Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
Schoenfeld, Michael
2009-01-01
A detailed description of the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) is presented. The contents include: 1) Design Requirements; 2) NTREES Layout; 3) Data Acquisition and Control System Schematics; 4) NTREES System Schematic; and 5) NTREES Setup.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
Emrich, William J.
2008-01-01
To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
Emrich, William J., Jr.
2008-01-01
To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.
Initial Operation of the Nuclear Thermal Rocket Element Environmental Simulator
Emrich, William J., Jr.; Pearson, J. Boise; Schoenfeld, Michael P.
2015-01-01
The Nuclear Thermal Rocket Element Environmental Simulator (NTREES) facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The NTREES facility has recently been upgraded such that the power capabilities of the facility have been increased significantly. At its present 1.2 MW power level, more prototypical fuel element temperatures nay now be reached. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during testing In this new higher power configuration, NTREES will be capable of testing fuel elements and fuel materials at near-prototypic power densities. As checkout testing progressed and as higher power levels were achieved, several design deficiencies were discovered and fixed. Most of these design deficiencies were related to stray RF energy causing various components to encounter unexpected heating. Copper shielding around these components largely eliminated these problems. Other problems encountered involved unexpected movement in the coil due to electromagnetic forces and electrical arcing between the coil and a dummy test article. The coil movement and arcing which were encountered during the checkout testing effectively destroyed the induction coil in use at
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
Emrich, William J., Jr.
2014-01-01
Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities
Emrich, William
2013-01-01
A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.
Emrich, William J., Jr.
2017-01-01
To satisfy the Nuclear Cryogenic Propulsion Stage (NCPS) testing milestone, a graphite composite fuel element using a uranium simulant was received from the Oakridge National Lab and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) at various operating conditions. The nominal operating conditions required to satisfy the milestone consisted of running the fuel element for a few minutes at a temperature of at least 2000 K with flowing hydrogen. This milestone test was successfully accomplished without incident.
Emrich, William J., Jr.
2014-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Prototypical fuel elements mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission in addition to being exposed to flowing hydrogen. Recent upgrades to NTREES now allow power levels 24 times greater than those achievable in the previous facility configuration. This higher power operation will allow near prototypical power densities and flows to finally be achieved in most prototypical fuel elements.
Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities
Emrich, William J.; Moran, Robert P.; Pearson, J. Bose
2013-01-01
To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator
Design Considerations for the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)
Emrich, Bill; Kirk, Daniel
2006-01-01
Nuclear Thermal Rockets or NTR's have been suggested as a propulsion system option for vehicles traveling to the moon or Mars. These engines are capable of providing high thrust at specific impulses at least twice that of today s best chemical engines. The performance constraints on these engines are mainly the result of temperature limitations on the fuel coupled with a limited ability to withstand chemical attack by the hot hydrogen propellant. To operate at maximum efficiency, fuel forms are desired which can withstand the extremely hot, hostile environment characteristic of NTR operation for at least several hours. The simulation of such an environment would require an experimental device which could simultaneously approximate the power, flow, and temperature conditions which a nuclear fuel element (or partial element) would encounter during NTR operation. Such a simulation would allow detailed studies of the fuel behavior and hydrogen flow characteristics under reactor like conditions to be performed. The goal of these simulations would be directed toward expanding the performance envelope of NTR engines over that which was demonstrated during the Rover and NERVA nuclear rocket programs of the 1970's. Currently, such a simulator is nearing completion at the Marshall Space Flight Center, and will shortly be used in the future to evaluate a wide variety of he1 element designs and the materials of which they are constructed. This present work addresses the initial experimental objectives of the Nuclear Thermal Rocket Element Environmental Simulator or NTREES and some of the design considerations which were considered prior to and during its construction.
Elements of environmental management
Antweiler, Werner
2014-01-01
... important area of expertise. This book is an interdisciplinary texbook that integrates corporate environmental strategy with environmental economics, environmental law, and environmental engineering...
Environmental research on actinide elements
Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G. (eds.)
1987-08-01
The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)
Spectral element simulation of ultrafiltration
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....
Modeling and Simulating Environmental Effects
Guest, Peter S.; Murphree, Tom; Frederickson, Paul A.; Guest, Arlene A.
2012-01-01
MOVES Research & Education Systems Seminar: Presentation; Session 4: Collaborative NWDC/NPS M&S Research; Moderator: Curtis Blais; Modeling and Simulating Environmental Effects; speakers: Peter Guest, Paul Frederickson & Tom Murphree Environmental Effects Group
Environmental monitoring for some transuranium elements
Sedlet, J.; Golchert, N.W.
1977-01-01
Knowledge of contemporary environmental levels of transuranium elements is necessary as baseline information if the future impact of nuclear fuel plants and power reactors is to be evaluated. The chemical behavior of these elements at low concentrations in the environment is also important in hazard prediction. This paper describes methods for the analysis of environmental materials for several transuranium elements and summarizes the results for the past several years. In some cases comparison with natural uranium and thorium was useful, and their concentrations were also determined.
Diving and Environmental Simulation Team
Federal Laboratory Consortium — The Diving and Environmental Simulation Team focuses on ways to optimize the performance and safety of Navy divers. Our goal is to increase mission effectiveness by...
Environmental Games and Simulations.
Eckman, Tom, Comp.
This publication consists of a lengthy list of environmental games (35) on the market today, their source and purchase price. Included is a description of the major changes the types of games have undergone. The first group of games resembled closely ordinary board games with success dependent on skill and/or chance rather than understanding of…
Integrating Environmentally Responsive Elements in Buildings
Heiselberg, Per; Andresen, Inger; Perino, Marco
2006-01-01
Significant improvement have been achieved on efficiency improvements of specific building elements like the building envelope and building equipment and services and whilst most building elements still offer opportunities for efficiency improvements, the greatest future potential lie...... with technologies that promote the integration of responsive building elements and building services in integrated building concepts. In order to address some of these issues an international research effort, IEA-ECBCS Annex 44 has been initiated. The paper especially presents the annex activities regarding...... development of Energy and Environmental Building concepts including discussion of the selected design strategy and technical solutions, the integrated design approach and design methods and tools....
Surgery simulation using fast finite elements
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
Micromagnetic simulations of semielliptical permalloy elements
Waifalkar, P.P.; Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, Maharashtra (India); Patil, P.B., E-mail: prashantphy@gmail.com [Department of Physics, The New College, Kolhapur 416012, Maharashtra (India)
2014-09-01
Magnetic spin configuration of patterned semielliptical permalloy elements useful for transportation of biofunctionlized magnetic particles was investigated by micromagnetic simulations. A demagnetized state at zero field shows a stable vortex state around the center. Application of 100 Oe field along a short axis of semiellipse was found to be sufficient to completely saturate the element along the field direction.
Environmental factors and elements of Ljig municipality
Miljanović Dragana
2006-01-01
Full Text Available In this paper some of the basic natural and social-geographic factors are analyzed, with the aim to identify their influence on the environmental status. Qualitative assessment are attempted about the various elements of the environment, and attention directed to the problems of noise, and problems of communal waste disposal. A synthetic presentation of the environmental status in the municipality of Ljig is given. The territory of Ljig has been spatially differentiated, namely, it has been categorized according to the degree of pollution. High concentration of the population, and activities, in the town Ljig itself has produced a degradation worse than in the other settlements. On the other hand, the settlements in which is situated the locationally non-flexible industry (quarrying and processing of stone are facing problems of other sort. In the villages, however, which are slowly becoming depopulated, the quality of the environment is satisfactory. In accordance with such facts, revealed about the environmental status, basic aims have been defined as to how to protect the environment in the future. For the realization of environmental aims, various measures and activities are being proposed, with the purpose to improve the situation in the threatened zones, and to safeguard the quality of the environment on the entire municipal territory of Ljig.
Fast finite elements for surgery simulation
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Finite Element Simulation of Metal Quenching
方刚; 曾攀
2004-01-01
The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.
Finite Element Simulation for Interfacial Evolutions
JianmingHUANG; WeiYANG
1998-01-01
A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.
Element Cycles: An Environmental Chemistry Board Game
Pippins, Tracy; Anderson, Cody M.; Poindexter, Eric F.; Sultemeier, S. Whitney; Schultz, Linda D.
2011-01-01
"Element Cycles" is an activity designed to reinforce correlation of essential elements and their different forms in the ecosystem. Students are assigned essential elements to research as homework, then share results, and construct game boards with four ecosphere sections: geosphere (earth), hydrosphere (water), atmosphere (air), and biosphere…
Element Cycles: An Environmental Chemistry Board Game
Pippins, Tracy; Anderson, Cody M.; Poindexter, Eric F.; Sultemeier, S. Whitney; Schultz, Linda D.
2011-01-01
"Element Cycles" is an activity designed to reinforce correlation of essential elements and their different forms in the ecosystem. Students are assigned essential elements to research as homework, then share results, and construct game boards with four ecosphere sections: geosphere (earth), hydrosphere (water), atmosphere (air), and biosphere…
Modeling and Simulation of a Nuclear Fuel Element Test Section
Moran, Robert P.; Emrich, William
2011-01-01
"The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.
Reactive transport codes for subsurface environmental simulation
Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Kalbacher, D.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; Molins, S.; Moulton, D.; Shao, D.; Simunek, J.; Spycher, N.; Yabusaki, S.B.; Yeh, G.T.
2015-01-01
A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that conside
Finite element simulation of wheel impact test
S.H. Yang
2008-06-01
Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel
Finite element simulation of asphalt fatigue testing
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
Utilization of Large Cohesive Interface Elements for Delamination Simulation
Bak, Brian Lau Verndal; Lund, Erik
2012-01-01
This paper describes the difficulties of utilizing large interface elements in delamination simulation. Solutions to increase the size of applicable interface elements are described and cover numerical integration of the element and modifications of the cohesive law.......This paper describes the difficulties of utilizing large interface elements in delamination simulation. Solutions to increase the size of applicable interface elements are described and cover numerical integration of the element and modifications of the cohesive law....
Discrete element simulation of crushable rockfill materials
Lei SHAO; Shi-chun CHI; Liang-jing ZHOU; Yu-zan WANG
2013-01-01
A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test of rockfill materials. Based on a comparison of macro behaviors of the rockfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
Discrete element simulation of crushable rockfill materials
Lei SHAO
2013-04-01
Full Text Available A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test of rockfill materials. Based on a comparison of macro behaviors of the rockfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
Finite Element Simulation of Blanking Process
Afzal Ahmed
2012-10-01
daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing
Test Simulation using Finite Element Method
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Finite element simulation of thick sheet thermoforming
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Rainfall simulation for environmental application
Shriner, D.S.; Abner, C.H.; Mann, L.K.
1977-08-01
Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.
Reactive transport benchmarks for subsurface environmental simulation
Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.
2015-06-01
-resolution X-ray spectroscopy, have created new lines of research that can be used to inform the conceptualization of reactions and rate laws and validate mechanistic models. For example, spectroscopy has identified the oxidation states of key components and elemental distributions at increasingly smaller scales and lower concentrations; molecular biology has progressed from identifying the presence of microbes to characterization of which microbial communities are active and what they are doing (i.e., microbial function), which has led in turn to the identification of active processes under conditions beyond what analytical chemistry can discern; isotope ratios in pore water and solid phases that can be used to distinguish between biotic from abiotic processes, sorption from precipitation, and origin and age of groundwater. The other noteworthy development that is expanding the role of RTM in subsurface environmental modeling is he advance in computational technology that is enabling the simulation of more coupled processes with increasing mechanistic detail. In some cases, this involves the inclusion of more reactive species and/or microbial populations in the simulations; in other cases, the impact is through the ability to achieve high resolution of property distributions over longer simulated times. To achieve these ambitious objectives for subsurface reactive transport simulation, the subsurface science and engineering community is being driven to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. This expansion was enabled, in part, by advances in measurement technology, computing technology, and numerical techniques.
Finite element simulation of asphalt fatigue testing
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...
Finite Element Simulation for Springback Prediction Compensation
Agus Dwi Anggono
2011-01-01
Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It is this second step of springback compensation that is addressed in the current work. This paper presents an evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.
Environmental Effect on Egress Simulation
Rodriguez, Samuel
2012-01-01
Evacuation and egress simulations can be a useful tool for studying the effect of design decisions on the flow of agent movement. This type of simulation can be used to determine before hand the effect of design decisions and enable exploration of potential improvements. In this work, we study at how agent egress is affected by the environment in real world and large scale virtual environments and investigate metrics to analyze the flow. Our work differs from many evacuation systems in that we support grouping restrictions between agents (e.g., families or other social groups traveling together), and model scenarios with multiple modes of transportation with physically realistic dynamics (e.g., individuals walk from a building to their own cars and leave only when all people in the group arrive).
Research of Stamp Forming Simulation Based on Finite Element Method
SU Xaio-ping; XU Lian
2008-01-01
We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Fastening elements in concrete structures - numerical simulations
Ozbolt, Josko; Eligehausen, Rolf
1993-01-01
Anchoring elements such as headed and expansion studs and grouted or undercut anchors, are often used for local transfer of loads into concrete members. In order to better understand the failure mechanism, a large number of experiments have been carried out in the past. However, due to the complicated three-dimensional load transfer a very few or no numerical studies have been performed for a number of different fastening situations i.e. influence of the embedment depth, crack-width inftuence...
Discrete Element Simulation of Asphalt Mastics Based on Burgers Model
LIU Yu; FENG Shi-rong; HU Xia-guang
2007-01-01
In order to investigate the viscoelastic performance of asphalt mastics, a micro-mechanical model for asphalt mastics was built by applying Burgers model to discrete element simulation and constructing Burgers contact model. Then the numerical simulation of creep tests was conducted, and results from the simulation were compared with the analytical solution for Burgers model. The comparision snowed that the two results agreed well with each other, suggesting that discrete element model based on Burgers model could be employed in the numerical simulation for asphalt mastics.
Finite Element Crash Simulations and Impact-Induced Injuries
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Finite Element Crash Simulations and Impact-Induced Injuries
Mackerle, Jaroslav
1999-01-01
This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Elements of success in environmental education, through practitioner eyes
May, Theodore Scott
This two-phase study was designed to provide a clear vision of the major elements which support successful teaching in environmental education. The research yielded a valid and reliable framework consisting of forty-two elements which work inter-dynamically to foster student growth in environment-related knowledge, attitudes, skills and responsible behaviors. Prior to the field research, the researcher conducted an extensive literature review which served as a reference point for subsequent research focused on the experiences and perceptions of practicing teachers. The review generated a three-part theoretical construct-based upon social cognitive theory-and a literature-derived framework of elements. In the first research phase, the researcher conducted interviews with eighteen accomplished environmental educators from eleven of the United States. Their narratives, coupled with input from the extensive literature review, enabled the construction of the three-part framework composed of the thirteen teaching conditions, fourteen teacher competencies and fifteen teaching practices which support environmental education efficacy. In the second research phase, the framework was sent in survey form to 500 teachers across the country who had environmental education experience. Over 65 percent of the surveys were returned, with the respondents expressing strong support for the interview-derived framework. Nearly all items on the survey-including the two overall framework evaluations and the three framework categories-were judged to have high or very high significance in fostering student growth of environment-related knowledge, attitudes, skills and responsible behaviors. The full framework had a very high Cronbach's alpha measure of internal consistency (alpha =.94), as did its three component categories. All identified demographic sub-groups showed consistent support for the framework and its categories. And extensive survey comments brought pointed evidence of support
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
Elements Explaining Learning Clinical Reasoning Using Simulation Games
Jaana-Maija Koivisto
2016-12-01
Full Text Available This article presents the findings on which elements in a game-based simulation affect learning clinical reasoning in nursing education. By using engaging gaming elements in virtual simulations and integrating the clinical reasoning process into game mechanics, games can enhance learning clinical reasoning and offer meaningful learning experiences. The study was designed to explore how nursing students experience gaming and learning when playing a simulation game, as well as which gaming elements explain learning clinical reasoning. The data was collected by questionnaire from nursing students (N = 166 in autumn 2014 over thirteen gaming sessions. The findings showed that usability, application of nursing knowledge, and exploration have the most impact on learning clinical reasoning when playing simulation games. Findings also revealed that authentic patient-related experiences, feedback, and reflection have an indirect effect on learning clinical reasoning. Based on these results, more efficient simulation games to improve clinical reasoning may be developed.
Chemical elements in invertebrate orders for environmental quality studies
Magalhaes, Marcelo R.L.; Franca, Elvis J.; Paiva, Jose D.S.; Hazin, Clovis A., E-mail: marcelo_rlm@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: dan-paiva@hotmail.com, E-mail: chazin@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fonseca, Felipe Y.; Fernandes, Elisabete A. de Nadai; Bacchi, Marcio A., E-mail: felipe-yamada@hotmail.com, E-mail: lis@cena.usp.br, E-mail: mabacchi@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)
2013-07-01
Among the biomonitors of environmental quality, there is a lack of studies on using invertebrates to evaluate quantitatively chemical elements in ecosystems. This group of animals is quite numerous, widely distributed and adaptable to the most diverse environmental conditions. These features are very useful for the environmental quality assessment, as well as the several occurring insect-plant interactions performing essential functions in ecosystems. The objective of this work is to study the variability of chemical composition of invertebrate orders for using in environmental quality monitoring studies. Instrumental neutron activation analysis - INAA was applied to determine some nutrients and trace elements in invertebrate samples. Sampling by pitfall traps was carried out in riverine ecosystems from the urban area from the Piracicaba Municipality, State of Sao Paulo, Brazil. Invertebrate and reference material samples were irradiated in the nuclear research reactor IEA-R1, Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN. Fragments of a Ni-Cr alloy were irradiated for monitoring the thermal neutron flux. Hymenoptera order was considered the most representative according to the total number of sampled species (about 60%). Significant amounts of Ba, Br, Fe and Sc were found in invertebrates of the order Opiliones. Potassium, rubidium and zinc were highly accumulated in species from Blattodea order, indicating a consistent pattern of accumulation for this invertebrate order. Taking into account the abundance of Hymenoptera order, the chemical composition of its species was significant different at the 95% confidence level for Br and Na in the sampled locals. (author)
Annual Report 1999 Environmental Dynamics and Simulation
NS Foster-Mills
2000-06-28
This annual report describes selected 1999 research accomplishments for the Environmental Dynamics and Simulation (ED and S) directorate, one of six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). These accomplishments are representative of the different lines of research underway in the ED and S directorate. EMSL is one of US Department of Energy's (DOE) national scientific user facilities and is the centerpiece of DOE's commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems. Capabilities in the EMSL include over 100 major instrument systems for use by the resident research staff, their collaborators, and users of the EMSL. These capabilities are used to address the fundamental science that will be the basis for finding solutions to national environmental issues such as cleaning up contamianted areas at DOE sites across the country and developing green technologies that will reduce or eliminate future pollution production. The capabilities are also used to further the understanding of global climate change and environmental issues relevant to energy production and use and health effects resulting from exposure to contaminated environments.
Elemental speciation analysis, from environmental to biochemical challenge
Jitaru, P.; Barbante, C.
2006-12-01
Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics.
Cleary, Paul W; Prakash, Mahesh
2004-09-15
Particle-based simulation methods, such as the discrete-element method and smoothed particle hydrodynamics, have specific advantages in modelling complex three-dimensional (3D) environmental fluid and particulate flows. The theory of both these methods and their relative advantages compared with traditional methods will be discussed. Examples of 3D flows on realistic topography illustrate the environmental application of these methods. These include the flooding of a river valley as a result of a dam collapse, coastal inundation by a tsunami, volcanic lava flow and landslides. Issues related to validation and quality data availability are also discussed.
Simulation study of element plastic migration from radiometric measurements
Rosa, Faena M.L.; Manzoli, Jose Eduardo; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Soares, Eufemia Paez [Escola SENAI Fundacao Zerrenner, Sao Paulo, SP (Brazil)], E-mail: eufemia@sp.senai.br
2007-07-01
Element migration from plastic packaging to either foodstuffs or medicine is a serious public health. Many conventional experimental techniques such as chromatography-mass spectrometry, atomic absorption spectroscopy, inductively coupled plasma spectroscopy or calorimetric methods are used to measure total and specific migration of components from plastic packaging. The radiometric method is also used to measure the element migration. In this study a numerical technique was employed to simulate the experimental migration results obtained from measurements of elements from dairy product polymeric packages into 3% acetic acid solution which is a normative food simulant. This numerical technique can be used as complementary tool for the experimental measurements, allowing for a better understanding of the diffusion process and to estimate element migration situations not experimentally measured. (author)
Total quality management of forged products through finite element simulation
Chandra, U.; Rachakonda, S.; Chandrasekharan, S.
The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.
Stochastic Finite Element Simulation of Uncertain Structures Subjected to Earthquake
Subrata Chakraborty
2000-01-01
Full Text Available In present study, the stochastic finite element simulation based on the efficient Neumann expansion technique is extended for the analysis of uncertain structures under seismically induced random ground motion. The basic objective is to investigate the possibility of applying the Neumann expansion technique coupled with the Monte Carlo simulation for dynamic stochastic systems upto that extent of parameter variation after which the method is no longer gives accurate results compared to that of the direct Monte carlo simulation. The stochastic structural parameters are discretized by the local averaging method and then simulated by Cholesky decomposition of the respective covariance matrix. The earthquake induced ground motion is treated as stationary random process defined by respective power spectral density function. Finally, the finite element solution has been obtained in frequency domain utilizing the advantage of Neumann expansion technique.
Advanced solid elements for sheet metal forming simulation
Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.
2016-08-01
The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.
Numerical Simulation of Friction Stir Welding by Natural Element Methods
Alfaro, I.; Fratini, L.; CUETO, Elias; Chinesta, Francisco
2009-01-01
International audience; In this work we address the problem of numerically simulating the Friction Stir Welding process. Due to the special characteristics of this welding method (i.e., high speed of the rotating pin, very large deformations, etc.) finite element methods (FEM) encounter several difficulties. While Lagrangian simulations suffer from mesh distortion, Eulerian or Arbitrary Lagrangian Eulerian (ALE) ones still have difficulties due to the treatment of convective terms, the treatm...
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
A discrete element model for simulating saturated granular soil
Mahan Lamei; Ali Asghar Mirghasemi
2011-01-01
A numerical model is developed to simulate saturated granular soil,based on the discrete element method.Soil particles are represented by Lagrangian discrete elements,and pore fluid,by appropriate discrete elements which represent alternately Lagrangian mass of water and Eulerian volume of space.Macroscale behavior of the model is verified by simulating undrained biaxial compression tests.Micro-scale behavior is compared to previous literature through pore pressure pattern visualization during shear tests,it is demonstrated that dynamic pore pressure patterns are generated by superposed stress waves.These pore-pressure patterns travel much faster than average drainage rate of the pore fluid and may initiate soil fabric change,ultimately leading to liquefaction in loose sands.Thus,this work demonstrates a tool to roughly link dynamic stress wave patterns to initiation of liquefaction phenomena.
Finite element simulation of barge impact into a rigid wall
H.W. Leheta
2014-03-01
Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.
Applications of finite element simulation in orthopedic and trauma surgery.
Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis
2012-04-18
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints
Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements
Meng, Xiangning; Suzuki, Ryosuke O.
2015-06-01
The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
Finite Element Simulation of Magnesium Alloy AZ31 Tube Bending
Wu Wenyun
2016-01-01
Full Text Available A finite element method based model has been developed for magnesium alloy AZ31 tube bending process simulation, using the tensile (for bend outer radius and compressive (for bend inner radius properties of the AZ31 alloy at the bending temperature of 150°C. The results shown that very high compressive stresses are developed in the bend inner radius, limiting the minimum bend radius for the AZ31 tube. The simulation results suggest the minimum centerline bend radius to the tube outer diameter ratio is 1.5 to 2. The maximum diameter to thickness ratio is 30.
Galerkin finite-element simulation of a geothermal reservoir
Mercer, J.W.; Pinder, G.F.
1973-01-01
The equations describing fluid flow and energy transport in a porous medium can be used to formulate a mathematical model capable of simulating the transient response of a hot-water geothermal reservoir. The resulting equations can be solved accurately and efficiently using a numerical scheme which combines the finite element approach with the Galerkin method of approximation. Application of this numerical model to the Wairakei geothermal field demonstrates that hot-water geothermal fields can be simulated using numerical techniques currently available and under development. ?? 1973.
Simulating human behavior for understanding and managing environmental resource use
Jager, Wander; Mosler, Hans Joachim
2007-01-01
Computer simulation allows for the experimental study of dynamic interactions between human behavior and complex environmental systems. Behavioral determinants and processes as identified in social-scientific theory may be formalized in simulated agents to obtain a better understanding of
Toward Distinct Element Method Simulations of Carbon Nanotube Systems
Akatyeva, Evgeniya; Anderson, Tyler; Nikiforov, Ilia; Potyondy, David; Ballarini, Roberto; Dumitrica, Traian
2011-03-01
We propose distinct element method modeling of carbon nanotube systems. The atomic-level description of an individual nanotube is coarse-grained into a chain of spherical elements that interact by parallel bonds located at their contacts. The spherical elements can lump multiple translational unit cells of the carbon nanotube and have both translational and rotational degrees of freedom. The discrete long ranged interaction between nanotubes is included in a van der Waals contact of nonmechanical nature that acts simultaneously with the parallel bonds. The created mesoscopic model is put into service by simulating a realistic carbon nanotube ring. The ring morphology arises from the energy balance stored in both parallel and van der Waals bonds. We thank NSF CAREER under Grant No. CMMI-0747684, NSF under Grant No. CMMI 0800896.
High-order finite element methods for cardiac monodomain simulations
Kevin P Vincent
2015-08-01
Full Text Available Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.
Finite element based simulation of dry sliding wear
Hegadekatte, V.; Huber, N.; Kraft, O.
2005-01-01
In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.
A Guide to Finite Element Simulations of Thermal Barrier Coatings
Bäker, Martin; Seiler, Philipp
2017-08-01
To understand the stress evolution and failure mechanisms of thermal barrier coatings (TBCs), finite element simulations are an invaluable tool. Simulations are especially useful to unwrap complex interactions of different phenomena at high temperature, including creep, sintering, diffusion, and oxidation. However, the correct setup and evaluation of a finite element model for this problem are difficult. This article reviews critical issues in modelling TBC systems. Some of the most important aspects are as follows: (a) stresses in 3D simulations may differ considerably from 2D models; (b) the interface shape strongly affects the stresses and using an idealized geometry may underestimate stresses; (c) crack propagation requires simulating sufficiently large regions to correctly capture stress redistribution; (d) a correct description of the material behaviour (visco-plasticity, TGO growth, sintering) is crucial in determining the stress state. The article discusses these and other issues in detail and provides guidelines on the choice of model parameters, boundary conditions, etc. The paper also points out open questions in modelling TBC systems and discusses aspects of verification and validation.
Discrete Element Method Simulations for Complex Granular Flows
Guo, Yu; Curtis, Jennifer Sinclair
2015-01-01
This review article focuses on the modeling of complex granular flows employing the discrete element method (DEM) approach. The specific topic discussed is the application of DEM models for the study of the flow behavior of nonspherical, flexible, or cohesive particles, including particle breakage. The major sources of particle cohesion—liquid induced, electrostatics, van der Waals forces—and their implementation into DEM simulations are covered. These aspects of particle flow are of great importance in practical applications and hence are the significant foci of research at the forefront of current DEM modeling efforts. For example, DEM simulations of nonspherical grains can provide particle stress information needed to develop constitutive models for continuum-based simulations of large-scale industrial processes.
Iron: a versatile element to produce materials for environmental applications
Teixeira, Ana Paula C.; Araujo, Maria H.; Oliveira, Luiz C.A.; Moura, Flavia C.C.; Lago, Rochel M., E-mail: rochel@ufmg.br, E-mail: anapct@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Tristao, Juliana C. [Universidade Federal de Vicosa, Florestal, MG (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada; Amorim, Camila C., E-mail: juliana@ufv.br [Departamento de Engenharia Sanitaria e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)
2012-09-15
Iron is a versatile element forming several phases with different oxidation states and {sup s}tructures, such as Fe{sup 0}, FeO, Fe{sub 3}O{sub 4}, {gamma}-Fe{sub 2}O{sub 3}, {alpha}-Fe{sub 2}O{sub 3} and FeOOH. All these phases have unique physicochemical properties which can be used for different applications. In this work, it is described the use of different iron compounds, synthetic and also from natural and waste sources, in environmental and technological applications. Two main research areas are described. The first one is related to strategies to increase the reactivity of Fe phases, mainly by the formation of Fe{sup 0}/iron oxide composites and by the introduction of new metals in the iron oxide structure to promote new surface reactions. The second area is the use of the magnetic properties of some iron phases to produce versatile magnetic materials with focus in adsorption, catalysis and emulsions. (author)
Multiphase control volume finite element simulations of fractured reservoirs
Fu, Yao
With rapid evolution of hardware and software techniques in energy sector, reservoir simulation has become a powerful tool for field development planning and reservoir management. Many of the widely used commercial simulators were originally designed for structured grids and implemented with finite difference method (FDM). In recent years, technical advances in griding, fluid modeling, linear solver, reservoir and geological modeling, etc. have created new opportunities. At the same time, new reservoir simulation technology is required for solving large-scale heterogeneous problems. A three-dimensional, three-phase black-oil reservoir simulator has been developed using the control volume finite element (CVFE) formulation. Flux-based upstream weighting is employed to ensure flux continuity. The CVFE method is embedded in a fully-implicit formulation. State-of-the-art parallel, linear solvers are used. The implementation takes the advantages of object-oriented programming capabilities of C++ to provide maximum reuse and extensibility for future students. The results from the simulator have excellent agreement with those from commercial simulators. The convergence properties of the new simulator are verified using the method of manufactured solutions. The pressure and saturation solutions are verified to be first-order convergent as expected. The efficiency of the simulators and their capability to handle real large-scale field models are improved by implementing the models in parallel. Another aspect of the work dealt with multiphase flow of fractured reservoirs was performed. The discrete-fracture model is implemented in the simulator. Fractures and faults are represented by lines and planes in two- and three-dimensional spaces, respectively. The difficult task of generating an unstructured mesh for complex domains with fractures and faults is accomplished in this study. Applications of this model for two-phase and three-phase simulations in a variety of fractured
Finite element simulation of food transport through the esophageal body
Wei Yang; Tat Ching Fung; Kerm Sim Chian; Chuh Khiun Chong
2007-01-01
The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structuremechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore,the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.
Finite Element Simulation of the Optical Modes of Semiconductor Lasers
Pomplun, J; Schmidt, F; Schliwa, A; Bimberg, D; Pietrzak, A; Wenzel, H; Erbert, G; 10.1002/pssb.200945451
2010-01-01
In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.
Boundary element simulation of petroleum reservoirs with hydraulically fractured wells
Pecher, Radek
The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced
Assessing performance and validating finite element simulations using probabilistic knowledge
Dolin, Ronald M.; Rodriguez, E. A. (Edward A.)
2002-01-01
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrence results are used to validate finite element predictions.
Thresholds of geographic environmental elements in sediment yield of drainage basins
CHEN; Hao; ZHOU; Jinxing; CAI; Qiangguo; LU; Zhongchen; LI
2005-01-01
Threshold of environmental elements in drainage basin sediment yield refers to, under effect of climate, underlying surface and human activity, a turning point of abrupt changes in drainage sediment yield related to environmental element characteristics. Previous studies on threshold of sediment yield of relevant drainage basins were mainly concentrated on impact of natural zones with a few researches on impact of other environmental elements. Particularly studies on compound environmental element threshold in drainage basin sediment yield remain blank today. Studies indicate that sediment yield in drainage basins is affected by compound interactions and complex actions. Based on single element analysis, the present paper gives quantitatively compound threshold of environmental elements affecting sediment yield of the drainage basin between Hekouzhen and Tongguan in the middle Yellow River by the method of multi-variant, polynomial formula regression analysis.
Quench simulations for superconducting elements in the LHC accelerator
Sonnemann, F
2000-01-01
The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the ﬁnite di ﬀerence method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic ﬁeld change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...
Finite element simulations of the bending of the IPMC sheet
Pugal, D.; Kasemägi, H.; Kim, K. J.; Kruusmaa, M.; Aabloo, A.
2007-04-01
This paper presents a electro-mechanical model of an IPMC sheet. The model is developed using Finite Element method. The physical bending of an IPMC sheet due to the drift of counter-ions (e.g Na+) and water in applied electric field are simulated. Our model establishes a cause-effect relationship between the charge imbalance of the counter-ions and the mechanical bending of the IPMC sheet. The model takes into account the mechanical properties of the Nafion polymer as well as the platinum coating. As the simulations are time dependent, a transient model is used and some additional parameters, such as damping coefficients, are included. In addition to electro-mechanical model, electrochemical reactions are introduced. Equations describing periodic adsorption and desorption of CO and OH on a platinum electrode of an IPMC muscle immersed into formaldehyde solution are coupled to mechanical properties of the proposed model. This permits us to simulate self-oscillatory behavious of an IPMC sheet. The simulation results are compared to experimental data.
Finite Element Modeling, Simulation, Tools, and Capabilities at Superform
Raman, Hari; Barnes, A. J.
2010-06-01
Over the past thirty years Superform has been a pioneer in the SPF arena, having developed a keen understanding of the process and a range of unique forming techniques to meet varying market needs. Superform’s high-profile list of customers includes Boeing, Airbus, Aston Martin, Ford, and Rolls Royce. One of the more recent additions to Superform’s technical know-how is finite element modeling and simulation. Finite element modeling is a powerful numerical technique which when applied to SPF provides a host of benefits including accurate prediction of strain levels in a part, presence of wrinkles and predicting pressure cycles optimized for time and part thickness. This paper outlines a brief history of finite element modeling applied to SPF and then reviews some of the modeling tools and techniques that Superform have applied and continue to do so to successfully superplastically form complex-shaped parts. The advantages of employing modeling at the design stage are discussed and illustrated with real-world examples.
Finite element simulations of thin-film composite BAW resonators.
Makkonen, T; Holappa, A; Ellä, J; Salomaa, M M
2001-09-01
A finite element method (FEM) formulation is presented for the numerical solution of the electroelastic equations that govern the linear forced vibrations of piezoelectric media. A harmonic time dependence is assumed. Both of the approaches, that of solving the field problem (harmonic analysis) and that of solving the corresponding eigenvalue problem (modal analysis), are described. A FEM software package has been created from scratch. Important aspects central to the efficient implementation of FEM are explained, such as memory management and solving the generalized piezoelectric eigenvalue problem. Algorithms for reducing the required computer memory through optimization of the matrix profile, as well as Lanczos algorithm for the solution of the eigenvalue problem are linked into the software from external numerical libraries. Our FEM software is applied to detailed numerical modeling of thin-film bulk acoustic wave (BAW) composite resonators. Comparison of results from 2D and full 39 simulations of a resonator are presented. In particular, 3D simulations are used to investigate the effect of the top electrode shape on the resonator electrical response. The validity of the modeling technique is demonstrated by comparing the simulated and measured displacement profiles at several frequencies. The results show that useful information on the performance of the thin-film resonators can be obtained even with relatively coarse meshes and, consequently, moderate computational resources.
Montecarlo simulation for a new high resolution elemental analysis methodology
Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion
1996-12-31
Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)
任曼; 邓海琳
2004-01-01
In recent years, the modern methods of multi-element analysis of precious metals have attracted wide attention in scientific research and industry. The application and development in the decomposition of samples, separation and enrichment, and modern instrumental analysis of the platinum-group elements (PGEs) and gold in geological and environmental samples have been reviewed. Finally, the tendency of analysis of precious metals is also prospected.
