WorldWideScience

Sample records for element approximation andnumerical

  1. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  2. Finite element approximation to the even-parity transport equation

    International Nuclear Information System (INIS)

    Lewis, E.E.

    1981-01-01

    This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions

  3. Finite Element Approximation of the FENE-P Model

    OpenAIRE

    Barrett , John ,; Boyaval , Sébastien

    2017-01-01

    We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $\\subset$ R d , d = 2 or 3$, subject to no flow boundary conditions. Our schemes are based on approximating the pressure and the symmetric conforma-tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the velocity field is approximated by c...

  4. Quasi-planar elemental clusters in pair interactions approximation

    Directory of Open Access Journals (Sweden)

    Chkhartishvili Levan

    2016-01-01

    Full Text Available The pair-interactions approximation, when applied to describe elemental clusters, only takes into account bonding between neighboring atoms. According to this approach, isomers of wrapped forms of 2D clusters – nanotubular and fullerene-like structures – and truly 3D clusters, are generally expected to be more stable than their quasi-planar counterparts. This is because quasi-planar clusters contain more peripheral atoms with dangling bonds and, correspondingly, fewer atoms with saturated bonds. However, the differences in coordination numbers between central and peripheral atoms lead to the polarization of bonds. The related corrections to the molar binding energy can make small, quasi-planar clusters more stable than their 2D wrapped allotropes and 3D isomers. The present work provides a general theoretical frame for studying the relative stability of small elemental clusters within the pair interactions approximation.

  5. Finite element approximation to a model problem of transonic flow

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1986-12-01

    A model problem of transonic flow ''the Tricomi equation'' in Ω is contained in IR 2 bounded by the rectangular-curve boundary is posed in the form of symmetric positive differential equations. The finite element method is then applied. When the triangulation of Ω-bar is made of quadrilaterals and the approximation space is the Lagrange polynomial, we get the error estimates. 14 refs, 1 fig

  6. Rules for matrix element evaluations in JWKB approximation

    International Nuclear Information System (INIS)

    Giler, S.

    1990-01-01

    Using the properties of the so-called fundamental solutions to the one-dimensional Schroedinger equation having Froeman and Froeman form the rules are formulated which allow one to evaluate matrix elements in the JWKB approximation and its generalizations. The rules apply to operators M(x, d/dx), M being polynomial functions of their arguments. The applicability of the rules depends on the properties of the so-called canonical indices introduced in this paper. The canonical indices are global characteristics of underlying Stokes graphs. If sufficiently small in comparison with unity they allow one to apply safely the JWKB approximation within the so-called ε-reduced canonical domains of a given Stokes graph. The Oth canonical index for the nth energy level Stokes graph corresponding to the harmonic oscillator potential is found to be ε CAN = 0.678/(2n+1). If the application of the rules is allowed then approximated matrix elements are obtained in an unambiguous way and with an accuracy controlled by corresponding canonical indices. Several examples of matrix elements are considered to illustrate how the rules should be used. Limitations to the rules are also discussed with the aid of suitably chosen examples. (author)

  7. Lowest order Virtual Element approximation of magnetostatic problems

    Science.gov (United States)

    Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A.

    2018-04-01

    We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic field $\\mathbf{H}$ on each edge, and the vertex values of the Lagrange multiplier $p$ (used to enforce the solenoidality of the magnetic induction $\\mathbf{B}=\\mu\\mathbf{H}$). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called "first kind N\\'ed\\'elec" elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions.

  8. Repfinder: Finding approximately repeated scene elements for image editing

    KAUST Repository

    Cheng, Ming-Ming; Zhang, Fanglue; Mitra, Niloy J.; Huang, Xiaolei; Hu, Shimin

    2010-01-01

    variation, etc. Manually enforcing such relations is laborious and error-prone. We propose a novel framework where user scribbles are used to guide detection and extraction of such repeated elements. Our detection process, which is based on a novel boundary

  9. Repfinder: Finding approximately repeated scene elements for image editing

    KAUST Repository

    Cheng, Ming-Ming

    2010-07-26

    Repeated elements are ubiquitous and abundant in both manmade and natural scenes. Editing such images while preserving the repetitions and their relations is nontrivial due to overlap, missing parts, deformation across instances, illumination variation, etc. Manually enforcing such relations is laborious and error-prone. We propose a novel framework where user scribbles are used to guide detection and extraction of such repeated elements. Our detection process, which is based on a novel boundary band method, robustly extracts the repetitions along with their deformations. The algorithm only considers the shape of the elements, and ignores similarity based on color, texture, etc. We then use topological sorting to establish a partial depth ordering of overlapping repeated instances. Missing parts on occluded instances are completed using information from other instances. The extracted repeated instances can then be seamlessly edited and manipulated for a variety of high level tasks that are otherwise difficult to perform. We demonstrate the versatility of our framework on a large set of inputs of varying complexity, showing applications to image rearrangement, edit transfer, deformation propagation, and instance replacement. © 2010 ACM.

  10. Bond charge approximation for valence electron density in elemental semiconductors

    International Nuclear Information System (INIS)

    Bashenov, V.K.; Gorbachov, V.E.; Marvakov, D.I.

    1985-07-01

    The spatial valence electron distribution in silicon and diamond is calculated in adiabatic bond charge approximation at zero temperature when bond charges have the Gaussian shape and their tensor character is taken into account. An agreement between theory and experiment has been achieved. For this purpose Xia's ionic pseudopotentials and Schulze-Unger's dielectric function are used. By two additional parameters Asub(B) and Zsub(B)sup(') we describe the spatial extent of the bond charge and local-field corrections, respectively. The parameter Zsub(B)sup(') accounts for the ratio between the Coulomb and exchange correlation interactions of the valence electrons and its silicon and diamond values have different signs. (author)

  11. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    KAUST Repository

    Hall, Eric Joseph; Hoel, Hå kon; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2016-01-01

    posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations

  12. METHODS OF THE APPROXIMATE ESTIMATIONS OF FATIGUE DURABILITY OF COMPOSITE AIRFRAME COMPONENT TYPICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. E. Strizhius

    2015-01-01

    Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.

  13. The complex variable boundary element method: Applications in determining approximative boundaries

    Science.gov (United States)

    Hromadka, T.V.

    1984-01-01

    The complex variable boundary element method (CVBEM) is used to determine approximation functions for boundary value problems of the Laplace equation such as occurs in potential theory. By determining an approximative boundary upon which the CVBEM approximator matches the desired constant (level curves) boundary conditions, the CVBEM is found to provide the exact solution throughout the interior of the transformed problem domain. Thus, the acceptability of the CVBEM approximation is determined by the closeness-of-fit of the approximative boundary to the study problem boundary. ?? 1984.

  14. A study of the consistent and the lumped source approximations in finite element neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Azgener, H.A.

    1991-01-01

    In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)

  15. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-07

    The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.

  16. Computable error estimates for Monte Carlo finite element approximation of elliptic PDE with lognormal diffusion coefficients

    KAUST Repository

    Hall, Eric

    2016-01-09

    The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with lognormal distributed diffusion coefficients, e.g. modeling ground water flow. Typical models use lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. We address how the total error can be estimated by the computable error.

  17. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  18. Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements

    KAUST Repository

    Bonito, Andrea; Guermond, Jean-Luc

    2011-01-01

    We propose and analyze an approximation technique for the Maxwell eigenvalue problem using H1-conforming finite elements. The key idea consists of considering a mixed method controlling the divergence of the electric field in a fractional Sobolev space H-α with α ∈ (1/2, 1). The method is shown to be convergent and spectrally correct. © 2011 American Mathematical Society.

  19. Computable error estimates for Monte Carlo finite element approximation of elliptic PDE with lognormal diffusion coefficients

    KAUST Repository

    Hall, Eric; Haakon, Hoel; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2016-01-01

    lognormal diffusion coefficients with H´ older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible

  20. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-01

    log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible

  1. The Fourier-finite-element approximation of the lame equations in axisymmetric domains with edges

    International Nuclear Information System (INIS)

    Nkemzil, Boniface

    2003-10-01

    This paper is concerned with a priori error estimates and convergence analysis of the Fourier-finite-element solutions of the Neumann problem for the Lame equations in axisymmetric domains Ω-circumflex is contained in R 3 with reentrant edges. The Fourier-FEM combines the approximating Fourier method with respect to the rotational angle using trigonometric polynomials of degree N (N →∞), with the finite-element method on the plane meridian domain of Ω-circumflex with mesh size h (h → 0) for approximating the Fourier coefficients. The asymptotic behavior of the solution near reentrant edges is described by singular functions in non-tensor product form and treated numerically by means of finite element method on locally graded meshes. For the right-hand side f-circumflex is an element of (L 2 (Ω-circumflex)) 3 , it is proved that the rate of convergence of the combined approximations in the norms of (W 2 1 (Ω-circumflex)) 3 is of the order O(h 2-l +N -(2-l) ) (l=0,1). (author)

  2. A 3 Year-Old Male Child Ingested Approximately 750 Grams of Elemental Mercury

    Directory of Open Access Journals (Sweden)

    Metin Uysalol

    2016-08-01

    Full Text Available Background: The oral ingestion of elemental mercury is unlikely to cause systemic toxicity, as it is poorly absorbed through the gastrointestinal system. However, abnormal gastrointestinal function or anatomy may allow elemental mercury into the bloodstream and the peritoneal space. Systemic effects of massive oral intake of mercury have rarely been reported. Case Report: In this paper, we are presenting the highest ingle oral intake of elemental mercury by a child aged 3 years. A Libyan boy aged 3 years ingested approximately 750 grams of elemental mercury and was still asymptomatic. Conclusion: The patient had no existing disease or abnormal gastrointestinal function or anatomy. The physical examination was normal. His serum mercury level was 91 μg/L (normal: <5 μg/L, and he showed no clinical manifestations. Exposure to mercury in children through different circumstances remains a likely occurrence.

  3. Computable Error Estimates for Finite Element Approximations of Elliptic Partial Differential Equations with Rough Stochastic Data

    KAUST Repository

    Hall, Eric Joseph

    2016-12-08

    We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.

  4. Finite element approximation for time-dependent diffusion with measure-valued source

    Czech Academy of Sciences Publication Activity Database

    Seidman, T.; Gobbert, M.; Trott, D.; Kružík, Martin

    2012-01-01

    Roč. 122, č. 4 (2012), s. 709-723 ISSN 0029-599X R&D Projects: GA AV ČR IAA100750802 Institutional support: RVO:67985556 Keywords : measure-valued source * diffusion equation Subject RIV: BA - General Mathematics Impact factor: 1.329, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-finite element approximation for time - dependent diffusion with measure-valued source.pdf

  5. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    Science.gov (United States)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are

  6. OBTAINING APPROXIMATE VALUES OF EXTERIOR ORIENTATION ELEMENTS OF MULTI-INTERSECTION IMAGES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    X. Li

    2012-07-01

    Full Text Available In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO, is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm

  7. APPROX, 1-D and 2-D Function Approximation by Polynomials, Splines, Finite Elements Method

    International Nuclear Information System (INIS)

    Tollander, Bengt

    1975-01-01

    1 - Nature of physical problem solved: Approximates one- and two- dimensional functions using different forms of the approximating function, as polynomials, rational functions, Splines and (or) the finite element method. Different kinds of transformations of the dependent and (or) the independent variables can easily be made by data cards using a FORTRAN-like language. 2 - Method of solution: Approximations by polynomials, Splines and (or) the finite element method are made in L2 norm using the least square method by which the answer is directly given. For rational functions in one dimension the result given in L(infinite) norm is achieved by iterations moving the zero points of the error curve. For rational functions in two dimensions, the norm is L2 and the result is achieved by iteratively changing the coefficients of the denominator and then solving the coefficients of the numerator by the least square method. The transformation of the dependent and (or) independent variables is made by compiling the given transform data card(s) to an array of integers from which the transformation can be made

  8. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  9. Correlated random-phase approximation from densities and in-medium matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, Richard; Roth, Robert [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    The random-phase approximation (RPA) as well as the second RPA (SRPA) are established tools for the study of collective excitations in nuclei. Addressing the well known lack of correlations, we derived a universal framework for a fully correlated RPA based on the use of one- and two-body densities. We apply densities from coupled cluster theory and investigate the impact of correlations. As an alternative approach to correlations we use matrix elements transformed via in-medium similarity renormalization group (IM-SRG) in combination with RPA and SRPA. We find that within SRPA the use of IM-SRG matrix elements leads to the disappearance of instabilities of low-lying states. For the calculations we use normal-ordered two- plus three-body interactions derived from chiral effective field theory. We apply different Hamiltonians to a number of doubly-magic nuclei and calculate electric transition strengths.

  10. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    Energy Technology Data Exchange (ETDEWEB)

    Roteta, M; Baro, J; Fernandez-Varea, J M; Salvat, F

    1994-07-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs.

  11. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    International Nuclear Information System (INIS)

    Roteta, M.; Baro, J.; Fernandez-Varea, J. M.; Salvat, F.

    1994-01-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs

  12. The spectral element method for static neutron transport in AN approximation. Part I

    International Nuclear Information System (INIS)

    Barbarino, A.; Dulla, S.; Mund, E.H.; Ravetto, P.

    2013-01-01

    Highlights: ► Spectral elements methods (SEMs) are extended for the neutronics of nuclear reactor cores. ► The second-order, A N formulation of neutron trasport is adopted. ► Results for classical benchmark cases in 2D are presented and compared to finite elements. ► The advantages of SEM in terms of precision and convergence rate are illustrated. ► SEM consitutes a promising approach for the solution of neutron transport problems. - Abstract: Spectral elements methods provide very accurate solutions of elliptic problems. In this paper we apply the method to the A N (i.e. SP 2N−1 ) approximation of neutron transport. Numerical results for classical benchmark cases highlight its performance in comparison with finite element computations, in terms of accuracy per degree of freedom and convergence rate. All calculations presented in this paper refer to two-dimensional problems. The method can easily be extended to three-dimensional cases. The results illustrate promising features of the method for more complex transport problems

  13. An angularly refineable phase space finite element method with approximate sweeping procedure

    International Nuclear Information System (INIS)

    Kophazi, J.; Lathouwers, D.

    2013-01-01

    An angularly refineable phase space finite element method is proposed to solve the neutron transport equation. The method combines the advantages of two recently published schemes. The angular domain is discretized into small patches and patch-wise discontinuous angular basis functions are restricted to these patches, i.e. there is no overlap between basis functions corresponding to different patches. This approach yields block diagonal Jacobians with small block size and retains the possibility for S n -like approximate sweeping of the spatially discontinuous elements in order to provide efficient preconditioners for the solution procedure. On the other hand, the preservation of the full FEM framework (as opposed to collocation into a high-order S n scheme) retains the possibility of the Galerkin interpolated connection between phase space elements at arbitrary levels of discretization. Since the basis vectors are not orthonormal, a generalization of the Riemann procedure is introduced to separate the incoming and outgoing contributions in case of unstructured meshes. However, due to the properties of the angular discretization, the Riemann procedure can be avoided at a large fraction of the faces and this fraction rapidly increases as the level of refinement increases, contributing to the computational efficiency. In this paper the properties of the discretization scheme are studied with uniform refinement using an iterative solver based on the S 2 sweep order of the spatial elements. The fourth order convergence of the scalar flux is shown as anticipated from earlier schemes and the rapidly decreasing fraction of required Riemann faces is illustrated. (authors)

  14. On approximation of non-Newtonian fluid flow by the finite element method

    Science.gov (United States)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.

  15. Calculation of photon attenuation coefficients of elements and compounds from approximate semi-analytical formulae

    International Nuclear Information System (INIS)

    Roteta, M.; Baro, J.; Fernandez-Varea, J.M.; Salvat, F.

    1994-01-01

    The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi-analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections are calculated directly from a simple analytical expression. Atomic cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within equal 1%, in the energy range from 1 KeV to 1 GeV. The complete source listing of the program PHOTAC is included

  16. Finite element approximation of the fields of bulk and interfacial line defects

    Science.gov (United States)

    Zhang, Chiqun; Acharya, Amit; Puri, Saurabh

    2018-05-01

    A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).

  17. Rolling element bearings diagnostics using the Symbolic Aggregate approXimation

    Science.gov (United States)

    Georgoulas, George; Karvelis, Petros; Loutas, Theodoros; Stylios, Chrysostomos D.

    2015-08-01

    Rolling element bearings are a very critical component in various engineering assets. Therefore it is of paramount importance the detection of possible faults, especially at an early stage, that may lead to unexpected interruptions of the production or worse, to severe accidents. This research work introduces a novel, in the field of bearing fault detection, method for the extraction of diagnostic representations of vibration recordings using the Symbolic Aggregate approXimation (SAX) framework and the related intelligent icons representation. SAX essentially transforms the original real valued time-series into a discrete one, which is then represented by a simple histogram form summarizing the occurrence of the chosen symbols/words. Vibration signals from healthy bearings and bearings with three different fault locations and with three different severity levels, as well as loading conditions, are analyzed. Considering the diagnostic problem as a classification one, the analyzed vibration signals and the resulting feature vectors feed simple classifiers achieving remarkably high classification accuracies. Moreover a sliding window scheme combined with a simple majority voting filter further increases the reliability and robustness of the diagnostic method. The results encourage the potential use of the proposed methodology for the diagnosis of bearing faults.

  18. Finite element model updating of a prestressed concrete box girder bridge using subproblem approximation

    Science.gov (United States)

    Chen, G. W.; Omenzetter, P.

    2016-04-01

    This paper presents the implementation of an updating procedure for the finite element model (FEM) of a prestressed concrete continuous box-girder highway off-ramp bridge. Ambient vibration testing was conducted to excite the bridge, assisted by linear chirp sweepings induced by two small electrodynamic shakes deployed to enhance the excitation levels, since the bridge was closed to traffic. The data-driven stochastic subspace identification method was executed to recover the modal properties from measurement data. An initial FEM was developed and correlation between the experimental modal results and their analytical counterparts was studied. Modelling of the pier and abutment bearings was carefully adjusted to reflect the real operational conditions of the bridge. The subproblem approximation method was subsequently utilized to automatically update the FEM. For this purpose, the influences of bearing stiffness, and mass density and Young's modulus of materials were examined as uncertain parameters using sensitivity analysis. The updating objective function was defined based on a summation of squared values of relative errors of natural frequencies between the FEM and experimentation. All the identified modes were used as the target responses with the purpose of putting more constrains for the optimization process and decreasing the number of potentially feasible combinations for parameter changes. The updated FEM of the bridge was able to produce sufficient improvements in natural frequencies in most modes of interest, and can serve for a more precise dynamic response prediction or future investigation of the bridge health.

  19. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    Science.gov (United States)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  20. An approximate method for calculating electron-phonon matrix element of a disordered transition metal and relevant comments on superconductivity

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    A method based on the tight-binding approximation is developed to calculate the electron-phonon matrix element for the disordered transition metals. With the method as a basis the experimental Tsub(c) data of the amorphous transition metal superconductors are re-analysed. Some comments on the superconductivity of the disordered materials are given

  1. Optimal convergence recovery for the Fourier-finite-element approximation of Maxwell's equations in non-smooth axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, B.

    2005-10-01

    Three-dimensional time-harmonic Maxwell's problems in axisymmetric domains Ω-circumflex with edges and conical points on the boundary are treated by means of the Fourier-finite-element method. The Fourier-fem combines the approximating Fourier series expansion of the solution with respect to the rotational angle using trigonometric polynomials of degree N (N → ∞), with the finite element approximation of the Fourier coefficients on the plane meridian domain Ω a is a subset of R + 2 of Ω-circumflex with mesh size h (h → 0). The singular behaviors of the Fourier coefficients near angular points of the domain Ω a are fully described by suitable singular functions and treated numerically by means of the singular function method with the finite element method on graded meshes. It is proved that the rate of convergence of the mixed approximations in H 1 (Ω-circumflex) 3 is of the order O (h+N -1 ) as known for the classical Fourier-finite-element approximation of problems with regular solutions. (author)

  2. Error estimates for the Fourier-finite-element approximation of the Lame system in nonsmooth axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    This paper is concerned with the effective implementation of the Fourier-finite-element method, which combines the approximating Fourier and the finite-element methods, for treating the Derichlet problem for the Lam.6 equations in axisymmetric domains Ω-circumflex is contained in R 3 with conical vertices and reentrant edges. The partial Fourier decomposition reduces the three-dimensional boundary value problem to an infinite sequence of decoupled two-dimensional boundary value problems on the plane meridian domain Ω α is contained in R + 2 of Ω-circumflex with solutions u, n (n = 0,1,2,...) being the Fourier coefficients of the solution u of the 3D problem. The asymptotic behavior of the Fourier coefficients near the angular points of Ω α , is described by appropriate singular vector-functions and treated numerically by linear finite elements on locally graded meshes. For the right-hand side function f-circumflex is an element of (L 2 (Ω-circumflex)) 3 it is proved that with appropriate mesh grading the rate of convergence of the combined approximations in (W 2 1 (Ω-circumflex)) 3 is of the order O(h + N -1 ), where h and N are the parameters of the finite-element and Fourier approximations, respectively, with h → 0 and N → ∞. (author)

  3. On the solvability of asymmetric quasilinear finite element approximate problems in nonlinear incompressible elasticity

    International Nuclear Information System (INIS)

    Ruas, V.

    1982-09-01

    A class of simplicial finite elements for solving incompressible elasticity problems in n-dimensional space, n=2 or 3, is presented. An asymmetric structure of the shape functions with respect to the centroid of the simplex, renders them particularly stable in the large strain case, in which the incompressibility condition is nonlinear. It is proved that under certain assembling conditions of the elements, there exists a solution to the corresponding discrete problems. Numerical examples illustrate the efficiency of the method. (Author) [pt

  4. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  5. Finite element approximations of the stokes flow problem based upon various variational principles

    International Nuclear Information System (INIS)

    Franca, L.P.; Hughers, T.J.R.; Stenberg, R.

