matter-element relationship to evaluate energy sustainability through matter-element extension. Data from Shandong Province is used as a case study to evaluate the region’s energy sustainability. The case study shows that the proposed energy sustainability evaluation model, based on the matter-element extension method, can effectively evaluate regional energy sustainability.
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method
Zhang, Xuan; Li, Zhida; Zhang, Zhihua
2017-11-01
In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.
B-spline based finite element method in one-dimensional discontinuous elastic wave propagation
Czech Academy of Sciences Publication Activity Database
Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří
2017-01-01
Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Discrete elements method of neutron transport
International Nuclear Information System (INIS)
Mathews, K.A.
1988-01-01
In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution
A Hamiltonian-based derivation of Scaled Boundary Finite Element Method for elasticity problems
International Nuclear Information System (INIS)
Hu Zhiqiang; Lin Gao; Wang Yi; Liu Jun
2010-01-01
The Scaled Boundary Finite Method (SBFEM) is a semi-analytical solution approach for solving partial differential equation. For problem in elasticity, the governing equations can be obtained by mechanically based formulation, Scaled-boundary-transformation-based formulation and principle of virtual work. The governing equations are described in the frame of Lagrange system and the unknowns are displacements. But in the solution procedure, the auxiliary variables are introduced and the equations are solved in the state space. Based on the observation that the duality system to solve elastic problem proposed by W.X. Zhong is similar to the above solution approach, the discretization of the SBFEM and the duality system are combined to derive the governing equations in the Hamilton system by introducing the dual variables in this paper. The Precise Integration Method (PIM) used in Duality system is also an efficient method for the solution of the governing equations of SBFEM in displacement and boundary stiffness matrix especially for the case which results some numerical difficulties in the usually uses the eigenvalue method. Numerical examples are used to demonstrate the validity and effectiveness of the PIM for solution of boundary static stiffness.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Energy Technology Data Exchange (ETDEWEB)
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.
2017-09-01
Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing
2017-09-01
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic
The simulation of electrostatic coupling intra-body communication based on the finite-element method
Institute of Scientific and Technical Information of China (English)
Song Yong; Zhang Kai; Yang Guang; Zhu Kang; Hao Qun
2011-01-01
In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a. the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave; b. the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software; c. the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequencies, electrodes directions, electrodes sizes and transmission distances. Finally, some important conclusions are deduced on the basis of simulation results.
Jiang, Lijian
2009-10-02
The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.
Finite element method for the rising and the slip of column-plate base for usual connections
Directory of Open Access Journals (Sweden)
Alliche A.
2010-06-01
Full Text Available In the present paper, a finite element approach calculating the rising and the relative slip of steel base plate connections is proposed. Two types of connections are studied, the first consists on a base plate welded to the column end and attached to the reinforced concrete foundation by two anchor bolts. These bolts are placed on the major axis of the I shaped section used as column, one anchor bolt on each side of the web. In the second configuration, the connection includes a plate base and four anchor bolts placed out side the flanges of the I shaped section or hallow form. To take in account the real behaviour of this connection, a model by finite elements which considers count geometrical and material no linearties of the contact and cracking in the concrete foundation. To study the rising of the base plate, an approach treating problems of contact-friction between the base plate and the foundation is developed. This approach is based on a unilateral contact law in which a Coulomb friction is added. The numerical resolution is ensured by the increased Lagrangien method. For the behaviour of the concrete foundation, the developed model is based of a compressive elastoplastic model. The heights rising-rotations and the heights rising- slip displacements curves are plotted.
International Nuclear Information System (INIS)
Maharia, R.S.; Dutta, R.K.; Acharya, R.; Reddy, A.V.R.
2013-01-01
We report total metal contents and their Bioaccessibility concentrations from Momordica Charantia (karela), Asparagus racemosus (satavari), Terminalia arjuna (arjuna bark) and Syzyzium cumini (jamun). The metal bioaccessibilities were determined by treating the dried powdered samples sequentially in gastric and intestinal fluid of porcine origin and the concentrations of the elements were determined by Instrumental Neutron Activation Analysis (INAA) and by Inductively Coupled Plasma Mass Spectrometry (ICPMS). (author)
Discrete element method based scale-up model for material synthesis using ball milling
Santhanam, Priya Radhi
Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully
International Nuclear Information System (INIS)
Yoriyaz, H.
1986-01-01
In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt
Development of triple scale finite element analyses based on crystallographic homogenization methods
International Nuclear Information System (INIS)
Nakamachi, Eiji
2004-01-01
Crystallographic homogenization procedure is implemented in the piezoelectric and elastic-crystalline plastic finite element (FE) code to assess its macro-continuum properties of piezoelectric ceramics and BCC and FCC sheet metals. Triple scale hierarchical structure consists of an atom cluster, a crystal aggregation and a macro- continuum. In this paper, we focus to discuss a triple scale numerical analysis for piezoelectric material, and apply to assess a macro-continuum material property. At first, we calculate material properties of Perovskite crystal of piezoelectric material, XYO3 (such as BaTiO3 and PbTiO3) by employing ab-initio molecular analysis code CASTEP. Next, measured results of SEM and EBSD observations of crystal orientation distributions, shapes and boundaries of a real material (BaTiO3) are employed to define an inhomogeneity of crystal aggregation, which corresponds to a unit cell of micro-structure, and satisfies the periodicity condition. This procedure is featured as a first scaling up from the molecular to the crystal aggregation. Finally, the conventional homogenization procedure is implemented in FE code to evaluate a macro-continuum property. This final procedure is featured as a second scaling up from the crystal aggregation (unit cell) to macro-continuum. This triple scale analysis is applied to design piezoelectric ceramic and finds an optimum crystal orientation distribution, in which a macroscopic piezoelectric constant d33 has a maximum value
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
A Review of Element-Based Galerkin Methods for Numerical Weather Prediction
2015-04-01
weighted residuals because a linear system of algebraic equations in the unknowns q̂ is built by imposing that∫ Ω wRdΩ = 0, (30) where R = L−S is the (non...space; this spectral transform is evaluated using a combination of Fourier and 10 Simone Marras1 et al. Legendre transforms. We perform an elementary ...For the first algebraic system, the GMRES method with a simple diagonal preconditioning is efficient in most of the cases, and few iterations are
Directory of Open Access Journals (Sweden)
Polat Sendur
2017-01-01
Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10
Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H
2012-06-01
Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in
The structure analysis of ITER cryostat based on the finite element method
International Nuclear Information System (INIS)
Liang Chao; Ye, M.Y.; Yao, D.M.; Cao, Lei; Zhou, Z.B.; Xu, Teijun; Wang Jian
2013-01-01
In the ITER project the cryostat is one of the most important components. Cryostat shall transfer all the loads that derive from the TOKAMAK inner basic machine, and from the cryostat itself, to the floor of the TOKAMAK pit (during the normal and off-normal operational regimes, and at specified accidental conditions). This paper researches the dynamic structure strength of the ITER cryostat during the operation of TOKAMAK. Firstly the paper introduces the types of loads and the importance of every type load to the research. Then it gives out the method of building model and principle of simplified model, boundary conditions and the way of applying loads on the cryostat. Finally the author discussed the analysis result and the strength questions of cryostat, also, the author pointed out the opinions according to the analysis results.
Keller, Trevor; Lindwall, Greta; Ghosh, Supriyo; Ma, Li; Lane, Brandon M; Zhang, Fan; Kattner, Ursula R; Lass, Eric A; Heigel, Jarred C; Idell, Yaakov; Williams, Maureen E; Allen, Andrew J; Guyer, Jonathan E; Levine, Lyle E
2017-10-15
Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Fluidic Elements based on Coanda Effect
Directory of Open Access Journals (Sweden)
Constantin OLIVOTTO
2010-12-01
Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
PIXE - a new method for elemental analysis
International Nuclear Information System (INIS)
Johansson, S.A.E.
1983-01-01
With elemental analysis we mean the determination of which chemical elements are present in a sample and of their concentration. This is an old and important problem in chemistry. The earliest methods were purely chemical and many such methods are still used. However, various methods based on physical principles have gradually become more and more important. One such method is neutron activation. When the sample is bombarded with neutrons it becomes radioactive and the various radioactive isotopes produced can be identified by the radiation they emit. From the measured intensity of the radiation one can calculate how much of a certain element that is present in the sample. Another possibility is to study the light emitted when the sample is excited in various ways. A spectroscopic investigation of the light can identify the chemical elements and allows also a determination of their concentration in the sample. In the same way, if a sample can be brought to emit X-rays, this radiation is also characteristic for the elements present and can be used to determine the elemental concentration. One such X-ray method which has been developed recently is PIXE. The name is an acronym for Particle Induced X-ray Emission and indicates the principle of the method. Particles in this context means heavy, charged particles such as protons and a-particles of rather high energy. Hence, in PIXE-analysis the sample is irradiated in the beam of an accelerator and the emitted X-rays are studied. (author)
DEFF Research Database (Denmark)
Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen
2011-01-01
This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....
Directory of Open Access Journals (Sweden)
Rumian Zhong
2015-01-01
Full Text Available A two-step response surface method for multiscale finite element model (FEM updating and validation is presented with respect to Guanhe Bridge, a composite cable-stayed bridge in the National Highway number G15, in China. Firstly, the state equations of both multiscale and single-scale FEM are established based on the basic equation in structural dynamic mechanics to update the multiscale coupling parameters and structural parameters. Secondly, based on the measured data from the structural health monitoring (SHM system, a Monte Carlo simulation is employed to analyze the uncertainty quantification and transmission, where the uncertainties of the multiscale FEM and measured data were considered. The results indicate that the relative errors between the calculated and measured frequencies are less than 2%, and the overlap ratio indexes of each modal frequency are larger than 80% without the average absolute value of relative errors. These demonstrate that the proposed method can be applied to validate the multiscale FEM, and the validated FEM can reflect the current conditions of the real bridge; thus it can be used as the basis for bridge health monitoring, damage prognosis (DP, and safety prognosis (SP.
Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi
2018-04-01
In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.
International Nuclear Information System (INIS)
McCoy, Michael L.; Moradi, Rasoul; Lankarani, Hamid M.
2011-01-01
This paper examines the effectiveness of analyzing impact events in mechanical systems for design purposes using simple or low ordered finite elements. Traditional impact dynamics analyses of mechanical systems namely stereomechanics, energy method, stress-wave propagation and contact mechanics approaches are limited to very simplified geometries and provide basic analyses in making predictions and understanding the dominant features of the impact in a mechanical system. In engineering practice, impacted systems present a complexity of geometry, stiffness, mass distributions, contact areas and impact angles that are impossible to analyze and design with the traditional impact dynamics methods. In real cases, the effective tool is the finite element (FE) method. The high-end FEA codes though may be not available for typical engineer/designer. This paper provides information on whether impact events of mechanical systems can be successfully modeled using simple or low-order finite elements. FEA models using simple elements are benchmarked against theoretical impact problems and published experimental impact results. As a case study, an FE model using simple plastic beam elements is further tested to predict stresses and deflections in an experimental structural impact
International Nuclear Information System (INIS)
Grigor'eva, V.P.; Popova, N.M.; Zheksenbaeva, Z.T.; Sass, A.S.; Salakhova, R.Kh.; Dosumov, K.D.
2002-01-01
The results of X-ray fluorescence analysis of polyoxide catalysts on of Mn, Cu, Ni, rare earth elements, alkaline earth elements base supported on 2 % Ce/θ-Al 2 O 3 are presented. This polyoxide catalysts are using for deep methane oxidation. DRON-4-7 X-ray diffractometers was applied for the analysis. It was found, that oxides in Ni-Cu-Cr catalysts after long time heating up to 1200 deg. C have been interacted with catalyst supports with Ni(Cu)Al 2 O 3 aluminates formation and due to its decomposition transformation degree of CH 4 to CO 2 are reduced. Activity of MnBaSrCeLa catalysts after heating up to 1200 deg. C does not changed
International Nuclear Information System (INIS)
Ting, Wang; Zhan-Zhong, Cui; Li-Xin, Xu
2009-01-01
The transient thermoelastic stress fields of GaN films is analyzed by the finite element method for the laser lift-off (LLO) technique. Stress distributions in GaN films irradiated by pulse laser with different energy densities as functions of time and depth are simulated. The results show that the high thermoelastic stress distributions in GaN films localize within about 1 μm below the GaN/Al 2 O 3 interface using proper laser parameters. It is also found that GaN films can avoid the thermal deformation because the maximum thermoelastic stress 4.28 GPa is much smaller than the yield strength of GaN 15GPa. The effects of laser beam dimension and the thickness of GaN films on stress distribution are also analyzed. The variation range of laser beam dimension as a function of the thickness of GaN films is simulated to keep the GaN films free of thermal deformation. LLO experiments are also carried out. GaN-based light-emitting diodes (LEDs) are separated from sapphire substrates using the parameters obtained from the simulation. Compared with devices before LLO, P–I–V measurements of GaN-based LEDs after LLO show that the electrical and optical characteristics improve greatly, indicating that no stress damage is brought to GaN films using proper parameters obtained by calculation during LLO
Fractional Order Element Based Impedance Matching
Radwan, Ahmed Gomaa; Salama, Khaled N.; Shamim, Atif
2014-01-01
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1983-01-01
A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)
Directory of Open Access Journals (Sweden)
Huawei Zhou
2016-10-01
Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.
Ansari, R.; Torabi, J.; Norouzzadeh, A.
2018-04-01
Due to the capability of Eringen's nonlocal elasticity theory to capture the small length scale effect, it is widely used to study the mechanical behaviors of nanostructures. Previous studies have indicated that in some cases, the differential form of this theory cannot correctly predict the behavior of structure, and the integral form should be employed to avoid obtaining inconsistent results. The present study deals with the bending analysis of nanoplates resting on elastic foundation based on the integral formulation of Eringen's nonlocal theory. Since the formulation is presented in a general form, arbitrary kernel functions can be used. The first order shear deformation plate theory is considered to model the nanoplates, and the governing equations for both integral and differential forms are presented. Finally, the finite element method is applied to solve the problem. Selected results are given to investigate the effects of elastic foundation and to compare the predictions of integral nonlocal model with those of its differential nonlocal and local counterparts. It is found that by the use of proposed integral formulation of Eringen's nonlocal model, the paradox observed for the cantilever nanoplate is resolved.
Yoo, Byungjin; Hirata, Katsuhiro; Oonishi, Atsurou
In this study, a coupled analysis method for flat panel speakers driven by giant magnetostrictive material (GMM) based actuator was developed. The sound field produced by a flat panel speaker that is driven by a GMM actuator depends on the vibration of the flat panel, this vibration is a result of magnetostriction property of the GMM. In this case, to predict the sound pressure level (SPL) in the audio-frequency range, it is necessary to take into account not only the magnetostriction property of the GMM but also the effect of eddy current and the vibration characteristics of the actuator and the flat panel. In this paper, a coupled electromagnetic-structural-acoustic analysis method is presented; this method was developed by using the finite element method (FEM). This analysis method is used to predict the performance of a flat panel speaker in the audio-frequency range. The validity of the analysis method is verified by comparing with the measurement results of a prototype speaker.
International Nuclear Information System (INIS)
Poncet, Maryse; Engelmann, Charles
1975-01-01
Preliminary results obtained by bombarding thick or thin targets with protons of energies below 1.5 MeV are presented. In the former case, curves representing X-ray emission versus proton energy (between 0.4 and 1.4MeV) were determined for 12 elements (Al, Ti, V, Fe, Ni, Cu, Nb, Ag, Sn, W, Au, Pb). From these curves the variation in detection sensitivity with atomic number for a given energy was derived. For some elements (Cu, Ag, Sn, Pb), deposited in thin layers on a aluminium substrate, the X-ray emission was studied as a function of thickness at constant energy. The results show that the method may be used to determine elements of atomic number near 30, in thin layers at least 200μg.cm -2 thick, with a detection limit which could reach a few 10 -3 μg.cm -2 [fr
Directory of Open Access Journals (Sweden)
Liu Yang
2018-02-01
Full Text Available Coal is the most important fossil energy used in China. The environmental impact of trace elements released in coal combustion has become one of the hottest issues in recent years. Based on a software named CiteSpace, and social network analysis (SNA, a bibliometric analysis of research into trace elements in coal and ash field during 1971–2017 is presented with the information of authors, countries, institutions, journals, hot issues and research trends in the present study. The study results indicate that: (1 Shifeng Dai, Robert B Finkelman, Guijian Liu and James C Hower have a large number of publications with great influence. (2 China (29.8% and USA (22.2% have high productivity in total publications. China and the USA correlate closely in the cooperative web system. (3 China University of Mining and Technology and Chinese Academy of Sciences take the leading position in the quantity of publications among all research institutions. (4 Energy and fuels, engineering and environmental science are three disciplines with the most studies in this field. (5 International Journal of Coal Geology, Fuel, Energy and Fuels and Fuel Processing Technology are the top four journals with the most publications in this field. (6 The enrichment origin and modes of occurrence of trace elements are the mainstream research related to trace elements in coal and ash. The environmental problems caused by coal combustion have promoted the development of trace elements in coal research, and human health is getting more and more popular in recent years. The study findings provide a better understanding of features of trace elements in coal and ash research, which could be taken as a reference for future studies in this field.
International Nuclear Information System (INIS)
Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.
2006-01-01
A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample
Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat
2017-05-01
The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Liu Bing
2014-10-01
Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.
International Nuclear Information System (INIS)
Xu, Kai-Jiang; Pan, Xiao-Min; Li, Ren-Xian; Sheng, Xin-Qing
2017-01-01
In optical trapping applications, the optical force should be investigated within a wide range of parameter space in terms of beam configuration to reach the desirable performance. A simple but reliable way of conducting the related investigation is to evaluate optical forces corresponding to all possible beam configurations. Although the optical force exerted on arbitrarily shaped particles can be well predicted by boundary element method (BEM), such investigation is time costing because it involves many repetitions of expensive computation, where the forces are calculated from the equivalent surface currents. An algorithm is proposed to alleviate the difficulty by exploiting our previously developed skeletonization framework. The proposed algorithm succeeds in reducing the number of repetitions. Since the number of skeleton beams is always much less than that of beams in question, the computation can be very efficient. The proposed algorithm is accurate because the skeletonization is accuracy controllable. - Highlights: • A fast and accurate algorithm is proposed in terms of boundary element method to reduce the number of repetitions of computing the optical forces from the equivalent currents. • The algorithm is accuracy controllable because the accuracy of the associated rank-revealing process is well-controlled. • The accelerate rate can reach over one thousand because the number of skeleton beams can be very small. • The algorithm can be applied to other methods, e.g., FE-BI.
