WorldWideScience

Sample records for elekta precise linear

  1. Neutron activation processes in the medical linear accelerator Elekta Precise; Procesos de activacion neutronica en el acelerador lineal medico Elekta Precise

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2015-07-01

    Monte Carlo estimation of the giant-dipole-resonance (GRN) photoneutrons insider the Elekta Precise Linac head (emitting a 15 MV photon beam) were performed using the MCNP6 code. Each component of Linac head geometry and materials were modelled in detail using the given manufacturer information. Primary photons generate photoneutrons and its transport across the treatment head was simulated, including the (n, γ) reactions which undergo activation products. The MCNP6 was used to develop a method for quantifying the activation of accelerator components. The approach described in this paper is useful in quantifying the origin and the amount of nuclear activation. (Author)

  2. Effect of the new carbon fiber board of Elekta Precise linear accelerator on the radiation dose

    International Nuclear Information System (INIS)

    Gan Jiaying; Hu Yinxiang; Luo Yuanqiang; Hong Wei; Wang Zhiyong; Lu Bing; Jin Feng

    2012-01-01

    Objective: To investigate the dosimetric influence of pure carbon fiber treatment tabletop of Elekta Precise new linear accelerator in radiotherapy. Methods: Surface-axis distance (SAD) technology was employed for the measurement. Two groups of fields were set and both of them were SAD opposed portals (one of them went through the tabletop,while the other did not). A PTW electrometer and a 0.6 cm 3 Farmer ionization chamber were utilized for comparison measurement. Then dose attenuation of the main table board, extended body board, the extended board for head, neck and shoulders, and the joints of these boards were calculated. Results: Under the energy of 6 MV,the dose attenuations of the following locations were: 1.4% - 7.2% at the main treatment table board; 2.8% - 38.7%, 1.4% -30.1%, 1.5% -20.8% and 1.4% - 11.2%, respectively at distances of 1, 4, 7 and 8 cm from the joint of the main table board; 0.5% - 5.0% at the extended body board; 4.7% - 15.4% at distance of 1 cm from the joint of the extended body board; 0.5% -3.3% at the neck position of the extended board for head, neck and shoulders; 5.3% - 16.7% at the shoulder positions; and 6.8% -30.4% at the joint between the extended boards and the main table board. Conclusions: The dose attenuations of the new linear accelerator pure carbon fiber treatment tabletop vary at different locations. Considerable higher attenuations are observed at the table board joints than other locations. (authors)

  3. Elekta Precise Table characteristics of IGRT remote table positioning

    International Nuclear Information System (INIS)

    Riis, Hans L.; Zimmermann, Sune J.

    2009-01-01

    Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. Material and methods. The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). Results and discussion. Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion

  4. Photon beam commissioning of an Elekta Synergy linear accelerator

    Science.gov (United States)

    Al Mashud, Md Abdullah; Tariquzzaman, M.; Jahangir Alam, M.; Zakaria, GA

    2017-12-01

    The aim of this study is to present the results of commissioning of Elekta Synergy linear accelerator (linac). The acceptance test and commissioning were performed for three photon beams energies 4 MV, 6 MV and 15 MV and for the multileaf collimator (MLC). The percent depth doses (PDDs), in-plane and cross-plane beam profiles, head scatter factors (Sc), relative photon output factors (Scp), universal wedge transmission factor and MLC transmission factors were measured. The size of gantry, collimator, and couch isocenter were also measured.

  5. The efficacy of Elekta Synergy image-guided radiotherapy

    International Nuclear Information System (INIS)

    Takamatsu, Shigeyuki; Takanaka, Tsuyoshi; Kumano, Tomoyasu

    2008-01-01

    We evaluated the efficacy of Elekta Synergy image-guided radiotherapy (IGRT) system equipped with cone beam CT (CBCT) for high accuracy radiation therapy. In cases set up with body marking who had large set up error could be adjusted by this system within 1 mm error. IGRT with CBCT correction provided precise set up. Elekta Synergy IGRT system is useful for high accuracy set up and will facilitate novel precise radiotherapy techniques. (author)

  6. Isocentric rotational performance of the Elekta Precise Table studied using a USB-microscope

    DEFF Research Database (Denmark)

    Riis, Hans L; Zimmermann, Sune J; Riis, Poul

    2010-01-01

    The isocentric three-dimensional performance of the Elekta Precise Table was investigated. A pointer was attached to the radiation head of the accelerator and positioned at the geometric rotational axis of the head. A USB-microscope was mounted on the treatment tabletop to measure the table...... position relative to the pointer tip. The table performance was mapped in terms of USB-microscope images of the pointer tip at different table angles and load configurations. The USB-microscope was used as a detector to measure the pointer tip positions with a resolution down to 0.01 mm. A new elastic...

  7. Out‐of‐field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators

    Science.gov (United States)

    Cardenas, Carlos E.; Nitsch, Paige L.; Kudchadker, Rajat J.; Howell, Rebecca M.

    2016-01-01

    Out‐of‐field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high‐energy electron beams. To better understand the extent of these exposures, we measured out‐of‐field dose characteristics of electron applicators for high‐energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out‐of‐field dose profiles and percent depth‐dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out‐of‐field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out‐of‐field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central‐axis, which was found to be higher than typical out‐of‐field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for

  8. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  9. Monte-Carlo simulation of the SL-ELEKTA-20 medical linear accelerator. Dosimetric study of a water phantom

    International Nuclear Information System (INIS)

    Thiam, Ch. O.

    2003-06-01

    In radiotherapy, it is essential to have a precise knowledge of the dose delivered in the target volume and the neighbouring critical organs. To be usable clinically, the models of calculation must take into account the exact characteristics of the beams used and the densities of fabrics. Today we can use sophisticated irradiation techniques and get a more precise assessment of the dose and with a better knowledge of its distribution. Thus in this report, will be detailed a simulation of the head of irradiation of accelerator SL-ELEKTA-20 in electrons mode and a dosimetric study of a water phantom. This study is carried out with the code of simulation Monte Carlo GATE adapted for applications of medical physics; the results are compared with the data obtained by the anticancer center 'Jean Perrin' on a similar accelerator. (author)

  10. SU-E-T-06: A Comparison of IMRT Treatment of Esophageal Carcinoma in Elekta-Precise and Varian23EX Linac

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W; Fan, X; Qiu, R; Qiao, X; Zhang, R [Hebei Medical University Fourth Hospital, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: To compare and analyze the characteristics of static intensity-modulated radiotherapy (IMRT) plans designed on Elekta and Varian Linac in different esophageal cancer(EC), exploring advantages and disadvantages of different vendor Linac, thus can be better serve for clinical. Methods: Twenty-four patients with EC were selected, including 6 cases located in the cervical, upper, middle and the lower thorax, respectively. Two IMRT plans were generated with the Oncentra planning system: in Elekta and Varian Linac, prescription dose of 60Gy in 30 fractions to the PTV. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart, and additional Monitor units(MU), treatment time, Homogeneity index(HI), Conformity index(CI) and Gamma index comparisons were performed. Results: All plans resulted in abundant dose coverage of PTV for EC of different locations. The doses to PTV, HI and OAR in Elekta plans were not statistically different in comparison with Varian plans, with the following exceptions: in cervical, upper and lower thoracic EC the PTV's CI, and in middle thorax EC PTV's D2, D50, V105 and PTV-average were better in Elekta plans than in Varian plans. In the cervical, upper and the middle thorax EC, treatment time were significantly decreased in Varian plans as against Elekta plans, while in the lower thoracic EC treatment time were no striking difference. MUs and gamma index were similar between the two Linac plans. Conclusion: For the the middle thorax EC Varian plans is better than Elekta plans, not only in treatment time but in the PTV dose; while for the lower thorax EC Elekta plans is the first choice for better CI; for the other part of the EC usually Elekta plans can increase the CI, while Varian plans can reduce treatment time, can be selected according to the actual situation of the patient treatment.

  11. Qualification of a Monte Carlo model of photon beams of a Lilac Elekta Precise; Habilitacion de un modelo Monte Carlo de haces de fotones de un linac Elekta Precise

    Energy Technology Data Exchange (ETDEWEB)

    Linares R, H. M.; Laguardia, R. A. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Av. Salvador Allende Esq. Luaces, Quinta de los Molinos, Plaza de la Revolucion, 10600 La Habana (Cuba); Lara M, E., E-mail: elier@inor.sld.cu [Instituto Nacional de Oncologia y Radioterapia, Av. 29 y E. Vedado, 10400 La Habana (Cuba)

    2014-08-15

    For the simulation of the accelerator head the parameters determination that characterize the electrons primary beam that affect in the target is a step that involves a fundamental role in the precision of the Monte Carlo calculations. Applying the proposed methodology by Pena et al. [2007], in this work was carried out the qualification of the photon beams (6 MV and 15 MV) of an accelerator Elekta Precise, using the Monte Carlo code EGSnrc. The influence exerted by the characteristics of the electrons primary beam on the distribution of absorbed dose for the two energy of this equipment was studied. Using different mid energy combinations and FWHM of the electrons primary beam was calculated the dose deposited in a segmented water mannequin with its surface to 100 cm of the source. Starting from the deposited dose in the mannequin the dose curves in depth and dose profiles to different depths were built. These curves were compared with measured values in a similar experimental arrangement to the carried out simulation, applying acceptability criteria based on confidence intervals [Venselaar et al. 2001]. The dose profiles for small fields were like it was expected, to be strongly influenced by the radial distribution (FWHM). The energy/FWHM combinations that better reproduce the experimental curves of each photon beam were determined. One time determined the best combination (5.75 MeV/2 mm and 11.25 MeV/2 mm, respectively) was used for the generation of the phase spaces and the field factors calculation. A good correspondence was obtained between the simulations and the measurements for a wide range of field sizes, as well as for different types of detectors, being all the results inside of the tolerance margins. (author)

  12. Enable dosimetric of the Stereotactic Body Frame from Elekta in treatment planning systems for Radiotherapy

    International Nuclear Information System (INIS)

    Gonzalez Perez, Y.; Caballero Pinelo, R.; Alfonso Laguardia, R.

    2015-01-01

    The purpose of this study is to evaluate the commissioning of a stereotactic body frame (SBF ® , Elekta) professional treatment planning systems (TPS) model Elekta's PrecisePlan ® and ERGO++®, for highly foxused delivery of megavoltage photon beams intended for treating tumors located in the thorax and abdominal region. For this purpose we applicated a dedicate stereotactic body frame (SBF ® , Elekta) intended for high precision radiotherapy in extra-cranial located tumors was studied. Issues associated with their implementation in the TPSs were evaluated comparing the dose calculations in two studies of CT under different conditions. an anthropomorphic thorax phantom, model CIRS Thorax IMRT ® , was used in designing several test cases. Ion chamber measurement was permormed in selected points in the phantom, for comparison purposes with dose calculated by the treatment planning systems. The commissioning of the stereotactic body frame (SBF ® , Elekta) and the stereotactic localization was verified, including the dose calculation verification in presence the SBF. The attenuation factors measured for the SBF were obtained and corrected in the TPS PrecisePlan ® , the biggest discrepancies obtained were ∼5% for the oblique sectors (inferior corners), because the minimum permissible value for the software is 0.95 while the real value measured was 0.898. It was studied the SBF, their components and their interference in depth with the photon beams and their implementation in the TPS. The introduction of the correction factors demonstrated to be effective to reduce the eventual errors of dose calculation in the TPS . (Author)

  13. A study to compare the motorised wedge output factor of an elekta synergy linear accelerator with reference data (TPS Data)

    International Nuclear Information System (INIS)

    Akosah, Kinsley

    2016-07-01

    For external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficient cancer treatment. The dose delivered to the patient might not be uniform and therefore need to be compensated for. In treatment these inhomogeneities are taken care of by using wedge filters and incorporating wedge factors in the Treatment Planning System. Computer controlled wedges were alternatives introduced by different manufacturers of which Motorized wedges (MW) is one of them. The MW was introduced by ELEKTA and this helps to overcome some of the shortcomings of physical wedges. The objectives of this study were to measure MW output factors for 6 MV and 15 MV photon energies for an ELEKTA Synergy. Secondly, to compare the results of MWOF obtained to that of the treatment planning system data. The Motorized Wedge Output Factors (MWOF) were measured for the ELEKTA Synergy for both 6 MV and 15 MV photon energies. With the help of PMMA solid water slabs phantom, the Elekta synergy, thermometer, barometer, PTW farmer type ionization chamber 30010 charges were collected at 100 cm source to surface distance for various square field sizes from 5x5 cm to 30x30 cm and depth of 1.5 cm and 2.5 cm for 6 MV and 15 MV photon energies. Comparing the results with the TPS data, an excellent agreement was found for 6 MV MWOF, with the percentage differences ranging from 0.03% to 1.50%, with a mean of 0.03%. The coefficient of variation of MWOF ranged from 0.023% to 1.07% and 0.001% to 12.89% for the two beams (6 MV and 15 MV) respectively. The relative differences between the calculated and the measured MWOFs increases with field size. In conclusion, there was general agreement between the calculated and measured MWOFs. The consistency of values provide further support that a standard dataset of photon and electron dosimetry could be established as a guide for future commissioning, beam modeling

  14. Medium-Term Stability of the Photon Beam Energy of An Elekta CompactTM Linear Accelerator Based on Daily Measurements of Beam Quality Factor

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Mosleh-Shirazi

    2016-04-01

    Full Text Available Introduction In this study, we aimed to assess the medium-term energy stability of a 6MV Elekta CompactTM linear accelerator. To the best of our knowledge, this is the first published article to evaluate this linear accelerator in terms of energy stability. As well as investigating the stability of the linear accelerator energy over a period of several weeks, the results will be useful for estimation of the required tolerance values for the beam quality factor (BQF of the PTW QUICKCHECK weblineTM (QCW daily checking device. Materials and Methods Over a 13 week period of routine clinical service, 52 daily readings of BQF were taken and then analyzed for a 10×10 cm2 field. Results No decreasing or increasing trend in BQF was observed over the study period. The mean BQF value was estimated at 5.4483 with a standard deviation (SD of 0.0459 (0.8%. The mean value was only 0.1% different from the baseline value. Conclusion The results of this medium-term stability study of the Elekta Compact linear accelerator energy showed that 96.2% of the observed BQF values were within ±1.3% of the baseline value. This can be considered to be within the recommended tolerance for linear accelerator photon beam energy. If an approach of applying ±3 SD is taken, the tolerance level for BQF may be suggested to be set at ±2.5%. However, further research is required to establish a relationship between BQF value and the actual changes in beam energy and penetrative quality.

  15. Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator.

    Science.gov (United States)

    Narayanasamy, Ganesh; Saenz, Daniel L; Defoor, Dewayne; Papanikolaou, Niko; Stathakis, Sotirios

    2017-11-01

    The purpose of this study is to perform dosimetric validation of Monaco treatment planning system version 5.1. The Elekta VersaHD linear accelerator with high dose rate flattening filter-free photon modes and electron energies was used in this study. The dosimetric output of the new Agility head combined with the FFF photon modes warranted this investigation into the dosimetric accuracy prior to clinical usage. A model of the VersaHD linac was created in Monaco TPS by Elekta using commissioned beam data including percent depth dose curves, beam profiles, and output factors. A variety of 3D conformal fields were created in Monaco TPS on a combined Plastic water/Styrofoam phantom and validated against measurements with a calibrated ion chamber. Some of the parameters varied including source to surface distance, field size, wedges, gantry angle, and depth for all photon and electron energies. In addition, a series of step and shoot IMRT, VMAT test plans, and patient plans on various anatomical sites were verified against measurements on a Delta 4 diode array. The agreement in point dose measurements was within 2% for all photon and electron energies in the homogeneous phantom and within 3% for photon energies in the heterogeneous phantom. The mean ± SD gamma passing rates of IMRT test fields yielded 93.8 ± 4.7% based on 2% dose difference and 2 mm distance-to-agreement criteria. Eight previously treated IMRT patient plans were replanned in Monaco TPS and five measurements on each yielded an average gamma passing rate of 95% with 6.7% confidence limit based on 3%, 3 mm gamma criteria. This investigation on dosimetric validation ensures accuracy of modeling VersaHD linac in Monaco TPS thereby improving patient safety. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Qualification of a Monte Carlo model of photon beams of a Lilac Elekta Precise

    International Nuclear Information System (INIS)

    Linares R, H. M.; Laguardia, R. A.; Lara M, E.

    2014-08-01

    For the simulation of the accelerator head the parameters determination that characterize the electrons primary beam that affect in the target is a step that involves a fundamental role in the precision of the Monte Carlo calculations. Applying the proposed methodology by Pena et al. [2007], in this work was carried out the qualification of the photon beams (6 MV and 15 MV) of an accelerator Elekta Precise, using the Monte Carlo code EGSnrc. The influence exerted by the characteristics of the electrons primary beam on the distribution of absorbed dose for the two energy of this equipment was studied. Using different mid energy combinations and FWHM of the electrons primary beam was calculated the dose deposited in a segmented water mannequin with its surface to 100 cm of the source. Starting from the deposited dose in the mannequin the dose curves in depth and dose profiles to different depths were built. These curves were compared with measured values in a similar experimental arrangement to the carried out simulation, applying acceptability criteria based on confidence intervals [Venselaar et al. 2001]. The dose profiles for small fields were like it was expected, to be strongly influenced by the radial distribution (FWHM). The energy/FWHM combinations that better reproduce the experimental curves of each photon beam were determined. One time determined the best combination (5.75 MeV/2 mm and 11.25 MeV/2 mm, respectively) was used for the generation of the phase spaces and the field factors calculation. A good correspondence was obtained between the simulations and the measurements for a wide range of field sizes, as well as for different types of detectors, being all the results inside of the tolerance margins. (author)

  17. SU-E-T-190: First Integration of Steriotactic Radiotherapy Planning System Iplan with Elekta Linear Accelerator

    International Nuclear Information System (INIS)

    Biplab, S; Soumya, R; Paul, S; Jassal, K; Munshi, A; Giri, U; Kumar, V; Roy, S; Ganesh, T; Mohanti, B

    2014-01-01

    Purpose: For the first time in the world, BrainLAB has integrated its iPlan treatment planning system for clinical use with Elekta linear accelerator (Axesse with a Beam Modulator). The purpose of this study was to compare the calculated and measured doses with different chambers to establish the calculation accuracy of iPlan system. Methods: The iPlan has both Pencil beam (PB) and Monte Carlo (MC) calculation algorithms. Beam data include depth doses, profiles and output measurements for different field sizes. Collected data was verified by vendor and beam modelling was done. Further QA tests were carried out in our clinic. Dose calculation accuracy verified point, volumetric dose measurement using ion chambers of different volumes (0.01cc and 0.125cc). Planner dose verification was done using diode array. Plans were generated in iPlan and irradiated in Elekta Axesse linear accelerator. Results: Dose calculation accuracies verified using ion chamber for 6 and 10 MV beam were 3.5+/-0.33(PB), 1.7%+/-0.7(MC) and 3.9%+/-0.6(PB), 3.4%+/-0.6(MC) respectively. Using a pin point chamber, dose calculation accuracy for 6MV and 10MV was 3.8%+/-0.06(PB), 1.21%+/-0.2(MC) and 4.2%+/-0.6(PB), 3.1%+/-0.7(MC) respectively. The calculated planar dose distribution for 10.4×10.4 cm2 was verified using a diode array and the gamma analysis for 2%-2mm criteria yielded pass rates of 88 %(PB) and 98.8%(MC) respectively. 3mm-3% yields 100% passing for both MC and PB algorithm. Conclusion: Dose calculation accuracy was found to be within acceptable limits for MC for 6MV beam. PB for both beams and MC for 10 MV beam were found to be outside acceptable limits. The output measurements were done twice for conformation. The lower gamma matching was attributed to meager number of measured profiles (only two profiles for PB) and coarse measurement resolution for diagonal profile measurement (5mm). Based on these measurements we concluded that 6 MV MC algorithm is suitable for patient treatment

  18. MCNP5 evaluation of photoneutron production from the Alexandria University 15 MV Elekta Precise medical LINAC.

    Science.gov (United States)

    Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M

    2018-05-01

    Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. SU-E-T-194: Commissioning of Monaco Treatment Planning System On An Elekta VersaHD Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Narayanasamy, G; Bosse, C; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S [University of Texas Health Science Center at San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: The Monaco treatment planning system (TPS) uses a Monte-Carlo algorithm based dose computation engine to model the photon beams of a linear accelerator. The aim is to perform verification of Monaco TPS beam modeling of a Elekta VersaHD linac with 6MV, 6MV FFF, 10 MV, 10MV FFF, 18MV photon beams and 160 multileaf collimators (MLC) with a projected width of 5-mm at the isocenter. Methods: A series of dosimetric tests were performed to validate Monaco calculated beams including point dose measurement in water with and without heterogeneity and 2-dimensional dose distributions on a Delta4 bi-planar diode dosimeter array (Scandidos, Uppsala, Sweden). 3D conformal beams of different field sizes, source-to-surface distances, wedges, and gantry angles were delivered onto a phantom consisting of several plastic water and Styrofoam slabs. Point dose measurements were verified with a PTW 31013 Semiflex 0.3 cc ionization chamber (PTW, Freiburg, Germany). In addition, 8 step and shoot intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) beams included in the Monaco TPS commissioning suite were verified against measurements on Delta4 to test and fine tune parameters in the beam model. IMRT verification was computed using gamma analysis with dose difference and distance-to-agreement criteria of 3%/3mm with a dose threshold of 10%. Results: Point dose measurements agreed within 2% in the homogeneous phantom and within 3% in the heterogeneous phantom for all photon energies. IMRT beams yielded a passing percentage of 99.1±1.1% in the gamma analysis which is well above the institutional passing threshold of 90%. Conclusion: Monaco TPS commissioning was successfully performed for all the photon energies on the Elekta VersaHD linac prior to clinical usage.