Biomechanical simulation of thorax deformation using finite element approach.
Zhang, Guangzhi; Chen, Xian; Ohgi, Junji; Miura, Toshiro; Nakamoto, Akira; Matsumura, Chikanori; Sugiura, Seiryo; Hisada, Toshiaki
2016-02-06
The biomechanical simulation of the human respiratory system is expected to be a useful tool for the diagnosis and treatment of respiratory diseases. Because the deformation of the thorax significantly influences airflow in the lungs, we focused on simulating the thorax deformation by introducing contraction of the intercostal muscles and diaphragm, which are the main muscles responsible for the thorax deformation during breathing. We constructed a finite element model of the thorax, including the rib cage, intercostal muscles, and diaphragm. To reproduce the muscle contractions, we introduced the Hill-type transversely isotropic hyperelastic continuum skeletal muscle model, which allows the intercostal muscles and diaphragm to contract along the direction of the fibres with clinically measurable muscle activation and active force-length relationship. The anatomical fibre orientations of the intercostal muscles and diaphragm were introduced. Thorax deformation consists of movements of the ribs and diaphragm. By activating muscles, we were able to reproduce the pump-handle and bucket-handle motions for the ribs and the clinically observed motion for the diaphragm. In order to confirm the effectiveness of this approach, we simulated the thorax deformation during normal quiet breathing and compared the results with four-dimensional computed tomography (4D-CT) images for verification. Thorax deformation can be simulated by modelling the respiratory muscles according to continuum mechanics and by introducing muscle contractions. The reproduction of representative motions of the ribs and diaphragm and the comparison of the thorax deformations during normal quiet breathing with 4D-CT images demonstrated the effectiveness of the proposed approach. This work may provide a platform for establishing a computational mechanics model of the human respiratory system.
A Boundary Element Method for Simulation of Deformable Objects
徐美和; 唐泽圣
1996-01-01
In this paper,a boundary element method is first applied to real-tim animation of deformable objects and to simplify data preparation.Next,the visibleexternal surface of the object in deforming process is represented by B-spline surface,whose control points are embedded in dynamic equations of BEM.Fi-nally,the above method is applied to anatomical simulation.A pituitary model in human brain,which is reconstructed from a set of anatomical sections, is selected to be the deformable object under action of virtual tool such as scapel or probe.It produces fair graphic realism and high speed performance.The results show that BEM not only has less computational expense than FEM,but also is convenient to combine with the 3D reconstruction and surface modeling as it enables the reduction of the dimensionality of the problem by one.
FINITE ELEMENT METHOD AND ANALYSIS FOR CHEMICAL-FLOODING SIMULATION
YUAN Yirang
2000-01-01
This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactants, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problems. From the actual conditions such as the effect of cross interference and the three-dimensional characteristic of large-scale science-engineering computation, this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estimates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, R. E. Ewing.
Adaptive model reduction for nonsmooth discrete element simulation
Servin, Martin
2015-01-01
A method for adaptive model order reduction for nonsmooth discrete element simulation is developed and analysed in numerical experiments. Regions of the granular media that collectively move as rigid bodies are substituted with rigid bodies of the corresponding shape and mass distribution. The method also support particles merging with articulated multibody systems. A model approximation error is defined used for deriving and conditions for when and where to apply model reduction and refinement back into particles and smaller rigid bodies. Three methods for refinement are proposed and tested: prediction from contact events, trial solutions computed in the background and using split sensors. The computational performance can be increased by 5 - 50 times for model reduction level between 70 - 95 %.
Viscous incompressible flow simulation using penalty finite element method
Sharma R.L.
2012-04-01
Full Text Available Numerical analysis of Navier–Stokes equations in velocity– pressure variables with traction boundary conditions for isothermal incompressible flow is presented. Specific to this study is formulation of boundary conditions on synthetic boundary characterized by traction due to friction and surface tension. The traction and open boundary conditions have been investigated in detail. Navier-Stokes equations are discretized in time using Crank-Nicolson scheme and in space using Galerkin finite element method. Pressure being unknown and is decoupled from the computations. It is determined as post processing of the velocity field. The justification to simulate this class of flow problems is presented through benchmark tests - classical lid-driven cavity flowwidely used by numerous authors due to its simple geometry and complicated flow behavior and squeezed flow between two parallel plates amenable to analytical solution. Results are presented for very low to high Reynolds numbers and compared with the benchmark results.
Adaptive model reduction for nonsmooth discrete element simulation
Servin, Martin; Wang, Da
2016-03-01
A method for adaptive model order reduction for nonsmooth discrete element simulation is developed and analysed in numerical experiments. Regions of the granular media that collectively move as rigid bodies are substituted with rigid bodies of the corresponding shape and mass distribution. The method also support particles merging with articulated multibody systems. A model approximation error is defined and used to derive conditions for when and where to apply reduction and refinement back into particles and smaller rigid bodies. Three methods for refinement are proposed and tested: prediction from contact events, trial solutions computed in the background and using split sensors. The computational performance can be increased by 5-50 times for model reduction level between 70-95 %.
Finite element simulations on the mechanical properties of MHS materials
Z.Y.Gao; T.X.Yu; D.Karagiozova
2007-01-01
Finite element simulations are carried out toexamine the mechanical behavior of the metallic hollowsphere (MHS) material during their large plastic defor-mation and to estimate the energy absorbing capac-ity of these materials under uniaxial compression.Asimplified model is proposed from experimental obser-vations to describe the connection between theneighboring spheres,which greatly improves the com-putation efficiency.The effects of the governing physi-cal and geometrical parameters are evaluated; whilst aspecial attention is paid to the plateau stress,which isdirectly related to the energy absorbing capacity.Finally,the empirical functions of the relative material densityare proposed for the elastic modulus,yield strength andplateau stress for FCC packing arrangement of hollowspheres,showing a good agreement with the experimen-tal results obtained in our previous study.
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Trace elements in coal. Environmental and health significance
Finkelman, R.B.
1999-01-01
Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.
Discrete-element method simulations: from micro to macro scales.
Heyes, D M; Baxter, J; Tüzün, U; Qin, R S
2004-09-15
Many liquid systems encountered in environmental science are often complex mixtures of many components which place severe demands on traditional computational modelling techniques. A meso scale description is required to account adequately for their flow behaviour on the meso and macro scales. Traditional techniques of computational fluid dynamics and molecular simulation are not well suited to tackling these systems, and researchers are increasingly turning to a range of relatively new computational techniques that offer the prospect of addressing the factors relevant to multicomponent multiphase liquids on length- and time-scales between the molecular level and the macro scale. In this category, we discuss the off-lattice techniques of 'smooth particle hydrodynamics' (SPH) and 'dissipative particle dynamics' (DPD), and the grid-based techniques of 'lattice gas' and 'lattice Boltzmann' (LB). We highlight the main conceptual and technical features underpinning these methods, their strengths and weaknesses, and provide a few examples of the applications of these techniques that illustrate their utility.
Simulating human behavior for understanding and managing environmental resource use
Jager, Wander; Mosler, Hans Joachim
2007-01-01
Computer simulation allows for the experimental study of dynamic interactions between human behavior and complex environmental systems. Behavioral determinants and processes as identified in social-scientific theory may be formalized in simulated agents to obtain a better understanding of man-enviro
Three-dimensional nanoelectronic device simulation using spectral element methods
Cheng, Candong
The purpose of this thesis is to develop an efficient 3-Dimensional (3-D) nanoelectronic device simulator. Specifically, the self-consistent Schrodinger-Poisson model was implemented in this simulator to simulate band structures and quantum transport properties. Also, an efficient fast algorithm, spectral element method (SEM), was used in this simulator to achieve spectral accuracy where the error decreases exponentially with the increase of sampling densities and the basis order of the polynomial functions, thus significantly reducing the CPU time and memory usage. Moreover, within this simulator, a perfectly matched layer (PML) boundary condition method was used for the Schrodinger solver, which significantly simplifies the problem and reduces the computational time. Furthermore, the effective mass in semiconductor devices was treated as a full anisotropic mass tensor, which provides an excellent tool to study the anisotropy characteristics along arbitrary orientation of the device. Nanoelectronic devices usually involve the simulations of energy band and quantum transport properties. One of the models to perform these simulations is by solving a self-consistent Schrodinger-Poisson system. Two efficient fast algorithms, spectral grid method (SGM) and SEM, are investigated and implemented in this thesis. The spectral accuracy is achieved in both algorithms, whose errors decrease exponentially with the increase of the sampling density and basis orders. The spectral grid method is a pseudospectral method to achieve a high-accuracy result by choosing special nonuniform grid set and high-order Lagrange interpolants for a partial differential equation. Spectral element method is a high-order finite element method which uses the Gauss-Lobatto-Legendre (GLL) polynomials to represent the field variables in the Schrodinger-Poisson system and, therefore, to achieve spectral accuracy. We have implemented the SGM in the Schrodinger equation to solve the energy band structures
The relative contributions of climatic elements and environmental ...
SEJUP
2013-08-01
Aug 1, 2013 ... environmental factors to flooding in Awka urban area. E. E. Ezenwaji1* ... Finally, policy and planning implications of the study were discussed, while it was ... according to the Koppen's classification system with a clear cycle of.
Robotic Surgery Simulator: Elements to Build a Training Program.
Tillou, Xavier; Collon, Sylvie; Martin-Francois, Sandrine; Doerfler, Arnaud
2016-01-01
Face, content, and construct validity of robotic surgery simulators were confirmed in the literature by several studies, but elements to build a training program are still lacking. The aim of our study was to validate a progressive training program and to assess according to prior surgical experience the amount of training needed with a robotic simulator to complete the program. Exercises using the Da Vinci Skill Simulator were chosen to ensure progressive learning. A new exercise could only be started if a minimal score of 80% was achieved in the prior one. The number of repetitions to achieve an exercise was not limited. We devised a "performance index" by calculating the ratio of the sum of scores for each exercise over the number of repetitions needed to complete the exercise with at least an 80% score. The study took place at the François Baclesse Cancer Center. Participants all work at the primary care university Hospital located next to the cancer center. A total of 32 surgeons participated in the study- 2 experienced surgeons, 8 junior and 8 senior residents in surgery, 6 registrars, and 6 attending surgeons. There was no difference between junior and senior residents, whereas the registrars had better results (p < 0.0001). The registrars performed less exercise repetitions compared to the junior or senior residents (p = 0.012). Attending surgeons performed significantly more repetitions than registrars (p = 0.024), but they performed fewer repetitions than junior or senior residents with no statistical difference (p = 0.09). The registrars had a performance index of 50, which is the best result among all novice groups. Attending surgeons were between senior and junior residents with an index at 33.85. Choice of basic exercises to manipulate different elements of the robotic surgery console in a specific and progressive order enables rapid progress. The level of prior experience in laparoscopic surgery affects outcomes. More advanced laparoscopic expertise
Lichens (Parmelia sulcata) time response model to environmental elemental availability
Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.T.
1999-01-01
Parmelia sulcata transplants, collected in a non-polluted area, were exposed to new atmospheric conditions at six stations, of which five were located near power plants and one at an unpolluted area. Data were collected for a 1-year period, on rainfall, airborne particulates, elemental deposition an
Lichens (Parmelia sulcata) time response model to environmental elemental availability
Reis, M.A.; Alves, L.C.; Freitas, M.C.; Os, B. van; Wolterbeek, H.T.
1999-01-01
Parmelia sulcata transplants, collected in a non-polluted area, were exposed to new atmospheric conditions at six stations, of which five were located near power plants and one at an unpolluted area. Data were collected for a 1-year period, on rainfall, airborne particulates, elemental deposition an
Environmental lichenology: Biomonitoring trace-element air pollution
Sloof, J.E.
1993-09-27
Chapter 1 describes the possibilities to study trace-element air pollution in order to get insight in the character and element levels of such pollution. Chapter 2 describes two monitoring surveys using Parmelia sulcata Taylor on a national scale, in which spatial and temporal patterns of heavy metals were investigated. The surveys were carried out in 1982-1983 at 110 sampling sites and in 1986-1987 at 210 sampling sites. From these studies it was concluded that lichens are at least good qualitative biomonitors for atmospheric trace-element levels. Chapter 3 describes the response of lichens to the cesium-137 activity as a result of the Chernobyl accident, deposited by rainfall in the Netherlands. From this study it was concluded that lichens are good biomonitors for atmospheric cesium-137 activity too. Chapter 4 describes the application of factor analysis to a lichen data set from a monitoring survey on a national scale (1986-1987), for source apportionment. In Chapter 5 a field study is described on the contribution of a possible influence from the soil to element concentrations in Parmelia sulcata Taylor growing on trees in a an area with polluted soil. Chapter 6 describes a field study on the interchangeability of two tolerant lichen species (Parmelia sulcata Taylor and Lecanora conizaeoides Nyl.) in a polluted area. In Chapter 7 a field study is described in which the quantitative relationships between concentrations of cobalt, scandium and zinc in lichens and concentrations in air particulate matter and total deposition (wet and dry) were investigated. Chapter 8 describes a laboratory study on the kinetics of the uptake-and release of cadmium in a green algae species (Selenastrum capricornutum Printz), which is regarded to be representative for the algal symboint in the lichens used in this thesis. Chapter 9 presents the central conclusions of this thesis for the lichen species, elements and conditions under study. (orig./MG).
DAMAGE – CONSTITUTIVE ELEMENT OF TORT LIABILITY IN ENVIRONMENTAL LAW
ANDRADA TRUSCA
2011-04-01
Full Text Available In order to discuss about tort liability, several conditions need to exist: the illicit act, damage, causal link between the illicit act and damage, and last but not least, illicit offender fault. Thus, the damage is a sine qua non condition of tort liability, the illicit act being necessary but insufficient for its employment. Damage was defined as the harmful result, with a patrimonial or a non patrimonial nature, a result of violations of subjective rights and legitimate interests of an individual. It is known that the patrimonial damage does not present special discussions, but in terms of non patrimonial damage is required to be made a few observations. In the expression of environmental damage caused by pollution, it is used phrases like "environmental damage" or "environmental prejudice" including both the damages suffered by the natural environment through pollution as well as those incurred by the person or property, other than those in natural environment. In this paper we propose to analyze the environmental damage with special attention on the non patrimonial damage, both theoretically, but also in terms of jurisprudence.
Lower extremity finite element model for crash simulation
Schauer, D.A.; Perfect, S.A.
1996-03-01
A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.
Computer simulation of diffractive optical element (DOE) performance
Delacour, Jacques F.; Venturino, Jean-Claude; Gouedard, Yannick
2004-02-01
Diffractive optical elements (DOE), also known as computer generated holograms (CGH), can transform an illuminating laser beam into a specified intensity distribution by diffraction rather than refraction or reflection. These are widely used in coherent light systems with beam shaping purposes, as an alignment tool or as a structured light generator. The diffractive surface is split into an array of sub-wavelength depth cells. Each of these locally transforms the beam by phase adaptation. Based on the work of the LSP lab from the University of Strasbourg, France, we have developed a unique industry-oriented tool. It allows the user first to optimize a DOE using the Gerchberg-Saxton algorithm. This part can manage sources from the simple plane wave to high order Gaussian modes or complex maps defined beams and objective patterns based on BMP images. A simulation part permits then to test the performance of the DOE with regard to system parameters, dealing with the beam, the DOE itself and the system organization. This will meet the needs of people concerned by tolerancing issues. Focusing on the industrial problem of beam shaping, we will present the whole DOE design sequence, starting from the generation of a DOE up to the study of the sensitivity of its performance according to the variation of several parameters of the system. For example, we will show the influence of the position of the beam on diffraction efficiency. This unique feature formerly neglected in industrial design process will lead the way to production quality improvement.
Air Gun Launch Simulation Modeling and Finite Element Model Sensitivity Analysis
2006-01-01
Air Gun Launch Simulation Modeling and Finite Element Model Sensitivity Analysis by Mostafiz R. Chowdhury and Ala Tabiei ARL-TR-3703...Adelphi, MD 20783-1145 ARL-TR-3703 January 2006 Air Gun Launch Simulation Modeling and Finite Element Model Sensitivity Analysis...GRANT NUMBER 4. TITLE AND SUBTITLE Air Gun Launch Simulation Modeling and Finite Element Model Sensitivity Analysis 5c. PROGRAM
Posner, Glenn; Humphrey-Murto, Susan
2017-01-01
Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern’s approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution. PMID:28280655
Chiu, Michelle; Posner, Glenn; Humphrey-Murto, Susan
2017-01-27
Simulation-based education has gained popularity, yet many faculty members feel inadequately prepared to teach using this technique. Fellowship training in medical education exists, but there is little information regarding simulation or formal educational programs therein. In our institution, simulation fellowships were offered by individual clinical departments. We recognized the need for a formal curriculum in educational theory. Kern's approach to curriculum development was used to develop, implement, and evaluate the Foundational Elements of Applied Simulation Theory (FEAST) curriculum. Needs assessments resulted in a 26-topic curriculum; each biweekly session built upon the previous. Components essential to success included setting goals and objectives for each interactive session and having dedicated faculty, collaborative leadership and administrative support for the curriculum. Evaluation data was collated and analyzed annually via anonymous feedback surveys, focus groups, and retrospective pre-post self-assessment questionnaires. Data collected from 32 fellows over five years of implementation showed that the curriculum improved knowledge, challenged thinking, and was excellent preparation for a career in simulation-based medical education. Themes arising from focus groups demonstrated that participants valued faculty expertise and the structure, practicality, and content of the curriculum. We present a longitudinal simulation educator curriculum that adheres to a well-described framework of curriculum development. Program evaluation shows that FEAST has increased participant knowledge in key areas relevant to simulation-based education and that the curriculum has been successful in meeting the needs of novice simulation educators. Insights and practice points are offered for educators wishing to implement a similar curriculum in their institution.
Environmental impact of trace element emissions from geothermal power plants.
Bargagli, R; Cateni, D; Nelli, L; Olmastroni, S; Zagarese, B
1997-08-01
Concentrations of several trace elements were determined in mosses, higher plants and organs of small mammals from a geothermal area in Tuscany (central Italy). Increased deposition of Hg, As, B, and Sb was detected in biological samples collected within a few hundred meters of geothermal power plants. Among the species considered, the moss Hypnum cupressiforme was the most efficient accumulator of trace elements. Contamination levels in a fodder-plant (Hedysarum coronarium) and vegetables grown in the geothermal field did not seem to pose health risks for consumers. However, a statistically significant increase in Hg, B, and As concentrations was found in the kidney and muscle of small mammals living close to geothermal installations. Biological effects of B pollution were detected in two sensitive plant species. In view of plans to increase the exploitation of geothermal resources in the area, adequate measures to monitor the environment should be taken. Mosses are the most suitable accumulative biomonitors for a surveillance network, and studies on small mammal populations should be intensified. Available technologies should be used to diminish atmospheric emissions from geothermal power plants.
POLICY ISSUES ASSOCIATED WITH USING SIMULATION TO ASSESS ENVIRONMENTAL IMPACTS
Uchitel, Kirsten; Tanana, Heather
2014-11-01
This report examines the relationship between simulation-based science and judicial assessments of simulations or models supporting evaluations of environmental harms or risks, considering both how it exists currently and how it might be shaped in the future. This report considers the legal standards relevant to judicial assessments of simulation-based science and provides examples of the judicial application of those legal standards. Next, this report discusses the factors that inform whether there is a correlation between the sophistication of a challenged simulation and judicial support for that simulation. Finally, this report examines legal analysis of the broader issues that must be addressed for simulation-based science to be better understood and utilized in the context of judicial challenge and evaluation. !
Evaluation on environmental quality for heavy metal elements of Xihe soil
Aijun WU
2008-01-01
According to "Environmental quality standard for soil" and using As, Cd, Cr, Cu, Hg, Ni, Pb, Zn elements as evaluation index, the author evaluated soil environmental quality in Xihe area of Shenyang. The results show that the soil in Xihe area is polluted rifely by heavy metal elements. The polluted areas are mainly distributed near the upstreams of Xihe River, Shenxin River and Shenliao irrigation canal. There exist large distinctions among the heavy metal elements to the pollution degree. Cd pollution area is the biggest and the most serious in pollution degree.
Finite Element Simulation of the Mechanical Properties of Mineralized Biomaterials
Yuan, Fang
Mineralized biomaterials are natural composite materials with both biomineral and biopolymer phases. They have attracted intense attention in the past decades, due to their outstanding mechanical properties and great potential as future materials. Such exceptional properties are believed to be attributed to their complex structures. Therefore, two different mineralized biomaterials (bone and sea urchin spine) were studied mainly by the finite element method and their structure-mechanical properties relationships were investigated. The research on bone was performed with a bottom-up approach. We focused on the nanoscale level structure-properties relationship first: the models of mineralized collagen fibril, consisting of hydroxyapatite platelets aligned within a collagen matrix, were created and the importance of the parameters defining its structure and constituent properties was evaluated. With the elastic model well established, the long-term mechanical behavior at nanoscale level was studied. The viscoelastic properties of undamaged collagen phase were deduced from low-irradiation-dosage creep measurements, then different damage scenarios were evaluated to explain the evolution of phase strains with larger irradiation dosage. The higher level structure-properties relationship of bone was simulated by two different approaches: 1) Assuming the macroscopic composite strain was comparable to nanoscale fibrillar strain, then based on nanoscale model, the macroscopic distributions of nanoscale phase strains were investigated; 2) Considering the structural complexity of bone at several length scales, the effective properties from lower scales were applied as the input properties at higher scales, and the elastic properties at each level were investigated. The computational results were validated by experimental data obtained by synchrotron X-ray diffraction and show the mechanical properties of bone are greatly influenced by its structure. The research on sea urchin
Kai Liu
2016-06-01
Full Text Available Signals in long-distance pipes are complex due to flow-induced noise generated in special structure, and the computation of these noise sources is difficult and time-consuming. To address this problem, a hybrid method based on computational fluid dynamics and Lighthill’s acoustic analogy theory is proposed to simulate flow-induced noise, with the results showing that the method is sufficient for noise predictions. The proposed method computes the turbulent flow field using detached eddy simulation and then calculates turbulence-generated sound using the finite element acoustic analogy method, which solves acoustic sources as volume sources. The velocity field obtained in the detached eddy simulation computation provides the sound source through interpolation between the computational fluid dynamics and acoustic meshes. The hybrid method is validated and assessed by comparing data from the cavity in pipe and large eddy simulation results. The peak value of flow-induced noise calculated at the monitor point is in good agreement with experimental data available in the literature.
Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release.
Park, Sangjin; Kim, Changhwan; Lee, Daesang; Song, Dong Hyun; Cheon, Ki Cheol; Lee, Hong Suk; Kim, Seong Joo; Kim, Jee Cheon; Lee, Sang Yup
2017-05-01
For a surrogate bacterium to be used in outdoor studies, it is important to consider environmental and human safety and ease of detection. Recently, Bacillus thuringiensis, a popular bioinsecticide bacterium, has been gaining attention as a surrogate bacterium for use in biodefense. In this study, we constructed simulant strains of B. thuringiensis with enhanced characteristics for environmental studies. Through transposon mutagenesis, pigment genes were inserted into the chromosome, producing yellow-colored colonies for easy detection. To prevent persistence of spores in the environment, a genetic circuit was designed to produce a spore without sporulation capability. Two loxP sites were inserted, one on each side of the spo0A gene, which encodes a sporulation master regulator, and a sporulation-dependent Cre expression cassette was inserted into the chromosome. This genetic circuit successfully deleted spo0A during sporulation, producing spores that lacked the spo0A gene. In addition, two major α/β-type small acid-soluble spore protein (SASP) genes, predicted by synteny analysis, were deleted. The spores of the mutant strain showed increased UV-C sensitivity and quickly lost viability when tested in a solar simulator. When the spores of the mutant strain were administered to the lungs of BALB/c mice, cells were quickly removed from the body, suggesting enhanced in vivo safety. All strains constructed in this study contain no antibiotic resistance markers and all heterologous genes were inserted into the chromosome, which are useful features for simulants to be released into the environment.IMPORTANCEB. thuringiensis has recently been receiving increasing attention as a good spore simulant in biodefense research. However, few studies were done to properly address many important features of B. thuringiensis as a simulant in environmental studies. Since spores can persist in the environment for years after release, environmental contamination is a big problem
Element test experiments and simulations: from dry towards cohesive powders
Imole, O.I.; Kumar, N.; Luding, S.; Onate, E.; Owen, D.R.J.
2011-01-01
Findings from experiments and particle simulations for dry and cohesive granular materials are presented with the goal to reach quantitative agreement between simulations and experiments. Results for the compressibility, tested with the FT4 Powder Rheometer are presented. The first simulation result
Reichmann T. [Siemens AG, Erlangen (Germany). Transportation Systems
2005-02-01
When developing overhead contact line systems and assessing their conformity simulation of the interaction with pantographs is not anymore dispensable today. The tools used for simulation must model flexibly and precisely all parameters of the contact line and deliver findings, which correspond reliably to measurements of the current collection quality. Simulations adopting the finite element method comply with these requirements and, due to the high capacity of computers available today, can be used advantageously to study the interaction and other features. (orig.)
Navarro, Carla; Díaz, Mario; Villa-García, María A
2010-07-15
The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage.
Finite element simulation of influences of grain interaction on rolling textures of fcc metals
TANG Jian-guo; ZHANG Xin-ming; CHEN Zhi-yong; DENG Yun-lai
2006-01-01
A rate dependent crystal plasticity constitutive model considering self and latent hardening in finite element analysis was developed to simulate rolling textures of pure aluminum. By changing the assignment of orientations to finite elements, i.e. assigning the same set of orientations to all elements or different orientations to different elements, the influences of grain interaction on the formation of rolling textures were numerically simulated with this kind of crystal plasticity finite element model. The simulation results reveal that the grains without considering grain interaction rotate faster than those considering grain interaction, and the rotation of grain boundary is slowed down due to the grain interaction. For a good simulation more elements should be assigned to one grain, in which the effects of both the boundary and interior parts of grain contribute to the formation of rolling textures.
Simulation of a soil loosening process by means of the modified distinct element method
Momuzu, M.; Oida, A.; Yamazaki, M.; Koolen, A.J.
2002-01-01
We apply the Distinct Element Method (DEM) to analyze the dynamic behavior of soil. However, the conventional DEM model for calculation of contact forces between elements has some problems; for example, the movement of elements is too discrete to simulate real soil particle movement. Therefore, we m
Geodynamic simulations using the fast multipole boundary element method
Drombosky, Tyler W.
Interaction between viscous fluids models two important phenomena in geophysics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-Velocity Zones. Previous attempts to numerically model these behaviors have been plagued either by poor resolution at the fluid interfaces or high computational costs. We employ the Fast Multipole Boundary Element Method, which tracks the evolution of the fluid interfaces explicitly and is scalable to large problems, to model these systems. The microstructure of partially molten rocks strongly influences the macroscopic physical properties. The fractional area of intergranular contact, contiguity, is a key parameter that controls the elastic strength of the grain network in the partially molten aggregate. We study the influence of matrix deformation on the contiguity of an aggregate by carrying out pure shear and simple shear deformations of an aggregate. We observe that the differential shortening, the normalized difference between the major and minor axes of grains is inversely related to the ratio between the principal components of the contiguity tensor. From the numerical results, we calculate the seismic anisotropy resulting from melt redistribution during pure and simple shear deformation. During deformation, the melt is expelled from tubules along three grain corners to films along grain edges. The initially isotropic fractional area of intergranular contact, contiguity, becomes anisotropic due to deformation. Consequently, the component of contiguity evaluated on the plane parallel to the axis of maximum compressive stress decreases. We demonstrate that the observed global shear wave anisotropy and shear wave speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by 0.1 vol% partial melt distributed in horizontal films created by deformation. We use our microsimulation in conjunction with a large scale mantle deep Earth simulation to gain insight into the formation of
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-01-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.
Angular Distribution of Element Contents in Tree Rings and the Environmental Information
KESHANZHE; QIANJUNLONG; 等
1999-01-01
Element contents of tree rings and soils near tree roots collected from Deodar cedar (Cedrus deodara (Roxb.) G.Don) and Masson pine(Pinus massoniana lamb).were determined to study the relationship between the angular distribution of element contents in tree rings and the environmental information.The chemical composition and properties of soil are very much cmoplicated,which leads to the non-uniform distribution of the element contents in tree rings.The statistical multi-varialbe regression method was used to get the information of the tree-centered distribution of element contents in the environment(soil),(C'),C'(Z,θj),from the distribtuion of element contents in tree rings(C),C(Z,θi),which depends on the plane azimuth angle(θi),i.e.,C=C(Z,θi),where Z is the atomic number of the element,with a satisfactory result though this study is only a primary one.
Finite element modeling and simulation with ANSYS workbench
Chen, Xiaolin
2014-01-01
IntroductionSome Basic ConceptsAn Example in FEA: Spring SystemOverview of ANSYS WorkbenchSummaryProblemsBars and TrussesIntroductionReview of the 1-D Elasticity TheoryModeling of TrussesFormulation of the Bar ElementExamples with Bar ElementsCase Study with ANSYS WorkbenchSummaryProblemsBeams and FramesIntroductionReview of the Beam TheoryModeling of Beams and FramesFormulation of the Beam ElementExamples with Beam ElementsCase Study with ANSYS WorkbenchSummaryProblemsTwo-Dimensional ElasticityIntroductionReview of 2-D Elasticity TheoryModeling of 2-D Elasticity ProblemsFormulation of the Pla
2008-01-01
Elemental carbon was extracted from sediments by chemical oxidation and identified by Raman spectroscopy.The experimental results indicate that elemental carbon,defined by processing,is a continuum ranging from single crystal graphite to amorphous carbon.Chemical oxidation is a feasible method to extract elemental carbon from sediments,and when experimental condition and time are properly controlled,it can remove organic carbon without any loss of elemental carbon.However,due to the differences in experimental conditions and methods,different results have been obtained.Therefore,we believe that the determination of standard sample and its concentration as well as the unification of the experimental method are of great importance.Also,the unification and definition of all these carbon particulates can facilitate transect comparison and further research in related fields.In profile research,elemental carbon was extracted and determined by using the same method.The elemental carbon curve tends to change with other climatic proxies,indicating elemental carbon can provide another new proxy for climatic and environmental changes.Based on the analysis,we deduce that the elemental carbon record has different implications for climate and environmental changes on different timescales.
Ash, Christopher; Borůvka, Luboš; Tejnecký, Václav; Šebek, Ondřej; Nikodem, Antonín; Drábek, Ondřej
2013-11-15
Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters.
Tomosato Takada; Kazuo Kashiyama
2008-01-01
This paper presents an urban modeling system using CAD/GIS data for atmosphere environ- mental simulation, such as wind flow and contaminant spread in urban area. The CAD data is used for the shape modeling for the high-storied buildings and civil structures with complicated shape since the data for that is not included in the 3D-GIS data accurately. The unstructured mesh based on the tetrahedron element is employed in order to express the urban structures with complicated shape accurately. It is difficult to un- derstand the quality of shape model and mesh by the conventional visualization technique. In this paper, the stereoscopic visualization using virtual reality (VR) technology is employed for the vedfication of the quality of shape model and mesh. The present system is applied to the atmosphere environmental simulation in ur- ban area and is shown to be an useful planning and design tool to investigate the atmosphere environmental problem.
Ali Abdul-Aziz
2014-01-01
Full Text Available The necessity for a protecting guard for the popular ceramic matrix composites (CMCs is getting a lot of attention from engine manufacturers and aerospace companies. The CMC has a weight advantage over standard metallic materials and more performance benefits. However, these materials undergo degradation that typically includes coating interface oxidation as opposed to moisture induced matrix which is generally seen at a higher temperature. Additionally, other factors such as residual stresses, coating process related flaws, and casting conditions may influence the degradation of their mechanical properties. These durability considerations are being addressed by introducing highly specialized form of environmental barrier coating (EBC that is being developed and explored in particular for high temperature applications greater than 1100°C. As a result, a novel computational simulation approach is presented to predict life for EBC/CMC specimen using the finite element method augmented with progressive failure analysis (PFA that included durability, damage tracking, and material degradation model. The life assessment is carried out using both micromechanics and macromechanics properties. The macromechanics properties yielded a more conservative life for the CMC specimen as compared to that obtained from the micromechanics with fiber and matrix properties as input.
Elements of a computational infrastructure for social simulation.
Birkin, Mark; Procter, Rob; Allan, Rob; Bechhofer, Sean; Buchan, Iain; Goble, Carole; Hudson-Smith, Andy; Lambert, Paul; De Roure, David; Sinnott, Richard
2010-08-28
Applications of simulation modelling in social science domains are varied and increasingly widespread. The effective deployment of simulation models depends on access to diverse datasets, the use of analysis capabilities, the ability to visualize model outcomes and to capture, share and re-use simulations as evidence in research and policy-making. We describe three applications of e-social science that promote social simulation modelling, data management and visualization. An example is outlined in which the three components are brought together in a transport planning context. We discuss opportunities and benefits for the combination of these and other components into an e-infrastructure for social simulation and review recent progress towards the establishment of such an infrastructure.
En, Z; Tsipin, V V; Tillaev, T; Jumaniyazova, G I
2003-01-01
Uptake of various elements by plants through the root system from the soil was studied. Vegetation experiments with cotton and white beet were carried out in the control and test fields. The test fields were enriched with phyto-bacterial strains capable of dissolving insoluble phosphate compounds. Analytical work involved analysis of blank, control and test soil samples and analysis of plants sampled in different growing periods: periods of first sprouts, florescence and ripening of the plants. Multielement analyses of soil and plant samples were carried out by instrumental neutron activation techniques using our WWR-SM research reactor. Results of the measurements have shown that macro- and microelement composition of the analyzed soil samples were consistent to clark contents except for copper. Our experiments have resulted that the concentration levels of copper in the soils were within 300-450 mg/kg, and its average concentration in cotton leaves was about similar to 35 mg/kg while in beet leaves it reach...
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
Key, S.W.; Heinstein, M.W.; Stone, C.M. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.
A finite element simulation system in reservoir engineering
Gu, Xiaozhong [Louisiana State Univ., Baton Rouge, LA (United States)
1996-03-01
Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.
A general finite element model for numerical simulation of structure dynamics
WANG Fujun; LI Yaojun; Han K.; Feng Y.T.
2006-01-01
A finite element model used to simulate the dynamics with continuum and discontinuum is presented. This new approach is conducted by constructing the general contact model. The conventional discrete element is treated as a standard finite element with one node in this new method. The one-node element has the same features as other finite elements, such as element stress and strain. Thus, a general finite element model that is consistent with the existed finite element model is set up. This new model is simple in mathematical concept and is straightforward to be combined into the existing standard finite element code. Numerical example demonstrates that this new approach is more effective to perform the dynamic process analysis in which the interactions among a large number of discrete bodies and continuum objects are included.