Microlocal methods in the analysis of the boundary element method
DEFF Research Database (Denmark)
Pedersen, Michael
1993-01-01
The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...
International Nuclear Information System (INIS)
Dutta, R.K.; Chakravortty, V.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.; Chintalapudi, S.N.
2005-01-01
Five manganese nodules obtained from different locations with varying water depths of the Indian Ocean were analysed by k 0 -based instrumental neutron activation analysis (k 0 -INAA) method. A total of 22 elements were estimated including nine rare earth elements (REE). The accuracy of the method has been evaluated by analysing USGS manganese nodule reference material NOD P1. The nodules have been classified into hydrogenous and diagenetic on the basis of their Mn/Fe ratios. Data on elemental concentrations were used to explain the possible differences in the trace element distribution. The minor elements were found to be enriched in the hydrogenous nodules compared to the diagenetic one. An attempt was made to characterise the distribution of these minor elements in the light of known geochemical evidences of Pacific Ocean nodules. The dissimilarity of the geochemistry of Ce and Mn in the Indian Ocean nodules has been discussed. The manganese nodules under investigation exhibit a positive cerium anomaly, indicating an oxidising environment. The possible mechanism of incorporation of elements like REE into the iron oxyhydroxide phase has been discussed. (author)
International Nuclear Information System (INIS)
Itagaki, Masafumi; Miyoshi, Yoshinori; Hirose, Hideyuki
1993-01-01
A procedure is presented for the determination of geometric buckling for regular polygons. A new computation technique, the multiple reciprocity boundary element method (MRBEM), has been applied to solve the one-group neutron diffusion equation. The main difficulty in applying the ordinary boundary element method (BEM) to neutron diffusion problems has been the need to compute a domain integral, resulting from the fission source. The MRBEM has been developed for transforming this type of domain integral into an equivalent boundary integral. The basic idea of the MRBEM is to apply repeatedly the reciprocity theorem (Green's second formula) using a sequence of higher order fundamental solutions. The MRBEM requires discretization of the boundary only rather than of the domain. This advantage is useful for extensive survey analyses of buckling for complex geometries. The results of survey analyses have indicated that the general form of geometric buckling is B g 2 = (a n /R c ) 2 , where R c represents the radius of the circumscribed circle of the regular polygon under consideration. The geometric constant A n depends on the type of regular polygon and takes the value of π for a square and 2.405 for a circle, an extreme case that has an infinite number of sides. Values of a n for a triangle, pentagon, hexagon, and octagon have been calculated as 4.190, 2.281, 2.675, and 2.547, respectively
Rumpler, Romain; Deü, Jean-François; Göransson, Peter
2012-11-01
Structural-acoustic finite element models including three-dimensional (3D) modeling of porous media are generally computationally costly. While being the most commonly used predictive tool in the context of noise reduction applications, efficient solution strategies are required. In this work, an original modal reduction technique, involving real-valued modes computed from a classical eigenvalue solver is proposed to reduce the size of the problem associated with the porous media. In the form presented in this contribution, the method is suited for homogeneous porous layers. It is validated on a 1D poro-acoustic academic problem and tested for its performance on a 3D application, using a subdomain decomposition strategy. The performance of the proposed method is estimated in terms of degrees of freedom downsizing, computational time enhancement, as well as matrix sparsity of the reduced system.
Boundary element method for internal axisymmetric flow
Directory of Open Access Journals (Sweden)
Gokhman Alexander
1999-01-01
Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
A finite element method for neutron transport
International Nuclear Information System (INIS)
Ackroyd, R.T.
1978-01-01
A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)
Directory of Open Access Journals (Sweden)
Long Hui
2016-01-01
Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Energy Technology Data Exchange (ETDEWEB)
Baccolo, Giovanni, E-mail: giovanni.baccolo@mib.infn.it [Graduate School in Polar Sciences, University of Siena, Via Laterina 8, 53100, Siena (Italy); Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Clemenza, Massimiliano [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Delmonte, Barbara [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); Maffezzoli, Niccolò [Centre for Ice and Climate, Niels Bohr Institute, Juliane Maries Vej, 30, 2100, Copenhagen (Denmark); Nastasi, Massimiliano; Previtali, Ezio [INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Department of Physics, University of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy); Prata, Michele; Salvini, Andrea [LENA, University of Pavia, Pavia (Italy); Maggi, Valter [Department of Environmental Sciences, University of Milano-Bicocca, P.zza della Scienza 1, 20126, Milano (Italy); INFN, Section of Milano-Bicocca, P.zza della Scienza 3, 20126, Milano (Italy)
2016-05-30
Dust found in polar ice core samples present extremely low concentrations, in addition the availability of such samples is usually strictly limited. For these reasons the chemical and physical analysis of polar ice cores is an analytical challenge. In this work a new method based on low background instrumental neutron activation analysis (LB-INAA) for the multi-elemental characterization of the insoluble fraction of dust from polar ice cores is presented. Thanks to an accurate selection of the most proper materials and procedures it was possible to reach unprecedented analytical performances, suitable for ice core analyses. The method was applied to Antarctic ice core samples. Five samples of atmospheric dust (μg size) from ice sections of the Antarctic Talos Dome ice core were prepared and analyzed. A set of 37 elements was quantified, spanning from all the major elements (Na, Mg, Al, Si, K, Ca, Ti, Mn and Fe) to trace ones, including 10 (La, Ce, Nd, Sm, Eu, Tb, Ho, Tm, Yb and Lu) of the 14 natural occurring lanthanides. The detection limits are in the range of 10{sup −13}–10{sup −6} g, improving previous results of 1–3 orders of magnitude depending on the element; uncertainties lies between 4% and 60%. - Highlights: • A new method based on neutron activation for the multi-elemental characterization of atmospheric dust entrapped in polar ice cores is proposed. • 37 elements were quantified in μg size dust samples with detection limits ranging from 10{sup −13} to 10{sup −6} g. • A low background approach and a clean analytical protocol improved INAA performances to unprecedented levels for multi-elemental analyses.
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
Directory of Open Access Journals (Sweden)
M. Jamali
2011-09-01
Full Text Available The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equivalent instantaneous inductance (EII technique is used to discriminate inrush current from fault currents. For this purpose, a three-phase power transformer has been simulated in Maxwell software that is based on finite elements. This three-phase power transformer has been used to simulate different conditions. Then, the results have been used as inputs in MATLAB program to implement the equivalent instantaneous inductance technique. The results show that in the case of inrush current, the equivalent instantaneous inductance has a drastic variation, while it is almost constant in the cases of fault conditions.
Structural modeling techniques by finite element method
International Nuclear Information System (INIS)
Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong
1991-01-01
This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M.; Yazdani, Saami K.; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I.; Ohayon, Jacques
2013-12-01
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10-8±5.7 × 10-8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Lin, Tong; Liu, Tiebing; Lin, Yucheng; Yan, Lailai; Chen, Zhongxue; Wang, Jingyu
2017-09-01
The etiology and pathophysiology of schizophrenia (SCZ) remain obscure. This study explored the associations between SCZ risk and serum levels of 39 macro and trace elements (MTE). A 1:1 matched case-control study was conducted among 114 schizophrenia patients and 114 healthy controls matched by age, sex and region. Blood samples were collected to determine the concentrations of 39 MTE by ICP-AES and ICP-MS. Both supervised learning methods and classical statistical testing were used to uncover the difference of MTE levels between cases and controls. The best prediction accuracies were 99.21% achieved by support vector machines in the original feature space (without dimensionality reduction), and 98.82% achieved by Naive Bayes with dimensionality reduction. More than half of MTE were found to be significantly different between SCZ patients and the controls. The presented investigation showed that there existed remarkable differences in concentrations of MTE between SCZ patients and healthy controls. The results of this study might be useful to diagnosis and prognosis of SCZ; they also indicated other promising applications in pharmacy and nutrition. However, the results should be interpreted with caution due to limited sample size and the lack of potential confounding factors, such as alcohol, smoking, body mass index (BMI), use of antipsychotics and dietary intakes. In the future the application of the analyses will be useful in designs that have larger sample sizes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Method of lightening radiation darkened optical elements
International Nuclear Information System (INIS)
Reich, F.R.; Schwankoff, A.R.
1980-01-01
A method of lightening a radiation-darkened optical element in which visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals
A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method
Wang, Xiao-Yen J.
2015-01-01
The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.
Rahman, Muhammad Ziaur
2017-01-01
A micromechanical analysis of the representative volume element (RVE) of a unidirectional flax/jute fiber reinforced epoxy composite is performed using finite element analysis (FEA). To do so, first effective mechanical properties of flax fiber and jute fiber are evaluated numerically and then used in evaluating the effective properties of ax/jute/epoxy hybrid composite. Mechanics of Structure Genome (MSG), a new homogenization tool developed in Purdue University, is used to calculate the hom...
Fuel elements handling device and method
International Nuclear Information System (INIS)
Jabsen, F.S.
1976-01-01
This invention relates to nuclear equipment and more particularly to methods and apparatus for the non-destructive inspection, manipulation, disassembly and assembly of reactor fuel elements and the like. (author)
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Review on Finite Element Method * ERHUNMWUN, ID ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: In this work, we have discussed what Finite Element Method (FEM) is, its historical development, advantages and ... residual procedures, are examples of the direct approach ... The paper centred on the "stiffness and deflection of ...
Wang, Han; Dong, Xiao-Xi; Yang, Ji-Chun; Huang, He; Li, Ying-Xin; Zhang, Hai-Xia
2017-07-01
For predicting the temperature distribution within skin tissue in 980-nm laser-evoked potentials (LEPs) experiments, a five-layer finite element model (FEM-5) was constructed based on Pennes bio-heat conduction equation and the Lambert-Beer law. The prediction results of the FEM-5 model were verified by ex vivo pig skin and in vivo rat experiments. Thirty ex vivo pig skin samples were used to verify the temperature distribution predicted by the model. The output energy of the laser was 1.8, 3, and 4.4 J. The laser spot radius was 1 mm. The experiment time was 30 s. The laser stimulated the surface of the ex vivo pig skin beginning at 10 s and lasted for 40 ms. A thermocouple thermometer was used to measure the temperature of the surface and internal layers of the ex vivo pig skin, and the sampling frequency was set to 60 Hz. For the in vivo experiments, nine adult male Wistar rats weighing 180 ± 10 g were used to verify the prediction results of the model by tail-flick latency. The output energy of the laser was 1.4 and 2.08 J. The pulsed width was 40 ms. The laser spot radius was 1 mm. The Pearson product-moment correlation and Kruskal-Wallis test were used to analyze the correlation and the difference of data. The results of all experiments showed that the measured and predicted data had no significant difference (P > 0.05) and good correlation (r > 0.9). The safe laser output energy range (1.8-3 J) was also predicted. Using the FEM-5 model prediction, the effective pain depth could be accurately controlled, and the nociceptors could be selectively activated. The FEM-5 model can be extended to guide experimental research and clinical applications for humans.
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Finite element method - theory and applications
International Nuclear Information System (INIS)
Baset, S.
1992-01-01
This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs
Fractional Order Element Based Impedance Matching
Radwan, Ahmed Gomaa
2014-06-24
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.
Ohno, Hajime; Matsubae, Kazuyo; Nakajima, Kenichi; Kondo, Yasushi; Nakamura, Shinichiro; Fukushima, Yasuhiro; Nagasaka, Tetsuya
2017-11-21
Importance of end-of-life vehicles (ELVs) as an urban mine is expected to grow, as more people in developing countries are experiencing increased standards of living, while the automobiles are increasingly made using high-quality materials to meet stricter environmental and safety requirements. While most materials in ELVs, particularly steel, have been recycled at high rates, quality issues have not been adequately addressed due to the complex use of automobile materials, leading to considerable losses of valuable alloying elements. This study highlights the maximal potential of quality-oriented recycling of ELV steel, by exploring the utilization methods of scrap, sorted by parts, to produce electric-arc-furnace-based crude alloy steel with minimal losses of alloying elements. Using linear programming on the case of Japanese economy in 2005, we found that adoption of parts-based scrap sorting could result in the recovery of around 94-98% of the alloying elements occurring in parts scrap (manganese, chromium, nickel, and molybdenum), which may replace 10% of the virgin sources in electric arc furnace-based crude alloy steel production.
Investigation of rare elements by electrochemical methods
International Nuclear Information System (INIS)
Zarinskij, V.A.
1988-01-01
The use of electrochemical methods for the study of complexing, separation of rare element mixtures, their preparation in lower oxidation states, and also for the development of highly sensitive methods of the element determination, is considered in the review. Voltammetric methods of Pt, Au, Re determination are considered, as well as Re preparation in oxidation states +5, +3 by electrolytic methods. The possibility to use electrodialysis methods for purification of insoluble compounds of rare earths (RE) from impurities, and for separation of Re and Mo with simultaneous purification of Re from K and other elements is shown. The application of high-frequency conductometry to analytic chemistry and to the study of Th, In, RE complexing and kinetics of the reactions is considered
Discrete elements method of neutral particle transport
International Nuclear Information System (INIS)
Mathews, K.A.
1983-01-01
A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method
New formulation of the discrete element method
Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon
2018-01-01
A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Directory of Open Access Journals (Sweden)
Sunil Tyagi
2017-04-01
Full Text Available A classification technique using Support Vector Machine (SVM classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditions. The time-domain vibration signals were divided into 40 segments and simple features such as peaks in time domain and spectrum along with statistical features such as standard deviation, skewness, kurtosis etc. were extracted. Effectiveness of SVM classifier was compared with the performance of Artificial Neural Network (ANN classifier and it was found that the performance of SVM classifier is superior to that of ANN. The effect of pre-processing of the vibration signal by Discreet Wavelet Transform (DWT prior to feature extraction is also studied and it is shown that pre-processing of vibration signal with DWT enhances the effectiveness of both ANN and SVM classifiers. It has been demonstrated from experiment results that performance of SVM classifier is better than ANN in detection of bearing condition and pre-processing the vibration signal with DWT improves the performance of SVM classifier.
International Nuclear Information System (INIS)
Yuan Yuwei; Zhang Yongzhi; Yang Guiling; Zhang Zhiheng; Fu Haiyan; Han Wenyan; Li Shufang
2013-01-01
The ratio of stable isotope and concentration of multi-element in tea was determinated with isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition techniques with principal component analysis (PCA) and linear discriminant analysis (LDA) were used to classify the geographical origins of tea from Fujian, Shandong and Zhejiang province, and Yuyao, Jinhua and Xihu region of Zhejiang. The results showed the values of δ"1"5N, δ"1"3C, δD, δ"1"8O and the ratios of "2"0"6Pb/"2"0"7Pb, "2"0"8Pb/"2"0"6Pb and "8"7Sr/"8"6Sr in tea samples were different from different origins. There was also large variable for the concentrations of 27 mineral elements, such as Li, Be, Na and so on, with a specific character of origin. The method of PCA could be used to classify the geographical origin of tea from different origins but with a cross in the scatter plot. However, PCA combining with LDA could gave correct assignation percentages of 99% for the tea samples among Fujian, Shandong and Zhejiang provinces, and 87% for the tea samples among Yuyao, Jinhua and Xihu region of Zhejiang. These results revealed that it was possible and feasible to classify the geographical origin of tea by the method of PCA-LDA based on the determination of isotopes and multi-elements. (authors)
Spectral/hp element methods for CFD
Karniadakis, George Em
1999-01-01
Traditionally spectral methods in fluid dynamics were used in direct and large eddy simulations of turbulent flow in simply connected computational domains. The methods are now being applied to more complex geometries, and the spectral/hp element method, which incorporates both multi-domain spectral methods and high-order finite element methods, has been particularly successful. This book provides a comprehensive introduction to these methods. Written by leaders in the field, the book begins with a full explanation of fundamental concepts and implementation issues. It then illustrates how these methods can be applied to advection-diffusion and to incompressible and compressible Navier-Stokes equations. Drawing on both published and unpublished material, the book is an important resource for experienced researchers and for those new to the field.
Directory of Open Access Journals (Sweden)
K. A. Ramesh Kumar
2014-09-01
Full Text Available AlSiC is a metal matrix composite which comprises of aluminium matrix with silicon carbide particles. It is characterized by high thermal conductivity (180-200 W/m K, and its thermal expansion are attuned to match other important materials that finds enormous demand in industrial sectors. Although its application is very common, the physics behind the Al-SiC formation, functionality and behaviors are intricate owing to the temperature gradient of hundreds of degrees, over the volume, occurring on a time scale of a few seconds, involving multiple phases. In this study, various physical, metallurgical and numerical aspects such as equation of continuum for thermal, stress and deformation using finite element (FE matrix formulation, temperature dependent material properties, are analyzed. Modelling and simulation studies of Al/SiC composites are a preliminary attempt to view this research work from computational point of view.
New mixed finite-element methods
International Nuclear Information System (INIS)
Franca, L.P.
1987-01-01
New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Lin, Tong; Liu, Tiebing; Lin, Yucheng; Zhang, Chaoting; Yan, Lailai; Chen, Zhongxue; He, Zhonghu; Wang, Jingyu
2017-09-24
Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal carcinoma with extremely aggressive nature and low survival rate. The risk factors for ESCC in the high-incidence areas of China remain unclear. We used machine learning methods to investigate whether there was an association between the alterations of serum levels of certain chemical elements and ESCC. Primary healthcare unit in Anyang city, Henan Province of China. 100 patients with ESCC and 100 healthy controls matched for age, sex and region were included. Primary outcome was the classification accuracy. Secondary outcome was the p Value of the t-test or rank-sum test. Both traditional statistical methods of t-test and rank-sum test and fashionable machine learning approaches were employed. Random Forest achieves the best accuracy of 98.38% on the original feature vectors (without dimensionality reduction), and support vector machine outperforms other classifiers by yielding accuracy of 96.56% on embedding spaces (with dimensionality reduction). All six classifiers can achieve accuracies more than 90% based on the single most important element Sr. The other two elements with distinctive difference are S and P, providing accuracies around 80%. More than half of chemical elements were found to be significantly different between patients with ESCC and the controls. These results suggest clear differences between patients with ESCC and controls, implying some potential promising applications in diagnosis, prognosis, pharmacy and nutrition of ESCC. However, the results should be interpreted with caution due to the retrospective design nature, limited sample size and the lack of several potential confounding factors (including obesity, nutritional status, and fruit and vegetable consumption and potential regional carcinogen contacts). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.