  20. SU-E-T-194: Commissioning of Monaco Treatment Planning System On An Elekta VersaHD Linear Accelerator

    International Nuclear Information System (INIS)

    Narayanasamy, G; Bosse, C; Saenz, D; Cruz, W; Papanikolaou, N; Stathakis, S; Mavroidis, P

    2015-01-01

    Purpose: The Monaco treatment planning system (TPS) uses a Monte-Carlo algorithm based dose computation engine to model the photon beams of a linear accelerator. The aim is to perform verification of Monaco TPS beam modeling of a Elekta VersaHD linac with 6MV, 6MV FFF, 10 MV, 10MV FFF, 18MV photon beams and 160 multileaf collimators (MLC) with a projected width of 5-mm at the isocenter. Methods: A series of dosimetric tests were performed to validate Monaco calculated beams including point dose measurement in water with and without heterogeneity and 2-dimensional dose distributions on a Delta4 bi-planar diode dosimeter array (Scandidos, Uppsala, Sweden). 3D conformal beams of different field sizes, source-to-surface distances, wedges, and gantry angles were delivered onto a phantom consisting of several plastic water and Styrofoam slabs. Point dose measurements were verified with a PTW 31013 Semiflex 0.3 cc ionization chamber (PTW, Freiburg, Germany). In addition, 8 step and shoot intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) beams included in the Monaco TPS commissioning suite were verified against measurements on Delta4 to test and fine tune parameters in the beam model. IMRT verification was computed using gamma analysis with dose difference and distance-to-agreement criteria of 3%/3mm with a dose threshold of 10%. Results: Point dose measurements agreed within 2% in the homogeneous phantom and within 3% in the heterogeneous phantom for all photon energies. IMRT beams yielded a passing percentage of 99.1±1.1% in the gamma analysis which is well above the institutional passing threshold of 90%. Conclusion: Monaco TPS commissioning was successfully performed for all the photon energies on the Elekta VersaHD linac prior to clinical usage

  1. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    Science.gov (United States)

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  2. Multileaf Collimator Characteristics and Reliability Requirements for IMRT Elekta System

    International Nuclear Information System (INIS)

    Liu, Chihray; Simon, Thomas A.; Fox, Christopher; Li, Jonathan; Palta, Jatinder R.

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm

  3. Validation of head scatter factor for an Elekta synergy platform linear accelerator

    International Nuclear Information System (INIS)

    Johannes, N.B.

    2013-07-01

    A semi-empirical method has been proposed and developed to model and compute head or collimator scatter factors for 6 and 15 MV photon beams from Elekta Synergy platform linear accelerator at the radiation oncology centre of 'Sweden-Ghana Medical Centre Limited', East Legon Hills in Accra. The proposed model was based on two dimensional Gaussian distribution, whose output was compared to measured head scatter factor data for the linear accelerator obtained during commissioning of the teletherapy machine. The two dimensions Gaussian distribution model used physical specifications and configuration of the head unit (collimator system) of the linear accelerator, which were obtained from the user manual provided by the manufacturer of the linear accelerator. The algorithm for the model was implemented using Matlab software in the Microsoft windows environment. The model was done for both square and rectangular fields, and the output compared with corresponding measured data. The comparisons for the square fields were used to establish an error term in the Gaussian distribution function. The error term was determined by plotting the difference between the output factors from MatLab and the corresponding measured data as function of one side of a square field (equivalent square field). The correlation equation of the curve obtained was chosen as the error term, which was incorporated into the Gaussian distribution function. This was repeated for two photon beam energies (6 and 15 MV). The refined Gaussian distributions were then used to determine head scatter factors for square and rectangular fields. For the rectangular fields, Sterling's proposed formula was used to find equivalent square used to obtain the equivalent square fields found in the error terms of the proposed formula was sed to find equivalent square used to obtain the equivalent square fields found in the error terms of the proposed and developed model. The output of the 2D Gaussian distribution without

  4. Ultrabroadband optical chirp linearization for precision metrology applications.

    Science.gov (United States)

    Roos, Peter A; Reibel, Randy R; Berg, Trenton; Kaylor, Brant; Barber, Zeb W; Babbitt, Wm Randall

    2009-12-01

    We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

  5. SU-E-T-149: Electron Beam Profile Differences Between Elekta MLCi2 and Elekta Agility Treatment Heads

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C [Sutter Medical Foundation, Roseville, CA 95661 (United States); Hatcher, C [Sutter Shared Services S3, Sacramento, CA (United States)

    2014-06-01

    Purpose: To report and investigate observed differences in electron beam profiles at various energies/applicators between Elekta MLCi2 and Agility treatment head on Elekta Infinity LINAC Methods: When we upgraded from MLCi2 to Agility on one of our Elekta Infinity LINAC's, electron beam PDDs and profiles were acquired for comparison purpose. All clinical electron energies (6/9/12/15/12/18 MeV) and electron applicators (6/10/14/20/25 square) were included in measurement. PDDs were acquired at 100 SSD in water (PTW MP3 water tank) with a plane-parallel ion chamber (PTW Roos). X and Y Profiles were acquired using IC Profiler (Sun Nuclear Corp.) at 1cm and maximum PDD depths (water equivalent). Results: All PDD curves match very well between MLCi2 and Agility treatment head. However, some significant differences on electron profiles were found. On Agility, even after increasing the default auto-tracking offset values for backup diaphragms in Y and MLC in X by 2.8 cm (the maximum allowed change is 3.0 cm), electron profiles still have rounder shoulders comparing to corresponding MLCi2 profiles. This difference is significantly more pronounced at larger applicators (20 and 25 square), for all electron energies. Conclusion: The significant design change between MLCi2 and Agility beam limiting device seems to affect exit electron beam profiles. In IEC1217 X direction, the main change on Agility is the removal of the original MLCi2 X backup diaphragms and replacing it with MLC leaves; In Y direction, the main change is the radius and materials on Y backup diaphragms.

  6. Verification of Linear (In)Dependence in Finite Precision Arithmetic

    Czech Academy of Sciences Publication Activity Database

    Rohn, Jiří

    2014-01-01

    Roč. 8, č. 3-4 (2014), s. 323-328 ISSN 1661-8289 Institutional support: RVO:67985807 Keywords : linear dependence * linear independence * pseudoinverse matrix * finite precision arithmetic * verification * MATLAB file Subject RIV: BA - General Mathematics

  7. SU-F-T-306: Validation of Mobius 3D and FX for Elekta Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C; Garcia, M; Calderon, E; Kirsner, S [UT M.D. Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Log file based IMRT and VMAT QA is a system that analyzes treatment log files and uses delivery parameters to compute the dose to the patient/phantom. This system was previously commissioned for Varian machines, the purpose of this work is to describe the process for commissioning Mobius for use with Elekta machines. Methods: Twelve IMRT and VMAT plans (6×) were planned and delivered and dose was measured using MapCheck, the results were compared to that computed by Mobius. For 10x and 18x, plans were generated, copied to a phantom and delivered, the dose was measured using a single ion chamber. The difference in measured dose to computed dose (Mobius) was used to adjust the dynamic leaf gap (DLG) in Mobius to achieve optimal agreement between measurements, Mobius and treatment plans. Results: For the measured dose comparison, the average 3%/3mm gamma 97.1% of pixels passed criteria using MapCheck where Mobius computed 96.9% of voxels passing. For 10×, a DLG of −5.5 was determined to achieve optimal results for TPS and measured ion chamber data with an average 0.1% difference and −1.7% respectively. For 18×, a DLG of −3 was determined to achieve optimal results from the TPS and measured data with an average of −0.7% and −1.4% difference on average from a set of IMRT and VMAT plans. The 6x data needed no DLG correction to arrive at agreement with the TPS and the MapCheck measured data. Conclusion: We have validated with measurements for IMRT and VMAT cases the use of Mobius FX with Elekta treatment machines for IMRT and VMAT QA. For 6×, no adjustments to the DLG were required to obtain good results utilizing Mobius whereas for 10× and 18×, the DLG had to be adjusted to obtain optimum agreement with measured data and our TPS.

  8. SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT

    International Nuclear Information System (INIS)

    Rusk, B; Fontenot, J

    2016-01-01

    Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modes using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.

  9. SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rusk, B; Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modes using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.

  10. Neutron activation processes in the medical linear accelerator Elekta Precise; Procesos de activacion neutronica en el acelerador lineal medico Elekta Precise

    Energy Technology Data Exchange (ETDEWEB)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2014-07-01

    In radiotherapy beams of high energy photons produced lower doses in the skin and a lower dose dispersed into surrounding healthy tissue. However, when operating above 10 MV, Linacs have some drawbacks such as the generation of photo-neutrons and activation of some components of the accelerator. The launch and capture of neutrons produce radioactive nuclei that can radiate even when the accelerator is not working. These reactions occur mainly in the heavier materials of the head accelerator. This work has studied the activation generated isotopes resulting, concluding that these derived doses are not negligible. (Author)

  11. Improved electron collimation system design for Elekta linear accelerators.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2017-09-01

    Prototype 10 × 10 and 20 × 20-cm 2 electron collimators were designed for the Elekta Infinity accelerator (MLCi2 treatment head), with the goal of reducing the trimmer weight of excessively heavy current applicators while maintaining acceptable beam flatness (±3% major axes, ±4% diagonals) and IEC leakage dose. Prototype applicators were designed initially using tungsten trimmers of constant thickness (1% electron transmission) and cross-sections with inner and outer edges positioned at 95% and 2% off-axis ratios (OARs), respectively, cast by the upstream collimating component. Despite redefining applicator size at isocenter (not 5 cm upstream) and reducing the energy range from 4-22 to 6-20 MeV, the designed 10 × 10 and 20 × 20-cm 2 applicator trimmers weighed 6.87 and 10.49 kg, respectively, exceeding that of the current applicators (5.52 and 8.36 kg, respectively). Subsequently, five design modifications using analytical and/or Monte Carlo (MC) calculations were applied, reducing trimmer weight while maintaining acceptable in-field flatness and mean leakage dose. Design Modification 1 beveled the outer trimmer edges, taking advantage of only low-energy beams scattering primary electrons sufficiently to reach the outer trimmer edge. Design Modification 2 optimized the upper and middle trimmer distances from isocenter for minimal trimmer weights. Design Modification 3 moved inner trimmer edges inward, reducing trimmer weight. Design Modification 4 determined optimal X-ray jaw positions for each energy. Design Modification 5 adjusted middle and lower trimmer shapes and reduced upper trimmer thickness by 50%. Design Modifications 1→5 reduced trimmer weights from 6.87→5.86→5.52→5.87→5.43→3.73 kg for the 10 × 10-cm 2 applicator and 10.49→9.04→8.62→7.73→7.35→5.09 kg for the 20 × 20-cm 2 applicator. MC simulations confirmed these final designs produced acceptable in-field flatness and met IEC-specified leakage dose at 7, 13, and 20 Me

  12. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, C; Defoor, D; Alexandrian, A; Papanikolaou, N; Stathakis, S [University of Texas HSC SA, San Antonio, TX (United States)

    2016-06-15

    Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16 fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.

  13. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files

    International Nuclear Information System (INIS)

    Kabat, C; Defoor, D; Alexandrian, A; Papanikolaou, N; Stathakis, S

    2016-01-01

    Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16 fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.

  14. Precision measurements of linear scattering density using muon tomography

    Science.gov (United States)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  15. Reference dosimetry data and modeling challenges for Elekta accelerators based on IROC-Houston site visit data.

    Science.gov (United States)

    Kerns, James R; Followill, David S; Lowenstein, Jessica; Molineu, Andrea; Alvarez, Paola; Taylor, Paige A; Kry, Stephen F

    2018-03-14

    Reference dosimetry data can provide an independent second check of acquired values when commissioning or validating a treatment planning system (TPS). The Imaging and Radiation Oncology Core at Houston (IROC-Houston) has measured numerous linear accelerators throughout its existence. The results of those measurements are given here, comparing accelerators and the agreement of measurement versus institutional TPS calculations. Data from IROC-Houston on-site reviews from 2000 through 2014 were analyzed for all Elekta accelerators, approximately 50. For each, consistent point dose measurements were conducted for several basic parameters in a water phantom, including percentage depth dose, output factors, small-field output factors, off-axis factors, and wedge factors. The results were compared by accelerator type independently for 6, 10, 15, and 18 MV. Distributions of the measurements for each parameter are given, providing the mean and standard deviation. Each accelerator's measurements were also compared to its corresponding TPS calculation from the institution to determine the level of agreement, as well as determining which dosimetric parameters were most often in error. Accelerators were grouped by head type and reference dosimetric values were compiled. No class of linac had better overall agreement with its TPS, but percentage depth dose and output factors commonly agreed well, while small-field output factors, off-axis factors, and wedge factors often disagreed substantially from their TPS calculations. Reference data has been collected and analyzed for numerous Elekta linacs, which provide an independent way for a physicist to double-check their own measurements to prevent gross treatment errors. In addition, treatment planning parameters more often in error have been highlighted, providing practical caution for physicists commissioning treatment planning systems for Elekta linacs. © 2018 American Association of Physicists in Medicine.

  16. Study on the tongue and groove effect of the elekta multileaf collimator using Monte Carlo simulation and film dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto, F.; Fippel, M.; Bakai, A.; Nuesslin, F. [Dept. of Medical Physics, Radiooncologic Univ. Clinic, Tuebingen (Germany)

    2004-01-01

    Background: nowadays, multileaf collimation of the treatment fields from medical linear accelerators is a common option. Due to the design of the leaf sides, the tongue and groove effect occurs for certain multileaf collimator applications such as the abutment of fields where the beam edges are defined by the sides of the leaves. Material and methods: in this study, the tongue and groove effect was measured for two pairs of irregular multileaf collimator fields that were matched along leaf sides in two steps. Measurements were made at 10 cm depth in a polystyrene phantom using Kodak EDR2 films for a photon beam energy of 6 MV on an elekta sli-plus accelerator. To verify the measurements, full Monte Carlo simulations were done. In the simulations, the design of the leaf sides was taken into account and one component module of BEAM code was modified to correctly simulate the elekta multileaf collimator. Results and conclusion: the results of measurements and simulations are in good agreement and within the tolerance of film dosimetry. (orig.)

  17. Rotational patient setup errors in IGRT with XVI system in Elekta Synergy and their clinical relevance

    International Nuclear Information System (INIS)

    Madhusudhana Sresty, N.V.N.; Muralidhar, K.R.; Raju, A.K.; Sha, R.L.; Ramanjappa

    2008-01-01

    The goal of Image Guided Radiotherapy (IGRT) is to improve the accuracy of treatment delivery. In this technique, it is possible to get volumetric images of patient anatomy before delivery of treatment.XVI( release 3.5) system in Elekta Synergy linear accelerator (Elekta,Crawley,UK) has the potential to ensure that, the relative positions of the target volume is same as in the treatment plan. It involves acquiring planar images produced by a kilo Voltage cone beam rotating about the patient in the treatment position. After 3 dimensional match between reference and localization images, the system gives rotational errors also along with translational shifts. One can easily perform translational shifts with treatment couch. But rotational shifts cannot be performed. Most of the studies dealt with translational shifts only. Few studies reported regarding rotational errors. It is found that in the treatment of elongated targets, even small rotational errors can show difference in results. The main objectives of this study is 1) To verify the magnitude of rotational errors in different clinical sites observed and to compare with the other reports. 2) To find its clinical relevance 3) To find difference in rotational shift results with improper selection of kV collimator

  18. Radiation leakage dose from Elekta electron collimation system.

    Science.gov (United States)

    Pitcher, Garrett M; Hogstrom, Kenneth R; Carver, Robert L

    2016-09-08

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out-of field leakage dose. Specifically, off-axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out-of-field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out-of-field dose profiles. Off-axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in-plane, cross-plane, and both diagonal axes using a cylindrical ionization chamber with the 10 × 10 and 20 × 20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in-field beam flatness met our acceptance criteria (± 3% on major and ±4% on diagonal axes) and that out-of-field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross-plane out-of-field dose profiles showed greater leakage dose than in-plane profiles, attributed to the curved edges of the upper X-ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10 × 10 and 20 × 20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding model-ing of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions

  19. A comprehensive study of the mechanical performance of gantry, EPID and the MLC assembly in Elekta linacs during gantry rotation.

    Science.gov (United States)

    Rowshanfarzad, P; Riis, H L; Zimmermann, S J; Ebert, M A

    2015-07-01

    In radiotherapy treatments, it is crucial to monitor the performance of linear accelerator (linac) components, including gantry, collimation system and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt and the sag in leaf bank assembly owing to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with 5 ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of the image data. Nine Elekta AB (Stockholm, Sweden) linacs of different models and number of years in service were investigated. The average EPID sag was within 2 mm for all tested linacs. Some machines showed >1-mm gantry sag. Changes in the SDD values were within 1.3 cm. EPID skewness and tilt values were <1° in all machines. The maximum sag in multileaf collimator leaf bank assemblies was around 1 mm. A meaningful correlation was found between the age of the linacs and their mechanical performance. Conclusions and Advances in knowledge: The method and software developed in this study provide a simple tool for effective investigation of the behaviour of Elekta linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Elekta machines.

  20. Monte Carlo simulation of medical linear accelerator using primo code

    International Nuclear Information System (INIS)

    Omer, Mohamed Osman Mohamed Elhasan

    2014-12-01

    The use of monte Carlo simulation has become very important in the medical field and especially in calculation in radiotherapy. Various Monte Carlo codes were developed simulating interactions of particles and photons with matter. One of these codes is PRIMO that performs simulation of radiation transport from the primary electron source of a linac to estimate the absorbed dose in a water phantom or computerized tomography (CT). PRIMO is based on Penelope Monte Carlo code. Measurements of 6 MV photon beam PDD and profile were done for Elekta precise linear accelerator at Radiation and Isotopes Center Khartoum using computerized Blue water phantom and CC13 Ionization Chamber. accept Software was used to control the phantom to measure and verify dose distribution. Elektalinac from the list of available linacs in PRIMO was tuned to model Elekta precise linear accelerator. Beam parameter of 6.0 MeV initial electron energy, 0.20 MeV FWHM, and 0.20 cm focal spot FWHM were used, and an error of 4% between calculated and measured curves was found. The buildup region Z max was 1.40 cm and homogenous profile in cross line and in line were acquired. A number of studies were done to verily the model usability one of them is the effect of the number of histories on accuracy of the simulation and the resulted profile for the same beam parameters. The effect was noticeable and inaccuracies in the profile were reduced by increasing the number of histories. Another study was the effect of Side-step errors on the calculated dose which was compared with the measured dose for the same setting.It was in range of 2% for 5 cm shift, but it was higher in the calculated dose because of the small difference between the tuned model and measured dose curves. Future developments include simulating asymmetrical fields, calculating the dose distribution in computerized tomographic (CT) volume, studying the effect of beam modifiers on beam profile for both electron and photon beams.(Author)

  1. Toward Precision Top Quark Measurements in $e^+e^−$ Collisions at Linear Colliders

    CERN Document Server

    Van Der Kolk, Naomi

    2017-01-01

    Linear lepton colliders offer an excellent environment for precision measurements of the top quark. An overview is given of the current prospects on the measurement of the top quark mass, rare top quark decays and top quark couplings at the International Linear Collider (ILC) and the Compact Linear Collider (CLIC).