Smith, Wade D; Miller, Jessica A; Heppell, Selina S
2013-01-01
Differences in the chemical composition of calcified skeletal structures (e.g. shells, otoliths) have proven useful for reconstructing the environmental history of many marine species. However, the extent to which ambient environmental conditions can be inferred from the elemental signatures within the vertebrae of elasmobranchs (sharks, skates, rays) has not been evaluated. To assess the relationship between water and vertebral elemental composition, we conducted two laboratory studies using round stingrays, Urobatis halleri, as a model species. First, we examined the effects of temperature (16°, 18°, 24°C) on vertebral elemental incorporation (Li/Ca, Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca). Second, we tested the relationship between water and subsequent vertebral elemental composition by manipulating dissolved barium concentrations (1x, 3x, 6x). We also evaluated the influence of natural variation in growth rate on elemental incorporation for both experiments. Finally, we examined the accuracy of classifying individuals to known environmental histories (temperature and barium treatments) using vertebral elemental composition. Temperature had strong, negative effects on the uptake of magnesium (DMg) and barium (DBa) and positively influenced manganese (DMn) incorporation. Temperature-dependent responses were not observed for lithium and strontium. Vertebral Ba/Ca was positively correlated with ambient Ba/Ca. Partition coefficients (DBa) revealed increased discrimination of barium in response to increased dissolved barium concentrations. There were no significant relationships between elemental incorporation and somatic growth or vertebral precipitation rates for any elements except Zn. Relationships between somatic growth rate and DZn were, however, inconsistent and inconclusive. Variation in the vertebral elemental signatures of U. halleri reliably distinguished individual rays from each treatment based on temperature (85%) and Ba exposure (96%) history. These
Elastic-plastic finite element simulation for diamond turning process
无
2006-01-01
Using general commercial software, a coupled thermo-mechanieal plane strain larger deformation orthogonal cutting model is developed on the basis of updated Lagrangian formulation in this paper. The workpiece is oxygen free high conductivity copper ( OFHC copper), its flow stress is considered as a function of strain, strain rate and temperature to reflect its realistic changes in physical properties. In order to take into account the cutting edge radius effects of the single crystal diamond tool, rezoning technology is introduced into this simulation model. Diamond turning process is simulated from the initial stage to the steady stage of chip formation, and the distribution of temperature, equivalent stress, residual stress, strain rate and shear angle are obtained. The simulated principal force is compared with published experiment data and they are found to be in good agreement with each other, but poor for thrust force due to no consideration of elastic recovery for machined surface in the elastic-plastic material model.
Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations
2012-10-16
comparison of stresses and strains by finite element analysis (FEA) and peridynamic solutions is performed for a ductile material. A multiscale...problems. One common benchmark problem characterized by the mixed mode fracture is the test of a double-edge-notched concrete specimen conducted by Nooru...Mohamed et al. [19]. The test of Nooru-Mohamed was adopted by De Borst [20] in the discussion of computational modeling of concrete fracture. For
Simulation of Suspensions, Torsion Bars, and Fifth Wheel for Semitrailers Using Finite Elements
R. Miralbes
2013-01-01
Full Text Available The objective of this paper is the simulation of some different types of elements for semitrailers, like the suspension, both mechanical with springs and pneumatic with a spring anddiapresses; other parts like the wheels, the torsion bars, the fifth wheel and the suspension of the tractor unit have also been simulated. Then, the numerical simplified FE model of these elements that allows simulating the real behavior of the suspension to apply adequately the boundary conditions of a heavy vehicle has been obtained for a structural simulation using numerical tools with a good accuracy of the local and global behavior of the vehicle.
Adaptive Multiscale Finite Element Method for Subsurface Flow Simulation
Van Esch, J.M.
2010-01-01
Natural geological formations generally show multiscale structural and functional heterogeneity evolving over many orders of magnitude in space and time. In subsurface hydrological simulations the geological model focuses on the structural hierarchy of physical sub units and the flow model addresses
Adaptive Multiscale Finite Element Method for Subsurface Flow Simulation
Van Esch, J.M.
2010-01-01
Natural geological formations generally show multiscale structural and functional heterogeneity evolving over many orders of magnitude in space and time. In subsurface hydrological simulations the geological model focuses on the structural hierarchy of physical sub units and the flow model addresses
Thije, ten R.H.W.; Akkerman, R.; Huetink, J.
2007-01-01
Large deformation finite element (FE) simulations of anisotropic material often show slow convergence or break down with increasing anisotropy and deformation. Large deformations are generally approximated by multiple small linearised steps. This leads to poor performance and contradicting formulati
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
A FINITE ELEMENT MODEL FOR NUMERICAL SIMULATION OF THERMO-MECHANICAL FRICTIONAL CONTACT PROBLEMS
张洪武; 韩炜; 陈金涛; 段庆林
2003-01-01
Two kinds of variational principles for numerical simulation of heat transfer and contact analyses are respectively presented. A finite element model for numerical simulation of the thermal contact problems is developed with a pressure dependent heat transfer constitutive model across the contact surface. The numerical algorithm for the finite element analysis of the thermomechanical contact problems is thus developed. Numerical examples are computed and the results demonstrate the validity of the model and algorithm developed.
UAV based distributed ATR under realistic simulated environmental effects
Chen, Xiaohan; Gong, Shanshan; Schmid, Natalia A.; Valenti, Matthew C.
2007-04-01
Over the past several years, the military has grown increasingly reliant upon the use of unattended aerial vehicles (UAVs) for surveillance missions. There is an increasing trend towards fielding swarms of UAVs operating as large-scale sensor networks in the air. Such systems tend to be used primarily for the purpose of acquiring sensory data with the goal of automatic detection, identification, and tracking objects of interest. These trends have been paralleled by advances in both distributed detection, image/signal processing and data fusion techniques. Furthermore, swarmed UAV systems must operate under severe constraints on environmental conditions and sensor limitations. In this work, we investigate the effects of environmental conditions on target detection and recognition performance in a UAV network. We assume that each UAV is equipped with an optical camera, and use a realistic computer simulation to generate synthetic images. The detection algorithm relies on Haar-based features while the automatic target recognition (ATR) algorithm relies on Bessel K features. The performance of both algorithms is evaluated using simulated images that closely mimic data acquired in a UAV network under realistic environmental conditions. We design several fusion techniques and analyze both the case of a single observation and the case of multiple observations of the same target.
Progress in mixed Eulerian-Lagrangian finite element simulation of forming processes
Huetink, Han; Vreede, P.T.; van der Lugt, J.
1990-01-01
A review is given of a mixed Eulerian-Lagrangian finite element method for simulation of forming processes. This method permits incremental adaptation of nodal point locations independently from the actual material displacements. Hence numerical difficulties due to large element distortions, as may
Leaching of metals from cement under simulated environmental conditions.
Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P
2016-03-15
Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.
Distribution of Landscape Elements Along Environmental Gradients in Over-Cut Forests
Zhang Zhi; Sun Yujun
2006-01-01
The method of trend surface analysis was used to analyze the distribution of landscape elements along environmental gradients in Jingouling forest farm,northeast China's Jilin Province.Results showed that topographic characteristics and disturbance pattern have much more impacts on the distribution of landscape elements than do horizontal geographical position in the study area.The elevation,slope aspect,and slope degree were found to be dominant features controlling landscape pattern.At different altitudinal ranges,the effects of slope aspect and slope degree on the distribution of landscape elements vary markedly in orientation and intensity.These differences were analyzed and discussed,and some basic rules of spatial distribution of landscape elements were proposed.
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
Characterizing high-temperature deformation of internally heated nuclear fuel element simulators
Belov, A.I.; Fong, R.W.L.; Leitch, B.W.; Nitheanandan, T.; Williams, A., E-mail: alexander.belov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)
2016-06-15
The sag behaviour of a simulated nuclear fuel element during high-temperature transients has been investigated in an experiment utilizing an internal indirect heating method. The major motivation of the experiment was to improve understanding of the dominant mechanisms underlying the element thermo-mechanical response under loss-of-coolant accident conditions and to obtain accurate experimental data to support development of 3-D computational fuel element models. The experiment was conducted using an electrically heated CANDU fuel element simulator. Three consecutive thermal cycles with peak temperatures up to ≈1000 {sup o}C were applied to the element. The element sag deflections and sheath temperatures were measured. On heating up to 600 {sup o}C, only minor lateral deflections of the element were observed. Further heating to above 700 {sup o}C resulted in an element multi-rate creep and significant permanent bow. Post-test visual and X-ray examinations revealed a pronounced necking of the sheath at the pellet-to-pellet interface locations. A wall thickness reduction was detected in the necked region that is interpreted as a sheath longitudinal strain localization effect. The sheath cross-sectioning showed signs of a 'hard' pellet-cladding interaction due to the applied cycles. A 3-D model of the experiment was generated using the ANSYS finite element code. As a fully coupled thermal mechanical simulation is computationally expensive, it was deemed sufficient to use the measured sheath temperatures as a boundary condition, and thus an uncoupled mechanical simulation only was conducted. The ANSYS simulation results match the experiment sag observations well up to the point at which the fuel element started cooling down. (author)
Human habitat positioning system for NASA's space flight environmental simulator
Caldwell, W. F.; Tucker, J.; Keas, P.
1998-01-01
Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.
Govender, Nicolin
2013-01-01
Full Text Available in nature and cannot be described by a closed form solution for more than a few particles. A popular and successful approach in simulating the underlying dynamics of GM is by using the Discrete Element Method (DEM). Computational viable simulations...
Real-time volumetric deformable models for surgery simulation using finite elements and condensation
Bro-Nielsen, Morten; Cotin, S.
1996-01-01
This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...
Real-time volumetric deformable models for surgery simulation using finite elements and condensation
Bro-Nielsen, Morten; Cotin, S.
1996-01-01
This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...
Taylor, Z A; Cheng, M; Ourselin, S
2008-05-01
The use of biomechanical modelling, especially in conjunction with finite element analysis, has become common in many areas of medical image analysis and surgical simulation. Clinical employment of such techniques is hindered by conflicting requirements for high fidelity in the modelling approach, and fast solution speeds. We report the development of techniques for high-speed nonlinear finite element analysis for surgical simulation. We use a fully nonlinear total Lagrangian explicit finite element formulation which offers significant computational advantages for soft tissue simulation. However, the key contribution of the work is the presentation of a fast graphics processing unit (GPU) solution scheme for the finite element equations. To the best of our knowledge, this represents the first GPU implementation of a nonlinear finite element solver. We show that the present explicit finite element scheme is well suited to solution via highly parallel graphics hardware, and that even a midrange GPU allows significant solution speed gains (up to 16.8 x) compared with equivalent CPU implementations. For the models tested the scheme allows real-time solution of models with up to 16,000 tetrahedral elements. The use of GPUs for such purposes offers a cost-effective high-performance alternative to expensive multi-CPU machines, and may have important applications in medical image analysis and surgical simulation.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Hambli, Ridha
2011-01-01
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...
The simulation of electrostatic coupling intra-body communication based on the finite-element method
Song Yong; Zhang Kai; Yang Guang; Zhu Kang; Hao Qun
2011-01-01
In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a. the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave; b. the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software; c. the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequencies, electrodes directions, electrodes sizes and transmission distances. Finally, some important conclusions are deduced on the basis of simulation results.
Finite Element Simulations to Explore Assumptions in Kolsky Bar Experiments.
Crum, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-08-05
The chief purpose of this project has been to develop a set of finite element models that attempt to explore some of the assumptions in the experimental set-up and data reduction of the Kolsky bar experiment. In brief, the Kolsky bar, sometimes referred to as the split Hopkinson pressure bar, is an experimental apparatus used to study the mechanical properties of materials at high strain rates. Kolsky bars can be constructed to conduct experiments in tension or compression, both of which are studied in this paper. The basic operation of the tension Kolsky bar is as follows: compressed air is inserted into the barrel that contains the striker; the striker accelerates towards the left and strikes the left end of the barrel producing a tensile stress wave that propogates first through the barrel and then down the incident bar, into the specimen, and finally the transmission bar. In the compression case, the striker instead travels to the right and impacts the incident bar directly. As the stress wave travels through an interface (e.g., the incident bar to specimen connection), a portion of the pulse is transmitted and the rest reflected. The incident pulse, as well as the transmitted and reflected pulses are picked up by two strain gauges installed on the incident and transmitted bars as shown. By interpreting the data acquired by these strain gauges, the stress/strain behavior of the specimen can be determined.
Using elements of game engine architecture to simulate sensor networks for eldercare.
Godsey, Chad; Skubic, Marjorie
2009-01-01
When dealing with a real time sensor network, building test data with a known ground truth is a tedious and cumbersome task. In order to quickly build test data for such a network, a simulation solution is a viable option. Simulation environments have a close relationship with computer game environments, and therefore there is much to be learned from game engine design. In this paper, we present our vision for a simulated in-home sensor network and describe ongoing work on using elements of game engines for building the simulator. Validation results are included to show agreement on motion sensor simulation with the physical environment.
Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method
T G Sitharam; S V Dinesh
2003-09-01
In this paper, numerical simulation of 3-dimensional assemblies of 1000 polydisperse sphere particles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of granular materials. Numerical simulations of cyclic triaxial shear tests under undrained conditions are performed at different confining pressures under constant strain amplitude. Results obtained in these numerical simulations indicate that with increase in confining pressure there is an increase in liquefaction resistance.
毕军; 付梦印; 张宇河
2003-01-01
The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.
Stewart, Mark E.; Schnitzler, Bruce G.
2015-01-01
This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.
Simulated Space Environmental Effects on Thin Film Solar Array Components
Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon
2017-01-01
The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.
A virtual rat for simulating environmental and exertional heat stress.
Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques
2014-12-01
Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.
Membrane finite element method for simulating fluid flow in porous medium
Mei-li ZHAN; Wen-jie ZHANG; Jin-chang SHENG; Jian-hui LI; Shu-yuan HE
2009-01-01
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium.
Trace element ratios in bivalve shells as records of environmental conditions
Tynan, S.; Opdyke, B.; Welch, S.; Beavis, S.
2007-12-01
Stable isotope and trace element data from the carbonate of both marine and freshwater bivalves are proving to be useful tools in studies of palaeoclimate and environmental change. However, much of the work already done has shown that the trace element ratios in bivalve shells exhibit a complex relationship with the ambient environment and caution must be exercised when attempting to use them as environmental proxies. This work examines the feasibility of using the trace element ratios Mg/Ca, Sr/Ca, Ba/Ca and Mn/Ca of the shells of a number of different species of bivalves as records of the temperature and salinity of their ambient aquatic environment. The species analysed were the estuarine oysters Saccostrea glomerata, Ostrea angasi, and Crassostrea gigas, an estuarine mussel, Mytilus galloprovincialis, and the freshwater mussel Velesunio ambiguus. The estuarine shells were taken from monitoring experiments conducted over a period of 12 months at two different field sites. Freshwater shells were collected wild, from locations close to water monitoring stations. Preliminary results show distinct variations in the Mg/Ca of O. angasi shells with an apparent seasonal pattern. V. ambiguus shells show clear patterns in Mn/Ca, linked to environmental variations.
Whale baleen trace element signatures: a predictor of environmental life history?
Wilcox Freeburg, E.; Brault, S.; Mayo, C.; Oktay, S.; Hannigan, R.
2009-12-01
The analysis of trace element composition of biogenic structures (e.g., otoliths, feathers) by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides unique insights into the environmental life history of individuals. We studied the trace element chemistry of right whale baleens in an attempt to reconstruct migration patterns. Though much is known about the feeding and breeding habitats of these whales, little is known about the location in which they spend most of their adult years. Baleens, made of keratin, grow continuously and are metabolically inactive. Previous work showed that the stable isotope chemistry along the length of a baleen records changes in diet, such as weaning. Baleen chemistry should, therefore, also record the environmental life history of the individual. Trace metal chemistry along a single baleen plate from a right whale were analyzed by LA-ICP-MS. Semi-quantitative elemental signatures were obtained using NIST 612 (glass standard) and MACS-3 (calcium carbonate standard). These concentrations were then compared for accuracy to acid digested baleen laterally adjacent to the laser ablation site via aqueous ICP-MS. Elemental chemistry was compared to known feeding/breeding locations of the individual (water chemistry). Using these comparisons as well as principal components analysis, life history of the individual was reconstructed. Development of an in-house keratin standard is in progress and is expected to strengthen the confidence in results. Future work is expected to bring a more complete knowledge of right whale wintering habits.
Bluff Body Flow Simulation Using a Vortex Element Method
Anthony Leonard; Phillippe Chatelain; Michael Rebel
2004-09-30
Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.
Partition of the contact force network obtained in discrete element simulations of element tests
Huang, Xin; O'Sullivan, Catherine; Hanley, Kevin J.; Kwok, Chung-Yee
2017-04-01
The transmission of stress within a granular material composed of rigid spheres is explored using the discrete element method. The contribution of contacts to both deviatoric stress and structural anisotropy is investigated. The influences of five factors are considered: inter-particle friction coefficient, loading regime, packing density, contact model, and boundary conditions. The data generated indicate that using the above-average normal contact force criterion to decompose the contact force network into two subsets with distinct contributions to stress transmission and structural anisotropy is not robust. The characteristic normal contact forces marking the transition from negative to positive contribution to the overall deviatoric stress and structural anisotropy are not unique values but vary during shearing. Once the critical state is attained (i.e., once shearing continues at a constant deviator stress and solid fraction), the characteristic normal contact force remains approximately constant and this critical state characteristic normal force is observed to decrease with increasing inter-particle friction. The characteristic normal contact force considering the contribution to deviatoric stress has a power-law relationship with the mean effective stress at the critical state.
Partition of the contact force network obtained in discrete element simulations of element tests
Huang, Xin; O'Sullivan, Catherine; Hanley, Kevin J.; Kwok, Chung-Yee
2016-01-01
The transmission of stress within a granular material composed of rigid spheres is explored using the discrete element method. The contribution of contacts to both deviatoric stress and structural anisotropy is investigated. The influences of five factors are considered: inter-particle friction coefficient, loading regime, packing density, contact model, and boundary conditions. The data generated indicate that using the above-average normal contact force criterion to decompose the contact force network into two subsets with distinct contributions to stress transmission and structural anisotropy is not robust. The characteristic normal contact forces marking the transition from negative to positive contribution to the overall deviatoric stress and structural anisotropy are not unique values but vary during shearing. Once the critical state is attained (i.e., once shearing continues at a constant deviator stress and solid fraction), the characteristic normal contact force remains approximately constant and this critical state characteristic normal force is observed to decrease with increasing inter-particle friction. The characteristic normal contact force considering the contribution to deviatoric stress has a power-law relationship with the mean effective stress at the critical state.
An element-free Galerkin method for ground penetrating radar numerical simulation
冯德山; 郭荣文; 王洪华
2015-01-01
An element-free Galerkin method (EFGM) is used to solve the two-dimensional (2D) ground penetrating radar (GPR) modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method (FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
Spectral-element simulations of carbon dioxide (CO2) sequestration time-lapse monitoring
Morency, C.; Luo, Y.; Tromp, J.
2009-12-01
Geologic sequestration of CO2, a green house gas, represents an effort to reduce the large amount of CO2 generated as a by-product of fossil fuels combustion and emitted into the atmosphere. This process of sequestration involves CO2 storage deep underground. There are three main storage options: injection into hydrocarbon reservoirs, injection into methane-bearing coal beds, or injection into deep saline aquifers, that is, highly permeable porous media. The key issues involve accurate monitoring of the CO2, from the injection stage to the prediction & verification of CO2 movement over time for environmental considerations. A natural non-intrusive monitoring technique is referred to as ``4D seismics'', which involves 3D time-lapse seismic surveys. The success of monitoring the CO2 movement is subject to a proper description of the physics of the problem. We propose to realize time-lapse migrations comparing acoustic, elastic, and poroelastic simulations of 4D seismic imaging to characterize the storage zone. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. Our simulations are performed using a spectral-element method, which allows for highly accurate results. Biot's equations are implemented to account for poroelastic effects. Attenuation associated with the anelasticity of the rock frame and frequency-dependent viscous resistance of the pore fluid are accommodated based upon a memory variable approach. The sensitivity of observables to the model parameters is quantified based upon finite-frequency sensitivity kernels calculated using an adjoint method.
Simulating hydroplaning of submarine landslides by quasi 3D depth averaged finite element method
De Blasio, Fabio; Battista Crosta, Giovanni
2014-05-01
G.B. Crosta, H. J. Chen, and F.V. De Blasio Dept. Of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Milano, Italy Klohn Crippen Berger, Calgary, Canada Subaqueous debris flows/submarine landslides, both in the open ocean as well as in fresh waters, exhibit extremely high mobility, quantified by a ratio between vertical to horizontal displacement of the order 0.01 or even much less. It is possible to simulate subaqueous debris flows with small-scale experiments along a flume or a pool using a cohesive mixture of clay and sand. The results have shown a strong enhancement of runout and velocity compared to the case in which the same debris flow travels without water, and have indicated hydroplaning as a possible explanation (Mohrig et al. 1998). Hydroplaning is started when the snout of the debris flow travels sufficiently fast. This generates lift forces on the front of the debris flow exceeding the self-weight of the sediment, which so begins to travel detached from the bed, literally hovering instead of flowing. Clearly, the resistance to flow plummets because drag stress against water is much smaller than the shear strength of the material. The consequence is a dramatic increase of the debris flow speed and runout. Does the process occur also for subaqueous landslides and debris flows in the ocean, something twelve orders of magnitude larger than the experimental ones? Obviously, no experiment will ever be capable to replicate this size, one needs to rely on numerical simulations. Results extending a depth-integrated numerical model for debris flows (Imran et al., 2001) indicate that hydroplaning is possible (De Blasio et al., 2004), but more should be done especially with alternative numerical methodologies. In this work, finite element methods are used to simulate hydroplaning using the code MADflow (Chen, 2014) adopting a depth averaged solution. We ran some simulations on the small scale of the laboratory experiments, and secondly
Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
Lee, Huai-Ping; Audette, Michel; Joldes, Grand Roman; Enquobahrie, Andinet
2012-02-23
Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation
Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid
2017-01-01
In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.
Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation
Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid
2016-10-01
In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.
Gaudiuso, Rosalba; Dell'Aglio, Marcella; De Pascale, Olga; Senesi, Giorgio S; De Giacomo, Alessandro
2010-01-01
Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS), namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.
Alessandro De Giacomo
2010-08-01
Full Text Available Analytical applications of Laser Induced Breakdown Spectroscopy (LIBS, namely optical emission spectroscopy of laser-induced plasmas, have been constantly growing thanks to its intrinsic conceptual simplicity and versatility. Qualitative and quantitative analysis can be performed by LIBS both by drawing calibration lines and by using calibration-free methods and some of its features, so as fast multi-elemental response, micro-destructiveness, instrumentation portability, have rendered it particularly suitable for analytical applications in the field of environmental science, space exploration and cultural heritage. This review reports and discusses LIBS achievements in these areas and results obtained for soils and aqueous samples, meteorites and terrestrial samples simulating extraterrestrial planets, and cultural heritage samples, including buildings and objects of various kinds.
Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall
2001-03-01
The purpose of this document is to provide the overall planning framework for the role of simulation in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program at Idaho National Engineering and Environmental Laboratory (INELL). This project involves a TTP (Technical Task Plan ID77WT31, Subtask C) with Savannah River Site (SRS) to jointly develop a simulation tool set that can support flowsheet optimization for HLW treatment trains at INEEL. Despite the commonality between the simulation efforts at SRS and INEEL, the individual work scopes of the two sites are different – that of the INEEL is broader. This document concerns only the scope of the INEEL effort, and it describes the boundaries of several scope-related planning areas for this project INEEL: 1) the objective of the project – the needs (drivers) the simulation efforts are attempting to satisfy, the role simulation results will play in managerial decision making, and the type of issues to be investigated; 2) constraints – higher-level budget forecasts and schedules, legal commitments, customer directives, and other similar forces that a priori define boundary elements; 3) the process domain – the set of chemical and physical operations to be modeled; 4) the model’s life cycle – the phases of the waste treatment’s life cycle that will utilize simulation, i.e., process configuration, design, and/or operations; 5) the types of models involved in the integrated simulation tool set – discrete vs. continuous, deterministic vs. stochastic, etc.; and 6) and targeted users – the downstream activities that may potentially use the simulation results. This document closes with a description of the budget, schedule, and task inter-relationships that result from the determined scope. This document is the cornerstone of the planning process, and many of the software requirements flow directly from the decisions discussed in this document.
Trace-element geochemistry of coal resource development related to environmental quality and health
1980-01-01
This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.
Determination of contact parameters for discrete element method simulations of granular systems
无
2008-01-01
Both linear-spring-dashpot (LSD) and non-linear Hertzian-spring-dnshpot (HSD) contact models are commonly used for the calculation of contact forces in Discrete Element Method (DEM) simulations of granular systems.Despite the popularity of these models, determination of suitable values for the contact parameters of the simulated particles such as stiffness, damping coefficient, coefficient of restitution, and simulation time step,is not altogether obvious.In this work the relationships between these contact parameters for a model system where a particle impacts on a flat base are examined.Recommendations are made concerning the determination of these contact parameters for use in DEM simulations.
Felice, Maria V. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom and Rolls-Royce plc., Bristol BS34 7QE (United Kingdom); Velichko, Alexander; Wilcox, Paul D. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Barden, Tim J.; Dunhill, Tony K. [Rolls-Royce plc., Bristol BS34 7QE (United Kingdom)
2014-02-18
A hybrid model to simulate the ultrasonic array response from stress corrosion cracks is presented. These cracks are branched and difficult to detect so the model is required to enable optimization of an array design. An efficient frequency-domain finite element method is described and selected to simulate the ultrasonic scattering. Experimental validation results are presented, followed by an example of the simulated ultrasonic array response from a real stress corrosion crack whose geometry is obtained from an X-ray Computed Tomography image. A simulation-assisted array design methodology, which includes the model and use of real crack geometries, is proposed.
Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi
2014-01-01
Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases.
Finite element method for one-dimensional rill erosion simulation on a curved slope
Lijuan Yan
2015-03-01
Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.
Finite element simulation of stretch forging using a mesh condensation method
无
2010-01-01
In order to reduce the computation time of finite element simulations of stretch forging process,a mesh condensation method is presented and applied to a three-dimensional rigid-viscoplastic finite element program.In this method,a conventional mesh for the whole zone of a workpiece is condensed to a computational mesh for the active deformation zone.Two vital problems are solved,which are automatic construction of the computational mesh and treatment of interfaces between the deformation zone and the rigid zone.The mesh condensation method is compared with conventional finite element method by simulations of a six-bite stretch forging process.Some simulation results including forging load,temperature distribution and effective strain distribution are illustrated.The efficiency and accuracy of this method are verified.
FINITE ELEMENT METHOD ON NUMERICAL SIMULATION OF STRATUM CORNEUM'S PENETRATION PROPERTY
无
2006-01-01
How the outer substance could penetrate through the skin lies in the stratum corneum, because it is the main barrier in the multi-layers of the skin. Supposing the keratin cell with a special geometry as tetrakaidecahedron, the penetration property of stratum corneum was the key problem which was numerically simulated with finite element method. At first the discretization of the stratum corneum region was given in two steps: first, the discretization of the keratin cell; second, the discretization of fattiness that surrounds the keratin. Then there was the work of numerical simulation. In this procedure, the finite element method and the multi-grid method were used. The former was to obtain the discretization of basic elements; the latter was to decrease the high frequency error. At last the visualization of the numerical simulation was shown.
3D mapping and simulation of Geneva Lake environmental data
Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey
2010-05-01
The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for
A mesh re-zoning technique for finite element simulations of metal forming processes
Cheng, J.-C.; Kikuchi, N.
1986-01-01
Based on some fundamental properties of finite element approximations, a mesh re-zoning scheme is proposed for finite element simulations of metal forming problems. It is demonstrated that this technique is indispensable in analyzing many difficult forming processes, especially when there exist corners or very irregular shapes on the boundaries. The algorithm is tested by a backward extrusion process and direct extrusion through a square die.
罗振东; 朱江; 谢正辉; 张桂芳
2003-01-01
The non-stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non-stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
Simulation of the Resin Film Infusion Process Based on the Finite Element Method
YANG Mei; YAN Shilin; TAN Hua
2006-01-01
A physically accurate and computationally effective pure finite element method (FEM) was developed to simulate the isothermal resin infusing process. The FEM was based on conservation of resin mass at any instant of time and was objective of resin film infusion (RFI) fiber impregnation and mold filling. The developed computer code was able to simulate the resin infusing visually. A numerical example presented here demonstrated that compared with traditional finite element/ control-volume (FE/CV), and FEM was physically accurate and computationally efficient.
Jelena Jovanović
2010-03-01
Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.
Chen, Jiefu; Zeng, Shubin; Dong, Qiuzhao; Huang, Yueqin
2017-02-01
An axisymmetric semianalytical finite element method is proposed and employed for rapid simulations of electromagnetic telemetry in layered underground formation. In this method, the layered media is decomposed into several subdomains and the interfaces between subdomains are discretized by conventional finite elements. Then a Riccati equation based high precision integration scheme is applied to exploit the homogeneity along the vertical direction in each layer. This semianalytical finite element scheme is very efficient in modeling electromagnetic telemetry in layered formation. Numerical examples as well as a field case with water based mud as drilling fluid are given to demonstrate the validity and effectiveness of this method.
Kim, Ju Hee [Korea Military Academy, Seoul (Korea, Republic of); Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Joung Soo [KAERI, Daejeon (Korea, Republic of)
2013-07-15
By using finite element analysis, we proposed an applicable finite element method of laser shock peening (LSP) and discussed various parameters, such as solution time, stability limit, dynamic yield stress, peak pressure, pressure pulse duration, laser spot size, and multiple LSP. The effects of parameters related to the finite element simulation of the LSP process on the residual stresses of 35CD4 30HRC steel alloy are discussed. Parametric sensitivity analyses were performed to establish the optimum processing variables of the LSP process. In addition, we evaluated the effects of initial residual stress, such as welding-induced residual stress field.
Finite element simulation of stress intensity factors in elastic-plastic crack growth
ALSHOAIBI Abdulnaser M.; ARIFFIN Ahmad Kamal
2006-01-01
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions.Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation.
Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method.
Ahmad, Z A B; Gabbert, U
2012-09-01
In typical Lamb wave simulation practices, effects of plate edge reflections are often not considered in order to simplify the wave signal interpretations. Methods that are based on infinite plates such as the semi-analytical finite element method is effective in simulating Lamb waves as it excludes the effect of plate edges. However, the inclusion of plate edges in a finite plate could render this method inapplicable, especially for transient response simulations. Here, by applying the ratio of Lamb mode reflections at plate edges, and representing the reflection at plate edges using infinite plate solutions, the semi-analytical finite element method can be applied for transient response simulation, even when the plate is no longer infinite.
Finite Element Simulation of Hot Strip Continuous Rolling Process Coupling Microstructural Evolution
WANG Min-ting; ZANG Xin-liang; LI Xue-tong; DU Feng-shan
2007-01-01
Using the nonlinear rigid-viscoplastic finite element method (FEM), a finite element simulation of the hot strip continuous rolling process was done, which completely integrates different phenomena such as the metallurgical behavior of the strip and the thermo-mechanics in the strip based on the physical metallurgical microstructural evolution law. By combining with the process parameters of certain 2 050 mm hot strip rolling, an actual rolling process of low carbon steel SS400 was simulated using the FEM model. Based on the simulation results, the distributions of the strain field, the temperature field, and the microstructure were presented. Meanwhile, the simulated rolling force, temperature, and microstructure are in good agreement with the measured results.
R. Suárez
2017-06-01
Full Text Available In the 50s a review of Modern Movement, which assimilates modular serialization and a connection with the environmental context, although with remote premises of the contemporary paradigms of sustainability arise. In this context, within national stage, stands out the Spanish pavilion at the Brussels International Exhibition in 1958 by Corrales and Molezún. This work seeks a quantitatively reveal of the environmental performance of the pavilion in its two locations and settings, in Brussels and Madrid, through simulation and analysis of energy and lighting models which reproduces the characteristic of the pavilion with the purpose of contributing to give a new critical point of view, valuing the module efficiency to adapt to different environmental conditions. The completed analysis reveals the influence of the climate, compactness and orientation, as in the difficulties associated with thermal comfort and natural light when glazing percentage are important and there are high solar radiation settings.
Jeske Agnieszka
2014-10-01
Full Text Available The article presents several aspects of computer simulations and models of heavy metals speciation in environmental samples. The methods can be effectively used in environmental sciences, soil science, and assessment of mobility and bioavailability of heavy metals in contaminated areas. The article presents all of the methods based on examples, and with interpretation of results. The effect depends on the reliability of data used in models. The results are essential for predicting the fate and behaviour of elements in the environment, and can also be used to develop solubility curves.
Uma Devi Kumaravelu; Sanavullah Mohamed Yakub
2012-01-01
A method of simulation and modeling outer rotor permanent magnet brushless DC (ORPMBLDC) motor under dynamic conditions using finite element method by FEMM 4.2 software package is presented. In the proposed simulation, the torque developed at various positions of the rotor, under a complete cycle of excitation of the stator, is analysed. A novel method of sinusoidal excitation is proposed to enhance the overall torque development of ORPMBLDC motor.
Duggen, Lars; Lopes, Natasha; Willatzen, Morten
2011-01-01
The finite-element method (FEM) is used to simulate the photoacoustic signal in a cylindrical resonant photoacoustic cell. Simulations include loss effects near the cell walls that appear in the boundary conditions for the inhomogeneous Helmholtz equation governing the acoustic pressure. Reasonably...... the photoacoustic signal was demonstrated and good agreement with experiments for the actual resonance frequency and the quality factor of the cell was obtained despite its complicated geometry....
Uma Devi Kumaravelu
2012-01-01
Full Text Available A method of simulation and modeling outer rotor permanent magnet brushless DC (ORPMBLDC motor under dynamic conditions using finite element method by FEMM 4.2 software package is presented. In the proposed simulation, the torque developed at various positions of the rotor, under a complete cycle of excitation of the stator, is analysed. A novel method of sinusoidal excitation is proposed to enhance the overall torque development of ORPMBLDC motor.
Ji Xu; Jing hai Li; Hua biao Qi; Xiao jian Fang; Li qiang Lu; Wei Ge; Xiao wei Wang; Ming Xu; Fei guo Chen; Xian feng He
2011-01-01
Real-time simulation of industrial equipment is a huge challenge nowadays.The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals.In this article,an industrial-scale rotating drum is simulated using simplified discrete element method (DEM) without consideration of the tangential components of contact force and particle rotation.A single GPU is used first to simulate a small model system with about 8000 particles in real-time,and the simulation is then scaled up to industrial scale using more than 200 GPUs in a 1D domain-decomposition parallelization mode.The overall speed is about 1/11 of the real-time.Optimization of the communication part of the parallel GPU codes can speed up the simulation further,indicating that such real-time simulations have not only methodological but also industrial implications in the near future.
James O’Daniel
2011-01-01
Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.
Mouse endogenous retroviral long terminal repeat (LTR) elements and environmental carcinogenesis
Yang, W.K.; Ch' ang, L-Y; Myer, F.E.; Yang, M.D.; Koh, C.K.
1988-01-01
For the past several years, the working hypothesis of this laboratory has been that chromosomal retrovirus-related gene elements play important roles in gene-rearrangement and gene-activation events of carcinogenesis and mutagenesis induced by environmental agents. This working hypothesis is based on the concept of transposable genes as well as the recent understanding of retroviruses (RNA tumor viruses) in relation to the carcinogenesis problem. Activation of transposable gene elements has been discussed from the viewpoint of unprogrammed genomic changes in response to unanticipated genomic shocks. This view was used in considering the possibility of transposable gene elements involved in genetic changes of cancer formation in the animal. In this regard, this concept is similar to the perspectives of RNA tumor viruses, the oncogene-virogene hypothesis, and the provirus hypothesis because retroviruses replicate through DNA forms that carry long terminal repeat (LTR) sequences resembling the insertion sequences (or the IS elements) of prokaryotic transposons. The finding of oncogene myc activation in avian leukosis virus-induced leukemogenesis and proviral insertion in the mouse dilute locus mutation have also pointed to the functional similarity between retroviruses and transposable genes.