    1989-05-01

    Finite element methods are constructed by adding to the usual Galerkin method terms that are mesh-dependent least-squares forms of the Euler-Lagrange equations. The methods are consistent and possess additional stability compared to the Galerkin method. Finite element interpolations, which are unstable in the Galerkin approach, are now convergent. The methodology is applied to the velocity-pressure formulation, a.k.a., Herrmann's formulation, to the stress-velocity formulation, a.k.a., Hellinger-Reissner's formulation and to a new formulation based on augmented stress, pressure and velocity [pt

  6. A Gradient Weighted Moving Finite-Element Method with Polynomial Approximation of Any Degree

    Directory of Open Access Journals (Sweden)

    Ali R. Soheili

    2009-01-01

    Full Text Available A gradient weighted moving finite element method (GWMFE based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.

  7. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Wei Li

    2012-01-01

    Full Text Available An extended finite element method (XFEM for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN. In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC method, the validation results show the merits and potential of the XFEM for optical imaging.

  8. Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials

    KAUST Repository

    Huang, Yunqing; Li, Jichun; Yang, Wei; Sun, Shuyu

    2011-01-01

    Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell's equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.

  9. Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials

    KAUST Repository

    Huang, Yunqing

    2011-09-01

    Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.

  10. Two-dimensional multigroup finite element calculation of fast reactor in diffusion approximation

    International Nuclear Information System (INIS)

    Schmid, J.

    1986-06-01

    When a linear element of triangular shape is used the actual finite element calculation is relatively simple. Extensive programs for mesh generation were written for easy inputting the configuration of reactors. A number of other programs were written for plotting neutron flux fields in individual groups, the power distribution, spatial plotting of fields, etc. The operation of selected programs, data preparation and operating instructions are described and examples given of data and results. All programs are written in GIER ALGOL. The used method and the developed programs have demonstrated that they are a useful instrument for the calculation of criticality and the distribution of neutron flux and power of both fast and thermal reactors. (J.B.)

  11. An A Posteriori Error Analysis of Mixed Finite Element Galerkin Approximations to Second Order Linear Parabolic Problems

    KAUST Repository

    Memon, Sajid; Nataraj, Neela; Pani, Amiya Kumar

    2012-01-01

    In this article, a posteriori error estimates are derived for mixed finite element Galerkin approximations to second order linear parabolic initial and boundary value problems. Using mixed elliptic reconstructions, a posteriori error estimates in L∞(L2)- and L2(L2)-norms for the solution as well as its flux are proved for the semidiscrete scheme. Finally, based on a backward Euler method, a completely discrete scheme is analyzed and a posteriori error bounds are derived, which improves upon earlier results on a posteriori estimates of mixed finite element approximations to parabolic problems. Results of numerical experiments verifying the efficiency of the estimators have also been provided. © 2012 Society for Industrial and Applied Mathematics.

  12. Subshell stopping power of the elements for protons in the Born approximation

    International Nuclear Information System (INIS)

    McGuire, E.J.

    1982-01-01

    The generalized oscillator-strength formulation of the Born approximation was used to generate a large sample of subshell excitation and ionization generalized oscillator strengths across the periodic table. These were used to calculate the excitation and ionization contributions to the proton stopping power by individual subshells. The subshell ionization stopping powers are expressed in scaled form, depending on the subshell ionization energy. Detailed comparison of the calculated total proton stopping power is in good agreement with experiment across the periodic table. Detailed calculations show the importance of outer-shell ionization and excitation to the total stopping power for protons with energy less than 10 MeV

  13. Relativistic atomic matrix elements of rq for arbitrary states in the quantum-defect approximation

    International Nuclear Information System (INIS)

    Owono Owono, L.C.; Owona Angue, M.L.C.; Kwato Njock, M.G.; Oumarou, B.

    2004-01-01

    Recurrence relations used in the calculation of matrix elements of r q for arbitrary q and states of the relativistic one-electron atom with a point-like ionic core are obtained with Dirac and quasirelativistic effective radial Hamiltonians. The phenomenological and supersymmetry-inspired quantum-defect approaches introduced in previous works to model the electron-core interactions are employed. The formulas worked out on the basis of a hypervirial inspired method may be viewed as a generalization to off-diagonal cases of our recently reported results on the evaluation of expectation values of r q

  14. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity

    Czech Academy of Sciences Publication Activity Database

    Hirn, A.; Lanzendörfer, Martin; Stebel, Jan

    2012-01-01

    Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012

  15. Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity

    International Nuclear Information System (INIS)

    Franca, L.P.; Stenberg, R.

    1989-06-01

    Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt

  16. Multilayer shallow shelf approximation: Minimisation formulation, finite element solvers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Guillaume, E-mail: jouvet@vaw.baug.ethz.ch [Institut für Mathematik, Freie Universität Berlin (Germany); Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich (Switzerland)

    2015-04-15

    In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is considered. In this recent hybrid ice flow model, the ice thickness is divided into thin layers, which can spread out, contract and slide over each other in such a way that the velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model can be reformulated as a minimisation problem. However, unlike the SSA, the functional to be minimised involves a new penalisation term for the interlayer jumps of the velocity, which represents the vertical shear stresses induced by interlayer sliding. Taking advantage of this reformulation, numerical solvers developed for the SSA can be naturally extended layer-wise or column-wise. Numerical results show that the column-wise extension of a Newton multigrid solver proves to be robust in the sense that its convergence is barely influenced by the number of layers and the type of ice flow. In addition, the multilayer formulation appears to be naturally better conditioned than the one of the first-order approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-HOM experiments.

  17. Exact and approximate exchange potentials investigated in terms of their matrix elements with the Kohn-Sham orbitals

    International Nuclear Information System (INIS)

    Holas, A.; Cinal, M.

    2005-01-01

    Three approximate exchange potentials of high accuracy v x Y (r), Y=A,B,C, for the density-functional theory applications are obtained by replacing the matrix elements of the exact potential between the Kohn-Sham (KS) orbitals with such elements of the Fock exchange operator (within the virtual-occupied subset only) in three representations found for any local potential. A common identity is the base of these representations. The potential v x C happens to be the same as that derived by Harbola and Sahni, and v x A as that derived by Gritsenko and Baerends, and Della Sala and Goerling. The potentials obtained can be expressed in terms of occupied KS orbitals only. At large r, their asymptotic form -1/r is the same as that of the exact potential. The high quality of these three approximations is demonstrated by direct comparison with the exact potential and using various consistency tests. A common root established for the three approximations could be helpful in finding new and better approximations via modification of identities employed in the present investigation

  18. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian

    2009-10-02

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.

  19. Linear and nonlinear symmetrically loaded shells of revolution approximated with the finite element method

    International Nuclear Information System (INIS)

    Cook, W.A.

    1978-10-01

    Nuclear Material shipping containers have shells of revolution as a basic structural component. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Present models are limited to large displacements, small rotations, and nonlinear materials. This report discusses a first approach to developing a finite element nonlinear shell of revolution model that accounts for these nonlinear geometric effects. The approach uses incremental loads and a linear shell model with equilibrium iterations. Sixteen linear models are developed, eight using the potential energy variational principle and eight using a mixed variational principle. Four of these are suitable for extension to nonlinear shell theory. A nonlinear shell theory is derived, and a computational technique used in its solution is presented

  20. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    Energy Technology Data Exchange (ETDEWEB)

    Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  1. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  2. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad

    2015-02-01

    The problem of heat transfer from a central heating element pressed between two clad plates to cooling channels adjacent and outboard of the plates is investigated numerically. The aim of this work is to highlight the role of thermal conductivity anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels is no longer symmetric. This asymmetry in energy fluxes influence heat transfer to the coolant resulting in different patterns of temperature fields. In particular, it is found that the temperature fields are skewed towards the principal direction of anisotropy. In addition, the heat flux distributions along the edges of the heating element are also different as a manifestation of thermal conductivity anisotropy. Furthermore, the peak temperature at the channel walls change location and magnitude depending on the principal direction of anisotropy. Based on scaling arguments, it is found that, the ratio of width to the height of the heating system is a key parameter which can suggest when one may ignore the effect of the cross-diagonal terms of the full conductivity tensor. To account for anisotropy in thermal conductivity, the method of multipoint flux approximation (MPFA) is employed. Using this technique, it is possible to find a finite difference stencil which can handle full thermal conductivity tensor and in the same time enjoys the simplicity of finite difference approximation. Although the finite difference stencil based on MPFA is quite complex, in this work we apply the recently introduced experimenting field approach which construct the global problem automatically.

  3. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    Science.gov (United States)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well

  4. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  5. Analysis of the nine-point finite difference approximation for the heat conduction equation in a nuclear fuel element

    International Nuclear Information System (INIS)

    Kadri, M.

    1983-01-01

    The time dependent heat conduction equation in the x-y Cartesian geometry is formulated in terms of a nine-point finite difference relation using a Taylor series expansion technique. The accuracy of the nine-point formulation over the five-point formulation has been tested and evaluated for various reactor fuel-cladding plate configurations using a computer program. The results have been checked against analytical solutions for various model problems. The following cases were considered in the steady-state condition: (a) The thermal conductivity and the heat generation were uniform. (b) The thermal conductivity was constant, the heat generation variable. (c) The thermal conductivity varied linearly with the temperature, the heat generation was uniform. (d) Both thermal conductivity and heat generation vary. In case (a), approximately, for the same accuracy, 85% fewer grid points were needed for the nine-point relation which has a 14% higher convergence rate as compared to the five-point relation. In case (b), on the average, 84% fewer grid points were needed for the nine-point relation which has a 65% higher convergence rate as compared to the five-point relation. In case (c) and (d), there is significant accuracy (91% higher than the five-point relation) for the nine-point relation when a worse grid was used. The numerical solution of the nine-point formula in the time dependent case was also more accurate and converges faster than the numerical solution of the five-point formula for all comparative tests related to heat conduction problems in a nuclear fuel element

  6. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  7. The matrix-elements of two-particle residual interaction in the shell-model formalism with the M.S.D.I. approximation. Part 2

    International Nuclear Information System (INIS)

    Jasielska, A.; Wiktor, S.

    1977-01-01

    The table of two-particle matrix elements calculated according to the formalism of MSDI approximation for the orbits 1fsub(7/2), 2psub(3/2), 2psub(1/2) and 1fsub(5/2) and published previously is now supplemented by inclusion of the 1gsub(9/2) orbit. (author)

  8. Investigation of thermal energy transport from an anisotropic central heating element to the adjacent channels: A multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, Mohamed

    2015-01-01

    anisotropy of the heating element and/or the encompassing plates on thermal energy transport to the fluid passing through the two channels. When the medium is anisotropic with respect to thermal conductivity; energy transport to the neighboring channels

  9. Approximate solutions of pulse transport in turbulent flow in narrow fuel element bundle geometries, using the FE method

    International Nuclear Information System (INIS)

    Kaiser, H.G.

    1985-01-01

    The author is concerned with the flow conditions in case of narrow fuel element grids of pressurised-water reactors. Starting from the mathematical formulation of the flow processes for incompressible, isothermal flows, models of the turbulence characteristics are being developed. Besides turbulence models, and network structure the finite element method is treated as numeric solution process. Finally the results are summarized and discussed. (HAG) [de

  10. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Till; Uwer, Peter [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstraße 15, 12489 Berlin (Germany)

    2015-09-14

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e{sup +}e{sup −} annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  11. Extending the Matrix Element Method beyond the Born approximation: calculating event weights at next-to-leading order accuracy

    International Nuclear Information System (INIS)

    Martini, Till; Uwer, Peter

    2015-01-01

    In this article we illustrate how event weights for jet events can be calculated efficiently at next-to-leading order (NLO) accuracy in QCD. This is a crucial prerequisite for the application of the Matrix Element Method in NLO. We modify the recombination procedure used in jet algorithms, to allow a factorisation of the phase space for the real corrections into resolved and unresolved regions. Using an appropriate infrared regulator the latter can be integrated numerically. As illustration, we reproduce differential distributions at NLO for two sample processes. As further application and proof of concept, we apply the Matrix Element Method in NLO accuracy to the mass determination of top quarks produced in e"+e"− annihilation. This analysis is relevant for a future Linear Collider. We observe a significant shift in the extracted mass depending on whether the Matrix Element Method is used in leading or next-to-leading order.

  12. Applicability of the successive approximation methods in the control elements treatment in nuclear systems with irregular geometry

    International Nuclear Information System (INIS)

    El Maftoum, W.R.

    1983-01-01

    The solution of the steady-state wave equation was found by a Fourier series expansion in an arbitrarily shaped n-dimensional domain. This solution, subject to a homogeneous boundary condition (Dirichlet), was applied to a reactor with partially inserted control rods. A Fortran IV program was developed which solves the equation for two media. Criticality calculations were carried out and the worth of partially inserted rod was determined for several problems with an accuracy comparable with that in the existing literature. As a further consequence the technique, associated with the method of sucessive approximations, allowed to derive perturbative formulas for the eigenvalues of the wave equation and related equations. (Author) [pt

  13. Finite element approximation of a sharp interface approach for gradient flow dynamics of two-phase biomembranes

    OpenAIRE

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2017-01-01

    A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an $L^2$--gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary conditions have to hold. Here we consider both $C^0$-- and $C^1$--matching conditions for the su...

  14. An approximative solution for limit load of piping branch junctions with circumferential crack and finite element validation

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Liu Changjun; Li Peining

    2005-01-01

    This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice

  15. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    International Nuclear Information System (INIS)

    Lehtikangas, O.; Tarvainen, T.; Kim, A.D.; Arridge, S.R.

    2015-01-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light

  16. FELIX-2.0: New version of the finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.

    2018-04-01

    The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).

  17. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows

    International Nuclear Information System (INIS)

    Ansanay-Alex, G.

    2009-01-01

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  18. A non-conformal finite element/finite volume scheme for the non-structured grid-based approximation of low Mach number flows; Un schema elements finis non-conformes/volumes finis pour l'approximation en maillages non-structures des ecoulements a faible nombre de Mach

    Energy Technology Data Exchange (ETDEWEB)

    Ansanay-Alex, G.

    2009-06-17

    The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)

  19. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation. 1. Finite-Element Approximation of the Torsion Bar

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2015-11-01

    A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.

  20. Approximate Likelihood

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  1. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  2. Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier-Stokes equations on GPU

    Czech Academy of Sciences Publication Activity Database

    Bauer, Petr; Klement, V.; Oberhuber, T.; Žabka, V.

    2016-01-01

    Roč. 200, March (2016), s. 50-56 ISSN 0010-4655 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : Navier–Stokes equations * mixed finite elements * multigrid * Vanka-type smoothers * Gauss–Seidel * red–black coloring * parallelization * GPU Subject RIV: BK - Fluid Dynamics Impact factor: 3.936, year: 2016

  3. Numerical Simulation of Glottal Flow in Interaction with Self Oscillating Vocal Folds: Comparison of Finite Element Approximation with a Simplified Model

    Czech Academy of Sciences Publication Activity Database

    Sváček, P.; Horáček, Jaromír

    2012-01-01

    Roč. 12, č. 3 (2012), s. 789-806 ISSN 1815-2406 R&D Projects: GA MŠk OC09019; GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite element method * arbitrary Lagrangian -Eulerian method * biomechanics of voice production Subject RIV: BI - Acoustics Impact factor: 1.863, year: 2012 http://www.global-sci.com/

  4. Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations%抛物型和双曲型积分-微分方程有限元逼近的超收敛性质

    Institute of Scientific and Technical Information of China (English)

    张铁; 李长军

    2001-01-01

    The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.

  5. Nonlinear approximation with dictionaries I. Direct estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2004-01-01

    We study various approximation classes associated with m-term approximation by elements from a (possibly) redundant dictionary in a Banach space. The standard approximation class associated with the best m-term approximation is compared to new classes defined by considering m-term approximation w...

  6. Elements of the interacting boson approximation

    International Nuclear Information System (INIS)

    Cseh, Jozsef

    1985-01-01

    The main features of the interacting boson model family are briefly summarized. The main tool of the model is the group theory; its basic useful results (symmetry groups, spectrum generating algebra, dynamic groups and symmetries, tensor representations, broken symmetries, subgroup chains) are summarized. The emission and annihilation operators of the individual boson degrees of freedom form a U(n) algebra. Its reprezentation theory can be used to classify the basic states and energy levels of the system. A simple variant of the interacting boson model is analyzed in detail. The genealogy of different interacting boson models from vibron model to supersymmetric ones is surveyed. (D.Gy.)

  7. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  8. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  9. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems; Resolution de l'equation du transport par une methode d'elements finis mixtes-hybrides et approximation par la diffusion de problemes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, J

    2006-04-15

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  10. Approximate Reanalysis in Topology Optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole

    2009-01-01

    In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...

  11. On badly approximable complex numbers

    DEFF Research Database (Denmark)

    Esdahl-Schou, Rune; Kristensen, S.

    We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...

  12. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Heald, S.

    1981-01-01

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  13. Modulated Pade approximant

    International Nuclear Information System (INIS)

    Ginsburg, C.A.

    1980-01-01

    In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)

  14. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  15. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  16. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  17. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Science.gov (United States)

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  18. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  19. Simultaneous approximation in scales of Banach spaces

    International Nuclear Information System (INIS)

    Bramble, J.H.; Scott, R.

    1978-01-01

    The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods

  20. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  1. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  2. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  3. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  4. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  5. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  6. General Rytov approximation.

    Science.gov (United States)

    Potvin, Guy

    2015-10-01

    We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.

  7. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  8. INTOR cost approximation

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1980-01-01

    A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de

  9. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  10. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Build Your Own Inventory System. Annual Cost: $100.00 (Approximate). Fixed Assets, Materials and Supplies. The Practical Elements for a Computerized, Continuing Inventory System in Schools and Use in Determining a Measure for Instructional Cost.

    Science.gov (United States)

    Payne, Arnold, Comp.

    This publication presents performance flow charts and other accompanying forms that are elements of an economical computerized continuing inventory system. The system described here is intended to serve school systems as an adequate fixed asset system and to provide a computerized inventory model that offers support for costs of future educational…

  12. Finite approximations in fluid mechanics

    International Nuclear Information System (INIS)

    Hirschel, E.H.

    1986-01-01

    This book contains twenty papers on work which was conducted between 1983 and 1985 in the Priority Research Program ''Finite Approximations in Fluid Mechanics'' of the German Research Society (Deutsche Forschungsgemeinschaft). Scientists from numerical mathematics, fluid mechanics, and aerodynamics present their research on boundary-element methods, factorization methods, higher-order panel methods, multigrid methods for elliptical and parabolic problems, two-step schemes for the Euler equations, etc. Applications are made to channel flows, gas dynamical problems, large eddy simulation of turbulence, non-Newtonian flow, turbomachine flow, zonal solutions for viscous flow problems, etc. The contents include: multigrid methods for problems from fluid dynamics, development of a 2D-Transonic Potential Flow Solver; a boundary element spectral method for nonstationary viscous flows in 3 dimensions; navier-stokes computations of two-dimensional laminar flows in a channel with a backward facing step; calculations and experimental investigations of the laminar unsteady flow in a pipe expansion; calculation of the flow-field caused by shock wave and deflagration interaction; a multi-level discretization and solution method for potential flow problems in three dimensions; solutions of the conservation equations with the approximate factorization method; inviscid and viscous flow through rotating meridional contours; zonal solutions for viscous flow problems

  13. Approximation of a Common Element of the Fixed Point Sets of Multivalued Strictly Pseudocontractive-Type Mappings and the Set of Solutions of an Equilibrium Problem in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    F. O. Isiogugu

    2016-01-01

    Full Text Available The strong convergence of a hybrid algorithm to a common element of the fixed point sets of multivalued strictly pseudocontractive-type mappings and the set of solutions of an equilibrium problem in Hilbert spaces is obtained using a strict fixed point set condition. The obtained results improve, complement, and extend the results on multivalued and single-valued mappings in the contemporary literature.

  14. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  15. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  16. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  17. Approximating The DCM

    DEFF Research Database (Denmark)

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...

  18. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  19. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  20. An improved saddlepoint approximation.

    Science.gov (United States)

    Gillespie, Colin S; Renshaw, Eric

    2007-08-01

    Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.

  1. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  2. Topology, calculus and approximation

    CERN Document Server

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  3. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  4. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  5. Optimization and approximation

    CERN Document Server

    Pedregal, Pablo

    2017-01-01

    This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

  6. The optimal XFEM approximation for fracture analysis

    International Nuclear Information System (INIS)

    Jiang Shouyan; Du Chengbin; Ying Zongquan

    2010-01-01

    The extended finite element method (XFEM) provides an effective tool for analyzing fracture mechanics problems. A XFEM approximation consists of standard finite elements which are used in the major part of the domain and enriched elements in the enriched sub-domain for capturing special solution properties such as discontinuities and singularities. However, two issues in the standard XFEM should specially be concerned: efficient numerical integration methods and an appropriate construction of the blending elements. In the paper, an optimal XFEM approximation is proposed to overcome the disadvantage mentioned above in the standard XFEM. The modified enrichment functions are presented that can reproduced exactly everywhere in the domain. The corresponding FORTRAN program is developed for fracture analysis. A classic problem of fracture mechanics is used to benchmark the program. The results indicate that the optimal XFEM can alleviate the errors and improve numerical precision.

  7. Cyclic approximation to stasis

    Directory of Open Access Journals (Sweden)

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  8. On the WKBJ approximation

    International Nuclear Information System (INIS)

    El Sawi, M.

    1983-07-01

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  9. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  10. Polynomial approximation on polytopes

    CERN Document Server

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  11. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  12. New elements

    International Nuclear Information System (INIS)

    Flerov, G.

    1976-01-01

    The history is briefly described of the investigation of superheavy elements at the Joint Institute for Nuclear Research at Dubna. The significance of the investigation is assessed from the point of view of the nuclear structure study and major problems encountered in experimental efforts are indicated. Current experimental methods aiming at the discovery or the production of superheavy nuclei with Z approximately 114 are listed. (I.W.)

  13. The random phase approximation

    International Nuclear Information System (INIS)

    Schuck, P.

    1985-01-01

    RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more

  14. The quasilocalized charge approximation

    International Nuclear Information System (INIS)

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  15. Approximate solution methods in engineering mechanics

    International Nuclear Information System (INIS)

    Boresi, A.P.; Cong, K.P.

    1991-01-01

    This is a short book of 147 pages including references and sometimes bibliographies at the end of each chapter, and subject and author indices at the end of the book. The test includes an introduction of 3 pages, 29 pages explaining approximate analysis, 41 pages on finite differences, 36 pages on finite elements, and 17 pages on specialized methods

  16. Approximate quantum Markov chains

    CERN Document Server

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  17. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-05-01

    Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.