  2. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  3. MO-F-CAMPUS-J-04: Radiation Heat Load On the MR System of the Elekta Atlantic System

    International Nuclear Information System (INIS)

    Towe, S; Roberts, D; Overweg, J; Van Lanen, E

    2015-01-01

    Purpose: The Elekta Atlantic system combines a digital linear accelerator system with a 1.5T Philips MRI machine.This study aimed to assess the energy deposited within the cryostat system when the radiation beam passes through the cryostat. The cryocooler on the magnet has a cooling capacity which is about 1 Watt in excess of the cryogenic heat leak into the magnet’s cold mass. A pressure-controlled heater inside the magnet balances the excess refrigeration power such that the helium pressure in the tank is kept slightly above ambient air pressure. If radiation power is deposited in the cold mass then this heater will need less power to maintain pressure equilibrium and if the radiation heat load exceeds the excess cryocooler capacity the pressure will rise. Methods: An in-house CAD based Monte Carlo code based on Penelope was used to model the entire MR-Linac system to quantify the heat load on the magnet’s cold mass. These results were then compared to experimental results obtained from an Elekta Atlantic system installed in UMC-Utrecht. Results: For a field size of 25 cm x 22 cm and a dose rate of 107 mu.min-1, the energy deposited by the radiation beam led to a reduction in heater power from 1.16 to 0.73 W. Simulations predicted a reduction to 0.69 W which is in good agreement. For the worst case field size (largest) and maximum dose rate the cryostat cooler capacity was exceeded. This resulted in a pressure rise within the system but was such that continuous irradiation for over 12 hours would be required before the magnet would start blowing off helium. Conclusion: The study concluded that the Atlantic system does not have to be duty cycle restricted, even for the worst case non-clinical scenario and that there are no adverse effects on the MR system. Stephen Towe and David Roberts Both work for Elekta; Ezra Van Lanen works for Philips Healthcare; Johan Overweg works for Philips Innovative Technologies

  4. MO-F-CAMPUS-J-04: Radiation Heat Load On the MR System of the Elekta Atlantic System

    Energy Technology Data Exchange (ETDEWEB)

    Towe, S; Roberts, D [Elekta Limited, Crawley, West Sussex (United Kingdom); Overweg, J [Philips Innovative Technologies, Hamburg, Hamburg (Germany); Van Lanen, E [Philips Healthcare, Latham, NY (United States)

    2015-06-15

    Purpose: The Elekta Atlantic system combines a digital linear accelerator system with a 1.5T Philips MRI machine.This study aimed to assess the energy deposited within the cryostat system when the radiation beam passes through the cryostat. The cryocooler on the magnet has a cooling capacity which is about 1 Watt in excess of the cryogenic heat leak into the magnet’s cold mass. A pressure-controlled heater inside the magnet balances the excess refrigeration power such that the helium pressure in the tank is kept slightly above ambient air pressure. If radiation power is deposited in the cold mass then this heater will need less power to maintain pressure equilibrium and if the radiation heat load exceeds the excess cryocooler capacity the pressure will rise. Methods: An in-house CAD based Monte Carlo code based on Penelope was used to model the entire MR-Linac system to quantify the heat load on the magnet’s cold mass. These results were then compared to experimental results obtained from an Elekta Atlantic system installed in UMC-Utrecht. Results: For a field size of 25 cm x 22 cm and a dose rate of 107 mu.min-1, the energy deposited by the radiation beam led to a reduction in heater power from 1.16 to 0.73 W. Simulations predicted a reduction to 0.69 W which is in good agreement. For the worst case field size (largest) and maximum dose rate the cryostat cooler capacity was exceeded. This resulted in a pressure rise within the system but was such that continuous irradiation for over 12 hours would be required before the magnet would start blowing off helium. Conclusion: The study concluded that the Atlantic system does not have to be duty cycle restricted, even for the worst case non-clinical scenario and that there are no adverse effects on the MR system. Stephen Towe and David Roberts Both work for Elekta; Ezra Van Lanen works for Philips Healthcare; Johan Overweg works for Philips Innovative Technologies.

  5. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

    Science.gov (United States)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.

    2017-12-01

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  6. Precise linear gating circuit on integrated microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Butskii, V.V.; Vetokhin, S.S.; Reznikov, I.V.

    Precise linear gating circuit on four microcircuits is described. A basic flowsheet of the gating circuit is given. The gating circuit consists of two input differential cascades total load of which is two current followers possessing low input and high output resistances. Follower outlets are connected to high ohmic dynamic load formed with a current source which permits to get high amplification (>1000) at one cascade. Nonlinearity amounts to <0.1% in the range of input signal amplitudes of -10-+10 V. Front duration for an output signal with 10 V amplitude amounts to 100 ns. Attenuation of input signal with a closed gating circuit is 60 db. The gating circuits described is used in the device intended for processing of scintillation sensor signals.

  7. Polarimetry at a Future Linear Collider - How Precise?

    International Nuclear Information System (INIS)

    Woods, Michael B

    2000-01-01

    At a future linear collider, a polarized electron beam will play an important role in interpreting new physics signals. Backgrounds to a new physics reaction can be reduced by choice of the electron polarization state. The origin of a new physics reaction can be clarified by measuring its polarization-dependence. This paper examines some options for polarimetry with an emphasis on physics issues that motivate how precise the polarization determination needs to be. In addition to Compton polarimetry, the possibility of using Standard Model asymmetries, such as the asymmetry in forward W-pairs, is considered as a possible polarimeter. Both e + e - and e + e - collider modes are considered

  8. Evaluation of Therapeutic Effects of Radiotherapy during Treatment ...

    African Journals Online (AJOL)

    eXplore VISTA-CT MicroPET/CT, GE, made in. USA. Linear accelerator: Swedish Elekta Precise linear accelerator. Tumor lines: A549 human lung adenocarcinoma cell line, provided by the. Cancer Institute of Chinese Academy of Medical. Sciences Test solution: DMEM medium (Gibco,. USA), RPMI-1640 medium (Gibco, ...

  9. Sfermion Precision Measurements at a Linear Collider

    CERN Document Server

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.A.; Blochinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; von Manteuffel, A.; Martyn, H.U.; Miller, D.J.; Moortgat-Pick, Gudrid A.; Muhlleitner, M.; Nauenberg, U.; Kluge, Hannelies; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2002-01-01

    At future e+- e- linear colliders, the event rates and clean signals of scalar fermion production - in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan(beta) from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.

  10. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.; Ananthanarayan, B.; Bartl, A.; Blair, G.; Bloechinger, C.; Boos, E.; Brandenburg, A.; Datta, A.; Djouadi, A.; Fraas, H.; Guasch, J.; Hesselbach, S.; Hidaka, K.; Hollik, W.; Kernreiter, T.; Maniatis, M.; Manteuffel, A. von; Martyn, H.-U.; Miller, D.J.; Moortgat-Pick, G.; Muehlleitner, M.; Nauenberg, U.; Nowak, H.; Porod, W.; Sola, J.; Sopczak, A.; Stahl, A.; Weber, M.M.; Zerwas, P.M.

    2003-01-01

    At prospective e ± e - linear colliders, the large cross-sections and clean signals of scalar fermion production--in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected in the third generation opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  11. Sfermion precision measurements at a linear collider

    International Nuclear Information System (INIS)

    Freitas, A.

    2003-01-01

    At future e + e - linear colliders, the event rates and clean signals of scalar fermion production--in particular for the scalar leptons--allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan β from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses

  12. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator

    International Nuclear Information System (INIS)

    Sterpin, E.; Tomsej, M.; Smedt, B. de; Reynaert, N.; Vynckier, S.

    2007-01-01

    The Anisotropic Analytical Algorithm (AAA) is a new pencil beam convolution/superposition algorithm proposed by Varian for photon dose calculations. The configuration of AAA depends on linear accelerator design and specifications. The purpose of this study was to investigate the accuracy of AAA for an Elekta SL25 linear accelerator for small fields and intensity modulated radiation therapy (IMRT) treatments in inhomogeneous media. The accuracy of AAA was evaluated in two studies. First, AAA was compared both with Monte Carlo (MC) and the measurements in an inhomogeneous phantom simulating lung equivalent tissues and bone ribs. The algorithm was tested under lateral electronic disequilibrium conditions, using small fields (2x2 cm 2 ). Good agreement was generally achieved for depth dose and profiles, with deviations generally below 3% in lung inhomogeneities and below 5% at interfaces. However, the effects of attenuation and scattering close to the bone ribs were not fully taken into account by AAA, and small inhomogeneities may lead to planning errors. Second, AAA and MC were compared for IMRT plans in clinical conditions, i.e., dose calculations in a computed tomography scan of a patient. One ethmoid tumor, one orophaxynx and two lung tumors are presented in this paper. Small differences were found between the dose volume histograms. For instance, a 1.7% difference for the mean planning target volume dose was obtained for the ethmoid case. Since better agreement was achieved for the same plans but in homogeneous conditions, these differences must be attributed to the handling of inhomogeneities by AAA. Therefore, inherent assumptions of the algorithm, principally the assumption of independent depth and lateral directions in the scaling of the kernels, were slightly influencing AAA's validity in inhomogeneities. However, AAA showed a good accuracy overall and a great ability to handle small fields in inhomogeneous media compared to other pencil beam convolution

  13. Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides

    Directory of Open Access Journals (Sweden)

    Lyerly Herbert K

    2008-03-01

    Full Text Available Abstract Background Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC, as well as tetramer assays. Results Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen. Conclusion These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.

  14. Optimized procedure for calibration and verification multileaf collimator from Elekta Synergy accelerator

    International Nuclear Information System (INIS)

    Castel Millan, A.; Perellezo Mazon, A.; Fernandez Ibiza, J.; Arnalte Olloquequi, M.; Armengol Martinez, S.; Rodriguez Rey, A.; Guedea Edo, F.

    2011-01-01

    The objective of this work is to design an optimized procedure for calibration and verification of a multileaf collimator used so as to allow the EPID and the image plate in a complementary way, using different processing systems. With this procedure we have two equivalent alternative as the same parameters obtained for the calibration of multileaf Elekta Synergy accelerator.

  15. Commissioning and quality assurance of the x-ray volume imaging system of an image-guided radiotherapy capable linear accelerator

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Narayana Murthy, P.; Kumar, Rajneesh

    2008-01-01

    An Image-Guided Radiotherapy-capable linear accelerator (Elekta Synergy) was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI) system and electronic portal imaging device (iViewGT). The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer's specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality). These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy. (author)

  16. Commissioning and quality assurance of the X-ray volume Imaging system of an image-guided radiotherapy capable linear accelerator

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2008-01-01

    Full Text Available An Image-Guided Radiotherapy-capable linear accelerator (Elekta Synergy was installed at our hospital, which is equipped with a kV x-ray volume imaging (XVI system and electronic portal imaging device (iViewGT. The objective of this presentation is to describe the results of commissioning measurements carried out on the XVI facility to verify the manufacturer′s specifications and also to evolve a QA schedule which can be used to test its performance routinely. The QA program consists of a series of tests (safety features, geometric accuracy, and image quality. These tests were found to be useful to assess the performance of the XVI system and also proved that XVI system is very suitable for image-guided high-precision radiation therapy.

  17. Investigation of the accuracy of MV radiation isocentre calculations in the Elekta cone-beam CT software XVI

    DEFF Research Database (Denmark)

    Zimmermann, S. J.; Rowshanfarzad, P.; Ebert, M. A.

    2015-01-01

    ) and the radiation field centre (RFC) is calculated. A software package was developed for accurate calculation of the linac isocentre position. This requires precise determination of the position of the ball bearing and the RFC. Results: Data were acquired for 6 MV, 18 MV and flattening filter free (FFF) 6 MV FFF...... radiation isocentre prior to routine use of the cone-beam CT system. The isocentre determination method used in the XVI software is not available to users. The aim of this work is to perform an independent evaluation of the Elekta XVI 4.5 software for isocentre verification with focus on the robustness...... iView GT software. Two images were acquired at each cardinal gantry angle (-180o, -90o , 0o, 90o) at two opposing collimator angles. The images were exported to the conebeam CT software XVI 4.5 where the difference between the ball bearing position in the XYZ-room coordinates (IEC61217...

  18. TU-F-CAMPUS-T-04: An Evaluation of Out-Of-Field Doses for Electron Beams From Modern Varian and Elekta Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C; Nitsch, P; Kudchadker, R; Howell, R; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Accurately determining out-of-field doses when using electron beam radiotherapy is of importance when treating pregnant patients or patients with implanted electronic devices. Scattered doses outside of the applicator field in electron beams have not been broadly investigated, especially since manufacturers have taken different approaches in applicator designs. Methods: In this study, doses outside of the applicator field were measured for electron beams produced by a 10×10 applicator on two Varian 21iXs operating at 6, 9, 12, 16, and 20 MeV, a Varian TrueBeam operating at 6, 9, 12, 16, and 20 MeV, and an Elekta Versa HD operating at 6, 9, 12 and 15 MeV. Peripheral dose profiles and percent depth doses were measured in a Wellhofer water phantom at 100 cm SSD with a Farmer ion chamber. Doses were compared to peripheral photon doses from AAPM’s Task Group #36 report. Results: Doses were highest for the highest electron energies. Doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. Substantial dose differences were observed between different accelerators; the Elekta accelerator had much higher doses than any Varian unit examined. Surprisingly, doses were often similar to, and could be much higher than, doses from photon therapy. Doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Conclusion: The results of this study indicate that proper shielding may be very important when utilizing electron beams, particularly on a Versa HD, while treating pregnant patients or those with implanted electronic devices. Applying a water equivalent bolus of Emax(MeV)/4 thickness (cm) on the patient would reduce fetal dose drastically for all clinical energies and is a practical solution to manage the potentially high peripheral doses seen from modern electron beams. Funding from NIH Grant number: #CA180803.

  19. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    International Nuclear Information System (INIS)

    Park, J; Xu, Q; Xue, J; Zhai, Y; An, L; Chen, Y

    2014-01-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured with scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD 10 of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R 80 matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs

  20. Neutron dose measurements of Varian and Elekta linacs by TLD600 and TLD700 dosimeters and comparison with MCNP calculations.

    Science.gov (United States)

    Nedaie, Hassan Ali; Darestani, Hoda; Banaee, Nooshin; Shagholi, Negin; Mohammadi, Kheirollah; Shahvar, Arjang; Bayat, Esmaeel

    2014-01-01

    High-energy linacs produce secondary particles such as neutrons (photoneutron production). The neutrons have the important role during treatment with high energy photons in terms of protection and dose escalation. In this work, neutron dose equivalents of 18 MV Varian and Elekta accelerators are measured by thermoluminescent dosimeter (TLD) 600 and TLD700 detectors and compared with the Monte Carlo calculations. For neutron and photon dose discrimination, first TLDs were calibrated separately by gamma and neutron doses. Gamma calibration was carried out in two procedures; by standard 60Co source and by 18 MV linac photon beam. For neutron calibration by (241)Am-Be source, irradiations were performed in several different time intervals. The Varian and Elekta linac heads and the phantom were simulated by the MCNPX code (v. 2.5). Neutron dose equivalent was calculated in the central axis, on the phantom surface and depths of 1, 2, 3.3, 4, 5, and 6 cm. The maximum photoneutron dose equivalents which calculated by the MCNPX code were 7.06 and 2.37 mSv.Gy(-1) for Varian and Elekta accelerators, respectively, in comparison with 50 and 44 mSv.Gy(-1) achieved by TLDs. All the results showed more photoneutron production in Varian accelerator compared to Elekta. According to the results, it seems that TLD600 and TLD700 pairs are not suitable dosimeters for neutron dosimetry inside the linac field due to high photon flux, while MCNPX code is an appropriate alternative for studying photoneutron production.

  1. Digital linear accelerator: The advantages for radiotherapy

    International Nuclear Information System (INIS)

    Andric, S.; Maksimovic, M.; Dekic, M.; Clark, T.

    1998-01-01

    Technical performances of Digital Linear Accelerator were presented to point out its advantages for clinical radiotherapy treatment. The accelerator installation is earned out at Military Medical Academy, Radiotherapy Department, by Medes and Elekta companies. The unit offers many technical advantages with possibility of introduction new conformal treatment techniques as stereotactic radiosurgery, total body and total skin irradiation. In the paper are underlined advantages in relation to running conventional accelerator units at Yugoslav radiotherapy departments, both from technical and medical point of view. (author)

  2. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder

    International Nuclear Information System (INIS)

    Kimura, Akihide; Gao, Wei; Lijiang, Zeng

    2010-01-01

    This paper presents measurement of the X-directional position and the Z-directional out-of-straightness of a precision linear air-bearing stage with a two-degree-of-freedom (two-DOF) linear encoder, which is an optical displacement sensor for simultaneous measurement of the two-DOF displacements. The two-DOF linear encoder is composed of a reflective-type one-axis scale grating and an optical sensor head. A reference grating is placed perpendicular to the scale grating in the optical sensor head. Two-DOF displacements can be obtained from interference signals generated by the ±1 order diffracted beams from two gratings. A prototype two-DOF linear encoder employing the scale grating with the grating period of approximately 1.67 µm measured the X-directional position and the Z-directional out-of-straightness of the linear air-bearing stage

  3. Improved measurement linearity and precision for AMCW time-of-flight range imaging cameras.

    Science.gov (United States)

    Payne, Andrew D; Dorrington, Adrian A; Cree, Michael J; Carnegie, Dale A

    2010-08-10

    Time-of-flight range imaging systems utilizing the amplitude modulated continuous wave (AMCW) technique often suffer from measurement nonlinearity due to the presence of aliased harmonics within the amplitude modulation signals. Typically a calibration is performed to correct these errors. We demonstrate an alternative phase encoding approach that attenuates the harmonics during the sampling process, thereby improving measurement linearity in the raw measurements. This mitigates the need to measure the system's response or calibrate for environmental changes. In conjunction with improved linearity, we demonstrate that measurement precision can also be increased by reducing the duty cycle of the amplitude modulated illumination source (while maintaining overall illumination power).

  4. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

    Science.gov (United States)

    Law, Charity W; Chen, Yunshun; Shi, Wei; Smyth, Gordon K

    2014-02-03

    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.

  5. SU-F-J-149: Beam and Cryostat Scatter Characteristics of the Elekta MR-Linac

    Energy Technology Data Exchange (ETDEWEB)

    Duglio, M; Towe, S; Roberts, D [Elekta Limited, Crawley, West Sussex (United Kingdom)

    2016-06-15

    Purpose: The Elekta MR-Linac combines a digital linear accelerator system with a 1.5T Philips MRI machine. This study aimed to determine key characteristic information regarding the MR-Linac beam and in particular it evaluated the effect of the MR cryostat on the out of field scatter dose. Methods: Tissue phantom ratios, profiles and depth doses were acquired in plastic water with an IC-profiler or with an MR compatible water tank using multiple system configurations (Full (B0= 1.5T), Full (B0=0T) and No cryostat). Additionally, an in-house CAD based Monte Carlo code based on Penelope was used to provide comparative data. Results: With the cryostat in place and B0=0T, the measured TPR for the MR Linac system was 0.702, indicating an energy of around 7MV. Without the cryostat, the measured TPR was 0.669. For the Full (B0=0T) case, out of field dose at a depth of 10 cm in the isocentric plane, 5 cm from the field edge was 0.8%, 3.1% and 5.4% for 3×3 cm{sup 2}, 10×10 cm{sup 2} and 20×20 cm{sup 2} fields respectively.The out of field dose (averaged between 5 cm and 10 cm beyond the field edges) in the “with cryostat” case is 0.78% (absolute difference) higher than without the cryostat for clinically relevant field sizes (i.e. 10×10 cm{sup 2}) and comparable to measured conventional 6MV treatment beams at a depth of 10 cm (within 0.1% between 5 cm and 6 cm from field edge). At dose maximum and at 5 cm from the field edge, the “with cryostat” out of field scatter for a 10×10 cm{sup 2} field is 1.5% higher than “without cryostat', with a modest increase (0.9%) compared to Agility 6MV in the same conditions. Conclusion: The study has presented typical characteristics of the MR-Linac beam and determined that out of field dose is comparable to conventional treatment beams. All authors are employed by Elekta Ltd., who are developing an MR-Linac.

  6. The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R.

    Science.gov (United States)

    Pang, Haotian; Liu, Han; Vanderbei, Robert

    2014-02-01

    We develop an R package fastclime for solving a family of regularized linear programming (LP) problems. Our package efficiently implements the parametric simplex algorithm, which provides a scalable and sophisticated tool for solving large-scale linear programs. As an illustrative example, one use of our LP solver is to implement an important sparse precision matrix estimation method called CLIME (Constrained L 1 Minimization Estimator). Compared with existing packages for this problem such as clime and flare, our package has three advantages: (1) it efficiently calculates the full piecewise-linear regularization path; (2) it provides an accurate dual certificate as stopping criterion; (3) it is completely coded in C and is highly portable. This package is designed to be useful to statisticians and machine learning researchers for solving a wide range of problems.

  7. A linear actuator for precision positioning of dual objects

    International Nuclear Information System (INIS)

    Peng, Yuxin; Cao, Jie; Guo, Zhao; Yu, Haoyong

    2015-01-01

    In this paper, a linear actuator for precision positioning of dual objects is proposed based on a double friction drive principle using a single piezoelectric element (PZT). The linear actuator consists of an electromagnet and a permanent magnet, which are connected by the PZT. The electromagnet serves as an object 1, and another object (object 2) is attached on the permanent magnet by the magnetic force. For positioning the dual objects independently, two different friction drive modes can be alternated by an on–off control of the electromagnet. When the electromagnet releases from the guide way, it can be driven by impact friction force generated by the PZT. Otherwise, when the electromagnet clamps on the guide way and remains stationary, the object 2 can be driven based on the principle of smooth impact friction drive. A prototype was designed and constructed and experiments were carried out to test the basic performance of the actuator. It has been verified that with a compact size of 31 mm (L) × 12 mm (W) × 8 mm (H), the two objects can achieve long strokes on the order of several millimeters and high resolutions of several tens of nanometers. Since the proposed actuator allows independent movement of two objects by a single PZT, the actuator has the potential to be constructed compactly. (paper)

  8. TH-AB-201-10: Portal Dosimetry with Elekta IViewDose:Performance of the Simplified Commissioning Approach Versus Full Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kydonieos, M; Folgueras, A; Florescu, L; Cybulski, T; Marinos, N; Thompson, G; Sayeed, A [Elekta Limited, Crawley, West Sussex (United Kingdom); Rozendaal, R; Olaciregui-Ruiz, I [Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Noord-Holland (Netherlands); Subiel, A; Patallo, I Silvestre [National Physical Laboratory, London (United Kingdom)

    2016-06-15

    Purpose: Elekta recently developed a solution for in-vivo EPID dosimetry (iViewDose, Elekta AB, Stockholm, Sweden) in conjunction with the Netherlands Cancer Institute (NKI). This uses a simplified commissioning approach via Template Commissioning Models (TCMs), consisting of a subset of linac-independent pre-defined parameters. This work compares the performance of iViewDose using a TCM commissioning approach with that corresponding to full commissioning. Additionally, the dose reconstruction based on the simplified commissioning approach is validated via independent dose measurements. Methods: Measurements were performed at the NKI on a VersaHD™ (Elekta AB, Stockholm, Sweden). Treatment plans were generated with Pinnacle 9.8 (Philips Medical Systems, Eindhoven, The Netherlands). A farmer chamber dose measurement and two EPID images were used to create a linac-specific commissioning model based on a TCM. A complete set of commissioning measurements was collected and a full commissioning model was created.The performance of iViewDose based on the two commissioning approaches was compared via a series of set-to-work tests in a slab phantom. In these tests, iViewDose reconstructs and compares EPID to TPS dose for square fields, IMRT and VMAT plans via global gamma analysis and isocentre dose difference. A clinical VMAT plan was delivered to a homogeneous Octavius 4D phantom (PTW, Freiburg, Germany). Dose was measured with the Octavius 1500 array and VeriSoft software was used for 3D dose reconstruction. EPID images were acquired. TCM-based iViewDose and 3D Octavius dose distributions were compared against the TPS. Results: For both the TCM-based and the full commissioning approaches, the pass rate, mean γ and dose difference were >97%, <0.5 and <2.5%, respectively. Equivalent gamma analysis results were obtained for iViewDose (TCM approach) and Octavius for a VMAT plan. Conclusion: iViewDose produces similar results with the simplified and full commissioning

  9. Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Albert, Magnus

    2009-01-01

    We demonstrate a general technique to achieve a precise radial displacement of the nodal line of the radiofrequency (rf) field in a linear Paul trap. The technique relies on the selective adjustment of the load capacitance of the trap electrodes, achieved through the addition of capacitors...... to the basic resonant rf circuit used to drive the trap. Displacements of up to ~100 µm with micrometer precision are measured using a combination of fluorescence images of ion Coulomb crystals and coherent coupling of such crystals to a mode of an optical cavity. The displacements are made without measurable...