Discrete-element modelling: methods and applications in the environmental sciences.
Richards, Keith; Bithell, Mike; Dove, Martin; Hodge, Rebecca
2004-09-15
This paper introduces a Theme Issue on discrete-element modelling, based on research presented at an interdisciplinary workshop on this topic organized by the National Institute of Environmental e-Science. The purpose of the workshop, and this collection of papers, is to highlight the opportunities for environmental scientists provided by (primarily) off-lattice methods in the discrete-element family, and to draw on the experiences of research communities in which the use of these methods is more advanced. Applications of these methods may be conceived in a wide range of situations where dynamic processes involve a series of fundamental entities (particles or elements) whose interaction results in emergent macroscale structures. Indeed, the capacity of these methods to reveal emergent properties at the meso- and macroscale, that reflect microscale interactions, is a significant part of their attraction. They assist with the definition of constitutive material properties at scales beyond those at which measurement and theory have been developed, and help us to understand self-organizing behaviours. The paper discusses technical issues including the contact models required to represent collision behaviour, computational aspects of particle tracking and collision detection, and scales at which experimental data are required and choices about modelling style must be made. It then illustrates the applicability of DEM and other forms of individual-based modelling in environmental and related fields as diverse as mineralogy, geomaterials, mass movement and fluvial sediment transport processes, as well as developments in ecology, zoology and the human sciences where the relationship between individual behaviour and group dynamics can be explored using a partially similar methodological framework.
Human health risk assessment of potentially toxic elements (PTEs) from environmental matrices
Elom, Nwabueze
2012-01-01
In assessing human health risk of potentially toxic elements (PTEs), it is not the concentration of PTEs in the environmental matrices that is of greatest concern but the fraction that is absorbed into the body via the exposure pathways. The determination of this fraction (i.e. the bioaccessible fraction) through the application of bioaccessibility protocols is the focus of this work. The study investigated human health risk of PTEs (As, Cd, Cr, Cu, Pb, Mn, Ni and Zn) from oral ingestion of s...
Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu
2010-07-01
An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)
Numerical strategies for corrosion management: spatial statistics and finite element simulation
Lopez De La Cruz, J.M.
2008-01-01
The techniques presented in this thesis are focused to improve corrosion management by providing a better insight into the nature of corrosion. Spatial statistics and finite element simulations are applied to different corrosion patterns to study possible interaction among pits. In order to achieve
Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework
Govender, Nicolin
2015-08-01
Full Text Available The Discrete Element Method (DEM) simulation of charge motion in ball, semi autogenous (SAG) and autogenous mills has advanced to a stage where the effects of lifter design, power draft and product size can be evaluated with sufficient accuracy...
A finite element simulation of tidal circulation in the Gulf of Kutch, India
Unnikrishnan, A.S.; Luick, J.L.
A finite element (fe) model using the software package ADCTRC was developed to simulate the tides and currents in the Gulf of Kutch, located on the northwest coast of India. The surface elevations from the model were analysed for the amplitudes...
van der Zijden, A.M.; Janssen, D.; Verdonschot, Nicolaas Jacobus Joseph; Groen, B.E.; Nienhuis, B.; Weerdesteyn, V.; Tanck, E.
2015-01-01
Femoral fractures are a major health issue. Most experimental and finite element (FE) fracture studies use polymethylmethacrylate cups on the greater trochanter (GT) to simulate fall impact loads. However, in vivo fall studies showed that the femur is loaded distally from the GT. Our objective was
Hovad, Emil; Spangenberg, Jon; Larsen, P.
2016-01-01
The discrete element method (DEM) is applied to simulate the dynamics of the flow of green sand while filling a mould using the DISAMATIC process. The focus is to identify relevant physical experiments that can be used to characterize the material properties of green sand in the numerical model...
[Role playing as an essential element of simulation procedures in medicine].
Dieckmann, Peter; Rall, Marcus; Eich, Christoph; Schnabel, Kai; Jünger, Jana; Nikendei, Christoph
2008-01-01
Role playing is an important element of virtually all simulation-based procedures. An improved understanding for methodological aspects facilitates its goal-oriented use in education and training, research and examinations. In the present paper we describe how different forms of role play are used in different simulation-based procedures. We describe a plausibility study from skills labs demonstrating that the introduction of role-playing can increase perceived realism. Finally we derive practical suggestions for the conduction of role plays in medical simulation.
LV Wei-Guo; CHU Zhao-Tan; ZHAO Xiao-Qing; FAN Yu-Xiu; SONG Ruo-Long; HAN Wei
2009-01-01
The vector finite element method of tetrahedral elements is used to model 3D electromagnetic wave logging response. The tangential component of the vector field at the mesh edges is used as a degree of freedom to overcome the shortcomings of node-based finite element methods. The algorithm can simulate inhomogeneous media with arbitrary distribution of conductivity and magnetic permeability. The electromagnetic response of well logging tools are studied in dipping bed layers with the borehole and invasion included. In order to simulate realistic logging tools, we take the transmitter antennas consisting of circular wire loops instead of magnetic dipoles. We also investigate the apparent resistivity of inhomogeneous formation for different dip angles.
Application of Wavelet Finite Element Method to Simulation of the Temperature Field of Copier Paper
无
2002-01-01
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet-based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method,which provides a new method for improving the copier properties.
Huetink, J.; Vanderlugt, J.
1988-08-01
A mixed Eulerian-Lagrangian finite element method is developed by which nodal point locations can be adapted independently from the actual material displacements. Numerical difficulties due to large element distortions, as many occur when the updated Lagrange method is applied, can be avoided by this method. Movement of (free) surfaces can be taken into account by adapting nodal surface points in a way that they remain on the surface. Hardening and other deformation path dependent properties are determined by incremental treatment of convective terms. A local and a weighed global smoothing procedure is introduced in order to avoid numerical instabilities. The method has been applied to simulations of an upsetting process, a wire drawing process and a cold rolling process. In the simulation of the rolling process, both workpiece and roll are simultaneously analyzed in order to predict the flattening of the roll. Special contact-slip elements are developed for the tool-workpiece interface.
Jacob, Anaïs; Mehmanparast, Ali
2016-07-01
The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.
Simulation of the Carton Erection for the Rubber Glove Packing Machine Using Finite Element Method
Jewsuwun Kawin
2017-01-01
Full Text Available The rubber glove packing machine had been designed an important function which worked with folding carton. Each folded paper carton would be pulled to be erected by vacuum cups. Some carton could not completely form because of an unsuitable design of the erector. Cartons were collapsed or buckling while pulled by vacuum cups that cause to sudden stop the packing process and affect to number and cost of rubber glove production. This research aimed to use simulation method to erect the folded carton. Finite element (FE model of the rubber glove carton was created with shell elements. The orthotropic material properties were employed to specify FE model for analysis erection behavior of the folding carton. Vacuum cups number, positions and rotation points were simulated until obtained a good situation of the folding carton erector. Subsequently, finite element analysis results will be used to fabricate erector of the rubber glove packing machine in a further work.
Zhao Tang
2016-04-01
Full Text Available The crashworthiness of a railway vehicle relates to its passive safety performance. Due to mesh distortion and difficulty in controlling the hourglass energy, conventional finite element methods face great challenges in crashworthiness simulation of large-scale complex railway vehicle models. Meshfree methods such as element-free Galerkin method offer an alternative approach to overcome those limitations but have proved time-consuming. In this article, a coupled finite element/meshfree method is proposed to study the crashworthiness of railway vehicles. A representative scenario, in which the leading vehicle of a high-speed train impacts to a rigid wall, is simulated with the coupled finite element/element-free Galerkin method in LS-DYNA. We have compared the conventional finite element method and the coupled finite element/element-free Galerkin method with the simulation results of different levels of discretization. Our work showed that coupled finite element/element-free Galerkin method is a suitable alternative of finite element method to handle the nonlinear deformation in full-size railway vehicle crashworthiness simulation. The coupled method can reduce the hourglass energy in finite element simulation, to produce robust simulation.
Kozdon, J. E.; Wilcox, L.; Aranda, A. R.
2014-12-01
The goal of this work is to develop a new set of simulation tools for earthquake rupture dynamics based on state-of-the-art high-order, adaptive numerical methods capable of handling complex geometries. High-order methods are ideal for earthquake rupture simulations as the problems are wave-dominated and the waves excited in simulations propagate over distance much larger than their fundamental wavelength. When high-order methods are used for such problems significantly fewer degrees of freedom are required as compared with low-order methods. The base numerical method in our new software elements is a discontinuous Galerkin method based on curved, Kronecker product hexahedral elements. We currently use MPI for off-node parallelism and are in the process of exploring strategies for on-node parallelism. Spatial mesh adaptivity is handled using the p4est library and temporal adaptivity is achieved through an Adams-Bashforth based local time stepping method; we are presently in the process of including dynamic spatial adaptivity which we believe will be valuable for capturing the small-scale features around the propagating rupture front. One of the key features of our software elements is that the method is provably stable, even after the inclusion of the nonlinear frictions laws which govern rupture dynamics. In this presentation we will both outline the structure of the software elements as well as validate the rupture dynamics with SCEC benchmark test problems. We are also presently developing several realistic simulation geometries which may also be reported on. Finally, the software elements that we have designed are fully public domain and have been designed with tightly coupled, wave dominated multiphysics applications in mind. This latter design decisions means the software elements are applicable to many other geophysical and non-geophysical applications.
Herbold, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-4 weeks of an FTE split amongst two staff scientists and one post-doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-particles square by 10-particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.
Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration
Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2012-09-28
In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for
Martian environmental simulation for a deployable lattice mast
Warden, Robert M.
1994-01-01
The Mars Pathfinder mission (formerly Mars Environmental Survey or MESUR) is scheduled for launch in December 1996 and is designed to place a small lander on the surface of Mars. After impact, the lander unfolds to expose its solar panels and release a miniature rover. Also on board is the Imager for Mars Pathfinder (IMP) binocular camera which is elevated by a deployable mast to obtain a panoramic view of the landing area. The design of this deployable mast is based on similar designs which have a long and successful flight history. In the past when this type of self-deployable mast has been used, a rate limiter has been incorporated to control the speed of deployment. In this application, to reduce weight and complexity, it was proposed to eliminate the rate limiter so that the mast would deploy without restraint. Preliminary tests showed that this type of deployment was possible especially if the deployed length was relatively short, as in this application. Compounding the problem, however, was the requirement to deploy the mast at an angle of up to 30 degrees from vertical. The deployment process was difficult to completely analyze due to the effects of gravitational and inertial loads on the mast and camera during rapid extension. Testing in a realistic manner was imperative to verify the system performance. A deployment test was therefore performed to determine the maximum tilt angle at which the mast could reliably extend and support the camera on Mars. The testing of the deployable mast requires partial gravity compensation to simulate the smaller force of Martian gravity. During the test, mass properties were maintained while weight properties were reduced. This paper describes the testing of a deployable mast in a simulated Martian environment as well as the results of the tests.
FAN Li-xia; ZHENG Zai-xiang; XIN Wen-xiu
2006-01-01
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrument panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-bending and final hydroforming. To accomplish hydroforming process design successfully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hydroforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitude by FEA is less than that with the experiment.
Multiple-contact discrete-element model for simulating dense granular media
Brodu, Nicolas; Dijksman, Joshua A.; Behringer, Robert P.
2015-03-01
This article presents a new force model for performing quantitative simulations of dense granular materials. Interactions between multiple contacts (MC) on the same grain are explicitly taken into account. Our readily applicable MC-DEM method retains all the advantages of discrete-element method simulations and does not require the use of costly finite-element methods. The new model closely reproduces our recent experimental measurements, including contact force distributions in full 3D, at all compression levels of the packing up to the experimental maximum limit of 13%. Comparisons with classic simulations using the nondeformable spheres approach, as well as with alternative models for interactions between multiple contacts, are provided. The success of our model, compared to these alternatives, demonstrates that interactions between multiple contacts on each grain must be included for dense granular packings.
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
A real-time blade element helicopter simulation for handling qualities analysis
Du Val, Ronald W.
1989-01-01
A simulation model which utilizes parallel processing platforms is described in terms of its contributions to improved real-time helicopter simulation. The FLIGHTLAB parallel processing environment is explained, and the relative advantages of the blade element and rotor map models for rigid and elastic articulated blades are discussed. A UH-60 simulation is conducted by means of a rigid model with 14 degrees of freedom, as well as an elastic model with 26 degrees of freedom, to compare trim conditions, longitudinal static margins, and longitudinal and lateral frequency responses. The FLIGHTLAB system is shown to facilitate restructuring for parallel processing as well as the systematic comparison of a variety of models. The system can facilitate the comparison of rigid and elastic blade element rotor models at NASA-Ames and other research facilities.
Simulation Studies on the Settlement of Composite Foundation with Contact Element of Zero Thickness
Dong Bichang; Wang Jingtao; Cheng Tao
2005-01-01
The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechanical properties of the pile, soil, cushion, and the interface between pile and soil have been investigated through computer simulation, in which the contact elements with zero thickness are used. Some valuable conclusions for the settlement of composite foundation have been obtained: (1) The method using the contact element of zero thickness is successful when used in the simulation of the settlement of composite foundation; (2) Among the factors influencing the settlement of composite foundation, the compression modulus of the soil is the largest, and the cohesion of the soil is the second largest; (3) The effects on settlement of the internal friction angle of the soil, the elastic modulus, the radius, and the length of the pile, and the elestic modulus of the cushion are also more obvious.
A simulation method of combinding boundary element method with generalized Langevin dynamics
无
2000-01-01
A new simulation approach to incorporate hydration force into generalized Langevin dynamics (GLD) is developed in this note. The hydration force determined by the boundary element method (BEM) is taken into account as the mean force terms of solvent including Coulombic interactions with the induced surface charge and the surface pressure of solvent. The exponential model is taken for the friction kernel. A simulation study has been performed on the cyclic undecapeptide cyclosporin A (CPA). The results obtained from the new method (GLDBEM) have been analyzed and compared with that obtained from the molecular dynamics (MD) simulation and the conventional stochastic dynamics (SD) simulation. We have found that the results obtained from GLDBEM show the obvious improvement over the SD simulation technique in the study of molecular structure and dynamic properties.
Kaltenbacher, Manfred
2015-01-01
Like the previous editions also the third edition of this book combines the detailed physical modeling of mechatronic systems and their precise numerical simulation using the Finite Element (FE) method. Thereby, the basic chapter concerning the Finite Element (FE) method is enhanced, provides now also a description of higher order finite elements (both for nodal and edge finite elements) and a detailed discussion of non-conforming mesh techniques. The author enhances and improves many discussions on principles and methods. In particular, more emphasis is put on the description of single fields by adding the flow field. Corresponding to these field, the book is augmented with the new chapter about coupled flow-structural mechanical systems. Thereby, the discussion of computational aeroacoustics is extended towards perturbation approaches, which allows a decomposition of flow and acoustic quantities within the flow region. Last but not least, applications are updated and restructured so that the book meets mode...
Oki, Sae; Suzuki, Ryosuke O.
2016-09-01
The performance of a flat-plate thermoelectric (TE) module consisting of square truncated pyramid elements is simulated using commercial software and original TE programs. Assuming that the temperatures of both the hot and cold surfaces are constant, the performance can be varied by changing the element shape and element alignment pattern. When the angle between the edge and the base is 85° and the small square surfaces of all n-type element faces are connected to the low-temperature surface, the efficiency becomes the largest among all the 17 examined shapes and patterns. By changing the shape to match the temperature distribution, the performance of the TE module is maximized.
Finite Element Simulation Code for Computing Thermal Radiation from a Plasma
Nguyen, C. N.; Rappaport, H. L.
2004-11-01
A finite element code, ``THERMRAD,'' for computing thermal radiation from a plasma is under development. Radiation from plasma test particles is found in cylindrical geometry. Although the plasma equilibrium is assumed axisymmetric individual test particle excitation produces a non-axisymmetric electromagnetic response. Specially designed Whitney class basis functions are to be used to allow the solution to be solved on a two-dimensional grid. The basis functions enforce both a vanishing of the divergence of the electric field within grid elements where the complex index of refraction is assumed constant and continuity of tangential electric field across grid elements while allowing the normal component of the electric field to be discontinuous. An appropriate variational principle which incorporates the Sommerfeld radiation condition on the simulation boundary, as well as its discretization by the Rayleigh-Ritz technique is given. 1. ``Finte Element Method for Electromagnetics Problems,'' Volakis et al., Wiley, 1998.
Characterisation of daylighting elements under a diffuse sky distribution by simulation
Kovach, A.; Jungjohann, J. [Fraunhofer Inst. for Solar Energy Systems (ISE), Freiburg (Germany)
1996-12-31
In this research a commercially available forward raytracing program was used to determine the angle-dependent transmission properties of a transparent daylighting element developed at FhG-ISE. This element exploits the concept of total internal reflection to prevent the transmission of direct sunlight within a certain angle range. The characteristics of this element were investigated in 3-D space under sky conditions. In the following the methodology developed for this characterisation is described e.g., the choice of forwards raytracer, the modelling of the sky hemisphere and the calculations for the direct-hemispherical transmission of the element as well as the luminance distribution. First simulation results are then presented and discussed, and recommendations for improvements in this technique are proposed. (orig.)
Stanley, Mary Jo; Rojas, Deb
2014-01-01
Schools of nursing are challenged to find clinical placements in public health settings. Use of simulation can address situations unique to public health, with attention to specific concerns, such as environmental health. Environmental health is an integral part of public health nursing and is a standard of professional practice. Current simulations focus on acute care situations, offering limited scenarios with a public health perspective and excluding environmental health. This study's simulation scenario was created to enhance nursing students' understanding of public health concepts within an environmental health context. Outcomes from the simulation include the need for integration of environmental issues in public health teaching. Students stated that this scenario provided a broader understanding of the environmental influences that can affect the client's and family's health. This scenario fills a void in simulation content, while providing an interactive teaching and learning strategy to help students to apply knowledge to practice. Copyright 2014, SLACK Incorporated.
Satellite image time series simulation for environmental monitoring
Guo, Tao
2014-11-01
The performance of environmental monitoring heavily depends on the availability of consecutive observation data and it turns out an increasing demand in remote sensing community for satellite image data in the sufficient resolution with respect to both spatial and temporal requirements, which appear to be conflictive and hard to tune tradeoffs. Multiple constellations could be a solution if without concerning cost, and thus it is so far interesting but very challenging to develop a method which can simultaneously improve both spatial and temporal details. There are some research efforts to deal with the problem from various aspects, a type of approaches is to enhance the spatial resolution using techniques of super resolution, pan-sharpen etc. which can produce good visual effects, but mostly cannot preserve spectral signatures and result in losing analytical value. Another type is to fill temporal frequency gaps by adopting time interpolation, which actually doesn't increase informative context at all. In this paper we presented a novel method to generate satellite images in higher spatial and temporal details, which further enables satellite image time series simulation. Our method starts with a pair of high-low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and the temporal change is then projected onto high resolution data plane and assigned to each high resolution pixel referring the predefined temporal change patterns of each type of ground objects to generate a simulated high resolution data. A preliminary experiment shows that our method can simulate a high resolution data with a good accuracy. We consider the contribution of our method is to enable timely monitoring of temporal changes through analysis of low resolution images time series only, and usage of
Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham
2017-01-01
The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.
DCCII-Based Novel Lossless Grounded Inductance Simulators With No Element Matching Constrains
B. Metin
2014-04-01
Full Text Available In 1996, the differential current conveyor (DCCII was introduced as a versatile active element with current differencing capability. Therefore, in this study, the usefulness of the DCCII is shown on six novel lossless grounded inductance simulator circuits. Proposed circuits simultaneously employ minimum number of elements, i.e. single DCCII, one capacitor, and two resistors. No passive element matching restriction is needed and all solutions are electronically tunable in case that one of resistors is replaced by MOSFET-based voltage-controlled resistor. The internal structure of the active element has been implemented using the TSMC 0.25 um SCN025 CMOS process BSIM3v3.1 parameters. Firstly, the performance of the selected inductor simulator is evaluated and subsequently verified in the design of 5th-order high-pass ladder and 2nd-order frequency filters. In addition, experimental results using commercially available AD844/ADs are given to verify the theoretical analysis and SPICE simulations.
Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg
2012-02-01
This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.
Xu, Ya-Yan; Song, Jin-Ming; Duan, Li-Qin; Li, Xue-Gang; Zhang, Ying; Sun, Pei-Yan
2010-08-05
In Bohai Bay sediment, two cores were collected to estimate the source of sediments, and assess the environmental changes. Sequential extractions were carried out in this study. Rare earth elements (REE) were leached out from four labile fractions: Exchangeable (L1), Bound to carbonates (L2), Bound to Fe-Mn oxides (L3), Bound to organic matter (L4), and the remainder was Residual (R5). The percentages of REE in different fractions follow the order: R5 > L3 > L2 > L4 > L1. With heavy REE depletion and no pronounced REE fractionation, NASC-normalized REE patterns of Bohai Bay sediments are quite consistent with that of Haihe River sediment, which is the key river of Bohai Bay. Y/Ho ratios of total contents are all much lower than the average value of continental crust, while Y/Ho ratios of L2 are higher than those of other fractions. Based on the patterns of REE and Y/Ho ratios of samples, sediments of Bohai Bay mainly come from terrigenous matters, which are mainly brought by Haihe River. And REE combined with carbonates may be partly inherited from anthropogenic matter. Moreover, environmental changes exert significant influences on the patterns and fractionations of REE, and they can be deduced from the characteristics of REE. Our results on the patterns and burial fluxes of REE reflect two environmental changes: Bohai Bay has been shifting towards more reducing conditions in the last one hundred years, and there was a large flood in 1939.
Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar
2016-01-01
Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.
EEG/MEG forward simulation through h- and p-type finite elements
Pursiainen, S [Institute of Mathematics, Box 1100, FI-02015 Helsinki University of Technology (Finland)], E-mail: sampsa.pursiainen@tkk.fi
2008-07-15
Electro/Magnetoencephalography (EEG/MEG) is a non-invasive imaging modality, in which a primary current density generated by the neural activity in the brain is to be reconstructed from external electric potential/magnetic field measurements. This work focuses on effective and accurate simulation of the EEG/MEG forward model through the h- and p-versions of the finite element method (h- and p-FEM). The goal is to compare the effectiveness of these two versions in forward simulation. Both h- and p-type forward simulations are described and implemented, and the technical solutions found are discussed. These include, for example, suitable ways to generate a finite element mesh for a real head geometry through the use of different element types. Performances of the two implemented forward simulation types are compared by measuring directly the forward modeling error, as well as by computing reconstructions through a regularized FOCUSS (FOCal Underdetermined System Solver) algorithm. The results obtained suggest that the p-type performs better in terms of the forward modeling error. However, both types perform well in regularized FOCUSS reconstruction.
The effect of innovation competence on the choice of information elements in a simulated NPD process
Søndergaard, Helle Alsted; Juhl, Hans Jørn
to prompt different managerial behaviour. This study uses a role-play approach to investigating the relationship between innovation competence (exploitation or exploration competences) and the acquisition of information elements in a simulated new product development (NPD) process. Results show that two......This paper presents a study of the relationship between innovation competence and managerial behaviour. Within the resource-based view of the firm the development of new products is often related to the attainment of dynamic capabilities. Different levels of dynamic capabilities are expected...... differences in the purchase of information elements between the two clusters....
Numerical simulation of flow in porous media using spectral HP elements
Almeida, M.P.; Vasconcelos, H.H.M.; Ferraz, C.H.A.; Oliveira, C.L.N. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica
2008-07-01
In this paper we present an implementation of the spectral/hp element for the numerical solution of the flow of two immiscible fluids in a porous media. We look for an approximation of the weak solution of partial differential equations through the Discontinuous Galerkin formulation of a 2-D problem using triangular and/or quadrilateral region discretization with local function approximation in terms of Jacobi polynomials. The algorithm is implemented in a C{sup ++} code which makes it easier for the implementation of 3-D elements and other problems. We compare the our results with those produced by IMEX, a commercial simulator developed by CMGL. (author)
Face-based smoothed finite element method for real-time simulation of soft tissue
Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane
2017-03-01
In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
Wei Liu
2016-01-01
Full Text Available The difference of factor input structure determines different response to environmental regulation. This paper constructs a theoretical model including environmental regulation, factor input structure, and industrial transformation and conducts a policy simulation based on the difference of influencing mechanism of environmental regulation considering industrial heterogeneity. The findings show that the impact of environmental regulation on industrial transformation presents comparison of distortion effect of resource allocation and technology effect. Environmental regulation will promote industrial transformation when technology effect of environmental regulation is stronger than distortion effect of resource allocation. Particularly, command-control environmental regulation has a significant incentive effect and spillover effect of technological innovation on cleaning industries, but these effects do not exist in pollution-intensive industries. Command-control environmental regulation promotes industrial transformation. The result of simulation showed that environmental regulation of market incentives is similar to that of command-control.
Hillerich, B; Nagler, O
2001-11-01
Thermal finite element method (FEM) calculations and SPICE-based dynamic thermal models are used to simulate and optimize the static and dynamic performance of miniaturized oven-controlled crystal oscillators (OCXOs). FEM can be used to generate the values of the SPICE circuit elements. Good agreement is achieved between simulation and measurement. Several application examples, including directly heated OCXOs, are discussed.
Fan, Rong; Sacks, Michael S
2014-06-27
Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress-strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (Billiar and Sacks, 1997. J. Biomech. 30 (7), 753-756) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine fiber kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are
A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4
Park, Young-Keun; Fahrenthold, Eric P.
2004-01-01
An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.
Analysis and finite element simulation of electromagnetic heating in the nitride MOCVD reactor
Li Zhi-Ming; Hao Yue; Zhang Jin-Cheng; Xu Sheng-Rui; Ni JinYu
2009-01-01
Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the suseeptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.
A Lagrangian finite element method for the simulation of flow of non-newtonian liquids
Hassager, Ole; Bisgaard, C
1983-01-01
A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...... liquid around a sphere moving axially in a cylinder. The simulations show that the friction factor for a sphere in a narrow cylinder is a rapidly decreasing function of the Deborah number, while the friction factor for a sphere in a very wide cylinder is not significantly affected by fluid elasticity...
Numerical Simulation of a Thermal-Protection Element of a Promising Reusable Capsule-Type Lander
Prosuntsov, P. V.; Shulyakovskii, A. V.; Taraskin, N. Yu.
2017-01-01
An indestructible multilayer thermal-barrier coating is proposed for a promising reusable capsule-type lander. This coating is based on a porous carbon-ceramic material. The thermal state of the coating proposed was simulated mathematically for different types of its reinforcement and different values of the porosity and the heat-conductivity coefficient of the carbon-ceramic material. Results of a numerical simulation of the temperature state of an element of the multilayer thermal-barrier coating are presented. On the basis of these data, the thickness and the weight efficiency of the coating were estimated.
Simulation of Needle-Type Corona Electrodes by the Finite Element Method
YANG Shi-you; Jose Marcio MACHADO; Nancy Mieko ABE; Angelo PASSARO
2007-01-01
This paper describes a software tool,called LEVSOFT,suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM).Special attention was paid to the user friendly construction of geometries with corners and sharp points,and to the fast generation of highly refined triangular meshes and field maps.The execution of selfadaptive meshes was also implemented.These customized features make the code attractive for the simulation of needle-type corona electrodes.Some case examples involving needle type electrodes are presented.
Numerical Simulation of Flow Over a Savonius Wind Turbine Using a Spectral Element Method
Kandala, Sriharsha; Rempfer, Dietmar
2009-11-01
A parallel spectral element code, SpecSolve, is developed with the objective of modeling flows in complex geometries. This code supports both structured and unstructured meshes and allows exact representation of boundary surfaces which are particularly useful for modeling turbo machinery flows. In this talk we present the results from 2D Navier-Stokes simulations of flow over a Savonius turbine. The simulation uses a rotating mesh in regions surrounding the blade and a stationary mesh away from the rotor. Results of a 2D Optimization study involving overlap ratio and the number of blades are also presented. These results are compared with experimental data.
Palmer, B.J.; Drost, M.K. [Pacific Northwest Lab., Richland, WA (United States); Welty, J.R. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering
1996-10-01
The suitability of modeling an array of fixed, discrete surfaces as a homogeneous medium is investigated by comparing a Monte Carlo simulation of the equation of transfer for the homogeneous medium with the results of a Monte Carlo model of the array as discrete elements. The results show that when ordered arrays are considered, the assumptions underlying the equation of transfer are violated, and simulation results differ significantly from the discrete model. The results indicate that great care must be used when assuming that a regular array can be modeled as a homogeneous medium. Applications of this include air heating solar central receivers and fibrous insulation.
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.
2011-05-14
In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.
GHARAKHANI,ADRIN; WOLFE,WALTER P.
1999-10-01
The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at
Finite element simulations with ANSYS workbench 15 theory, applications, case studies
Lee, Huei-Huang
2014-01-01
Finite Element Simulations with ANSYS Workbench 15 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide you to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects you build from scratch. An accompanying DVD contains all the files you may need if you have trouble. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical, short, yet comprehensive. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A typical chapter consists of 6 sections. The first two provide two step-by-step examples. The third section tries to complement the exercises by providing a more sy...
RESEARCH ON THE SELECTION OF FRICTION MODELS IN THE FINITE ELEMENT SIMULATION OF WARM EXTRUSION
X.B. Lin; H.S. Xiao; Z.L. Zhang
2003-01-01
During the process of finite element simulation of precision warm forging, the selec-tion of friction models has a direct effect on the precision accuracy of finite elementsimulation results. Among all the factors which influence the selection of frictionmodels, the distribution rule of normal stress at the tool-workpiece interface is a keyone. To find out the distribution rule of normal stress at the tool-workpiece inter-face, this paper has made a systematic research on three typical plastic deformationprocesses: forward extrusion, backward extrusion, and lateral extrusion by a methodof finite element simulation. Then on the base of synthesizing and correcting tradi-tional friction models, a new general friction model which is fit for warm extrusion isdeveloped at last.
Finite Element Simulation in Superplastic forming of Friction Stir Welded Aluminium Alloy 6061-T6
P Ganesh
2011-09-01
Full Text Available Superplasticity in materials is the ability of materials to achieve large elongation only under specific conditions of temperature and strain rate. Superplastic Forming (SPF is an important industrial process that has found application in sheet metal forming in the aerospace and automotive industries. Friction Stir Welding (FSW is a solid state joining process that can alter the grain structure of the parent material. FSW process is an effective tool to refine the grain structure of the sheet metal and enhance their Superplasticity. Friction Stir Welding was used to join Superplastic AA 6061-T6 sheets. The Finite Element Simulation was performed for the Superplastic Forming of the Friction Stir Welded joints to evaluate the thinning and formability of AA 6061-T6 for hemispherical shape. The commercially available Finite Element Software ABAQUS was used to execute these simulations.
ZHONG Denghua; TONG Dawei
2009-01-01
Applying stiffness migration method, a 3D finite element mechanical model is established to simulate the excavation and advance processes. By using 3D nonlinear finite element method, the tunnel boring machine (TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment. The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution. The stress increases slightly and limitedly in the course of excavation. The maxi-mum and minimum displacements of segment, manifesting as zonal distribution, distribute in arch bottom and vault respectively. The displacements slightly increase with the advance of TBM and gradually tend to stability.
Corona, T; Iglesias, M; Anticó, E
2014-06-18
The inorganic elements potentially migrating from cork to a food simulant [a hydroalcoholic solution containing 12 and 20% (v/v) ethanol] have been determined by means of inductively coupled plasma (ICP) with atomic emission and mass spectrometric detection. The experimental instrumental conditions were evaluated in depth, taking into account spectroscopic and nonspectroscopic interference caused by the presence of ethanol and other components in the sample. We report concentrations ranging from 4 μg kg(-1) for Cd to 28000 μg kg(-1) for Al in the food simulant (concentrations given in kilograms of cork). The values found for Ba, Mn, Fe, Cu, and Zn have been compared with the guideline values stated in EU Regulation 10/2011. In all cases, cork met the general safety criteria applicable to food contact material. Finally, we have proposed water as an alternative to the hydroalcoholic solution to simplify quantification of the tested elements using ICP techniques.
Finite element simulations with ANSYS workbench 17 theory, applications, case studies
Lee, Huei-Huang
2017-01-01
Finite Element Simulations with ANSYS Workbench 17 is a comprehensive and easy to understand workbook. Printed in full color, it utilizes rich graphics and step-by-step instructions to guide you through learning how to perform finite element simulations using ANSYS Workbench. Twenty seven real world case studies are used throughout the book. Many of these case studies are industrial or research projects that you build from scratch. Prebuilt project files are available for download should you run into any problems. Companion videos, that demonstrate exactly how to perform each tutorial, are also available. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads though this entire boo...
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
Abert, Claas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-01-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Prakash, A.; Lebensohn, R. A.
2009-09-01
In this work, we compare finite element and fast Fourier transform approaches for the prediction of the micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases—rolling of aluminum and wire drawing of tungsten—are used to evaluate the predictions of the two models. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison with the fast Fourier transform simulations. Figure 9 was corrected in this article on the 25 August 2009. The corrected electronic version is identical to the print version.
Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms
Lebensohn, Ricardo A [Los Alamos National Laboratory; Prakash, Arun [IWM FREIBURG
2009-01-01
In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.
Densification simulation of compacted Al powders using multi-particle finite element method
Kyung-Hun LEE; Jung-Min LEE; Byung-Min KIM
2009-01-01
The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-particle finite element model(MPFEM). Individual particle discretized with a finite element mesh allows for a full description of the contact mechanics. In order to verify the reliability of compaction simulation by MPFEM, the compaction tests of porous aluminum with average particle size of 20 μm and 3 μm were performed at different ram speeds of 5, 15, 30 and 60 mm/min by MTS servo-hydraulic tester. The results show that the slow ram speed is of great advantage for powder densification in low compaction force due to sufficient particle rearrangement and compaction force increases with decrease in average particle size of aluminum.
Finite element simulation of rate-dependent magneto-active polymer response
Haldar, K.; Kiefer, B.; Menzel, A.
2016-10-01
This contribution is concerned with the embedding of constitutive relations for magneto-active polymers (MAP) into finite element simulations. To this end, a recently suggested, calibrated, and validated material model for magneto-mechanically coupled and rate-dependent MAP response is briefly summarized in its continuous and algorithmic settings. Moreover, the strongly coupled field equations of finite deformation magneto-mechanics are reviewed. For the purpose of numerical simulation, a finite element model is then established based on the usual steps of weak form representation, discretization and consistent linearization. Two verifying inhomogeneous numerical examples are presented in which a classical ‘plate with a hole’ geometry is equipped with MAP properties and subjected to different types of time-varying mechanical and magnetic loading.
Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings
Elhoriny, Mohamed; Wenzelburger, Martin; Killinger, Andreas; Gadow, Rainer
2017-04-01
The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.