2013-01-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael
2009-01-01
A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.
International Nuclear Information System (INIS)
Dutta, R.K.; Maharia, R.S.; Acharya, R.; Reddy, A.V.R.
2014-01-01
The total metal concentration and bioaccessible concentration of Cr, Mn, Fe, Cu, Zn, Se in Momordica charantia, Asparagus racemosus, Terminalia arjuna and Syzyzium cumini were measured by instrumental neutron activation analysis and by inductively coupled plasma mass spectrometry analysis (ICP-MS). The bioaccessible concentrations were determined in the gastrointestinal digest obtained after treating dried powdered samples sequentially in gastric and intestinal fluid of porcine origin at physiological conditions. The bioaccessible concentration of Fe was in the range of 58-67 mg kg -1 , Mn was 10.2-14.6 mg kg -1 , Cu was 3.7-4.8 mg kg -1 and Zn was 10.6-18.4 mg kg -1 , were within the safety limits set for vegetable food stuff set by Joint FAO/WHO. The bioaccessibility of Zn, an essential element, was high (40-50 %) in M. charantia and in S. cumini. In addition, the total metal contents and bioaccessible concentration of Ni, Se, Cd and Pb in these samples were measured by ICP-MS. The total Cd content in S. cumini (2.6 ± 0.2 mg kg -1 ) and its bioaccessible concentration (0.6 mg kg -1 ) were strikingly high as compared to the other samples. Though total Hg contents were determined by ICP-MS, but their bioaccessible concentrations were below the detection limit (0.036 mg kg -1 ). (author)
Boundary element method for modelling creep behaviour
International Nuclear Information System (INIS)
Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora
2002-01-01
A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)
Element Free Lattice Boltzmann Method for Fluid-Flow Problems
International Nuclear Information System (INIS)
Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung; Kwon, Young Kwon
2007-01-01
The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented
Element Free Lattice Boltzmann Method for Fluid-Flow Problems
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)
2007-10-15
The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.
2012-08-16
threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the clustering coefficient of the network and...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH
Directory of Open Access Journals (Sweden)
S. Knitel
2016-12-01
Full Text Available A new inverse method was developed to derive the plastic flow properties of non-standard disk tensile specimens, which were so designed to fit irradiation rods used for spallation irradiations in SINQ (Schweizer Spallations Neutronen Quelle target at Paul Scherrer Institute. The inverse method, which makes use of MATLAB and the finite element code ABAQUS, is based upon the reconstruction of the load-displacement curve by a succession of connected small linear segments. To do so, the experimental engineering stress/strain curve is divided into an elastic and a plastic section, and the plastic section is further divided into small segments. Each segment is then used to determine an associated pair of true stress/plastic strain values, representing the constitutive behavior. The main advantage of the method is that it does not rely on a hypothetic analytical expression of the constitutive behavior. To account for the stress/strain gradients that develop in the non-standard specimen, the stress and strain were weighted over the volume of the deforming elements. The method was validated with tensile tests carried out at room temperature on non-standard flat disk tensile specimens as well as on standard cylindrical specimens made of the reduced-activation tempered martensitic steel Eurofer97. While both specimen geometries presented a significant difference in terms of deformation localization during necking, the same true stress/strain curve was deduced from the inverse method. The potential and usefulness of the inverse method is outlined for irradiated materials that suffer from a large uniform elongation reduction.
Loading method of core constituting elements
International Nuclear Information System (INIS)
Kasai, Shigeo
1976-01-01
Purpose: To provide a remote-controlled replacing method for core constituting elements in a liquid-metal cooling fast breeder, wherein particularly, the core constituting elements are prevented from being loaded on the core position other than as designated. Constitution: The method comprises a first step which determines a position of a suitable neutron shielding body in order to measure a reference level of complete insertion of the core constituting elements, a second step which inserts a gripper for a fuel exchanger, a third step which decides stroke dimensions of the complete insertion, and a fourth step which discriminates the core constituting elements to begin handling of fuel rods. The method further comprises a fifth step which determines a loading position of fuel rod, and a sixth step which inserts and loads fuel rods into the core. The method still further comprises a seventh step which compares and judges the dimension of loading stroke and the dimension of complete inserting stroke so that when coincided, loading is completed, and when not coincided, loading is not completed and then the cycle of the fourth step is repeated. (Kawakami, Y.)
Image segmentation with a finite element method
DEFF Research Database (Denmark)
Bourdin, Blaise
1999-01-01
regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite element formulation for a digital image correlation method
International Nuclear Information System (INIS)
Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei
2005-01-01
A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust
Energy Technology Data Exchange (ETDEWEB)
Cai, X C; Marcinkowski, L; Vassilevski, P S
2005-02-10
This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
Coupling of smooth particle hydrodynamics with the finite element method
International Nuclear Information System (INIS)
Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.
1994-01-01
A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))
De Carvalho, Nelson V.; Krueger, Ronald
2016-01-01
A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.
A Novel Polygonal Finite Element Method: Virtual Node Method
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
Directory of Open Access Journals (Sweden)
Chong Shi
2017-10-01
Full Text Available Fractured seepage is an important factor affecting the interface stability of rock mass. It is closely related to fracture properties and hydraulic conditions. In this study, the law of seepage in a single fracture surface based on modified cubic law is described, and the three-dimensional discrete element method is used to simulate the dam foundation structure of the Capulin San Pablo (Costa Rica hydropower station. The effect of construction joints and developed structure on dam stability is studied, and its permeability law and sliding stability are also evaluated. It is found that the hydraulic-mechanical coupling with strength reduction method in DEM is more appropriate to use to study the seepage-related problems of fractured rock mass, which considers practical conditions, such as the roughness of and the width of fracture. The strength reduction method provides a more accurate safety factor of dam when considering the deformation coordination with bedrocks. It is an important method with which to study the stability of seepage conditions in complex structures. The discrete method also provided an effective and reasonable way of determining seepage control measures.
Effective beam method for element concentrations
International Nuclear Information System (INIS)
Tolhurst, Thomas; Barbi, Mauricio; Tokaryk, Tim
2015-01-01
A method to evaluate chemical element concentrations in samples by generating an effective polychromatic beam using as initial input real monochromatic beam data is presented. There is a great diversity of research being conducted at synchrotron facilities around the world and a diverse set of beamlines to accommodate this research. Time is a precious commodity at synchrotron facilities; therefore, methods that can maximize the time spent collecting data are of value. At the same time the incident radiation spectrum, necessary for some research, may not be known on a given beamline. A preliminary presentation of a method applicable to X-ray fluorescence spectrocopic analyses that overcomes the lack of information about the incident beam spectrum that addresses both of these concerns is given here. The method is equally applicable for other X-ray sources so long as local conditions are considered. It relies on replacing the polychromatic spectrum in a standard fundamental parameters analysis with a set of effective monochromatic photon beams. A beam is associated with each element and can be described by an analytical function allowing extension to elements not included in the necessary calibration measurement(s)
Crack Propagation by Finite Element Method
H. Ricardo, Luiz Carlos
2017-01-01
Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A
2003-02-01
A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.
Energy Technology Data Exchange (ETDEWEB)
Akkus, Harun [Technical Sciences Vocational School, Amasya University, Amasya (Turkmenistan); Duzcukoglu, Hayrettin; Sahin, Omer Sinan [Mechanical Engineering Department, Selcuk University, Selcuk (Turkmenistan)
2017-01-15
This study utilized experimental and finite element methods to investigate the mechanical behavior of aluminum honeycomb structures under compression. Aluminum honeycomb composite structures were subjected to pressing experiments according to the standard ASTM C365. Resistive forces in response to compression and maximum compressive force values were measured. Structural damage was observed. In the honeycomb structure, the cell width decreased as the compressive force increased. Results obtained with finite element models generated using ANSYS Workbench 15 were validated. Experimental results paralleled the finite element modeling results. The ANSYS results were approximately 85 % reliable.
Energy Technology Data Exchange (ETDEWEB)
Havenith, Andreas Wilhelm
2015-07-01
Radioactive waste has to meet the specifications and acceptance criteria defined by national regulatory and management authorities for its intermediate and final storage. In Germany the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz - BfS) has established waste acceptance requirements for the Konrad repository. Konrad is the disposal for radioactive waste with negligible heat generation and is located near the city of Salzgitter and is currently under construction. It will start operation not before the year 2021. The waste-acceptance-requirements are derived from a site-specific safety assessment. They include specific requirements on waste forms, packaging as well as limitations to activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. The amount of chemically toxic elements in the waste is limited in order to avoid pollution of underground water reserves. To comply with these requirements every waste package has to be characterised in its radiological and chemical composition. This characterisation can be performed on the basis of existing documentation or, if the documentation is insufficient, on further analytical analysis. Segmented or integral gamma-scanning as well as active or passive neutron counting are used worldwide as the standard measurement methods for the radiological characterisation and quality checking of radioactive waste. These techniques determine the isotope specific activity of waste packages, but they do not allow the detection of non-radioactive hazardous substances inside the waste packages. Against this background the Institute of Nuclear Engineering and Technology Transfer (NET) at RWTH Aachen University and the Institute of Safety Research and Reactor Technology at Forschungszentrum Juelich jointly develop an innovative non-destructive analytical technique called MEDINA - ''Multi-Element Detection based on Instrumental Neutron Activation'' for
Boundary element methods for electrical engineers
POLJAK, D
2005-01-01
In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B
The blade element momentum (BEM) method
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre
2017-01-01
The current chapter presents the blade element momentum (BEM) method. The BEM method for a steady uniform inflow is presented in a first section. Some of the ad-hoc corrections that are usually added to the algorithm are discussed in a second section. An exception is made to the tip-loss correction...... which is introduced early in the algorithm formulation for practical reasons. The ad-hoc corrections presented are: the tip-loss correction, the high-thrust correction (momentum breakdown) and the correction for wake rotation. The formulation of an unsteady BEM code is given in a third section...
International Nuclear Information System (INIS)
Havenith, Andreas Wilhelm
2015-01-01
Radioactive waste has to meet the specifications and acceptance criteria defined by national regulatory and management authorities for its intermediate and final storage. In Germany the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz - BfS) has established waste acceptance requirements for the Konrad repository. Konrad is the disposal for radioactive waste with negligible heat generation and is located near the city of Salzgitter and is currently under construction. It will start operation not before the year 2021. The waste-acceptance-requirements are derived from a site-specific safety assessment. They include specific requirements on waste forms, packaging as well as limitations to activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. The amount of chemically toxic elements in the waste is limited in order to avoid pollution of underground water reserves. To comply with these requirements every waste package has to be characterised in its radiological and chemical composition. This characterisation can be performed on the basis of existing documentation or, if the documentation is insufficient, on further analytical analysis. Segmented or integral gamma-scanning as well as active or passive neutron counting are used worldwide as the standard measurement methods for the radiological characterisation and quality checking of radioactive waste. These techniques determine the isotope specific activity of waste packages, but they do not allow the detection of non-radioactive hazardous substances inside the waste packages. Against this background the Institute of Nuclear Engineering and Technology Transfer (NET) at RWTH Aachen University and the Institute of Safety Research and Reactor Technology at Forschungszentrum Juelich jointly develop an innovative non-destructive analytical technique called MEDINA - ''Multi-Element Detection based on Instrumental Neutron Activation'' for
Analysis of concrete beams using applied element method
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.
Phylogeny based discovery of regulatory elements
Directory of Open Access Journals (Sweden)
Cohen Barak A
2006-05-01
Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.
Method for fuel element leak detection in pressurized water reactors
International Nuclear Information System (INIS)
Kunze, U.
1983-01-01
The method is aimed at detecting fuel element leaks during reactor operation. It is based on neutron flux measurements at many points in the core, using at least two detectors at a time. The detectors must be arranged in the direction of the coolant flow. Values obtained from periodic measurements are compared with threshold values. The location of fuel element leaks is determined from those values exceeding the threshold of individual detectors
Spectral/ hp element methods: Recent developments, applications, and perspectives
Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.
2018-02-01
The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.
Apparatus and method for assembling fuel elements
International Nuclear Information System (INIS)
Arya, S.P.
1978-01-01
A nuclear fuel element assembling method and apparatus is preferably operable under programmed control unit to receive fuel rods from storage, arrange them into axially aligned stacks of closely monitored length, and transfer the stacks of fuel rods to a loading device for insertion into longitudinal passages in the fuel elements. In order to handle large numbers of one or more classifications of fuel rods or other cylindrical parts, the assembling apparatus includes at least two feed troughs each formed by a pair of screw members with a movable table having a plurality of stacking troughs for alignment with the feed troughs and with a conveyor for delivering the stacks to the loading device, the fuel rods being moved along the stacking troughs upon a fluid cushion. 23 claims, 6 figures
Method of detecting a fuel element failure
International Nuclear Information System (INIS)
Cohen, P.
1975-01-01
A method is described for detecting a fuel element failure in a liquid-sodium-cooled fast breeder reactor consisting of equilibrating a sample of the coolant with a molten salt consisting of a mixture of barium iodide and strontium iodide (or other iodides) whereby a large fraction of any radioactive iodine present in the liquid sodium coolant exchanges with the iodine present in the salt; separating the molten salt and sodium; if necessary, equilibrating the molten salt with nonradioactive sodium and separating the molten salt and sodium; and monitoring the molten salt for the presence of iodine, the presence of iodine indicating that the cladding of a fuel element has failed. (U.S.)
Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun
2018-02-01
Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Precise magnetostatic field using the finite element method
International Nuclear Information System (INIS)
Nascimento, Francisco Rogerio Teixeira do
2013-01-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
A finite element method for SSI time history calculation
International Nuclear Information System (INIS)
Ni, X.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described
A finite element method for SSI time history calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described
Final Report of the Project "From the finite element method to the virtual element method"
Energy Technology Data Exchange (ETDEWEB)
Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-20
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.
Adaptive finite element method for shape optimization
Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco
2012-01-01
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Joerg, Alexandre; Vignaux, Mael; Lumeau, Julien
2016-08-01
A new alternative and versatile method for the production of diffractive optical elements (DOEs) with up to four phase levels in AMTIR-1 (Ge33As12Se55) layers is demonstrated. The developed method proposes the use of the photosensitive properties of the layers and a specific in situ optical monitoring coupled with a reverse engineering algorithm to control the trigger points of the writing of the different diffractive patterns. Examples of various volume DOEs are presented.
Complex finite element sensitivity method for creep analysis
International Nuclear Information System (INIS)
Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry
2015-01-01
The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions
Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia
2015-12-01
A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.
Three-dimensional wake field analysis by boundary element method
International Nuclear Information System (INIS)
Miyata, K.
1987-01-01
A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity
Method of manufacturing nuclear fuel elements
International Nuclear Information System (INIS)
Ishida, Masao; Oguma, Masaomi.
1980-01-01
Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)
International Nuclear Information System (INIS)
Yavar, A.R.; Sukiman Sarmani; Tan, C.Y.; Rafie, N.N.; Lim, S.W.E.; Khoo, K.S.
2012-01-01
An electronic database has been developed and implemented for K 0 -INAA method in Malaysia. Databases are often developed according to national requirements. This database contains constant nuclear data for k 0 -INAA method. Hogdahl-convention and Westcott-formalism as 3 separate command user interfaces. It has been created using Microsoft Access 2007 under a Windows operating system. This database saves time and the quality of results can be assured when the calculation of neutron flux parameters and concentration of elements by k 0 -INAA method are utilised. An evaluation of the database was conducted by IAEA Soil7 where the results published which showed a high level of consistency. (Author)
Nuclear analytical methods for platinum group elements
International Nuclear Information System (INIS)
2005-04-01
Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Development of quadrilateral spline thin plate elements using the B-net method
Chen, Juan; Li, Chong-Jun
2013-08-01
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
Method of measuring distance between fuel element
International Nuclear Information System (INIS)
Urata, Megumu.
1991-01-01
The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)
Counting addressing method: Command addressable element and extinguishing module
Directory of Open Access Journals (Sweden)
Ristić Jovan D.
2009-01-01
Full Text Available The specific requirements that appear in addressable fire detection and alarm systems and the shortcomings of the existing addressing methods were discussed. A new method of addressing of detectors was proposed. The basic principles of addressing and responding of a called element are stated. Extinguishing module is specific subsystem in classic fire detection and alarm systems. Appearing of addressable fire detection and alarm systems didn't caused essential change in the concept of extinguishing module because of long calling period of such systems. Addressable fire security system based on counting addressing method reaches high calling rates and enables integrating of the extinguishing module in addressable system. Solutions for command addressable element and integrated extinguishing module are given in this paper. The counting addressing method was developed for specific requirements in fire detection and alarm systems, yet its speed and reliability justifies its use in the acquisition of data on slowly variable parameters under industrial conditions. .
International Nuclear Information System (INIS)
Coulomb, F.
1989-06-01
The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr
Generalization of mixed multiscale finite element methods with applications
Energy Technology Data Exchange (ETDEWEB)
Lee, C S [Texas A & M Univ., College Station, TX (United States)
2016-08-01
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii
International Nuclear Information System (INIS)
Wolf, J.P.; Darbre, G.R.
1985-01-01
The computational procedure of the so-called truncated indirect boundary-element method is derived. The latter, which is non-local in space and time, represents a rigorous generally applicable procedure for taking into account a layered halfspace in a non-linear soil-structure interaction analysis. As an example, the non-linear soil-structure interaction analysis of a structure embedded in a halfspace with partial uplift of the basement and separation of the side wall is investigated. (orig.)