  10. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    Science.gov (United States)

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Design of decoupled dual servo stage with voice coil motor and linear motor for XY long stroke ultra-precision scanning system

    Science.gov (United States)

    Kim, Ki-Hyun; Choi, Young-Man; Gweon, Dae-Gab; Hong, Dong-Pyo; Kim, Koung-Suk; Lee, Suk-Won; Lee, Moon-Gu

    2005-12-01

    A decoupled dual servo (DDS) stage for ultra-precision scanning system is introduced in this paper. The proposed DDS consists of a 3 axis fine stage for handling and carrying workpieces and a XY coarse stage. Especially, the DDS uses three voice coil motors (VCM) as a planar actuation system of the fine stage to reduce the disturbances due to any mechanical connections with its coarse stage. VCMs are governed by Lorentz law. According to the law and its structure, there are no mechanical connections between coils and magnetic circuits. Moreover, the VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about 5mm2. To break that hurdle, the coarse stage with linear motors is used for the fine stage to move about 200mm2. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. Using MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. For linear motors, Halbach magnet linear motor is proposed and optimally designed in this paper. In addition, for their smooth movements without any frictions, guide systems of the DDS are composed of air bearings. And then, precisely to get their positions, linear scales with 0.1um resolution are used for the coarse's XY motions and plane mirror laser interferometers with 20nm for the fine's XYθz. On scanning, the two stages have same trajectories and are controlled. The control algorithm is Parallel method. The embodied ultra-precision scanning system has about 100nm tracking error and in-positioning stability.

  12. SU-F-T-646: SBRT Lung: Moving Beyond the 3D Conformal Paradigm with An Elekta VersaHD Accelerator

    International Nuclear Information System (INIS)

    Dalhart, A; Hyer, D; Allen, B; Flynn, R; Johnston, H

    2016-01-01

    Purpose: To develop a volumetric modulated arc therapy (VMAT) planning and delivery methodology for lung stereotactic body radiation therapy (SBRT) that addresses the unique geometric challenges presented when using an Elekta VersaHD linear accelerator. Methods: The Elekta VersaHD imaging panels are fixed at 160cm SID when deployed, limiting the ability to perform non-coplanar treatments due to collisions with the treatment table. The panels can be folded in a stored position for non-coplanar treatments, but in this configuration, longitudinal table travel is restricted by the space required for the folded panels. To overcome these design features, a non-coplanar VMAT technique was designed and evaluated for 6 patients that uses a superiorly placed isocenter near the apex of the lung. A coplanar VMAT technique with isocenter placement within the target was also assessed for each patient. Non-coplanar plans included three arcs, totalling 340° of arc angle, while coplanar plans included two arcs, totalling 280° of arc angle. Each technique avoided the contralateral lung and major overlap on patient skin. Corresponding 3DCRT plans were used as a baseline for each patient in evaluating VMAT plans. Results: Coplanar and noncoplanar VMAT plans yielded a high dose conformity index (CI) improvement of 6% and low dose CI improvements of 9% and 11%, respectively, over corresponding 3DCRT plans. While both VMAT techniques provided greater skin sparing compared to 3DCRT, the non-coplanar technique offered an improvement of 20% over the coplanar approach. Treatment time with for VMAT was ∼2.5 minutes compared to ∼10 minutes for 3DCRT. Conclusion: Two VMAT techniques were developed for lung SBRT that account for machine design limitations and provide greater dose conformity and normal tissue sparing than 3DCRT plans. The non-coplanar VMAT plans showed a marginal improvement over coplanar VMAT plans and may not warrant the additional complexity.

  13. Validation of a new control system for Elekta accelerators facilitating continuously variable dose rate

    DEFF Research Database (Denmark)

    Bertelsen, Anders; Lorenzen, Ebbe L; Brink, Carsten

    2011-01-01

    ) as well as BVDR. Using CVDR opposed to BVDR for VMAT has the potential of reducing the treatment time but may lead to lower dosimetric accuracy due to faster moving accelerator parts. Using D7 and a test version of Integrity, differences in ability to control the accelerator, treatment efficiency......Elekta accelerators controlled by the current clinically used accelerator control system, Desktop 7.01 (D7), uses binned variable dose rate (BVDR) for volumetric modulated arc therapy (VMAT). The next version of the treatment control system (Integrity) supports continuously variable dose rate (CVDR...

  14. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    Directory of Open Access Journals (Sweden)

    Dongxu Ren

    2016-04-01

    Full Text Available A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m.

  15. Extending the precision and efficiency of the all-electron full-potential linearized augmented plane-wave density-functional theory method

    International Nuclear Information System (INIS)

    Michalicek, Gregor

    2015-01-01

    Density functional theory (DFT) is the most widely-used first-principles theory for analyzing, describing and predicting the properties of solids based on the fundamental laws of quantum mechanics. The success of the theory is a consequence of powerful approximations to the unknown exchange and correlation energy of the interacting electrons and of sophisticated electronic structure methods that enable the computation of the density functional equations on a computer. A widely used electronic structure method is the full-potential linearized augmented plane-wave (FLAPW) method, that is considered to be one of the most precise methods of its kind and often referred to as a standard. Challenged by the demand of treating chemically and structurally increasingly more complex solids, in this thesis this method is revisited and extended along two different directions: (i) precision and (ii) efficiency. In the full-potential linearized augmented plane-wave method the space of a solid is partitioned into nearly touching spheres, centered at each atom, and the remaining interstitial region between the spheres. The Kohn-Sham orbitals, which are used to construct the electron density, the essential quantity in DFT, are expanded into a linearized augmented plane-wave basis, which consists of plane waves in the interstitial region and angular momentum dependent radial functions in the spheres. In this thesis it is shown that for certain types of materials, e.g., materials with very broad electron bands or large band gaps, or materials that allow the usage of large space-filling spheres, the variational freedom of the basis in the spheres has to be extended in order to represent the Kohn-Sham orbitals with high precision over a large energy spread. Two kinds of additional radial functions confined to the spheres, so-called local orbitals, are evaluated and found to successfully eliminate this error. A new efficient basis set is developed, named linearized augmented lattice

  16. Precision Interval Estimation of the Response Surface by Means of an Integrated Algorithm of Neural Network and Linear Regression

    Science.gov (United States)

    Lo, Ching F.

    1999-01-01

    The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.

  17. Five degree-of-freedom control of an ultra-precision magnetically-suspended linear bearing. Ph.D. Thesis - MIT

    Science.gov (United States)

    Trumper, David L.; Slocum, A. H.

    1991-01-01

    The authors constructed a high precision linear bearing. A 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is suspended and controlled in five degrees of freedom by seven electromagnets. The position of the platen is measured by five capacitive probes which have nanometer resolution. The suspension acts as a linear bearing, allowing linear travel of 50 mm in the sixth degree of freedom. In the laboratory, this bearing system has demonstrated position stability of 5 nm peak-to-peak. This is believed to be the highest position stability yet demonstrated in a magnetic suspension system. Performance at this level confirms that magnetic suspensions can address motion control requirements at the nanometer level. The experimental effort associated with this linear bearing system is described. Major topics are the development of models for the suspension, implementation of control algorithms, and measurement of the actual bearing performance. Suggestions for the future improvement of the bearing system are given.

  18. Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high precision positioning system

    International Nuclear Information System (INIS)

    Lee, Moon G.; Gweon, Dae-Gab

    2004-01-01

    A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here

  19. A comprehensive tool to analyse dynamic log files from an Elekta-Synergy accelerator

    International Nuclear Information System (INIS)

    Arumugam, Sankar; Xing, Aitang; Holloway, Lois; Pagulayan, Claire

    2014-01-01

    This study presents the development of a software tool 'Treat Check' to analyse the dynamic log files from an Elekta – Synergy accelerator. The software generates formatted output in the form of a plot presenting errors in various treatment delivery parameters such as gantry angle, Multi Leaf Collimator (MLC) leaf position, jaw position and Monitor Units (MU) for each of the control-points (CP) of the treatment beam. The plots are automatically saved in Portable Document Format (pdf). The software also has the functionality to introduce these treatment delivery errors into the original plan in the Pinnacle (Philips) treatment planning system (TPS) in order to assess the clinical impact of treatment delivery errors on delivered dose.

  20. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning.

    Science.gov (United States)

    Sarkar, B; Pradhan, A; Munshi, A

    2016-01-01

    Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk

  1. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  2. Impact of polarized e- and e+ beams at a future linear collider and a Z-factory. Pt. I. Fundamentals in polarization and electroweak precision physics

    International Nuclear Information System (INIS)

    Moortgat-Pick, Gudrid

    2010-12-01

    The main goal of new physics searches at a future Linear Collider is the precise determination of the underlying new physics model. The physics potential of the ILC as well as the multi-TeV option collider CLIC have to be optimized with regard to expected results from the LHC. The exploitation of spin effects plays a crucial role in this regard. After a short status report of the Linear Collider design and physics requirements, this article explains fundamentals in polarization and provides an overview of the impact of these spin effects in electroweak precision physics. (orig.)

  3. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4 cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.

  4. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  5. Precision Oncology: Between Vaguely Right and Precisely Wrong.

    Science.gov (United States)

    Brock, Amy; Huang, Sui

    2017-12-01

    Precision Oncology seeks to identify and target the mutation that drives a tumor. Despite its straightforward rationale, concerns about its effectiveness are mounting. What is the biological explanation for the "imprecision?" First, Precision Oncology relies on indiscriminate sequencing of genomes in biopsies that barely represent the heterogeneous mix of tumor cells. Second, findings that defy the orthodoxy of oncogenic "driver mutations" are now accumulating: the ubiquitous presence of oncogenic mutations in silent premalignancies or the dynamic switching without mutations between various cell phenotypes that promote progression. Most troublesome is the observation that cancer cells that survive treatment still will have suffered cytotoxic stress and thereby enter a stem cell-like state, the seeds for recurrence. The benefit of "precision targeting" of mutations is inherently limited by this counterproductive effect. These findings confirm that there is no precise linear causal relationship between tumor genotype and phenotype, a reminder of logician Carveth Read's caution that being vaguely right may be preferable to being precisely wrong. An open-minded embrace of the latest inconvenient findings indicating nongenetic and "imprecise" phenotype dynamics of tumors as summarized in this review will be paramount if Precision Oncology is ultimately to lead to clinical benefits. Cancer Res; 77(23); 6473-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua [Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 and Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States); NRE, 202 Nuclear Science Building, University of Florida, P.O. Box 118300, Gainesville, Florida 32611-8300 and Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); ViewRay Inc., 2 Thermo Fisher Way, Oakwood Village, Ohio 44146 (United States); Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States)

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  7. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    International Nuclear Information System (INIS)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-01-01

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm 3 and a diode of surface area 0.64 mm 2 . The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm 2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a ±0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in

  8. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D; Xie, R

    2016-01-01

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  9. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States); Xie, R [Ironwood Cancer and Research Centers, Chandler, AZ (United States)

    2016-06-15

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  10. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy.

    Science.gov (United States)

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Sawada, Kinya; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-12-01

    Log file-based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file-based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose ( P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.

  11. Fast and precise luminosity measurement at the international linear

    Indian Academy of Sciences (India)

    The detectors of the ILC will feature a calorimeter system in the very forward region. The system comprises mainly two electromagnetic calorimeters: LumiCal, which is dedicated to the measurement of the absolute luminosity with highest precision and BeamCal, which uses the energy deposition from beamstrahlung pairs ...

  12. Fast and precise luminosity measurement at the international linear ...

    Indian Academy of Sciences (India)

    6. — journal of. December 2007 physics pp. 1151–1157. Fast and precise luminosity measurement ... The fast investigation of the collision quality for intrabunch feedback and the ... consisting of the sensor, the absorber and an interconnection structure. 2. ... outer radius of BeamCal is increased to keep the angular overlap.

  13. Mechanical design of a precision linear flexural stage for 3D x-ray diffraction microscope at the Advanced Photon Source

    Science.gov (United States)

    Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.

    2015-09-01

    The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.

  14. The characterization of unflattened photon beams from a 6 MV linear accelerator

    International Nuclear Information System (INIS)

    Cashmore, Jason

    2008-01-01

    Commissioning data have been measured for an Elekta Precise linear accelerator running at 6 MV without a flattening filter with the aim of studying the effects of flattening filter removal on machine operation and beam characterization. Modern radiotherapy practice now routinely relies on the use of fluence modifying techniques such as IMRT, i.e. the active production of non-flat beams. For these techniques the flattening filter should not be necessary. It is also possible that the increased intensity around the central axis associated with unflattened beams may be useful for conventional treatment planning by acting as a field-in-field or integrated boost technique. For this reason open and wedged field data are presented. Whilst problems exist in running the machine filter free clinically, this paper shows that in many ways the beam is actually more stable, exhibiting almost half the variation in field symmetry for changes in steering and bending currents. Dosimetric benefits are reported here which include a reduction in head scatter by approx. 70%, decreased penumbra (0.5 mm), lower dose outside of the field edge (11%) and a doubling in dose rate (2.3 times for open and 1.9 times for wedged fields). Measurements also show that reduced scatter also reduces leakage radiation by approx. 60%, significantly lowering whole body doses. The greatest benefit of filter-free use is perceived to be for IMRT where increased dose rate combined with reduced head scatter and leakage radiation should lead to improved dose calculation, giving simpler, faster and more accurate dose delivery with reduced dose to normal tissues

  15. Design of a linear-motion dual-stage actuation system for precision control

    International Nuclear Information System (INIS)

    Dong, W; Tang, J; ElDeeb, Y

    2009-01-01

    Actuators with high linear-motion speed, high positioning resolution and a long motion stroke are needed in many precision machining systems. In some current systems, voice coil motors (VCMs) are implemented for servo control. While the voice coil motors may provide the long motion stroke needed in many applications, the main obstacle that hinders the improvement of the machining accuracy and efficiency is their limited bandwidth. To fundamentally solve this issue, we propose to develop a dual-stage actuation system that consists of a voice coil motor that covers the coarse motion, and a piezoelectric stack actuator that induces the fine motion, thus enhancing the positioning accuracy. The focus of this present research is the mechatronics design and synthesis of the new actuation system. In particular, a flexure hinge based mechanism is developed to provide a motion guide and preload to the piezoelectric stack actuator that is serially connected to the voice coil motor. This mechanism is built upon parallel plane flexure hinges. A series of numerical and experimental studies are carried out to facilitate the system design and the model identification. The effectiveness of the proposed system is demonstrated through open-loop studies and preliminary closed-loop control practice. While the primary goal of this particular design is aimed at enhancing optical lens machining, the concept and approach outlined are generic and can be extended to a variety of applications

  16. A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation.

    Science.gov (United States)

    Sikora, M; Dohm, O; Alber, M

    2007-08-07

    A dedicated, efficient Monte Carlo (MC) accelerator head model for intensity modulated stereotactic radiosurgery treatment planning is needed to afford a highly accurate simulation of tiny IMRT fields. A virtual source model (VSM) of a mini multi-leaf collimator (MLC) (the Elekta Beam Modulator (EBM)) is presented, allowing efficient generation of particles even for small fields. The VSM of the EBM is based on a previously published virtual photon energy fluence model (VEF) (Fippel et al 2003 Med. Phys. 30 301) commissioned with large field measurements in air and in water. The original commissioning procedure of the VEF, based on large field measurements only, leads to inaccuracies for small fields. In order to improve the VSM, it was necessary to change the VEF model by developing (1) a method to determine the primary photon source diameter, relevant for output factor calculations, (2) a model of the influence of the flattening filter on the secondary photon spectrum and (3) a more realistic primary photon spectrum. The VSM model is used to generate the source phase space data above the mini-MLC. Later the particles are transmitted through the mini-MLC by a passive filter function which significantly speeds up the time of generation of the phase space data after the mini-MLC, used for calculation of the dose distribution in the patient. The improved VSM model was commissioned for 6 and 15 MV beams. The results of MC simulation are in very good agreement with measurements. Less than 2% of local difference between the MC simulation and the diamond detector measurement of the output factors in water was achieved. The X, Y and Z profiles measured in water with an ion chamber (V = 0.125 cm(3)) and a diamond detector were used to validate the models. An overall agreement of 2%/2 mm for high dose regions and 3%/2 mm in low dose regions between measurement and MC simulation for field sizes from 0.8 x 0.8 cm(2) to 16 x 21 cm(2) was achieved. An IMRT plan film verification

  17. Microhartree precision in density functional theory calculations

    Science.gov (United States)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  18. Precision digital control systems

    Science.gov (United States)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  19. Thorium spectrophotometric analysis with high precision

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  20. Independent checks of linear accelerators equipped with multileaf collimators

    International Nuclear Information System (INIS)

    Pavlikova, I.; Ekendahl, D.; Horakova, I.

    2005-01-01

    National Radiation Protection Institute (NRPI) provides independent checks of therapeutic equipment as a part of state supervision. In the end of 2003, the audit was broaden for linear accelerators equipped with multileaf collimators (MLC). NRPI provides TLD postal audits and on-site independent checks. This contribution describes tests for multileaf collimators and intensity modulated radiation therapy (IMRT) technique that are accomplished within the independent on-site check of linear accelerators. The character and type of tests that are necessary to pursue for multileaf collimator depends on application technique. There are three basic application of the MLC. The first we call 'static MLC' and it serves for replacing conventional blocking or for adjusting the field shape to match the beam's-eye view projection of a planning target volume during an arc rotation of the x-ray beam. This procedure is called conformal radiotherapy. The most advanced technique with MLC is intensity modulated radiation therapy. The dose can be delivered to the patient with IMRT in various different ways: dynamic MLC, segmented MLC and IMRT arc therapy. Independent audits represent an important instrument of quality assurance. Methodology for independent check of static MLC was successfully verified on two types of accelerators: Varian and Elekta. Results from pilot measurements with dynamic MLC imply that the methodology is applicable for Varian accelerators. In the future, the experience with other types of linear accelerators will contribute to renovation, modification, and broaden independent checks methodology. (authors)

  1. A METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS BASED ON MULTIOBJECTIVE LINEAR PROGRAMMING TECHNIQUE

    OpenAIRE

    M. ZANGIABADI; H. R. MALEKI

    2007-01-01

    In the real-world optimization problems, coefficients of the objective function are not known precisely and can be interpreted as fuzzy numbers. In this paper we define the concepts of optimality for linear programming problems with fuzzy parameters based on those for multiobjective linear programming problems. Then by using the concept of comparison of fuzzy numbers, we transform a linear programming problem with fuzzy parameters to a multiobjective linear programming problem. To this end, w...

  2. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  3. Extraction of electron beam dose parameters from EBT2 film data scored in a mini phantom.

    Science.gov (United States)

    O'Reilly, Dedri; Smit, Cobus J L; du Plessis, Freek C P

    2013-09-01

    Quality assurance of medical linear accelerators includes dosimetric parameter measurement of therapeutic electron beams e.g. relative dose at a depth of 80% (R₈₀). This parameter must be within a tolerance of 0.2 cm of the declared value. Cumbersome water tank measurements can be regarded as a benchmark to measure electron depth dose curves. A mini-phantom was designed and built, in which a strip of GAFCHROMIC® EBT2 film could be encased tightly for electron beam depth dose measurement. Depth dose data were measured for an ELEKTA Sl25 MLC, ELEKTA Precise, and ELEKTA Synergy (Elekta Oncology Systems, Crawley, UK) machines. The electron beam energy range was between 4 and 22 MeV among the machines. A 10 × 10 cm² electron applicator with 95 cm source-surface-distance was used on all the machines. 24 h after irradiation, the EBT2 film strips were scanned on Canon CanoScan N670U scanner. Afterwards, the data were analysed with in-house developed software that entailed optical density to dose conversion, and optimal fitting of the PDD data to de-noise the raw data. From the PDD data R₈₀ values were solved for and compared with acceptance values. A series of tests were also carried out to validate the use of the scanner for film Dosimetry. These tests are presented in this study. It was found that this method of R₈₀ evaluation was reliable with good agreement with benchmark water tank measurements using a commercial parallel plate ionization chamber as the radiation detector. The EBT2 film data yielded R₈₀ values that were on average 0.06 cm different from benchmark water tank measured R₈₀ values.