  18. Square well approximation to the optical potential

    International Nuclear Information System (INIS)

    Jain, A.K.; Gupta, M.C.; Marwadi, P.R.

    1976-01-01

    Approximations for obtaining T-matrix elements for a sum of several potentials in terms of T-matrices for individual potentials are studied. Based on model calculations for S-wave for a sum of two separable non-local potentials of Yukawa type form factors and a sum of two delta function potentials, it is shown that the T-matrix for a sum of several potentials can be approximated satisfactorily over all the energy regions by the sum of T-matrices for individual potentials. Based on this, an approximate method for finding T-matrix for any local potential by approximating it by a sum of suitable number of square wells is presented. This provides an interesting way to calculate the T-matrix for any arbitary potential in terms of Bessel functions to a good degree of accuracy. The method is applied to the Saxon-Wood potentials and good agreement with exact results is found. (author)

  19. Self-similar factor approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.; Sornette, D.

    2003-01-01

    The problem of reconstructing functions from their asymptotic expansions in powers of a small variable is addressed by deriving an improved type of approximants. The derivation is based on the self-similar approximation theory, which presents the passage from one approximant to another as the motion realized by a dynamical system with the property of group self-similarity. The derived approximants, because of their form, are called self-similar factor approximants. These complement the obtained earlier self-similar exponential approximants and self-similar root approximants. The specific feature of self-similar factor approximants is that their control functions, providing convergence of the computational algorithm, are completely defined from the accuracy-through-order conditions. These approximants contain the Pade approximants as a particular case, and in some limit they can be reduced to the self-similar exponential approximants previously introduced by two of us. It is proved that the self-similar factor approximants are able to reproduce exactly a wide class of functions, which include a variety of nonalgebraic functions. For other functions, not pertaining to this exactly reproducible class, the factor approximants provide very accurate approximations, whose accuracy surpasses significantly that of the most accurate Pade approximants. This is illustrated by a number of examples showing the generality and accuracy of the factor approximants even when conventional techniques meet serious difficulties

  20. Coefficients Calculation in Pascal Approximation for Passive Filter Design

    Directory of Open Access Journals (Sweden)

    George B. Kasapoglu

    2018-02-01

    Full Text Available The recently modified Pascal function is further exploited in this paper in the design of passive analog filters. The Pascal approximation has non-equiripple magnitude, in contrast of the most well-known approximations, such as the Chebyshev approximation. A novelty of this work is the introduction of a precise method that calculates the coefficients of the Pascal function. Two examples are presented for the passive design to illustrate the advantages and the disadvantages of the Pascal approximation. Moreover, the values of the passive elements can be taken from tables, which are created to define the normalized values of these elements for the Pascal approximation, as Zverev had done for the Chebyshev, Elliptic, and other approximations. Although Pascal approximation can be implemented to both passive and active filter designs, a passive filter design is addressed in this paper, and the benefits and shortcomings of Pascal approximation are presented and discussed.

  1. International Conference Approximation Theory XV

    CERN Document Server

    Schumaker, Larry

    2017-01-01

    These proceedings are based on papers presented at the international conference Approximation Theory XV, which was held May 22–25, 2016 in San Antonio, Texas. The conference was the fifteenth in a series of meetings in Approximation Theory held at various locations in the United States, and was attended by 146 participants. The book contains longer survey papers by some of the invited speakers covering topics such as compressive sensing, isogeometric analysis, and scaling limits of polynomials and entire functions of exponential type. The book also includes papers on a variety of current topics in Approximation Theory drawn from areas such as advances in kernel approximation with applications, approximation theory and algebraic geometry, multivariate splines for applications, practical function approximation, approximation of PDEs, wavelets and framelets with applications, approximation theory in signal processing, compressive sensing, rational interpolation, spline approximation in isogeometric analysis, a...

  2. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-01

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  3. Hierarchical low-rank approximation for high dimensional approximation

    KAUST Repository

    Nouy, Anthony

    2016-01-07

    Tensor methods are among the most prominent tools for the numerical solution of high-dimensional problems where functions of multiple variables have to be approximated. Such high-dimensional approximation problems naturally arise in stochastic analysis and uncertainty quantification. In many practical situations, the approximation of high-dimensional functions is made computationally tractable by using rank-structured approximations. In this talk, we present algorithms for the approximation in hierarchical tensor format using statistical methods. Sparse representations in a given tensor format are obtained with adaptive or convex relaxation methods, with a selection of parameters using crossvalidation methods.

  4. Semiclassical approximation in Batalin-Vilkovisky formalism

    International Nuclear Information System (INIS)

    Schwarz, A.

    1993-01-01

    The geometry of supermanifolds provided with a Q-structure (i.e. with an odd vector field Q satisfying {Q, Q}=0), a P-structure (odd symplectic structure) and an S-structure (volume element) or with various combinations of these structures is studied. The results are applied to the analysis of the Batalin-Vilkovisky approach to the quantization of gauge theories. In particular the semiclassical approximation in this approach is expressed in terms of Reidemeister torsion. (orig.)

  5. Forms of Approximate Radiation Transport

    CERN Document Server

    Brunner, G

    2002-01-01

    Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.

  6. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  7. Exact constants in approximation theory

    CERN Document Server

    Korneichuk, N

    1991-01-01

    This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base

  8. International Conference Approximation Theory XIV

    CERN Document Server

    Schumaker, Larry

    2014-01-01

    This volume developed from papers presented at the international conference Approximation Theory XIV,  held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

  9. Approximate Noether symmetries and collineations for regular perturbative Lagrangians

    Science.gov (United States)

    Paliathanasis, Andronikos; Jamal, Sameerah

    2018-01-01

    Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.

  10. Some results in Diophantine approximation

    DEFF Research Database (Denmark)

    Pedersen, Steffen Højris

    the basic concepts on which the papers build. Among other it introduces metric Diophantine approximation, Mahler’s approach on algebraic approximation, the Hausdorff measure, and properties of the formal Laurent series over Fq. The introduction ends with a discussion on Mahler’s problem when considered......This thesis consists of three papers in Diophantine approximation, a subbranch of number theory. Preceding these papers is an introduction to various aspects of Diophantine approximation and formal Laurent series over Fq and a summary of each of the three papers. The introduction introduces...

  11. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spherical Approximation on Unit Sphere

    Directory of Open Access Journals (Sweden)

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  13. Approximation theorems by Meyer-Koenig and Zeller type operators

    International Nuclear Information System (INIS)

    Ali Ozarslan, M.; Duman, Oktay

    2009-01-01

    This paper is mainly connected with the approximation properties of Meyer-Koenig and Zeller (MKZ) type operators. We first introduce a general sequence of MKZ operators based on q-integers and then obtain a Korovkin-type approximation theorem for these operators. We also compute their rates of convergence by means of modulus of continuity and the elements of Lipschitz class functionals. Furthermore, we give an rth order generalization of our operators in order to get some explicit approximation results.

  14. Approximate circuits for increased reliability

    Science.gov (United States)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  15. TRANSFORMED GENERATE APPROXIMATION METHOD FOR ...

    African Journals Online (AJOL)

    Ignatius & Ebimene

    generalized boundary value problems with first-kind Chebychev polynomials as trial ... For this course, we will consider the generalized boundary value problem of the form: ... 0(1)( − 1), are finite real constants and is the .... b. Ax = (10) where the elements of , and (with elements denoted as ,.

  16. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    Science.gov (United States)

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  17. The efficiency of Flory approximation

    International Nuclear Information System (INIS)

    Obukhov, S.P.

    1984-01-01

    The Flory approximation for the self-avoiding chain problem is compared with a conventional perturbation theory expansion. While in perturbation theory each term is averaged over the unperturbed set of configurations, the Flory approximation is equivalent to the perturbation theory with the averaging over the stretched set of configurations. This imposes restrictions on the integration domain in higher order terms and they can be treated self-consistently. The accuracy δν/ν of Flory approximation for self-avoiding chain problems is estimated to be 2-5% for 1 < d < 4. (orig.)

  18. Approximate Implicitization Using Linear Algebra

    Directory of Open Access Journals (Sweden)

    Oliver J. D. Barrowclough

    2012-01-01

    Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

  19. Rollout sampling approximate policy iteration

    NARCIS (Netherlands)

    Dimitrakakis, C.; Lagoudakis, M.G.

    2008-01-01

    Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions, which focus on policy representation using classifiers and address policy learning as a

  20. Weighted approximation with varying weight

    CERN Document Server

    Totik, Vilmos

    1994-01-01

    A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.

  1. Framework for sequential approximate optimization

    NARCIS (Netherlands)

    Jacobs, J.H.; Etman, L.F.P.; Keulen, van F.; Rooda, J.E.

    2004-01-01

    An object-oriented framework for Sequential Approximate Optimization (SAO) isproposed. The framework aims to provide an open environment for thespecification and implementation of SAO strategies. The framework is based onthe Python programming language and contains a toolbox of Python

  2. Nuclear Hartree-Fock approximation testing and other related approximations

    International Nuclear Information System (INIS)

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  3. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  4. Diophantine approximation and Dirichlet series

    CERN Document Server

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  5. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  6. Rational approximations for tomographic reconstructions

    International Nuclear Information System (INIS)

    Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas

    2013-01-01

    We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp–Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image. (paper)

  7. Approximation methods in probability theory

    CERN Document Server

    Čekanavičius, Vydas

    2016-01-01

    This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

  8. Standard elements; Elements standards

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Following his own experience the author recalls the various advantages, especially in the laboratory, of having pre-fabricated vacuum-line components at his disposal. (author) [French] A la suite de sa propre experience, l'auteur veut rappeler les divers avantages que presente, tout particulierement en laboratoire, le fait d'avoir a sa disposition des elements pre-fabriques de canalisations a vide. (auteur)

  9. Approximate reasoning in physical systems

    International Nuclear Information System (INIS)

    Mutihac, R.

    1991-01-01

    The theory of fuzzy sets provides excellent ground to deal with fuzzy observations (uncertain or imprecise signals, wavelengths, temperatures,etc.) fuzzy functions (spectra and depth profiles) and fuzzy logic and approximate reasoning. First, the basic ideas of fuzzy set theory are briefly presented. Secondly, stress is put on application of simple fuzzy set operations for matching candidate reference spectra of a spectral library to an unknown sample spectrum (e.g. IR spectroscopy). Thirdly, approximate reasoning is applied to infer an unknown property from information available in a database (e.g. crystal systems). Finally, multi-dimensional fuzzy reasoning techniques are suggested. (Author)

  10. Face Recognition using Approximate Arithmetic

    DEFF Research Database (Denmark)

    Marso, Karol

    Face recognition is image processing technique which aims to identify human faces and found its use in various different fields for example in security. Throughout the years this field evolved and there are many approaches and many different algorithms which aim to make the face recognition as effective...... processing applications the results do not need to be completely precise and use of the approximate arithmetic can lead to reduction in terms of delay, space and power consumption. In this paper we examine possible use of approximate arithmetic in face recognition using Eigenfaces algorithm....

  11. Approximate Matching of Hierarchial Data

    DEFF Research Database (Denmark)

    Augsten, Nikolaus

    -grams of a tree are all its subtrees of a particular shape. Intuitively, two trees are similar if they have many pq-grams in common. The pq-gram distance is an efficient and effective approximation of the tree edit distance. We analyze the properties of the pq-gram distance and compare it with the tree edit...

  12. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  13. Approximation properties of haplotype tagging

    Directory of Open Access Journals (Sweden)

    Dreiseitl Stephan

    2006-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.

  14. All-Norm Approximation Algorithms

    NARCIS (Netherlands)

    Azar, Yossi; Epstein, Leah; Richter, Yossi; Woeginger, Gerhard J.; Penttonen, Martti; Meineche Schmidt, Erik

    2002-01-01

    A major drawback in optimization problems and in particular in scheduling problems is that for every measure there may be a different optimal solution. In many cases the various measures are different ℓ p norms. We address this problem by introducing the concept of an All-norm ρ-approximation

  15. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  16. Approximate reasoning in decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M M; Sanchez, E

    1982-01-01

    The volume aims to incorporate the recent advances in both theory and applications. It contains 44 articles by 74 contributors from 17 different countries. The topics considered include: membership functions; composite fuzzy relations; fuzzy logic and inference; classifications and similarity measures; expert systems and medical diagnosis; psychological measurements and human behaviour; approximate reasoning and decision analysis; and fuzzy clustering algorithms.

  17. Rational approximation of vertical segments

    Science.gov (United States)

    Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte

    2007-08-01

    In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.

  18. Pythagorean Approximations and Continued Fractions

    Science.gov (United States)

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  19. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  20. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  1. Beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian S.

    2013-01-01

    We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...... functional theory and the adiabatic connection fluctuation-dissipation theorem and contains no fitted parameters. The new kernel is shown to preserve the accurate description of dispersive interactions from RPA while significantly improving the description of short-range correlation in molecules, insulators......, and metals. For molecular atomization energies, the rALDA is a factor of 7 better than RPA and a factor of 4 better than the Perdew-Burke-Ernzerhof (PBE) functional when compared to experiments, and a factor of 3 (1.5) better than RPA (PBE) for cohesive energies of solids. For transition metals...

  2. Hydrogen: Beyond the Classic Approximation

    International Nuclear Information System (INIS)

    Scivetti, Ivan

    2003-01-01

    The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position

  3. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  4. WKB approximation in atomic physics

    International Nuclear Information System (INIS)

    Karnakov, Boris Mikhailovich

    2013-01-01

    Provides extensive coverage of the Wentzel-Kramers-Brillouin approximation and its applications. Presented as a sequence of problems with highly detailed solutions. Gives a concise introduction for calculating Rydberg states, potential barriers and quasistationary systems. This book has evolved from lectures devoted to applications of the Wentzel-Kramers-Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N -expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.

  5. Galvanic element. Galvanisches Element

    Energy Technology Data Exchange (ETDEWEB)

    Sprengel, D.; Haelbig, H.

    1980-01-03

    The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.

  6. Random-phase approximation and broken symmetry

    International Nuclear Information System (INIS)

    Davis, E.D.; Heiss, W.D.

    1986-01-01

    The validity of the random-phase approximation (RPA) in broken-symmetry bases is tested in an appropriate many-body system for which exact solutions are available. Initially the regions of stability of the self-consistent quasiparticle bases in this system are established and depicted in a 'phase' diagram. It is found that only stable bases can be used in an RPA calculation. This is particularly true for those RPA modes which are not associated with the onset of instability of the basis; it is seen that these modes do not describe any excited state when the basis is unstable, although from a formal point of view they remain acceptable. The RPA does well in a stable broken-symmetry basis provided one is not too close to a point where a phase transition occurs. This is true for both energies and matrix elements. (author)

  7. Vortex sheet approximation of boundary layers

    International Nuclear Information System (INIS)

    Chorin, A.J.

    1978-01-01

    a grid free method for approximating incomprssible boundary layers is introduced. The computational elements are segments of vortex sheets. The method is related to the earlier vortex method; simplicity is achieved at the cost of replacing the Navier-Stokes equations by the Prandtl boundary layer equations. A new method for generating vorticity at boundaries is also presented; it can be used with the earlier voartex method. The applications presented include (i) flat plate problems, and (ii) a flow problem in a model cylinder- piston assembly, where the new method is used near walls and an improved version of the random choice method is used in the interior. One of the attractive features of the new method is the ease with which it can be incorporated into hybrid algorithms

  8. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  9. Approximate Inference for Wireless Communications

    DEFF Research Database (Denmark)

    Hansen, Morten

    This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...

  10. Quantum tunneling beyond semiclassical approximation

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2008-01-01

    Hawking radiation as tunneling by Hamilton-Jacobi method beyond semiclassical approximation is analysed. We compute all quantum corrections in the single particle action revealing that these are proportional to the usual semiclassical contribution. We show that a simple choice of the proportionality constants reproduces the one loop back reaction effect in the spacetime, found by conformal field theory methods, which modifies the Hawking temperature of the black hole. Using the law of black hole mechanics we give the corrections to the Bekenstein-Hawking area law following from the modified Hawking temperature. Some examples are explicitly worked out.

  11. Generalized Gradient Approximation Made Simple

    International Nuclear Information System (INIS)

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-01-01

    Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society

  12. Approximation to estimation of critical state

    International Nuclear Information System (INIS)

    Orso, Jose A.; Rosario, Universidad Nacional

    2011-01-01

    The position of the control rod for the critical state of the nuclear reactor depends on several factors; including, but not limited to the temperature and configuration of the fuel elements inside the core. Therefore, the position can not be known in advance. In this paper theoretical estimations are developed to obtain an equation that allows calculating the position of the control rod for the critical state (approximation to critical) of the nuclear reactor RA-4; and will be used to create a software performing the estimation by entering the count rate of the reactor pulse channel and the length obtained from the control rod (in cm). For the final estimation of the approximation to critical state, a function obtained experimentally indicating control rods reactivity according to the function of their position is used, work is done mathematically to obtain a linear function, which gets the length of the control rod, which has to be removed to get the reactor in critical position. (author) [es

  13. Impulse approximation in solid helium

    International Nuclear Information System (INIS)

    Glyde, H.R.

    1985-01-01

    The incoherent dynamic form factor S/sub i/(Q, ω) is evaluated in solid helium for comparison with the impulse approximation (IA). The purpose is to determine the Q values for which the IA is valid for systems such a helium where the atoms interact via a potential having a steeply repulsive but not infinite hard core. For 3 He, S/sub i/(Q, ω) is evaluated from first principles, beginning with the pair potential. The density of states g(ω) is evaluated using the self-consistent phonon theory and S/sub i/(Q,ω) is expressed in terms of g(ω). For solid 4 He resonable models of g(ω) using observed input parameters are used to evaluate S/sub i/(Q,ω). In both cases S/sub i/(Q, ω) is found to approach the impulse approximation S/sub IA/(Q, ω) closely for wave vector transfers Q> or approx. =20 A -1 . The difference between S/sub i/ and S/sub IA/, which is due to final state interactions of the scattering atom with the remainder of the atoms in the solid, is also predominantly antisymmetric in (ω-ω/sub R/), where ω/sub R/ is the recoil frequency. This suggests that the symmetrization procedure proposed by Sears to eliminate final state contributions should work well in solid helium

  14. Plasma Physics Approximations in Ares

    International Nuclear Information System (INIS)

    Managan, R. A.

    2015-01-01

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζ ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ )F 1/2 (μ/θ), F 1/2 '/F 1/2 , F c α , and F c β . In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  15. Approximating the minimum cycle mean

    Directory of Open Access Journals (Sweden)

    Krishnendu Chatterjee

    2013-07-01

    Full Text Available We consider directed graphs where each edge is labeled with an integer weight and study the fundamental algorithmic question of computing the value of a cycle with minimum mean weight. Our contributions are twofold: (1 First we show that the algorithmic question is reducible in O(n^2 time to the problem of a logarithmic number of min-plus matrix multiplications of n-by-n matrices, where n is the number of vertices of the graph. (2 Second, when the weights are nonnegative, we present the first (1 + ε-approximation algorithm for the problem and the running time of our algorithm is ilde(O(n^ω log^3(nW/ε / ε, where O(n^ω is the time required for the classic n-by-n matrix multiplication and W is the maximum value of the weights.

  16. Approximate cohomology in Banach algebras | Pourabbas ...

    African Journals Online (AJOL)

    We introduce the notions of approximate cohomology and approximate homotopy in Banach algebras and we study the relation between them. We show that the approximate homotopically equivalent cochain complexes give the same approximate cohomologies. As a special case, approximate Hochschild cohomology is ...

  17. A Finite Element Analysis of Optimal Variable Thickness Sheets

    DEFF Research Database (Denmark)

    Petersson, Joakim S

    1996-01-01

    A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill ...

  18. A set of pathological tests to validate new finite elements

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.

  19. Transplutonium elements

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishnan, C. K.; Jadhav, A. V.; Reghuraman, K.; Mathew, K. A.; Nair, P. S.; Ramaniah, M. V.

    1973-07-01

    Research progress is reported on studies of the transplutonium elements including recovery and purification of americium, preparation of /sup 238/Pu, extraction studies using diethylhexyl phosphate. (DHM)

  20. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Max La Cour [Technical Univ. of Denmark, Lyngby (Denmark); Villa, Umberto E. [Univ. of Texas, Austin, TX (United States); Engsig-Karup, Allan P. [Technical Univ. of Denmark, Lyngby (Denmark); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-22

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

  1. Pade approximants and the calculation of effective interactions

    International Nuclear Information System (INIS)

    Schucan, T.H.

    1975-01-01

    It is known that the series expansion of the effective interaction in nuclei diverges in practical applications due to the occurrence of low lying collective states. An approximation scheme which can be used to overcome the difficulties connected with this divergence is reviewed and it is shown that a continued fraction expansion can be used to calculate the eigenstate that has the larger overlap with the model space. An extension of this method is obtained by using Pade approximants (P.A.) which are then applied to the effective interaction, and to related matrices and matrix elements. Mathematical properties of the P.A. are discussed in light of these applications. 7 figures

  2. On the approximation of crack shapes found during inservice inspection

    International Nuclear Information System (INIS)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S.

    1997-01-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component

  3. On the approximation of crack shapes found during inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  4. Approximating the r-process on earth with thermonuclear explosions

    International Nuclear Information System (INIS)

    Becker, S.A.

    1992-01-01

    The astrophysical r-process can be approximately simulated in certain types of thermonuclear explosions. Between 1952 and 1969 twenty-three nuclear tests were fielded by the United States which had as one of their objectives the production of heavy transuranic elements. Of these tests, fifteen were at least partially successful. Some of these shots were conducted under the project Plowshare Peaceful Nuclear Explosion Program as scientific research experiments. A review of the program, target nuclei used, and heavy element yields achieved, will be presented as well as discussion of plans for a new experiment in a future nuclear test

  5. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  6. Adaptive ACMS: A robust localized Approximated Component Mode Synthesis Method

    OpenAIRE

    Madureira, Alexandre L.; Sarkis, Marcus

    2017-01-01

    We consider finite element methods of multiscale type to approximate solutions for two-dimensional symmetric elliptic partial differential equations with heterogeneous $L^\\infty$ coefficients. The methods are of Galerkin type and follows the Variational Multiscale and Localized Orthogonal Decomposition--LOD approaches in the sense that it decouples spaces into multiscale and fine subspaces. In a first method, the multiscale basis functions are obtained by mapping coarse basis functions, based...