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo
2013-01-01
DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)
International Nuclear Information System (INIS)
Reis, Edson Luis Tocaia dos; Scapin, Marcos; Cotrim, Marycel Elena Barboza; Salvador, Vera Lucia; Pires, Maria Aparecida Faustino
2009-01-01
The production of nuclear fuel used in the research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) requires a series of chemical and metallurgical processes. The quality of the end product depends on the control over all the stages of the manufacturing process and over the quality of raw materials employed. In fact, spectrometric methods are increasingly used as quantitative analytical techniques applicable to uranium compounds because of simultaneous determination of several elements with minimum amounts of sample. However, the main obstacle of uranium compounds analysis by spectrometric techniques such as optical emission spectrometry with inductively coupled plasma (ICP-OES) is the complex emission spectrum of uranium. The ICP-OES is not appropriately capable of determining the major elements of interest without initial chemical separation of uranium. In this sense, the use of X-ray fluorescence spectrometry (XRF) has been considered for quantitative determination of main elements with the advantage of not being destructive and not requiring a prior preparation of samples for analysis. Due to the simplicity of this technique, its applicability includes research and quality control in universities, research institutions, petrochemical industries, metallurgy, mining, etc. In this work, some components considered impurities in nuclear fuel element samples used in the IEA-R1 research reactor of IPEN/CNEN-SP were chemically characterized by ICP-OES analysis after chromatography extraction separation by using TBP/XAD-14 system and compared to results obtained by energy dispersive X-ray fluorescence spectrometry (EDXRF) and wavelength dispersive X-ray fluorescence (WDXRF). (author)
Flow Applications of the Least Squares Finite Element Method
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
International Nuclear Information System (INIS)
Piksaikin, V.M.; Isaev, S.G.; Goverdovski, A.A.; Pshakin, G.M.
1998-10-01
The document includes the following two reports: 'Correlation properties of delayed neutrons from fast neutron induced fission' and 'Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting. A separate abstract was prepared for each report
Scalable fast multipole methods for vortex element methods
Hu, Qi; Gumerov, Nail A.; Yokota, Rio; Barba, Lorena A.; Duraiswami, Ramani
2012-01-01
work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize
Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang
2018-03-01
Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0 ± 1.3, 1.0 ± 1.2, 0.8 ± 1.3, 1.1 ± 1.5 for the B-Spline, B-Spline + FEM, Demons and Demons + FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.
Parallel Fast Multipole Boundary Element Method for crustal dynamics
International Nuclear Information System (INIS)
Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar
2010-01-01
Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.
The finite element method in engineering, 2nd edition
International Nuclear Information System (INIS)
Rao, S.S.
1986-01-01
This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications
Method for inspecting nuclear reactor fuel elements
International Nuclear Information System (INIS)
Jabsen, F.S.
1979-01-01
A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan
2012-01-01
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite
Elements of Network-Based Assessment
Gibson, David
2007-01-01
Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…
A collocation finite element method with prior matrix condensation
International Nuclear Information System (INIS)
Sutcliffe, W.J.
1977-01-01
For thin shells with general loading, sixteen degrees of freedom have been used for a previous finite element solution procedure using a Collocation method instead of the usual variational based procedures. Although the number of elements required was relatively small, nevertheless the final matrix for the simultaneous solution of all unknowns could become large for a complex compound structure. The purpose of the present paper is to demonstrate a method of reducing the final matrix size, so allowing solution for large structures with comparatively small computer storage requirements while retaining the accuracy given by high order displacement functions. Collocation points, a number are equilibrium conditions which must be satisfied independently of the overall compatibility of forces and deflections for a complete structure. (Auth.)
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
A simple finite element method for linear hyperbolic problems
International Nuclear Information System (INIS)
Mu, Lin; Ye, Xiu
2017-01-01
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Spectral element method for wave propagation on irregular domains
Indian Academy of Sciences (India)
Yan Hui Geng
2018-03-14
Mar 14, 2018 ... Abstract. A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the ...
Different Element Methods in Engineering Practice | Onah | Nigerian ...
African Journals Online (AJOL)
Presented is the most common element methods used for analysis in engineering. The methods are discussed in an overall and general manner so that engineers and scientists who are increasingly, called upon to use element methods to support and check their analyses and/or designs can appreciate the essential ...
Spectral element method for wave propagation on irregular domains
Indian Academy of Sciences (India)
A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the physical space are ...
A finite element solution method for quadrics parallel computer
International Nuclear Information System (INIS)
Zucchini, A.
1996-08-01
A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem
Transuranium element recovering method for spent nuclear fuel
International Nuclear Information System (INIS)
Todokoro, Akio; Kihara, Yoshiyuki; Okada, Hisashi
1998-01-01
Spent fuels are dissolved in nitric acid, the obtained dissolution liquid is oxidized by electrolysis, and nitric acid of transuranium elements are precipitated together with nitric acid of uranium elements from the dissolution solution and recovered. Namely, the transuranium elements are oxidized to an atomic value level at which nitric acid can be precipitated by an oxidizing catalyst, and cooled to precipitate nitric acid of transuranium elements together with nitric acid of transuranium elements, accordingly, it is not necessary to use a solvent which has been used so far upon recovering transuranium elements. Since no solvent waste is generated, a recovery method taking the circumstance into consideration can be provided. Further, nitric acid of uranium elements and nitric acid of transuranium elements precipitated and recovered together are dissolved in nitric acid again, cooled and only uranium elements are precipitated selectively, and recovered by filtration. The amount of wastes can be reduced to thereby enabling to mitigate control for processing. (N.H.)
Research of flaw assessment methods for beryllium reflector elements
International Nuclear Information System (INIS)
Shibata, Akira; Ito, Masayasu; Takemoto, Noriyuki; Tanimoto, Masataka; Tsuchiya, Kunihiko; Nakatsuka, Masafumi; Ohara, Hiroshi; Kodama, Mitsuhiro
2012-02-01
Reflector elements made from metal beryllium is widely used as neutron reflectors to increase neutron flux in test reactors. When beryllium reflector elements are irradiated by neutron, bending of reflector elements caused by swelling occurs, and beryllium reflector elements must be replaced in several years. In this report, literature search and investigation for non-destructive inspection of Beryllium and experiments for Preliminary inspection to establish post irradiation examination method for research of characteristics of metal beryllium under neutron irradiation were reported. (author)
Scalable fast multipole methods for vortex element methods
Hu, Qi
2012-11-01
We use a particle-based method to simulate incompressible flows, where the Fast Multipole Method (FMM) is used to accelerate the calculation of particle interactions. The most time-consuming kernelsâ\\'the Biot-Savart equation and stretching term of the vorticity equationâ\\'are mathematically reformulated so that only two Laplace scalar potentials are used instead of six, while automatically ensuring divergence-free far-field computation. Based on this formulation, and on our previous work for a scalar heterogeneous FMM algorithm, we develop a new FMM-based vortex method capable of simulating general flows including turbulence on heterogeneous architectures, which distributes the work between multi-core CPUs and GPUs to best utilize the hardware resources and achieve excellent scalability. The algorithm also uses new data structures which can dynamically manage inter-node communication and load balance efficiently but with only a small parallel construction overhead. This algorithm can scale to large-sized clusters showing both strong and weak scalability. Careful error and timing trade-off analysis are also performed for the cutoff functions induced by the vortex particle method. Our implementation can perform one time step of the velocity+stretching for one billion particles on 32 nodes in 55.9 seconds, which yields 49.12 Tflop/s. © 2012 IEEE.
International Nuclear Information System (INIS)
Ageev, O A; Zamburg, E G; Kolomiytsev, A S; Suchkov, D O; Shipulin, I A; Shumov, A V
2015-01-01
In the experiments we defined modes, and developed the technology of formation of elements of input-output laser emission and microlens of integrated acousto-optic cell by Pulsed Laser Deposition and Focused Ion Beams by using nanotechnology cluster complex, allowing controlled creation of elements in a single process cycle. (paper)
Convergence analysis of spectral element method for electromechanical devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2017-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the
Convergence analysis of spectral element method for magnetic devices
Curti, M.; Jansen, J.W.; Lomonova, E.A.
2018-01-01
This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with
Galerkin finite element methods for wave problems
Indian Academy of Sciences (India)
basis functions (called G1FEM here) and quadratic basis functions (called G2FEM) ... mulation of Brookes & Hughes (1982) that implicitly incorporates numerical ..... functions and (c) SUPG method in the (kh − ω t)-plane for explicit Euler.
Strength Analysis on Ship Ladder Using Finite Element Method
Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.
2018-01-01
In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.
Dynamic relaxation method in analysis of reinforced concrete bent elements
Directory of Open Access Journals (Sweden)
Anna Szcześniak
2015-12-01
Full Text Available The paper presents a method for the analysis of nonlinear behaviour of reinforced concrete bent elements subjected to short-term static load. The considerations in the range of modelling of deformation processes of reinforced concrete element were carried out. The method of structure effort analysis was developed using the finite difference method. The Dynamic Relaxation Method, which — after introduction of critical damping — allows for description of the static behaviour of a structural element, was used to solve the system of nonlinear equilibrium equations. In order to increase the method effectiveness in the range of the post-critical analysis, the Arc Length Parameter on the equilibrium path was introduced into the computational procedure.[b]Keywords[/b]: reinforced concrete elements, physical nonlinearity, geometrical nonlinearity, dynamic relaxation method, arc-length method
Finite element method for solving neutron transport problems
International Nuclear Information System (INIS)
Ferguson, J.M.; Greenbaum, A.
1984-01-01
A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems
Finite Elements on Point Based Surfaces
Clarenz, U.; Rumpf, M.; Telea, A.
2004-01-01
We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. Our method is based on the construction of local tangent planes and
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al
2016-10-20
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
Microelectromechanical resonator based digital logic elements
Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.; Fariborzi, Hossein
2016-01-01
Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.
Spectral element method for vector radiative transfer equation
International Nuclear Information System (INIS)
Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.
2010-01-01
A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2015-04-01
Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
Perfectly matched layer for the time domain finite element method
International Nuclear Information System (INIS)
Rylander, Thomas; Jin Jianming
2004-01-01
A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS
Directory of Open Access Journals (Sweden)
Pengzhan Huang
2011-01-01
Full Text Available Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.
A Method of Assembling Wall or Floor Elements
DEFF Research Database (Denmark)
2002-01-01
The invention relates to a method of constructing, at the site of use, a building wall (1) or a building floor (1) using a plurality of prefabricated concrete or lightweight concrete plate-shaped wall of floor elements (10), in particular cast elements, which have a front side and a rear side...
Stability estimates for hp spectral element methods for general ...
Indian Academy of Sciences (India)
We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
A 3D Finite Element Method for Flexible Multibody Systems
International Nuclear Information System (INIS)
Gerstmayr, Johannes; Schoeberl, Joachim
2006-01-01
An efficient finite element (FE) formulation for the simulation of multibody systems is derived from Hamilton's principle. According to the classical assumptions of multibody systems, a large rotation formulation has been chosen, where large rotations and large displacements, but only small deformations of the single bodies are taken into account. The strain tensor is linearized with respect to a co-rotated frame. The present approach uses absolute coordinates for the degrees of freedom and forms an alternative to the floating frame of reference formulation that is based on relative coordinates and describes deformation with respect to a co-rotated frame. Due to the modified strain tensor, the present formulation distinguishes significantly from standard nodal based nonlinear FE methods. Constraints are defined in integral form for every pair of surfaces of two bodies. This leads to a small number of constraint equations and avoids artificial stress singularities. The resulting mass and stiffness matrices are constant apart from a transformation based on a single rotation matrix for each body. The particular structure of this transformation allows to prevent from the usually expensive factorization of the system Jacobian within implicit time--integration methods. The present method has been implemented and tested with the FE-package NGSolve and specific 3D examples are verified with a standard beam formulation
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Reliability-Based Optimization of Structural Elements
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...
Review of Tomographic Imaging using Finite Element Method
Directory of Open Access Journals (Sweden)
Mohd Fua’ad RAHMAT
2011-12-01
Full Text Available Many types of techniques for process tomography were proposed and developed during the past 20 years. This paper review the techniques and the current state of knowledge and experience on the subject, aimed at highlighting the problems associated with the non finite element methods, such as the ill posed, ill conditioned which relates to the accuracy and sensitivity of measurements. In this paper, considerations for choice of sensors and its applications were outlined and descriptions of non finite element tomography systems were presented. The finite element method tomography system as obtained from recent works, suitable for process control and measurement were also presented.
Directory of Open Access Journals (Sweden)
Tse M Yat
2011-12-01
Full Text Available Abstract Background The methylation of DNA is recognized as a key mechanism in the regulation of genomic stability and evidence for its role in the development of cancer is accumulating. LINE-1 methylation status represents a surrogate measure of genome-wide methylation. Findings Using high resolution melt (HRM curve analysis technology, we have established an in-tube assay that is linear (r > 0.9986 with a high amplification efficiency (90-105%, capable of discriminating between partcipant samples with small differences in methylation, and suitable for quantifying a wide range of LINE-1 methylation levels (0-100%--including the biologically relevant range of 50-90% expected in human DNA. We have optimized this procedure to perform using 2 μg of starting DNA and 2 ng of bisulfite-converted DNA for each PCR reaction. Intra- and inter-assay coefficients of variation were 1.44% and 0.49%, respectively, supporting the high reproducibility and precision of this approach. Conclusions In summary, this is a completely linear, quantitative HRM PCR method developed for the measurement of LINE-1 methylation. This cost-efficient, refined and reproducible assay can be performed using minimal amounts of starting DNA. These features make our assay suitable for high throughput analysis of multiple samples from large population-based studies.
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
The Matrix Element Method at Next-to-Leading Order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-01-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...
A mixed finite element method for nonlinear diffusion equations
Burger, Martin; Carrillo, José
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
Numerical experiment on finite element method for matching data
International Nuclear Information System (INIS)
Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.
1993-03-01
Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)
Energy Technology Data Exchange (ETDEWEB)
Koch, Stephan
2009-03-30
This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The
Generalized multiscale finite element methods (GMsFEM)
Efendiev, Yalchin R.; Galvis, Juan; Hou, Thomasyizhao
2013-01-01
In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.
Generalized multiscale finite element methods (GMsFEM)
Efendiev, Yalchin R.
2013-10-01
In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.
Multiscale Finite Element Methods for Flows on Rough Surfaces
Efendiev, Yalchin
2013-01-01
In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.
Method of removing crud deposited on fuel element clusters
International Nuclear Information System (INIS)
Yokota, Tokunobu; Yashima, Akira; Tajima, Jun-ichiro.
1982-01-01
Purpose: To enable easy elimination of claddings deposited on the surface of fuel element. Method: An operator manipulates a pole from above a platform, engages the longitudinal flange of the cover to the opening at the upper end of a channel box and starts up a suction pump. The suction amount of the pump is set such that water flow becomes within the channel box at greater flow rate than the operational flow rate in the channel box of the fuel element clusters during reactor operation. This enables to remove crud deposited on the surface of individual fuel elements with ease and rapidly without detaching the channel box. (Moriyama, K.)
A finite element conjugate gradient FFT method for scattering
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Analysis of Piezoelectric Solids using Finite Element Method
Aslam, Mohammed; Nagarajan, Praveen; Remanan, Mini
2018-03-01
Piezoelectric materials are extensively used in smart structures as sensors and actuators. In this paper, static analysis of three piezoelectric solids is done using general-purpose finite element software, Abaqus. The simulation results from Abaqus are compared with the results obtained using numerical methods like Boundary Element Method (BEM) and meshless point collocation method (PCM). The BEM and PCM are cumbersome for complex shape and complicated boundary conditions. This paper shows that the software Abaqus can be used to solve the governing equations of piezoelectric solids in a much simpler and faster way than the BEM and PCM.
Navier-Stokes equations by the finite element method
International Nuclear Information System (INIS)
Portella, P.E.
1984-01-01
A computer program to solve the Navier-Stokes equations by using the Finite Element Method is implemented. The solutions variables investigated are stream-function/vorticity in the steady case and velocity/pressure in the steady state and transient cases. For steady state flow the equations are solved simultaneously by the Newton-Raphson method. For the time dependent formulation, a fractional step method is employed to discretize in time and artificial viscosity is used to preclude spurious oscilations in the solution. The element used is the three node triangle. Some numerical examples are presented and comparisons are made with applications already existent. (Author) [pt
Nucleon matrix elements using the variational method in lattice QCD
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ., SA
2016-06-01
The extraction of hadron matrix elements in lattice QCD using the standard two- and threepoint correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current g_A, the scalar current g_S and the quark momentum fraction left angle x right angle of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
Mathematical aspects of finite element methods for incompressible viscous flows
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Nonlinear nonstationary analysis with the finite element method
International Nuclear Information System (INIS)
Vaz, L.E.
1981-01-01
In this paper, after some introductory remarks on numerical methods for the integration of initial value problems, the applicability of the finite element method for transient diffusion analysis as well as dynamic and inelastic analysis is discussed, and some examples are presented. (RW) [de
The future of the finite element method in geotechnics
Brinkgreve, R.B.J.
2012-01-01
In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been
Discontinuous Galerkin finite element methods for hyperbolic differential equations
van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.
2002-01-01
In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas
Instrumental methods for analysis of some elements in flour
International Nuclear Information System (INIS)
Zagrodzki, P.; Dutkiewicz, E.M.; Malec, P.; Krosniak, M.; Knap, W.
1993-10-01
For ten various brands of flour contents of chosen (heavy) elements were determined by means of ICP, GF-AAS, PIXE and ASV/CSV methods. General performance of participating laboratories as well as pros and cons of different analytical methods were compared and discussed. (author). 6 refs, 6 figs, 7 tabs
Khelifa, Mohammed Rissel; Guessasma, Sofiane
2012-01-01
Abstract: This work combines experimental and numerical investigations to study the mechanical degradation of self-compacting concrete under accelerated aging conditions. Four different experimental treatments are tested among them constant immersion and immersion-drying protocols allow an efficient external sulfate attack of the material. Significant damage is observed due to interfacial ettringite. A predictive analysis is then adopted to quantify the relationship between ettringite growth and mechanical damage evolution during aging. Typical 3D microstructures representing the cement paste-aggregate structures are generated using Monte Carlo scheme. These images are converted into a finite element model to predict the mechanical performance under different criteria of damage kinetics. The effect of ettringite is then associated to the development of an interphase of lower mechanical properties. Our results show that the observed time evolution of Young's modulus is best described by a linear increase of the interphase content. Our model results indicate also that the interphase regions grow at maximum stress regions rather than exclusively at interfaces. Finally, constant immersion predicts a rate of damage growth five times lower than that of immersion-drying protocol. © 2012 Computer-Aided Civil and Infrastructure Engineering.