Finite Element Flow Simulations of the EUROLIFT DLR-F11 High Lift Configuration
Chitale, Kedar C; Martin, Jeff; Jansen, Kenneth E
2014-01-01
This paper presents flow simulation results of the EUROLIFT DLR-F11 multi-element wing configuration, obtained with a highly scalable finite element solver, PHASTA. This work was accomplished as a part of the 2nd high lift prediction workshop. In-house meshes were constructed with increasing mesh density for analysis. A solution adaptive approach was used as an alternative and its effectiveness was studied by comparing its results with the ones obtained with other meshes. Comparisons between the numerical solution obtained with unsteady RANS turbulence model and available experimental results are provided for verification and discussion. Based on the observations, future direction for adaptive research and simulations with higher fidelity turbulence models is outlined.
Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings
Yamada, Yoshiki; Zhu, Dongming
2011-01-01
Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.
Mathematical Model to Simulate the Trajectory Elements ofan Artillery Projectile Proof Shot
K.K. Chand
2007-01-01
Full Text Available In external ballistics of a conventional spin-stabilised artillery projectile, there are a numberof trajectory models developed for computing trajectory elements having varying degrees ofcomplexity. The present study attempts to propose a single mathematical model, viz., simplifiedpoint-mass/simple particle trajectory model to simulate the trajectory elements of a typical spin-stabilised flat-head artillery projectile proof shot. Due to difficulties in the projectile shape andsize, and the complicated nature of air resistance, an accurate mathematical prediction of thetrajectory is difficult. To simplify the computations, the governing equations of motion of theprojectile have been simplified and assumed that the projectile is a particle and the only forcesacting on the projectile are drag and gravity. With this model, trajectory elements have beengenerated and compared with experimental results obtained in the field test. The measuringinstrument used in this case is a Doppler radar.
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
Camanho, Pedro P.; Davila, Carlos G.
2002-01-01
A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.
FINITE ELEMENT SIMULATION AND OPTIMIZATION OF MULTISTAGE WARM/HOT FORMING FOR OUTER RACE
无
2002-01-01
A multistage warm/hot forming is simulated for the cross grove outer race of constant velocity joint, using athermo-mechanical coupled rigid viscoplastic finite element method, and specially some problem for process develop-ment and die design are analyzed. A forming test shows that computed results have good agreement with experimentalresults. Above obtained results can be applied to development of multistage warm/hot forming process and die designfor outer race.
A Parallel Multiscale Mixed Finite-Element Method for the Matlab Reservoir Simulation Toolbox
2012-01-01
We start by giving a brief introduction to reservoirs and reservoir modelling at different scales. We introduce a mathematical model for the two-phase flow, before we look at numerical discretizations. In particular we look at the Multiscale Mixed Finite-Element (MsMFE) Method from the Matlab Reservoir Simulation Toolbox (MRST), developed by SINTEF. Next we introduce a mimetic method, (with the inverse ip_simple inner product, wich is used for solving the local flow problems required to const...
hp-finite element method for simulating light scattering from complex 3D structures
Burger, S; Pomplun, J; Herrmann, S; Schmidt, F
2015-01-01
Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs.
Pitz, DB; Chew, JW
2015-01-01
Natural convection in differentially heated enclosures is a benchmark problem used to investigate the physics of buoyant flows and to validate numerical methods. Such configurations are also of interest in engineering applications such as cooling of electronic components and air flow around buildings. In this work a spectral element method is used to carry out direct numerical simulations of natural convection in a tall enclosure of aspect ratio 4 with isothermal vertical walls and adiabatic ...
WANG Zhuolin; LIN Feng; GU Xianglin
2008-01-01
A two-dimensional mesoscopic numerical method to simulate the failure process of concrete under compression was developed based on the discrete element method by modifying the dgid body-spdng model proposed by Nagai et al.In the calculation model,aggregates or aggregate elements inside the concrete were simplified as rigid bodies with regular polygon profiles,which were surrounded by mortar polygons or mortar elements.All of the adjacent elements were connected by springs.According to the random distribution of aggregates,the mesh was generated by using Voronoi diagram method.Plastic behavior after the elastic limit for a spring was considered to set up the constitutive model of the spring,and Mohr-Coulomb criterion was adopted to judge the failure of a spdng.Simulation examples show that the proposed method can be used to predict the mechanical behavior of concrete under compression descriptively and quantitatively both for small deformation problems and for larger deformation problems.
Che, Cheng-Xuan; Wang, Xiu-Ming; Lin, Wei-Jun
2010-06-01
Based on strong and weak forms of elastic wave equations, a Chebyshev spectral element method (SEM) using the Galerkin variational principle is developed by discretizing the wave equation in the spatial and time domains and introducing the preconditioned conjugate gradient (PCG)-element by element (EBE) method in the spatial domain and the staggered predictor/corrector method in the time domain. The accuracy of our proposed method is verified by comparing it with a finite-difference method (FDM) for a homogeneous solid medium and a double layered solid medium with an inclined interface. The modeling results using the two methods are in good agreement with each other. Meanwhile, to show the algorithm capability, the suggested method is used to simulate the wave propagation in a layered medium with a topographic traction free surface. By introducing the EBE algorithm with an optimized tensor product technique, the proposed SEM is especially suitable for numerical simulation of wave propagations in complex models with irregularly free surfaces at a fast convergence rate, while keeping the advantage of the finite element method.
YAN Yu; WANG Haibo; LI Qiang; GUAN Yanzhi
2016-01-01
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
The element-based finite volume method applied to petroleum reservoir simulation
Cordazzo, Jonas; Maliska, Clovis R.; Silva, Antonio F.C. da; Hurtado, Fernando S.V. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica
2004-07-01
In this work a numerical model for simulating petroleum reservoirs using the Element-based Finite Volume Method (EbFVM) is presented. The method employs unstructured grids using triangular and/or quadrilateral elements, such that complex reservoir geometries can be easily represented. Due to the control-volume approach, local mass conservation is enforced, permitting a direct physical interpretation of the resulting discrete equations. It is demonstrated that this method can deal with the permeability maps without averaging procedures, since this scheme assumes uniform properties inside elements, instead inside of control volumes, avoiding the need of weighting the permeability values at the control volumes interfaces. Moreover, it is easy to include the full permeability tensor in this method, which is an important issue in simulating heterogeneous and anisotropic reservoirs. Finally, a comparison among the results obtained using the scheme proposed in this work in the EbFVM framework with those obtained employing the scheme commonly used in petroleum reservoir simulation is presented. It is also shown that the scheme proposed is less susceptible to the grid orientation effect with the increasing of the mobility ratio. (author)
Cobelo-García, A; Filella, M; Croot, P; Frazzoli, C; Du Laing, G; Ospina-Alvarez, N; Rauch, S; Salaun, P; Schäfer, J; Zimmermann, S
2015-10-01
The current socio-economic, environmental and public health challenges that countries are facing clearly need common-defined strategies to inform and support our transition to a sustainable economy. Here, the technology-critical elements (which includes Ga, Ge, In, Te, Nb, Ta, Tl, the Platinum Group Elements and most of the rare-earth elements) are of great relevance in the development of emerging key technologies-including renewable energy, energy efficiency, electronics or the aerospace industry. In this context, the increasing use of technology-critical elements (TCEs) and associated environmental impacts (from mining to end-of-life waste products) is not restricted to a national level but covers most likely a global scale. Accordingly, the European COST Action TD1407: Network on Technology-Critical Elements (NOTICE)-from environmental processes to human health threats, has an overall objective for creating a network of scientists and practitioners interested in TCEs, from the evaluation of their environmental processes to understanding potential human health threats, with the aim of defining the current state of knowledge and gaps, proposing priority research lines/activities and acting as a platform for new collaborations and joint research projects. The Action is focused on three major scientific areas: (i) analytical chemistry, (ii) environmental biogeochemistry and (iii) human exposure and (eco)-toxicology.
Moreno-Jimenez, Eduardo, E-mail: eduardo.moreno@uam.es [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Beesley, Luke [James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Lepp, Nicholas W. [35, Victoria Road, Formby, Liverpool L37 7DH (United Kingdom); Dickinson, Nicholas M. [Department of Ecology, Lincoln University, Lincoln 7647, PO Box 84 (New Zealand); Hartley, William [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford, M5 4WT (United Kingdom); Clemente, Rafael [Dep. of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, 30100 Espinardo, Murcia (Spain)
2011-10-15
Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites. - Highlights: > In situ pore water sampling successfully evaluates trace elements mobility in soils. > Field sampling proved robust for different soils, sites and climatic regimes. > Measurements may be directly related to ecotoxicological assays. > Both short and long-term monitoring of polluted lands may be achieved. > This method complements other widely used assays for environmental risk assessment. - In situ pore water sampling from a wide variety of soils proves to be a beneficial application to monitor the stability of pollutants in soils and subsequent risk through mobility.
Filella, Montserrat
2010-01-01
Like all elements of the periodic table, bismuth is ubiquitously distributed throughout the environment as a result of natural processes and human activities. It is present as Bi(III) in environmental, biological and geochemical samples. Although bismuth and its compounds are considered to be non-toxic to humans, its increasing use as a replacement for lead has highlighted how little is known about its environmental and ecotoxicological behaviour. In this first critical review paper on the existing information on bismuth occurrence in natural waters, 125 papers on fresh and marine waters have been collated. Although the initial objective of this study was to establish the range of the typical concentrations of total dissolved bismuth in natural waters, this proved impossible to achieve due to the wide, and hitherto unexplained, dispersion of published data. Since analytical limitations might be one of the reasons underlying value dispersion, new analytical methods published since 2000--intended to be applied to natural waters--have also been reviewed. Disappointingly, the detection limits of the bulk of them are well above those required; they are thus of limited usefulness. Analysis of the existing information on bismuth in secondary references (i.e., books, review chapters) and on its chemical speciation in seawater revealed that the uncritical reproduction of old data is a widespread practice.
Milačič, Radmila; Zuliani, Tea; Ščančar, Janez
2012-06-01
Aluminum (Al) is mostly produced from bauxite ore, which contains up to 70% of Al(2)O(3) (alumina). Before alumina is refined to aluminum metal, it is purified by hot alkaline extraction. As a waste by-product red mud is formed. Due to its high alkalinity and large quantities, it represents a severe disposal problem. In Kidričevo (Slovenia), red mud was washed with water before disposal, and after drying, covered with soil. In Ajka (Hungary), the red mud slurry was collected directly in a containment structure, which burst caused a major accident in October 2010. In the present work the environmental impact of toxic elements in red mud from Kidričevo and Ajka were evaluated by applying a sequential extraction procedure and speciation analysis. The predominant red mud fraction was the insoluble residue; nevertheless, environmental concern was focused on the highly mobile water-soluble fraction of Al and Cr. Al in the water-soluble Ajka mud fraction was present exclusively in form of toxic [Al(OH)(4)](-), while Cr existed in its toxic hexavalent form. Comparative assessment to red mud from Kidričevo (Slovenia) with a lower alkalinity (pH 9) with that from Ajka demonstrated significantly lower Al solubility and the presence of only trace amounts of Cr(VI), confirming that disposal of neutralized mud is environmentally much more acceptable and carries a smaller risk of ecological accidents. Since during the Ajka accident huge amounts of biologically available Al and moderate Cr(VI) concentrations were released into the terrestrial and aquatic environments, monitoring of Al and Cr(VI) set free during remedial actions at the contaminated site is essential. Particular care should be taken to minimize the risk of release of soluble Al species and Cr(VI) into water supplies and surface waters.
Takinoue, Masahiro; Kiga, Daisuke; Shohda, Koh-Ichiroh; Suyama, Akira
2008-10-01
Autonomous DNA computers have been attracting much attention because of their ability to integrate into living cells. Autonomous DNA computers can process information through DNA molecules and their molecular reactions. We have already proposed an idea of an autonomous molecular computer with high computational ability, which is now named Reverse-transcription-and-TRanscription-based Autonomous Computing System (RTRACS). In this study, we first report an experimental demonstration of a basic computation element of RTRACS and a mathematical modeling method for RTRACS. We focus on an AND gate, which produces an output RNA molecule only when two input RNA molecules exist, because it is one of the most basic computation elements in RTRACS. Experimental results demonstrated that the basic computation element worked as designed. In addition, its behaviors were analyzed using a mathematical model describing the molecular reactions of the RTRACS computation elements. A comparison between experiments and simulations confirmed the validity of the mathematical modeling method. This study will accelerate construction of various kinds of computation elements and computational circuits of RTRACS, and thus advance the research on autonomous DNA computers.
Somodi, P.K.; Twitchett-Harrison, A.C.; Midgley, P.A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Kardynał, B.E. [Peter Grünberg Institute 9, Forschungszentrum Jülich, D-52425 Jülich (Germany); Barnes, C.H.W. [Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Dunin-Borkowski, R.E., E-mail: rafaldb@gmail.com [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2013-11-15
Two-dimensional finite element simulations of electrostatic dopant potentials in parallel-sided semiconductor specimens that contain p–n junctions are used to assess the effect of the electrical state of the surface of a thin specimen on projected potentials measured using off-axis electron holography in the transmission electron microscope. For a specimen that is constrained to have an equipotential surface, the simulations show that the step in the projected potential across a p–n junction is always lower than would be predicted from the properties of the bulk device, but is relatively insensitive to the value of the surface state energy, especially for thicker specimens and higher dopant concentrations. The depletion width measured from the projected potential, however, has a complicated dependence on specimen thickness. The results of the simulations are of broader interest for understanding the influence of surfaces and interfaces on electrostatic potentials in nanoscale semiconductor devices. - Highlights: • Finite element simulations are performed to calculate electrostatic dopant potentials in TEM specimens that contain p–n junctions. • The effect of the electrical state of the specimen surface on the projected potential is assessed for equipotential specimen surfaces. • The step in projected potential is always found to be lower than the step in potential in the bulk device. • The step in projected potential is least sensitive to surface state energy for thicker specimens and higher dopant concentrations. • The depletion width measured from the projected potential has a complicated dependence on specimen thickness.
Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method
Yongzhi ZHAO; Yi CHENG; Maoqiang JIANG; Yong JIN
2008-01-01
A discrete element method (DEM)-computa-tional fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by com-bining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pat-tern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the aver-aged void fraction in the spout and the annulus were stat-istically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
Crashworthiness simulation and improvement design of auto-body based on finite element mehtod
张晓云; 金先龙; 丌文果; 孙奕; 周长英; 王仕达
2004-01-01
One developing commercial vehicle was simulated on crashworthiness using the nonlinear finite element method. The deformation of the auto-body, the movement of the steering wheel and the dynamic responses of the occupant at the initial velocity of 50 km/h were studied. The results show that the design of the vehicle could be improved on structure and material. The frontal longitudinal beam, the main energy-absorbing part of the auto-body, was optimized on structure. The data of the simulation predict that the hinge of the engine hood would fracture during the crash. The failure of the engine hood hinge would be a danger to both the driver and passengers. Then the problem was solved by changing the engine hood and hinge on structure and material. Simulation results also show that applying new material and new manufacture techniques could improve the crashworthiness of the vehicle greatly. These improvement methods are valuable to the virtual design of vehicles.
CHANG Wei-Tze; HSIEH Shang-Hsien; YANG Fu-Ling; CHEN Chuin-Shan
2008-01-01
This paper proposes a numerical scheme that employs the discrete element method (DEM) to simulate the motion of a wet granular flow down an inclined channel.To account for the liquid influences on the dynamics between paired particles,this paper presents a wet soft-sphere contact model with liquid-modified parameters.The developed scheme takes full advantage of DEM and avoids the expensive simula-tion of the solid-liquid interactions with conventional Navier-Stokes equation solver.This wet contact model has been implemented in an in-housed parallel discrete objects simulation system-KNIGHT and ANNE/IRIS口to compute the dynamic behaviors of both dry and wet granular particles flowing down an in-dined channel.
J. Fankhänel
2016-01-01
Full Text Available Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM experiments and Molecular Dynamic Finite Element Method (MDFEM simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.
Syarizal Fonna
2016-01-01
Full Text Available Many studies have suggested that the corrosion detection of reinforced concrete (RC based on electrical potential on concrete surface was an ill-posed problem, and thus it may present an inaccurate interpretation of corrosion. However, it is difficult to prove the ill-posed problem of the RC corrosion detection by experiment. One promising technique is using a numerical method. The objective of this study is to simulate the ill-posed problem of RC corrosion detection based on electrical potential on a concrete surface using the Boundary Element Method (BEM. BEM simulates electrical potential within a concrete domain. In order to simulate the electrical potential, the domain is assumed to be governed by Laplace’s equation. The boundary conditions for the corrosion area and the noncorrosion area of rebar were selected from its polarization curve. A rectangular reinforced concrete model with a single rebar was chosen to be simulated using BEM. The numerical simulation results using BEM showed that the same electrical potential distribution on the concrete surface could be generated from different combinations of parameters. Corresponding to such a phenomenon, this problem can be categorized as an ill-posed problem since it has many solutions. Therefore, BEM successfully simulates the ill-posed problem of reinforced concrete corrosion detection.
Yang, Liu; Nannan, Zhang; Wentong, Dong; Liqun, Zou; Shanghong, Huang
2016-11-01
This paper presents a study of revealing the environmental elements change during the process of local industrialization based on remote sensing technique in the western part of China. Spatio-temporal evolution of vegetation cover derived from NDVI and land surface water distribution was analyzed by time-series analysis of MSS and Landsat data from 1977 to 2011. Results show that remote sensing provide a way for monitoring the influence of local industrialization on regional environment elements in gobi region.
Application of computer simulated persons in indoor environmental modeling
Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft
2002-01-01
Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...
Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.
2009-12-01
Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by
Adaptive finite element simulation of flow and transport applications on parallel computers
Kirk, Benjamin Shelton
The subject of this work is the adaptive finite element simulation of problems arising in flow and transport applications on parallel computers. Of particular interest are new contributions to adaptive mesh refinement (AMR) in this parallel high-performance context, including novel work on data structures, treatment of constraints in a parallel setting, generality and extensibility via object-oriented programming, and the design/implementation of a flexible software framework. This technology and software capability then enables more robust, reliable treatment of multiscale--multiphysics problems and specific studies of fine scale interaction such as those in biological chemotaxis (Chapter 4) and high-speed shock physics for compressible flows (Chapter 5). The work begins by presenting an overview of key concepts and data structures employed in AMR simulations. Of particular interest is how these concepts are applied in the physics-independent software framework which is developed here and is the basis for all the numerical simulations performed in this work. This open-source software framework has been adopted by a number of researchers in the U.S. and abroad for use in a wide range of applications. The dynamic nature of adaptive simulations pose particular issues for efficient implementation on distributed-memory parallel architectures. Communication cost, computational load balance, and memory requirements must all be considered when developing adaptive software for this class of machines. Specific extensions to the adaptive data structures to enable implementation on parallel computers is therefore considered in detail. The libMesh framework for performing adaptive finite element simulations on parallel computers is developed to provide a concrete implementation of the above ideas. This physics-independent framework is applied to two distinct flow and transport applications classes in the subsequent application studies to illustrate the flexibility of the
S. D. Parkinson
2014-09-01
Full Text Available High-resolution direct numerical simulations (DNSs are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Parkinson, S. D.; Hill, J.; Piggott, M. D.; Allison, P. A.
2014-09-01
High-resolution direct numerical simulations (DNSs) are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier-Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE) DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two and three dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring model performance in capturing the range of dynamics on a range of meshes. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. The use of adaptive mesh optimisation is shown to reduce the required element count by approximately two orders of magnitude in comparison with fixed, uniform mesh simulations. This leads to a substantial reduction in computational cost. The computational savings and flexibility afforded by adaptivity along with the flexibility of FE methods make this model well suited to simulating turbidity currents in complex domains.
Fast Computation of Global Sensitivity Kernel Database Based on Spectral-Element Simulations
Sales de Andrade, Elliott; Liu, Qinya
2017-07-01
Finite-frequency sensitivity kernels, a theoretical improvement from simple infinitely thin ray paths, have been used extensively in recent global and regional tomographic inversions. These sensitivity kernels provide more consistent and accurate interpretation of a growing number of broadband measurements, and are critical in mapping 3D heterogeneous structures of the mantle. Based on Born approximation, the calculation of sensitivity kernels requires the interaction of the forward wavefield and an adjoint wavefield generated by placing adjoint sources at stations. Both fields can be obtained accurately through numerical simulations of seismic wave propagation, particularly important for kernels of phases that cannot be sufficiently described by ray theory (such as core-diffracted waves). However, the total number of forward and adjoint numerical simulations required to build kernels for individual source-receiver pairs and to form the design matrix for classical tomography is computationally unaffordable. In this paper, we take advantage of the symmetry of 1D reference models, perform moment tensor forward and point force adjoint spectral-element simulations, and save six-component strain fields only on the equatorial plane based on the open-source spectral-element simulation package, SPECFEM3D_GLOBE. Sensitivity kernels for seismic phases at any epicentral distance can be efficiently computed by combining forward and adjoint strain wavefields from the saved strain field database, which significantly reduces both the number of simulations and the amount of storage required for global tomographic problems. Based on this technique, we compute traveltime, amplitude and/or boundary kernels of isotropic and radially anisotropic elastic parameters for various (P, S, P_{diff}, S_{diff}, depth, surface-reflected, surface wave, S 660 S boundary, etc.) phases for 1D ak135 model, in preparation for future global tomographic inversions.
Brasil, Leandro Schlemmer; Vieira, Thiago Bernardi; de Oliveira-Junior, José Max Barbosa; Dias-Silva, Karina; Juen, Leandro
2017-05-01
An important aspect of conservation is to understand the founding elements and characteristics of metacommunities in natural environments, and the consequences of anthropogenic disturbance on these patterns. In natural Amazonian environments, the interfluves of the major rivers play an important role in the formation of areas of endemism through the historical isolation of species and the speciation process. We evaluated elements of metacommunity structure for Zygoptera (Insecta: Odonata) sampled in 93 Amazonian streams distributed in two distinct biogeographic regions (areas of endemism). Of sampled streams, 43 were considered to have experienced negligible anthropogenic impacts, and 50 were considered impacted by anthropogenic activities. Our hypothesis was that preserved ("negligible impact") streams would present a Clementsian pattern, forming clusters of distinct species, reflecting the biogeographic pattern of the two regions, and that anthropogenic streams would present random patterns of metacommunity, due to the loss of more sensitive species and dominance of more tolerant species, which have higher dispersal ability and environmental tolerance. In negligible impact streams, the Clementsian pattern reflected a strong biogeographic pattern, which we discuss considering the areas of endemism of Amazonian rivers. As for communities in human-impacted streams, a biotic homogenization was evident, in which rare species were suppressed and the most common species had become hyper-dominant. Understanding the mechanisms that trigger changes in metacommunities is an important issue for conservation, because they can help create mitigation measures for the impacts of anthropogenic activities on biological communities, and so should be expanded to studies using other taxonomic groups in both tropical and temperate systems, and, wherever possible, at multiple spatial scales.
Finite Element Simulation on Crack Analysis of a Thick-Tube
A.M. Ahmad Zaidi
2009-09-01
Full Text Available Most engineering failure began with cracks. Crack may caused by material defect, discontinuities in geometry or damage in service. Thus, Fracture Mechanics is introduced as a method for predicting failure of a surface containing a crack. This project is focusing on pre-existing crack with assumption that no microscopic defects are presents. Linear Elastic Fracture Mechanics (LEFM is used to evaluate the Stress Intensity Factor (SIF of the specimen. Further analysis is done by incorporating Elastic Plastic Fracture Mechanics (EPFM to understand the crack growth over period of time. In this study, the important parameters in fracture mechanics such as Stress Intensity Factor (SIF, Crack Mouth Opening Displacement (CMOD, J Integral and stable crack growth are been investigated. A complex loading simulation of NKS-3 specimen is done using finite element modeling. The NKS-3 is a thick-tube used in Pressurized Water Reactor (PWR which has a circumferential flaw on its inner surface. The cylinder is loaded with axial tensile load and internal pressure combined with thermal shock. A 2-Dimensional Axysimmetric-4 nodes element with focused mesh at the crack tip is employed in the simulation. Several analyses have been done using hardening data at different temperature. A comparison of solution is made for simulation with and without thermal load history. Further analysis showed that the stable crack growth is estimated to be around 3.0mm.
Thin-walled aluminum alloy tube NC precision bending based on finite element simulation
GU Rui-jie; YANG He; ZHAN Mei; LI Heng
2006-01-01
Elongation and springback are the bottleneck problems of thin-walled aluminum alloy tube NC precision bending. So thin-walled aluminum alloy tube NC precision bending based on finite element simulation is put forward. The finite element model of thin-walled aluminum alloy tube NC bending is established based on the DYNAFORM platform. The process of thin-walled aluminum alloy tube NC precision bending is simulated with the model and the elongation and springback of tube bending can be is put forward and the computing equations of bending angle, bending radius, blanking length and initial bending section based on elongation and springback angle are derived. The bending angle, bending radius, blanking length and initial bending section of tube bending can be gained with these equations based on the elongation and springback angle from the simulation. The study can be used to control the quality of thin-walled aluminum alloy tube NC bending so that precision bending without redundance can be realized.
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft
Mason, Brian H.; Warren, Jerry E., Jr.
2017-01-01
The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.
Naghibi Beidokhti, Hamid; Janssen, Dennis; Khoshgoftar, Mehdi; Sprengers, Andre; Perdahcioglu, Emin Semih; Van den Boogaard, Ton; Verdonschot, Nico
2016-10-01
The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been used, a comparative study on the outcomes of both methods is of high interest for the knee modeling community. The aim of this study is to compare static, dynamic implicit and dynamic explicit solutions in analyses of the knee joint to assess the prediction of dynamic effects, potential convergence problems, the accuracy and stability of the calculations, the difference in computational time, and the influence of mass-scaling in the explicit formulation. The heel-strike phase of fast, normal and slow gait was simulated for two different body masses in a model of the native knee. Our results indicate that ignoring the dynamic effect can alter joint motion. Explicit analyses are suitable to simulate dynamic loading of the knee joint in high-speed simulations, as this method offers a substantial reduction of the computational time with a similar prediction of cartilage stresses and meniscus strains. Although mass-scaling can provide even more gain in computational time, it is not recommended for high-speed activities, in which inertial forces play a significant role. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
MA Linwei; MO Jianhua
2008-01-01
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger.
LUO Zu-jiang; ZHANG Ying-ying; WU Yong-xia
2008-01-01
For deep foundation pit dewatering in the Yangtze River Delta, it is easy to make a dramatic decrease of the underground water level surrounding the dewatering area and cause land subsidence and geologic disasters. In this work, a three-dimensional finite element simulation method was applied in the forth subway of Dongjiadu tunnel repair foundation pit dewatering in Shanghai. In order to control the decrease of the underground water level around the foundation pit, the foundation pit dewatering method was used to design the optimization project of dewatering ,which was simulated under these conditions that the aquifers deposited layer by layer, the bottom of the aquifers went deep to 144.45 m, the retaining wall of foundation pit shield went deep to 65 m, the filters of the extraction wells were located between 44 m to 59 m, the water level in the deep foundation pit was decreased by 34 m, and the maximum decrease of water level outside the foundation pit was 3 m. It is shown that the optimization project and the practical case are consistent with each other. Accordingly, the three-dimensional finite element numerical simulation is the basic theory of optimization design of engineering structures of dewatering in deep foundation pit in such areas.
Finite-Element Simulation of Conventional and High-Speed Peripheral Milling of Hardened Mold Steel
Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.
2009-12-01
A finite-element model (FEM) with the flow stress and typical fracture is used to simulate a hard machining process, which before this work could not adequately represent the constitutive behavior of workpiece material that is usually heat treated to hardness levels above 50 Rockwell C hardness (HRC). Thus, a flow stress equation with a variation in hardness is used in the computer simulation of hard machining. In this article, the influence of the milling speed on the cutting force, chip morphology, effective stress, and cutting temperature in the deformation zones of both conventional and high-speed peripheral milling hardened mold steel is systematically studied by finite-element analysis (FEA). By taking into consideration the importance of material characteristics during the milling process, the similar Johnson-Cook’s constitutive equation with hardened mold steel is introduced to the FEM to investigate the peripheral milling of hardened mold steel. In comparison with the experimental data of the cutting force at various cutting speeds, the simulation result is identical with the measured data. The results indicate that the model can be used to accurately predict the behavior of hardened mold steel in both conventional and high-speed milling.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
Numerical simulation of pressure therapy glove by using Finite Element Method.
Yu, Annie; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne; Chan, Ying Fan
2016-02-01
Pressure therapy garments apply pressure to suppress the growth and flatten hypertrophic scars caused by serious burns. The amount of pressure given by the pressure garments is critical to the treatment adherence and outcomes. In the present study, a biomechanical model for simulating the pressure magnitudes and distribution over hand dorsum given by a pressure glove was developed by using finite element method. In this model, the shape geometry of the hand, the mechanical properties of the glove and human body tissues were incorporated in the numerical stress analyses. The geometry of the hand was obtained by a 3D laser scanner. The material properties of two warp knitted fabrics were considered in the glove fabric model that developed from the glove production pattern with 10% size reduction in circumferential dimensions. The glove was regarded an isotropic elastic shell and the hand was assumed to be a homogeneous, isotropic and linearly elastic body. A glove wearing process was carried in the finite element analysis and the surface-to-surface contact pressure between hand and glove fabric was hence obtained. Through validation, the simulated contact pressure showed a good agreement with the experimental interface pressure measurement. The simulation model can be used to predict and visualise the pressure distribution exerted by a pressure therapy glove onto hand dorsum. It can provide information for optimising the material mechanical properties in pressure garment design and development, give a clue to understand the mechanisms of pressure action on hypertrophic scars and ultimately improve the medical functions of pressure garment.
Lisa Röthlingshöfer
2011-12-01
Full Text Available Athletes need a balanced body composition in order to achieve maximum performance. Especially dehydration reduces power and endurance during physical exercise. Monitoring the body composition, with a focus on body fluid, may help to avoid reduction in performance and other health problems.For this, a potential measurement method is bioimpedance spectroscopy (BIS. BIS is a simple, non-invasive measurement method that allows to determine different body compartments (body fluid, fat, fat-free mass. However, because many physiological changes occur during physical exercise that can influence impedance measurements and distort results, it cannot be assumed that the BIS data are related to body fluid loss alone.To confirm that BIS can detect body fluid loss due to physical exercise, finite element (FE simulations were done. Besides impedance, also the current density contribution during a BIS measurement was modeled to evaluate the influence of certain tissues on BIS measurements.Simulations were done using CST EM Studio (Computer Simulation Technology, Germany and the Visible Human Data Set (National Library of Medicine, USA. In addition to the simulations, BIS measurements were also made on athletes. Comparison between the measured bioimpedance data and simulation data, as well as body weight loss during sport, indicates that BIS measurements are sensitive enough to monitor body fluid loss during physical exercise.doi:10.5617/jeb.178 J Electr Bioimp, vol. 2, pp. 79-85, 2011
Webster, Victoria A; Nieto, Santiago G; Grosberg, Anna; Akkus, Ozan; Chiel, Hillel J; Quinn, Roger D
2016-10-01
In this study, new techniques for approximating the contractile properties of cells in biohybrid devices using Finite Element Analysis (FEA) have been investigated. Many current techniques for modeling biohybrid devices use individual cell forces to simulate the cellular contraction. However, such techniques result in long simulation runtimes. In this study we investigated the effect of the use of thermal contraction on simulation runtime. The thermal contraction model was significantly faster than models using individual cell forces, making it beneficial for rapidly designing or optimizing devices. Three techniques, Stoney׳s Approximation, a Modified Stoney׳s Approximation, and a Thermostat Model, were explored for calibrating thermal expansion/contraction parameters (TECPs) needed to simulate cellular contraction using thermal contraction. The TECP values were calibrated by using published data on the deflections of muscular thin films (MTFs). Using these techniques, TECP values that suitably approximate experimental deflections can be determined by using experimental data obtained from cardiomyocyte MTFs. Furthermore, a sensitivity analysis was performed in order to investigate the contribution of individual variables, such as elastic modulus and layer thickness, to the final calibrated TECP for each calibration technique. Additionally, the TECP values are applicable to other types of biohybrid devices. Two non-MTF models were simulated based on devices reported in the existing literature.
Lee, Bryan; Popescu, Dan C; Ourselin, Sébastien
2010-12-01
Surgical simulators provide another tool for training and practising surgical procedures, usually restricted to the use of cadavers. Our surgical simulator utilises Finite Element (FE) models based on linear elasticity. It is driven by displacements, as opposed to forces, allowing for realistic simulation of both deformation and haptic response at real-time rates. To achieve demanding computational requirements, the stiffness matrix K, which encompasses the geometrical and physical properties of the object, is precomputed, along with K⁻¹. Common to many surgical procedures is the requirement of cutting tissue. Introducing topology modifications, such as cutting, into these precomputed schemes does however come as a challenge, as the precomputed data needs to be modified, to reflect the new topology. In particular, recomputing K⁻¹ is too costly to be performed during the simulation. Our topology modification method is based upon updating K⁻¹ rather than entirely recomputing the matrix. By integrating condensation, we improve efficiency to allow for interaction with larger models. We can further enhance this by redistributing computational load to improve the system's real-time response. We exemplify our techniques with results from our surgical simulation system.
Discrete element simulation of powder compaction in cold uniaxial pressing with low pressure
Rojek, Jerzy; Nosewicz, Szymon; Jurczak, Kamila; Chmielewski, Marcin; Bochenek, Kamil; Pietrzak, Katarzyna
2016-11-01
This paper presents numerical studies of powder compaction in cold uniaxial pressing. The powder compaction in this work is considered as an initial stage of a hot pressing process so it is realized with relatively low pressure (up to 50 MPa). Hence the attention has been focused on the densification mechanisms at this range of pressure and models suitable for these conditions. The discrete element method employing spherical particles has been used in the numerical studies. Numerical simulations have been performed for two different contact models—the elastic Hertz-Mindlin-Deresiewicz model and the plastic Storåkers model. Numerical results have been compared with the results of laboratory tests of the die compaction of the NiAl powder. Comparisons have shown that the discrete element method is capable to represent properly the densification mechanisms by the particle rearrangement and particle deformation.
Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De
During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.
Fabrication of simulated plate fuel elements: Defining role of stress relief annealing
Kohli, D.; Rakesh, R.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.
2014-04-01
This study involved fabrication of simulated plate fuel elements. Uranium silicide of actual fuel elements was replaced with yttria. The fabrication stages were otherwise identical. The final cold rolled and/or straightened plates, without stress relief, showed an inverse relationship between bond strength and out of plane residual shear stress (τ13). Stress relief of τ13 was conducted over a range of temperatures/times (200-500 °C and 15-240 min) and led to corresponding improvements in bond strength. Fastest τ13 relief was obtained through 300 °C annealing. Elimination of microscopic shear bands, through recovery and partial recrystallization, was clearly the most effective mechanism of relieving τ13.
The Use of Sprint Interface Element Delamination Simulation of Sandwich Composite Beam
Xu, Geng; Yan, Renjun
2016-12-01
Sandwich composite beams have been more and more used in various industries because of their excellent mechanical properties. However, the mismatched performance between face sheet and foam core always lead to such as cracks and damages in the core or face/core interface during the processes of manufacturing or service. Delamination damage at the adhesive interface is the most dangerous and could be one main source that the mechanical capability of the structure is serous degenerated. In this paper, a simple and natural model to evaluate the stiffness of the spring interface elements, which is based on the physics and the geometry of the adhesive layers, is proposed. In order to validate the model, cantilever beam bending test were conducted for marine sandwich composite I-beam. A good comparison has been found between predictions and experimental results, and results indicate that the spring interface element can provide an efficient model for the delamination simulation of sandwich composite structures.