  4. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    International Nuclear Information System (INIS)

    Yu, Xiangzhi; Gillmer, Steven R.; Woody, Shane C.; Ellis, Jonathan D.

    2016-01-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  5. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Woody, Shane C. [InSituTec Incorporated, 7140 Weddington Road, Concord, North Carolina 28027 (United States); Ellis, Jonathan D. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); The Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  6. High precision spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  7. Precision synchrotron radiation detectors

    International Nuclear Information System (INIS)

    Levi, M.; Rouse, F.; Butler, J.

    1989-03-01

    Precision detectors to measure synchrotron radiation beam positions have been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 /mu/m on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely-aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. Also, detectors of synchrotron radiation using the charge developed by the ejection of Compton-recoil electrons from an array of fine wires are being developed. 4 refs., 5 figs., 1 tab

  8. Geant4 simulation of the Elekta XVI kV CBCT unit for accurate description of potential late toxicity effects of image-guided radiotherapy

    International Nuclear Information System (INIS)

    Brochu, F M; Burnet, N G; Jena, R; Plaistow, R; Thomas, S J; Parker, M A

    2014-01-01

    This paper describes the modelisation of the Elekta XVI Cone Beam Computed Tomography (CBCT) machine components with Geant4 and its validation against calibration data taken for two commonly used machine setups. Preliminary dose maps of simulated CBCTs coming from this modelisation work are presented. This study is the first step of a research project, GHOST, aiming to improve the understanding of late toxicity risk in external beam radiotherapy patients by simulating dose depositions integrated from different sources (imaging, treatment beam) over the entire treatment plan. The second cancer risk will then be derived from different models relating irradiation dose and second cancer risk. (paper)

  9. Super-linear Precision in Simple Neural Population Codes

    Science.gov (United States)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  10. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy

    International Nuclear Information System (INIS)

    Petrovic, N.; Krestic-Vesovic, J.; Stojanovic, D.; Ciraj-Bjelac, O.; Lazarevic, D.; Kovacevic, M.

    2011-01-01

    When high-energy photon beams are used for irradiation in radiotherapy, neutrons that are the result of photonuclear reactions create activation products that affect the occupational dose of radiotherapy staff. For the assessment of activation products in situ gamma spectroscopy was performed parallel to dose-rate measurements following irradiation, by using a high-energy photon beam from a linear accelerator Elekta Precise (Elekta, Stockholm (Sweden)) used in radiotherapy. The major identified activation products were the following radioisotopes: 2 '8Al, 24 Na, 56 Mn, 5 4 M n, 187 W, 64 Cu and 62 Cu. Based on the typical workload and dose-rate measurement, the assessed additional annual occupational dose ranged from 1.7 to 0.25 mSv. As the measured dose rate arising from the activation products rapidly decreases as a function of time, the assessed additional dose is negligible after 10 min following irradiation. To keep the occupational dose as low as reasonably achievable, it is recommended to delay entrance to the therapy room at least 2-4 min, when high-energy photons are used. This would reduce the effective dose by 30 %. (authors)

  11. CLIC e+e- Linear Collider Studies

    CERN Document Server

    Dannheim, Dominik; Linssen, Lucie; Schulte, Daniel; Simon, Frank; Stapnes, Steinar; Toge, Nobukazu; Weerts, Harry; Wells, James

    2012-01-01

    This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a \\sim125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up t...

  12. A precise measurement of the left-right asymmetry of Z Boson production at the SLAC linear collider

    International Nuclear Information System (INIS)

    1994-09-01

    We present a precise measurement of the left-right cross section asymmetry of Z boson production (A LR ) observed in 1993 data at the SLAC linear collider. The A LR experiment provides a direct measure of the effective weak mixing angle through the initial state couplings of the electron to the Z. During the 1993 run of the SLC, the SLD detector recorded 49,392 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. A Compton polarimeter measured the luminosity-weighted electron polarization to be (63.4±1.3)%. ALR was measured to be 0.1617±0.0071(stat.)±0.0033(syst.), which determines the effective weak mixing angle to be sin 2 θ W eff = 0.2292±0.0009(stat.)±0.0004(syst.). This measurement of A LR is incompatible at the level of two standard deviations with the value predicted by a fit of several other electroweak measurements to the Standard Model

  13. A precise measurement of the left-right asymmetry of Z Boson production at the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    We present a precise measurement of the left-right cross section asymmetry of Z boson production (A{sub LR}) observed in 1993 data at the SLAC linear collider. The A{sub LR} experiment provides a direct measure of the effective weak mixing angle through the initial state couplings of the electron to the Z. During the 1993 run of the SLC, the SLD detector recorded 49,392 Z events produced by the collision of longitudinally polarized electrons on unpolarized positrons at a center-of-mass energy of 91.26 GeV. A Compton polarimeter measured the luminosity-weighted electron polarization to be (63.4{+-}1.3)%. ALR was measured to be 0.1617{+-}0.0071(stat.){+-}0.0033(syst.), which determines the effective weak mixing angle to be sin {sup 2}{theta}{sub W}{sup eff} = 0.2292{+-}0.0009(stat.){+-}0.0004(syst.). This measurement of A{sub LR} is incompatible at the level of two standard deviations with the value predicted by a fit of several other electroweak measurements to the Standard Model.

  14. STANFORD (SLAC): Precision electroweak result

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Precision testing of the electroweak sector of the Standard Model has intensified with the recent publication* of results from the SLD collaboration's 1993 run on the Stanford Linear Collider, SLC. Using a highly polarized electron beam colliding with an unpolarized positron beam, SLD physicists measured the left-right asymmetry at the Z boson resonance with dramatically improved accuracy over 1992

  15. Linear Colliders

    International Nuclear Information System (INIS)

    Alcaraz, J.

    2001-01-01

    After several years of study e''+ e''- linear colliders in the TeV range have emerged as the major and optimal high-energy physics projects for the post-LHC era. These notes summarize the present status form the main accelerator and detector features to their physics potential. The LHC era. These notes summarize the present status, from the main accelerator and detector features to their physics potential. The LHC is expected to provide first discoveries in the new energy domain, whereas an e''+ e''- linear collider in the 500 GeV-1 TeV will be able to complement it to an unprecedented level of precision in any possible areas: Higgs, signals beyond the SM and electroweak measurements. It is evident that the Linear Collider program will constitute a major step in the understanding of the nature of the new physics beyond the Standard Model. (Author) 22 refs

  16. Mechanics and Physics of Precise Vacuum Mechanisms

    CERN Document Server

    Deulin, E. A; Panfilov, Yu V; Nevshupa, R. A

    2010-01-01

    In this book the Russian expertise in the field of the design of precise vacuum mechanics is summarized. A wide range of physical applications of mechanism design in electronic, optical-electronic, chemical, and aerospace industries is presented in a comprehensible way. Topics treated include the method of microparticles flow regulation and its determination in vacuum equipment and mechanisms of electronics; precise mechanisms of nanoscale precision based on magnetic and electric rheology; precise harmonic rotary and not-coaxial nut-screw linear motion vacuum feedthroughs with technical parameters considered the best in the world; elastically deformed vacuum motion feedthroughs without friction couples usage; the computer system of vacuum mechanisms failure predicting. This English edition incorporates a number of features which should improve its usefulness as a textbook without changing the basic organization or the general philosophy of presentation of the subject matter of the original Russian work. Exper...

  17. Spectral theories for linear differential equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  18. Ultra-Low-Dropout Linear Regulator

    Science.gov (United States)

    Thornton, Trevor; Lepkowski, William; Wilk, Seth

    2011-01-01

    A radiation-tolerant, ultra-low-dropout linear regulator can operate between -150 and 150 C. Prototype components were demonstrated to be performing well after a total ionizing dose of 1 Mrad (Si). Unlike existing components, the linear regulator developed during this activity is unconditionally stable over all operating regimes without the need for an external compensation capacitor. The absence of an external capacitor reduces overall system mass/volume, increases reliability, and lowers cost. Linear regulators generate a precisely controlled voltage for electronic circuits regardless of fluctuations in the load current that the circuit draws from the regulator.

  19. Precise and fast beam energy measurement at the international linear collider

    International Nuclear Information System (INIS)

    Viti, Michele

    2010-02-01

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10 34 cm -2 s -1 . For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of ΔE b /E b =10 -4 . (orig.)

  20. A Future Linear Collider with Polarised Beams: Searches for New Physics

    International Nuclear Information System (INIS)

    Moortgat-Pick, Gudrid

    2003-01-01

    There exists a world-wide consensus for a future e+e- Linear Collider in the energy range between √(s) =500-1000 GeV as the next large facility in HEP. The Linear Collider has a large physics potential for the discovery of new physics beyond the Standard Model and for precision studies of the Standard Model itself. It is well suited to complement and extend the physics program of the LHC. The use of polarised beams at a Linear Collider will be a powerful tool. In this paper we will summarize some highlights of high precision tests of the electroweak theory and of searches for physics beyond the Standard Model at a future Linear Collider with polarised e- and e+ beams

  1. Precise and fast beam energy measurement at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Viti, Michele

    2010-02-15

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)

  2. Linac-based extracranial radiosurgery with Elekta volumetric modulated arc therapy and an anatomy-based treatment planning system: Feasibility and initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Cilla, Savino, E-mail: savinocilla@gmail.com [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Ianiro, Anna; Viola, Pietro; Craus, Maurizio [Medical Physics Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Valentini, Vincenzo [Radiotherapy Unit, Fondazione di Ricerca e Cura “Giovanni Paolo II”, Università Cattolica del Sacro Cuore, Campobasso (Italy); Radiation Oncology Unit, Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Roma (Italy); Piermattei, Angelo [Medical Physics Unit, Policlinico Universitario “A. Gemelli”, Università Cattolica del Sacro Cuore, Roma (Italy); Morganti, Alessio G. [Radiation Oncology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, S. Orsola-Malpighi Hospital, University of Bologna, Bologna (Italy)

    2016-07-01

    We reported our initial experience in using Elekta volumetric modulated arc therapy (VMAT) and an anatomy-based treatment planning system (TPS) for single high-dose radiosurgery (SRS-VMAT) of liver metastases. This study included a cohort of 12 patients treated with a 26-Gy single fraction. Single-arc VMAT plans were generated with Ergo++ TPS. The prescription isodose surface (IDS) was selected to fulfill the 2 following criteria: 95% of planning target volume (PTV) reached 100% of the prescription dose and 99% of PTV reached a minimum of 90% of prescription dose. A 1-mm multileaf collimator (MLC) block margin was added around the PTV. For a comparison of dose distributions with literature data, several conformity indexes (conformity index [CI], conformation number [CN], and gradient index [GI]) were calculated. Treatment efficiency and pretreatment dosimetric verification were assessed. Early clinical data were also reported. Our results reported that target and organ-at-risk objectives were met for all patients. Mean and maximum doses to PTVs were on average 112.9% and 121.5% of prescribed dose, respectively. A very high degree of dose conformity was obtained, with CI, CN, and GI average values equal to 1.29, 0.80, and 3.63, respectively. The beam-on-time was on average 9.3 minutes, i.e., 0.36 min/Gy. The mean number of monitor units was 3162, i.e., 121.6 MU/Gy. Pretreatment verification (3%-3 mm) showed an optimal agreement with calculated values; mean γ value was 0.27 and 98.2% of measured points resulted with γ < 1. With a median follow-up of 16 months complete response was observed in 12/14 (86%) lesions; partial response was observed in 2/14 (14%) lesions. No radiation-induced liver disease (RILD) was observed in any patients as well no duodenal ulceration or esophagitis or gastric hemorrhage. In conclusion, this analysis demonstrated the feasibility and the appropriateness of high-dose single-fraction SRS-VMAT in liver metastases performed with Elekta

  3. SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?

    Energy Technology Data Exchange (ETDEWEB)

    Vujicic, M; Belec, J [Ottawa Hospital Cancer Centre, Ottawa, ON (Canada); Heath, E; Gholampourkashi, S [Carleton University, Ottawa, ON (Canada); Cygler, J [The Ottawa Hospital Cancer Centre, Ottawa, ON (Canada)

    2015-06-15

    Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arranged in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund.

  4. SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?

    International Nuclear Information System (INIS)

    Vujicic, M; Belec, J; Heath, E; Gholampourkashi, S; Cygler, J

    2015-01-01

    Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arranged in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund

  5. Finding Traps in Non-linear Spin Arrays

    OpenAIRE

    Wiesniak, Marcin; Markiewicz, Marcin

    2009-01-01

    Precise knowledge of the Hamiltonian of a system is a key to many of its applications. Tasks such state transfer or quantum computation have been well studied with a linear chain, but hardly with systems, which do not possess a linear structure. While this difference does not disturb the end-to-end dynamics of a single excitation, the evolution is significantly changed in other subspaces. Here we quantify the difference between a linear chain and a pseudo-chain, which have more than one spin ...

  6. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    Science.gov (United States)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  7. Full-wave current conveyor precision rectifier

    Directory of Open Access Journals (Sweden)

    Đukić Slobodan R.

    2008-01-01

    Full Text Available A circuit that provides precision rectification of small signal with low temperature sensitivity for frequencies up to 100 kHz without waveform distortion is presented. It utilizes an improved second type current conveyor based on current-steering output stage and biased silicon diodes. The use of a DC current source to bias the rectifying diodes provides higher temperature stability and lower DC offset level at the output. Proposed design of the precision rectifier ensures good current transfer linearity in the range that satisfy class A of the amplifier and good voltage transfer characteristic for low level signals. Distortion during the zero crossing of the input signal is practically eliminated. Design of the proposed rectifier is realized with standard components.

  8. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    Science.gov (United States)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  9. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  10. Error Analysis on Plane-to-Plane Linear Approximate Coordinate ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, the error analysis has been done for the linear approximate transformation between two tangent planes in celestial sphere in a simple case. The results demonstrate that the error from the linear transformation does not meet the requirement of high-precision astrometry under some conditions, so the ...

  11. A precision synchrotron radiation detector using phosphorescent screens

    International Nuclear Information System (INIS)

    Jung, C.K.; Lateur, M.; Nash, J.; Tinsman, J.; Butler, J.; Wormser, G.

    1990-01-01

    A precision detector to measure synchrotron radiation beam positions has been designed and installed as part of beam energy spectrometers at the Stanford Linear Collider (SLC). The distance between pairs of synchrotron radiation beams is measured absolutely to better than 28 μm on a pulse-to-pulse basis. This contributes less than 5 MeV to the error in the measurement of SLC beam energies (approximately 50 GeV). A system of high-resolution video cameras viewing precisely aligned fiducial wire arrays overlaying phosphorescent screens has achieved this accuracy. 3 refs., 5 figs., 1 tab

  12. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    Science.gov (United States)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.

  13. Magnetic resonance imaging for precise radiotherapy of small laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Thorsten [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie; Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Jaeckel, Maria [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Schumacher, Udo [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kruell, Andreas [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie

    2017-05-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6 MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging.

  14. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  15. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    Directory of Open Access Journals (Sweden)

    Akram Afifi

    2016-05-01

    Full Text Available This paper introduces a new dual-frequency precise point positioning (PPP model, which combines the observations from three different global navigation satellite system (GNSS constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the

  16. Linear Covariance Analysis for a Lunar Lander

    Science.gov (United States)

    Jang, Jiann-Woei; Bhatt, Sagar; Fritz, Matthew; Woffinden, David; May, Darryl; Braden, Ellen; Hannan, Michael

    2017-01-01

    A next-generation lunar lander Guidance, Navigation, and Control (GNC) system, which includes a state-of-the-art optical sensor suite, is proposed in a concept design cycle. The design goal is to allow the lander to softly land within the prescribed landing precision. The achievement of this precision landing requirement depends on proper selection of the sensor suite. In this paper, a robust sensor selection procedure is demonstrated using a Linear Covariance (LinCov) analysis tool developed by Draper.

  17. Bit-Grooming: Shave Your Bits with Razor-sharp Precision

    Science.gov (United States)

    Zender, C. S.; Silver, J.

    2017-12-01

    Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.

  18. Future Linear Colliders: Detector R&D, Jet Reconstruction and Top Physics Potential

    CERN Document Server

    AUTHOR|(CDS)2098729; Ros Martinez, Eduardo

    During the 20th century, discoveries and measurements at colliders, combined with progress in theoretical physics, allowed us to formulate the Standard Model of the in- teractions between the constituents of matter. Today, there are two advanced projects for a new installation that will collide electrons and positrons covering an energy range from several hundreds of GeV to the multi-TeV scale, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). These Future Linear Colliders give the opportunity to study the top quark with unprecedented precision. Measurements of top quark properties are of special interest, as the top quark is the heaviest ele- mentary particle of the SM. Precision measurements of top quark properties at e+e colliders promise therefore to be highly sensitive to physics beyond the SM. This thesis has three complementary parts. The first is dedicated to the R&D of the ILD detector concept for future e+e- colliders, more precisely, the innermost region of the de...

  19. The International Linear Collider

    Directory of Open Access Journals (Sweden)

    List Benno

    2014-04-01

    Full Text Available The International Linear Collider (ILC is a proposed e+e− linear collider with a centre-of-mass energy of 200–500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  20. The International Linear Collider

    Science.gov (United States)

    List, Benno

    2014-04-01

    The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.

  1. CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS

    Science.gov (United States)

    Arce, Pedro; Lagares, Juan Ignacio

    2018-02-01

    We have verified the GAMOS/Geant4 simulation model of a 6 MV VARIAN Clinac 2100 C/D linear accelerator by the procedure of adjusting the initial beam parameters to fit the percentage depth dose and cross-profile dose experimental data at different depths in a water phantom. Thanks to the use of a wide range of field sizes, from 2  ×  2 cm2 to 40  ×  40 cm2, a small phantom voxel size and high statistics, fine precision in the determination of the beam parameters has been achieved. This precision has allowed us to make a thorough study of the different physics models and parameters that Geant4 offers. The three Geant4 electromagnetic physics sets of models, i.e. Standard, Livermore and Penelope, have been compared to the experiment, testing the four different models of angular bremsstrahlung distributions as well as the three available multiple-scattering models, and optimizing the most relevant Geant4 electromagnetic physics parameters. Before the fitting, a comprehensive CPU time optimization has been done, using several of the Geant4 efficiency improvement techniques plus a few more developed in GAMOS.

  2. Implementation of a controller for linear positioners applicable in optical fiber stretching

    International Nuclear Information System (INIS)

    Castrillo Piedra, Andres Rodolfo

    2014-01-01

    A low cost controller is implemented for linear positioners applicable in optic fiber stretching. The possibility of using a donated equipment is evaluated by the Escuela de Ingenieria Mecanica. The equipment is required by the non-linear photonic research laboratory (NLPR-LAB) for stretching of micro structured fiber. The process has required a slow and precise stretching, so the controllers must be precisely programmed to rotate the motors at different speeds. Donated equipment is evaluated to see if it is possible to use for fiber stretching [es

  3. High Precision Survey and Alignment of Large Linear Accelerators

    CERN Document Server

    Prenting, J

    2004-01-01

    For the future linear accelerator TESLA the demanded accuracy for the alignment of the components is 0.5 mm horizontal and 0.2 mm vertical, both on each 600 m section. Other accelerators require similar accuracies. These demands can not be fulfilled with open-air geodetic methods, mainly because of refraction. Therefore the RTRS (Rapid Tunnel Reference Surveyor), a measurement train performing overlapping multipoint alignment on a reference network is being developed. Two refraction-free realizations of this concept are being developed at the moment: the first one (GeLiS) measures the horizontal co-ordinates using stretched wires, combined with photogrammetric split-image sensors in a distance measurement configuration. In areas of the tunnel where the accelerator is following the earth curvature GeLiS measures the height using a new hydrostatic leveling system. The second concept (LiCAS) is based on laser straightness monitors (LSM) combined with frequency scanning interferometry (FSI) in an evacuated system...

  4. Leakage pattern of linear accelerator treatment heads from multiple vendors

    International Nuclear Information System (INIS)

    Lonski, P.R.; Taylor, M.L.; Franich, R.D.; Harty, P.; Clements, N.; Kron, T.

    2011-01-01

    Full text: Patient life expectancy post-radiotherapy is becoming longer. Therefore, secondary cancers caused by radiotherapy treatment have more time to develop. Increasing attention is being given to out-of-field dose resulting from scatter and accelerator head leakage. Dose leakage from equivalent positions on Varian600C, Varian21-X, Siemens Primus and Elekta Synergy-II linacs were measured with TLD 1 00 H dosimeter chips and compared. Treatment parameters such as field size and beam energy were altered. Leakage doses are presented as a percentage of the dose to isocentre (5 Gy). Results illustrate significant variations in leakage dose between linac models where no model emits consistently lower amounts of radiation leakage for all treatment parameters. Results are shown below. Leakage through the collimator assembly in different units is varying as a function of location and unit design by more than a factor of 10. Differences are more pronounced in comparing Varian or Elekta models, which are fitted with an additional collimator separate from the MLC leaves, to the Siemens model, which uses MLC leaves as its only secondary collimator. Further measurements are currently being taken at the patient plane with a directional detector system to determine the spatial distribution of high leakage sources.