  7. Pade approximants for the Saxon-Woods potential

    International Nuclear Information System (INIS)

    Niculescu, V.I.R.; Catana, D.

    1995-01-01

    In the present work central Saxon-Woods (SW) potential and a uniform sphere Coulomb potential for protons are replaced with a Pade approximants. In this way expressions of the matrix elements of this potential form can be evaluated by the theory of complex functions. The methods assures satisfactory precision in a shorter computational time. (M.I.C) 1 fig., 2 tabs., 5 refs

  8. Universal approximation in p-mean by neural networks

    NARCIS (Netherlands)

    Burton, R.M; Dehling, H.G

    A feedforward neural net with d input neurons and with a single hidden layer of n neurons is given by [GRAPHICS] where a(j), theta(j), w(ji) is an element of R. In this paper we study the approximation of arbitrary functions f: R-d --> R by a neural net in an L-p(mu) norm for some finite measure mu

  9. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-01-01

    to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic

  10. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  11. Some relations between entropy and approximation numbers

    Institute of Scientific and Technical Information of China (English)

    郑志明

    1999-01-01

    A general result is obtained which relates the entropy numbers of compact maps on Hilbert space to its approximation numbers. Compared with previous works in this area, it is particularly convenient for dealing with the cases where the approximation numbers decay rapidly. A nice estimation between entropy and approximation numbers for noncompact maps is given.

  12. Axiomatic Characterizations of IVF Rough Approximation Operators

    Directory of Open Access Journals (Sweden)

    Guangji Yu

    2014-01-01

    Full Text Available This paper is devoted to the study of axiomatic characterizations of IVF rough approximation operators. IVF approximation spaces are investigated. The fact that different IVF operators satisfy some axioms to guarantee the existence of different types of IVF relations which produce the same operators is proved and then IVF rough approximation operators are characterized by axioms.

  13. An approximation for kanban controlled assembly systems

    NARCIS (Netherlands)

    Topan, E.; Avsar, Z.M.

    2011-01-01

    An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated

  14. Operator approximant problems arising from quantum theory

    CERN Document Server

    Maher, Philip J

    2017-01-01

    This book offers an account of a number of aspects of operator theory, mainly developed since the 1980s, whose problems have their roots in quantum theory. The research presented is in non-commutative operator approximation theory or, to use Halmos' terminology, in operator approximants. Focusing on the concept of approximants, this self-contained book is suitable for graduate courses.

  15. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  16. Optimal approximation of linear systems by artificial immune response

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel artificial immune response algorithm for optimal approximation of linear systems. A quaternion model of artificial immune response is proposed for engineering computing. The model abstracts four elements, namely, antigen, antibody, reaction rules among antibodies, and driving algorithm describing how the rules are applied to antibodies, to simulate the process of immune response. Some reaction rules including clonal selection rules, immunological memory rules and immune regulation rules are introduced. Using the theorem of Markov chain, it is proofed that the new model is convergent. The experimental study on the optimal approximation of a stable linear system and an unstable one show that the approximate models searched by the new model have better performance indices than those obtained by some existing algorithms including the differential evolution algorithm and the multi-agent genetic algorithm.

  17. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation 2. Finite-Element Approximation of Blades and a Model of Coupling of the Torsion Bar with the Blades

    Science.gov (United States)

    Paimushin, V. N.; Shishkin, V. M.

    2016-01-01

    A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.

  18. Trace element emissions from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    Trace elements are emitted during coal combustion. The quantity, in general, depends on the physical and chemical properties of the element itself, the concentration of the element in the coal, the combustion conditions and the type of particulate control device used, and its collection efficiency as a function of particle size. Some trace elements become concentrated in certain particle streams following combustion such as bottom ash, fly ash, and flue gas particulate matter, while others do not. Various classification schemes have been developed to describe this partitioning behaviour. These classification schemes generally distinguish between: Class 1: elements that are approximately equally concentrated in the fly ash and bottom ash, or show little or no fine particle enrichment, examples include Mn, Be, Co and Cr; Class 2: elements that are enriched in the fly ash relative to bottom ash, or show increasing enrichment with decreasing particle size, examples include As, Cd, Pb and Sb; Class 3: elements which are emitted in the gas phase (primarily Hg (not discussed in this review), and in some cases, Se). Control of class 1 trace elements is directly related to control of total particulate matter emissions, while control of the class 2 elements depends on collection of fine particulates. Due to the variability in particulate control device efficiencies, emission rates of these elements can vary substantially. The volatility of class 3 elements means that particulate controls have only a limited impact on the emissions of these elements.

  19. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  20. Analysis of corrections to the eikonal approximation

    Science.gov (United States)

    Hebborn, C.; Capel, P.

    2017-11-01

    Various corrections to the eikonal approximations are studied for two- and three-body nuclear collisions with the goal to extend the range of validity of this approximation to beam energies of 10 MeV/nucleon. Wallace's correction does not improve much the elastic-scattering cross sections obtained at the usual eikonal approximation. On the contrary, a semiclassical approximation that substitutes the impact parameter by a complex distance of closest approach computed with the projectile-target optical potential efficiently corrects the eikonal approximation. This opens the possibility to analyze data measured down to 10 MeV/nucleon within eikonal-like reaction models.

  1. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  2. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey; Alkhalifah, Tariq Ali

    2013-01-01

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  3. Analytical approximation of neutron physics data

    International Nuclear Information System (INIS)

    Badikov, S.A.; Vinogradov, V.A.; Gaj, E.V.; Rabotnov, N.S.

    1984-01-01

    The method for experimental neutron-physical data analytical approximation by rational functions based on the Pade approximation is suggested. It is shown that the existence of the Pade approximation specific properties in polar zones is an extremely favourable analytical property essentially extending the convergence range and increasing its rate as compared with polynomial approximation. The Pade approximation is the particularly natural instrument for resonance curve processing as the resonances conform to the complex poles of the approximant. But even in a general case analytical representation of the data in this form is convenient and compact. Thus representation of the data on the neutron threshold reaction cross sections (BOSPOR constant library) in the form of rational functions lead to approximately twenty fold reduction of the storaged numerical information as compared with the by-point calculation at the same accWracy

  4. A unified approach to the Darwin approximation

    International Nuclear Information System (INIS)

    Krause, Todd B.; Apte, A.; Morrison, P. J.

    2007-01-01

    There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting

  5. Mapping moveout approximations in TI media

    KAUST Repository

    Stovas, Alexey

    2013-11-21

    Moveout approximations play a very important role in seismic modeling, inversion, and scanning for parameters in complex media. We developed a scheme to map one-way moveout approximations for transversely isotropic media with a vertical axis of symmetry (VTI), which is widely available, to the tilted case (TTI) by introducing the effective tilt angle. As a result, we obtained highly accurate TTI moveout equations analogous with their VTI counterparts. Our analysis showed that the most accurate approximation is obtained from the mapping of generalized approximation. The new moveout approximations allow for, as the examples demonstrate, accurate description of moveout in the TTI case even for vertical heterogeneity. The proposed moveout approximations can be easily used for inversion in a layered TTI medium because the parameters of these approximations explicitly depend on corresponding effective parameters in a layered VTI medium.

  6. An Approximate Approach to Automatic Kernel Selection.

    Science.gov (United States)

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  7. Bounded-Degree Approximations of Stochastic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identify the r-best approximations among these classes, enabling robust decision making.

  8. Cosmological applications of Padé approximant

    International Nuclear Information System (INIS)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation

  9. Cosmological applications of Padé approximant

    Science.gov (United States)

    Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan

    2014-01-01

    As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.

  10. PELTIER ELEMENTS

    CERN Document Server

    Tani, Laurits

    2015-01-01

    To control Peltier elements, temperature controller was used. I used TEC-1091 that was manufactured my Meerstetter Engineering. To gain control with the temperature controller, software had to be intalled on a controlling PC. There were different modes to control the Peltier: Tempererature controller to control temperature, Static current/voltage to control voltage and current and LIVE ON/OFF to auto-tune the controller respectively to the system. Also, since near the collision pipe there is much radiation, radiation-proof Peltier elements have to be used. To gain the best results, I had to find the most efficient Peltier elements and try to get their cold side to -40 degrees Celsius.

  11. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay

    2017-02-13

    In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  12. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  13. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  14. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  15. APPROXIMATIONS TO PERFORMANCE MEASURES IN QUEUING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kambo, N. S.

    2012-11-01

    Full Text Available Approximations to various performance measures in queuing systems have received considerable attention because these measures have wide applicability. In this paper we propose two methods to approximate the queuing characteristics of a GI/M/1 system. The first method is non-parametric in nature, using only the first three moments of the arrival distribution. The second method treads the known path of approximating the arrival distribution by a mixture of two exponential distributions by matching the first three moments. Numerical examples and optimal analysis of performance measures of GI/M/1 queues are provided to illustrate the efficacy of the methods, and are compared with benchmark approximations.

  16. Fuel element

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1982-01-01

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  17. Transactinide elements

    International Nuclear Information System (INIS)

    Hemingway, J.D.

    1975-01-01

    The review is covered in sections, entitled: predicted nuclear properties - including closed shells, decay characteristics; predicted chemical properties - including electronic structure and calculated properties, X-radiation, extrapolated chemical properties, separation chemistry; methods of synthesis; the natural occurrence of superheavy elements. (U.K.)

  18. Diagonal Pade approximations for initial value problems

    International Nuclear Information System (INIS)

    Reusch, M.F.; Ratzan, L.; Pomphrey, N.; Park, W.

    1987-06-01

    Diagonal Pade approximations to the time evolution operator for initial value problems are applied in a novel way to the numerical solution of these problems by explicitly factoring the polynomials of the approximation. A remarkable gain over conventional methods in efficiency and accuracy of solution is obtained. 20 refs., 3 figs., 1 tab

  19. Approximation properties of fine hyperbolic graphs

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In this paper, we propose a definition of approximation property which is called the metric invariant translation approximation property for a countable discrete metric space. Moreover, we use ... Department of Applied Mathematics, Shanghai Finance University, Shanghai 201209, People's Republic of China ...

  20. Approximation properties of fine hyperbolic graphs

    Indian Academy of Sciences (India)

    2010 Mathematics Subject Classification. 46L07. 1. Introduction. Given a countable discrete group G, some nice approximation properties for the reduced. C∗-algebras C∗ r (G) can give us the approximation properties of G. For example, Lance. [7] proved that the nuclearity of C∗ r (G) is equivalent to the amenability of G; ...

  1. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  2. Approximation algorithms for guarding holey polygons ...

    African Journals Online (AJOL)

    Guarding edges of polygons is a version of art gallery problem.The goal is finding the minimum number of guards to cover the edges of a polygon. This problem is NP-hard, and to our knowledge there are approximation algorithms just for simple polygons. In this paper we present two approximation algorithms for guarding ...

  3. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.

    2008-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  4. Efficient automata constructions and approximate automata

    NARCIS (Netherlands)

    Watson, B.W.; Kourie, D.G.; Ngassam, E.K.; Strauss, T.; Cleophas, L.G.W.A.; Holub, J.; Zdárek, J.

    2006-01-01

    In this paper, we present data structures and algorithms for efficiently constructing approximate automata. An approximate automaton for a regular language L is one which accepts at least L. Such automata can be used in a variety of practical applications, including network security pattern

  5. Spline approximation, Part 1: Basic methodology

    Science.gov (United States)

    Ezhov, Nikolaj; Neitzel, Frank; Petrovic, Svetozar

    2018-04-01

    In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are almost never used as final results. For further processing and analysis a curve or surface approximation with a continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of "irregularly" distributed data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages and disadvantages depending on the approximation problem. In a series of three articles spline approximation is presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of splines for deformation detection will be investigated on numerical examples in Part 3.

  6. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...

  7. Quirks of Stirling's Approximation

    Science.gov (United States)

    Macrae, Roderick M.; Allgeier, Benjamin M.

    2013-01-01

    Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…

  8. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  9. Approximations for stop-loss reinsurance premiums

    NARCIS (Netherlands)

    Reijnen, Rajko; Albers, Willem/Wim; Kallenberg, W.C.M.

    2005-01-01

    Various approximations of stop-loss reinsurance premiums are described in literature. For a wide variety of claim size distributions and retention levels, such approximations are compared in this paper to each other, as well as to a quantitative criterion. For the aggregate claims two models are

  10. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  11. Approximate error conjugation gradient minimization methods

    Science.gov (United States)

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  12. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  13. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...... are then inverted with 1D models to produce a 1D model section. This section is the convolution kernel for the deconvolution. Within its limitations, the approximate 2D inversion performs well. Theoretical modeling shows that it delivers model sections that are a definite improvement over 1D model sections...

  14. Parallel iterative solvers and preconditioners using approximate hierarchical methods

    Energy Technology Data Exchange (ETDEWEB)

    Grama, A.; Kumar, V.; Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)

    1996-12-31

    In this paper, we report results of the performance, convergence, and accuracy of a parallel GMRES solver for Boundary Element Methods. The solver uses a hierarchical approximate matrix-vector product based on a hybrid Barnes-Hut / Fast Multipole Method. We study the impact of various accuracy parameters on the convergence and show that with minimal loss in accuracy, our solver yields significant speedups. We demonstrate the excellent parallel efficiency and scalability of our solver. The combined speedups from approximation and parallelism represent an improvement of several orders in solution time. We also develop fast and paralellizable preconditioners for this problem. We report on the performance of an inner-outer scheme and a preconditioner based on truncated Green`s function. Experimental results on a 256 processor Cray T3D are presented.

  15. The generalized gradient approximation in solids and molecules

    International Nuclear Information System (INIS)

    Haas, P.

    2010-01-01

    Today, most methods are based on theoretical calculations of the electronic structure of molecules, surfaces and solids on density functional theory (DFT) and the resulting Kohn-Sham equations. Unfortunately, the exact analytical expression for the exchange-correlation functional is not known and has to be approximated. The reliability of such a Kohn-Sham calculation depends i) from the numerical accuracy and ii) from the used approximation for the exchange-correlation energy. To solve the Kohn-Sham equations, the WIEN2k code, which is one of the most accurate methods for solid-state calculations, is used. The search for better approximations for the exchange-correlation energy is an intense field of research in chemistry and physics. The main objectives of the dissertation is the development, implementation and testing of advanced exchange-correlation functionals and the analysis of existing functionals. The focus of this work are GGA - functionals. Such GGA functionals are still the most widely used functionals, in particular because they are easy to implement and require little computational effort. Several recent studies have shown that an improvement of the GGA should be possible. A detailed analysis of the results will allow us to understand why a particular GGA approximation for a class of elements (compounds) works better than for another. (Kancsar) [de

  16. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...

  17. Conditional Density Approximations with Mixtures of Polynomials

    DEFF Research Database (Denmark)

    Varando, Gherardo; López-Cruz, Pedro L.; Nielsen, Thomas Dyhre

    2015-01-01

    Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce...... two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities...

  18. Hardness and Approximation for Network Flow Interdiction

    OpenAIRE

    Chestnut, Stephen R.; Zenklusen, Rico

    2015-01-01

    In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In particular, any $n^{o(1)}$-approximation algorithm for Network Flow Interdiction would imply an $n^{o(1)}...

  19. Approximation of the semi-infinite interval

    Directory of Open Access Journals (Sweden)

    A. McD. Mercer

    1980-01-01

    Full Text Available The approximation of a function f∈C[a,b] by Bernstein polynomials is well-known. It is based on the binomial distribution. O. Szasz has shown that there are analogous approximations on the interval [0,∞ based on the Poisson distribution. Recently R. Mohapatra has generalized Szasz' result to the case in which the approximating function is αe−ux∑k=N∞(uxkα+β−1Γ(kα+βf(kαuThe present note shows that these results are special cases of a Tauberian theorem for certain infinite series having positive coefficients.

  20. Mathematical analysis, approximation theory and their applications

    CERN Document Server

    Gupta, Vijay

    2016-01-01

    Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

  1. Dataset concerning the analytical approximation of the Ae3 temperature

    Directory of Open Access Journals (Sweden)

    B.L. Ennis

    2017-02-01

    The dataset includes the terms of the function and the values for the polynomial coefficients for major alloying elements in steel. A short description of the approximation method used to derive and validate the coefficients has also been included. For discussion and application of this model, please refer to the full length article entitled “The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel” 10.1016/j.actamat.2016.05.046 (Ennis et al., 2016 [1].

  2. In-Depth Study Of European Union Fiscal Approximation

    Directory of Open Access Journals (Sweden)

    Andreea Roxana TOMI

    2011-05-01

    Full Text Available The current study presents a viewpoint on the EU fiscal policy contents, advocating the need for an in-depth understanding and acceleration of the 27 national fiscal system components and the creation of the EU Tax System that would enable the Single Market operation and the enforcement of the four fundamental liberties within the European Union. In the author’s opinion, the extant common fiscal policy elements are only marginal, while the actions aimed at an in-depth understanding of a broad fiscal policy are essential to the extent they point at both direct and indirect taxation aspects whose approximation is a priority.

  3. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  4. Multilevel weighted least squares polynomial approximation

    KAUST Repository

    Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren

    2017-01-01

    , obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose

  5. Low Rank Approximation Algorithms, Implementation, Applications

    CERN Document Server

    Markovsky, Ivan

    2012-01-01

    Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...

  6. Nonlinear Ritz approximation for Fredholm functionals

    Directory of Open Access Journals (Sweden)

    Mudhir A. Abdul Hussain

    2015-11-01

    Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.

  7. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  8. Approximation for the adjoint neutron spectrum

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The proposal of this work is the determination of an analytical approximation which is capable to reproduce the adjoint neutron flux for the energy range of the narrow resonances (NR). In a previous work we developed a method for the calculation of the adjoint spectrum which was calculated from the adjoint neutron balance equations, that were obtained by the collision probabilities method, this method involved a considerable quantity of numerical calculation. In the analytical method some approximations were done, like the multiplication of the escape probability in the fuel by the adjoint flux in the moderator, and after these approximations, taking into account the case of the narrow resonances, were substituted in the adjoint neutron balance equation for the fuel, resulting in an analytical approximation for the adjoint flux. The results obtained in this work were compared to the results generated with the reference method, which demonstrated a good and precise results for the adjoint neutron flux for the narrow resonances. (author)

  9. Saddlepoint approximation methods in financial engineering

    CERN Document Server

    Kwok, Yue Kuen

    2018-01-01

    This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables.  The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quanti...

  10. Methods of Fourier analysis and approximation theory

    CERN Document Server

    Tikhonov, Sergey

    2016-01-01

    Different facets of interplay between harmonic analysis and approximation theory are covered in this volume. The topics included are Fourier analysis, function spaces, optimization theory, partial differential equations, and their links to modern developments in the approximation theory. The articles of this collection were originated from two events. The first event took place during the 9th ISAAC Congress in Krakow, Poland, 5th-9th August 2013, at the section “Approximation Theory and Fourier Analysis”. The second event was the conference on Fourier Analysis and Approximation Theory in the Centre de Recerca Matemàtica (CRM), Barcelona, during 4th-8th November 2013, organized by the editors of this volume. All articles selected to be part of this collection were carefully reviewed.

  11. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  12. APPROXIMATE DEVELOPMENTS FOR SURFACES OF REVOLUTION

    Directory of Open Access Journals (Sweden)

    Mădălina Roxana Buneci

    2016-12-01

    Full Text Available The purpose of this paper is provide a set of Maple procedures to construct approximate developments of a general surface of revolution generalizing the well-known gore method for sphere

  13. Steepest descent approximations for accretive operator equations

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1993-03-01

    A necessary and sufficient condition is established for the strong convergence of the steepest descent approximation to a solution of equations involving quasi-accretive operators defined on a uniformly smooth Banach space. (author). 49 refs

  14. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  15. An overview on Approximate Bayesian computation*

    Directory of Open Access Journals (Sweden)

    Baragatti Meïli

    2014-01-01

    Full Text Available Approximate Bayesian computation techniques, also called likelihood-free methods, are one of the most satisfactory approach to intractable likelihood problems. This overview presents recent results since its introduction about ten years ago in population genetics.

  16. Approximate Computing Techniques for Iterative Graph Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram

    2017-12-18

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.

  17. Approximative solutions of stochastic optimization problem

    Czech Academy of Sciences Publication Activity Database

    Lachout, Petr

    2010-01-01

    Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf

  18. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  19. An approximate analytical approach to resampling averages

    DEFF Research Database (Denmark)

    Malzahn, Dorthe; Opper, M.

    2004-01-01

    Using a novel reformulation, we develop a framework to compute approximate resampling data averages analytically. The method avoids multiple retraining of statistical models on the samples. Our approach uses a combination of the replica "trick" of statistical physics and the TAP approach for appr...... for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method achieves good accuracy....

  20. Stochastic quantization and mean field approximation

    International Nuclear Information System (INIS)

    Jengo, R.; Parga, N.

    1983-09-01

    In the context of the stochastic quantization we propose factorized approximate solutions for the Fokker-Planck equation for the XY and Zsub(N) spin systems in D dimensions. The resulting differential equation for a factor can be solved and it is found to give in the limit of t→infinity the mean field or, in the more general case, the Bethe-Peierls approximation. (author)

  1. Polynomial approximation of functions in Sobolev spaces

    International Nuclear Information System (INIS)

    Dupont, T.; Scott, R.

    1980-01-01

    Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces

  2. Magnus approximation in the adiabatic picture

    International Nuclear Information System (INIS)

    Klarsfeld, S.; Oteo, J.A.

    1991-01-01

    A simple approximate nonperturbative method is described for treating time-dependent problems that works well in the intermediate regime far from both the sudden and the adiabatic limits. The method consists of applying the Magnus expansion after transforming to the adiabatic basis defined by the eigenstates of the instantaneous Hamiltonian. A few exactly soluble examples are considered in order to assess the domain of validity of the approximation. (author) 32 refs., 4 figs

  3. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    Hierl, Dieter

    2008-05-01

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  4. Radiographic element

    International Nuclear Information System (INIS)

    Abbott, T.I.; Jones, C.G.