Khelifa, Mohammed Rissel
2012-12-27
Abstract: This work combines experimental and numerical investigations to study the mechanical degradation of self-compacting concrete under accelerated aging conditions. Four different experimental treatments are tested among them constant immersion and immersion-drying protocols allow an efficient external sulfate attack of the material. Significant damage is observed due to interfacial ettringite. A predictive analysis is then adopted to quantify the relationship between ettringite growth and mechanical damage evolution during aging. Typical 3D microstructures representing the cement paste-aggregate structures are generated using Monte Carlo scheme. These images are converted into a finite element model to predict the mechanical performance under different criteria of damage kinetics. The effect of ettringite is then associated to the development of an interphase of lower mechanical properties. Our results show that the observed time evolution of Young\\'s modulus is best described by a linear increase of the interphase content. Our model results indicate also that the interphase regions grow at maximum stress regions rather than exclusively at interfaces. Finally, constant immersion predicts a rate of damage growth five times lower than that of immersion-drying protocol. © 2012 Computer-Aided Civil and Infrastructure Engineering.
Novel TMS coils designed using an inverse boundary element method
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Spectral Analysis of Large Finite Element Problems by Optimization Methods
Directory of Open Access Journals (Sweden)
Luca Bergamaschi
1994-01-01
Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.
Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg
2015-07-01
Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.
Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne
2005-11-08
A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
Fast multipole acceleration of the MEG/EEG boundary element method
International Nuclear Information System (INIS)
Kybic, Jan; Clerc, Maureen; Faugeras, Olivier; Keriven, Renaud; Papadopoulo, Theo
2005-01-01
The accurate solution of the forward electrostatic problem is an essential first step before solving the inverse problem of magneto- and electroencephalography (MEG/EEG). The symmetric Galerkin boundary element method is accurate but cannot be used for very large problems because of its computational complexity and memory requirements. We describe a fast multipole-based acceleration for the symmetric boundary element method (BEM). It creates a hierarchical structure of the elements and approximates far interactions using spherical harmonics expansions. The accelerated method is shown to be as accurate as the direct method, yet for large problems it is both faster and more economical in terms of memory consumption
Application of finite element method in the solution of transport equation
International Nuclear Information System (INIS)
Maiorino, J.R.; Vieira, W.J.
1985-01-01
It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Electronic structure of ternary hydrides based on light elements
Energy Technology Data Exchange (ETDEWEB)
Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)
2005-12-08
Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.
Mining key elements for severe convection prediction based on CNN
Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng
2017-04-01
Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with
Energy Technology Data Exchange (ETDEWEB)
Richard C. Martineau; Ray A. Berry
2003-04-01
A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson
A stochastic method for computing hadronic matrix elements
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-based Science and Technology Research Center; Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Collaboration: European Twisted Mass Collaboration
2013-02-15
We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.
Thermohydraulic analysis in pipelines using the finite element method
International Nuclear Information System (INIS)
Costa, L.E.; Idelsohn, S.R.
1984-01-01
The Finite Element Method (FEM) is employed for the numerical solution of fluid flow problems with combined heat transfer mechanisms. Boussinesq approximations are used for the solution of the governing equations. The application of the FEM leads to a set of simultaneous nonlinear equations. The development of the method, for the solution of bidimensional and axisymmetric problems, is presented. Examples of fluid flow in pipes, including natural and forced convection, are solved with the proposed method and discussed in the paper. (Author) [pt
Nuclear analytical methods for trace element studies in calcified tissues
International Nuclear Information System (INIS)
Chaudhry, M.A.; Chaudhry, M.N.
2001-01-01
Full text: Various nuclear analytical methods have been developed and applied to determine the elemental composition of calcified tissues (teeth and bones). Fluorine was determined by prompt gamma activation analysis through the 19 F(p,ag) 16 O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues, enamel, dentine, cement, and their junctions, as well as different parts of the same tissue, were examined separately. Furthermore, using a Proton Microprobe, we measured the surface distribution of F and other elements on and around carious lesions on the enamel. The depth profiles of F, and other elements, were also measured right up to the amelodentin junction
International Nuclear Information System (INIS)
Simatos, A.
2010-01-01
This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Energy Technology Data Exchange (ETDEWEB)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
Matlab and C programming for Trefftz finite element methods
Qin, Qing-Hua
2008-01-01
Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th
On diversity performance of two-element coupling element based antenna structure for mobile terminal
DEFF Research Database (Denmark)
Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi
2010-01-01
.1 and the diversity gain is equal to 10.2 dB at 99% reliability level using selection combining technique across simulation and both measurement methods. The measurement techniques are compared to show how accurately the diversity performance of a mobile terminal antenna can be estimated.......In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading is caused by the coherent summation of one or more echoes from many reflection points reaching the receive antenna. Antenna diversity can be used to mitigate multipath...... fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible...
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
Generalized multiscale finite element method for elasticity equations
Chung, Eric T.
2014-10-05
In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.
A particle finite element method for machining simulations
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
PHARMACOPOEIA METHODS FOR ELEMENTAL ANALYSIS OF MEDICINES: A COMPARATIVE STUDY
Directory of Open Access Journals (Sweden)
Tetiana M. Derkach
2018-01-01
Full Text Available The article is devoted to the problem of quality assurance of medicinal products, namely the determination of elemental impurity concentration compared to permitted daily exposures for and the correct choice analytical methods that are adequate to the formulated tasks. The paper goal is to compare characteristics of four analytical methods recommended by the Pharmacopoeia of various countries to control the content of elemental impurities in medicines, including medicinal plant raw materials and herbal medicines. Both advantages and disadvantages were described for atomic absorption spectroscopy with various atomising techniques, as well as atomic emission spectroscopy and mass spectrometry with inductively coupled plasma. The choice of the most rational analysis method depends on a research task and is reasoned from the viewpoint of analytical objectives, possible complications, performance attributes, and economic considerations. The methods of ICP-MS and GFAAS were shown to provide the greatest potential for determining the low and ultra-low concentrations of chemical elements in medicinal plants and herbal medicinal products. The other two methods, FAAS and ICP-AES, are limited to the analysis of the main essential elements and the largest impurities. The ICP-MS is the most efficient method for determining ultra-low concentrations. However, the interference of mass peaks is typical for ICP-MS. It is formed not only by impurities but also by polyatomic ions with the participation of argon, as well as atoms of gases from the air (C, N and O or matrices (O, N, H, P, S and Cl. Therefore, a correct sample preparation, which guarantees minimisation of impurity contamination and loss of analytes becomes the most crucial stage of analytical applications of ICP-MS. The detections limits for some chemical elements, which content is regulated in modern Pharmacopoeia, were estimated for each method and analysis conditions of medicinal plant raw
Design of horizontal-axis wind turbine using blade element momentum method
Bobonea, Andreea; Pricop, Mihai Victor
2013-10-01
The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.
Rigid finite element method in analysis of dynamics of offshore structures
Energy Technology Data Exchange (ETDEWEB)
Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)
2013-07-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.
Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures
Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław
2013-01-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...
Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper
Directory of Open Access Journals (Sweden)
Tero Jalkanen
2015-01-01
Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
Ethnomathematics elements in Batik Bali using backpropagation method
Lestari, Mei; Irawan, Ari; Rahayu, Wanti; Wayan Parwati, Ni
2018-05-01
Batik is one of traditional arts that has been established by the UNESCO as Indonesia’s cultural heritage. Batik has varieties and motifs, and each motifs has its own uniqueness but seems similar, that makes it difficult to identify. This study aims to develop an application that can identify typical batik Bali with etnomatematics elements on it. Etnomatematics is a study that shows relation between culture and mathematics concepts. Etnomatematics in Batik Bali is more to geometrical concept in line of strong Balinese culture element. The identification process is use backpropagation method. Steps of backpropagation methods are image processing (including scalling and tresholding image process). Next step is insert the processed image to an artificial neural network. This study resulted an accuracy of identification of batik Bali that has Etnomatematics elements on it.
Analysis of Brick Masonry Wall using Applied Element Method
Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen
2018-03-01
The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.
International Nuclear Information System (INIS)
Pereira, Luis Carlos Martins
1998-06-01
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification
Directory of Open Access Journals (Sweden)
Xiaofeng Xue
2016-01-01
Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.
International Nuclear Information System (INIS)
Ho Manh Dung; Nguyen Mong Sinh; Nguyen Thanh Binh; Cao Dong Vu; Nguyen Thi Si
2004-01-01
The analysis of human hair can evaluate the degree of environmental pollutants exposure to human body, intakes of food and metabolism. Also, the analysis of sediment can aid in reconstructing the history of changes, understanding human impact on the ecosystem, and suggesting possible remedial strategies. The k o -standardization method of neutron activation analysis (k o -NAA) on research reactor is capable to play an important role as a main analytical technique with the advantages of sensitivity, precision, accuracy, multielement and routine for the sample object. Therefore, the project's aim is to build the k o -NAA procedures on the Dalat research reactor for the analysis of human hair and sediment samples. The K o -NAA procedure on the Dalat research reactor is able to determine of multielement: Ag, Al, As, Br, Ca, Cl, Co, Cr, Cu, Fe, Hg, I, K Mg, Mn, Na, S, Sb, Se, Sr, Ti, V and Zn in The human hair; and of multielement: As, Co, Cr, Cs, Fe, Hf, K, La, Mn, Na Rb, Sb, Sc, Yb and Zn in the sediment. (author)
Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong
2018-04-01
The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.
Modelling of Granular Materials Using the Discrete Element Method
DEFF Research Database (Denmark)
Ullidtz, Per
1997-01-01
With the Discrete Element Method it is possible to model materials that consists of individual particles where a particle may role or slide on other particles. This is interesting because most of the deformation in granular materials is due to rolling or sliding rather that compression of the gra...
A mixed finite element method for particle simulation in lasertron
International Nuclear Information System (INIS)
Le Meur, G.
1987-03-01
A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown
Possibilities of Particle Finite Element Methods in Industrial Forming Processes
Oliver, J.; Cante, J. C.; Weyler, R.; Hernandez, J.
2007-04-01
The work investigates the possibilities offered by the particle finite element method (PFEM) in the simulation of forming problems involving large deformations, multiple contacts, and new boundaries generation. The description of the most distinguishing aspects of the PFEM, and its application to simulation of representative forming processes, illustrate the proposed methodology.
Method to fabricate block fuel elements for high temperature reactors
International Nuclear Information System (INIS)
Hrovat, M.; Rachor, L.
1977-01-01
The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de
Nonconforming h-p spectral element methods for elliptic problems
Indian Academy of Sciences (India)
In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.
A mixed finite element method for particle simulation in Lasertron
International Nuclear Information System (INIS)
Le Meur, G.
1987-01-01
A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown
Deflation in preconditioned conjugate gradient methods for Finite Element Problems
Vermolen, F.J.; Vuik, C.; Segal, A.
2002-01-01
We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous
Method to fabricate block fuel elements for high temperature reactors
International Nuclear Information System (INIS)
Hrovat, M.; Rachor, L.
1978-01-01
The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)
van der Vegt, Jacobus J.W.; van der Ven, H.
1998-01-01
A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux
Institute of Scientific and Technical Information of China (English)
高宏
2011-01-01
The main features and connotation of the strategic evolution and management based on core capability of corporation are analyzed and summarized.The theory and method of systematic engineering is used to build the evaluation index systems for the Strategic Evolution and Management.Accordingly,the matter-element models are formulated for evaluation the strategic evolution and management by using the theory of matter-element analysis.Regarding annual strategic evolution and management of M-corporation as the object of matter-element,the strategic evolution and management for three years are analyzed and evaluated through using the matter-element models proposed.A case study is carried out and the satisfactory results are obtained.A new scientific method is provided for evaluating strategic evolution and management based on core capability of corporation.%分析概括基于企业核心能力的战略进化与管理的内涵及其特征,应用系统工程理论方法,设计了基于企业核心能力的战略进化与管理评估指标体系。在此基础上,运用物元理论建立了基于企业核心能力的战略进化与管理评估物元模型,进而将模型应用于实际问题,以M公司年度战略管理水平为物元,对该企业连续3年度基于企业核心能力的战略管理进行了综合评估与分析,得到了该企业基于企业核心能力的战略管理能力由弱变强,且符合企业实际发展的初步结论及改进的建议。为基于企业核心能力的战略进化与管理的评估与改进提供了一种科学有效的新方法。
A Finite Element Removal Method for 3D Topology Optimization
Directory of Open Access Journals (Sweden)
M. Akif Kütük
2013-01-01
Full Text Available Topology optimization provides great convenience to designers during the designing stage in many industrial applications. With this method, designers can obtain a rough model of any part at the beginning of a designing stage by defining loading and boundary conditions. At the same time the optimization can be used for the modification of a product which is being used. Lengthy solution time is a disadvantage of this method. Therefore, the method cannot be widespread. In order to eliminate this disadvantage, an element removal algorithm has been developed for topology optimization. In this study, the element removal algorithm is applied on 3-dimensional parts, and the results are compared with the ones available in the related literature. In addition, the effects of the method on solution times are investigated.
Nakashima, Hiroshi; Takatsu, Yuzuru
The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.
Use of the iterative solution method for coupled finite element and boundary element modeling
International Nuclear Information System (INIS)
Koteras, J.R.
1993-07-01
Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver
Kou, Jisheng; Sun, Shuyu
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
A code for obtaining temperature distribution by finite element method
International Nuclear Information System (INIS)
Bloch, M.
1984-01-01
The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.) [pt
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.
2016-01-01
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
Efficiency of High Order Spectral Element Methods on Petascale Architectures
Hutchinson, Maxwell
2016-06-14
High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.
Leakage monitoring equipment of fuel element by delayed neutron method
International Nuclear Information System (INIS)
Ji Changsong; Zhang Shulan; Zhang Shuheng
1999-01-01
Based on monitoring results of delayed neutrons from reactor first circle water, the leakage of reactor fuel elements is monitored. A monitoring equipment consisted of an array of 3 He proportional counter tubes with 75 s delay has been developed. The neutron detection efficiency of 6.1% is obtained
Hybrid finite element and Brownian dynamics method for charged particles
Energy Technology Data Exchange (ETDEWEB)
Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)
2016-04-28
Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.
Steam generator tube rupture simulation using extended finite element method
Energy Technology Data Exchange (ETDEWEB)
Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken
2016-08-15
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
Steam generator tube rupture simulation using extended finite element method
International Nuclear Information System (INIS)
Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken
2016-01-01
Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.
Analysis of gear reducer housing using the finite element method
Miklos, I. Zs; Miklos, C. C.; Alic, C. I.; Raţiu, S.
2018-01-01
The housing is an important component in the construction of gear reducers, having the role of fixing the relative position of the shafts and toothed wheels. At the same time, the housing takes over, via the bearings, the shaft loads resulting when the toothed wheel is engaging another toothed mechanism (i.e. power transmission through belts or chains), and conveys them to the foundation on which it is anchored. In this regard, in order to ensure the most accurate gearing, a high stiffness of the housing is required. In this paper, we present the computer-aided 3D modelling of the housing (in cast version) of a single stage cylindrical gear reducer, using the Autodesk Inventor Professional software, on the principle of constructive sizing. For the housing resistance calculation, we carried out an analysis using the Autodesk Simulation Mechanical software to apply the finite element method, based on the actual loads, as well as a comparative study of the stress and strain distribution, for several tightening values of the retaining bolts that secure the cover and the foundation housing.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Finite cover method with mortar elements for elastoplasticity problems
Kurumatani, M.; Terada, K.
2005-06-01
Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.
Nonlinear dynamic analysis using Petrov-Galerkin natural element method
International Nuclear Information System (INIS)
Lee, Hong Woo; Cho, Jin Rae
2004-01-01
According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Eddy current analysis by the finite element circuit method
International Nuclear Information System (INIS)
Kameari, A.; Suzuki, Y.
1977-01-01
The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated
Improved determination of hadron matrix elements using the variational method
International Nuclear Information System (INIS)
Dragos, J.; Kamleh, W.; Leinweber, D.B.; Zanotti, J.M.; Rakow, P.E.L.; Young, R.D.; Adelaide Univ.
2015-11-01
The extraction of hadron form factors in lattice QCD using the standard two- and three-point correlator functions has its limitations. One of the most commonly studied sources of systematic error is excited state contamination, which occurs when correlators are contaminated with results from higher energy excitations. We apply the variational method to calculate the axial vector current g A and compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.
The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method
Directory of Open Access Journals (Sweden)
Nien-Te Liu
2016-11-01
Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
The finite element method and applications in engineering using ANSYS
Madenci, Erdogan
2015-01-01
This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...
Introduction to assembly of finite element methods on graphics processors
International Nuclear Information System (INIS)
Cecka, Cristopher; Lew, Adrian; Darve, Eric
2010-01-01
Recently, graphics processing units (GPUs) have had great success in accelerating numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are presented and discussed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor achieves speedups of 30x or more in comparison to a well optimized serial implementation on the CPU. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite-element discretization.
Assembly of finite element methods on graphics processors
Cecka, Cris
2010-08-23
Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...
An implementation analysis of the linear discontinuous finite element method
International Nuclear Information System (INIS)
Becker, T. L.
2013-01-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any
An implementation analysis of the linear discontinuous finite element method
Energy Technology Data Exchange (ETDEWEB)
Becker, T. L. [Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)
2013-07-01
This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory
[Application of Finite Element Method in Thoracolumbar Spine Traumatology].
Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei
2015-04-01
The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.
A finite element method for flow problems in blast loading
International Nuclear Information System (INIS)
Forestier, A.; Lepareux, M.
1984-06-01
This paper presents a numerical method which describes fast dynamic problems in flow transient situations as in nuclear plants. A finite element formulation has been chosen; it is described by a preprocessor in CASTEM system: GIBI code. For these typical flow problems, an A.L.E. formulation for physical equations is used. So, some applications are presented: the well known problem of shock tube, the same one in 2D case and a last application to hydrogen detonation
Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes
Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak
2004-01-01
High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel
A parallel finite element method for the analysis of crystalline solids
DEFF Research Database (Denmark)
Sørensen, N.J.; Andersen, B.S.