  5. Analysis of surface and build up region dose for motorized wedge and omni wedge

    International Nuclear Information System (INIS)

    Panta, Raj Kumar; Sundarum, T.

    2008-01-01

    Megavoltage x-ray beam exhibits the well known phenomenon of dose build-up within the first few millimeters of incident phantom surface or skin. The skin sparing effect of high energy gamma or x-ray photon may be reduced or even lost, if the beam is contaminated with electron or low energy photons. Since skin dose in the treatment of deeply seated tumor may be a limiting factor in the delivery of tumoricidal dose due to possible complications such as erythema, desquamation, fibrosis, necrosis and epilation, the dose distribution in the build up region should be known. The objective of this study was to measure and investigate the surface and build-up region dose for 6 MV and 15 MV photon beam for Motorized wedge and Omni wedge in Precise Digital Linear Accelerator (Elekta)

  6. The precision of higgs boson measurements and their implications

    International Nuclear Information System (INIS)

    J. Conway et al. email = crathbun@fnal.gov

    2002-01-01

    The prospects for a precise exploration of the properties of a single or many observed Higgs bosons at future accelerators are summarized, with particular emphasis on the abilities of a Linear Collider (LC). Some implications of these measurements for discerning new physics beyond the Standard Model (SM) are also discussed

  7. Theoretical analysis of balanced truncation for linear switched systems

    DEFF Research Database (Denmark)

    Petreczky, Mihaly; Wisniewski, Rafal; Leth, John-Josef

    2012-01-01

    In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians and their singu......In this paper we present theoretical analysis of model reduction of linear switched systems based on balanced truncation, presented in [1,2]. More precisely, (1) we provide a bound on the estimation error using L2 gain, (2) we provide a system theoretic interpretation of grammians...... for showing this independence is realization theory of linear switched systems. [1] H. R. Shaker and R. Wisniewski, "Generalized gramian framework for model/controller order reduction of switched systems", International Journal of Systems Science, Vol. 42, Issue 8, 2011, 1277-1291. [2] H. R. Shaker and R....... Wisniewski, "Switched Systems Reduction Framework Based on Convex Combination of Generalized Gramians", Journal of Control Science and Engineering, 2009....

  8. The research of radar target tracking observed information linear filter method

    Science.gov (United States)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  9. Image guided radiotherapy with the Cone Beam CT kV (ElektaTM): Experience of the Leon Berard Centre

    International Nuclear Information System (INIS)

    Pommier, P.; Gassa, F.; Lafay, F.; Claude, L.

    2009-01-01

    Image guide radiotherapy with the Cone Beam CT kV (C.B.C.T.-kV) developed by Elekta has been implemented at the centre Leon Berard in November 2006. The treatment procedure is presented and detailed for prostate cancer I.G.R.T. and non small cell lung cancer (N.S.C.L.C.) stereotactic radiotherapy (S.R.T.). C.B.C.T.-kV is routinely used for S.R.T., selected paediatric cancers, all prostate carcinomas, primitive brain tumours and head and neck cancers that do not require nodes irradiation. Thirty-five to 40 patients are treated within a daily 11-hours period. The general procedure for 3-dimensional images acquisition and their analysis is described. The C.B.C.T.-kV permitted to identify about 10% of prostate cancer patients for whom a positioning with bone-based 2-dimensional images only would have led to an unacceptable dose distribution for at least one session. S.R.T. is now used routinely for inoperable N.S.C.L.C.. The easiness of implementing C.B.C.T.-kV imaging and its expected medical benefit should lead to a rapid diffusion of this technology that is also submitted to prospective and multi centric medico-economical evaluations. (authors)

  10. Progress on $e^{+}e^{-}$ linear colliders

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Siemann, Peter

    2002-01-01

    Physics issues. The physics program will be reviewed for e+e- linear colliders in the TeV energy range. At these prospective facilities central issues of particle physics can be addressed, the problem of mass, unification and structure of space-time. In this context the two lectures will focus on analyses of the Higgs mechanism, supersymmetry and extra space dimensions. Moreover, high-precision studies of the top-quark and the gauge boson sector will be discussed. Combined with LHC results, a comprehensive picture can be developed of physics at the electroweak scale and beyond. Designs and technologies (R. Siemann - 29, 30, 31 May) The physics and technologies of high energy linear colliders will be reviewed. Fundamental concepts of linear colliders will be introduced. They will be discussed in: the context of the Stanford Linear Collider where many ideas changed and new ones were developed in response to operational experience. the requirements for future linear colliders. The different approaches for reac...

  11. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  12. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  13. Squares of Random Linear Codes

    DEFF Research Database (Denmark)

    Cascudo Pueyo, Ignacio; Cramer, Ronald; Mirandola, Diego

    2015-01-01

    a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise......Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically'' fill the whole space? We give...

  14. Precise stacking and bonding technology for RDDS structure

    International Nuclear Information System (INIS)

    Higo, T; Toge, N.; Suzuki, T.

    2000-01-01

    The X-band accelerating structures called RDDS1 (Rounded Dumped Detuned Structure) for the linear collider have been developed. The main body of RDDS1 was successfully fabricated in Japan (KEK, IHI). We established basic fabrication techniques through the development of prototype structures including RDDS1. The precise stacking and bonding technologies for RDDS structure are presented in this paper. (author)

  15. Dynamics of number systems computation with arbitrary precision

    CERN Document Server

    Kurka, Petr

    2016-01-01

    This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .

  16. Linearly Refined Session Types

    Directory of Open Access Journals (Sweden)

    Pedro Baltazar

    2012-11-01

    Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.

  17. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  18. Iso-precision scaling of digitized mammograms to facilitate image analysis

    International Nuclear Information System (INIS)

    Karssmeijer, N.; van Erning, L.

    1991-01-01

    This paper reports on a 12 bit CCD camera equipped with a linear sensor of 4096 photodiodes which is used to digitize conventional mammographic films. An iso-precision conversion of the pixel values is preformed to transform the image data to a scale on which the image noise is equal at each level. For this purpose film noise and digitization noise have been determined as a function of optical density and pixel size. It appears that only at high optical densities digitization noise is comparable to or larger than film noise. The quantization error caused by compression of images recorded with 12 bits per pixel to 8 bit images by an iso-precision conversion has been calculated as a function of the number of quantization levels. For mammograms digitized in a 4096 2 matrix the additional error caused by such a scale transform is only about 1.5 percent. An iso-precision scale transform can be advantageous when automated procedures for quantitative image analysis are developed. Especially when detection of signals in noise is aimed at, a constant noise level over the whole pixel value range is very convenient. This is demonstrated by applying local thresholding to detect small microcalcifications. Results are compared to those obtained by using logarithmic or linearized scales

  19. Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

    CERN Document Server

    Albacete, J L; Quiroga-Arias, P; Rojo, J

    2012-01-01

    The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

  20. High precision locating control system based on VCM for Talbot lithography

    Science.gov (United States)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  1. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    Science.gov (United States)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  2. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor

    International Nuclear Information System (INIS)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  3. Precision, accuracy and linearity of radiometer EML 105 whole blood metabolite biosensors.

    Science.gov (United States)

    Cobbaert, C; Morales, C; van Fessem, M; Kemperman, H

    1999-11-01

    The analytical performance of a new, whole blood glucose and lactate electrode system (EML 105 analyser. Radiometer Medical A/S. Copenhagen, Denmark) was evaluated. Between-day coefficients of variation were glucose and lactate, respectively. Recoveries of glucose were 100 +/- 10% using either aqueous or protein-based standards. Recoveries of lactate depended on the matrix, being underestimated in aqueous standards (approximately -10%) and 95-100% in standards containing 40 g/L albumin at lactate concentrations of 15 and 30 mmol/L. However, recoveries were high (up to 180%) at low lactate concentrations in protein-based standards. Carry-over, investigated according to National Clinical Chemistry Laboratory Standards EP10-T2, was negligible (alpha = 0.01). Glucose and lactate biosensors equipped with new membranes were linear up to 60 and 30 mmol/L, respectively. However, linearity fell upon daily use with increasing membrane lifetime. We conclude that the Radiometer metabolite biosensor results are reproducible and do not suffer from specimen-related carry-over. However, lactate recovery depends on the protein content and the lactate concentration.

  4. Precision pharmacology for Alzheimer's disease.

    Science.gov (United States)

    Hampel, Harald; Vergallo, Andrea; Aguilar, Lisi Flores; Benda, Norbert; Broich, Karl; Cuello, A Claudio; Cummings, Jeffrey; Dubois, Bruno; Federoff, Howard J; Fiandaca, Massimo; Genthon, Remy; Haberkamp, Marion; Karran, Eric; Mapstone, Mark; Perry, George; Schneider, Lon S; Welikovitch, Lindsay A; Woodcock, Janet; Baldacci, Filippo; Lista, Simone

    2018-04-01

    The complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment. An individual vulnerability to stressors exists on the basis of individual triggers, drivers, and thresholds accounting for the initiation and failure of adaptive and compensatory responses. Consequently, the distinct pattern of AD pathophysiology in space and time must be investigated on the basis of the individual biological makeup. This requires the implementation of systems biology and neurophysiology to facilitate Precision Medicine (PM) and Precision Pharmacology (PP). The regulation of several processes at multiple levels of complexity from gene expression to cellular cycle to tissue repair and system-wide network activation has different time delays (temporal scale) according to the affected systems (spatial scale). The initial failure might originate and occur at every level potentially affecting the whole dynamic interrelated systems within an organism. Unraveling the spatial and temporal dynamics of non-linear pathophysiological mechanisms across the continuum of hierarchical self-organized systems levels and from systems homeostasis to systems failure is key to understand AD. Measuring and, possibly, controlling space- and time-scaled adaptive and compensatory responses occurring during AD will represent a crucial step to achieve the capacity to substantially modify the disease course and progression at the best suitable timepoints, thus counteracting disrupting critical pathophysiological inputs. This approach will provide the conceptual basis for effective

  5. Conformal Interpolating Algorithm Based on Cubic NURBS in Aspheric Ultra-Precision Machining

    International Nuclear Information System (INIS)

    Li, C G; Zhang, Q R; Cao, C G; Zhao, S L

    2006-01-01

    Numeric control machining and on-line compensation for aspheric surface are key techniques in ultra-precision machining. In this paper, conformal cubic NURBS interpolating curve is applied to fit the character curve of aspheric surface. Its algorithm and process are also proposed and imitated by Matlab7.0 software. To evaluate the performance of the conformal cubic NURBS interpolation, we compare it with the linear interpolations. The result verifies this method can ensure smoothness of interpolating spline curve and preserve original shape characters. The surface quality interpolated by cubic NURBS is higher than by line. The algorithm is benefit to increasing the surface form precision of workpieces in ultra-precision machining

  6. Linear inflation from quartic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan; Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Raidal, Martti [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Tartu (Estonia)

    2016-01-07

    We show that if the inflaton has a non-minimal coupling to gravity and the Planck scale is dynamically generated, the results of Coleman-Weinberg inflation are confined in between two attractor solutions: quadratic inflation, which is ruled out by the recent measurements, and linear inflation which, instead, is in the experimental allowed region. The minimal scenario has only one free parameter — the inflaton’s non-minimal coupling to gravity — that determines all physical parameters such as the tensor-to-scalar ratio and the reheating temperature of the Universe. Should the more precise future measurements of inflationary parameters point towards linear inflation, further interest in scale-invariant scenarios would be motivated.

  7. Precision Measurement and Improvement of e+, e- Storage Rings

    International Nuclear Information System (INIS)

    Yan, Y.T.; Cai, Y.; Colocho, W.; Decker, F-J.; Seeman, J.; Sullivan, M.; Turner, J.; Wienands, U.; Woodley, M.; Yocky, G.

    2006-01-01

    Through horizontal and vertical excitations, we have been able to make a precision measurement of linear geometric optics parameters with a Model-Independent Analysis (MIA). We have also been able to build up a computer model that matches the real accelerator in linear geometric optics with an SVD-enhanced Least-square fitting process. Recently, with the addition of longitudinal excitation, we are able to build up a computer virtual machine that matches the real accelerators in linear optics including dispersion without additional fitting variables. With this optics-matched virtual machine, we are able to find solutions that make changes of selected normal and skew quadrupoles for machine optics improvement. It has made major contributions to improve PEP-II optics and luminosity. Examples from application to PEP-II machines will be presented

  8. [Precision nutrition in the era of precision medicine].

    Science.gov (United States)

    Chen, P Z; Wang, H

    2016-12-06

    Precision medicine has been increasingly incorporated into clinical practice and is enabling a new era for disease prevention and treatment. As an important constituent of precision medicine, precision nutrition has also been drawing more attention during physical examinations. The main aim of precision nutrition is to provide safe and efficient intervention methods for disease treatment and management, through fully considering the genetics, lifestyle (dietary, exercise and lifestyle choices), metabolic status, gut microbiota and physiological status (nutrient level and disease status) of individuals. Three major components should be considered in precision nutrition, including individual criteria for sufficient nutritional status, biomarker monitoring or techniques for nutrient detection and the applicable therapeutic or intervention methods. It was suggested that, in clinical practice, many inherited and chronic metabolic diseases might be prevented or managed through precision nutritional intervention. For generally healthy populations, because lifestyles, dietary factors, genetic factors and environmental exposures vary among individuals, precision nutrition is warranted to improve their physical activity and reduce disease risks. In summary, research and practice is leading toward precision nutrition becoming an integral constituent of clinical nutrition and disease prevention in the era of precision medicine.

  9. Precision of quantization of the hall conductivity in a finite-size sample: Power law

    International Nuclear Information System (INIS)

    Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.

    2006-01-01

    A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples

  10. Design of a dual-axis optoelectronic level for precision angle measurements

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Wang, Tsung-Han; Lin, Sheng-Yi; Liu, Yen-Chih

    2011-01-01

    The accuracy of machine tools is mainly determined by angular errors during linear motion according to the well-known Abbe principle. Precision angle measurement is important to precision machines. This paper presents the theory and experiments of a new dual-axis optoelectronic level with low cost and high precision. The system adopts a commercial DVD pickup head as the angle sensor in association with the double-layer pendulum mechanism for two-axis swings, respectively. In data processing with a microprocessor, the measured angles of both axes can be displayed on an LCD or exported to an external PC. Calibrated by a triple-beam laser angular interferometer, the error of the dual-axis optoelectronic level is better than ±0.7 arcsec in the measuring range of ±30 arcsec, and the settling time is within 0.5 s. Experiments show the applicability to the inspection of precision machines

  11. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    Science.gov (United States)

    Tyler, M.; Vial, P.; Metcalfe, P.; Downes, S.

    2013-06-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  12. Clinical validation of an in-house EPID dosimetry system for IMRT QA at the Prince of Wales Hospital

    International Nuclear Information System (INIS)

    Tyler, M; Downes, S; Vial, P; Metcalfe, P

    2013-01-01

    In this study a simple method using standard flood-field corrected Electronic Portal Imaging Device (EPID) images for routine Intensity Modulated Radiation Therapy (IMRT) Quality Assurance (QA) was investigated. The EPID QA system was designed and tested on a Siemens Oncor Impression linear accelerator with an OptiVue 1000ST EPID panel (Siemens Medical Solutions USA, Inc, USA) and an Elekta Axesse linear accelerator with an iViewGT EPID (Elekta AB, Sweden) for 6 and 10 MV IMRT fields with Step-and-Shoot and dynamic-MLC delivery. Two different planning systems were used for patient IMRT field generation for comparison with the measured EPID fluences. All measured IMRT plans had >95% agreement to the planning fluences (using 3 cGy / 3 mm Gamma Criteria) and were comparable to the pass-rates calculated using a 2-D diode array dosimeter.

  13. Precision grinding of microarray lens molding die with 4-axes controlled microwheel

    Directory of Open Access Journals (Sweden)

    Yuji Yamamoto, Hirofumi Suzuki, Takashi Onishi1, Tadashi Okino and Toshimichi Moriwaki

    2007-01-01

    Full Text Available This paper deals with precision grinding of microarray lens (fly eye molding die by using a resinoid bonded diamond wheel. An ultra-precision grinding system of microarray lens molding die and new truing method of resinoid bonded diamond wheel were developed. In this system, a grinding wheel was four-dimensionally controlled with 1 nm resolution by linear scale feedback system and scanned on the workpiece surface. New truing method by using a vanadium alloy tool was developed and its performance was obtained with high preciseness and low wheel wear. Finally, the microarray lens molding dies of fine grain tungsten carbide (WC was tested with the resinoid bonded diamond wheel to evaluate grinding performance.

  14. Experimental Approaches at Linear Colliders

    International Nuclear Information System (INIS)

    Jaros, John A

    2002-01-01

    Precision measurements have played a vital role in our understanding of elementary particle physics. Experiments performed using e + e - collisions have contributed an essential part. Recently, the precision measurements at LEP and SLC have probed the standard model at the quantum level and severely constrained the mass of the Higgs boson [1]. Coupled with the limits on the Higgs mass from direct searches [2], this enables the mass to be constrained to be in the range 115-205 GeV. Developments in accelerator R and D have matured to the point where one could contemplate construction of a linear collider with initial energy in the 500 GeV range and a credible upgrade path to ∼ 1 TeV. Now is therefore the correct time to critically evaluate the case for such a facility

  15. Precision measurements in supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Johnathan Lee [Stanford Univ., CA (United States)

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  16. Optical surfacing via linear ion source

    International Nuclear Information System (INIS)

    Wu, Lixiang; Wei, Chaoyang; Shao, Jianda

    2017-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  17. Optical surfacing via linear ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-04-15

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  18. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  19. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    Science.gov (United States)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  20. Obtaining the intrinsic electron spectrum of linear accelerators using the relation between the current of the bending magnet and the absorbed dose in water

    International Nuclear Information System (INIS)

    Vega, Jose M. de la; Guirado, Damian; Vilches, Manuel; Perdices, Jose I.; Lallena, Antonio M.

    2008-01-01

    Purpose. To present a novel methodology to model the intrinsic electron spectra of a linear accelerator and its situation with respect to the energy window. Methods. The spectra are obtained by fitting the variation of R 50 and the maximum dose rate measured in a water phantom with the bending magnet current. The obtained spectra are verified with a realistic Monte Carlo simulation of the accelerator. Results. The intrinsic spectra and their relative position with respect to the energy window of the bending magnet have been obtained for a Siemens Mevatron KDS and an ELEKTA SL20 accelerators. Conclusions. Using this method in the commissioning and scheduled revisions of the accelerator, the tuning of the current of the bending magnet could be done in such a way that both the quality of the beam and the dose rate would reach a better long-term stability

  1. Precise shape reconstruction by active pattern in total-internal-reflection-based tactile sensor.

    Science.gov (United States)

    Saga, Satoshi; Taira, Ryosuke; Deguchi, Koichiro

    2014-03-01

    We are developing a total-internal-reflection-based tactile sensor in which the shape is reconstructed using an optical reflection. This sensor consists of silicone rubber, an image pattern, and a camera. It reconstructs the shape of the sensor surface from an image of a pattern reflected at the inner sensor surface by total internal reflection. In this study, we propose precise real-time reconstruction by employing an optimization method. Furthermore, we propose to use active patterns. Deformation of the reflection image causes reconstruction errors. By controlling the image pattern, the sensor reconstructs the surface deformation more precisely. We implement the proposed optimization and active-pattern-based reconstruction methods in a reflection-based tactile sensor, and perform reconstruction experiments using the system. A precise deformation experiment confirms the linearity and precision of the reconstruction.

  2. Global numerical modeling of magnetized plasma in a linear device

    DEFF Research Database (Denmark)

    Magnussen, Michael Løiten

    Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion dev...... with simulations performed at different ionization levels, using a simple model for plasma interaction with neutrals. It is found that the steady state and the saturated state of the system bifurcates when the neutral interaction dominates the electron-ion collisions.......Understanding the turbulent transport in the plasma-edge in fusion devices is of utmost importance in order to make precise predictions for future fusion devices. The plasma turbulence observed in linear devices shares many important features with the turbulence observed in the edge of fusion...... devices, and are easier to diagnose due to lower temperatures and a better access to the plasma. In order to gain greater insight into this complex turbulent behavior, numerical simulations of plasma in a linear device are performed in this thesis. Here, a three-dimensional drift-fluid model is derived...

  3. Physics with e+e- Linear Colliders

    International Nuclear Information System (INIS)

    Barklow, Timothy L

    2003-01-01

    We describe the physics potential of e + e - linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, like compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders up to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e + e - linear colliders and the high-precision with which the properties of particles and their interactions can be analyzed, define an exciting physics programme complementary to hadron machines

  4. Morphologies of precise polyethylene-based acid copolymers and ionomers

    Science.gov (United States)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  5. Occupational radiation protection around medical linear accelerators: measurements and semi-analytical approaches

    International Nuclear Information System (INIS)

    Donadille, L.; Derreumaux, S.; Mantione, J.; Robbes, I.; Trompier, F.; Amgarou, K.; Asselineau, B.; Martin, A.