    1984-01-01

    Radiographic elements are disclosed comprised of first and second silver halide emulsion layers separated by an interposed support capable of transmitting radiation to which the second image portion is responsive. At least the first imaging portion contains a silver halide emulsion in which thin tubular silver halide grains of intermediate aspect ratios (from 5:1 to 8:1) are present. Spectral sensitizing dye is adsorbed to the surface of the tubular grains. Increased photographic speeds can be realized at comparable levels of crossover. (author)

  5. Approximating centrality in evolving graphs: toward sublinearity

    Science.gov (United States)

    Priest, Benjamin W.; Cybenko, George

    2017-05-01

    The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.

  6. Validity of the broken-pair approximation for N = 50, even-A nuclei

    International Nuclear Information System (INIS)

    Haq, S.; Gambhir, Y.K.

    1977-01-01

    The validity of the broken-pair approximation as an approximation to the seniority shell model is investigated. The results of the broken-pair approximation and the seniority shell model, obtained by employing identical input information (single-particle levels and their energies, effective two-body matrix elements, 88 Sr inert core) for N = 50, even-A nuclei are compared. A close agreement obtained between the calculated broken-pair approximation and the seniority shell model energies for 90 Zr, 92 Mo, 94 Ru, and 96 Pd nuclei and large (95--100 %) overlaps between the broken-pair approximation and the senority shell model wave functions for 92 Mo, demonstrates the validity of the broken-pair approximation in this region and in general its usefulness as a good approximation to the seniority shell model

  7. Superheavy elements

    CERN Document Server

    Hofmann, S

    1999-01-01

    The outstanding aim of experimental investigations of heavy nuclei is the exploration of spherical 'SuperHeavy Elements' (SHEs). On the basis of the nuclear shell model, the next double magic shell-closure beyond sup 2 sup 0 sup 8 Pb is predicted at proton numbers between Z=114 and 126 and at neutron number N=184. All experimental efforts aiming at identifying SHEs (Z>=114) were negative so far. A highly sensitive search experiment was performed in November-December 1995 at SHIP. The isotope sup 2 sup 9 sup 0 116 produced by 'radiative capture' was searched for in the course of a 33 days irradiation of a sup 2 sup 0 sup 8 Pb target with sup 8 sup 2 Se projectiles, however, only cross-section limits were measured. Positive results were obtained in experiments searching for elements from 110 to 112 using cold fusion and the 1n evaporation channel. The produced isotopes were unambiguously identified by means of alpha-alpha correlations. Not fission, but alpha emission is the dominant decay mode. The measurement ...

  8. Patient admission planning using Approximate Dynamic Programming

    NARCIS (Netherlands)

    Hulshof, P.J.H.; Mes, Martijn R.K.; Boucherie, Richardus J.; Hans, Elias W.

    2016-01-01

    Tactical planning in hospitals involves elective patient admission planning and the allocation of hospital resource capacities. We propose a method to develop a tactical resource allocation and patient admission plan that takes stochastic elements into consideration, thereby providing robust plans.

  9. Trajectory averaging for stochastic approximation MCMC algorithms

    KAUST Repository

    Liang, Faming

    2010-10-01

    The subject of stochastic approximation was founded by Robbins and Monro [Ann. Math. Statist. 22 (1951) 400-407]. After five decades of continual development, it has developed into an important area in systems control and optimization, and it has also served as a prototype for the development of adaptive algorithms for on-line estimation and control of stochastic systems. Recently, it has been used in statistics with Markov chain Monte Carlo for solving maximum likelihood estimation problems and for general simulation and optimizations. In this paper, we first show that the trajectory averaging estimator is asymptotically efficient for the stochastic approximation MCMC (SAMCMC) algorithm under mild conditions, and then apply this result to the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007) 305-320]. The application of the trajectory averaging estimator to other stochastic approximationMCMC algorithms, for example, a stochastic approximation MLE algorithm for missing data problems, is also considered in the paper. © Institute of Mathematical Statistics, 2010.

  10. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  11. Semiclassical initial value approximation for Green's function.

    Science.gov (United States)

    Kay, Kenneth G

    2010-06-28

    A semiclassical initial value approximation is obtained for the energy-dependent Green's function. For a system with f degrees of freedom the Green's function expression has the form of a (2f-1)-dimensional integral over points on the energy surface and an integral over time along classical trajectories initiated from these points. This approximation is derived by requiring an integral ansatz for Green's function to reduce to Gutzwiller's semiclassical formula when the integrations are performed by the stationary phase method. A simpler approximation is also derived involving only an (f-1)-dimensional integral over momentum variables on a Poincare surface and an integral over time. The relationship between the present expressions and an earlier initial value approximation for energy eigenfunctions is explored. Numerical tests for two-dimensional systems indicate that good accuracy can be obtained from the initial value Green's function for calculations of autocorrelation spectra and time-independent wave functions. The relative advantages of initial value approximations for the energy-dependent Green's function and the time-dependent propagator are discussed.

  12. Approximate Bayesian evaluations of measurement uncertainty

    Science.gov (United States)

    Possolo, Antonio; Bodnar, Olha

    2018-04-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.

  13. Multilevel weighted least squares polynomial approximation

    KAUST Repository

    Haji-Ali, Abdul-Lateef

    2017-06-30

    Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.

  14. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  15. Smooth function approximation using neural networks.

    Science.gov (United States)

    Ferrari, Silvia; Stengel, Robert F

    2005-01-01

    An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.

  16. Modified semiclassical approximation for trapped Bose gases

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    2005-01-01

    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The result of the modified approach is shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. The effective thermodynamic limit is defined for any confining dimension. The behavior of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed

  17. The binary collision approximation: Background and introduction

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-08-01

    The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable. The foundations of the BCA in classical scattering are reviewed, including methods of evaluating the scattering integrals, interaction potentials, and electron excitation effects. The explicit evaluation of time at significant points on particle trajectories is discussed, as are scheduling algorithms for ordering the collisions in a developing cascade. An approximate treatment of nearly simultaneous collisions is outlined and the searching algorithms used in MARLOWE are presented

  18. Self-similar continued root approximants

    International Nuclear Information System (INIS)

    Gluzman, S.; Yukalov, V.I.

    2012-01-01

    A novel method of summing asymptotic series is advanced. Such series repeatedly arise when employing perturbation theory in powers of a small parameter for complicated problems of condensed matter physics, statistical physics, and various applied problems. The method is based on the self-similar approximation theory involving self-similar root approximants. The constructed self-similar continued roots extrapolate asymptotic series to finite values of the expansion parameter. The self-similar continued roots contain, as a particular case, continued fractions and Padé approximants. A theorem on the convergence of the self-similar continued roots is proved. The method is illustrated by several examples from condensed-matter physics.

  19. Ancilla-approximable quantum state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blass, Andreas [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)

    2015-04-15

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.

  20. On Born approximation in black hole scattering

    Science.gov (United States)

    Batic, D.; Kelkar, N. G.; Nowakowski, M.

    2011-12-01

    A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.

  1. Ancilla-approximable quantum state transformations

    International Nuclear Information System (INIS)

    Blass, Andreas; Gurevich, Yuri

    2015-01-01

    We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation

  2. On transparent potentials: a Born approximation study

    International Nuclear Information System (INIS)

    Coudray, C.

    1980-01-01

    In the frame of the scattering inverse problem at fixed energy, a class of potentials transparent in Born approximation is obtained. All these potentials are spherically symmetric and are oscillating functions of the reduced radial variable. Amongst them, the Born approximation of the transparent potential of the Newton-Sabatier method is found. In the same class, quasi-transparent potentials are exhibited. Very general features of potentials transparent in Born approximation are then stated. And bounds are given for the exact scattering amplitudes corresponding to most of the potentials previously exhibited. These bounds, obtained at fixed energy, and for large values of the angular momentum, are found to be independent on the energy

  3. The adiabatic approximation in multichannel scattering

    International Nuclear Information System (INIS)

    Schulte, A.M.

    1978-01-01

    Using two-dimensional models, an attempt has been made to get an impression of the conditions of validity of the adiabatic approximation. For a nucleon bound to a rotating nucleus the Coriolis coupling is neglected and the relation between this nuclear Coriolis coupling and the classical Coriolis force has been examined. The approximation for particle scattering from an axially symmetric rotating nucleus based on a short duration of the collision, has been combined with an approximation based on the limitation of angular momentum transfer between particle and nucleus. Numerical calculations demonstrate the validity of the new combined method. The concept of time duration for quantum mechanical collisions has also been studied, as has the collective description of permanently deformed nuclei. (C.F.)

  4. Minimal entropy approximation for cellular automata

    International Nuclear Information System (INIS)

    Fukś, Henryk

    2014-01-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. (paper)

  5. Resummation of perturbative QCD by pade approximants

    International Nuclear Information System (INIS)

    Gardi, E.

    1997-01-01

    In this lecture I present some of the new developments concerning the use of Pade Approximants (PA's) for resuming perturbative series in QCD. It is shown that PA's tend to reduce the renormalization scale and scheme dependence as compared to truncated series. In particular it is proven that in the limit where the β function is dominated by the 1-loop contribution, there is an exact symmetry that guarantees invariance of diagonal PA's under changing the renormalization scale. In addition it is shown that in the large β 0 approximation diagonal PA's can be interpreted as a systematic method for approximating the flow of momentum in Feynman diagrams. This corresponds to a new multiple scale generalization of the Brodsky-Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method with the Bjorken sum rule and the vacuum polarization function. (author)

  6. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  7. Perturbation expansions generated by an approximate propagator

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example

  8. Approximate Inference and Deep Generative Models

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Advances in deep generative models are at the forefront of deep learning research because of the promise they offer for allowing data-efficient learning, and for model-based reinforcement learning. In this talk I'll review a few standard methods for approximate inference and introduce modern approximations which allow for efficient large-scale training of a wide variety of generative models. Finally, I'll demonstrate several important application of these models to density estimation, missing data imputation, data compression and planning.

  9. Unambiguous results from variational matrix Pade approximants

    International Nuclear Information System (INIS)

    Pindor, Maciej.

    1979-10-01

    Variational Matrix Pade Approximants are studied as a nonlinear variational problem. It is shown that although a stationary value of the Schwinger functional is a stationary value of VMPA, the latter has also another stationary value. It is therefore proposed that instead of looking for a stationary point of VMPA, one minimizes some non-negative functional and then one calculates VMPA at the point where the former has the absolute minimum. This approach, which we call the Method of the Variational Gradient (MVG) gives unambiguous results and is also shown to minimize a distance between the approximate and the exact stationary values of the Schwinger functional

  10. Faster and Simpler Approximation of Stable Matchings

    Directory of Open Access Journals (Sweden)

    Katarzyna Paluch

    2014-04-01

    Full Text Available We give a 3 2 -approximation algorithm for finding stable matchings that runs in O(m time. The previous most well-known algorithm, by McDermid, has the same approximation ratio but runs in O(n3/2m time, where n denotes the number of people andm is the total length of the preference lists in a given instance. In addition, the algorithm and the analysis are much simpler. We also give the extension of the algorithm for computing stable many-to-many matchings.

  11. APPROXIMATION OF PROBABILITY DISTRIBUTIONS IN QUEUEING MODELS

    Directory of Open Access Journals (Sweden)

    T. I. Aliev

    2013-03-01

    Full Text Available For probability distributions with variation coefficient, not equal to unity, mathematical dependences for approximating distributions on the basis of first two moments are derived by making use of multi exponential distributions. It is proposed to approximate distributions with coefficient of variation less than unity by using hypoexponential distribution, which makes it possible to generate random variables with coefficient of variation, taking any value in a range (0; 1, as opposed to Erlang distribution, having only discrete values of coefficient of variation.

  12. On the dipole approximation with error estimates

    Science.gov (United States)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  13. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    Science.gov (United States)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  14. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  15. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying

    2015-01-01

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  16. Large hierarchies from approximate R symmetries

    International Nuclear Information System (INIS)

    Kappl, Rolf; Ratz, Michael; Vaudrevange, Patrick K.S.

    2008-12-01

    We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales. (orig.)

  17. Approximate Networking for Universal Internet Access

    Directory of Open Access Journals (Sweden)

    Junaid Qadir

    2017-12-01

    Full Text Available Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost-efficient ways of provisioning high-performance, global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible “ideal networking” (in which we have a high throughput and quality of service as well as low latency and congestion, we should consider providing “approximate networking” through the adoption of context-appropriate trade-offs. In this regard, we propose to leverage the advances in the emerging trend of “approximate computing” that rely on relaxing the bounds of precise/exact computing to provide new opportunities for improving the area, power, and performance efficiency of systems by orders of magnitude by embracing output errors in resilient applications. Furthermore, we propose to extend the dimensions of approximate computing towards various knobs available at network layers. Approximate networking can be used to provision “Global Access to the Internet for All” (GAIA in a pragmatically tiered fashion, in which different users around the world are provided a different context-appropriate (but still contextually functional Internet experience.

  18. Uncertainty relations for approximation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaeha, E-mail: jlee@post.kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsutsui, Izumi, E-mail: izumi.tsutsui@kek.jp [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-05-27

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  19. Uncertainty relations for approximation and estimation

    International Nuclear Information System (INIS)

    Lee, Jaeha; Tsutsui, Izumi

    2016-01-01

    We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. - Highlights: • Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’. • The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable. • The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality. • Both the position–momentum and the time–energy relation are treated in one framework. • In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.

  20. Intrinsic Diophantine approximation on general polynomial surfaces

    DEFF Research Database (Denmark)

    Tiljeset, Morten Hein

    2017-01-01

    We study the Hausdorff measure and dimension of the set of intrinsically simultaneously -approximable points on a curve, surface, etc, given as a graph of integer polynomials. We obtain complete answers to these questions for algebraically “nice” manifolds. This generalizes earlier work done...

  1. Perturbation of operators and approximation of spectrum

    Indian Academy of Sciences (India)

    outside the bounds of essential spectrum of A(x) can be approximated ... some perturbed discrete Schrödinger operators treating them as block ...... particular, one may think of estimating the spectrum and spectral gaps of Schrödinger.

  2. Quasilinear theory without the random phase approximation

    International Nuclear Information System (INIS)

    Weibel, E.S.; Vaclavik, J.

    1980-08-01

    The system of quasilinear equations is derived without making use of the random phase approximation. The fluctuating quantities are described by the autocorrelation function of the electric field using the techniques of Fourier analysis. The resulting equations posses the necessary conservation properties, but comprise new terms which hitherto have been lost in the conventional derivations

  3. Rational approximations and quantum algorithms with postselection

    NARCIS (Netherlands)

    Mahadev, U.; de Wolf, R.

    2015-01-01

    We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using post-selection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We

  4. Padé approximations and diophantine geometry.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1985-04-01

    Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves.

  5. Approximate systems with confluent bonding mappings

    OpenAIRE

    Lončar, Ivan

    2001-01-01

    If X = {Xn, pnm, N} is a usual inverse system with confluent (monotone) bonding mappings, then the projections are confluent (monotone). This is not true for approximate inverse system. The main purpose of this paper is to show that the property of Kelley (smoothness) of the space Xn is a sufficient condition for the confluence (monotonicity) of the projections.

  6. Function approximation with polynomial regression slines

    International Nuclear Information System (INIS)

    Urbanski, P.

    1996-01-01

    Principles of the polynomial regression splines as well as algorithms and programs for their computation are presented. The programs prepared using software package MATLAB are generally intended for approximation of the X-ray spectra and can be applied in the multivariate calibration of radiometric gauges. (author)

  7. Approximation Algorithms for Model-Based Diagnosis

    NARCIS (Netherlands)

    Feldman, A.B.

    2010-01-01

    Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation

  8. On the parametric approximation in quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'

    1999-03-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.

  9. On the parametric approximation in quantum optics

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.

    1999-01-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion

  10. Uniform semiclassical approximation for absorptive scattering systems

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1987-07-01

    The uniform semiclassical approximation of the elastic scattering amplitude is generalized to absorptive systems. An integral equation is derived which connects the absorption modified amplitude to the absorption free one. Division of the amplitude into a diffractive and refractive components is then made possible. (Author) [pt

  11. Tension and Approximation in Poetic Translation

    Science.gov (United States)

    Al-Shabab, Omar A. S.; Baka, Farida H.

    2015-01-01

    Simple observation reveals that each language and each culture enjoys specific linguistic features and rhetorical traditions. In poetry translation difference and the resultant linguistic tension create a gap between Source Language and Target language, a gap that needs to be bridged by creating an approximation processed through the translator's…

  12. Variational Gaussian approximation for Poisson data

    Science.gov (United States)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  13. Quasiclassical approximation for ultralocal scalar fields

    International Nuclear Information System (INIS)

    Francisco, G.

    1984-01-01

    It is shown how to obtain the quasiclassical evolution of a class of field theories called ultralocal fields. Coherent states that follow the 'classical' orbit as defined by Klauder's weak corespondence principle and restricted action principle is explicitly shown to approximate the quantum evolutions as (h/2π) → o. (Author) [pt

  14. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-11-30

    We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.

  15. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay; Jo, Seongil; Nott, David; Shoemaker, Christine; Tempone, Raul

    2017-01-01

    is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  16. Multidimensional stochastic approximation using locally contractive functions

    Science.gov (United States)

    Lawton, W. M.

    1975-01-01

    A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.

  17. Pade approximant calculations for neutron escape probability

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Saad, E.A.; Hendi, A.A.

    1984-07-01

    The neutron escape probability from a non-multiplying slab containing internal source is defined in terms of a functional relation for the scattering function for the diffuse reflection problem. The Pade approximant technique is used to get numerical results which compare with exact results. (author)

  18. Optical bistability without the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Sharaby, Yasser A., E-mail: Yasser_Sharaby@hotmail.co [Physics Department, Faculty of Applied Sciences, Suez Canal University, Suez (Egypt); Joshi, Amitabh, E-mail: ajoshi@eiu.ed [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States); Hassan, Shoukry S., E-mail: Shoukryhassan@hotmail.co [Mathematics Department, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2010-04-26

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  19. Optical bistability without the rotating wave approximation

    International Nuclear Information System (INIS)

    Sharaby, Yasser A.; Joshi, Amitabh; Hassan, Shoukry S.

    2010-01-01

    Optical bistability for two-level atomic system in a ring cavity is investigated outside the rotating wave approximation (RWA) using non-autonomous Maxwell-Bloch equations with Fourier decomposition up to first harmonic. The first harmonic output field component exhibits reversed or closed loop bistability simultaneously with the usual (anti-clockwise) bistability in the fundamental field component.

  20. Lognormal Approximations of Fault Tree Uncertainty Distributions.

    Science.gov (United States)

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P

    2018-01-26

    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  1. RATIONAL APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS.

    Science.gov (United States)

    Under weak restrictions on the various free parameters, general theorems for rational representations of the generalized hypergeometric functions...and certain Meijer G-functions are developed. Upon specialization, these theorems yield a sequency of rational approximations which converge to the

  2. A rational approximation of the effectiveness factor

    DEFF Research Database (Denmark)

    Wedel, Stig; Luss, Dan

    1980-01-01

    A fast, approximate method of calculating the effectiveness factor for arbitrary rate expressions is presented. The method does not require any iterative or interpolative calculations. It utilizes the well known asymptotic behavior for small and large Thiele moduli to derive a rational function...

  3. Decision-theoretic troubleshooting: Hardness of approximation

    Czech Academy of Sciences Publication Activity Database

    Lín, Václav

    2014-01-01

    Roč. 55, č. 4 (2014), s. 977-988 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Decision-theoretic troubleshooting * Hardness of approximation * NP-completeness Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.451, year: 2014

  4. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  5. Improved approximate inspirals of test bodies into Kerr black holes

    International Nuclear Information System (INIS)

    Gair, Jonathan R; Glampedakis, Kostas

    2006-01-01

    We present an improved version of the approximate scheme for generating inspirals of test bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original 'hybrid' scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semilatus rectum p and eccentricity e) with an approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle ι during the inspiral. Despite the fact that the resulting inspirals were overall well behaved, certain pathologies remained for orbits in the strong-field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. First, we add certain corrections which ensure the correct behavior of the fluxes in the limit of vanishing eccentricity and/or 90 deg. inclination. Second, we use higher order post-Newtonian formulas, adapted for generic orbits. Third, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of ι. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky-based calculations. As an application of our improved scheme, we provide a sample of generic Kerr inspirals which we expect to be the most accurate to date, and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularize under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in the detection of inspiral signals in the LISA data

  6. Finite element modelling

    International Nuclear Information System (INIS)

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  7. Approximated solutions to Born-Infeld dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  8. The Hartree-Fock seniority approximation

    International Nuclear Information System (INIS)

    Gomez, J.M.G.; Prieto, C.

    1986-01-01

    A new self-consistent method is used to take into account the mean-field and the pairing correlations in nuclei at the same time. We call it the Hartree-Fock seniority approximation, because the long-range and short-range correlations are treated in the frameworks of Hartree-Fock theory and the seniority scheme. The method is developed in detail for a minimum-seniority variational wave function in the coordinate representation for an effective interaction of the Skyrme type. An advantage of the present approach over the Hartree-Fock-Bogoliubov theory is the exact conservation of angular momentum and particle number. Furthermore, the computational effort required in the Hartree-Fock seniority approximation is similar to that ofthe pure Hartree-Fock picture. Some numerical calculations for Ca isotopes are presented. (orig.)

  9. Analytical Ballistic Trajectories with Approximately Linear Drag

    Directory of Open Access Journals (Sweden)

    Giliam J. P. de Carpentier

    2014-01-01

    Full Text Available This paper introduces a practical analytical approximation of projectile trajectories in 2D and 3D roughly based on a linear drag model and explores a variety of different planning algorithms for these trajectories. Although the trajectories are only approximate, they still capture many of the characteristics of a real projectile in free fall under the influence of an invariant wind, gravitational pull, and terminal velocity, while the required math for these trajectories and planners is still simple enough to efficiently run on almost all modern hardware devices. Together, these properties make the proposed approach particularly useful for real-time applications where accuracy and performance need to be carefully balanced, such as in computer games.

  10. Simple Lie groups without the approximation property

    DEFF Research Database (Denmark)

    Haagerup, Uffe; de Laat, Tim

    2013-01-01

    For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...