Tang, Weiqin; Li, Dayong; Zhang, Shaorui; Peng, Yinghong
2013-12-01
As a light-weight structural material, magnesium alloys show good potential in improving the fuel efficiency of vehicles and reducing CO2 emissions. However, it is well known that polycrystalline Mg alloys develop pronounced crystallographic texture and plastic anisotropy during rolling, which leads to earing phenomenon during deep drawing of the rolled sheets. It is vital to predict this phenomenon accurately for application of magnesium sheet metals. In the present study, a crystal plasticity model for AZ31 magnesium alloy that incorporates both slip and twinning is established. Then the crystal plasticity model is implemented in the commercial finite element software ABAQUS/Explicit through secondary development interface (VUMAT). Finally, the stamping process of a cylindrical cup is simulated using the developed crystal plasticity finite element model, and the predicting method is verified by comparing with experimental results from both earing profile and deformation texture.
Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.
2017-10-01
We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.
Real-Time Nonlinear Finite Element Computations on GPU - Application to Neurosurgical Simulation.
Joldes, Grand Roman; Wittek, Adam; Miller, Karol
2010-12-15
Application of biomechanical modeling techniques in the area of medical image analysis and surgical simulation implies two conflicting requirements: accurate results and high solution speeds. Accurate results can be obtained only by using appropriate models and solution algorithms. In our previous papers we have presented algorithms and solution methods for performing accurate nonlinear finite element analysis of brain shift (which includes mixed mesh, different non-linear material models, finite deformations and brain-skull contacts) in less than a minute on a personal computer for models having up to 50.000 degrees of freedom. In this paper we present an implementation of our algorithms on a Graphics Processing Unit (GPU) using the new NVIDIA Compute Unified Device Architecture (CUDA) which leads to more than 20 times increase in the computation speed. This makes possible the use of meshes with more elements, which better represent the geometry, are easier to generate, and provide more accurate results.
Carlos Salinas
2011-05-01
Full Text Available The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood.
Andréa Scaramal da Silva
2013-04-01
Full Text Available Phenanthracene is a highly toxic organic compound capable of contaminating water and soils, and biodegradation is an important tool for remediating polluted environments. This study aimed to evaluate the effects of trace elements, cations, and environmental conditions on the activity of the protocatechol 3,4-dioxygenase (P3,4O enzyme produced by the isolate Leifsonia sp. in cell-free and immobilized extracts. The isolate was grown in Luria Bertani broth medium (LB amended with 250 mg L-1 of phenanthrene. Various levels of pH (4.0-9.0, temperature (5-80 °C, time (0-90 min, trace elements (Cu2+, Hg2+ and Fe3+, and cations (Mg2+, Mn2+, K+ and NH4+ were tested to determine which conditions optimized enzyme activity. In general, the immobilized extract exhibited higher enzyme activity than the cell-free extract in the presence of trace elements and cations. Adding iron yielded the highest relative activity for both cell-free and immobilized extracts, with values of 16 and 99 %, respectively. Copper also increased enzyme activity for both cell-free and immobilized extracts, with values of 8 and 44 %, respectively. Enzyme activity in the phosphate buffer was high across a wide range of pH, reaching 80 % in the pH range between 6.5 and 8.0. The optimum temperatures for enzyme activity differed for cell-free and immobilized extracts, with maximum enzyme activity observed at 35 ºC for the cell-free extract and at 55 ºC for the immobilized extract. The cell-free extract of the P3,4O enzyme exhibited high activity only during the first 3 min of incubation, when it showed 50 % relative activity, and dropped to 0 % after 60 min of incubation. By contrast, activity in the immobilized extract was maintained during 90 min of incubation. This isolate has important characteristics for phenanthrene biodegradation, producing high quantities of the P3,4O enzyme that forms part of the most important pathway for PAH biodegradation.
Abdulnaser M. Alshoaibi
2009-01-01
Full Text Available The purpose of this study is on the determination of 2D crack paths and surfaces as well as on the evaluation of the stress intensity factors as a part of the damage tolerant assessment. Problem statement: The evaluation of SIFs and crack tip singular stresses for arbitrary fracture structure are a challenging problem, involving the calculation of the crack path and the crack propagation rates at each step especially under mixed mode loading. Approach: This study was provided a finite element code which produces results comparable to the current available commercial software. Throughout the simulation of crack propagation an automatic adaptive mesh was carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The finite element mesh was generated using the advancing front method. The adaptive remising process carried out based on the posteriori stress error norm scheme to obtain an optimal mesh. The onset criterion of crack propagation was based on the stress intensity factors which provide as the most important parameter that must be accurately estimated. Facilitated by the singular elements, the displacement extrapolation technique is employed to calculate the stress intensity factor. Crack direction is predicted using the maximum circumferential stress theory. The fracture was modeled by the splitting node approach and the trajectory follows the successive linear extensions of each crack increment. The propagation process is driven by Linear Elastic Fracture Mechanics (LEFM approach with minimum user interaction. Results: In evaluating the accuracy of the estimated stress intensity factors and the crack path predictions, the results were compared with sets of experimental data, benchmark analytical solutions as well as numerical results of other researchers. Conclusion/Recommendations: The assessment indicated that the program was highly reliable to evaluate the stress intensity
Hong Zhou; XiaoLong Xue; WangShu Yang
2014-01-01
This paper presents a simulation technology of environmental impact for the building. By emergy analysis method, emergy costs of building( or construction engineering) can be calculated in the life cycle. It includes the engineering cost, environmental cost and social cost of building. Through integrating GIS technology with multi-agent technology, life cycle substance and energy metabolism of building ( construction engineering) can be simulated and their environmental influence can be dynamically displayed. Based on the case study of entries works ‘Sunny Inside’ by Xiamen University in 2013 China International Solar Decathlon Competition, we discovered the changing pattern of surrounding environmental impact from waste streams of the zero-energy building and ordinary construction. The simulation results verified and showed the Odum principles of maximum power. This paper provides a new research perspective and integration approach for the environmental impact assessment in building and construction engineering. The result will help decision-making in design and construction engineering scheme.
Arbex, D F; Jappur, R; Selig, P; Varvakis, G
2012-01-01
This article addresses the ergonomic criteria that guide the construction of an educational game called Environmental Simulator. The focus is on environment navigation considering aspects of content architecture and its esthetics functionality.
Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves
Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian
2012-12-01
This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.
Integrating finite elements with optimal control to simulate active vibrations attenuation
Woods, S.; Szyszkowski, W.
2016-12-01
Continuous mechanical systems controlled by discrete actuators are inherently under-actuated and involve second-order non-holonomic constraints. A method of simulating optimal vibrations attenuation for such systems is proposed, in which the system is modeled by the finite elements (with possibly a large number of DOFs) and Pontryagin's Principle is applied to control several significant vibration modes by a small number of discrete actuators. For an assumed set of actuators the complete dynamic response of the system can be obtained, as well as the rate and effort parameters to evaluate efficiency of the whole attenuation process.
Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process
Breinlinger, Thomas; Kraft, Torsten
2016-11-01
Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.
Numerical simulation of coal-bed methane transfer with finite element method
DAI Li-qiang(代立强); LIU Bao-yu(刘宝玉)
2003-01-01
The mathematical model and the numerical simulation for the transfer of coal-bed methane were established based on the combination of the porous flow theory and elastic-plastic mechanics theory and the numerical solution was given, together with the consideration of the fluid-solid interaction between the coal-bed gas and coal framework. Then the dispersion for the equation of gas porous flow and coal seam distortion was carried out and the functional analysis equation was obtained. Finally, the coupling solution was educed and calculated by finite element method(FEM) on a model example.
Simulation study of BGO array for characteristic gamma rays from neutron-stimulated elements
TANG Shibiao; MA Qingli; YIN Zejie; HUANG Huan
2007-01-01
Characteristic gamma rays of 100 keV to about 6 MeV from different elements stimulated by neurons have been applied to diagnosis biological imaging.In this paper.BGO detectors are used for the spectrum simulation.Signals from a single crystal and after correction are both obtained.and the energy spectrum summing adjacent signals seems possible to achieve excellent energy resolution for such high-energy photons.Some ideal suppositions are introduced and some other information,such as spatial resolution and difficult electronics,should be considered after this correction.
Müller Simon
2016-01-01
Full Text Available Pharmaceutical high barrier blister packages are manufactured from aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers. By a cold stretch forming process cavities are formed. The aim of this work is to determine a homogenized elastic-plastic description of the laminate by micromechanics. Therefore, a microstructural model is developed where the layers are mapped in a representative volume element. The obtained homogenized material model is applied to simulate the stretch forming to gain more insight into the forming process.
Simulation of viscous flows using a multigrid-control volume finite element method
Hookey, N.A. [Memorial Univ., Newfoundland (Canada)
1994-12-31
This paper discusses a multigrid control volume finite element method (MG CVFEM) for the simulation of viscous fluid flows. The CVFEM is an equal-order primitive variables formulation that avoids spurious solution fields by incorporating an appropriate pressure gradient in the velocity interpolation functions. The resulting set of discretized equations is solved using a coupled equation line solver (CELS) that solves the discretized momentum and continuity equations simultaneously along lines in the calculation domain. The CVFEM has been implemented in the context of both FMV- and V-cycle multigrid algorithms, and preliminary results indicate a five to ten fold reduction in execution times.
The effect of innovation competence on the choice of information elements in a simulated NPD process
Søndergaard, Helle Alsted; Juhl, Hans Jørn
to prompt different managerial behaviour. This study uses a role-play approach to investigating the relationship between innovation competence (exploitation or exploration competences) and the acquisition of information elements in a simulated new product development (NPD) process. Results show that two......This paper presents a study of the relationship between innovation competence and managerial behaviour. Within the resource-based view of the firm the development of new products is often related to the attainment of dynamic capabilities. Different levels of dynamic capabilities are expected...
Improving formability of tube bending for a copper material using finite element simulation
Nguyen, Duc Toan; Nnuyen, Dinh Thanh [Hungyen University of Technology and Education, Hungyen (Viet Nam); Kim, Young Suk [Kyungpook National University, Daegu (Korea, Republic of)
2015-10-15
Bending tubes are key products in many industries. The geometric parameters of the bending process are considered according to Taguchi's orthogonal array and then coupled with finite element simulation to predict and improve the formability of the tube bending process for copper JIS25A material. Three parameters, namely, mandrel diameter, distance between mandrel rings, and distance from the tip of the mandrel bar to the center of the base die, are selected to study their effects on the quality of the bending process. The variance analysis shows that the effect distribution of each parameter to bending quality is determined, and optimal conditions are adopted to conduct experiments.
Free surface simulation of a two-layer fluid by boundary element method
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Aagaard Madsen, Helge; Bak, Christian; Døssing, Mads;
2010-01-01
-dimensional axial and tangential load coefficients can be used for the BEM model as for the numerical AD model. At a rotor disc loading corresponding to maximum power coefficient, we found close correlation between the AD and BEM model as concerns the integral value of the power coefficient. However, locally along......A comprehensive investigation of the Blade Element Momentum (BEM) model using detailed numerical simulations with an axis symmetric actuator disc (AD) model has been carried out. The present implementation of the BEM model is in a version where exactly the same input in the form of non...
马鑫; 钱乙余
2001-01-01
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.
Kozień, Marek S; Lorkowski, Jacek; Szczurek, Sławomir; Hładki, Waldemar; Trybus, Marek
2008-01-01
The aim of this study was to construct a computed simulation of an isolated lesion of tibiofibular syndesmosis on typical clinical range of value. The analysis was made using the method of finite elements with a simplified plain model of a bone and assuming material of bone and ankle joint as isotropic and homogeneous. The distraction processes were modelled by external generalized forces. The computed programme ANSYS was used. For evaluation obtained was the computed image of changes of anatomy in relation to forces.
Hempert, F.; Hoffmann, M.; Iben, U.; Munz, C.-D.
2016-06-01
In the present investigation, we demonstrate the capabilities of the discontinuous Galerkin spectral element method for high order accuracy computation of gas dynamics. The internal flow field of a natural gas injector for bivalent combustion engines is investigated under its operating conditions. The simulations of the flow field and the aeroacoustic noise emissions were in a good agreement with the experimental data. We tested several shock-capturing techniques for the discontinuous Galerkin scheme. Based on the validated framework, we analyzed the development of the supersonic jets during different opening procedures of a compressed natural gas injector. The results suggest that a more gradual injector opening decreases the noise emission.
On the possible environmental effect in distributing heavy elements beyond individual gaseous halos
Johnson, Sean D; Mulchaey, John S
2015-01-01
We present a study of extended galaxy halo gas through HI and OVI absorption over two decades in projected distance at $z\\approx0.2$. The study is based on a sample of $95$ galaxies from a highly complete ($ > 80\\%$) survey of faint galaxies ($L > 0.1L_*$) with archival quasar absorption spectra and $53$ galaxies from the literature. A clear anti-correlation is found between HI (OVI) column density and virial radius normalized projected distance, $d/R_{\\rm h}$. Strong HI (OVI) absorption systems with column densities greater than $10^{14.0}$ ($10^{13.5}$) cm$^{-2}$ are found for $48$ of $54$ ($36$ of $42$) galaxies at $d R_{\\rm h}$ compared to isolated galaxies ($\\kappa_{\\rm OVI}\\approx0.13$ versus $0.04$) but no excess HI absorption. These findings suggest that environmental effects play a role in distributing heavy elements beyond the enriched gaseous halos of individual galaxies. Finally, we find that differential HI and OVI absorption between early- and late-type galaxies continues from $d < R_{\\rm h}$...
State of rare earth elements in different environmental components in mining areas of China.
Liang, Tao; Li, Kexin; Wang, Lingqing
2014-03-01
China has relatively abundant rare earth elements (REEs) reserves and will continue to be one of the major producers of REEs for the world market in the foreseeable future. However, due to the large scale of mining and refining activities, large amounts of REEs have been released to the surrounding environment and caused harmful effects on local residents. This paper summarizes the data about the contents and translocation of REEs in soils, waters, atmosphere, and plants in REE mining areas of China and discusses the characteristics of their forms, distribution, fractionation, and influencing factors. Obviously high concentrations of REEs with active and bioavailable forms are observed in all environmental media. The mobility and bioavailability of REEs are enhanced. The distribution patterns of REEs in soils and water bodies are all in line with their parent rocks. Significant fractionation phenomenon among individual members of REEs was found in soil-plant systems. However, limited knowledge was available for REEs in atmosphere. More studies focusing on the behavior of REEs in ambient air of REE mining areas in China are highly suggested. In addition, systematic study on the translocation and circulation of REEs in various media in REEs mining areas and their health risk assessment should be carried out. Standard analytical methods of REEs in environments need to be established, and more specific guideline values of REEs in foods should also be developed.
A CAD System for Tube Drawing Based on Finite Element Simulation of Drawing Process
无
2001-01-01
In order to develop a special CAD system for tube cold drawing,the practical data and experience have been put into consideration as usual, and with the help of MARC software, the finite element simulations have been carried out over 1 000 times under widely possible processing parameters. After being analyzed and modeled, the results of the simulations are directly introduced into the CAD system, so that the CAD is capable of helping tube manufacturers notonly arrange their drawing procedure system easily and efficiently, but also optimize their drawing processes in several aspects, such as drawing force, die geometry, plug geometry, distribution of reduction, accuracy of tube dimension, consumption of deforming work, quality of tube, and so on. The optimized cold drawing procedures are able to lower production cost by 1 %—5 % in average.
2008-03-01
Full Text Available The viscoelastic properties of an ethylene/propylene/diene rubber (EPDM containing 30 parts per hundred parts rubber [phr] carbon black (CB were determined by dynamic mechanical thermal analysis (DMTA measurements. A 15-term Maxwell-model was created to describe the time-dependent material behavior of this rubber. The frictional behavior under dry rolling conditions was studied on a home-built rolling ball (steel-on-plate (rubber (RBOP test rig. Both normal and tangential forces were detected during the measurements. The rolling test was simulated with the MSC.Marc finite element (FE software using the evaluated viscoelastic material properties. Results of the experimental tests and of the simulation were compared and a good agreement was found between them.
SAHIL GARG; MOHIT PANT
2017-03-01
In the present work, element-free Galerkin method (EFGM) has been extended and implemented to simulate thermal fracture in functionally graded materials. The thermo-elastic fracture problem is decoupled into two separate parts. Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. The temperature field so obtained is then employed as input for the mechanical problem to determine the displacement and stress fields. The crack surfaces are modelled as non-insulated boundaries; hence the temperature field remains undisturbed by the presence of crack. A modified conservative M-integral technique has been used in order to extract the stress intensity factors for the simulated problems. The present analysisshows that the results obtained by EFGM are in good agreement with those available in the literature.
Laser Additive Melting and Solidification of Inconel 718: Finite Element Simulation and Experiment
Romano, John; Ladani, Leila; Sadowski, Magda
2016-03-01
The field of powdered metal additive manufacturing is experiencing a surge in public interest finding uses in aerospace, defense, and biomedical industries. The relative youth of the technology coupled with public interest makes the field a vibrant research topic. The authors have expanded upon previously published finite element models used to analyze the processing of novel engineering materials through the use of laser- and electron beam-based additive manufacturing. In this work, the authors present a model for simulating fabrication of Inconel 718 using laser melting processes. Thermal transport phenomena and melt pool geometries are discussed and validation against experimental findings is presented. After comparing experimental and simulation results, the authors present two correction correlations to transform the modeling results into meaningful predictions of actual laser melting melt pool geometries in Inconel 718.
Finite element simulation of a ceramic drying process considering pore shape and porosity
Keum, Y. T.; Oh, J. W.
2005-03-01
When a green ceramic is dried, the particles flocculate into a fishnet structure in the gel phase. The range of pore size is between the micro-scale and the nano-scale. In general, the elastic properties of porous materials are affected by both pore shape and porosity. Using the homogenization method, the elastic tensor of nanoscopic gel unit cell, varying with the porosity, is first computed. Using the finite element method, the drying process of a green ceramic insulator is simulated, based on the elastic properties of a microscopic particle aggregate unit cell with circular and cross pores, found from the nanoscopic elastic tensor using the homogenization method. Consideration of the pore shape and porosities in a simulation can provide a more accurate residual stress distribution.
Three-dimensional finite-element simulation of a turbulent push-pull ventilation system.
Flynn, M R; Ahn, K; Miller, C T
1995-10-01
A finite-element formulation with penalty approach to enforce continuity is employed here to simulate the three-dimensional velocity field resulting from a simple push-pull ventilation configuration. An analytic expression for the length scale and a transport equation for turbulent kinetic energy are coupled with the momentum equations. A coaxial square hood and jet are arranged with cross-draught perpendicular to the common centreline. Numerical predictions of the velocity and turbulence kinetic energy fields are evaluated in the plane of symmetry with hot film anemometry, and smoke-wire flow visualizations. The agreement of the simulated jet trajectories with flow visualizations is reasonable, as are velocities. Predictions of turbulence kinetic energy are not as good, particularly near the hood face. Despite the limitations the numerical approach is useful in assessing the impact of cross-draughts on the push-pull arrangement.
Numerical simulations of granular dynamics. I. Hard-sphere discrete element method and tests
Richardson, Derek C; Murdoch, Naomi; Michel, Patrick
2013-01-01
We present a new particle-based (discrete element) numerical method for the simulation of granular dynamics, with application to motions of particles on small solar system body and planetary surfaces. The method employs the parallel N-body tree code pkdgrav to search for collisions and compute particle trajectories. Collisions are treated as instantaneous point-contact events between rigid spheres. Particle confinement is achieved by combining arbitrary combinations of four provided wall primitives, namely infinite plane, finite disk, infinite cylinder, and finite cylinder, and degenerate cases of these. Various wall movements, including translation, oscillation, and rotation, are supported. We provide full derivations of collision prediction and resolution equations for all geometries and motions. Several tests of the method are described, including a model granular "atmosphere" that achieves correct energy equipartition, and a series of tumbler simulations that show the expected transition from tumbling to ...
Dynamic simulation of free surfaces in capillaries with the finite element method
Trutschel, R.; Schellenberger, U.
1998-02-01
The mathematical formulation of the dynamics of free liquid surfaces including the effects of surface tension is governed by a non-linear system of elliptic differential equations. The major difficulty of getting unique closed solutions only in trivial cases is overcome by numerical methods. This paper considers transient simulations of liquid-gas menisci in vertical capillary tubes and gaps in the presence of gravity. Therefore the CFD code FIDAP 7.52 based on the Galerkin finite element method (FEM) is used. Calculations using the free surface model are presented for a variety of contact angles and cross-sections with experimental and theoretical verification. The liquid column oscillations are compared for numerical accuracy with a mechanical mathematical model, and the sensitivity with respect to the node density is investigated. The efficiency of the numerical treatment of geometric non-trivial problems is demonstrated by a prismatic capillary. Present restrictions limiting efficient transient simulations with irregularly shaped calculational domains are stated.
Deformation Control of Deep Excavation Pit and Numerical Simulation with Finite Element Method
无
2002-01-01
The authors firstly introduce deformation control of deep excavation pit in detail, and then put forward new conceptions such as: effective coefficient of excavation pit, effective area, ineffective area and critical line, and also put forward the referential criteria of deformation control. The System of Optimization Design with Deformation Control of Deep Excavation Pit and Numerical Simulation with Finite Element Method (SDCDEFEM) is also briefly introduced. Factors influencing deformation of excavation pit are analyzed by the system. The measured and simulated data of maximum deformations (settlement, displacement and upheaval) and their positions are analyzed and discussed. The statistic formula estimating maximum deformations and their positions was gained, and economical-effective measures of deformation control were brought forward.
Hærvig, Jakob; Kleinhans, Ulrich; Wieland, Christoph
2017-01-01
Discrete Element Method (DEM) simulations are a promising approach to accurately predict agglomeration and deposition of micron-sized adhesive particles. However, the mechanistic models in DEM combined with high particle stiffness for most common materials require time step sizes in the order...... particle stiffness to experimental data. Then two well-defined test cases are investigated to show the applicability of the guidelines. When introducing a reduced particle stiffness in DEM simulations by reducing the effective Young's modulus from E to Emod, the surface energy density γ in the adhesive...... is important, the commonly used adhesive rolling resistance torque model proposed by Dominik and Tielens [2,3], Krijt et al. [4] can be used by modifying the contact radius ratio (a/a0)3/2 to (amod/a0,mod)3/2, while keeping the other terms unaltered in the description of the rolling resistance torque Mr...
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
S. D. Parkinson
2014-05-01
Full Text Available High resolution direct numerical simulations (DNS are an important tool for the detailed analysis of turbidity current dynamics. Models that resolve the vertical structure and turbulence of the flow are typically based upon the Navier–Stokes equations. Two-dimensional simulations are known to produce unrealistic cohesive vortices that are not representative of the real three-dimensional physics. The effect of this phenomena is particularly apparent in the later stages of flow propagation. The ideal solution to this problem is to run the simulation in three dimensions but this is computationally expensive. This paper presents a novel finite-element (FE DNS turbidity current model that has been built within Fluidity, an open source, general purpose, computational fluid dynamics code. The model is validated through re-creation of a lock release density current at a Grashof number of 5 × 106 in two, and three-dimensions. Validation of the model considers the flow energy budget, sedimentation rate, head speed, wall normal velocity profiles and the final deposit. Conservation of energy in particular is found to be a good metric for measuring mesh performance in capturing the range of dynamics. FE models scale well over many thousands of processors and do not impose restrictions on domain shape, but they are computationally expensive. Use of discontinuous discretisations and adaptive unstructured meshing technologies, which reduce the required element count by approximately two orders of magnitude, results in high resolution DNS models of turbidity currents at a fraction of the cost of traditional FE models. The benefits of this technique will enable simulation of turbidity currents in complex and large domains where DNS modelling was previously unachievable.
Dynamic simulation of traffic and its environmental impacts
Eissfeldt, N.; Metzler, M. [Koeln Univ. (Germany). ZAIK; Wagner, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)
2000-07-01
This paper demonstrates a model-chain that is able to determine environmental impacts of traffic. The dynamic microsimulation models described cover the problems of traffic assignment and calculation of emissions by microscopic vehicle states. Due to their computational efficiency the model-chain promises to be applicable even for large networks with millions of drivers. First results will be presented. (orig.)
Garcia O, B. [ITT, 50000 Toluca (Mexico); Aldape U, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: gaolivab@gmail.com
2007-07-01
The Mexico city is classified as one of the more populated cities of the world which presents a decrease in the air quality and that gives place to a severe problematic in atmospheric pollution. To cooperate in the solution of this problem it is necessary to carry out studies that allow a better knowledge of the atmosphere of the city. This study presents the results of a monitoring campaign of fine particle carried out from September 21 to December 12, 2001 in three sites of the Mexico City center area. The samples were collected every third day with a collector type unit of heaped filters (Gent). The analysis of these samples was carried out in the 2 MV accelerator of the National Institute of Nuclear Research (ININ) applying the PIXE technique and with this analysis its were identified in the samples approximately 15 elements in each one of the 3 sites and was calculated the concentration in that its were present. With these results a database was created and by means of it mathematical treatment the Enrichment factor (FE), the time series of each element and the multiple correlation matrix were evaluated. The obtained results showed that the Civil Registration site (Salto del Agua) it was the more polluted coinciding that to a bigger concentration of activities a bigger increase in the pollution is generated. (Author)
Simulation and evaluation of rupturable coated capsules by finite element method.
Yang, Yan; Fang, Jie; Shen, Lian; Shan, Weiguang
2017-03-15
The objective of this study was to simulate and evaluate the burst behavior of rupturable coated capsules by finite element method (FEM). Film and coated capsules were prepared by dip-coating method and their dimensions were determined by stereomicroscope. Mechanical properties of the film were measured by tensile test and used as material properties of FEM models. Swelling pressure was determined by restrained expansion method and applied to the internal surface of FEM models. Water uptake of coated capsules was determined to study the formation of internal pressure. Burst test and in vitro dissolution was used to verify the FEM models, which were used to study and predict the coating burst behavior. Simulated results of coating burst behavior were well agreed with the experiment results. Swelling pressure, material properties and dimensions of coating had influence on the maximum stress. Burst pressure and critical L-HPC content were calculated for burst prediction and formulation optimization. FEM simulation was a feasible way to simulate and evaluate the burst behavior of coated capsules. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulation of bonding effects in HRTEM images of light element materials
Simon Kurasch
2011-07-01
Full Text Available The accuracy of multislice high-resolution transmission electron microscopy (HRTEM simulation can be improved by calculating the scattering potential using density functional theory (DFT. This approach accounts for the fact that electrons in the specimen are redistributed according to their local chemical environment. This influences the scattering process and alters the absolute and relative contrast in the final image. For light element materials with well defined geometry, such as graphene and hexagonal boron nitride monolayers, the DFT based simulation scheme turned out to be necessary to prevent misinterpretation of weak signals, such as the identification of nitrogen substitutions in a graphene network. Furthermore, this implies that the HRTEM image does not only contain structural information (atom positions and atomic numbers. Instead, information on the electron charge distribution can be gained in addition.In order to produce meaningful results, the new input parameters need to be chosen carefully. Here we present details of the simulation process and discuss the influence of the main parameters on the final result. Furthermore we apply the simulation scheme to three model systems: A single atom boron and a single atom oxygen substitution in graphene and an oxygen adatom on graphene.
Nonlinear simulation of arch dam cracking with mixed finite element method
Ren Hao
2008-06-01
Full Text Available This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.
Sirait, S. H.; Edison, R. E.; Baidillah, M. R.; Taruno, W. P.; Haryanto, F.
2016-08-01
The aim of this study is to simulate the potential distribution of 2D brain geometry based on two electrodes ECVT. ECVT (electrical capacitance tomography) is a tomography modality which produces dielectric distribution image of a subject from several capacitance electrodes measurements. This study begins by producing the geometry of 2D brain based on MRI image and then setting the boundary conditions on the boundaries of the geometry. The values of boundary conditions follow the potential values used in two electrodes brain ECVT, and for this reason the first boundary is set to 20 volt and 2.5 MHz signal and another boundary is set to ground. Poisson equation is implemented as the governing equation in the 2D brain geometry and finite element method is used to solve the equation. Simulated Hodgkin-Huxley action potential is applied as disturbance potential in the geometry. We divide this study into two which comprises simulation without disturbance potential and simulation with disturbance potential. From this study, each of time dependent potential distributions from non-disturbance and disturbance potential of the 2D brain geometry has been generated.
Research on burnout fault of moulded case circuit breaker based on finite element simulation
Xue, Yang; Chang, Shuai; Zhang, Penghe; Xu, Yinghui; Peng, Chuning; Shi, Erwei
2017-09-01
In the failure event of molded case circuit breaker, overheating of the molded case near the wiring terminal has a very important proportion. The burnout fault has become an important factor restricting the development of molded case circuit breaker. This paper uses the finite element simulation software to establish the model of molded case circuit breaker by coupling multi-physics field. This model can simulate the operation and study the law of the temperature distribution. The simulation results show that the temperature near the wiring terminal, especially the incoming side of the live wire, of the molded case circuit breaker is much higher than that of the other areas. The steady-state and transient simulation results show that the temperature at the wiring terminals is abnormally increased by increasing the contact resistance of the wiring terminals. This is consistent with the frequent occurrence of burnout of the molded case in this area. Therefore, this paper holds that the burnout failure of the molded case circuit breaker is mainly caused by the abnormal increase of the contact resistance of the wiring terminal.
Simulation of growth normal fault sandbox tests using the 2D discrete element method
Chu, Sheng-Shin; Lin, Ming-Lang; Huang, Wen-Chao; Nien, Wei-Tung; Liu, Huan-Chi; Chan, Pei-Chen
2015-01-01
A fault slip can cause the deformation of shallow soil layers and destroy infrastructures. The Shanchiao Fault on the west side of the Taipei Basin is one such fault. The activities of the Shanchiao Fault have caused the quaternary sediment beneath the Taipei Basin to become deformed, damaging structures, traffic construction, and utility lines in the area. Data on geological drilling and dating have been used to determine that a growth fault exists in the Shanchiao Fault. In an experiment, a sandbox model was built using noncohesive sandy soil to simulate the existence of a growth fault in the Shanchiao Fault and forecast the effect of the growth fault on shear-band development and ground differential deformation. The experimental results indicated that when a normal fault contains a growth fault at the offset of the base rock, the shear band develops upward beside the weak side of the shear band of the original-topped soil layer, and surfaces considerably faster than that of the single-topped layer. The offset ratio required is approximately one-third that of the single-cover soil layer. In this study, a numerical simulation of the sandbox experiment was conducted using a discrete element method program, PFC2D, to simulate the upper-covering sand layer shear-band development pace and the scope of a growth normal fault slip. The simulation results indicated an outcome similar to that of the sandbox experiment, which can be applied to the design of construction projects near fault zones.
Chen, Yong [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Huang, Biao, E-mail: bhuang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Wenyou [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Weindorf, David C.; Liu, Xiaoxiao [Department of Plant and Soil Science, Texas Tech University, Lubbock, TX (United States); Niedermann, Silvana [Department of Environmental Systems Science, Institute of Agricultural Science, ETH Zurich, 8092 Zurich (Switzerland)
2014-02-01
The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice–wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant
Weld distortion prediction of the ITER Vacuum Vessel using Finite Element simulations
Caixas, Joan, E-mail: joan.caixas@f4e.europa.eu [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Guirao, Julio [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Bayon, Angel; Jones, Lawrence; Arbogast, Jean François [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Barbensi, Andrea [Ansaldo Nucleare, Corso F.M. Perrone, 25, I-16152 Genoa (Italy); Dans, Andres [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Facca, Aldo [Mangiarotti, Pannellia di Sedegliano, I-33039 Sedegliano (UD) (Italy); Fernandez, Elena; Fernández, José [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Iglesias, Silvia [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Jimenez, Marc; Jucker, Philippe; Micó, Gonzalo [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Ordieres, Javier [Numerical Analysis Technologies, S. L., Marqués de San Esteban 52, Entlo, 33209 Gijon (Spain); Pacheco, Jose Miguel [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Paoletti, Roberto [Walter Tosto, Via Erasmo Piaggio, 72, I-66100 Chieti Scalo (Italy); Sanguinetti, Gian Paolo [Ansaldo Nucleare, Corso F.M. Perrone, 25, I-16152 Genoa (Italy); Stamos, Vassilis [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Tacconelli, Massimiliano [Walter Tosto, Via Erasmo Piaggio, 72, I-66100 Chieti Scalo (Italy)
2013-10-15
Highlights: ► Computational simulations of the weld processes can rapidly assess different sequences. ► Prediction of welding distortion to optimize the manufacturing sequence. ► Accurate shape prediction after each manufacture phase allows to generate modified procedures and pre-compensate distortions. ► The simulation methodology is improved using condensed computation techniques with ANSYS in order to reduce computation resources. ► For each welding process, the models are calibrated with the results of coupons and mock-ups. -- Abstract: The as-welded surfaces of the ITER Vacuum Vessel sectors need to be within a very tight tolerance, without a full-scale prototype. In order to predict welding distortion and optimize the manufacturing sequence, the industrial contract includes extensive computational simulations of the weld processes which can rapidly assess different sequences. The accurate shape prediction, after each manufacturing phase, enables actual distortions to be compared with the welding simulations to generate modified procedures and pre-compensate distortions. While previous mock-ups used heavy welded-on jigs to try to restrain the distortions, this method allows the use of lightweight jigs and yields important cost and rework savings. In order to enable the optimization of different alternative welding sequences, the simulation methodology is improved using condensed computation techniques with ANSYS in order to reduce computational resources. For each welding process, the models are calibrated with the results of coupons and mock-ups. The calibration is used to construct representative models of each segment and sector. This paper describes the application to the construction of the Vacuum Vessel sector of the enhanced simulation methodology with condensed Finite Element computation techniques and results of the calibration on several test pieces for different types of welds.
Dynamic finite element knee simulation for evaluation of knee replacement mechanics.
Baldwin, Mark A; Clary, Chadd W; Fitzpatrick, Clare K; Deacy, James S; Maletsky, Lorin P; Rullkoetter, Paul J
2012-02-02
In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.
Verhulp, E; Van Rietbergen, B; Muller, R; Huiskes, R
2008-08-01
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 mum had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.
Song, Yong; Zhang, Kai; Hao, Qun; Hu, Lanxin; Wang, Jingwen; Shang, Fuzhou
2012-10-09
Simulation based on the finite-element (FE) method plays an important role in the investigation of intra-body communication (IBC). In this paper, a finite-element model of the whole body model used for the IBC simulation is proposed and verified, while the FE simulation of the galvanic coupling IBC with different signal transmission paths has been achieved. Firstly, a novel finite-element method for modeling the whole human body is proposed, and a FE model of the whole human body used for IBC simulation was developed. Secondly, the simulations of the galvanic coupling IBC with the different signal transmission paths were implemented. Finally, the feasibility of the proposed method was verified by using in vivo measurements within the frequency range of 10 kHz-5 MHz, whereby some important conclusions were deduced. Our results indicate that the proposed method will offer significant advantages in the investigation of the galvanic coupling intra-body communication.