    2008-01-01

    Full text: X-rays produced by high-energy (larger than 6 MeV) medical electron linear accelerators create secondary neutron radiation fields mainly by photonuclear reactions inside the materials of the accelerator head, the patient and the walls of the therapy room. Numerous papers were devoted to the study of neutron production in medical linear accelerators and resulting decay of activation products. However, data associated to doses delivered to workers in treatment conditions are scarce. In France, there are more than 350 external radiotherapy facilities representing almost all types of techniques and designs. IRSN carried out a measurement campaign in order to investigate the variation of the occupational dose according the different encountered situations. Six installations were investigated, associated with the main manufacturers (Varian, Elekta, General Electrics, Siemens), for several nominal energies, conventional and IMRT techniques, and bunker designs. Measurements were carried out separately for neutron and photon radiation fields, and for radiation associated with the decay of the activation products, by means of radiometers, tissue-equivalent proportional counters and spectrometers (neutron and photon spectrometry). They were performed at the positions occupied by the workers, i.e. outside the bunker during treatments, inside between treatments. Measurements have been compared to published data. In addition, semi-empirical analytical approaches recommended by international protocols were used to estimate doses inside and outside the bunkers. The results obtained by both approaches were compared and analysed. The annual occupational effective dose was estimated to about 1 mSv, including more than 50 % associated with the decay of activation products and less than 10 % due to direct exposure to leakage neutrons produced during treatments. (author)

  6. Poster — Thur Eve — 37: Respiratory gating with an Elekta flattening filter free photon beam

    International Nuclear Information System (INIS)

    Péloquin, S; Furstoss, C; Munger, P; Wierzbicki, W; Carrier, J-F

    2014-01-01

    In cases where surgery is not possible for lung cancer treatment, stereotactic body radiation therapy (SBRT) may be an option. One problem when treating this type of cancer is the motion of the lungs caused by the patient's respiration. It is possible to reduce the impact of this movement with the use of respiratory gating. By combining respiratory gating with a flattening filter free (FFF) photon beam linac, the increased treatment time caused by a reduced beam-on time of respiratory gating methods can be compensated by the inherent increased dose rate of FFF beams. This project's aim is to create hardware and software interfaces allowing free respiration gating on an Elekta Synergy-S linac specially modified to deliver 6 MV FFF photon beams. First, a printed circuit board was created for reading the signal from a Bellows Belt from Philips (a respiration monitor belt) and transmitting an On/Off signal to the accelerator. A software was also developed to visualize patient respiration. Secondly, a FFF model was created with the Pinnacle treatment planning system from Philips. Gamma (Γ) analysis (2%, 2 mm) was used to evaluate model. For fields going from 5.6 × 5.6 to 12 × 12 cm 2 , central axis depth dose model fitting shows an average gamma value of 0.2 and 100% of gamma values remain under the Γ = 1 limit. For smaller fields (0.8 × 0.8 and 1.6 × 1.6 cm 2 ), Pinnacle has more trouble trying to fit the measurements, overestimating dose in penumbra and buildup regions

  7. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  8. Dose delivery verification and accuracy assessment of stereotaxy in stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Pelagade, S.M.; Bopche, T.T.; Namitha, K.; Munshi, M.; Bhola, S.; Sharma, H.; Patel, B.K.; Vyas, R.K.

    2008-01-01

    The outcome of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) in both benign and malignant tumors within the cranial region highly depends on precision in dosimetry, dose delivery and the accuracy assessment of stereotaxy associated with the unit. The frames BRW (Brown-Roberts-Wells) and GTC (Gill- Thomas-Cosman) can facilitate accurate patient positioning as well as precise targeting of tumours. The implementation of this technique may result in a significant benefit as compared to conventional therapy. As the target localization accuracy is improved, the demand for treatment planning accuracy of a TPS is also increased. The accuracy of stereotactic X Knife treatment planning system has two components to verify: (i) the dose delivery verification and the accuracy assessment of stereotaxy; (ii) to ensure that the Cartesian coordinate system associated is well established within the TPS for accurate determination of a target position. Both dose delivery verification and target positional accuracy affect dose delivery accuracy to a defined target. Hence there is a need to verify these two components in quality assurance protocol. The main intention of this paper is to present our dose delivery verification procedure using cylindrical wax phantom and accuracy assessment (target position) of stereotaxy using Geometric Phantom on Elekta's Precise linear accelerator for stereotactic installation

  9. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  10. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  11. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    Science.gov (United States)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  12. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  13. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  14. Physics with linear colliders. e+e- linear colliders: Physics prospects

    International Nuclear Information System (INIS)

    Zerwas, P.M.

    1993-01-01

    This report describes the physics potential of e + e - linear colliders, expected in a first phase to operate in the energy range between 300 and 500 GeV. these machines will allow us to perform precision studies of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles in the intermediate mass range. New vector bosons and novel matter particles can be searched for and studied in detail. The machines provide unique opportunities for the investigation of supersymmetric extensions of the Standard Model, the SUSY Higgs spectrum and the supersymmetric partners of electroweak gauge/Higgs bosons and non-colored matter particles. (orig.)

  15. LINEAR AND NONLINEAR CORRECTIONS IN THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    PILAT, F.; CAMERON, P.; PTITSYN, V.; KOUTCHOUK, J.P.

    2002-01-01

    A method has been developed to measure operationally the linear and non-linear effects of the interaction region triplets, that gives access to the multipole content through the action kick, by applying closed orbit bumps and analyzing tune and orbit shifts. This technique has been extensively tested and used during the RHIC operations in 2001. Measurements were taken at 3 different interaction regions and for different focusing at the interaction point. Non-linear effects up to the dodecapole have been measured as well as the effects of linear, sextupolar and octupolar corrections. An analysis package for the data processing has been developed that through a precise fit of the experimental tune shift data (measured by a phase lock loop technique to better than 10 -5 resolution) determines the multipole content of an IR triplet

  16. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Science.gov (United States)

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  17. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2018-04-01

    Full Text Available Time of flight (TOF based light detection and ranging (LiDAR is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC that counts time between trigger signals and analog-to-digital converter (ADC that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR with analog discrete return system based ranging (AR, a peak detection method (WR-PK shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC, WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision.

  18. Updated baseline for a staged Compact Linear Collider

    CERN Document Server

    Boland, M J; Giansiracusa, P J; Lucas, T G; Rassool, R P; Balazs, C; Charles, T K; Afanaciev, K; Emeliantchik, I; Ignatenko, A; Makarenko, V; Shumeiko, N; Patapenka, A; Zhuk, I; Abusleme Hoffman, A C; Diaz Gutierrez, M A; Gonzalez, M Vogel; Chi, Y; He, X; Pei, G; Pei, S; Shu, G; Wang, X; Zhang, J; Zhao, F; Zhou, Z; Chen, H; Gao, Y; Huang, W; Kuang, Y P; Li, B; Li, Y; Shao, J; Shi, J; Tang, C; Wu, X; Ma, L; Han, Y; Fang, W; Gu, Q; Huang, D; Huang, X; Tan, J; Wang, Z; Zhao, Z; Laštovička, T; Uggerhoj, U; Wistisen, T N; Aabloo, A; Eimre, K; Kuppart, K; Vigonski, S; Zadin, V; Aicheler, M; Baibuz, E; Brücken, E; Djurabekova, F; Eerola, P; Garcia, F; Haeggström, E; Huitu, K; Jansson, V; Karimaki, V; Kassamakov, I; Kyritsakis, A; Lehti, S; Meriläinen, A; Montonen, R; Niinikoski, T; Nordlund, K; Österberg, K; Parekh, M; Törnqvist, N A; Väinölä, J; Veske, M; Farabolini, W; Mollard, A; Napoly, O; Peauger, F; Plouin, J; Bambade, P; Chaikovska, I; Chehab, R; Davier, M; Kaabi, W; Kou, E; LeDiberder, F; Pöschl, R; Zerwas, D; Aimard, B; Balik, G; Baud, J-P; Blaising, J-J; Brunetti, L; Chefdeville, M; Drancourt, C; Geoffroy, N; Jacquemier, J; Jeremie, A; Karyotakis, Y; Nappa, J M; Vilalte, S; Vouters, G; Bernard, A; Peric, I; Gabriel, M; Simon, F; Szalay, M; van der Kolk, N; Alexopoulos, T; Gazis, E N; Gazis, N; Ikarios, E; Kostopoulos, V; Kourkoulis, S; Gupta, P D; Shrivastava, P; Arfaei, H; Dayyani, M K; Ghasem, H; Hajari, S S; Shaker, H; Ashkenazy, Y; Abramowicz, H; Benhammou, Y; Borysov, O; Kananov, S; Levy, A; Levy, I; Rosenblat, O; D'Auria, G; Di Mitri, S; Abe, T; Aryshev, A; Higo, T; Makida, Y; Matsumoto, S; Shidara, T; Takatomi, T; Takubo, Y; Tauchi, T; Toge, N; Ueno, K; Urakawa, J; Yamamoto, A; Yamanaka, M; Raboanary, R; Hart, R; van der Graaf, H; Eigen, G; Zalieckas, J; Adli, E; Lillestøl, R; Malina, L; Pfingstner, J; Sjobak, K N; Ahmed, W; Asghar, M I; Hoorani, H; Bugiel, S; Dasgupta, R; Firlej, M; Fiutowski, T A; Idzik, M; Kopec, M; Kuczynska, M; Moron, J; Swientek, K P; Daniluk, W; Krupa, B; Kucharczyk, M; Lesiak, T; Moszczynski, A; Pawlik, B; Sopicki, P; Wojtoń, T; Zawiejski, L; Kalinowski, J; Krawczyk, M; Żarnecki, A F; Firu, E; Ghenescu, V; Neagu, A T; Preda, T; Zgura, I-S; Aloev, A; Azaryan, N; Budagov, J; Chizhov, M; Filippova, M; Glagolev, V; Gongadze, A; Grigoryan, S; Gudkov, D; Karjavine, V; Lyablin, M; Olyunin, A; Samochkine, A; Sapronov, A; Shirkov, G; Soldatov, V; Solodko, A; Solodko, E; Trubnikov, G; Tyapkin, I; Uzhinsky, V; Vorozhtov, A; Levichev, E; Mezentsev, N; Piminov, P; Shatilov, D; Vobly, P; Zolotarev, K; Bozovic-Jelisavcic, I; Kacarevic, G; Lukic, S; Milutinovic-Dumbelovic, G; Pandurovic, M; Iriso, U; Perez, F; Pont, M; Trenado, J; Aguilar-Benitez, M; Calero, J; Garcia-Tabares, L; Gavela, D; Gutierrez, J L; Lopez, D; Toral, F; Moya, D; Ruiz-Jimeno, A; Vila, I; Argyropoulos, T; Blanch Gutierrez, C; Boronat, M; Esperante, D; Faus-Golfe, A; Fuster, J; Fuster Martinez, N; Galindo Muñoz, N; García, I; Giner Navarro, J; Ros, E; Vos, M; Brenner, R; Ekelöf, T; Jacewicz, M; Ögren, J; Olvegård, M; Ruber, R; Ziemann, V; Aguglia, D; Alipour Tehrani, N; Aloev, A; Andersson, A; Andrianala, F; Antoniou, F; Artoos, K; Atieh, S; Ballabriga Sune, R; Barnes, M J; Barranco Garcia, J; Bartosik, H; Belver-Aguilar, C; Benot Morell, A; Bett, D R; Bettoni, S; Blanchot, G; Blanco Garcia, O; Bonnin, X A; Brunner, O; Burkhardt, H; Calatroni, S; Campbell, M; Catalan Lasheras, N; Cerqueira Bastos, M; Cherif, A; Chevallay, E; Constance, B; Corsini, R; Cure, B; Curt, S; Dalena, B; Dannheim, D; De Michele, G; De Oliveira, L; Deelen, N; Delahaye, J P; Dobers, T; Doebert, S; Draper, M; Duarte Ramos, F; Dubrovskiy, A; Elsener, K; Esberg, J; Esposito, M; Fedosseev, V; Ferracin, P; Fiergolski, A; Foraz, K; Fowler, A; Friebel, F; Fuchs, J-F; Fuentes Rojas, C A; Gaddi, A; Garcia Fajardo, L; Garcia Morales, H; Garion, C; Gatignon, L; Gayde, J-C; Gerwig, H; Goldblatt, A N; Grefe, C; Grudiev, A; Guillot-Vignot, F G; Gutt-Mostowy, M L; Hauschild, M; Hessler, C; Holma, J K; Holzer, E; Hourican, M; Hynds, D; Inntjore Levinsen, Y; Jeanneret, B; Jensen, E; Jonker, M; Kastriotou, M; Kemppinen, J M K; Kieffer, R B; Klempt, W; Kononenko, O; Korsback, A; Koukovini Platia, E; Kovermann, J W; Kozsar, C-I; Kremastiotis, I; Kulis, S; Latina, A; Leaux, F; Lebrun, P; Lefevre, T; Linssen, L; Llopart Cudie, X; Maier, A A; Mainaud Durand, H; Manosperti, E; Marelli, C; Marin Lacoma, E; Martin, R; Mazzoni, S; Mcmonagle, G; Mete, O; Mether, L M; Modena, M; Münker, R M; Muranaka, T; Nebot Del Busto, E; Nikiforou, N; Nisbet, D; Nonglaton, J-M; Nuiry, F X; Nürnberg, A; Olvegard, M; Osborne, J; Papadopoulou, S; Papaphilippou, Y; Passarelli, A; Patecki, M; Pazdera, L; Pellegrini, D; Pepitone, K; Perez, F; Perez Codina, E; Perez Fontenla, A; Persson, T H B; Petrič, M; Pitters, F; Pittet, S; Plassard, F; Rajamak, R; Redford, S; Renier, Y; Rey, S F; Riddone, G; Rinolfi, L; Rodriguez Castro, E; Roloff, P; Rossi, C; Rude, V; Rumolo, G; Sailer, A; Santin, E; Schlatter, D; Schmickler, H; Schulte, D; Shipman, N; Sicking, E; Simoniello, R; Skowronski, P K; Sobrino Mompean, P; Soby, L; Sosin, M P; Sroka, S; Stapnes, S; Sterbini, G; Ström, R; Syratchev, I; Tecker, F; Thonet, P A; Timeo, L; Timko, H; Tomas Garcia, R; Valerio, P; Vamvakas, A L; Vivoli, A; Weber, M A; Wegner, R; Wendt, M; Woolley, B; Wuensch, W; Uythoven, J; Zha, H; Zisopoulos, P; Benoit, M; Vicente Barreto Pinto, M; Bopp, M; Braun, H H; Csatari Divall, M; Dehler, M; Garvey, T; Raguin, J Y; Rivkin, L; Zennaro, R; Aksoy, A; Nergiz, Z; Pilicer, E; Tapan, I; Yavas, O; Baturin, V; Kholodov, R; Lebedynskyi, S; Miroshnichenko, V; Mordyk, S; Profatilova, I; Storizhko, V; Watson, N; Winter, A; Goldstein, J; Green, S; Marshall, J S; Thomson, M A; Xu, B; Gillespie, W A; Pan, R; Tyrk, M A; Protopopescu, D; Robson, A; Apsimon, R; Bailey, I; Burt, G; Constable, D; Dexter, A; Karimian, S; Lingwood, C; Buckland, M D; Casse, G; Vossebeld, J; Bosco, A; Karataev, P; Kruchinin, K; Lekomtsev, K; Nevay, L; Snuverink, J; Yamakawa, E; Boisvert, V; Boogert, S; Boorman, G; Gibson, S; Lyapin, A; Shields, W; Teixeira-Dias, P; West, S; Jones, R; Joshi, N; Bodenstein, R; Burrows, P N; Christian, G B; Gamba, D; Perry, C; Roberts, J; Clarke, J A; Collomb, N A; Jamison, S P; Shepherd, B J A; Walsh, D; Demarteau, M; Repond, J; Weerts, H; Xia, L; Wells, J D; Adolphsen, C; Barklow, T; Breidenbach, M; Graf, N; Hewett, J; Markiewicz, T; McCormick, D; Moffeit, K; Nosochkov, Y; Oriunno, M; Phinney, N; Rizzo, T; Tantawi, S; Wang, F; Wang, J; White, G; Woodley, M

    2016-01-01

    The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Subsequent stages will focus on measurements of rare Higgs processes, as well as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of...

  19. A digital x-ray imaging MWPC detector system for precision absorptiometry

    International Nuclear Information System (INIS)

    Batemen, J.E.; Connolly, J.F.; Glasgow, W.

    1977-11-01

    An X-ray absorptiometric imaging system (based on a xenon-filled multiwire proportional counter) has been developed with high counting rate capability, good spatial resolution and linear mass response, aimed at permitting bone mass measurements to be made in the peripheral skeleton with precision approaching 1%. The system is described and preliminary results on test phantoms are presented. (author)

  20. Measurement of Gamma Knife registered helmet factors using MOSFETs

    International Nuclear Information System (INIS)

    Kurjewicz, Laryssa; Berndt, Anita

    2007-01-01

    The relative dose rate for the different Gamma Knife registered helmets (4, 8, 14, and 18 mm) is characterized by their respective helmet factors. Since the plateau of the dose profile for the 4 mm helmet is at most 1 mm wide, detector choices are limited. Traditionally helmet factors have been measured using 1x1x1 mm 3 thermoluminescent dosimeters (TLDs). However, these are time-consuming, cumbersome measurements. This article investigates the use of metal-oxide-semiconductor field effect transistors (MOSFETs) (active area of 0.2x0.2 mm 2 ) as a more accurate and convenient dosimeter. Their suitability for these measurements was confirmed by basic characterization measurements. Helmet factors were measured using both MOSFETs and the established TLD approach. A custom MOSFET cassette was designed in analogy to the Elekta TLD cassette (Elekta Instruments AB) for use with the Elekta dosimetry sphere. Although both dosimeters provided values within 3% of the manufacturer's suggestion, MOSFETs provided superior accuracy and precision, in a fraction of the time required for the TLD measurements. Thus, MOSFETs proved to be a reasonable alternative to TLDs for performing helmet factor measurements

  1. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  2. Linear and Quadratic Interpolators Using Truncated-Matrix Multipliers and Squarers

    Directory of Open Access Journals (Sweden)

    E. George Walters III

    2015-11-01

    Full Text Available This paper presents a technique for designing linear and quadratic interpolators for function approximation using truncated multipliers and squarers. Initial coefficient values are found using a Chebyshev-series approximation and then adjusted through exhaustive simulation to minimize the maximum absolute error of the interpolator output. This technique is suitable for any function and any precision up to 24 bits (IEEE single precision. Designs for linear and quadratic interpolators that implement the 1/x, 1/ √ x, log2(1+2x, log2(x and 2x functions are presented and analyzed as examples. Results show that a proposed 24-bit interpolator computing 1/x with a design specification of ±1 unit in the last place of the product (ulp error uses 16.4% less area and 15.3% less power than a comparable standard interpolator with the same error specification. Sixteen-bit linear interpolators for other functions are shown to use up to 17.3% less area and 12.1% less power, and 16-bit quadratic interpolators are shown to use up to 25.8% less area and 24.7% less power.

  3. Precision and within- and between-day variation of bioimpedance parameters in children aged 2-14 years

    DEFF Research Database (Denmark)

    Andersen, Trine B; Jødal, Lars; Arveschoug, Anne

    2011-01-01

    BACKGROUND & AIMS: Bioimpedance spectroscopy (BIS) offers the possibility to perform rapid estimates of fluid distribution and body composition. Few studies, however, have addressed the precision and biological variation in a pediatric population. Our objectives were to evaluate precision.......4-14.9 years) had one series measured on day one (precision population). Forty-four children had a second series on day one (within-day sub-population). Thirty-two children had a series measured on the next day (between-day sub-population). Each measurement series consisted of three repeated measurements....... A linear mixed model was used for statistical analysis. RESULTS: The precision was 0.3-0.8% in children ≥6 years and 0.5-2.4% in children...

  4. Polarized e-e+ physics in linear colliders

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1980-11-01

    Electroweak interactions at high energies are expected to be dominated by spin-dependent forces. Recent advances in the production of polarized electron beams in linear machines provide the opportunity for studying these spin-dependent effects. Polarized e - e + annihilation at the Z 0 pole can provide precise measurements of neutral current parameters and the best experimental challenge to the standard model of electroweak interactions

  5. Linear accelerator based stereotactic radiosurgery with micro multi-leaf collimator : technological advancement in precision radiotherapy

    International Nuclear Information System (INIS)

    Dayananda, S.; Kinhikar, R.A.; Saju, Sherley; Deshpande, D.D.; Jalali, R.; Sarin, R.; Shrivastava, S.K.; Dinshaw, K.A.

    2003-01-01

    Stereotactic Radiosurgery (SRS) is an advancement on precision radiotherapy, in which stereo tactically guided localized high dose is delivered to the lesion (target) in a single fraction, while sparing the surrounding normal tissue. Radiosurgery has been used to treat variety of benign and malignant lesions as well as functional disorders in brain such as arteriovenous malformation (AVM), acoustic neuroma, solitary primary brain tumor, single metastasis, pituitary adenoma etc

  6. Precise Orbit Determination of QZS-1

    Science.gov (United States)

    Hugentobler, U.; Steigenberger, P.; Rodriguez-Solano, C.; Hauschild, A.