  11. Approximated solutions to Born-Infeld dynamics

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Nigro, Mauro

    2016-01-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  12. Traveltime approximations for inhomogeneous HTI media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Traveltimes information is convenient for parameter estimation especially if the medium is described by an anisotropic set of parameters. This is especially true if we could relate traveltimes analytically to these medium parameters, which is generally hard to do in inhomogeneous media. As a result, I develop traveltimes approximations for horizontaly transversely isotropic (HTI) media as simplified and even linear functions of the anisotropic parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to η and the azimuthal symmetry direction (usually used to describe the fracture direction) from a generally inhomogeneous elliptically anisotropic background medium. The resulting approximations can provide accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations out there. These equations will allow us to readily extend the inhomogenous background elliptical anisotropic model to an HTI with a variable, but smoothly varying, η and horizontal symmetry direction values. © 2011 Society of Exploration Geophysicists.

  13. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  14. Nonlinear analysis approximation theory, optimization and applications

    CERN Document Server

    2014-01-01

    Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

  15. Analysing organic transistors based on interface approximation

    International Nuclear Information System (INIS)

    Akiyama, Yuto; Mori, Takehiko

    2014-01-01

    Temperature-dependent characteristics of organic transistors are analysed thoroughly using interface approximation. In contrast to amorphous silicon transistors, it is characteristic of organic transistors that the accumulation layer is concentrated on the first monolayer, and it is appropriate to consider interface charge rather than band bending. On the basis of this model, observed characteristics of hexamethylenetetrathiafulvalene (HMTTF) and dibenzotetrathiafulvalene (DBTTF) transistors with various surface treatments are analysed, and the trap distribution is extracted. In turn, starting from a simple exponential distribution, we can reproduce the temperature-dependent transistor characteristics as well as the gate voltage dependence of the activation energy, so we can investigate various aspects of organic transistors self-consistently under the interface approximation. Small deviation from such an ideal transistor operation is discussed assuming the presence of an energetically discrete trap level, which leads to a hump in the transfer characteristics. The contact resistance is estimated by measuring the transfer characteristics up to the linear region

  16. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika; Amato, Nancy M.; Lu, Yanyan; Lien, Jyh-Ming

    2013-01-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  17. Fast Approximate Joint Diagonalization Incorporating Weight Matrices

    Czech Academy of Sciences Publication Activity Database

    Tichavský, Petr; Yeredor, A.

    2009-01-01

    Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf

  18. Mean-field approximation minimizes relative entropy

    International Nuclear Information System (INIS)

    Bilbro, G.L.; Snyder, W.E.; Mann, R.C.

    1991-01-01

    The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach

  19. On approximation of functions by product operators

    Directory of Open Access Journals (Sweden)

    Hare Krishna Nigam

    2013-12-01

    Full Text Available In the present paper, two quite new reults on the degree of approximation of a function f belonging to the class Lip(α,r, 1≤ r <∞ and the weighted class W(Lr,ξ(t, 1≤ r <∞ by (C,2(E,1 product operators have been obtained. The results obtained in the present paper generalize various known results on single operators.

  20. Markdown Optimization via Approximate Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Cos?gun

    2013-02-01

    Full Text Available We consider the markdown optimization problem faced by the leading apparel retail chain. Because of substitution among products the markdown policy of one product affects the sales of other products. Therefore, markdown policies for product groups having a significant crossprice elasticity among each other should be jointly determined. Since the state space of the problem is very huge, we use Approximate Dynamic Programming. Finally, we provide insights on the behavior of how each product price affects the markdown policy.

  1. Solving Math Problems Approximately: A Developmental Perspective.

    Directory of Open Access Journals (Sweden)

    Dana Ganor-Stern

    Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.

  2. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-07

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  3. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander

    2015-01-05

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  4. Factorized Approximate Inverses With Adaptive Dropping

    Czech Academy of Sciences Publication Activity Database

    Kopal, Jiří; Rozložník, Miroslav; Tůma, Miroslav

    2016-01-01

    Roč. 38, č. 3 (2016), A1807-A1820 ISSN 1064-8275 R&D Projects: GA ČR GA13-06684S Grant - others:GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : approximate inverses * incomplete factorization * Gram–Schmidt orthogonalization * preconditioned iterative methods Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016

  5. Approximation for limit cycles and their isochrons.

    Science.gov (United States)

    Demongeot, Jacques; Françoise, Jean-Pierre

    2006-12-01

    Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).

  6. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design

  7. Hierarchical matrix approximation of large covariance matrices

    KAUST Repository

    Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul

    2015-01-01

    We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.

  8. Approximate Inverse Preconditioners with Adaptive Dropping

    Czech Academy of Sciences Publication Activity Database

    Kopal, J.; Rozložník, Miroslav; Tůma, Miroslav

    2015-01-01

    Roč. 84, June (2015), s. 13-20 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : approximate inverse * Gram-Schmidt orthogonalization * incomplete decomposition * preconditioned conjugate gradient method * algebraic preconditioning * pivoting Subject RIV: BA - General Mathematics Impact factor: 1.673, year: 2015

  9. Approximations and Implementations of Nonlinear Filtering Schemes.

    Science.gov (United States)

    1988-02-01

    sias k an Ykar repctively the input and the output vectors. Asfold. First, there are intrinsic errors, due to explained in the previous section, the...e.g.[BV,P]). In the above example of a a-algebra, the distributive property SIA (S 2vS3) - (SIAS2)v(SIAS3) holds. A complete orthocomplemented...process can be approximated by a switched Control Systems: Stochastic Stability and parameter process depending on the aggregated slow Dynamic Relaibility

  10. An analytical approximation for resonance integral

    International Nuclear Information System (INIS)

    Magalhaes, C.G. de; Martinez, A.S.

    1985-01-01

    It is developed a method which allows to obtain an analytical solution for the resonance integral. The problem formulation is completely theoretical and based in concepts of physics of general character. The analytical expression for integral does not involve any empiric correlation or parameter. Results of approximation are compared with pattern values for each individual resonance and for sum of all resonances. (M.C.K.) [pt

  11. Fast approximate convex decomposition using relative concavity

    KAUST Repository

    Ghosh, Mukulika

    2013-02-01

    Approximate convex decomposition (ACD) is a technique that partitions an input object into approximately convex components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso, that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n c+1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods in the Princeton Shape Benchmark by Chen et al. (2009) [31]. © 2012 Elsevier Ltd. All rights reserved.

  12. Conference on Abstract Spaces and Approximation

    CERN Document Server

    Szökefalvi-Nagy, B; Abstrakte Räume und Approximation; Abstract spaces and approximation

    1969-01-01

    The present conference took place at Oberwolfach, July 18-27, 1968, as a direct follow-up on a meeting on Approximation Theory [1] held there from August 4-10, 1963. The emphasis was on theoretical aspects of approximation, rather than the numerical side. Particular importance was placed on the related fields of functional analysis and operator theory. Thirty-nine papers were presented at the conference and one more was subsequently submitted in writing. All of these are included in these proceedings. In addition there is areport on new and unsolved problems based upon a special problem session and later communications from the partici­ pants. A special role is played by the survey papers also presented in full. They cover a broad range of topics, including invariant subspaces, scattering theory, Wiener-Hopf equations, interpolation theorems, contraction operators, approximation in Banach spaces, etc. The papers have been classified according to subject matter into five chapters, but it needs littl...

  13. Development of the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1985-01-01

    This talk contains three parts. Part I reviews the developments which led to the relativistic impulse approximation for proton-nucleus scattering. In Part II, problems with the impulse approximation in its original form - principally the low energy problem - are discussed and traced to pionic contributions. Use of pseudovector covariants in place of pseudoscalar ones in the NN amplitude provides more satisfactory low energy results, however, the difference between pseudovector and pseudoscalar results is ambiguous in the sense that it is not controlled by NN data. Only with further theoretical input can the ambiguity be removed. Part III of the talk presents a new development of the relativistic impulse approximation which is the result of work done in the past year and a half in collaboration with J.A. Tjon. A complete NN amplitude representation is developed and a complete set of Lorentz invariant amplitudes are calculated based on a one-meson exchange model and appropriate integral equations. A meson theoretical basis for the important pair contributions to proton-nucleus scattering is established by the new developments. 28 references

  14. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  15. A Gaussian Approximation Potential for Silicon

    Science.gov (United States)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  16. Approximate modal analysis using Fourier decomposition

    International Nuclear Information System (INIS)

    Kozar, Ivica; Jericevic, Zeljko; Pecak, Tatjana

    2010-01-01

    The paper presents a novel numerical approach for approximate solution of eigenvalue problem and investigates its suitability for modal analysis of structures with special attention on plate structures. The approach is based on Fourier transformation of the matrix equation into frequency domain and subsequent removal of potentially less significant frequencies. The procedure results in a much reduced problem that is used in eigenvalue calculation. After calculation eigenvectors are expanded and transformed back into time domain. The principles are presented in Jericevic [1]. Fourier transform can be formulated in a way that some parts of the matrix that should not be approximated are not transformed but are fully preserved. In this paper we present formulation that preserves central or edge parts of the matrix and compare it with the formulation that performs transform on the whole matrix. Numerical experiments on transformed structural dynamic matrices describe quality of the approximations obtained in modal analysis of structures. On the basis of the numerical experiments, from the three approaches to matrix reduction one is recommended.

  17. Green-Ampt approximations: A comprehensive analysis

    Science.gov (United States)

    Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.

    2016-04-01

    Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.

  18. An Origami Approximation to the Cosmic Web

    Science.gov (United States)

    Neyrinck, Mark C.

    2016-10-01

    The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.

  19. Function approximation of tasks by neural networks

    International Nuclear Information System (INIS)

    Gougam, L.A.; Chikhi, A.; Mekideche-Chafa, F.

    2008-01-01

    For several years now, neural network models have enjoyed wide popularity, being applied to problems of regression, classification and time series analysis. Neural networks have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. The latter is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. In a previous contribution, we have used a well known simplified architecture to show that it provides a reasonably efficient, practical and robust, multi-frequency analysis. We have investigated the universal approximation theory of neural networks whose transfer functions are: sigmoid (because of biological relevance), Gaussian and two specified families of wavelets. The latter have been found to be more appropriate to use. The aim of the present contribution is therefore to use a m exican hat wavelet a s transfer function to approximate different tasks relevant and inherent to various applications in physics. The results complement and provide new insights into previously published results on this problem

  20. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.

    2011-05-12

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  1. Blind sensor calibration using approximate message passing

    International Nuclear Information System (INIS)

    Schülke, Christophe; Caltagirone, Francesco; Zdeborová, Lenka

    2015-01-01

    The ubiquity of approximately sparse data has led a variety of communities to take great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them to real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal acquisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measurements. Cal-AMP shares the scalability of approximate message passing, allowing us to treat large sized instances of these problems, and experimentally exhibits a phase transition between domains of success and failure. (paper)

  2. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  3. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.; Heemink, A.W.; Verlaan, M.; Hoteit, Ibrahim

    2011-01-01

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  4. Local approximation of a metapopulation's equilibrium.

    Science.gov (United States)

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  5. Approximate particle number projection in hot nuclei

    International Nuclear Information System (INIS)

    Kosov, D.S.; Vdovin, A.I.

    1995-01-01

    Heated finite systems like, e.g., hot atomic nuclei have to be described by the canonical partition function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition function is used in the studies. As a result, some shortcomings of the theoretical description appear because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing correlations the quantum number fluctuations are introduced by some approximate methods (e.g., by the standard BCS method). The exact particle number projection is very cumbersome and an approximate number projection method for T ≠ 0 basing on the formalism of thermo field dynamics is proposed. The idea of the Lipkin-Nogami method to perform any operator as a series in the number operator powers is used. The system of equations for the coefficients of this expansion is written and the solution of the system in the next approximation after the BCS one is obtained. The method which is of the 'projection after variation' type is applied to a degenerate single j-shell model. 14 refs., 1 tab

  6. Nonresonant approximations to the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1982-01-01

    A new class of approximations to the optical potential, which includes those of the multiple-scattering variety, is investigated. These approximations are constructed so that the optical potential maintains the correct unitarity properties along with a proper treatment of nucleon identity. The special case of nucleon-nucleus scattering with complete inclusion of Pauli effects is studied in detail. The treatment is such that the optical potential receives contributions only from subsystems embedded in their own physically correct antisymmetrized subspaces. It is found that a systematic development of even the lowest-order approximations requires the use of the off-shell extension due to Alt, Grassberger, and Sandhas along with a consistent set of dynamical equations for the optical potential. In nucleon-nucleus scattering a lowest-order optical potential is obtained as part of a systematic, exact, inclusive connectivity expansion which is expected to be useful at moderately high energies. This lowest-order potential consists of an energy-shifted (trho)-type term with three-body kinematics plus a heavy-particle exchange or pickup term. The natural appearance of the exchange term additivity in the optical potential clarifies the role of the elastic distortion in connection with the treatment of these processes. The relationship of the relevant aspects of the present analysis of the optical potential to conventional multiple scattering methods is discussed

  7. An iterative algorithm for the finite element approximation to convection-diffusion problems

    International Nuclear Information System (INIS)

    Buscaglia, Gustavo; Basombrio, Fernando

    1988-01-01

    An iterative algorithm for steady convection-diffusion is presented, which avoids unsymmetric matrices by means of an equivalent mixed formulation. Upwind is introduced by adding a balancing dissipation in the flow direction, but there is no dependence of the global matrix on the velocity field. Convergence is shown in habitual test cases. Advantages of its use in coupled calculation of more complex problems are discussed. (Author)

  8. Mixed multiscale finite element methods using approximate global information based on partial upscaling

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Mishev, IIya

    2009-01-01

    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information

  9. Finite Element-Galerkin Approximation of the Eigenvalues of Eigenvectors of Selfadjoint Problems

    Science.gov (United States)

    1988-07-01

    l’ "k, + 1. Combining (3.20), (3.22), and the fact that I-Eh(Ak ) and Ph are orthogonal projections we have I(I-Eh(Xk,)) PhUB 5 Si (I-Eh(xk)) PhT(Ph-I...Its adjoint are equal. (3.23) implies Hf(I-Eh(1kI )Ph)u{1B - P(IPh)UIBI 5 I(I-Eh(Ak )) PhuB -< d i ii ( Ph- I )T II H B_--H,3 1(P h- I ) u liB , and

  10. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Lee HyunYoung

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  11. Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    simultaneous perturbation approximation to the gradient based on loss function measurements. SPSA is based on picking a simultaneous perturbation (random) vector in a Monte Carlo fashion as part of generating the approximation to the gradient. This paper derives the optimal distribution for the Monte Carlo...

  12. The virtual environment student. An initial approximation

    OpenAIRE

    Federico Borges Sáiz

    2007-01-01

    The quote at the start of the "Introduction" ("Education follows an agricultural timetable, has an industrial structure and operation and is set in an increasingly digitalised society") illustrates the need for an in-depth understanding of training in virtual environments. This understanding rests on knowing its central element: the student.This article invites the reader to take a look at the figure and the performance of the virtual environment student. One of the features of the twenty-fir...

  13. Approximate number and approximate time discrimination each correlate with school math abilities in young children.

    Science.gov (United States)

    Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin

    2016-01-01

    What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright

  14. Development of polygon elements based on the scaled boundary finite element method

    International Nuclear Information System (INIS)

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  15. SEE rate estimation based on diffusion approximation of charge collection

    Science.gov (United States)

    Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.

    2018-03-01

    The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.

  16. Numerical approximations of flow induced vibrations of vocal folds

    Directory of Open Access Journals (Sweden)

    Sváček Petr

    2017-01-01

    Full Text Available The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  17. Numerical approximations of flow induced vibrations of vocal folds

    Science.gov (United States)

    Sváček, Petr

    The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE) form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  18. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  19. Pentaquarks in the Jaffe-Wilczek approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone-boson-exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV [ru

  20. Localization and stationary phase approximation on supermanifolds

    Science.gov (United States)

    Zakharevich, Valentin

    2017-08-01

    Given an odd vector field Q on a supermanifold M and a Q-invariant density μ on M, under certain compactness conditions on Q, the value of the integral ∫Mμ is determined by the value of μ on any neighborhood of the vanishing locus N of Q. We present a formula for the integral in the case where N is a subsupermanifold which is appropriately non-degenerate with respect to Q. In the process, we discuss the linear algebra necessary to express our result in a coordinate independent way. We also extend the stationary phase approximation and the Morse-Bott lemma to supermanifolds.

  1. SAM revisited: uniform semiclassical approximation with absorption

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1986-01-01

    The uniform semiclassical approximation is modified to take into account strong absorption. The resulting theory, very similar to the one developed by Frahn and Gross is used to discuss heavy-ion elastic scattering at intermediate energies. The theory permits a reasonably unambiguos separation of refractive and diffractive effects. The systems 12 C+ 12 C and 12 C+ 16 O, which seem to exhibit a remnant of a nuclear rainbow at E=20 Mev/N, are analysed with theory which is built directly on a model for the S-matrix. Simple relations between the fit S-matrix and the underlying complex potential are derived. (Author) [pt

  2. TMB: Automatic differentiation and laplace approximation

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Nielsen, Anders; Berg, Casper Willestofte

    2016-01-01

    TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable) models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011). In addition, it offers easy access to parallel...... computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects...

  3. Shape theory categorical methods of approximation

    CERN Document Server

    Cordier, J M

    2008-01-01

    This in-depth treatment uses shape theory as a ""case study"" to illustrate situations common to many areas of mathematics, including the use of archetypal models as a basis for systems of approximations. It offers students a unified and consolidated presentation of extensive research from category theory, shape theory, and the study of topological algebras.A short introduction to geometric shape explains specifics of the construction of the shape category and relates it to an abstract definition of shape theory. Upon returning to the geometric base, the text considers simplical complexes and

  4. On one approximation in quantum chromodynamics

    International Nuclear Information System (INIS)

    Alekseev, A.I.; Bajkov, V.A.; Boos, Eh.Eh.

    1982-01-01

    Form of a complete fermion propagator near the mass shell is investigated. Considered is a nodel of quantum chromodynamics (MQC) where in the fermion section the Block-Nordsic approximation has been made, i. e. u-numbers are substituted for ν matrices. The model was investigated by means of the Schwinger-Dyson equation for a quark propagator in the infrared region. The Schwinger-Dyson equation was managed to reduce to a differential equation which is easily solved. At that, the Green function is suitable to represent as integral transformation

  5. Static correlation beyond the random phase approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly...... and confirms that BSE greatly improves the RPA and TDHF results despite the fact that the BSE excitation spectrum breaks down in the dissociation limit. In contrast, second order screened exchange gives a poor description of the dissociation limit, which can be attributed to the fact that it cannot be derived...

  6. Multi-compartment linear noise approximation

    International Nuclear Information System (INIS)

    Challenger, Joseph D; McKane, Alan J; Pahle, Jürgen

    2012-01-01

    The ability to quantify the stochastic fluctuations present in biochemical and other systems is becoming increasing important. Analytical descriptions of these fluctuations are attractive, as stochastic simulations are computationally expensive. Building on previous work, a linear noise approximation is developed for biochemical models with many compartments, for example cells. The procedure is then implemented in the software package COPASI. This technique is illustrated with two simple examples and is then applied to a more realistic biochemical model. Expressions for the noise, given in the form of covariance matrices, are presented. (paper)

  7. Approximation of Moessbauer spectra of metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.

    1988-01-01

    Moessbauer spectra of iron-rich metallic glasses are approximated by means of six broadened lines which have line position relations similar to those of α-Fe. It is shown via the results of the DISPA (dispersion mode vs. absorption mode) line shape analysis that each spectral peak is broadened owing to a sum of Lorentzian lines weighted by a Gaussian distribution in the peak position. Moessbauer parameters of amorphous metallic Fe 83 B 17 and Fe 40 Ni 40 B 20 alloys are presented, derived from the fitted spectra. (author). 2 figs., 2 tabs., 21 refs

  8. High energy approximations in quantum field theory

    International Nuclear Information System (INIS)

    Orzalesi, C.A.

    1975-01-01

    New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt

  9. Weak field approximation of new general relativity

    International Nuclear Information System (INIS)

    Fukui, Masayasu; Masukawa, Junnichi

    1985-01-01

    In the weak field approximation, gravitational field equations of new general relativity with arbitrary parameters are examined. Assuming a conservation law delta sup(μ)T sub(μν) = 0 of the energy-momentum tensor T sub(μν) for matter fields in addition to the usual one delta sup(ν)T sub(μν) = 0, we show that the linearized gravitational field equations are decomposed into equations for a Lorentz scalar field and symmetric and antisymmetric Lorentz tensor fields. (author)

  10. Pentaquarks in the Jaffe-Wilczek Approximation

    International Nuclear Information System (INIS)

    Narodetskii, I.M.; Simonov, Yu.A.; Trusov, M.A.; Semay, C.; Silvestre-Brac, B.

    2005-01-01

    The masses of uudds-bar, uuddd-bar, and uussd-bar pentaquarks are evaluated in a framework of both the effective Hamiltonian approach to QCD and the spinless Salpeter equation using the Jaffe-Wilczek diquark approximation and the string interaction for the diquark-diquark-antiquark system. The pentaquark masses are found to be in the region above 2 GeV. That indicates that the Goldstone boson exchange effects may play an important role in the light pentaquarks. The same calculations yield the mass of [ud] 2 c-bar pentaquark ∼3250 MeV and [ud] 2 b-bar pentaquark ∼6509 MeV

  11. Turbo Equalization Using Partial Gaussian Approximation

    DEFF Research Database (Denmark)

    Zhang, Chuanzong; Wang, Zhongyong; Manchón, Carles Navarro

    2016-01-01

    This letter deals with turbo equalization for coded data transmission over intersymbol interference (ISI) channels. We propose a message-passing algorithm that uses the expectation propagation rule to convert messages passed from the demodulator and decoder to the equalizer and computes messages...... returned by the equalizer by using a partial Gaussian approximation (PGA). We exploit the specific structure of the ISI channel model to compute the latter messages from the beliefs obtained using a Kalman smoother/equalizer. Doing so leads to a significant complexity reduction compared to the initial PGA...