1996-01-01
A parallel finite element method suitable for the analysis of 3D quasi-static crystal plasticity problems has been developed. The method is based on substructuring of the original mesh into a number of substructures which are treated as isolated finite element models related via the interface...... conditions. The resulting interface equations are solved using a direct solution method. The method shows a good speedup when increasing the number of processors from 1 to 8 and the effective solution of 3D crystal plasticity problems whose size is much too large for a single work station becomes possible....
Directory of Open Access Journals (Sweden)
Jilian Wu
2013-01-01
Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.
A Gradient Weighted Moving Finite-Element Method with Polynomial Approximation of Any Degree
Directory of Open Access Journals (Sweden)
Ali R. Soheili
2009-01-01
Full Text Available A gradient weighted moving finite element method (GWMFE based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.
Implementation aspects of the Boundary Element Method including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2014-01-01
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...
High-precision solution to the moving load problem using an improved spectral element method
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Finite element based electric motor design optimization
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
On the trial functions in nested element method
International Nuclear Information System (INIS)
Altiparmakov, D.V.
1985-01-01
The R-function method is applied to the multidimensional steady-state neutron diffusion equation. Using a variational principle the nested element approximation is formulated. Trial functions taking into account the geometrical shape of material regions are constructed. The influence of both the surrounding regions and the corner singularities at the external boundary is incorporated into the approximate solution. Benchmark calculations show that such an approximation can yield satisfactory results. Moreover, in the case of complex geometry, the presented approach would result in a significant reduction of the number of unknowns compared to other methods
Improved fixed point iterative method for blade element momentum computations
DEFF Research Database (Denmark)
Sun, Zhenye; Shen, Wen Zhong; Chen, Jin
2017-01-01
The blade element momentum (BEM) theory is widely used in aerodynamic performance calculations and optimization applications for wind turbines. The fixed point iterative method is the most commonly utilized technique to solve the BEM equations. However, this method sometimes does not converge...... are addressed through both theoretical analysis and numerical tests. A term from the BEM equations equals to zero at a critical inflow angle is the source of the convergence problems. When the initial inflow angle is set larger than the critical inflow angle and the relaxation methodology is adopted...
Finite element method for simulation of the semiconductor devices
International Nuclear Information System (INIS)
Zikatanov, L.T.; Kaschiev, M.S.
1991-01-01
An iterative method for solving the system of nonlinear equations of the drift-diffusion representation for the simulation of the semiconductor devices is worked out. The Petrov-Galerkin method is taken for the discretization of these equations using the bilinear finite elements. It is shown that the numerical scheme is a monotonous one and there are no oscillations of the solutions in the region of p-n transition. The numerical calculations of the simulation of one semiconductor device are presented. 13 refs.; 3 figs
A Novel Mesh Quality Improvement Method for Boundary Elements
Directory of Open Access Journals (Sweden)
Hou-lin Liu
2012-01-01
Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.
Prediction of residual stress using explicit finite element method
Directory of Open Access Journals (Sweden)
W.A. Siswanto
2015-12-01
Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.
Residual-driven online generalized multiscale finite element methods
Chung, Eric T.
2015-09-08
The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.
Scientific use of the finite element method in Orthodontics
Knop, Luegya; Gandini, Luiz Gonzaga; Shintcovsk, Ricardo Lima; Gandini, Marcia Regina Elisa Aparecida Schiavon
2015-01-01
INTRODUCTION: The finite element method (FEM) is an engineering resource applied to calculate the stress and deformation of complex structures, and has been widely used in orthodontic research. With the advantage of being a non-invasive and accurate method that provides quantitative and detailed data on the physiological reactions possible to occur in tissues, applying the FEM can anticipate the visualization of these tissue responses through the observation of areas of stress created from applied orthodontic mechanics. OBJECTIVE: This article aims at reviewing and discussing the stages of the finite element method application and its applicability in Orthodontics. RESULTS: FEM is able to evaluate the stress distribution at the interface between periodontal ligament and alveolar bone, and the shifting trend in various types of tooth movement when using different types of orthodontic devices. Therefore, it is necessary to know specific software for this purpose. CONCLUSIONS: FEM is an important experimental method to answer questions about tooth movement, overcoming the disadvantages of other experimental methods. PMID:25992996
8th International Conference on Boundary Element Methods
Brebbia, C
1986-01-01
The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...
Highly accurate symplectic element based on two variational principles
Qing, Guanghui; Tian, Jia
2018-02-01
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element (NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses.
A simple nodal force distribution method in refined finite element meshes
Energy Technology Data Exchange (ETDEWEB)
Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)
2017-05-15
In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.
Application of distinct element method of toppling failure of slope
International Nuclear Information System (INIS)
Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Ito, Hiroshi
1984-01-01
The authors have pointed out, in the latest report, that DEM (Distinct Element Method) seems to be a very helpful numerical method to examine the stability of fissured rock slopes, in which toppling failure would occur during earthquakes. In this report, the applicability of DEM for such rock slopes is examined through the following comparisons between theoretical results and DEM results, referring Voegele's works (1982): (1) Stability of one block on a slope. (2) Failure of a rock block column composed of 10 same size rectangular blocks. (3) Cable force required to make a slope stable. Through above 3 comparisons, it seems that DEM give the reasonable results. Considering that these problems may not be treated by the other numerical methods such as FEM and so on, so DEM seems to be a very useful method for fissured rock slope analysis. (author)
The nonconforming virtual element method for eigenvalue problems
Energy Technology Data Exchange (ETDEWEB)
Gardini, Francesca [Univ. of Pavia (Italy). Dept. of Mathematics; Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vacca, Giuseppe [Univ. of Milano-Bicocca, Milan (Italy). Dept. of Mathematics and Applications
2018-02-05
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^{2}-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.
Simulation of galvanic corrosion using boundary element method
International Nuclear Information System (INIS)
Zaifol Samsu; Muhamad Daud; Siti Radiah Mohd Kamaruddin; Nur Ubaidah Saidin; Abdul Aziz Mohamed; Mohd Saari Ripin; Rusni Rejab; Mohd Shariff Sattar
2011-01-01
Boundary element method (BEM) is a numerical technique that used for modeling infinite domain as is the case for galvanic corrosion analysis. The use of boundary element analysis system (BEASY) has allowed cathodic protection (CP) interference to be assessed in terms of the normal current density, which is directly proportional to the corrosion rate. This paper was present the analysis of the galvanic corrosion between Aluminium and Carbon Steel in natural sea water. The result of experimental was validated with computer simulation like BEASY program. Finally, it can conclude that the BEASY software is a very helpful tool for future planning before installing any structure, where it gives the possible CP interference on any nearby unprotected metallic structure. (Author)
An adaptive finite element method for steady and transient problems
International Nuclear Information System (INIS)
Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.
1987-01-01
Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Steibler, P.
2000-07-01
The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet
The Mixed Finite Element Multigrid Method for Stokes Equations
Muzhinji, K.; Shateyi, S.; Motsa, S. S.
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials
International Nuclear Information System (INIS)
Lee Hae Sung.
1991-01-01
This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions
Directory of Open Access Journals (Sweden)
V. I. Freyman
2015-11-01
Full Text Available Subject of Research.Representation features of education results for competence-based educational programs are analyzed. Solution importance of decoding and proficiency estimation for elements and components of discipline parts of competences is shown. The purpose and objectives of research are formulated. Methods. The paper deals with methods of mathematical logic, Boolean algebra, and parametrical analysis of complex diagnostic test results, that controls proficiency of some discipline competence elements. Results. The method of logical conditions analysis is created. It will give the possibility to formulate logical conditions for proficiency determination of each discipline competence element, controlled by complex diagnostic test. Normalized test result is divided into noncrossing zones; a logical condition about controlled elements proficiency is formulated for each of them. Summarized characteristics for test result zones are imposed. An example of logical conditions forming for diagnostic test with preset features is provided. Practical Relevance. The proposed method of logical conditions analysis is applied in the decoding algorithm of proficiency test diagnosis for discipline competence elements. It will give the possibility to automate the search procedure for elements with insufficient proficiency, and is also usable for estimation of education results of a discipline or a component of competence-based educational program.
Burman, Erik; Larson, Mats; Olshanskii, Maxim
2017-01-01
This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and aug...
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
Applications of the discrete element method in mechanical engineering
International Nuclear Information System (INIS)
Fleissner, Florian; Gaugele, Timo; Eberhard, Peter
2007-01-01
Compared to other fields of engineering, in mechanical engineering, the Discrete Element Method (DEM) is not yet a well known method. Nevertheless, there is a variety of simulation problems where the method has obvious advantages due to its meshless nature. For problems where several free bodies can collide and break after having been largely deformed, the DEM is the method of choice. Neighborhood search and collision detection between bodies as well as the separation of large solids into smaller particles are naturally incorporated in the method. The main DEM algorithm consists of a relatively simple loop that basically contains the three substeps contact detection, force computation and integration. However, there exists a large variety of different algorithms to choose the substeps to compose the optimal method for a given problem. In this contribution, we describe the dynamics of particle systems together with appropriate numerical integration schemes and give an overview over different types of particle interactions that can be composed to adapt the method to fit to a given simulation problem. Surface triangulations are used to model complicated, non-convex bodies in contact with particle systems. The capabilities of the method are finally demonstrated by means of application examples
Capture analysis of element content of a substance with other neutron methods
International Nuclear Information System (INIS)
Kurbanov, B.I.
2004-01-01
Full text: Neutron analysis method of determining element composition have found wide range of applications in industry thanks to different types of interaction of neutron with substances /1/. With the aim of widening the range of problems to be solved, on the basis of the device /2/ for determining the element content of substance, possibilities of combining the method based on the use of neutron capture gamma-ray spectrometry with other neutron methods, in particular neutron activation analysis and neutron absorption analysis were studied. In this radionuclide source ( 252 Cf) with the yield of 1,5 x 10 7 neutron/sec is used. By means of using neutron capture gamma radiation spectrometry the possibilities of determining some elements (H, B, N, S etc. ), which are not determined by very widely used method, activation analysis. These elements can be determined by both the semiconductor and scintillation detectors with parameters fitting the manufacturing requirements. And for a number of elements ( B, Cl, Cd, Sm, Gd) very high limits of determination ( up to 10- 5 %) are possible using semiconductor Ge (Li) -detectors with high resolution. Possibility of determination of some 'well' activated elements ( K, Al, Fe, Mn, Ti, Sc etc.) in samples of ore and products of their processing using the neutron-activation analysis. For 1 hour of irradiation on the experimental device quite accurate analytical peak, of these elements are obtained, allowing to determine them qualitatively. However, with decreasing neutron yield of radionuclide source it becomes more difficult to achieve the necessary parameters both in neutron capture and activation analysis. Experimental works on determination of some elements with large cross-sections of capture ( B, Cd, Sm ) by absorption of neutrons in the investigated substance, i.e. using the neutron absorption analysis method with absence of other large capture cross section elements in the samples being studied
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
Development of experimental methods for measuring fuel elements burnup
International Nuclear Information System (INIS)
PEREDA, C; HENRIQUEZ, C; NAVARRO, G; TORRES, H; KLEIN, J; CALDERON, D; MEDEL, J; MUTIS, O; DAIE, J; ITURRIETA, L; LONCOMILLA, M; ZAMBRANO, J; KESTELMAN, A
2003-01-01
This paper is a summary of the work carried out during the last two years in fuel burning measurements at RECH-1 for different enrichments, cooling times and burning rates. The measurements were made in two gamma-spectrometric facilities, one is installed in a hot cell and the other inside of the secondary pool of the RECH-1, where the element is under 2 meters of water. The hot cell measurements need at least 100 cooling days because of the problems generated by the transport of highly active fuel elements from the Reactor to the cell. This was the main reason for using the in-pool facility because of its capability to measure the burning of fuel elements without having to wait so long, that is with only 5 cooling days. The accumulated experience in measurements achieved in both facilities and the encouraging results show that this measuring method is reliable. The results agreed well with those obtained using the reactor's physics codes, which was the way they were obtained previously (Cw)
Operating method of amorphous thin film semiconductor element
Energy Technology Data Exchange (ETDEWEB)
Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi
1988-05-31
The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Multi-element probabilistic collocation method in high dimensions
International Nuclear Information System (INIS)
Foo, Jasmine; Karniadakis, George Em
2010-01-01
We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order μ and the effective dimension ν, with ν<< N, and N the nominal dimension. Numerical tests for multi-dimensional integration and for stochastic elliptic problems suggest that ν≥μ for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.
Seakeeping with the semi-Lagrangian particle finite element method
Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio
2017-07-01
The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.
Storage system and method for spent fuel elements
International Nuclear Information System (INIS)
Queiser, H.; Eckardt, B.
1981-01-01
The proposal concerns an additional protection against leakage of a FE-transport container for interim storage of spent fuel elements. The gastight container has a second cover placed at a short distance from the first cover. The intermediate hollow space can be connected with a measuring system which indicates if part of the trace gas (mostly helium) added as indicator has escaped from the container due to leakage. The description explains the method and the assembly of required lines and measuring points etc. (UWI) [de
Piezoelectric Analysis of Saw Sensor Using Finite Element Method
Directory of Open Access Journals (Sweden)
Vladimír KUTIŠ
2013-06-01
Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.
Methods for removing transuranic elements from waste solutions
International Nuclear Information System (INIS)
Slater, S.A.; Chamberlain, D.B.; Connor, C.; Sedlet, J.; Srinivasan, B.; Vandegrift, G.F.
1994-11-01
This report outlines a treatment scheme for separating and concentrating the transuranic (TRU) elements present in aqueous waste solutions stored at Argonne National Laboratory (ANL). The treatment method selected is carrier precipitation. Potential carriers will be evaluated in future laboratory work, beginning with ferric hydroxide and magnetite. The process will result in a supernatant with alpha activity low enough that it can be treated in the existing evaporator/concentrator at ANL. The separated TRU waste will be packaged for shipment to the Waste Isolation Pilot Plant
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-01-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Finite-element method modeling of hyper-frequency structures
International Nuclear Information System (INIS)
Zhang, Min
1990-01-01
The modelization of microwave propagation problems, including Eigen-value problem and scattering problem, is accomplished by the finite element method with vector functional and scalar functional. For Eigen-value problem, propagation modes in waveguides and resonant modes in cavities can be calculated in a arbitrarily-shaped structure with inhomogeneous material. Several microwave structures are resolved in order to verify the program. One drawback associated with the vector functional is the appearance of spurious or non-physical solutions. A penalty function method has been introduced to reduce spurious' solutions. The adaptive charge method is originally proposed in this thesis to resolve waveguide scattering problem. This method, similar to VSWR measuring technique, is more efficient to obtain the reflection coefficient than the matrix method. Two waveguide discontinuity structures are calculated by the two methods and their results are compared. The adaptive charge method is also applied to a microwave plasma excitor. It allows us to understand the role of different physical parameters of excitor in the coupling of microwave energy to plasma mode and the mode without plasma. (author) [fr
Ochoa-Avendaño, J.; Garzon-Alvarado, D. A.; Linero, Dorian L.; Cerrolaza, M.
2017-01-01
This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path of solids considering static loads, infinitesimal strain, and plane stress condition. This model is based on finite element method with a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The stiffness loss of some link elements represents the crack opening. Three experimental tests of bending...
E-coil: an inverse boundary element method for a quasi-static problem
International Nuclear Information System (INIS)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry
2010-01-01
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
E-coil: an inverse boundary element method for a quasi-static problem
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
A finite element method for a time dependence soil-structure interactions calculations
International Nuclear Information System (INIS)
Ni, X.M.; Gantenbein, F.; Petit, M.
1989-01-01
The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr
The current matrix elements from HAL QCD method
Watanabe, Kai; Ishii, Noriyoshi
2018-03-01
HAL QCD method is a method to construct a potential (HAL QCD potential) that reproduces the NN scattering phase shift faithful to the QCD. The HAL QCD potential is obtained from QCD by eliminating the degrees of freedom of quarks and gluons and leaving only two particular hadrons. Therefor, in the effective quantum mechanics of two nucleons defined by HAL QCD potential, the conserved current consists not only of the nucleon current but also an extra current originating from the potential (two-body current). Though the form of the two-body current is closely related to the potential, it is not straight forward to extract the former from the latter. In this work, we derive the the current matrix element formula in the quantum mechanics defined by the HAL QCD potential. As a first step, we focus on the non-relativistic case. To give an explicit example, we consider a second quantized non-relativistic two-channel coupling model which we refer to as the original model. From the original model, the HAL QCD potential for the open channel is constructed by eliminating the closed channel in the elastic two-particle scattering region. The current matrix element formula is derived by demanding the effective quantum mechanics defined by the HAL QCD potential to respond to the external field in the same way as the original two-channel coupling model.
Mixed Generalized Multiscale Finite Element Methods and Applications
Chung, Eric T.
2015-03-03
In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
An adaptative finite element method for turbulent flow simulations
International Nuclear Information System (INIS)
Arnoux-Guisse, F.; Bonnin, O.; Leal de Sousa, L.; Nicolas, G.
1995-05-01
After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab
Heat Conduction Analysis Using Semi Analytical Finite Element Method
International Nuclear Information System (INIS)
Wargadipura, A. H. S.
1997-01-01
Heat conduction problems are very often found in science and engineering fields. It is of accrual importance to determine quantitative descriptions of this important physical phenomena. This paper discusses the development and application of a numerical formulation and computation that can be used to analyze heat conduction problems. The mathematical equation which governs the physical behaviour of heat conduction is in the form of second order partial differential equations. The numerical resolution used in this paper is performed using the finite element method and Fourier series, which is known as semi-analytical finite element methods. The numerical solution results in simultaneous algebraic equations which is solved using the Gauss elimination methodology. The computer implementation is carried out using FORTRAN language. In the final part of the paper, a heat conduction problem in a rectangular plate domain with isothermal boundary conditions in its edge is solved to show the application of the computer program developed and also a comparison with analytical solution is discussed to assess the accuracy of the numerical solution obtained
hp Spectral element methods for three dimensional elliptic problems
Indian Academy of Sciences (India)
This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Electrochemical Methods for Reprocessing Defective Fuel Elements and for Decontaminating Equipment
International Nuclear Information System (INIS)
Mikheykin, S. V.; Rybakov, K. A.; Simonov, V. P.