Chen, Li-Chieh; Huang, Mei-Jiau
2017-02-01
A 2D simulation method for a rigid body moving in an incompressible viscous fluid is proposed. It combines one of the immersed-boundary methods, the DFFD (direct forcing fictitious domain) method with the spectral element method; the former is employed for efficiently capturing the two-way FSI (fluid-structure interaction) and the geometric flexibility of the latter is utilized for any possibly co-existing stationary and complicated solid or flow boundary. A pseudo body force is imposed within the solid domain to enforce the rigid body motion and a Lagrangian mesh composed of triangular elements is employed for tracing the rigid body. In particular, a so called sub-cell scheme is proposed to smooth the discontinuity at the fluid-solid interface and to execute integrations involving Eulerian variables over the moving-solid domain. The accuracy of the proposed method is verified through an observed agreement of the simulation results of some typical flows with analytical solutions or existing literatures.
Kijima, T E; Innan, Hideki
2013-11-01
A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.
Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States); Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States)
1994-12-01
As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions.
Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)
Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)
1994-11-01
As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.
Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method
Xiao, D.; Qian, L.; Qian, Z.; Li, W.
2011-01-01
This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60°C, 65°C, 70°C, 75°C, 80°C, 85°C and 90 °C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.
Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier
2016-06-01
Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.
FEMSA: A Finite Element Simulation Tool for Quasi-static Seismic Deformation Modeling
Volpe, M.; Melini, D.; Piersanti, A.
2006-12-01
Modeling postseismic deformation is an increasingly valuable tool in earthquake seismology. In particular, the Finite Element (FE) numerical method allows accurate modeling of complex faulting geometry, inhomogeneous materials and realistic viscous flow, appearing an excellent tool to investigate a lot of specific phenomena related with earthquakes. We developed a FE simulation tool, FEMSA (Finite Element Modeling for Seismic Applications), to model quasi-static deformation generated by faulting sources. The approach allows to automatically implement arbitrary faulting sources and calculate displacement and stress fields induced by slip on the fault. The package makes use of the capabilities of CalculiX, a non commercial FE software designed to solve field problems, and is freely distributed. The main advantages of the method are: reliability, wide diffusion and flexibility, allowing geometrical and/or rheological heterogeneities to be included in a mechanical analysis. We carried out an optimization study on boundary conditions as well as a series of benchmark simulations on test cases and we also verified the capability of our approach to face the presence of 3D heterogeneities within the domain. Here, we present our package and show some simple examples of application.
Analytical and finite element simulation of a three-bar torsion spring
Rădoi, M.; Cicone, T.
2016-08-01
The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.
Large eddy simulation for wind field analysis based on stabilized finite element method
Cheng HUANG; Yan BAO; Dai ZHOU; Jin-quan XU
2011-01-01
In this paper, a stabilized finite element technique, actualized by streamline upwind Petrov-Galerkin (SUPG) stabilized method and three-step finite element method (FEM), for large eddy simulation (LES) is developed to predict the wind flow with high Reynolds numbers. Weak form of LES motion equation is combined with the SUPG stabilized term for the spatial finite element discretization. An explicit three-step scheme is implemented for the temporal discretization. For the numerical example of 2D wind flow over a square rib at Re=4.2×105, the Smagorinsky's subgrid-scale (SSGS) model, the DSGS model, and the DSGS model with Cabot near-wall model are applied, and their results are analyzed and compared with experimental results. Furthermore, numerical examples of 3D wind flow around a surface-mounted cube with different Reynolds numbers are performed using DSGS model with Cabot near-wall model based on the present stabilized method to study the wind field and compared with experimental and numerical results. Finally, vortex structures for wind flow around a surface-mounted cube are studied by present numerical method. Stable and satisfactory results are obtained, which are consistent with most of the measurements even under coarse mesh.
焦永卓
2013-01-01
Objective To understand the distribution of chemical elements in soil,to investigate the differences between patients under different state of fluorosis and normal population after preventive measurement was implemented to get rid of some chemical elements and to lower
Simulation and Related Research Methods in Environmental Psychology.
1982-03-01
February, 1962, 25-52. Nogami, C. Y. Crowding: Effects of group size, rocm size or density Journal of Applied Social Psychology , 1976, 6, 105-125. Rapoport...Winston and John Wiley, 1978. Streufert, S. and Suedfeld, P. Simulation as a research method: A problem in communication. Journal of Applied Social Psychology , 1977
The simulated emergence of distributed environmental control in evolving microcosms.
Downing, Keith L
2002-01-01
This work continues investigation into Gaia theory [Lovelock, (1995) The ages of Gaia, Oxford University Press] from an artificial life perspective [Downing, (2000) in Proceedings of the 7th International Conference on Artificial Life, (pp. 90-99) MIT Press], with the aim of assessing the general compatibility of emergent distributed environmental control with conventional natural selection. Our earlier system, GUILD [Downing and Zvirinsky, (1999) Artificial Life, 5, 291-318], displayed emergent regulation of the chemical environment by a population of metabolizing agents, but the chemical model underlying those results was trivial, essentially admitting all possible reactions at a single energy cost. The new model, METAMIC, utilizes abstract chemistries that are both (a) constrained to a small set of legal reactions, and (b) grounded in basic fundamental relationships between energy, entropy, and biomass synthesis/breakdown. To explore the general phenomena of emergent homeostasis, we generate 100 different chemistries and use each as the basis for several METAMIC runs, as part of a Gaia hunt. This search discovers 20 chemistries that support microbial populations capable of regulating a physical environmental factor within their growth-optimal range, despite the extra metabolic cost. Case studies from the Gaia hunt illustrate a few simple mechanisms by which real biota might exploit the underlying chemistry to achieve some control over their physical environment. Although these results shed little light on the question of Gaia on Earth, they support the possibility of emergent environmental control at the microcosmic level.
Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae
2014-01-01
In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...
Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R
2015-01-07
The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.
Misiaszek, Greg William
2016-09-01
Emerging from popular education movements in Latin America, ecopedagogy is a critical environmental pedagogy which focuses on understanding the connections between social conflict and environmentally harmful acts carried out by humans. These connections are often politically hidden in education. Ecopedagogy, while being pluralistic, is in its essence defined as a critical, transformative environmental pedagogy centred on increasing social and environmental justice. Its ultimate aim is to find a sustainable balance between the conflicting goals of diverse notions of human progress and environmental wellbeing. This article is based on two comparative research projects. The first was a qualitative study on ecopedagogical models involving 31 expert ecopedagogues in Argentina, Brazil and the Appalachian region of the United States. They were asked for their perspectives on how successful ecopedagogy can be defined within the contexts in which they taught and conducted research. The second study analysed how 18 international expert scholars of citizenship and/or environmental pedagogy from six world continents regarded the ways in which citizenship intersects with environmental issues and the pedagogies of both in an increasingly globalised world, with specific focus on Global Citizenship Education. Results from the first study indicate the following two needs for effective environmental pedagogies: (1) for there to be an ecopedagogical paradigm shift in environmental teaching and research; and (2) for ecopedagogy to be an essential element of citizenship education (and vice versa). This article examines how conflicting processes of globalisation both help and hinder in achieving such a paradigm shift by decentring traditional nation-state citizenship. Results from the second study indicate how critical teaching within and between different spheres of citizenship (e.g. local, national, global, and planetary citizenship) is essential for ecopedagogy (and the
Misiaszek, Greg William
2016-10-01
Emerging from popular education movements in Latin America, ecopedagogy is a critical environmental pedagogy which focuses on understanding the connections between social conflict and environmentally harmful acts carried out by humans. These connections are often politically hidden in education. Ecopedagogy, while being pluralistic, is in its essence defined as a critical, transformative environmental pedagogy centred on increasing social and environmental justice. Its ultimate aim is to find a sustainable balance between the conflicting goals of diverse notions of human progress and environmental wellbeing. This article is based on two comparative research projects. The first was a qualitative study on ecopedagogical models involving 31 expert ecopedagogues in Argentina, Brazil and the Appalachian region of the United States. They were asked for their perspectives on how successful ecopedagogy can be defined within the contexts in which they taught and conducted research. The second study analysed how 18 international expert scholars of citizenship and/or environmental pedagogy from six world continents regarded the ways in which citizenship intersects with environmental issues and the pedagogies of both in an increasingly globalised world, with specific focus on Global Citizenship Education. Results from the first study indicate the following two needs for effective environmental pedagogies: (1) for there to be an ecopedagogical paradigm shift in environmental teaching and research; and (2) for ecopedagogy to be an essential element of citizenship education (and vice versa). This article examines how conflicting processes of globalisation both help and hinder in achieving such a paradigm shift by decentring traditional nation-state citizenship. Results from the second study indicate how critical teaching within and between different spheres of citizenship (e.g. local, national, global, and planetary citizenship) is essential for ecopedagogy (and the
Zhu, Dongming; Halbig, Michael Charles; Sing, Mrityunjay
2014-01-01
The environmental stability and thermal gradient cyclic durability performance of SA Tyrannohex composites were investigated for turbine engine component applications. The work has been focused on investigating the combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue of uncoated and environmental barrier coated Tyrannohex SiC SA composites in simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. Flexural strength degradations have been evaluated, and the upper limits of operating temperature conditions for the SA composite material systems are discussed based on the experimental results.
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Moxon, Bruce C.; Green, John A.
1990-01-01
A high-performance platform for development of real-time helicopter flight simulations based on a simulation development and analysis platform combining a parallel simulation development and analysis environment with a scalable multiprocessor computer system is described. Simulation functional decomposition is covered, including the sequencing and data dependency of simulation modules and simulation functional mapping to multiple processors. The multiprocessor-based implementation of a blade-element simulation of the UH-60 helicopter is presented, and a prototype developed for a TC2000 computer is generalized in order to arrive at a portable multiprocessor software architecture. It is pointed out that the proposed approach coupled with a pilot's station creates a setting in which simulation engineers, computer scientists, and pilots can work together in the design and evaluation of advanced real-time helicopter simulations.
Full wave simulation of waves in ECRIS plasmas based on the finite element method
Torrisi, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I (Italy); Mascali, D.; Neri, L.; Castro, G.; Patti, G.; Celona, L.; Gammino, S.; Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania (Italy); Di Donato, L. [Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Sorbello, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123, Catania, Italy and Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica ed Informatica (DIEEI), Viale Andrea Doria 6, 95125 Catania (Italy); Isernia, T. [Università Mediterranea di Reggio Calabria, Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Via Graziella, I-89100 Reggio Calabria (Italy)
2014-02-12
This paper describes the modeling and the full wave numerical simulation of electromagnetic waves propagation and absorption in an anisotropic magnetized plasma filling the resonant cavity of an electron cyclotron resonance ion source (ECRIS). The model assumes inhomogeneous, dispersive and tensorial constitutive relations. Maxwell's equations are solved by the finite element method (FEM), using the COMSOL Multiphysics{sup ®} suite. All the relevant details have been considered in the model, including the non uniform external magnetostatic field used for plasma confinement, the local electron density profile resulting in the full-3D non uniform magnetized plasma complex dielectric tensor. The more accurate plasma simulations clearly show the importance of cavity effect on wave propagation and the effects of a resonant surface. These studies are the pillars for an improved ECRIS plasma modeling, that is mandatory to optimize the ion source output (beam intensity distribution and charge state, especially). Any new project concerning the advanced ECRIS design will take benefit by an adequate modeling of self-consistent wave absorption simulations.
Finite element simulation of internal flows with heat transfer using a velocity correction approach
B S Varaprasad Patnaik; Y T K Gowda; M S Ravisankar; P A Aswatha Narayana; K N Seetharamu
2001-06-01
This paper enumerates finite-element based prediction of internal flow problems, with heat transfer. The present numerical simulations employ a velocity correction algorithm, with a Galerkin weighted residual formulation. Two problems each in laminar and turbulent flow regimes are investigated, by solving full Navier-Stokes equations. Flow over a backward-facing step is studied with extensive validations. The robustness of the algorithm is demonstrated by solving a very complex problem viz. a disk and doughnut baffled heat exchanger, which has several obstructions in its flow path. The effect of wall conductivity in turbulent heat transfer is also studied by performing a conjugate analysis. Temporal evolution of flow in a channel due to circular, square and elliptic obstructions is investigated, to simulate the vortex dynamics. Flow past an in-line tube bank of a heat exchanger shell is numerically studied. Resulting heat and fluid flow patterns are analysed. Important design parameters of interest such as the Nusselt number, Strouhal number, skin friction coefficient, pressure drop etc. are obtained. It is successfully demonstrated that the velocity correction approach with a Galerkin weighted residual formulation is able to effectively simulate a wide range of fluid flow features.
Todd C. Pataky
2016-11-01
Full Text Available Statistical analyses of biomechanical finite element (FE simulations are frequently conducted on scalar metrics extracted from anatomically homologous regions, like maximum von Mises stresses from demarcated bone areas. The advantages of this approach are numerical tabulability and statistical simplicity, but disadvantages include region demarcation subjectivity, spatial resolution reduction, and results interpretation complexity when attempting to mentally map tabulated results to original anatomy. This study proposes a method which abandons the two aforementioned advantages to overcome these three limitations. The method is inspired by parametric random field theory (RFT, but instead uses a non-parametric analogue to RFT which permits flexible model-wide statistical analyses through non-parametrically constructed probability densities regarding volumetric upcrossing geometry. We illustrate method fundamentals using basic 1D and 2D models, then use a public model of hip cartilage compression to highlight how the concepts can extend to practical biomechanical modeling. The ultimate whole-volume results are easy to interpret, and for constant model geometry the method is simple to implement. Moreover, our analyses demonstrate that the method can yield biomechanical insights which are difficult to infer from single simulations or tabulated multi-simulation results. Generalizability to non-constant geometry including subject-specific anatomy is discussed.
Nzodoum Fotsing, J. L.; Dietzel, D.; Chotikaprakhan, S.; Meckenstock, R.; Pelzl, J.; Cassette, S.
2005-06-01
In this contribution we report on combined investigations of hot areas in a high power high electron mobility transistor (HEMT) using a scanning thermo-elastic microscope and finite element simulations of the problem. The sample was a AlGaN/GaN-HEMT grown on sapphire substrate, with a gold coating for improved thermal management. The FE simulations were performed based on the ANSYS program version 5.7. The thermo-elastic response was detected with an Explorer AFM-head of Topometrix. To allow simultaneous detection of the topology and of the thermo-elastic expansion images, the explorer had been modified for AFM measurements in the DC mode and at the double frequency of the thermal sinus in AFM contact mode. The thermo-elastic image of the hot area of the HEMT recorded at 2f shows a bright line as the hot area which is located along the gate, between gate and drain. The absolute value of the vertical expansion has been calibrated from the measured diode signal by use of the microscope’s force-distance calibration curve. In order to obtain a reliable estimate of the maximum temperature on the hot line, the temperature image obtained by FE simulation is calibrated using the thermal expansion of the gold film of known thermal expansion coefficient.
Xia, Yidong; Podgorney, Robert; Huang, Hai
2017-03-01
FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.
Johanns, K. E.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.
2014-01-01
A cohesive zone model is applied to a finite element (FE) scheme to simulate indentation cracking in brittle materials. Limitations of using the cohesive zone model to study indentation cracking are determined from simulations of a standard fracture toughness specimen and a two-dimensional indentation cracking problem wherein the morphology of the crack and the geometry of the indenter are simplified. It is found that the principles of linear-elastic fracture mechanics can be applied when indentation cracks are long in comparison to the size of the cohesive zone. Vickers and Berkovich pyramidal indentation crack morphologies (3D) are also investigated and found to be controlled by the ratio of elastic modulus to yield strength (E/Y), with median type cracking dominating at low ratios (e.g. E/Y = 10) and Palmqvist type cracking at higher ratios (e.g. E/Y = 100). The results show that cohesive FE simulations of indentation cracking can indeed be used to critically examine the complex relationships between crack morphology, material properties, indenter geometry, and indentation test measurements, provided the crack length is long in comparison to the cohesive zone size.
Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego
2014-11-01
Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.
Numerical Simulation of Recycled Concrete Using Convex Aggregate Model and Base Force Element Method
Yijiang Peng
2016-01-01
Full Text Available By using the Base Force Element Method (BFEM on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ, and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.
Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2013-06-01
Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.
李克智; 李贺军; 姜开宇
2000-01-01
The chemical vapor infiltration process in fabrication of carbon-carbon composites is highly inefficient and requires long processing time. These limitations add considerably to the cost of fabrication and restrict the application of this material. Efforts have been made to study the CVI process in fabrication of carbon-carbon composites by computer simulation and predict the process parameters, density, porosity, etc. According to the characteristics of CVI process, the basic principle of FEM and mass transport, the finite element model has been established. Incremental finite element equations and the elemental stiffness matrices have been derived for the first time. The finite element program developed by the authors has been used to simulate the ICVI process in fabrication of carbon-carbon composites. Computer color display of simulated results can express the densification and distributions of density and porosity in preform clearly. The influence of process parameters on the densification of prefo
Mackerle, Jaroslav
2004-09-01
This paper gives a bibliographical review of the finite-element methods (FEMs) applied to the analysis and simulation of rubber and rubber-like materials. It is a continuation of the author's paper 'Rubber and Rubber-Like Materials, Finite-Element Analyses and Simulations: a Bibliography (1976-1997)' published in 1998 Modelling Simul. Mater. Sci. Eng. 6 171-98. The added bibliography at the end of this article contains 510 references to papers and conference proceedings on the subject that were published in 1997-2003. The following topics are included: incompressible elasticity problems in general, mechanical and material properties, a finite-element library for incompressible materials, contact problems, fracture mechanics, machine elements/structures, material processing and other topics.
Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L
2012-11-28
Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed.
LUO Yun-ju; LIU Dong-yan; LIU Xin-rong
2006-01-01
The Nanwenquan (South Hot Spring) and Xiao quan (Small Hot Spring) in the Nanwenquan anticline are well-known attraction for their geothermal water, but currently, the two natural hot springs have hot flow naturally. In order to protect the geothermal water resource, the evolution of hydrodynamic field must be researched for the causation of the hydrodynamic field destroyed. The finite element numerical simulation was adopted and quantitative study on the geothermal water hydrodynamic field. The finite element model was set up to simulate the research sites, the simulated water level was compared with the actual water level, the feasibility of this model was proved when the simulated water level is approximate to actual one, and an applicable finite element model was obtained. The finite element model was used to simulate the evolution of the hydrodynamic field. This paper supplies a basis to exploit adequately and protect effectively the geothermal water resource, at the same time it is proved feasible in practice to apply finite element numerical simulation to quantitative study of the geothermal water.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent
Temperature Distribution of Three-Dimensional Photovoltaic Panel by Using Finite Element Simulation
Leow Wai Zhe
2016-10-01
Full Text Available The low electricity performance of a photovoltaic (PV panel has been concerned in the PV application system. The effect of environmental and operating condition was affected the performance of the PV panel. In this research work, the main objective is to perform a three-dimensional geometry model of monocrystalline silicon PV panel with and without cooling system by using finite element method. In the case of a cooling system, the effect of the Direct Current (DC fan flow rate on the temperature distribution of PV panel was investigated. The electrical behaviour of this PV panel is obtained based on the average temperature of the PV panel obtained and average solar irradiance from site location. According to the experimental results, PV panel with cooling system can be significant to provide better performance than the PV panel without cooling system in the same environmental condition. For the effect of flow rate of DC fan in the PV panel with cooling system, the performance of this PV panel has been improved as increasing in flow rate of DC fan.
Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements
Lee, Jun-Youl [Iowa State Univ., Ames, IA (United States)
2003-01-01
Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.
Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements
Jun-Youl Lee
2003-05-31
Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.
Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method
ZHANG Xu; TAN Duo-Wang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady threedimensional high-order spectral element method code.The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation.The code is first validated with the results of linear stability perturbation theory.Then several characteristics of the Rayleigh-Taylor instabjJjties are studied using this three-dimensional unsteady code,inducling instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers.These results indicate that turbulent structures ofRayleigh-Taylor instabilities are strongly dependent on the initial conditions.The results also suggest that a high-order numerical method should provide the capability of sir.ulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows.
Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.
A hybrid mortar virtual element method for discrete fracture network simulations
Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano
2016-02-01
The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.
3D finite element simulation of explosive welding of three-layer plates
Sui, GuoFa; Li, JinShan; Sun, Feng; Ma, Bei; Li, HongWei
2011-05-01
A 3D finite element model of the explosive welding process of three-layer plates with materials of steel-copper-copper is established. Based on the presented model, the bonding mechanism is simulated and analyzed, different detonation modes are also comparatively studied to indicate the driving force spread in few microseconds. The results show that the three layer plates bond together after many times of impact between the flyers and the base driven by detonation wave, which is damping rapidly at each impact with wavelength decreasing. The pressure at the detonation point is minimal, which induces non-bonding of the plates here. Detonation wave propagates in concentric circle both under side-midpoint detonation mode and under center-point detonation mode, but the movement of the flyer is different, which makes non-bonding easily occur at the end of detonation under side-midpoint detonation and at the center of the plate under center-point detonation.
Spellings, Matthew; Anderson, Joshua A; Glotzer, Sharon C
2016-01-01
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks-Chandler-Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.
F.Hempert; M.Hoffmann; U.Iben; C.-D.Munz
2016-01-01
In the present investigation,we demonstrate the capabilities of the discontinuous Galerkin spectral element method for high order accuracy computation of gas dynamics.The internal flow field of a natural gas injector for bivalent combustion engines is investigated under its operating conditions.The simulations of the flow field and the aeroacoustic noise emissions were in a good agreement with the experimental data.We tested several shockcapturing techniques for the discontinuous Galerkin scheme.Based on the validated framework,we analyzed the development of the supersonic jets during different opening procedures of a compressed natural gas injector.The results suggest that a more gradual injector opening decreases the noise emission.
Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua
2017-03-01
The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.
Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems
Cotter, Simon L.
2013-01-01
Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.
Spellings, Matthew; Marson, Ryan L.; Anderson, Joshua A.; Glotzer, Sharon C.
2017-04-01
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks-Chandler-Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.
Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles
M. Shoaib
2011-01-01
Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.
Fabrication of simulated plate fuel elements: Defining role of out-of-plane residual shear stress
Rakesh, R.; Kohli, D.; Sinha, V. P.; Prasad, G. J.; Samajdar, I.
2014-02-01
Bond strength and microstructural developments were investigated during fabrication of simulated plate fuel elements. The study involved roll bonding of aluminum-aluminum (case A) and aluminum-aluminum + yttria (Y2O3) dispersion (case B). Case B approximated aluminum-uranium silicide (U3Si2) 'fuel-meat' in an actual plate fuel. Samples after different stages of fabrication, hot and cold rolling, were investigated through peel and pull tests, micro-hardness, residual stresses, electron and micro-focus X-ray diffraction. Measurements revealed a clear drop in bond strength during cold rolling: an observation unique to case B. This was related to significant increase in 'out-of-plane' residual shear stresses near the clad/dispersion interface, and not from visible signatures of microstructural heterogeneities.
Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua
2017-01-01
The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.
Yixuan TAN; Saiyi LI
2012-01-01
A new die design for equal channel angular pressing (ECAP) of square cross-section billet was proposed by a 45° rotation of the inlet and outlet channels around the channel axes.ECAP utilizing the rotated and conventional dies was simulated in three dimensions using the finite element method.Conditions with different material properties and friction coefficients were studied.The billet deformation behavior was evaluated in terms of the spatial distribution of equivalent plastic strain,plastic deformation zone and load history.The results show that the rotated die appears to produce billets with a smaller deformation inhomogeneity over the entire crosssection and a greater average of equivalent plastic strain at the cost of a slightly larger working load.The billet deformation enters into a steady state earlier in the case of the rotated die than the conventional die under the condition of a relatively large friction coefficient.
Spellings, Matthew [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Marson, Ryan L. [Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Anderson, Joshua A. [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States); Materials Science & Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109 (United States); Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109 (United States)
2017-04-01
Faceted shapes, such as polyhedra, are commonly found in systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystal nucleation and growth, vacancy motion, and glassy dynamics are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We provide an implementation of this method intended for simulation of hard, faceted nanoparticles, with a conservative Weeks–Chandler–Andersen (WCA) interparticle potential, coupled to a thermodynamic ensemble. This method is a natural extension of classical molecular dynamics and enables rigorous thermodynamic calculations for faceted particles.
Simulation of the Exophthalmia Reduction using a Finite Element Model of the Orbital Soft Tissues
Luboz, V; Boutault, F; Swider, P; Payan, Y; Luboz, Vincent; Pedrono, Annaig; Boutault, Franck; Swider, Pascal; Payan, Yohan
2002-01-01
This paper proposes a computer-assisted system for the surgical treatment of exophthalmia. This treatment is classically characterized by a de-compression of the orbit, by the mean of an orbital walls osteotomy. The plan-ning of this osteotomy consists in defining the size and the location of the de-compression hole. A biomechanical model of the orbital soft tissues and its in-teractions with the walls are provided here, in order to help surgeons in the definition of the osteotomy planning. The model is defined by a generic Finite Element poro-elastic mesh of the orbit. This generic model is automatically adapted to the morphologies of four patients, extracted from TDM exams. Four different FE models are then generated and used to simulate osteotomies in the maxillary or ethmoid sinuses regions. Heterogeneous results are observed, with different backwards movements of the ocular globe according to the size and/or the location of the hole.
Zohdi, T. I.
2016-03-01
In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.
Mixed finite element-based fully conservative methods for simulating wormhole propagation
Kou, Jisheng
2015-10-11
Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.
Yuan, Dajing; Bakker, Eric
2017-08-01
Finite difference analysis of ion-selective membranes is a valuable tool for understanding a range of time dependent phenomena such as response times, long and medium term potential drifts, determination of selectivity, and (re)conditioning kinetics. It is here shown that an established approach based on the diffusion layer model applied to an ion-exchange membrane fails to use mass transport to account for concentration changes at the membrane side of the phase boundary. Instead, such concentrations are imposed by the ion-exchange equilibrium condition, without taking into account the source of these ions. The limitation is illustrated with a super-Nernstian potential jump, where a membrane initially void of analyte ion is exposed to incremental concentrations of analyte in the sample. To overcome this limitation, the two boundary elements, one at either side of the sample-membrane interface, are treated here as a combined entity and its total concentration change is dictated by diffusional fluxes into and out of the interface. For each time step, the concentration distribution between the two boundary elements is then computed by ion-exchange theory. The resulting finite difference simulation is much more robust than the earlier model and gives a good correlation to experiments.
Simulation of the cabling process for Rutherford cables: An advanced finite element model
Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.
2016-12-01
In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.
Humphries, Stanley; Johnson, Kristin; Rick, Kyle; Liu, Zheng-jun; Goldberg, S. Nahum
2005-04-01
ETherm3 is a finite-element software suite for simulations of electrosurgery and RF thermal ablation processes. Program components cover the complete calculation process from mesh generation to solution analysis. The solutions employ three-dimensional conformal meshes to handle cluster probes and other asymmetric assemblies. The conformal-mesh approach is essential for high-accuracy surface integrals of net electrode currents. ETherm3 performs coupled calculations of RF electric fields in conductive dielectrics and thermal transport via dynamic solutions of the bioheat equation. The boundary-value RF field solution is updated periodically to reflect changes in material properties. ETherm3 features advanced material models with the option for arbitrary temperature variations of thermal and electrical conductivity, perfusion rate, and other quantities. The code handles irreversible changes by switching the material reference of individual elements at specified transition temperatures. ETherm3 is controlled through a versatile interpreter language to enable complex run sequences. The code can automatically maintain constant current or power, switch to different states in response to temperature or impedance information, and adjust parameters on the basis of user-supplied control functions. In this paper, we discuss the physical basis and novel features of the code suite and review application examples.
A study of finite element modeling for simulation of vehicle rollover
Lin, Zhigui; Liu, Changye; Lv, Juncheng; Jia, Ligang; Sun, Haichao; Chen, Tao
2017-04-01
At present, the automobile ownership has been a very large figure, and growing rapidly with the social progress and development. Automobile has been one of the most important transportation in people's life. Accordingly, there are a large number of fatalities and serious injuries in traffic accident every year. Vehicle safety has been paid more and more attentions in recent years. There are several kinds of traffic accidents including frontal crash, side crash, etc., while rollover crash is a special kind. The vehicle rollover has the lowest incidence in the all kinds of traffic accidents but has the highest rate of seriously injuries, most of which lead to death. For these reasons, it is very necessary to study the vehicle rollover crash. However, it's so hard that there are a small amount of literatures studying rollover due to its variety, large degree of freedom, and difficulty to repeat and control. The method to investigate rollover crash contains experiment, the finite element method and rigid-body-based models. The finite element method contains many advantages such as low cost, repeatability, detailed data and so on, but the limitation is obvious. A test and simulation has been accomplished to study the FEM for vehicle rollover crash particularly in this paper.
Simulations and first manufacturing steps of a fully integrated WDM-element in the visible spectrum
Höll, S.; Haupt, M.; Fischer, U. H. P.
2013-09-01
Due to their economical and easy-manageable advantages, POFs (polymer optical fiber) are going to replace traditional communication media such as copper and glass step by step within short distance communication systems. POFs are already used in various fields of optical communication, e.g. the automotive sector or in-house communication. Though single channel communication systems are state of the art technology, using of only one channel/wavelength for communication limits the bandwidth. For future scenarios this traditional technology is the bottleneck of bandwidth, particularly for HDTV with IP-TV. One solution to breakthrough this limitation is to use more than one wavelength over one single fiber, this is called WDM (wavelength division multiplexing) and is well-established for GOF communication. This technique will be adapted for the visible spectrum for POF. However this multiplexing technology requires two more key-elements: a multiplexer, which combines the multiple wavelengths signals into one fiber, and a demultiplexer at the end of the network to separate the colored signals. In this paper, the development of this key-element based on a Rowland spectrometer will be shown. It starts with the simulation, this is done by means of raytracing. Also the next process steps and solutions for injection molding are described.
Finite Element Modeling to Simulate the Elasto-Plastic Behavior of Polycrystalline in 718
Bonifaz, E. A.
2013-01-01
A 3D strain gradient plasticity finite element model was developed to simulate the elasto-plastic behavior of polycrystalline IN 718 alloys. The proposed model constructed in the basis of the so-called Kocks-Mecking model is used to determine the influence of microstructure attributes on the inelastic stress-strain distribution. Representative Volume Elements (RVEs) of different edge size but similar grain morphology and affordable computational meshes were tested to investigate the link between micro and macro variables of deformation and stress. The virtual specimens subjected to continuous monotonic straining loading conditions were constrained with random periodic boundary conditions. The difference in crystallographic orientation (which evolves in the process of straining) and the incompatibility of deformation between neighboring grains were accounted by the introduction of averaged Taylor factors and the evolution of geometrically necessary dislocation density. The effect of plastic deformation gradients imposed by the microstructure is clearly observed. Results demonstrate a strong dependence of flow stress and plastic strain on phase type and grain size. A main strategy for constitutive modeling of individual bulk grains is presented. The influence of the grain size on the aggregate response, in terms of local stress variations and aggregate elastic moduli was analyzed. It was observed that the elastic modulus in the bulk material is not dependent on grain size.
The least square particle finite element method for simulating large amplitude sloshing flows
Bo Tang; Junfeng Li; Tianshu Wang
2008-01-01
Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper: The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi α-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.
Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation.
Butler, S L; Kohles, S S; Thielke, R J; Chen, C; Vanderby, R
1997-11-01
The purpose of this study is to describe interstitial fluid flow in axisymmetric soft connective tissue (ligaments or tendons) when they are loaded in tension. Soft hydrated tissue was modelled as a porous medium (using Darcy's Law), and the finite element method was used to solve the resulting equations governing fluid flow. A commercially available computer program (FiDAP) was used to create an axisymmetric model of a biomechanically tested rat ligament. The unknown variables at element nodes were pressure and velocity of the interstitial fluid (Newtonian and incompressible). The effect of variations in fluid viscosity and permeability of the solid matrix was parametrically explored. A transient loading state mimicking a rat ligament mechanical experiment was used in all simulations. The magnitude and distribution of pressure, stream lines, shear (stress) rate, vorticity and velocity showed regular patterns consistent with extension flow. Parametric changes of permeability and viscosity strongly affected fluid flow behaviour. When the radial permeability was 1000 times less than the axial permeability, shear rate and vorticity increased (approximately 5-fold). These effects (especially shear stress and pressure) suggested a strong interaction with the solid matrix. Computed levels of fluid flow suggested a possible load transduction mechanism for cells in the tissue.
Finite Element Simulation for Determining the Optimum Blank Shape for Deep Drawing Process
Mr. Ravikant Patel,
2014-11-01
Full Text Available Deep drawing is one of widely used sheet metal working process in industries to produce cup shaped components at a very high rate. The present study aims to determine the optimum shape of blank for deep drawing of cylindrical cup without ears. Earing is one of the major defects observed during deep drawing process due to anisotropic nature of sheet metal. Earing is defined as formation of waviness on uppermost portion of deep drawn cup. Earing defect occurs due to non-uniform material properties within plane of sheet (i.e. planar anisotropy. Knowledge about ear formation in deep drawing process allows a prior modification of process which can result in defect free final product with financial saving and time. In the present study efforts have been made to study the earing problem in deep drawing of cylindrical cups by finite element modeling software HYPERWORK-6.12. The blank material as EN10130Fe01 mild steel sheet of 1mm thickness has been considered as it has wide application a fabricating critical automobile parts. Mechanical parameters of mild steel are incorporated in finite element simulation of deep drawing process. Significant earing was observed at rolling and transverse direction on deformed cup form circular blank. Modification of initial blank is done to find the optimum blank to reduce the earing defect. Optimal blank shows significant reduction of % earing height, reduction in drawing load & improvement in maximum thickness variations.
Finite element simulation of the mechanical impact of computer work on the carpal tunnel syndrome.
Mouzakis, Dionysios E; Rachiotis, George; Zaoutsos, Stefanos; Eleftheriou, Andreas; Malizos, Konstantinos N
2014-09-22
Carpal tunnel syndrome (CTS) is a clinical disorder resulting from the compression of the median nerve. The available evidence regarding the association between computer use and CTS is controversial. There is some evidence that computer mouse or keyboard work, or both are associated with the development of CTS. Despite the availability of pressure measurements in the carpal tunnel during computer work (exposure to keyboard or mouse) there are no available data to support a direct effect of the increased intracarpal canal pressure on the median nerve. This study presents an attempt to simulate the direct effects of computer work on the whole carpal area section using finite element analysis. A finite element mesh was produced from computerized tomography scans of the carpal area, involving all tissues present in the carpal tunnel. Two loading scenarios were applied on these models based on biomechanical data measured during computer work. It was found that mouse work can produce large deformation fields on the median nerve region. Also, the high stressing effect of the carpal ligament was verified. Keyboard work produced considerable and heterogeneous elongations along the longitudinal axis of the median nerve. Our study provides evidence that increased intracarpal canal pressures caused by awkward wrist postures imposed during computer work were associated directly with deformation of the median nerve. Despite the limitations of the present study the findings could be considered as a contribution to the understanding of the development of CTS due to exposure to computer work.
Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations
Gliga, Sebastian
2010-07-01
The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik
1997-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...... methodology can assist the product developer in development of more environmentally friendly products. Finally, common experience gained will be discussed....
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Wenzel, Henrik; Hauschild, Michael Zwicky
1998-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...... methodology can assist the product developer in development of more environmentally friendly products. Finally, common experience gained will be discussed....