  12. Topics in multivariate approximation and interpolation

    CERN Document Server

    Jetter, Kurt

    2005-01-01

    This book is a collection of eleven articles, written by leading experts and dealing with special topics in Multivariate Approximation and Interpolation. The material discussed here has far-reaching applications in many areas of Applied Mathematics, such as in Computer Aided Geometric Design, in Mathematical Modelling, in Signal and Image Processing and in Machine Learning, to mention a few. The book aims at giving a comprehensive information leading the reader from the fundamental notions and results of each field to the forefront of research. It is an ideal and up-to-date introduction for gr

  13. An Improved Direction Finding Algorithm Based on Toeplitz Approximation

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2013-01-01

    Full Text Available In this paper, a novel direction of arrival (DOA estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.

  14. New realisation of Preisach model using adaptive polynomial approximation

    Science.gov (United States)

    Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young

    2012-09-01

    Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.

  15. Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Marcin Szuster

    2016-02-01

    Full Text Available This article focuses on the implementation of an approximate dynamic programming algorithm in the discrete tracking control system of the three-degrees of freedom Scorbot-ER 4pc robotic manipulator. The controlled system is included in an articulated robots group which uses rotary joints to access their work space. The main part of the control system is a dual heuristic dynamic programming algorithm that consists of two structures designed in the form of neural networks: an actor and a critic. The actor generates the suboptimal control law while the critic approximates the difference of the value function from Bellman's equation with respect to the state. The residual elements of the control system are the PD controller, the supervisory term and an additional control signal. The structure of the supervisory term derives from the stability analysis performed using the Lyapunov stability theorem. The control system works online, the neural networks' weights-adaptation procedure is performed in every iteration step, and the neural networks' preliminary learning process is not required. The performance of the control system was verified by a series of computer simulations and experiments performed using the Scorbot-ER 4pc robotic manipulator.

  16. The Dirac distorted wave Born approximation

    International Nuclear Information System (INIS)

    Cooper, T.; Sherif, H.S.; Johansson, J.; Sawafta, R.I.

    1985-02-01

    The purpose of this investigation is to illuminate the assumptions which are made when one writes down a Dirac DWBA matrix element. Due to the strong nature of the nucleon-nucleon potentials it is difficult to justify some of the steps involved in the general case; however by limiting ourselves to situations where only one (interacting) nucleon is present we can side-step this difficulty. We conclude the excellent agreement with the experiment justifies, a posteriori, the procedure, however we would like to remind the reader that, at least for proton inelastic scattering to collective states, the same quality of agreement can be obtained purely within a Schrodinger formalism

  17. APPROXIMATING INNOVATION POTENTIAL WITH NEUROFUZZY ROBUST MODEL

    Directory of Open Access Journals (Sweden)

    Kasa, Richard

    2015-01-01

    Full Text Available In a remarkably short time, economic globalisation has changed the world’s economic order, bringing new challenges and opportunities to SMEs. These processes pushed the need to measure innovation capability, which has become a crucial issue for today’s economic and political decision makers. Companies cannot compete in this new environment unless they become more innovative and respond more effectively to consumers’ needs and preferences – as mentioned in the EU’s innovation strategy. Decision makers cannot make accurate and efficient decisions without knowing the capability for innovation of companies in a sector or a region. This need is forcing economists to develop an integrated, unified and complete method of measuring, approximating and even forecasting the innovation performance not only on a macro but also a micro level. In this recent article a critical analysis of the literature on innovation potential approximation and prediction is given, showing their weaknesses and a possible alternative that eliminates the limitations and disadvantages of classical measuring and predictive methods.

  18. Analytic approximate radiation effects due to Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi I.

    2012-02-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.

  19. TMB: Automatic Differentiation and Laplace Approximation

    Directory of Open Access Journals (Sweden)

    Kasper Kristensen

    2016-04-01

    Full Text Available TMB is an open source R package that enables quick implementation of complex nonlinear random effects (latent variable models in a manner similar to the established AD Model Builder package (ADMB, http://admb-project.org/; Fournier et al. 2011. In addition, it offers easy access to parallel computations. The user defines the joint likelihood for the data and the random effects as a C++ template function, while all the other operations are done in R; e.g., reading in the data. The package evaluates and maximizes the Laplace approximation of the marginal likelihood where the random effects are automatically integrated out. This approximation, and its derivatives, are obtained using automatic differentiation (up to order three of the joint likelihood. The computations are designed to be fast for problems with many random effects (≈ 106 and parameters (≈ 103 . Computation times using ADMB and TMB are compared on a suite of examples ranging from simple models to large spatial models where the random effects are a Gaussian random field. Speedups ranging from 1.5 to about 100 are obtained with increasing gains for large problems. The package and examples are available at http://tmb-project.org/.

  20. On some applications of diophantine approximations.

    Science.gov (United States)

    Chudnovsky, G V

    1984-03-01

    Siegel's results [Siegel, C. L. (1929) Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1] on the transcendence and algebraic independence of values of E-functions are refined to obtain the best possible bound for the measures of irrationality and linear independence of values of arbitrary E-functions at rational points. Our results show that values of E-functions at rational points have measures of diophantine approximations typical to "almost all" numbers. In particular, any such number has the "2 + epsilon" exponent of irrationality: Theta - p/q > q(-2-epsilon) for relatively prime rational integers p,q, with q >/= q(0) (Theta, epsilon). These results answer some problems posed by Lang. The methods used here are based on the introduction of graded Padé approximations to systems of functions satisfying linear differential equations with rational function coefficients. The constructions and proofs of this paper were used in the functional (nonarithmetic case) in a previous paper [Chudnovsky, D. V. & Chudnovsky, G. V. (1983) Proc. Natl. Acad. Sci. USA 80, 5158-5162].

  1. Detecting Change-Point via Saddlepoint Approximations

    Institute of Scientific and Technical Information of China (English)

    Zhaoyuan LI; Maozai TIAN

    2017-01-01

    It's well-known that change-point problem is an important part of model statistical analysis.Most of the existing methods are not robust to criteria of the evaluation of change-point problem.In this article,we consider "mean-shift" problem in change-point studies.A quantile test of single quantile is proposed based on saddlepoint approximation method.In order to utilize the information at different quantile of the sequence,we further construct a "composite quantile test" to calculate the probability of every location of the sequence to be a change-point.The location of change-point can be pinpointed rather than estimated within a interval.The proposed tests make no assumptions about the functional forms of the sequence distribution and work sensitively on both large and small size samples,the case of change-point in the tails,and multiple change-points situation.The good performances of the tests are confirmed by simulations and real data analysis.The saddlepoint approximation based distribution of the test statistic that is developed in the paper is of independent interest and appealing.This finding may be of independent interest to the readers in this research area.

  2. Traveling cluster approximation for uncorrelated amorphous systems

    International Nuclear Information System (INIS)

    Kaplan, T.; Sen, A.K.; Gray, L.J.; Mills, R.

    1985-01-01

    In this paper, the authors apply the TCA concepts to spatially disordered, uncorrelated systems (e.g., fluids or amorphous metals without short-range order). This is the first approximation scheme for amorphous systems that takes cluster effects into account while preserving the Herglotz property for any amount of disorder. They have performed some computer calculations for the pair TCA, for the model case of delta-function potentials on a one-dimensional random chain. These results are compared with exact calculations (which, in principle, taken into account all cluster effects) and with the CPA, which is the single-site TCA. The density of states for the pair TCA clearly shows some improvement over the CPA, and yet, apparently, the pair approximation distorts some of the features of the exact results. They conclude that the effects of large clusters are much more important in an uncorrelated liquid metal than in a substitutional alloy. As a result, the pair TCA, which does quite a nice job for alloys, is not adequate for the liquid. Larger clusters must be treated exactly, and therefore an n-TCA with n > 2 must be used

  3. Approximating Markov Chains: What and why

    International Nuclear Information System (INIS)

    Pincus, S.

    1996-01-01

    Much of the current study of dynamical systems is focused on geometry (e.g., chaos and bifurcations) and ergodic theory. Yet dynamical systems were originally motivated by an attempt to open-quote open-quote solve,close-quote close-quote or at least understand, a discrete-time analogue of differential equations. As such, numerical, analytical solution techniques for dynamical systems would seem desirable. We discuss an approach that provides such techniques, the approximation of dynamical systems by suitable finite state Markov Chains. Steady state distributions for these Markov Chains, a straightforward calculation, will converge to the true dynamical system steady state distribution, with appropriate limit theorems indicated. Thus (i) approximation by a computable, linear map holds the promise of vastly faster steady state solutions for nonlinear, multidimensional differential equations; (ii) the solution procedure is unaffected by the presence or absence of a probability density function for the attractor, entirely skirting singularity, fractal/multifractal, and renormalization considerations. The theoretical machinery underpinning this development also implies that under very general conditions, steady state measures are weakly continuous with control parameter evolution. This means that even though a system may change periodicity, or become chaotic in its limiting behavior, such statistical parameters as the mean, standard deviation, and tail probabilities change continuously, not abruptly with system evolution. copyright 1996 American Institute of Physics

  4. Analytic approximate radiation effects due to Bremsstrahlung

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2012-01-01

    The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R and D Energy Recovery Linac.

  5. Approximate analytic theory of the multijunction grill

    International Nuclear Information System (INIS)

    Hurtak, O.; Preinhaelter, J.

    1991-03-01

    An approximate analytic theory of the general multijunction grill is developed. Omitting the evanescent modes in the subsidiary waveguides both at the junction and at the grill mouth and neglecting multiple wave reflection, simple formulae are derived for the reflection coefficient, the amplitudes of the incident and reflected waves and the spectral power density. These quantities are expressed through the basic grill parameters (the electric length of the structure and phase shift between adjacent waveguides) and two sets of reflection coefficients describing wave reflections in the subsidiary waveguides at the junction and at the plasma. Approximate expressions for these coefficients are also given. The results are compared with a numerical solution of two specific examples; they were shown to be useful for the optimization and design of multijunction grills.For the JET structure it is shown that, in the case of a dense plasma,many results can be obtained from the simple formulae for a two-waveguide multijunction grill. (author) 12 figs., 12 refs

  6. Global sensitivity analysis using low-rank tensor approximations

    International Nuclear Information System (INIS)

    Konakli, Katerina; Sudret, Bruno

    2016-01-01

    In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. - Highlights: • A new method is proposed for global sensitivity analysis of high-dimensional models. • Low-rank tensor approximations (LRA) are used as a meta-modeling technique. • Analytical formulas for the Sobol' indices in terms of LRA coefficients are derived. • The accuracy and efficiency of the approach is illustrated in application examples. • LRA-based indices are compared to indices based on polynomial chaos expansions.

  7. Succinct Data Structures for Retrieval and Approximate Membership

    DEFF Research Database (Denmark)

    Dietzfelbinger, Martin; Pagh, Rasmus

    2008-01-01

    The retrieval problem is the problem of associating data with keys in a set. Formally, the data structure must store a function that has specified values on the elements of a given set S ⊆ U, |S| = n, but may have any value on elements outside S. All known methods (e. g. those based on perfect hash...... functions), induce a space overhead of Θ(n) bits over the optimum, regardless of the evaluation time. We show that for any k, query time O(k) can be achieved using space that is within a factor 1 + e − k of optimal, asymptotically for large n. The time to construct the data structure is O(n), expected....... If we allow logarithmic evaluation time, the additive overhead can be reduced to O(loglogn) bits whp. A general reduction transfers the results on retrieval into analogous results on approximate membership, a problem traditionally addressed using Bloom filters. Thus we obtain space bounds arbitrarily...

  8. Constrained Optimization via Stochastic approximation with a simultaneous perturbation gradient approximation

    DEFF Research Database (Denmark)

    Sadegh, Payman

    1997-01-01

    This paper deals with a projection algorithm for stochastic approximation using simultaneous perturbation gradient approximation for optimization under inequality constraints where no direct gradient of the loss function is available and the inequality constraints are given as explicit functions...... of the optimization parameters. It is shown that, under application of the projection algorithm, the parameter iterate converges almost surely to a Kuhn-Tucker point, The procedure is illustrated by a numerical example, (C) 1997 Elsevier Science Ltd....

  9. New Tests of the Fixed Hotspot Approximation

    Science.gov (United States)

    Gordon, R. G.; Andrews, D. L.; Horner-Johnson, B. C.; Kumar, R. R.

    2005-05-01

    We present new methods for estimating uncertainties in plate reconstructions relative to the hotspots and new tests of the fixed hotspot approximation. We find no significant motion between Pacific hotspots, on the one hand, and Indo-Atlantic hotspots, on the other, for the past ~ 50 Myr, but large and significant apparent motion before 50 Ma. Whether this motion is truly due to motion between hotspots or alternatively due to flaws in the global plate motion circuit can be tested with paleomagnetic data. These tests give results consistent with the fixed hotspot approximation and indicate significant misfits when a relative plate motion circuit through Antarctica is employed for times before 50 Ma. If all of the misfit to the global plate motion circuit is due to motion between East and West Antarctica, then that motion is 800 ± 500 km near the Ross Sea Embayment and progressively less along the Trans-Antarctic Mountains toward the Weddell Sea. Further paleomagnetic tests of the fixed hotspot approximation can be made. Cenozoic and Cretaceous paleomagnetic data from the Pacific plate, along with reconstructions of the Pacific plate relative to the hotspots, can be used to estimate an apparent polar wander (APW) path of Pacific hotspots. An APW path of Indo-Atlantic hotspots can be similarly estimated (e.g. Besse & Courtillot 2002). If both paths diverge in similar ways from the north pole of the hotspot reference frame, it would indicate that the hotspots have moved in unison relative to the spin axis, which may be attributed to true polar wander. If the two paths diverge from one another, motion between Pacific hotspots and Indo-Atlantic hotspots would be indicated. The general agreement of the two paths shows that the former is more important than the latter. The data require little or no motion between groups of hotspots, but up to ~10 mm/yr of motion is allowed within uncertainties. The results disagree, in particular, with the recent extreme interpretation of

  10. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  11. Local facet approximation for image stitching

    Science.gov (United States)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  12. Approximated solutions to the Schroedinger equation

    International Nuclear Information System (INIS)

    Rico, J.F.; Fernandez-Alonso, J.I.

    1977-01-01

    The authors are currently working on a couple of the well-known deficiencies of the variation method and present here some of the results that have been obtained so far. The variation method does not give information a priori on the trial functions best suited for a particular problem nor does it give information a posteriori on the degree of precision attained. In order to clarify the origin of both difficulties, a geometric interpretation of the variation method is presented. This geometric interpretation is the starting point for the exact formal solution to the fundamental state and for the step-by-step approximations to the exact solution which are also given. Some comments on these results are included. (Auth.)

  13. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  14. Analytical approximations for wide and narrow resonances

    International Nuclear Information System (INIS)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2005-01-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U 238 were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  15. Analytical approximations for wide and narrow resonances

    Energy Technology Data Exchange (ETDEWEB)

    Suster, Luis Carlos; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: aquilino@lmp.ufrj.br

    2005-07-01

    This paper aims at developing analytical expressions for the adjoint neutron spectrum in the resonance energy region, taking into account both narrow and wide resonance approximations, in order to reduce the numerical computations involved. These analytical expressions, besides reducing computing time, are very simple from a mathematical point of view. The results obtained with this analytical formulation were compared to a reference solution obtained with a numerical method previously developed to solve the neutron balance adjoint equations. Narrow and wide resonances of U{sup 238} were treated and the analytical procedure gave satisfactory results as compared with the reference solution, for the resonance energy range. The adjoint neutron spectrum is useful to determine the neutron resonance absorption, so that multigroup adjoint cross sections used by the adjoint diffusion equation can be obtained. (author)

  16. The Bloch Approximation in Periodically Perforated Media

    International Nuclear Information System (INIS)

    Conca, C.; Gomez, D.; Lobo, M.; Perez, E.

    2005-01-01

    We consider a periodically heterogeneous and perforated medium filling an open domain Ω of R N . Assuming that the size of the periodicity of the structure and of the holes is O(ε),we study the asymptotic behavior, as ε → 0, of the solution of an elliptic boundary value problem with strongly oscillating coefficients posed in Ω ε (Ω ε being Ω minus the holes) with a Neumann condition on the boundary of the holes. We use Bloch wave decomposition to introduce an approximation of the solution in the energy norm which can be computed from the homogenized solution and the first Bloch eigenfunction. We first consider the case where Ωis R N and then localize the problem for abounded domain Ω, considering a homogeneous Dirichlet condition on the boundary of Ω

  17. Approximate analytical modeling of leptospirosis infection

    Science.gov (United States)

    Ismail, Nur Atikah; Azmi, Amirah; Yusof, Fauzi Mohamed; Ismail, Ahmad Izani

    2017-11-01

    Leptospirosis is an infectious disease carried by rodents which can cause death in humans. The disease spreads directly through contact with feces, urine or through bites of infected rodents and indirectly via water contaminated with urine and droppings from them. Significant increase in the number of leptospirosis cases in Malaysia caused by the recent severe floods were recorded during heavy rainfall season. Therefore, to understand the dynamics of leptospirosis infection, a mathematical model based on fractional differential equations have been developed and analyzed. In this paper an approximate analytical method, the multi-step Laplace Adomian decomposition method, has been used to conduct numerical simulations so as to gain insight on the spread of leptospirosis infection.

  18. Approximate spacetime symmetries and conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Abraham I [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)], E-mail: harte@uchicago.edu

    2008-10-21

    A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.

  19. Coated sphere scattering by geometric optics approximation.

    Science.gov (United States)

    Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang

    2014-10-01

    A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.

  20. Approximation by max-product type operators

    CERN Document Server

    Bede, Barnabás; Gal, Sorin G

    2016-01-01

    This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly,...

  1. Polarized constituent quarks in NLO approximation

    International Nuclear Information System (INIS)

    Khorramian, Ali N.; Tehrani, S. Atashbar; Mirjalili, A.

    2006-01-01

    The valon representation provides a basis between hadrons and quarks, in terms of which the bound-state and scattering properties of hadrons can be united and described. We studied polarized valon distributions which have an important role in describing the spin dependence of parton distribution in leading and next-to-leading order approximation. Convolution integral in frame work of valon model as a useful tool, was used in polarized case. To obtain polarized parton distributions in a proton we need to polarized valon distribution in a proton and polarized parton distributions inside the valon. We employed Bernstein polynomial averages to get unknown parameters of polarized valon distributions by fitting to available experimental data

  2. Approximate Sensory Data Collection: A Survey.

    Science.gov (United States)

    Cheng, Siyao; Cai, Zhipeng; Li, Jianzhong

    2017-03-10

    With the rapid development of the Internet of Things (IoTs), wireless sensor networks (WSNs) and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  3. Approximate Sensory Data Collection: A Survey

    Directory of Open Access Journals (Sweden)

    Siyao Cheng

    2017-03-01

    Full Text Available With the rapid development of the Internet of Things (IoTs, wireless sensor networks (WSNs and related techniques, the amount of sensory data manifests an explosive growth. In some applications of IoTs and WSNs, the size of sensory data has already exceeded several petabytes annually, which brings too many troubles and challenges for the data collection, which is a primary operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and IoT systems due to the limitations on bandwidth and energy, many approximate data collection algorithms have been proposed in the last decade. This survey reviews the state of the art of approximatedatacollectionalgorithms. Weclassifythemintothreecategories: themodel-basedones, the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed out, and the research prospects are forecasted.

  4. Approximate truncation robust computed tomography—ATRACT

    International Nuclear Information System (INIS)

    Dennerlein, Frank; Maier, Andreas

    2013-01-01

    We present an approximate truncation robust algorithm to compute tomographic images (ATRACT). This algorithm targets at reconstructing volumetric images from cone-beam projections in scenarios where these projections are highly truncated in each dimension. It thus facilitates reconstructions of small subvolumes of interest, without involving prior knowledge about the object. Our method is readily applicable to medical C-arm imaging, where it may contribute to new clinical workflows together with a considerable reduction of x-ray dose. We give a detailed derivation of ATRACT that starts from the conventional Feldkamp filtered-backprojection algorithm and that involves, as one component, a novel original formula for the inversion of the two-dimensional Radon transform. Discretization and numerical implementation are discussed and reconstruction results from both, simulated projections and first clinical data sets are presented. (paper)

  5. Hydromagnetic turbulence in the direct interaction approximation

    International Nuclear Information System (INIS)

    Nagarajan, S.

    1975-01-01

    The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)

  6. Aspects of approximate optimisation: overcoming the curse of dimensionality and design of experiments

    NARCIS (Netherlands)

    Trichon, Sophie; Bonte, M.H.A.; Ponthot, Jean-Philippe; van den Boogaard, Antonius H.

    2007-01-01

    Coupling optimisation algorithms to Finite Element Methods (FEM) is a very promising way to achieve optimal metal forming processes. However, many optimisation algorithms exist and it is not clear which of these algorithms to use. This paper investigates the sensitivity of a Sequential Approximate

  7. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed; Seloula, Nour; Trabelsi, Saber

    2017-01-01

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  8. Symmmetric double-well potential with Saxon-Woods tail and Pade approximations

    International Nuclear Information System (INIS)

    Niculescu, V.I.R.; Catana, D.

    1995-01-01

    In the present work we introduce a symmetric double-well potential with Woods-Saxon tail. The Woods-Saxon parts are replaced by Pade approximation.In this way the matrix elements of this potential form can be evaluated by the theory of complex functions. This results in a shorter computational time. (author). 1 fig., 1 tab., 7 refs

  9. Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method

    KAUST Repository

    Louaked, Mohammed

    2017-07-20

    In this work, we propose and analyze the pressure stabilization method for the unsteady incompressible Brinkman-Forchheimer equations. We present a time discretization scheme which can be used with any consistent finite element space approximation. Second-order error estimate is proven. Some numerical results are also given.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2017

  10. Soft dipole mode of neutron-rich light nuclei in asymptotic potential approximation

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvedov, L.P.