2002-01-01
Reprocessing of fuel elements receives much consideration in nuclear engineering. Chemical and electrochemical methods are used for the purpose. For difficultly soluble materials based on zirconium alloys chemical methods are not suitable. Chemical reprocessing of defective or irradiated fuel elements requires special methods for their decladding because the dissolution of the clad material in nitric acid is either impossible (stainless steel, Zr alloys) or quite slow (aluminium). Fuel elements are cut in air-tight glove-boxes equipped with a dust collector and a feeder for crushed material. Chemical treatment is not free from limitations. For this reason we started a study of the feasibility of electrochemical methods for reprocessing defective and irradiated fuel elements. A simplified electrochemical technology developed makes it possible to recover expensive materials which were earlier wasted or required multi-step treatment. The method and an electrochemical cell are suitable for essentially complete dissolution of any fuel elements, specifically those made of materials which are difficultly soluble by chemical methods
A discrete element based simulation framework to investigate particulate spray deposition processes
Mukherjee, Debanjan; Zohdi, Tarek I.
2015-01-01
© 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface
Cermets based on rhenium and rare earth element oxides
International Nuclear Information System (INIS)
Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.
1977-01-01
The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher
A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements
Energy Technology Data Exchange (ETDEWEB)
Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)
2016-10-21
A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2010-01-01
This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)
Applications of discrete element method in modeling of grain postharvest operations
Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...
Vibrations And Deformations Of Moderately Thick Plates In Stochastic Finite Element Method
Directory of Open Access Journals (Sweden)
Grzywiński Maksym
2015-12-01
Full Text Available The paper deals with some chosen aspects of stochastic dynamical analysis of moderately thick plates. The discretization of the governing equations is described by the finite element method. The main aim of the study is to provide the generalized stochastic perturbation technique based on classical Taylor expansion with a single random variable.
Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method
International Nuclear Information System (INIS)
Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.
1981-01-01
A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model
Status on the heavy elements research using the DV-DFS method
International Nuclear Information System (INIS)
Hirata, Masaru; Bastug, T.; Sekine, Rika; Onoe, Jun; Nakamatsu, Hirohide; Mukoyama, Takeshi
1999-03-01
In this review report, we describe recent progress on the heavy elements research using the discrete-variational Dirac-Fock-Slater (DV-DFS) method which is being improved by Kyoto University, Shizuoka University, RIKEN and JAERI. The DV-DFS is a versatile method for interpreting spectroscopic data and predicting chemical bonding of polyatomic systems including heavy elements. This review is based on the lectures given in 74th spring meeting of chemical Society of Japan (March, 1998) and also at the workshop on the XAFS-relativistic electronic structure calculation for the actinides research which was held at Tokai Research Establishment of JAERI (November, 1998). (author)
An Element Free Galerkin method for an elastoplastic coupled to damage analysis
Directory of Open Access Journals (Sweden)
Sendi Zohra
2016-01-01
Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
Finite element method for neutron diffusion problems in hexagonal geometry
International Nuclear Information System (INIS)
Wei, T.Y.C.; Hansen, K.F.
1975-06-01
The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes
Hybrid finite difference/finite element immersed boundary method.
E Griffith, Boyce; Luo, Xiaoyu
2017-12-01
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
Directory of Open Access Journals (Sweden)
A.D. Matveev
2016-12-01
Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.
A new strain based brick element for plate bending
Directory of Open Access Journals (Sweden)
L. Belounar
2014-03-01
Full Text Available This paper presents the development of a new three-dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending. The developed element has the three essential external degrees of freedom (U, V and W at each of the eight corner nodes as well as at the centroidal node. The displacement field of the developed element is based on assumed functions for the various strains satisfying the compatibility equations and the static condensation technique is used for the internal node. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.
Biquartic Finite Volume Element Metho d Based on Lobatto-Guass Structure
Institute of Scientific and Technical Information of China (English)
Gao Yan-ni; Chen Yan-li
2015-01-01
In this paper, a biquartic finite volume element method based on Lobatto-Guass structure is presented for variable coeﬃcient elliptic equation on rectangular partition. Not only the optimal H1 and L2 error estimates but also some super-convergent properties are available and could be proved for this method. The numer-ical results obtained by this finite volume element scheme confirm the validity of the theoretical analysis and the effectiveness of this method.
Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation
Pan, Bing
2015-02-12
Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.
Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation
Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali
2015-01-01
Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
induction motor, unbalance, electrical loss, finite element method.
Directory of Open Access Journals (Sweden)
Camilo Andrés Cortés
2008-09-01
Full Text Available This paper shows the pattern of a 7.5 kW squirrel-cage induction motor’s electrical loss in balanced and unbalanced conditions, modelling the motor using the finite element method and comparing the results with experimental data obtained in the laboratory for the selected motor. Magnetic flux density variation was analysed at four places in the machine. The results so obtained sho- wed that the undervoltage unbalanced condition was the most critical from the motor’s total loss point of view. Regarding varia- tion of loss in parts of the motor, a constant iron loss pattern was found when the load was changed for each type of voltage supply and that the place where the loss had the largest rise was in the machine’s rotor.
Application of distinct element method to toppling failure of slopes
International Nuclear Information System (INIS)
Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Asai, Yoshiyuki.
1985-01-01
Recently, the stability of slopes during earthquakes has become to be an important engineering problem, especially in case of the earthquake-proof design of nuclear power plants. But, for fissured rock slopes, some problems are remained unresolved, because they can not be treated as continua. The authors have been investigating toppling failure of slopes, from a point of view which regards a fissured rock mass as an assemblage of rigid blocks. DEM (Distinct Element Method) proposed by Cundall (1974) seems to be very helpful to such a investigation. So, in this paper, the applicability of DEM to toppling failure of slopes is examined through the comparison between DEM results and theoretical or experimental results using 3 simple models. (author)
A finite-elements method for turbulent flow analysis
International Nuclear Information System (INIS)
Autret, A.
1986-03-01
The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step. This part contains graphs and curves corresponding to results of the calculations presented in part one [fr
Theory of fractional order elements based impedance matching networks
Radwan, Ahmed G.
2011-03-01
Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.
Main formulations of the finite element method for the problems of structural mechanics. Part 3
Directory of Open Access Journals (Sweden)
Ignat’ev Aleksandr Vladimirovich
2015-01-01
Full Text Available In this paper the author offers is the classification of the formulae of Finite Element Method. This classification help to orient in a huge number of published articles, as well as those to be published, which are dedicated to the problem of enhancing the efficiency of the most commonly used method. The third part of the article considers the variation formulations of FEM and the energy principles lying in the basis of it. If compared to the direct method, which is applied only to finite elements of a simple geometrical type, the variation formulations of FEM are applicable to the elements of any type. All the variation methods can be conventionally divided into two groups. The methods of the first group are based on the principle of energy functional stationarity - a potential system energy, additional energy or on the basis of these energies, which means the full energy. The methods of the second group are based on the variants of mathematical methods of weighted residuals for solving the differential equations, which in some cases can be handled according to the principle of possible displacements or extreme energy principles. The most widely used and multipurpose is the approach based on the use of energy principles coming from the energy conservation law: principle of possible changes in stress state, principle of possible change in stress-strain state.
Elements for successful sensor-based process control {Integrated Metrology}
International Nuclear Information System (INIS)
Butler, Stephanie Watts
1998-01-01
Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended
Elements for successful sensor-based process control {Integrated Metrology}
Butler, Stephanie Watts
1998-11-01
Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.
Extension of POA based on Fiber Element to Girder Bridge
International Nuclear Information System (INIS)
Li Zhenxin; Qiang Shizhong
2010-01-01
Because of its main advantage of simplicity, practicality, lower computational cost and relative good results Pushover analysis (POA) has become an effective analytical tool during the last decade for the seismic assessment of buildings. But such work on bridges has been very limited. Hence, the aim of this study is to adapt POA for nonlinear seismic analysis of girder bridges, and investigate its applicability in the case of an existing river-spanning approach bridge. To three different types bridge models the nonlinear POA, which adopts fiber model nonlinear beam-column element based on flexibility approach, with return period about 2500 years is carried out. It can be concluded that POA is applicable for bridges, with some shortcomings associated with the method in general, even when it is applied for buildings. Finally the applicable selection for monitoring point and lateral load pattern is suggested according to dynamic characteristic of girder bridges.
A novel finite element method for moving conductor eddy current problems
Energy Technology Data Exchange (ETDEWEB)
Liu, Z.; Eastham, A.R.; Dawson, G.E. (Queen' s Univ., Kingston, Ontario (Canada). Dept. of Electrical Engineering)
1993-11-01
A novel finite element method, as an alternative to upwinding, is proposed based on the elimination of the factors which could cause numerical oscillation and instability by properly choosing a set of unconventional weighting functions. The proposed method is first developed and verified for a one dimensional case and then extended to two dimensional problems. The calculation results for a 2D problem, along with the exact solutions and those obtained from Galerkin's and ''optimal'' upwinding methods, show that the proposed method is superior to the other two methods in terms of accuracy and freedom from oscillation.
Spectral element method for elastic and acoustic waves in frequency domain
Energy Technology Data Exchange (ETDEWEB)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)
2016-12-15
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.
Reactor calculation in coarse mesh by finite element method applied to matrix response method
International Nuclear Information System (INIS)
Nakata, H.
1982-01-01
The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt
International Nuclear Information System (INIS)
Ishida, Hitoshi; Meshii, Toshiyuki
2008-01-01
This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)
Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method.
Yan, Xiaoan; Jia, Minping; Zhang, Wan; Zhu, Lin
2018-02-01
Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing. Copyright © 2018. Published by Elsevier Ltd.
The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi
2014-01-01
We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...
Method of mounting filter elements and mounting therefor
International Nuclear Information System (INIS)
Karelin, J.; Neumann, G.M.
1981-01-01
A process for the insertion and exchange of the filter elements for suspended matter is performed from the clean-air-side. During the insertion of a filter element, a plastic tube (Which encircles the circumference of the filter element and which exceeds in its length the layer thickness of the filter element several times) is tightly connected in its middle section with the side walls, which side walls form a border around the filter element; and then the open end of the plastic tube, which faces the frame, is connected by way of a tight fit with a ring, which is actually known and which surrounds the orifice of the frame into which the filter element is inserted. The filter element is connected with the frame by means of tightening devices, and the outer free end of the tube is turned inside out and around the filter element for the purpose of unhindered air passage through the filter layer, that during the exchange of the contaminated filter element, the outer open end of the tube is heat sealed. The filter element is disconnected and removed from the frame by flipping down of the tightening devices, and the tube is heat sealed in the section between the filter element and the frame, and, that during the insertion of a new filter element, a new tube is attached by way of tight fitting to the ring of the frame , which tube is at its middle section tightly connected with the filter element, and which tube is attached to the ring of the frame in an actually known by overlapping of the heat-sealed tube rest. The tube rest is pulled onto the new tube and pulled off the ring, and the filter element is tightly connected with the frame by means of the tightening devices
An object-oriented class design for the generalized finite element method programming
Directory of Open Access Journals (Sweden)
Dorival Piedade Neto
Full Text Available The Generalized Finite Element Method (GFEM is a numerical method based on the Finite Element Method (FEM, presenting as its main feature the possibility of improving the solution by means of local enrichment functions. In spite of its advantages, the method demands a complex data structure, which can be especially benefited by the Object-Oriented Programming (OOP. Even though the OOP for the traditional FEM has been extensively described in the technical literature, specific design issues related to the GFEM are yet little discussed and not clearly defined. In the present article it is described an Object-Oriented (OO class design for the GFEM, aiming to achieve a computational code that presents a flexible class structure, circumventing the difficulties associated to the method characteristics. The proposed design is evaluated by means of some numerical examples, computed using a code implemented in Python programming language.
Evaluation of stable crack growth by using the finite element method
International Nuclear Information System (INIS)
Saarenheimo, A.
1996-01-01
In the study the analysis of stable crack growth by using the finite element method is considered. The results of numerical analyses are compared with the corresponding experimental results. The applications are reported in three separate papers enclosed at the end of the work. The first paper deals with the numerical analysis of a full scale pressure vessel test. The second and the third paper concern numerical analyses of fracture mechanical test specimens. In the literature study section of the work basic theories of fracture mechanics and common crack growth criteria are presented. The balance equations needed are written based on thermodynamical considerations. Physical interpretations of the energy release rate are briefly considered. Numerical calculation methods for determining the J-integral values are presented. The virtual crack extension method is used in the numerical examples. Also the Domain integral method and its implementation in the finite element method are described. (orig.) (70 refs.)
Trace elements based classification on clinkers. Application to Spanish clinkers
Directory of Open Access Journals (Sweden)
Tamás, F. D.
2001-12-01
Full Text Available The qualitative identification to determine the origin (i.e. manufacturing factory of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the obtained classifier was measured by ten-fold cross validation. The results show that the proposed method is useful to identify an easy-to-use expert system that is able to determine the origin of the clinker based on its trace element content.
En el presente trabajo se describe el procedimiento de identificación cualitativa de clínkeres españoles con el objeto de determinar su origen (fábrica. Esa clasificación de los clínkeres se basa en el contenido de sus elementos traza. Se analizaron 15 clínkeres diferentes procedentes de 11 fábricas de cemento españolas, determinándose los contenidos en Mg, Sr, Ba, Mn, Ti, Zr, Zn y V. Se ha diseñado un sistema experto mediante un árbol de decisión binario basado en los datos recogidos. La clasificación obtenida fue examinada mediante la validación cruzada de 10 valores. Los resultados obtenidos muestran que el modelo propuesto es válido para identificar, de manera fácil, un sistema experto capaz de determinar el origen de un clínker basándose en el contenido de sus elementos traza.
Numerical simulation for cracks detection using the finite elements method
Directory of Open Access Journals (Sweden)
S Bennoud
2016-09-01
Full Text Available The means of detection must ensure controls either during initial construction, or at the time of exploitation of all parts. The Non destructive testing (NDT gathers the most widespread methods for detecting defects of a part or review the integrity of a structure. In the areas of advanced industry (aeronautics, aerospace, nuclear …, assessing the damage of materials is a key point to control durability and reliability of parts and materials in service. In this context, it is necessary to quantify the damage and identify the different mechanisms responsible for the progress of this damage. It is therefore essential to characterize materials and identify the most sensitive indicators attached to damage to prevent their destruction and use them optimally. In this work, simulation by finite elements method is realized with aim to calculate the electromagnetic energy of interaction: probe and piece (with/without defect. From calculated energy, we deduce the real and imaginary components of the impedance which enables to determine the characteristic parameters of a crack in various metallic parts.
Randomized Oversampling for Generalized Multiscale Finite Element Methods
Calo, Victor M.
2016-03-23
In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.
Microheaters based on ultrasonic actuation of piezoceramic elements
Visvanathan, Karthik; Gianchandani, Yogesh B.
2011-08-01
This paper describes the use of micromachined lead zirconate titanate (PZT) piezoceramic elements for heat generation by ultrasonic energy dissipated within the elements and surrounding media. Simulations based on three-dimensional finite-element models suggest that circular disk-shaped elements provide superior steady-state temperature rise for a given cross-sectional area, volume of the PZT element and drive voltage. Experimental validation is performed using PZT-5A heaters of 3.2 mm diameter and 0.191 mm thickness. Single-element heaters and dual-element stacks are evaluated. Although the steady-state temperature generated by these heaters reaches the maximum value at the frequency of maximum electromechanical conductance, the heating effectiveness is maximized at the frequency of maximum electromechanical impedance. Stacked PZT heaters provide 3.5 times the temperature rise and 3 times greater heating effectiveness than single elements. Furthermore, the heaters attain the maximum heating effectiveness when bonded to highly damping and non-conducting substrates. A maximum temperature of 120 °C is achieved at 160 mW input power. Experiments are performed using porcine tissue samples to show the feasibility of using PZT heaters in tissue cauterization. A PZT heater probe brands a porcine tissue in 2-3 s with 10 VRMS drive voltage. The interface temperature is ≈150 °C.
Inverse boundary element calculations based on structural modes
DEFF Research Database (Denmark)
Juhl, Peter Møller
2007-01-01
The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...
High Order Finite Element Method for the Lambda modes problem on hexagonal geometry
International Nuclear Information System (INIS)
Gonzalez-Pintor, S.; Ginestar, D.; Verdu, G.
2009-01-01
A High Order Finite Element Method to approximate the Lambda modes problem for reactors with hexagonal geometry has been developed. This method is based on the expansion of the neutron flux in terms of the modified Dubiner's polynomials on a triangular mesh. This mesh is fixed and the accuracy of the method is improved increasing the degree of the polynomial expansions without the necessity of remeshing. The performance of method has been tested obtaining the dominant Lambda modes of different 2D reactor benchmark problems.
Mechanical stress calculations for toroidal field coils by the finite element method
International Nuclear Information System (INIS)
Soell, M.; Jandl, O.; Gorenflo, H.
1976-09-01
After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de
A 3D analysis of reinforced concrete structures by the finite element method
International Nuclear Information System (INIS)
Claure, J.D.; Campos Filho, A.
1995-01-01
Fundamental features of a computational model, based on the finite element methods, for the analysis of concrete structure are presented. The study comprehends short and long-term loading situations, where creep and shrinkage in concrete are considered. The reinforcement is inserted in the finite element model using an embedded model. A smeared crack model is used for the concrete cracking, which considers the contribution of concrete between cracks and allows the closing the cracks closing. The computational code MPGS (Multi-Purpose Graphic System) is used, to make easy the analysis and interpretation of the numeric results. (author). 8 refs., 4 figs
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2011-01-01
As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.
Fluid pressure method for recovering fuel pellets from nuclear fuel elements
International Nuclear Information System (INIS)
John, C.D. Jr.
1979-01-01
A method is described for removing fuel pellets from a nuclear fuel element without damaging the fuel pellets or fuel element sheath so that both may be reused. The method comprises holding the fuel element while a high pressure stream internally pressurizes the fuel element to expand the fuel element sheath away from the fuel pellets therein so that the fuel pellets may be easily removed
Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.
2008-01-01
International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...
PGAA method for control of the technologically important elements at processing of sulfide ores
International Nuclear Information System (INIS)
Kurbanov, B.I.; Aripov, G.A.; Allamuratova, G.; Umaraliev, M.