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.
Loveday, PW
2007-03-01
Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...
Valero, C; Navarro, B; Navajas, D; García-Aznar, J M
2016-09-01
The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.
Qi Zhao; Andrea Lisjak; Omid Mahabadi; Qinya Liu; Giovanni Grasselli
2014-01-01
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to eval-uate such stimulation process. In this paper, the combined finite-discrete element method (FDEM) is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.
K. V. Dobrego
2014-01-01
Full Text Available Modern Cooling Towers (CT may utilize different aerodynamic elements (deflectors, windbreak walls etc. aimed to improvement of its heat performance especially at the windy conditions. In this paper the effect of flow rotation in overshower zone of CT and windbreak walls on a capacity of tower evaporating unit in the windy condition is studied numerically. Geometry of the model corresponds to real Woo-Jin Power station, China. Analogy of heat and mass transfer was used that allowed to consider aerodynamic of one-dimension flow and carried out detailed 3D calculations applying modern PC. Heat transfer coefficient of irrigator and its hydrodynamic resistance were established according to experimental data on total air rate in cooling tower. Numerical model is tested and verified with experimental data.Nonlinear dependence of CT thermal performance on wind velocity is demonstrated with the minimum (critical wind velocity at ucr ~ 8 m/s for simulated system. Application of windbreak walls does not change the value of the critical wind velocity, but may improves performance of cooling unit at moderate and strong wind conditions. Simultaneous usage of windbreak walls and overshower deflectors may increase efficiency up to 20–30 % for the deflectors angle a = 60o. Simulation let one analyze aerodynamic patterns, induced inside cooling tower and homogeneity of velocities’ field in irrigator’s area.Presented results may be helpful for the CT aerodynamic design optimization, particularly, for perspective hybrid type CTs.
Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace
Mitra, Tamoghna; Saxén, Henrik
2016-11-01
The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.
Riedlbauer, Daniel; Steinmann, Paul; Mergheim, Julia
2014-07-01
The present contribution is concerned with the macroscopic modelling of the selective electron beam melting process by using the finite element method. The modelling and simulation of the selective electron beam melting process involves various challenges: complex material behaviour, phase changes, thermomechanical coupling, high temperature gradients, different time and length scales etc. The present contribution focuses on performance considerations of solution approaches for thermomechanically coupled problems, i.e. the monolithic and the adiabatic split approach. The material model is restricted to nonlinear thermoelasticity with temperature-dependent material parameters. As a numerical example a straight scanning path is simulated, the predicted temperatures and stresses are analysed and the performance of the two algorithms is compared. The adiabatic split approach turned out to be much more efficient for linear thermomechanical problems, i.e. the solution time is three times less than with the monolithic approach. For nonlinear problems, stability issues necessitated the use of the Euler backward integration scheme, and therefore, the adiabatic split approach required small time steps for reasonable accuracy. Thus, for nonlinear problems and in combination with the Euler backward integration scheme, the monolithic solver turned out to be more efficient.
Maxwell, R; Ata, S; Wanless, E J; Moreno-Atanasio, R
2012-09-01
Three dimensional Discrete Element Method (DEM) computer simulations have been carried out to analyse the kinetics of collision of multiple particles against a stationary bubble and the sliding of the particles over the bubble surface. This is the first time that a computational analysis of the sliding time and particle packing arrangements of multiple particles on the surface of a bubble has been carried out. The collision kinetics of monodisperse (33 μm in radius) and polydisperse (12-33 μm in radius) particle systems have been analysed in terms of the time taken by 10%, 50% and 100% of the particles to collide against the bubble. The dependencies of these collision times on the strength of hydrophobic interactions follow relationships close to power laws. However, minimal sensitivity of the collision times to particle size was found when linear and square relationships of the hydrophobic force with particles radius were considered. The sliding time for single particles has corroborated published theoretical expressions. Finally, a good qualitative comparison with experiments has been observed with respect to the particle packing at the bottom of the bubble after sliding demonstrating the usefulness of computer simulations in the studies of particle-bubble systems.
Xiao Chen
2014-04-01
Full Text Available This study presented a failure analysis of a 52.3 m composite wind turbine blade under static loading. Complex failure characteristics exhibited at the transition region of the blade were thoroughly examined and typical failure modes were indentified. In order to predict multiple failure modes observed in the tests and gain more insights into the failure mechanisms of the blade, a Finite Element (FE simulation was performed using a global-local modeling approach and Progressive Failure Analysis (PFA techniques which took into account material failure and property degradation. Failure process and failure characteristics of the transition region were satisfactorily reproduced in the simulation, and it was found that accumulated delamination in spar cap and shear web failure at the transition region were the main reasons for the blade to collapse. Local buckling played an important role in the failure process by increasing local out-of-plane deformation, while the Brazier effect was found not to be responsible for the blade failure.
Dry granular avalanche down a flume: Choice of discrete element simulation parameters
Yang, F.-L.; Chang, W. T.; Huang, Y. T.; Hsieh, S. H.; Chen, C. S.
2013-12-01
This paper presents a method to assign soft-sphere contact model parameters in a discrete-element simulation with which we can reproduce the experimentally measured avalanche dynamics of finite dry granular mass down a flume. We adopt the simplest linear model in which interaction force is decomposed along or tangent to the contact normal. The model parameters are chosen uniquely to satisfy theoretical models or to meet experimental evidences at either the particle or the bulk size level. The normal mode parameters are chosen specifically to ensure Hertzian contact time (but not its force-displacement history) and the resulting loss of particle kinetic energy, characterized by a measured coefficient of restitution, for each pair of colliding surfaces. We follow the literature to assign the tangential spring constant according to an elasticity model but propose a method to assign the friction coefficient using a measured bulk property that characterizes the bulk discharge volume flow rate. The linear contact model with the assigned parameters are evaluated by comparing the simulated bulk avalanche dynamics down three slopes to the experimental data, including instantaneous particle trajectories and bulk unsteady velocity profile. Satisfying quantitative agreement can be obtained except at the free surface and the early-time front propagation velocity.
Finite Element Simulation of Plasma Transferred ARC Welding [PTAW] of Structural Steel
PV Senthiil
2014-10-01
Full Text Available Plasma transferred Arc welding is one of the most widely used welding process, in which the metals are fused just above the melting point, and makes the metal to fuse. It is employed in many applications like tool die and metal casting, strip metal welding etc. This investigation is to analyze temperature distribution residual stress and distortion by varying the heat source parameter in SYSWELD, and compared the results with ANSYS. The simulation of Plasma Transferred Arc welding was of structural steel plate performed using a non-linear transient heat transfer analysis. Heat losses due to convection and variation of material properties with temperature were considered in this analysis. To incorporate the heat developed the Gaussian distribution was considered. Finite element simulations were performed using ANSYS Parametric Design Language (APDL code and using SYSWELD. The temperatures obtained were compared with experimental results for validation. It was found that the predicted values of temperature agree very well with the experimental values. Residual Stress and Distortion were also predicted for various heat Input. The effect of heat input on residual stress and distortion was investigated.
A discrete element based simulation framework to investigate particulate spray deposition processes
Mukherjee, Debanjan
2015-06-01
© 2015 Elsevier Inc. This work presents a computer simulation framework based on discrete element method to analyze manufacturing processes that comprise a loosely flowing stream of particles in a carrier fluid being deposited on a target surface. The individual particulate dynamics under the combined action of particle collisions, fluid-particle interactions, particle-surface contact and adhesive interactions is simulated, and aggregated to obtain global system behavior. A model for deposition which incorporates the effect of surface energy, impact velocity and particle size, is developed. The fluid-particle interaction is modeled using appropriate spray nozzle gas velocity distributions and a one-way coupling between the phases. It is found that the particle response times and the release velocity distribution of particles have a combined effect on inter-particle collisions during the flow along the spray. It is also found that resolution of the particulate collisions close to the target surface plays an important role in characterizing the trends in the deposit pattern. Analysis of the deposit pattern using metrics defined from the particle distribution on the target surface is provided to characterize the deposition efficiency, deposit size, and scatter due to collisions.
Qi Zhao
2014-12-01
Full Text Available Hydraulic fracturing (HF technique has been extensively used for the exploitation of unconventional oil and gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formations by fluid injection, which creates an interconnected fracture network and increases the hydrocarbon production. Meanwhile, microseismic (MS monitoring is one of the most effective approaches to evaluate such stimulation process. In this paper, the combined finite-discrete element method (FDEM is adopted to numerically simulate HF and associated MS. Several post-processing tools, including frequency-magnitude distribution (b-value, fractal dimension (D-value, and seismic events clustering, are utilized to interpret numerical results. A non-parametric clustering algorithm designed specifically for FDEM is used to reduce the mesh dependency and extract more realistic seismic information. Simulation results indicated that at the local scale, the HF process tends to propagate following the rock mass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to the maximum in-situ stress.
Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert
2015-12-01
Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.
Physical Simulation for Low-Energy Astrobiology Environmental Scenarios
Gormly, Sherwin; Adams, V. D.; Marchand, Eric
2003-12-01
Speculations about the extent of life of independent origin and the potential for sustaining Earth-based life in subsurface environments on both Europa and Mars are of current and relevant interest. Theoretical modeling based on chemical energetics has demonstrated potential options for viable biochemical metabolism (metabolic pathways) in these types of environments. Also, similar environments on Earth show microbial activity. However, actual physical simulation testing of specific environments is required to confidently determine the interplay of various physical and chemical parameters on the viability of relevant metabolic pathways. This testing is required to determine the potential to sustain life in these environments on a specific scenario by scenario basis. This study examines the justification, design, and fabrication of, as well as the culture selection and screening for, a psychrophilic/halophilic/anaerobic digester. This digester is specifically designed to conform to physical testing needs of research relating to potential extent physical environments on Europa and other planetary bodies in the Solar System. The study is a long-term effort and is currently in an early phase, with only screening-level data at this time. Full study results will likely take an additional 2 years. However, researchers in electromagnetic biosignature and in situ instrument development should be aware of the study at this time, as they are invited to participate in planning for future applications of the digester facility.
Fish passage through hydropower turbines: Simulating blade strike using the discrete element method
Richmond, M. C.; Romero-Gomez, P.
2014-03-01
Among the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though hydro-turbines two common physical processes can lead to injury and mortality: collisions/blade-strike and rapid decompression. Several methods are currently available to evaluate these stressors in installed turbines, e.g. using live fish or autonomous sensor devices, and in reduced-scale physical models, e.g. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and rapid pressure change by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions-representing fish collisions with turbine components such as blades-are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for unsteady turbulence using detached eddy simulation (DES), as compared to the conventional practice of simulating the system in steady state (which was also done here for comparison). While both schemes yielded comparable bulk hydraulic performance values, transient conditions exhibited an improvement in describing flow temporal and spatial variability. We released streamtraces (in the steady flow solution) and DEM particles (transient solution) at the same locations where sensor fish (SF) were released in previous field studies of the advanced turbine unit. The streamtrace- based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the
Finite element simulation of lower limb injuries to the driver in minibus frontal collisions
Liang-Liang Shi; Chen Lei; Kui Li; Shuo-Zhen Fu; Zheng-Wei Wu; Zhi-Yong Yin
2016-01-01
Purpose:This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions.Methods:First a minibus FE model was integrated with a seat belt system.Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation:a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall.The impact velocities of both collisions were set at 56 km/h.The vehicle dynamic response,vehicle deceleration,and dashboard intrusion in the two collisions were compared.Results:In the minibus rear-end truck collision,the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively;while in the minibus head-on rigid wall collision,the data were 139 MPa and 99 MPa.Compared with the minibus head-on rigid wall collision,the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision.Conclusion:The results illustrate that a longer dashboard incursion distance corresponds to a higher yon Mises equivalent stress at the femur.The simulation results are consistent with the driver's autopsy report on lower limbs injuries.These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.
Finite Element Numerical Simulation and PIV Measurement of Flow Field inside Metering-in Spool Valve
GAO Dianrong; QIAO Haijun; LU Xianghui
2009-01-01
The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ -vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed.Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.
Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method
Richmond, Marshall C.; Romero Gomez, Pedro DJ
2014-12-08
mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environment by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more
Pudji Irasari
2012-07-01
Full Text Available This paper discusses magnetic simulation and analysis of radial flux permanent magnet generator (PMG using finite element method (FEM by utilizing open source software FEMM 4.2. The specification of generator is 25 V, 28 A, 3 phase, 300 rpm. The analyzed magnetic flux was in the air gap, stator teeth and slots to find out the distribusian pattern and its fluctuation. The simulations were conducted in no-load and nominal load (28 A conditions. Furthermore the maximum flux density of simulation (Bg(sim was used to calculate phase voltage Eph to find out the magnitude of generated electromotive force (EMF. The calculation results were presented as voltage vs. rotation graph in no-load condition and voltage vs. current graph in nominal load condition. Both graphs were validated with Eph of experiment result (Eph(exp and Eph that the value of Bg obtained from analytical calculation (Eph(calc. The final results showed that in no-load condition, Eph graph with Bg(sim (Eph(sim was close to Eph(exp and Eph(calc. The error rate with respect to the experiment was 6,9%. In nominal load condition, Eph(sim graph almost coincides with Eph(calc. graph, with the voltage drop of both was 0,441 V. Both graphs however were far different from Eph(exp graph, which has 9 V of voltage drop. The overall results demonstrated that magnetic distribution pattern presented by FEM was very helpful to avoid magnetic flux accumulation in a particular segment. Besides Bg(sim facilitated to predict the value of Eph.
Fléchard, Maud; Gilot, Philippe
2014-07-01
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB-lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the 'success' of the infectious process.
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik
1997-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik
1998-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for three industrial cases how a newly developed...
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Wenzel, Henrik; Hauschild, Michael Zwicky
1998-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LCA...
Filho, Walter Leal
1988-01-01
Analyzed is the lack of specificity in the approach to environmental issues in Brazilian biology textbooks. The main reasons for this are discussed and results of an evaluation of the effectiveness of a local publication in the development of environmental awareness among a group of students is presented. (CW)
Elements in a new sustainable industrial culture - Environmental assessment in product development
Alting, Leo; Hauschild, Michael Zwicky; Wenzel, Henrik
1997-01-01
In the last few years the environmental focus in the manufacturing industry has shifted from the manufacturing processes to the products themselves, as these are accountable for the environmental impacts in all life cycle phases. The paper describes for 3 industrial cases how a newly developed LC...
Stelt, van der A.A.; Bor, T.C.; Geijselaers, H.J.M.; Quak, W.; Akkerman, R.; Huetink, J.; Menary, G.
2011-01-01
In this paper, the material flow around the pin during friction stir welding (FSW) is simulated using a 2D plane strain model. A pin rotates without translation in a disc with elasto-viscoplastic material properties and the outer boundary of the disc is clamped. Two numerical methods are used to sol
Schuchardt, Karen L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gable, Carl W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keating, Elizabeth H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Joerg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Moeglein, William A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pau, George S.H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purohit, Sumit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sivaramakrishnan, Chandrika [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2012-04-24
A next generation open source subsurface simulator and user environment for environmental management is being developed through a collaborative effort across Department of Energy National Laboratories. The flow and transport simulator, Amanzi, will be capable of modeling complex subsurface environments and processes using both unstructured and adaptive meshes at very fine spatial resolutions that require supercomputing-scale resources. The user environment, Akuna, provides users with a range of tools to manage environmental and simulator data sets, create models, manage and share simulation data, and visualize results. Underlying the user interface are core toolsets that provide algorithms for sensitivity analysis, parameter estimation, and uncertainty quantification. Akuna is open-source, cross platform software that is initially being demonstrated on the Hanford BC Cribs remediation site. In this paper, we describe the emerging capabilities of Akuna and illustrate how these are being applied to the BC Cribs site.
Kulchitsky, A. V.; Johnson, J.; Duvoy, P.; Wilkinson, A.; Creager, C. M.
2012-12-01
For in situ resource utilization on the Moon, asteroids, Mars, or other space body it is necessary to be able to simulate the interaction of mobile platforms and excavation machines with the regolith for engineering design, planning, and operations. For accurate simulations, tools designed to measure regolith properties will need to be deployed and interpreted. Two such tools are the penetrometer, used to measure a soil strength index as a function of depth, and the bevameter, used to characterize regolith surface properties of strength, friction and sinkage. The penetrometer interrogates regolith properties from the surface to a depth limited only by the capabilities of the instrument to penetrate the regolith while a bevameter interrogates only the upper few centimeters needed to describe a mobility platform's traction and sinkage. Interpretation of penetrometer and bevameter data can be difficult, especially on low gravity objects. We use the discrete element method (DEM) model to simulate the large regolith deformations and failures associated with the tests to determine regolith properties. The DEM simulates granular material behavior using large aggregates of distinct particles. Realistic physics of particle-particle interaction introduces many granular specific phenomena such as interlocking and force chain formation that cannot be represented using continuum methods. In this work, experiments using a cone penetrometer test (CPT) and bevameter on lunar simulants JSC-1A and GRC-1 were performed at NASA Glenn Research Center. These tests were used to validate the physics in the COUPi DEM model. COUPi is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. The experimental results were used in this work to build an accurate model to simulate the lunar regolith. The CPT consists of driving an instrumented cone with opening angle of 60
Development of the Environmental Fate Simulator (EFS): • High throughput computational system for providing molecular and environmental descriptors for consumption by EF&T models Requires: Knowledge of the process science controlling chemical fate and transport The abil...
Development of the Environmental Fate Simulator (EFS): • High throughput computational system for providing molecular and environmental descriptors for consumption by EF&T models Requires: Knowledge of the process science controlling chemical fate and transport The abil...
US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...
Multi Elemental Speciations by LC-ICP-DRC-MS for Eco-environmental Applications
Yeuk-Ki Tsoi; Kelvin Sze-Yin Leung
2009-01-01
@@ Many trace elements such as arsenic,selenium,chromium and mercury exert serious impacts on the environment.Owing to the differences in the bioavailability and toxicity among their various chemical forms~([1～3]),effective analytical methods are required to determine not only on the elemental concentration but also the proportion of their respective forms.For example,vital Cr(Ⅲ) nutrient should be differentiated from Cr(Ⅵ) which is known to be carcinogenic[1].
LIU Hong-min; WANG Ying-rui
2004-01-01
A new method, the stream surface strip element method, for simulating the three-dimensional deformation of plate and strip rolling process was proposed. The rolling deformation zone was divided into a number of stream surface (curved surface) strip elements along metal flow traces, and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation. The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve, of which the lateral distributions were expressed as the third-power spline function, and the altitudinal distributions were fitted in the quadratic curve. From the flow theory of plastic mechanics, the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed. Compared with the streamline strip element method proposed by the first author of this paper, the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction, and realizes the precise three-dimensional analysis and computation. The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
Chougule, Prasad; Nielsen, Søren R. K.
2014-06-01
Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.
Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei
2012-12-07
In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of COD(Cr) NH(3)-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH(3)-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making.
Zhang, Ruibin; Qian, Xin; Yuan, Xingcheng; Ye, Rui; Xia, Bisheng; Wang, Yulei
2012-01-01
In recent years, water quality degradation associated with rapid socio-economic development in the Taihu Lake Basin, China, has attracted increasing attention from both the public and the Chinese government. The primary sources of pollution in Taihu Lake are its inflow rivers and their tributaries. Effective water environmental management strategies need to be implemented in these rivers to improve the water quality of Taihu Lake, and to ensure sustainable development in the region. The aim of this study was to provide a basis for water environmental management decision-making. In this study, the QUAL2K model for river and stream water quality was applied to predict the water quality and environmental capacity of the Hongqi River, which is a polluted tributary in the Taihu Lake Basin. The model parameters were calibrated by trial and error until the simulated results agreed well with the observed data. The calibrated QUAL2K model was used to calculate the water environmental capacity of the Hongqi River, and the water environmental capacities of CODCr NH3-N, TN, and TP were 17.51 t, 1.52 t, 2.74 t and 0.37 t, respectively. The results showed that the NH3-N, TN, and TP pollution loads of the studied river need to be reduced by 50.96%, 44.11%, and 22.92%, respectively to satisfy the water quality objectives. Thus, additional water pollution control measures are needed to control and reduce the pollution loads in the Hongqi River watershed. The method applied in this study should provide a basis for water environmental management decision-making. PMID:23222206
Markert, Bernd
This chapter describes possibilities of using instrumental multi-element methods to answer various ecological questions. Emphasis is placed on the ecosystem-related approach and thus on comparison of various ecosystems and their compartments. The basis for this is a project by the International Union of Biological Sciences (IUBS) aimed at establishing element concentration catalogues in ecosystems (ECCEs). In principle, the intention is to collect data on the world-wide distribution of individual elements and element species in various ecosystems. Synthetic reference systems (reference plant, reference freshwater, etc.) in the form of chemical fingerprints can provide important aids for the chemical characterization of many different environmental specimens. From the point of view of both toxicology and nutrient physiology such a characterization of ecosystems is expected to provide important information on the concentrations, effects and reactions of individual elements in different systems. Interest has so far been focused mainly on data from the northern hemisphere, but from the biogeochemical viewpoint the scope urgently needs to be extended to cover tropical and subtropical systems.
Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K
2016-12-01
Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk.
Finite Element Simulation of GFRP Reinforced Concrete Beam Externally Strengthened With CFRP Plates
Salleh Norhafizah
2017-01-01
Full Text Available The construction technology now has become more and more advanced allowing the development of new technologies or material to replace the previous one and also solved some of the troubles confronted by construction experts. The Glass Fibre Reinforced Polymer (GFRP composite is an alternative to replace the current usage of steel as it is rust proof and stronger in terms of stiffness compared to steel. Furthermore, GFRP bars have a high strength-to-weight ratio, making them attractive as reinforcement for concrete structures. However, the tensile behavior of GFRP bars is characterized by a linear elastic stress–strain relationship up to failure and, therefore, concrete elements reinforced with GFRP reinforcement exhibit brittle failure without warning. Design codes encourage over-reinforced GFRP design since it is more progressive and leads to a less catastrophic failure with a higher degree of deformability. Moreover, because of GFRP low modulus of elasticity, GFRP reinforced concrete members exhibit larger deflections and wider cracks width than steel reinforced concrete. This aims of this paper is to developed 2D Finite Element (FE models that can accurately simulate the respond on an improvement in the deflection of GFRP reinforced concrete beam externally strengthened with CFRP plates on the tension part of beam. The prediction of flexural response according to RCCSA software was also discussed. It was observed that the predicted FE results are given similar result with the experimental measured test data. Base on this good agreement, a parametric study was the performed using the validation FE model to investigate the effect of flexural reinforcement ratio and arrangement of the beams strengthened with different regions of CFRP plates.
Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.
2002-05-01
This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of
Barkaoui, Abdelwahed; Tlili, Brahim; Vercher-Martínez, Ana; Hambli, Ridha
2016-10-01
Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight
Finite element analysis of plantar fascia during walking: a quasi-static simulation.
Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng
2015-01-01
The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.
Numerical simulation of bistatic scattering from fractal rough surface in the finite element method
LI; Zhongxin
2001-01-01
［1］Jin, Y. Q., Electromagnetic Scattering Modeling for Quantitative Remote Sensing, Singapore: World Scientific, 1994.［2］Axline, R. M., Fung, A. K., Numerical computation of scattering from a perfectly conducting random surface, IEEE Transactions on Antenna and Propagation, 1978, 26(3): 482.［3］Jin Ya-qiu, Li Gang, Detection of a scatter target over randomly rough surface by using angular correlation function in finite element approach, Waves in Random Media, 2000, 10(4): 273.［4］Lou, S. H., Tsang, L., Chan, C. H. et al., Application of the finite element method of Monte Carlo simulations of scattering of waves by random rough surfaces with the periodic boundary condition, Journal of Electromagnrtic Waves and Applications, 1991, 5(8): 835.［5］Jaggard, D. L., Sun, X., Scattering from fractally corrugated surfaces, Journal of the Optical Society of American A, 1990, 7(6): 1055.［6］Franceschetti, G., Migliaccio, M., Riccio, D., An electromagnetic fractal-based model for the study of fading, Radio Science, 1996, 13(6): 1749.［7］Guerin, C. A., Holschneider, M., Saillard, M., Electromagnetic scattering from multi-scale rough surfaces, Waves in Random Media, 1997, 7(3): 331.［8］Jaggard, D. L., Sun, X., Fractal surface scattering: A generalized Rayleigh solution, Journal of Applied Physics, 1990, 68(11): 5456.［9］Mattia, F., Backscattering properties of multi-scale rough surfaces, Journal of Electromagnetic Waves and Applications, 1999, 13: 493.［10］Savailis, S., Frangos, P., Jaggard, D. L. et al., Scattering from fractally corrugated surfaces with use of the extended boundary condition method, Journal of the Optical Society of American A, 1997, 14(2): 475.［11］Rouvier, S., Chenerie, I., Ultra wide band electromagnetic scattering of a fractal profiles, Radio Science, 1997, 32(2): 285.［12］Sanchez-Gil, J. A., Garcia-Ramon, J. V., Far-field intensity of electromagnetic waves scattered from random, self-affine fractal metal surfaces
Sociopolitical and economic elements to explain the environmental performance of countries.
Almeida, Thiago Alexandre das Neves; García-Sánchez, Isabel-María
2017-01-01
The present research explains environmental performance using an ecological composite index as the dependent variable and focusing on two national dimensions: sociopolitical characteristics and economics. Environmental performance is measured using the Composite Index of Environmental Performance (CIEP) indicator proposed by García-Sánchez et al. (2015). The first model performs a factor analysis to aggregate the variables according to each analyzed dimension. In the second model, the estimation is run using only single variables. Both models are estimated using generalized least square estimation (GLS) using panel data from 152 countries and 6 years. The results show that sociopolitical factors and international trade have a positive effect on environmental performance. When the variables are separately analyzed, democracy and social policy have a positive effect on environmental performance while transport, infrastructure, consumption of goods, and tourism have a negative effect. Further observation is that the trade-off between importing and exporting countries overshadows the pollution caused by production. It was also observed that infrastructure has a negative coefficient for developing countries and positive for developed countries. The best performances are in the democratic and richer countries that are located in Europe, while the worst environmental performance is by the nondemocratic and the poorest countries, which are on the African continent.
Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)
1982-03-01
As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.
Environmental Concern and Cooperative-Competitive Behavior in a Simulated Commons Dilemma.
Smith, Jeffrey M.; Bell, Paul A.
1992-01-01
Presents study results examining behavior associated with preservation and destruction of slowly regenerating natural resources by using commons dilemma simulation games. Reports that neither environmental concern nor proenvironmental behaviors were related to commons dilemma performance. Concludes that cooperation and competition were better…
APEX simulation: environmental benefits of agroforestry and grass buffers on corn-soybean watersheds
The Agricultural Policy Environmental Extender (APEX) model has the ability to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. The objectives of this study were to calibrate and validate the APEX model for three adjacent watersheds and...
The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...
Tools for environmental simulations and calculations in an Integrated Design Process
Petersen, Mads Dines; Knudstrup, Mary-Ann
2010-01-01
Present paper is focused on how students at Architecture & Design, Aalborg University in Denmark, are working with an integrated design process where the environmental simulations and calculations are used from the beginning of the design process and even in the analysis phase of the project to a...
Simulating sanitation and waste flows and their environmental impacts in East African urban centres
Oyoo, R.
2014-01-01
Simulating Sanitation and Waste Flows and their Environmental Impacts in East African Urban Centres Abstract If improperly managed, urban waste flows can pose a significant threat to the quality of both the natural environment and public health. Just as many urban a
Y.T. Im
2007-09-01
Full Text Available Purpose: of this paper is to review the research works carried out at the national research laboratory for computer-aided materials processing at the department of mechanical engineering at KAIST.Design/Methodology/approach: The research papers published so far from the laboratory were carefully reviewed and highlights for developing simulation tools for mesh generation, 2D or 3D finite element analyses for forging, shape rolling, solidification, semi-solid forging, compression molding of thermoset composites, injection molding without or with short fibers, and expert system for multi-stage axi-symmetric cold forging, extrusion, and multi-pass shape rolling are recaptured.Findings: According to this survey, the important issues involved with program developments and their industrial applications were revisited.Research limitations/implications: Understanding of material behaviour at various processing conditions and characterization of proper boundary conditions in terms of friction and temperature should be carefully made. Handling of complex geometry and computational efficiency for such geometry should be improved as well. Further development of three dimensional design systems should be necessary.Practical implications: Proper usage of the simulation tools and interface such tools with the automatic design system with the help of artificial intelligence will be very useful at the design stage of new manufacturing products and processes. In addition, proper understanding of deformation mechanics is of importance to properly utilize such numerical tools.Originality/value: Various aspects of limitations involved with program developments and their usage are identified and some important industrial applications demonstrated.
Finite element simulation of the compression behaviour of airy breakfast cereals
Mamlouk, Hedi
2013-07-01
In this paper we are concerned by the fragmentation study of five breakfast cereals from the market exhibiting differences in shape, formulation and texture. The experimental part of the study encompasses compression testing and fragment size evaluation using 2D image analysis. Structural information about the airy structure is then determined using X-ray tomography and related 3D image analysis. The numerical part has the ambition of assessing the fragmentation process using a damage-based mechanical model that simulates solid material rupture events as onset and growth of damage up to brittle failure. The model is based on a finite element scheme in which direct information of the 3D airy structure is encoded in the solid meshing. The force-displacement signature well shows competition between bending and compression driven failure depending on cereal shape. Our results show also large dispersion in the porous structure that affects significantly the result of the fragmentation. The numerical model is able to simulate the result of fragmentation at the cost of identifying two mechanical parameters, namely Young\\'s modulus and critical stress. These two quantities are proved to be product dependent and display a large range of variation. Industrial relevance The design of new food product becomes more and more based on functionality criteria. In a typical chewing process the need to understand the deformation mechanisms leading to fragmentation helps in understanding the role of the structure and, in turn, the processing conditions for building new transformed products. There is an increasing industrial demand in that sense especially knowing that some of the cereal products can be designed to meet these criteria for specific populations (old people with dental problems, infant feeding). Our work is, within this context, an attempt to set a numerical and experimental framework for studying the fragmentation of five selected breakfast cereals from the market.
Karimi, Alireza; Navidbakhsh, Mahdi, E-mail: mnavid@iust.ac.ir; Razaghi, Reza
2014-09-01
There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load. - Highlights: • The ability of PVA sponge to control the injury to the human mandible is computed. • A hexahedral FE model for gunshot wounds to the human mandible is established. • The kinetic energy and injury severity of the mandible is minimized by the sponge. • The highest energy loss (170 J) is observed for the impact at entry angle of 70°. • PVA suggests as an alternative
RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES
Fernandez, A.
2010-02-08
The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg
Influence of mobile shale on thrust faults: Insights from discrete element simulations
Dean, S. L.; Morgan, J. K.
2013-12-01
We use two-dimensional discrete element method (DEM) simulations to study the effects of a two-layer mechanical stratigraphy on a gravitationally collapsing passive margin. The system consists of an upslope sedimentary wedge, overlying an extensional zone that is linked at depth with a downslope fold and thrust belt. The behavior of the system is dependent on the material properties and thickness of the competent units. The models are initially composed of a mobile shale unit overlain by a pre-delta unit. In DEM materials, the bulk rheology of the granular material is a product of the particle interactions, depending on a range of parameters, including friction and elastic moduli. Natural mobile shales underlying deltas are presumed to be viscous, and are therefore represented in DEM as very weak non-cohesive particles. The unbonded particles respond to loading by moving to areas of lower stress, i.e. out from beneath a growing sediment wedge. The bulk motion of the particles therefore flows away from the upslope extensional zone. Apparent viscosity is introduced in DEM materials due to time dependent numerical parameters such as viscous damping of particle motions. We characterized this apparent viscosity of this mobile shale unit with a series of shear box tests, with varying shear strain rates. The mobile shale particles have a viscosity of about 108 Pa*s, which is low for mobile shale. The low viscosity of our numerical materials can be compensated for by scaling time in our models, because the simulations are driven by sedimentary loading. By increasing the sedimentation rate by many orders of magnitude, we can approximate the natural values of shear stress in our simulations. Results are compared with the Niger Delta type locale for shale tectonics. The simulations succeed in creating an overall linked extensional-contractional system, as well as creating individual structures such as popups and intersecting forethrusts and backthrusts. In addition, toe
Piper, David Z.; Bau, Michael
2013-01-01
The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.
Nikolaya Velitchkova
2013-01-01
Full Text Available This paper presents new quantitative data for the spectral interferences obtained by high resolution 40.68 MHz radial viewing inductively coupled plasma optical emission spectrometry (HR-ICP-OES in the determination of Zn, Cd, Sb, Cu, Mn, Pb, Sn, Cr, U, and Ba in environmental materials in the presence of a complex matrix, containing Al, Ca, Fe, Mg, and Ti. The -concept for quantification of spectral interferences was used. The optimum line selection for trace analysis of a variety of multicomponent matrices requires the choice of prominent lines, which are free or negligibly influenced by line interference problems. The versatility of -concept as basic methodology was experimentally demonstrated in the determination of trace of elements in soil and drinking water. The detection limits are lower in comparison with corresponding threshold concentration levels for soil and drinking water in accordance with environmental regulations. This paper shows the possibilities of present day ICP-OES equipment in the direct determination of trace elements (without preconcentration of impurities in environmental samples.
Freitas, M.C. (LNETI, Inst. de Ciencias e Engenharia Nucleares, Dept. de Energia e Engenharia Nucleares, Sacavem (Portugal))
1993-01-01
k[sub 0]-Based Neutron Activation Analysis (k[sub 0]INAA) was used to analyze the candidate reference materials Apple Leaves and Peach Leaves, and Oriental Tobacco Leaves and Virginia Tobacco Leaves. Concentration values for 27 elements were measured. The accuracy was ascertained by analysis of two certified reference materials. NIST 1572 Citrus Leaves and 1573 Tomato Leaves. The homogeneity test of the IAEA Evernia prunastri candidate reference material in aliquots [>=] 100 mg is extended to the elements Sc, Cr, Fe, Co, Zn, Rb, Sb, Cs, Ba, Ce and Th. (orig.).
26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward
Packard, Edward A.
2010-01-01
Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation
Coupled Large Eddy Simulation and Discrete Element Model for Particle Saltation
Liu, X.; Liu, D.; Fu, X.
2016-12-01
Particle saltation is the major mode of motion for sediment transport. The quantification of the characteristics of saltation, either as an individual particle or as a group, is of great importance to our understanding of the transport process. In the past, experiments and numerical models have been performed to study the saltation length, height, and velocity under different turbulent flow and rough bed conditions. Most previous numerical models have very restrictive assumptions. For example, many models assumed Log-law flow velocity profiles to drive the motion of particles. Others assumed some "splash-function" which assigns the reflection angle for the rebounding of the saltating particle after each collision with bed. This research aims to relax these restrictions by a coupled eddy-resolving flow solver and a discrete element model. The model simulates the fully four-way coupling among fluid, particles, and wall. The model is extensively validated on both the turbulent flow field and saltation statistics. The results show that the two controlling factors for particle saltation are turbulent fluctuations and bed collision. Detailed quantification of these two factors will be presented. Through the statistics of incidence reflection angles, a more physical "splash-function" is obtained in which the reflection angle follows an asymmetric bimodal distribution for a given incidence angle. The higher mode is always located on the upstream side of the bed particle, while the lower one is always on the downstream surface.