    2000-01-01

    Completely antisymmetrized 1''-continuum wave functions as well as the ground state wave function for ''6He have been constructed in asymptotic potential approximation. The behaviour of two-channel S-matrix elements shows on the existence of 1''- resonant state just above the three-body decay threshold of ''6He

  11. Approximation Preserving Reductions among Item Pricing Problems

    Science.gov (United States)

    Hamane, Ryoso; Itoh, Toshiya; Tomita, Kouhei

    When a store sells items to customers, the store wishes to determine the prices of the items to maximize its profit. Intuitively, if the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. So it would be hard for the store to decide the prices of items. Assume that the store has a set V of n items and there is a set E of m customers who wish to buy those items, and also assume that each item i ∈ V has the production cost di and each customer ej ∈ E has the valuation vj on the bundle ej ⊆ V of items. When the store sells an item i ∈ V at the price ri, the profit for the item i is pi = ri - di. The goal of the store is to decide the price of each item to maximize its total profit. We refer to this maximization problem as the item pricing problem. In most of the previous works, the item pricing problem was considered under the assumption that pi ≥ 0 for each i ∈ V, however, Balcan, et al. [In Proc. of WINE, LNCS 4858, 2007] introduced the notion of “loss-leader, ” and showed that the seller can get more total profit in the case that pi < 0 is allowed than in the case that pi < 0 is not allowed. In this paper, we derive approximation preserving reductions among several item pricing problems and show that all of them have algorithms with good approximation ratio.

  12. Approximate direct georeferencing in national coordinates

    Science.gov (United States)

    Legat, Klaus

    Direct georeferencing has gained an increasing importance in photogrammetry and remote sensing. Thereby, the parameters of exterior orientation (EO) of an image sensor are determined by GPS/INS, yielding results in a global geocentric reference frame. Photogrammetric products like digital terrain models or orthoimages, however, are often required in national geodetic datums and mapped by national map projections, i.e., in "national coordinates". As the fundamental mathematics of photogrammetry is based on Cartesian coordinates, the scene restitution is often performed in a Cartesian frame located at some central position of the image block. The subsequent transformation to national coordinates is a standard problem in geodesy and can be done in a rigorous manner-at least if the formulas of the map projection are rigorous. Drawbacks of this procedure include practical deficiencies related to the photogrammetric processing as well as the computational cost of transforming the whole scene. To avoid these problems, the paper pursues an alternative processing strategy where the EO parameters are transformed prior to the restitution. If only this transition was done, however, the scene would be systematically distorted. The reason is that the national coordinates are not Cartesian due to the earth curvature and the unavoidable length distortion of map projections. To settle these distortions, several corrections need to be applied. These are treated in detail for both passive and active imaging. Since all these corrections are approximations only, the resulting technique is termed "approximate direct georeferencing". Still, the residual distortions are usually very low as is demonstrated by simulations, rendering the technique an attractive approach to direct georeferencing.

  13. The virtual environment student. An initial approximation

    Directory of Open Access Journals (Sweden)

    Federico Borges Sáiz

    2007-05-01

    Full Text Available The quote at the start of the "Introduction" ("Education follows an agricultural timetable, has an industrial structure and operation and is set in an increasingly digitalised society" illustrates the need for an in-depth understanding of training in virtual environments. This understanding rests on knowing its central element: the student.This article invites the reader to take a look at the figure and the performance of the virtual environment student. One of the features of the twenty-first century is that of leading increasingly to a learning society, where citizens learn, formally or informally, throughout their lives. Technology sustains many of the behavioural and attitude traits of these citizens, although technology is only the first step; beyond this, the attitudes, skills and motivation required for successfully performing in a virtual environment are necessary.

  14. Frames of exponentials:lower frame bounds for finite subfamilies, and approximation of the inverse frame operator

    DEFF Research Database (Denmark)

    Christensen, Ole; Lindner, Alexander M

    2001-01-01

    We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...

  15. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  16. Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate.

    Science.gov (United States)

    Liu, Haofei; Sun, Wei

    2017-08-01

    Objective stress rates are often used in commercial finite element (FE) programs. However, deriving a consistent tangent modulus tensor (also known as elasticity tensor or material Jacobian) associated with the objective stress rates is challenging when complex material models are utilized. In this paper, an approximation method for the tangent modulus tensor associated with the Green-Naghdi rate of the Kirchhoff stress is employed to simplify the evaluation process. The effectiveness of the approach is demonstrated through the implementation of two user-defined fiber-reinforced hyperelastic material models. Comparisons between the approximation method and the closed-form analytical method demonstrate that the former can simplify the material Jacobian evaluation with satisfactory accuracy while retaining its computational efficiency. Moreover, since the approximation method is independent of material models, it can facilitate the implementation of complex material models in FE analysis using shell/membrane elements in abaqus.

  17. Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk.

    Science.gov (United States)

    Mueller, Silke M; Schiebener, Johannes; Delazer, Margarete; Brand, Matthias

    2018-01-22

    Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

  18. Neutrinoless double-β decay of Se82 in the shell model: Beyond the closure approximation

    Science.gov (United States)

    Sen'kov, R. A.; Horoi, M.; Brown, B. A.

    2014-05-01

    We recently proposed a method [R. A. Senkov and M. Horoi, Phys. Rev. C 88, 064312 (2013), 10.1103/PhysRevC.88.064312] to calculate the standard nuclear matrix elements for neutrinoless double-β decay (0νββ) of Ca48 going beyond the closure approximation. Here we extend this analysis to the important case of Se82, which was chosen as the base isotope for the upcoming SuperNEMO experiment. We demonstrate that by using a mixed method that considers information from closure and nonclosure approaches, one can get excellent convergence properties for the nuclear matrix elements, which allows one to avoid unmanageable computational costs. We show that in contrast with the closure approximation the mixed approach has a very weak dependence on the average closure energy. The matrix elements for the heavy neutrino-exchange mechanism that could contribute to the 0νββ decay of Se82 are also presented.

  19. Some properties of dual and approximate dual of fusion frames

    OpenAIRE

    Arefijamaal, Ali Akbar; Neyshaburi, Fahimeh Arabyani

    2016-01-01

    In this paper we extend the notion of approximate dual to fusion frames and present some approaches to obtain dual and approximate alternate dual fusion frames. Also, we study the stability of dual and approximate alternate dual fusion frames.

  20. Approximation algorithms for a genetic diagnostics problem.

    Science.gov (United States)

    Kosaraju, S R; Schäffer, A A; Biesecker, L G

    1998-01-01

    We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.

  1. Adaptive approximation of higher order posterior statistics

    KAUST Repository

    Lee, Wonjung

    2014-02-01

    Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc.

  2. Configuring Airspace Sectors with Approximate Dynamic Programming

    Science.gov (United States)

    Bloem, Michael; Gupta, Pramod

    2010-01-01

    In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time.

  3. Rainbows: Mie computations and the Airy approximation.

    Science.gov (United States)

    Wang, R T; van de Hulst, H C

    1991-01-01

    Efficient and accurate computation of the scattered intensity pattern by the Mie formulas is now feasible for size parameters up to x = 50,000 at least, which in visual light means spherical drops with diameters up to 6 mm. We present a method for evaluating the Mie coefficients from the ratios between Riccati-Bessel and Neumann functions of successive order. We probe the applicability of the Airy approximation, which we generalize to rainbows of arbitrary p (number of internal reflections = p - 1), by comparing the Mie and Airy intensity patterns. Millimeter size water drops show a match in all details, including the position and intensity of the supernumerary maxima and the polarization. A fairly good match is still seen for drops of 0.1 mm. A small spread in sizes helps to smooth out irrelevant detail. The dark band between the rainbows is used to test more subtle features. We conclude that this band contains not only externally reflected light (p = 0) but also a sizable contribution f rom the p = 6 and p = 7 rainbows, which shift rapidly with wavelength. The higher the refractive index, the closer both theories agree on the first primary rainbow (p = 2) peak for drop diameters as small as 0.02 mm. This may be useful in supporting experimental work.

  4. Dynamical Vertex Approximation for the Hubbard Model

    Science.gov (United States)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  5. Quantum adiabatic approximation and the geometric phase

    International Nuclear Information System (INIS)

    Mostafazadeh, A.

    1997-01-01

    A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society

  6. Magnetic reconnection under anisotropic magnetohydrodynamic approximation

    International Nuclear Information System (INIS)

    Hirabayashi, K.; Hoshino, M.

    2013-01-01

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere

  7. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  8. Bibliography for finite elements. [2200 references

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, J R [comp.

    1975-01-01

    This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.

  9. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  10. Dynamical cluster approximation plus semiclassical approximation study for a Mott insulator and d-wave pairing

    Science.gov (United States)

    Kim, SungKun; Lee, Hunpyo

    2017-06-01

    Via a dynamical cluster approximation with N c = 4 in combination with a semiclassical approximation (DCA+SCA), we study the doped two-dimensional Hubbard model. We obtain a plaquette antiferromagnetic (AF) Mott insulator, a plaquette AF ordered metal, a pseudogap (or d-wave superconductor) and a paramagnetic metal by tuning the doping concentration. These features are similar to the behaviors observed in copper-oxide superconductors and are in qualitative agreement with the results calculated by the cluster dynamical mean field theory with the continuous-time quantum Monte Carlo (CDMFT+CTQMC) approach. The results of our DCA+SCA differ from those of the CDMFT+CTQMC approach in that the d-wave superconducting order parameters are shown even in the high doped region, unlike the results of the CDMFT+CTQMC approach. We think that the strong plaquette AF orderings in the dynamical cluster approximation (DCA) with N c = 4 suppress superconducting states with increasing doping up to strongly doped region, because frozen dynamical fluctuations in a semiclassical approximation (SCA) approach are unable to destroy those orderings. Our calculation with short-range spatial fluctuations is initial research, because the SCA can manage long-range spatial fluctuations in feasible computational times beyond the CDMFT+CTQMC tool. We believe that our future DCA+SCA calculations should supply information on the fully momentum-resolved physical properties, which could be compared with the results measured by angle-resolved photoemission spectroscopy experiments.

  11. Hydration thermodynamics beyond the linear response approximation.

    Science.gov (United States)

    Raineri, Fernando O

    2016-10-19

    The solvation energetics associated with the transformation of a solute molecule at infinite dilution in water from an initial state A to a final state B is reconsidered. The two solute states have different potentials energies of interaction, [Formula: see text] and [Formula: see text], with the solvent environment. Throughout the A [Formula: see text] B transformation of the solute, the solvation system is described by a Hamiltonian [Formula: see text] that changes linearly with the coupling parameter ξ. By focusing on the characterization of the probability density [Formula: see text] that the dimensionless perturbational solute-solvent interaction energy [Formula: see text] has numerical value y when the coupling parameter is ξ, we derive a hierarchy of differential equation relations between the ξ-dependent cumulant functions of various orders in the expansion of the appropriate cumulant generating function. On the basis of this theoretical framework we then introduce an inherently nonlinear solvation model for which we are able to find analytical results for both [Formula: see text] and for the solvation thermodynamic functions. The solvation model is based on the premise that there is an upper or a lower bound (depending on the nature of the interactions considered) to the amplitude of the fluctuations of Y in the solution system at equilibrium. The results reveal essential differences in behavior for the model when compared with the linear response approximation to solvation, particularly with regards to the probability density [Formula: see text]. The analytical expressions for the solvation properties show, however, that the linear response behavior is recovered from the new model when the room for the thermal fluctuations in Y is not restricted by the existence of a nearby bound. We compare the predictions of the model with the results from molecular dynamics computer simulations for aqueous solvation, in which either (1) the solute

  12. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  13. Cophylogeny reconstruction via an approximate Bayesian computation.

    Science.gov (United States)

    Baudet, C; Donati, B; Sinaimeri, B; Crescenzi, P; Gautier, C; Matias, C; Sagot, M-F

    2015-05-01

    Despite an increasingly vast literature on cophylogenetic reconstructions for studying host-parasite associations, understanding the common evolutionary history of such systems remains a problem that is far from being solved. Most algorithms for host-parasite reconciliation use an event-based model, where the events include in general (a subset of) cospeciation, duplication, loss, and host switch. All known parsimonious event-based methods then assign a cost to each type of event in order to find a reconstruction of minimum cost. The main problem with this approach is that the cost of the events strongly influences the reconciliation obtained. Some earlier approaches attempt to avoid this problem by finding a Pareto set of solutions and hence by considering event costs under some minimization constraints. To deal with this problem, we developed an algorithm, called Coala, for estimating the frequency of the events based on an approximate Bayesian computation approach. The benefits of this method are 2-fold: (i) it provides more confidence in the set of costs to be used in a reconciliation, and (ii) it allows estimation of the frequency of the events in cases where the data set consists of trees with a large number of taxa. We evaluate our method on simulated and on biological data sets. We show that in both cases, for the same pair of host and parasite trees, different sets of frequencies for the events lead to equally probable solutions. Moreover, often these solutions differ greatly in terms of the number of inferred events. It appears crucial to take this into account before attempting any further biological interpretation of such reconciliations. More generally, we also show that the set of frequencies can vary widely depending on the input host and parasite trees. Indiscriminately applying a standard vector of costs may thus not be a good strategy. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  14. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  15. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  16. Quantum mean-field approximations for nuclear bound states and tunneling

    International Nuclear Information System (INIS)

    Negele, J.W.; Levit, S.; Paltiel, Z.; Massachusetts Inst. of Tech., Cambridge

    1979-01-01

    A conceptual framework has been presented in which observables are approximated in terms of a self-consistent quantum mean-field theory. Since the SPA (Stationary Phase Approximation) determines the optimal mean field to approximate a given observable, it is natural that when one changes the observable, the best mean field to describe it changes as well. Although the theory superficially appears applicable to any observable expressible in terms of an evolution operator, for example an S-matrix element, one would have to go far beyond the SPA to adequately approximate the overlap of two many-body wave functions. The most salient open problems thus concern quantitative assessment of the accuracy of the SPA, reformulation of the theory to accomodate hard cores, and selection of sensible expectation values of few-body operators to address in scattering problems

  17. Saint Petersburg International Conference on Integrated Navigation Systems, (9th), Held at St. Petersburg, Russia, on 27-29 May 2002

    Science.gov (United States)

    2002-05-01

    Dmitriev P.P., Shebshaevich V.S. Network satellite navigational systems. - M.:Radio and communication. 1982. 2. Harisov V.N., Petrov A.I., Boldin V.A...standardized LS-residuals) with a membership function which takes account of \\i- , introducing a weighting factor extracted from the elements of R and...numerical values of the blunders, we extract from the redundancy matrix R the diagonal and off-diagonal elements that correspond to the respective

  18. Finite elements methods in mechanics

    CERN Document Server

    Eslami, M Reza

    2014-01-01

    This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...

  19. Linear and Nonlinear Finite Elements.

    Science.gov (United States)

    1983-12-01

    Metzler. Con/ ugte rapdent solution of a finite element elastic problem with high Poson rato without scaling and once with the global stiffness matrix K...nonzero c, that makes u(0) = 1. According to the linear, small deflection theory of the membrane the central displacement given to the membrane is not... theory is possible based on the approximations (l-y 2 )t = +y’ 2 +y𔃾 , (1-y𔃼)’ 1-y’ 2 - y" (6) that change eq. (5) to V𔃺) = , [yŖ(1 + y") - Qy𔃼

  20. Toward a consistent random phase approximation based on the relativistic Hartree approximation

    International Nuclear Information System (INIS)

    Price, C.E.; Rost, E.; Shepard, J.R.; McNeil, J.A.

    1992-01-01

    We examine the random phase approximation (RPA) based on a relativistic Hartree approximation description for nuclear ground states. This model includes contributions from the negative energy sea at the one-loop level. We emphasize consistency between the treatment of the ground state and the RPA. This consistency is important in the description of low-lying collective levels but less important for the longitudinal (e,e') quasielastic response. We also study the effect of imposing a three-momentum cutoff on negative energy sea contributions. A cutoff of twice the nucleon mass improves agreement with observed spin-orbit splittings in nuclei compared to the standard infinite cutoff results, an effect traceable to the fact that imposing the cutoff reduces m * /m. Consistency is much more important than the cutoff in the description of low-lying collective levels. The cutoff model also provides excellent agreement with quasielastic (e,e') data

  1. Extrachromosomal genetic elements in Micrococcus.

    Science.gov (United States)

    Dib, Julián Rafael; Liebl, Wolfgang; Wagenknecht, Martin; Farías, María Eugenia; Meinhardt, Friedhelm

    2013-01-01

    Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.

  2. Quantitative microwave impedance microscopy with effective medium approximations

    Directory of Open Access Journals (Sweden)

    T. S. Jones

    2017-02-01

    Full Text Available Microwave impedance microscopy (MIM is a scanning probe technique to measure local changes in tip-sample admittance. The imaginary part of the reported change is calibrated with finite element simulations and physical measurements of a standard capacitive sample, and thereafter the output ΔY is given a reference value in siemens. Simulations also provide a means of extracting sample conductivity and permittivity from admittance, a procedure verified by comparing the estimated permittivity of polytetrafluoroethlyene (PTFE to the accepted value. Simulations published by others have investigated the tip-sample system for permittivity at a given conductivity, or conversely conductivity and a given permittivity; here we supply the full behavior for multiple values of both parameters. Finally, the well-known effective medium approximation of Bruggeman is considered as a means of estimating the volume fractions of the constituents in inhomogeneous two-phase systems. Specifically, we consider the estimation of porosity in carbide-derived carbon, a nanostructured material known for its use in energy storage devices.

  3. Approximate stresses in 2-D flat elastic contact fretting problems

    Science.gov (United States)

    Urban, Michael Rene

    Fatigue results from the cyclic loading of a solid body. If the body subject to fatigue is in contact with another body and relative sliding motion occurs between these two bodies, then rubbing surface damage can accelerate fatigue failure. The acceleration of fatigue failure is especially important if the relative motion between the two bodies results in surface damage without excessive surface removal via wear. The situation just described is referred to as fretting fatigue. Understanding of fretting fatigue is greatly enhanced if the stress state associated with fretting can be characterized. For Hertzian contact, this can readily be done. Unfortunately, simple stress formulae are not available for flat body contact. The primary result of the present research is the development of a new, reasonably accurate, approximate closed form expression for 2-dimensional contact stresses which has been verified using finite element modeling. This expression is also combined with fracture mechanics to provide a simple method of determining when a crack is long enough to no longer be affected by the contact stress field. Lower bounds on fatigue life can then easily be calculated using fracture mechanics. This closed form expression can also be used to calculate crack propagation within the contact stress field. The problem of determining the cycles required to generate an initial crack and what to choose as an initial crack size is unresolved as it is in non-fretting fatigue.

  4. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  5. Some approximating formulae to the solution of an abstract evolution problem

    International Nuclear Information System (INIS)

    Ngongo, M.E.

    1991-12-01

    We consider discrete semigroups of operators associated with the first two primary sub-families of A-acceptable Norsett's rational approximations to e q , S 1 (γ;q) and S 2 (γ;q) with q is an element of C and γ a real parameter, and construct approximating formulae to the solution of an abstract evolution problem. The study of convergence is reduced to exploiting previous fundamental results of the author for this class of semigroups and this results, for associated numerical schemes, in a convergence independent of the regularity of the data of the problem. (author). 17 refs, 3 tabs

  6. Calculation of the MSD two-step process with the sudden approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shiro [Tohoku Univ., Sendai (Japan). Dept. of Physics; Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    A calculation of the two-step process with the sudden approximation is described. The Green's function which connects the one-step matrix element to the two-step one is represented in {gamma}-space to avoid the on-energy-shell approximation. Microscopically calculated two-step cross sections are averaged together with an appropriate level density to give a two-step cross section. The calculated cross sections are compared with the experimental data, however the calculation still contains several simplifications at this moment. (author)

  7. Approximal morphology as predictor of approximal caries in primary molar teeth

    DEFF Research Database (Denmark)

    Cortes, A; Martignon, S; Qvist, V

    2018-01-01

    consent was given, participated. Upper and lower molar teeth of one randomly selected side received a 2-day temporarily separation. Bitewing radiographs and silicone impressions of interproximal area (IPA) were obtained. One-year procedures were repeated in 52 children (84%). The morphology of the distal...... surfaces of the first molar teeth and the mesial surfaces on the second molar teeth (n=208) was scored from the occlusal aspect on images from the baseline resin models resulting in four IPA variants: concave-concave; concave-convex; convex-concave, and convex-convex. Approximal caries on the surface...

  8. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    International Nuclear Information System (INIS)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-01-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N 4 ). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S ^2 〉 are also developed and tested

  9. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung

    2013-02-16

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  10. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  11. Stochastic approximation Monte Carlo importance sampling for approximating exact conditional probabilities

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming; Chen, Yuguo; Yu, Kai

    2013-01-01

    Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305-320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom. © 2013 Springer Science+Business Media New York.

  12. Stabilized and Block Approximate Inverse Preconditioners for Problems in Solid and Structural Mechanics

    Czech Academy of Sciences Publication Activity Database

    Benzi, M.; Kouhia, R.; Tůma, Miroslav

    2001-01-01

    Roč. 190, - (2001), s. 6533-6554 ISSN 0045-7825 R&D Projects: GA AV ČR IAA2030801; GA ČR GA201/00/0080 Institutional research plan: AV0Z1030915 Keywords : preconditioning * conjugate gradient * factorized sparse approximate inverse * block algorithms * finite elements * shells Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2001

  13. SFU-driven transparent approximation acceleration on GPUs

    NARCIS (Netherlands)

    Li, A.; Song, S.L.; Wijtvliet, M.; Kumar, A.; Corporaal, H.

    2016-01-01

    Approximate computing, the technique that sacrifices certain amount of accuracy in exchange for substantial performance boost or power reduction, is one of the most promising solutions to enable power control and performance scaling towards exascale. Although most existing approximation designs

  14. Some approximate calculations in SU2 lattice mean field theory

    International Nuclear Information System (INIS)

    Hari Dass, N.D.; Lauwers, P.G.

    1981-12-01

    Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)

  15. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  16. Data Element Registry Services

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data Element Registry Services (DERS) is a resource for information about value lists (aka code sets / pick lists), data dictionaries, data elements, and EPA data...

  17. PWL approximation of nonlinear dynamical systems, part I: structural stability

    International Nuclear Information System (INIS)

    Storace, M; De Feo, O

    2005-01-01

    This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)

  18. Pawlak algebra and approximate structure on fuzzy lattice.

    Science.gov (United States)

    Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai

    2014-01-01

    The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.

  19. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  20. Comparison of four support-vector based function approximators

    NARCIS (Netherlands)

    de Kruif, B.J.; de Vries, Theodorus J.A.

    2004-01-01

    One of the uses of the support vector machine (SVM), as introduced in V.N. Vapnik (2000), is as a function approximator. The SVM and approximators based on it, approximate a relation in data by applying interpolation between so-called support vectors, being a limited number of samples that have been