2006-01-01
Full text: Many precious elements (Au, Re, Pt, Pd, Ag, Cu, Ni, Co, Mo) in ores mainly exist in the form of sulfide minerals and the flotation method is often used for processing of such kind of ores. To enhance the efficiency of the process it is very important to carry out the operative control of the elements of interest at various stages of ore processing. In this work the results of studies for developing methods for control of technologically important elements at processing and enrichment sulfide ores, which content the gold, copper, nickel, molybdenum in the ore-processing plants of Uzbekistan. The design of transportable experimental PGAA device on the basis of low-power radionuclide neutron source ( 252 Cf) with neutrons of 2x10 7 neutr/sec allowing to determine element content of the above named ores and their processing products is offered. It is shown that the use of the thermal neutron capture gamma-ray spectrometry in real samples and technological products allows prompt determination of such elements as S, Cu, Ti and others, which are important for flotation of sulfide ores. Efficiency control of the flotation processing of sulfide ores is based on quick determination of the content of sulfur and some other important elements at different stages of the process. It was found that to determine elements the following gamma lines are the most suitable - 840.3 keV for sulfur, 609 keV and 7307 keV for copper and 1381.5 keV, 1498.3 keV and 1585.3 keV for titanium. Based on the measurements of original ores, concentrates of various stages of flotation and flotation slime the possibility for prompt determination of S, Cu and Ti content and thus to get necessary information on the efficiency of the flotation process was shown. (author)
International Nuclear Information System (INIS)
Al-Akhrass, Dina
2014-01-01
Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)
DEFF Research Database (Denmark)
Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.
2007-01-01
A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...... independent degrees of freedom. Some test problems are considered to check the effectiveness of the proposed stacking method....
Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting
2018-01-01
This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun
2009-01-01
According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.
International Nuclear Information System (INIS)
Tao Ganqiang; Yu Qing; Xiao Xiao
2011-01-01
Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)
Thomas P. Holmes; Wiktor L. Adamowicz
2003-01-01
Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...
Non linear permanent magnets modelling with the finite element method
International Nuclear Information System (INIS)
Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.
1989-01-01
In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter
Three-dimensional discrete element method simulation of core disking
Wu, Shunchuan; Wu, Haoyan; Kemeny, John
2018-04-01
The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.
Fluid-film bearings: a finite element method of analysis
International Nuclear Information System (INIS)
Pururav, T.; Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.
1995-01-01
Finite element method (FEM) has become a very popular technique for the analysis of fluid-film bearings in the last few years. These bearings are extensively used in nuclear industry applications such as in moderator pumps and main coolant pumps. This report gives the methodology for the solution of Reynold's equation using FEM and its implementation in FE software LUBAN developed in house. It also deals with the mathematical basis and algorithm to account for the cavitation phenomena which makes these problems non-linear in nature. The dynamic coefficients of bearings are evaluated by one-step approach using variational principles. These coefficients are useful for the dynamic characterisation of fluid-film bearings. Several problems have been solved using this code including two real life problems, a circumferentially grooved journal bearing for which experimental results are available and the bearing of moderator pump of 500 MWe PHWR, have been solved. The results obtained for sample problems are in good agreement with the published literature. (author). 9 refs., 14 figs., 5 tabs., 2 ills
Determination of heterogeneous medium parameters by single fuel element method
International Nuclear Information System (INIS)
Veloso, M.A.F.
1985-01-01
The neutron pulse propagation technique was employed to study an heterogeneous system consisting of a single fuel element placed at the symmetry axis of a large cylindrical D 2 O tank. The response of system for the pulse propagation technique is related to the inverse complex relaxation length of the neutron waves also known as the system dispersion law ρ (ω). Experimental values of ρ (ω) were compared with the ones derived from Fermi age - Diffusion theory. The main purpose of the experiment was to obtain the Feinberg-Galanin thermal constant (γ), which is the logaritmic derivative of the neutron flux at the fuel-moderator interface and a such a main input data for heterogeneous reactor theory calculations. The γ thermal constant was determined as the number giving the best agreement between the theoretical and experimental values of ρ (ω). The simultaneous determination of two among four parameters η,ρ,τ and L s is possible through the intersection of dispersion laws of the pure moderator system and the fuel moderator system. The parameters τ and η were termined by this method. It was shown that the thermal constant γ and the product η ρ can be computed from the real and imaginary parts of the fuel-moderator dispersion law. The results for this evaluation scheme showns a not stable behavior of γ as a function of frequency, a result not foreseen by the theoretical model. (Author) [pt
Moving finite element method for ICF target implosion
Furuta, J.; Kawata, S.; Niu, K.
1985-03-01
One dimensional hydrodynamic codes for the analysis of internal confinement fusion (ICF) target implosion which include various effects were developed, but most of them utilize the artificial viscosity (e.g., Von Neumann's viscosity) which cannot reveal accurately the shock waves. A gain of ICF target implosion is much due to the dissipation at the shock fronts, so it is necessary to express correctly the shock waves which are affected by the viscosity. The width of the shock waves is usually a few times as large as the length of mean free path, therefore the meshes for the shock waves must be set to about 10 to the 4th to 10 to the 5th power. It is a serious problem because of the computational memories or CPU time. In the moving finite element (MPE) method, both nodal amplitudes and nodal positions move continuously with time in such a way as to satisfy simultaneous ordinary differential equations (OPDs) which minimize partial differential equation (PDE) residuals.
A finite-elements method for turbulent flow analysis
International Nuclear Information System (INIS)
Autret, A.
1986-03-01
The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. In our specific case, we have to deal with monophasic incompressible flow in Boussinesq approximation in the normal operating conditions of a primary circuit of nuclear power plant. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A Law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step [fr
Finite element analysis of CFRP reinforced silo structure design method
Yuan, Long; Xu, Xinsheng
2017-11-01
Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.
Mechanics of a crushable pebble assembly using discrete element method
International Nuclear Information System (INIS)
Annabattula, R.K.; Gan, Y.; Zhao, S.; Kamlah, M.
2012-01-01
The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression (ε 33 =1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress–strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor (η) of the assembly.
International Nuclear Information System (INIS)
Hahn, Song Yop
1985-01-01
A method employing infinite elements is described for the magnetic field computations of the magnetic circuits with permanent magnet. The system stiffness matrix is derived by a variational approach, while the interfacial boundary conditions between the finite element regions and the infinite element regions are dealt with using collocation method. The proposed method is applied to a simple linear problems, and the numerical results are compared with those of the standard finite element method and the analytic solutions. It is observed that the proposed method gives more accurate results than those of the standard finite element method under the same computing efforts. (Author)
Comparing the NIOSH Method 5040 to a Diesel Particulate Matter Meter for Elemental Carbon
Ayers, David Matthew
Introduction: The sampling of elemental carbon has been associated with monitoring exposures in the trucking and mining industries. Recently, in the field of engineered nanomaterials, single wall and muti-wall carbon nanotubes (MWCNTs) are being produced in ever increasing quantities. The only approved atmospheric sampling for multi-wall carbon nanotubes in NIOSH Method 5040. These results are accurate but can take up to 30 days for sample results to be received. Objectives: Compare the results of elemental carbon sampling from the NIOSH Method 5040 to a Diesel Particulate Matter (DPM) Meter. Methods: MWCNTs were transferred and weighed between several trays placed on a scale. The NIOSH Method 5040 and DPM sampling train was hung 6 inches above the receiving tray. The transferring and weighing of the MWCNTs created an aerosol containing elemental carbon. Twenty-one total samples using both meters type were collected. Results: The assumptions for a Two-Way ANOVA were violated therefore, Mann-Whitney U Tests and a Kruskal-Wallis Test were performed. The hypotheses for both research questions were rejected. There was a significant difference in the EC concentrations obtained by the NIOSH Method 5040 and the DPM meter. There were also significant differences in elemental carbon level concentrations when sampled using a DPM meter versus a sampling pump based upon the three concentration levels (low, medium and high). Conclusions: The differences in the EC concentrations were statistically significant therefore, the two methods (NIOSH Method 5040 and DPM) are not the same. The NIOSH Method 5040 should continue to be the only authorized method of establishing an EC concentration for MWCNTs until a MWCNT specific method or an instantaneous meter is invented.
Seismic Analysis of Concrete Dam by Using Finite Element Method
Directory of Open Access Journals (Sweden)
Rozaina Ismail
2017-01-01
Full Text Available This paper reports a brief study on linear seismic analysis of Sg. Kinta Concrete Dam. The analysis was conducted in order to determine the performance and behaviour of the dam under seismic excitation. The dam was modelled as two-dimensional and developed based on the design drawing that is obtained from Angkasa Consulting Services Sdn. Bhd. The seismic analysis of the dam is conducted using finite element analysis software package LUSAS 14.3 and the dam has been analyse as a plain stress problem with a linear consideration. A set of historic data, with E1 Centro earthquake acceleration of about 0.50g is used as an earthquake excitation. The natural frequency and mode shape up to fifth mode of the dam has been obtained from the analysis to show the differences of the stress and deformation between each mode. The maximum horizontal and vertical stress of Sg. Kinta dam was found and the distribution of them was discussed in form of contours. The deformation of the dam were also been discussed by comparing the maximum displacement for each mode shaped.
A parity checker circuit based on microelectromechanical resonator logic elements
Energy Technology Data Exchange (ETDEWEB)
Hafiz, Md Abdullah Al, E-mail: abdullah.hafiz@kaust.edu.sa [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Li, Ren [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Younis, Mohammad I. [PSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Fariborzi, Hossein [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2017-03-03
Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized. - Highlights: • A 4-bit parity checker circuit is proposed and demonstrated based on MEMS resonator based logic elements. • Multiple copies of MEMS resonator based XOR logic gates are used to construct a complex logic circuit. • Functionality and feasibility of micro-resonator based logic platform is demonstrated.
A computational study of nodal-based tetrahedral element behavior.
Energy Technology Data Exchange (ETDEWEB)
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
2016-06-12
Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and
Energy Technology Data Exchange (ETDEWEB)
Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.
Pries, V. V.; Proskuriakov, N. E.
2018-04-01
To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.
Simulation of incompressible flows with heat and mass transfer using parallel finite element method
Directory of Open Access Journals (Sweden)
Jalal Abedi
2003-02-01
Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.
International Nuclear Information System (INIS)
Kosta, L.
1981-01-01
New analytical methods based on radiochemical neutron activation analysis were developed for the determination of Sn, V, I and Se at nanogram levels in biological materials, particularly in milk and other foodstuffs. By the application of these and similar methods, results for trace elements in human and cow's milk were collected from which the normal concentration ranges of up to 12 trace elements were established. Significant data on vanadium levels were also collected allowing assessment of the dietary intake and body pool of this element and a reappraisal of its significance in nutrition. Similar data on a smaller scale were also collected for tin. Results were also obtained for several different trace elements in a range of biological reference materials
Element analysis of Japanese traditional papers by PIXE method
International Nuclear Information System (INIS)
Suzuki, Tatsuya; Yasuda, Keisuke; Tani, Teruhiro
2000-01-01
The Japanese papers, 'washi', are made from the bast fibers of the plants. Since washi have the informations of the raw material plants, there is potentiality of the identification of the production place by the element analysis of the washi. Three kinds of washi made of kozo, which have different habitats, were prepared. The elements in their washi were measured by the PIXE. It was confirmed that the amount of elements included in the washi depend on the habitats of their raw material plants. (author)
Spectral element method for band-structure calculations of 3D phononic crystals
International Nuclear Information System (INIS)
Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo
2016-01-01
The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Finite Element Method Application in Areal Rainfall Estimation Case Study; Mashhad Plain Basin
Directory of Open Access Journals (Sweden)
M. Irani
2016-10-01
Full Text Available Introduction: The hydrological models are very important tools for planning and management of water resources. These models can be used for identifying basin and nature problems and choosing various managements. Precipitation is based on these models. Calculations of rainfall would be affected by displacement and region factor such as topography, etc. Estimating areal rainfall is one of the basic needs in meteorological, water resources and others studies. There are various methods for the estimation of rainfall, which can be evaluated by using statistical data and mathematical terms. In hydrological analysis, areal rainfall is so important because of displacement of precipitation. Estimating areal rainfall is divided to three methods: 1- graphical. 2-topographical. 3-numerical. This paper represented calculating mean precipitation (daily, monthly and annual using Galerkin’s method (numerical method and it was compared with other methods such as kriging, IDW, Thiessen and arithmetic mean. In this study, there were 42 actual gauges and thirteen dummies in Mashhad plain basin which is calculated by Galerkin’s method. The method included the use of interpolation functions, allowing an accurate representation of shape and relief of catchment with numerical integration performed by Gaussian quadrature and represented the allocation of weights to stations. Materials and Methods:The estimation of areal rainfall (daily, monthly,… is the basic need for meteorological project. In this field ,there are various methods that one of them is finite element method. Present study aimed to estimate areal rainfall with a 16-year period (1997-2012 by using Galerkin method ( finite element in Mashhad plain basin for 42 station. Therefore, it was compared with other usual methods such as arithmetic mean, Thiessen, Kriging and IDW. The analysis of Thiessen, Kriging and IDW were in ArcGIS10.0 software environment and finite element analysis did by using of Matlab
Frame analysis of UNNES electric bus chassis construction using finite element method
Nugroho, Untoro; Anis, Samsudin; Kusumawardani, Rini; Khoiron, Ahmad Mustamil; Maulana, Syahdan Sigit; Irvandi, Muhammad; Mashdiq, Zia Putra
2018-03-01
Designing the chassis needs to be done element simulation analysis to gain chassis strength on an electric bus. The purpose of this research is to get the results of chassis simulation on an electric bus when having load use FEM (Finite element method). This research was conduct in several stages of process, such as modeling chassis by Autodesk Inventor and finite element simulation software. The frame is going to be simulated with static loading by determine fixed support and then will be given the vertical force. The fixed on the frame is clamped at both the front and rear suspensions. After the simulation based on FEM it can conclude that frame is still under elastic zone, until the frame design is safe to use.
A Monte Carlo adapted finite element method for dislocation ...
Indian Academy of Sciences (India)
27
This theory concerns the state of self-stress in a body which is discontinuously deformed. ..... Furthermore, force vectors of likely (or, potential) split elements may be computed ..... for elastic dislocation problems in geophysics; J. Geophys. Res.
Energy Technology Data Exchange (ETDEWEB)
Samsahl, K
1966-02-15
An anion-exchange method based on fast selective sorption steps from mixtures of sulfuric, hydrobromic, and hydrochloric acid solutions has been developed for the separation of five different groups of radioactive trace elements in neutron-irradiated biological material. The separations are performed automatically with a simple proportioning pump apparatus. The apparatus allows the exact adjustment of influent solutions to the series of ion-exchange columns. The practical application of the method is described in detail. The successful use of the method is practically independent on the level of Na activity present in the sample.
Method to mount defect fuel elements i transport casks
International Nuclear Information System (INIS)
Borgers, H.; Deleryd, R.
1996-01-01
Leaching or otherwise failed fuel elements are mounted in special containers that fit into specially designed chambers in a transportation cask for transport to reprocessing or long-time storage. The fuel elements are entered into the container under water in a pool. The interior of the container is dried before transfer to the cask. Before closing the cask, its interior, and the exterior of the container are dried. 2 figs
OPTIMIZATION OF I-SECTION PROFILE DESIGN BY THE FINITE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
Patryk Różyło
2016-03-01
Full Text Available This paper discusses the problem of design optimization for an I-section profile. The optimization process was performed using the Abaqus program. The numerical analysis of a strictly static problem was based on the finite element method. The scope of the analysis involved both determination of stresses and displacements in the profile and structure topology optimization. The main focus of the numerical analysis was put on reducing profile volume while maintaining the same load and similar stresses prior to and after optimization. The solution of the optimization problem is just an example of the potential of using this method in combination with the finite element method in the Abaqus environment. Nowadays numerical analysis is the most effective cost-reducing alternative to experimental tests and it enables structure examination by means of a computer.
Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation
Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi
2014-01-01
© 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.
Finite element model updating of concrete structures based on imprecise probability
Biswal, S.; Ramaswamy, A.
2017-09-01
Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.
International Nuclear Information System (INIS)
Sabir, A.B.
1983-01-01
A finite element solution to the problems of stress distribution for cylindrical shells with circular and elliptical holes and also for normally intersecting thin elastic cylindrical shells is given. Quadrilateral and triangular curved finite elements are used in the analysis. The elements are of a new class, based on simple independent generalised strain functions insofar as this is allowed by the compatibility equations. The elements also satisfy exactly the requirements of strain-free-rigid body displacements and uses only the external 'geometrical' nodal degrees of freedom to avoid the difficulties associated with unnecessary internal degrees of freedom. We first develop strain based quadrilateral and triangular elements and apply them to the solution of the problem of stress concentrations in the neighbourhood of small and large circular and elliptical holes when the cylinders are subjected to a uniform axial tension. These results are compared with analytical solutions based on shallow shell approximations and show that the use of these strain based elements obviates the need for using an inordinately large number of elements. Normally intersecting cylinders are common configurations in structural components for nuclear reactor systems and design information for such configurations are generally lacking. The opportunity is taken in the present paper to provide a finite element solution to this problem. A method of substructing will be introduced to enable a solution to the large number of non banded set of simultaneous equations encountered. (orig./HP)
Analysis of a discrete element method and coupling with a compressible fluid flow method
International Nuclear Information System (INIS)
Monasse, L.
2011-01-01
This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an un-deformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method. (author) [fr
Characterization of craniofacial sutures using the finite element method.
Maloul, Asmaa; Fialkov, Jeffrey; Wagner, Diane; Whyne, Cari M
2014-01-03
Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures' biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS. © 2013 Elsevier Ltd. All rights reserved.
Spectral/hp element methods: Recent developments, applications, and perspectives
DEFF Research Database (Denmark)
Xu, Hui; Cantwell, Chris; Monteserin, Carlos
2018-01-01
regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
Energy Technology Data Exchange (ETDEWEB)
Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
International Nuclear Information System (INIS)
Shi Ting-Yu; Ge Hong-Xia; Cheng Rong-Jun
2013-01-01
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method
International Nuclear Information System (INIS)
Kim, H; Ryue, J; Thompson, D J; Müller, A D
2016-01-01
Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found. (paper)
Efendiev, Yalchin R.
2015-06-05
In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.