    2011-12-01

    QZS-1, the first satellite of the Japanese Quasi Zenith Satellite System (QZSS) was launched in September 2010. Transmission of the standard codes started in December 2010 and the satellite was declared healthy in June 2011. Five stations of the COoperative Network for GIOVE Observation (CONGO) were upgraded to provide QZSS tracking capability. These five stations provide the basis for the precise orbit determination (POD) of the QZS-1 spacecraft. The stability and consistency of different orbital arc lengths is analyzed based on orbit fit residuals, day boundary discontinuities, and Satellite Laser Ranging residuals. As QZS-1 simultaneously transmits navigation signals on three frequencies in the L1, L2, and L5 band, different ionosphere-free linear combinations can be formed. The differences of the orbits computed from these different observables (ionosphere-free linear combination of L1/L2 and L1/L5) as well as the stability of the differential code biases estimated within the POD are studied. Finally, results of the attitude determination based on the navigation signal transmission from two different antennas onboard QZS-1 are presented.

  7. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    Science.gov (United States)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  8. Lexan Linear Shaped Charge Holder with Magnets and Backing Plate

    Science.gov (United States)

    Maples, Matthew W.; Dutton, Maureen L.; Hacker, Scott C.; Dean, Richard J.; Kidd, Nicholas; Long, Chris; Hicks, Robert C.

    2013-01-01

    A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.

  9. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  10. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  11. Specific patient verification of IMRT plans using two-dimensional array of ionization chambers.)

    International Nuclear Information System (INIS)

    Rodriguez Zayas, Michael; Perez Guevara, Adrian; Reyes Gonzalez, Tommy; Gonzalez Perez, Yelina; Sola Rodriguez, Yeline; Caballero, Roberto; Lopez Lopez, Alberto; Castro Crespo, Diosdado

    2009-01-01

    The most common procedures to validate treatments with IMRT combine planning and administration which introduces the specific patient approach. IMRT is being introduced in Cuba, so it is a study to use as verification for each IMRT treatment plan with the collapsed beam method (Collapsed beams). We present three case studies to look at different situations and presentation of data. The treatment beam and collapsed obtained with an Elekta Precise linear accelerator and TPS PrecisePLAN respectively. The system used to measure a two-dimensional array of ionization chambers and VeriSoft system, both of the firm PTW. Dummy is used as solid sheets of water. The dose difference is evaluated using the gamma index applied to dose map resulting of the comparison between measured and simulated projections. Also the dose absolute is measured using a cylindrical chamber with United electrometer, which is compare with the results of the TPS. In the cases studied are shown along two perpendicular profiles. Tolerance is taken as the gamma index (5%, 5 mm). The method of collapsed beams under two- dimensional beam ionization chambers has been accepted for verification of IMRT treatments at the Radiotherapy Service of the Hospital Hermanos Ameijeiras. (Author)

  12. Study of film dosimetry for radiotherapy with Gafchromic-RTQ plates

    International Nuclear Information System (INIS)

    Diaz Moreno, Rogelio Manuel; Lara Mas, Elier; Alfonso Laguardia, Rodolfo

    2009-01-01

    Film dosimetry allows quality control processes (CC) for advanced radiotherapy treatments, not achievable with other types of systems dosimetry, as is the determination of two-dimensional dose distribution provided with the planned treatment in selected planes. The aim of this work was to establish the possibilities of making this type of CC with the means available in the INOR. Plates were used radiochromic Gafchromic-RTQ, for quality control, which irradiated with Elekta Precise linear accelerator, according to the test planning developed in the treatment planning system Precise Plan. Were used as image processing software the Mephysto mc2, PTW, and routines scheduled at home on Matlab. Was prepared calibration curve Dose-response for these plates, and applied this calibration curve at other boards with known radiation dose to estimate proximity of the dose obtained through calibration. Other tests were performed to determine the conditions of repeatability and optimal parameters of the process. Conditions were established that are obtained more reliable , the which are lower than those reported Gafchromic-EBT plates, especially designed quantitative dosimetric purposes, but in certain ranges allow evaluate the of a plan with an acceptable degree of approximation. (author)

  13. THK: CLB Crossed Linear Bearing Seismic Isolators

    International Nuclear Information System (INIS)

    Toniolo, Roberto

    2008-01-01

    This text highlights the new seismic isolation technology called CLB (Crossed Linear Bearing), which is made of linear guides with recirculating steel ball technology. It describes specifications and building characteristics, provides examples of seismic isolation and application functionalities and shows experimental data. Since 1994, the constant commitment by Japan to develop diversified anti-seismic systems based on the precise needs of the structures to protect and the areas where they were built has led to the creation of important synergy between the research institutions of leading Japanese companies and THK's Centre for Research and Development. Their goal has been to develop new technology and solutions to allow seismic isolation to be effective in the following cases:

  14. Academic Training: Physics at e+e- linear collider

    CERN Multimedia

    Françoise Benz

    2004-01-01

    15, 16, 17, 18, 19 November 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES from 11.00 to 12.00hrs - Main Auditorium, bldg. 500 Physics at e+e- linear collider K. DESCH / Desy, Hamburg, D Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale to very high precision. The lecture series introduces the possibilities of a TeV linear collider (the International Linear Collider, ILC) in the fields of Higgs physics, alternative Electro-weak Symmetry Breaking scenarios, Supersymmetry, Extra Dimensions, and more exotic models. Also the prospects for highly improved measurements of SM parameters such as the top quark mass and electro-weak gauge boson properties are discussed. The implications for the design of an appropriate detector are outlined and current R&D developments are explained. Particular emphasis will be given to the complementarity and intimate interplay of physics at the LHC and the ILC. The additional benefit of multi-TeV e+e- collisions as envisaged i...

  15. On Associative Conformal Algebras of Linear Growth

    OpenAIRE

    Retakh, Alexander

    2000-01-01

    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  16. Impact of a flattening filter free linear accelerator on structural shielding design

    International Nuclear Information System (INIS)

    Jank, Julia; Kragl, Gabriele; Georg, Dietmar; Medical University of Vienna

    2014-01-01

    Purpose: The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. Material and Methods: We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise trademark linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard OeNORM S 5216 and to the US American NCRP Report No. 151. Results: We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. Conclusions: For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the

  17. Impact of a flattening filter free linear accelerator on structural shielding design

    Energy Technology Data Exchange (ETDEWEB)

    Jank, Julia [Klinikum - Klagenfurt am Woerthersee (Austria). Inst. fuer Strahlentherapie und Radioonkologie; Kragl, Gabriele [Medical University of Vienna/AKH Vienna (Austria). Div. Medical Radiation Physics; Georg, Dietmar [Medical University of Vienna/AKH Vienna (Austria). Div. Medical Radiation Physics; Medical University of Vienna (Austria). Christian Doppler Lab. for Medical Radiation Research for Radiation Oncology

    2014-04-01

    Purpose: The present study aimed to assess the effects of a flattening filter free medical accelerator on structural shielding demands of a treatment vault of a medical linear accelerator. We tried to answer the question, to what extent the required thickness of the shielding barriers can be reduced if instead of the standard flattened photon beams unflattened ones are used. Material and Methods: We chose both an experimental as well as a theoretical approach. On the one hand we measured photon dose rates at protected places outside the treatment room and compared the obtained results for flattened and unflattened beams. On the other hand we complied with international guidelines for adequate treatment vault design and calculated the shielding barriers according to the therein given specifications. Measurements were performed with an Elekta Precise trademark linac providing nominal photon energies of 6 and 10 MV. This machine underwent already earlier some modifications in order to be able to operate both with and without a flattening filter. Photon dose rates were measured with a LB133-1 dose rate meter manufactured by Berthold. To calculate the thickness of shielding barriers we referred to the Austrian standard OeNORM S 5216 and to the US American NCRP Report No. 151. Results: We determined a substantial photon dose rate reduction for all measurement points and photon energies. For unflattened 6 MV beams a reduction factor ranging from 1.4 to 1.8 was identified. The corresponding values for unflattened 10 MV beams were 2.1 and 3.2. The performed shielding calculations indicated the same tendency: For all relevant radiation components we found a reduction in shielding thickness when unflattened beams were used. The required thickness of primary barriers was reduced up to 8.0%, the thickness of secondary barriers up to 11.4%, respectively. Conclusions: For an adequate dimensioning of treatment vault shielding barriers it is by no means irrelevant if the

  18. HIGH PRECISION ROVIBRATIONAL SPECTROSCOPY OF OH{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; McCall, Benjamin J. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Müller, Holger S. P., E-mail: bjmccall@illinois.edu [I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany)

    2016-02-01

    The molecular ion OH{sup +} has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH{sup +}. The ions were produced in a water cooled discharge of O{sub 2}, H{sub 2}, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a {sup 3}Σ{sup −} linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.

  19. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  20. Tabulated square-shaped source model for linear accelerator electron beam simulation.

    Science.gov (United States)

    Khaledi, Navid; Aghamiri, Mahmood Reza; Aslian, Hossein; Ameri, Ahmad

    2017-01-01

    Using this source model, the Monte Carlo (MC) computation becomes much faster for electron beams. The aim of this study was to present a source model that makes linear accelerator (LINAC) electron beam geometry simulation less complex. In this study, a tabulated square-shaped source with transversal and axial distribution biasing and semi-Gaussian spectrum was investigated. A low energy photon spectrum was added to the semi-Gaussian beam to correct the bremsstrahlung X-ray contamination. After running the MC code multiple times and optimizing all spectrums for four electron energies in three different medical LINACs (Elekta, Siemens, and Varian), the characteristics of a beam passing through a 10 cm × 10 cm applicator were obtained. The percentage depth dose and dose profiles at two different depths were measured and simulated. The maximum difference between simulated and measured percentage of depth doses and dose profiles was 1.8% and 4%, respectively. The low energy electron and photon spectrum and the Gaussian spectrum peak energy and associated full width at half of maximum and transversal distribution weightings were obtained for each electron beam. The proposed method yielded a maximum computation time 702 times faster than a complete head simulation. Our study demonstrates that there was an excellent agreement between the results of our proposed model and measured data; furthermore, an optimum calculation speed was achieved because there was no need to define geometry and materials in the LINAC head.

  1. Luminosity Measurement at the Compact Linear Collider

    CERN Document Server

    Schwartz, Rina; Levy, Aharon

    The compact linear collider (CLIC) is a proposed high energy accelera- tor, planned to collide electrons with positrons at a maximal center-of-mass energy of 3 TeV, and a peak luminosity of 5.9·1034 cm−2s−1. Complementary to the large hadron collider, CLIC is to provide high precision measurements of both known and new physics processes. The required relative precision of luminosity measurement at the CLIC is 10−2. The measurement will be done by the luminosity calorimeter (Lumi- Cal), designed to measure the rate of low angles Bhabha scattering events, a process with well-known cross-section from electroweak theory. Beam-beam effects, which are of unprecedented intensity at the CLIC, influence the lumi- nosity spectrum shape and create a significant amount of background charge deposits in the LumiCal, thus setting a challenge on the requirement for precision. The ability of the LumiCal to provide accurate luminosity mea- surement depends on its ability to perform accurate energy reconstruction of Bhab...

  2. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  3. Core seismic behaviour: linear and non-linear models

    International Nuclear Information System (INIS)

    Bernard, M.; Van Dorsselaere, M.; Gauvain, M.; Jenapierre-Gantenbein, M.

    1981-08-01

    The usual methodology for the core seismic behaviour analysis leads to a double complementary approach: to define a core model to be included in the reactor-block seismic response analysis, simple enough but representative of basic movements (diagrid or slab), to define a finer core model, with basic data issued from the first model. This paper presents the history of the different models of both kinds. The inert mass model (IMM) yielded a first rough diagrid movement. The direct linear model (DLM), without shocks and with sodium as an added mass, let to two different ones: DLM 1 with independent movements of the fuel and radial blanket subassemblies, and DLM 2 with a core combined movement. The non-linear (NLM) ''CORALIE'' uses the same basic modelization (Finite Element Beams) but accounts for shocks. It studies the response of a diameter on flats and takes into account the fluid coupling and the wrapper tube flexibility at the pad level. Damping consists of one modal part of 2% and one part due to shocks. Finally, ''CORALIE'' yields the time-history of the displacements and efforts on the supports, but damping (probably greater than 2%) and fluid-structures interaction are still to be precised. The validation experiments were performed on a RAPSODIE core mock-up on scale 1, in similitude of 1/3 as to SPX 1. The equivalent linear model (ELM) was developed for the SPX 1 reactor-block response analysis and a specified seismic level (SB or SM). It is composed of several oscillators fixed to the diagrid and yields the same maximum displacements and efforts than the NLM. The SPX 1 core seismic analysis with a diagrid input spectrum which corresponds to a 0,1 g group acceleration, has been carried out with these models: some aspects of these calculations are presented here

  4. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H. [Universidad de la Frontera, Centro de Fisica e Ingenieria en Medicina, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Velasquez, J. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Zelada, G. [Clinica Alemana de Santiago, Av. Vitacura 5951, 13132 Vitacura, Santiago (Chile); Astudillo, R., E-mail: rodolfo.figueroa@ufrontera.cl [Hospital Base de Valdivia, C. Simpson 850, XIV Region de los Rios, Valdivia (Chile)

    2017-10-15

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  5. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H.; Velasquez, J.; Zelada, G.; Astudillo, R.

    2017-10-01

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  6. Induction of the Tn10 Precise Excision in E. coli Cells after Accelerated Heavy Ions Irradiation

    CERN Document Server

    Zhuravel, D V

    2003-01-01

    The influence of the irradiation of different kinds on the indication of the structural mutations in the bacteria Escherichia coli is considered. The regularities of the Tn10 precise excision after accelerated ^{4}He and ^{12}C ions irradiations with different linear energy transfer (LET) were investigated. Dose dependences of the survival and relative frequency of the Tn10 precise excision were obtained. It was shown, that the relative frequency of the Tn10 precise excision is the exponential function from the irradiation dose. Relative biological efficiency (RBE), and relative genetic efficiency (RGE) were calculated, and were treated as the function of the LET.

  7. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    Science.gov (United States)

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  8. A METHOD FOR SELF-CALIBRATION IN SATELLITE WITH HIGH PRECISION OF SPACE LINEAR ARRAY CAMERA

    Directory of Open Access Journals (Sweden)

    W. Liu

    2016-06-01

    Full Text Available At present, the on-orbit calibration of the geometric parameters of a space surveying camera is usually processed by data from a ground calibration field after capturing the images. The entire process is very complicated and lengthy and cannot monitor and calibrate the geometric parameters in real time. On the basis of a large number of on-orbit calibrations, we found that owing to the influence of many factors, e.g., weather, it is often difficult to capture images of the ground calibration field. Thus, regular calibration using field data cannot be ensured. This article proposes a real time self-calibration method for a space linear array camera on a satellite using the optical auto collimation principle. A collimating light source and small matrix array CCD devices are installed inside the load system of the satellite; these use the same light path as the linear array camera. We can extract the location changes of the cross marks in the matrix array CCD to determine the real-time variations in the focal length and angle parameters of the linear array camera. The on-orbit status of the camera is rapidly obtained using this method. On one hand, the camera’s change regulation can be mastered accurately and the camera’s attitude can be adjusted in a timely manner to ensure optimal photography; in contrast, self-calibration of the camera aboard the satellite can be realized quickly, which improves the efficiency and reliability of photogrammetric processing.

  9. Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood

    DEFF Research Database (Denmark)

    Kim, Byung Mi; Choi, Anna L.; Ha, Eun Hee

    2014-01-01

    to be less precise than suggested by laboratory quality data, we studied the interrelationships of mercury concentrations with hemoglobin in paired maternal and cord blood samples from a Faroese birth cohort (N=514) and the Mothers and Children[U+05F3]s Environmental Health study in Korea (n=797). Linear...... and cord blood for hemoglobin improved their precision, while no significant effect of the selenium concentration in maternal blood was found. Adjustment of blood-mercury concentrations for hemoglobin is therefore recommended. © 2014 Elsevier Inc....

  10. MR-guided radiotherapy: magnetic field dose effects

    NARCIS (Netherlands)

    Raaijmakers, A.J.E.

    2008-01-01

    At the UMC Utrecht, together with Elekta Oncology and Philips Research, we are developing a combined system of a 1.5 Tesla MRI scanner and a 6 MV linear accelerator for cancer treatment. In contrast to present online imaging methods, superior soft-tissue contrast will be achieved. The system will

  11. Stepping motor adaptor actuator for a commercial uhv linear motion feedthrough

    International Nuclear Information System (INIS)

    Iarocci, M.; Oversluizen, T.

    1989-01-01

    An adaptor coupling has been developed that will allow the attachment of a standard stepping motor to a precision commercial (Varian) uhv linear motion feedthrough. The assembly, consisting of the motor, motor adaptor, limit switches, etc. is clamped to the feedthrough body which can be done under vacuum conditions if necessary. With a 500 step/rev. stepping motor the resolution is 1.27 μm per step. We presently use this assembly in a remote location for the precise positioning of a beam sensing monitor. 2 refs., 3 figs

  12. Surface characterization protocol for precision aspheric optics

    Science.gov (United States)

    Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra

    2017-10-01

    In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.

  13. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High-precision ground-based photometry of exoplanets

    Directory of Open Access Journals (Sweden)

    de Mooij Ernst J.W.

    2013-04-01

    Full Text Available High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana. The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice: Get the best calibrations possible. In the case of bad weather, characterise the instrument (e.g. non-linearity, dome flats, bias level, this is vital for better understanding of the science data. Observe the target for as long as possible, the out-of-transit baseline is as important as the transit/eclipse itself. A short baseline can lead to improperly corrected systematic and mis-estimation of the red-noise. Keep everything (e.g. position on detector, exposure time as stable as possible. Take care that the defocus is not too strong. For a large defocus, the contribution of the total flux from the sky-background in the aperture could well exceed that of the target, resulting in very strict requirements on the precision at which the background is measured.

  15. PyCMSXiO: an external interface to script treatment plans for the Elekta® CMS XiO treatment planning system

    Science.gov (United States)

    Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary

    2014-03-01

    Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community.

  16. PyCMSXiO: an external interface to script treatment plans for the Elekta® CMS XiO treatment planning system

    International Nuclear Information System (INIS)

    Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary

    2014-01-01

    Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community.

  17. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  18. Could solitons be adiabatic invariants attached to certain non linear equations

    International Nuclear Information System (INIS)

    Lochak, P.

    1984-01-01

    Arguments are given to support the claim that solitons should be the adiabatic invariants associated to certain non linear partial differential equations; a precise mathematical form of this conjecture is then stated. As a particular case of the conjecture, the Korteweg-de Vries equation is studied. (Auth.)

  19. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    Science.gov (United States)

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  20. Multi-degree-of-freedom motion error measurement in an ultra precision machine using laser encoder - Review

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cha Bum; Lee, Sun Kyu [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2013-01-15

    Recently, in accordance with the increasing market demand for ultra precision technology, a high precision multi-degree-of-freedom displacement measurement technology has become important for industrial applications such as the field of manufacturing and inspection because those physical quantities, linear and angular displacements, are key parameters for keeping and improving quality control of a production system. A number of instruments capable of precise multi-degree-of-freedom measurements have been built and some novel techniques have been introduced. The current state-of-art techniques for multi-degree-of-freedom motion error measurement in a linear stage using laser encoder-implemented system are reviewed. First, we summarize the basic principles behind the measurement technology of the motion error in a stage and simple encoder system. Next, the basic design principles of practical laser encoder system are discussed using the experience of past and existing cases to refer to the important points and the major scientific results. The current trends in the field are significantly discussed, including the novel techniques under construction and advanced technologies. Lastly, the future of multi-functional laser encoder-implemented system, highlighting the kinds of new science upcoming in the next few years, is discussed.

  1. Multi-degree-of-freedom motion error measurement in an ultra precision machine using laser encoder - Review

    International Nuclear Information System (INIS)

    Lee, Cha Bum; Lee, Sun Kyu

    2013-01-01

    Recently, in accordance with the increasing market demand for ultra precision technology, a high precision multi-degree-of-freedom displacement measurement technology has become important for industrial applications such as the field of manufacturing and inspection because those physical quantities, linear and angular displacements, are key parameters for keeping and improving quality control of a production system. A number of instruments capable of precise multi-degree-of-freedom measurements have been built and some novel techniques have been introduced. The current state-of-art techniques for multi-degree-of-freedom motion error measurement in a linear stage using laser encoder-implemented system are reviewed. First, we summarize the basic principles behind the measurement technology of the motion error in a stage and simple encoder system. Next, the basic design principles of practical laser encoder system are discussed using the experience of past and existing cases to refer to the important points and the major scientific results. The current trends in the field are significantly discussed, including the novel techniques under construction and advanced technologies. Lastly, the future of multi-functional laser encoder-implemented system, highlighting the kinds of new science upcoming in the next few years, is discussed.

  2. ACADEMIC TRAINING Progress on e+e- Linear Colliders

    CERN Multimedia

    Françoise Benz

    2002-01-01

    27, 28, 29, 30, 31 May LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Progress on e+e- Linear Colliders by P. Zerwas / Desy, D and R. Siemann / Slac, USA Physics issues (P. Zerwas - 27, 28 May)The physics program will be reviewed for e+e- linear colliders in the TeV energy range. At these prospective facilities central issues of particle physics can be addressed, the problem of mass, unification and structure of space-time. In this context the two lectures will focus on analyses of the Higgs mechanism, supersymmetry and extra space dimensions. Moreover, high-precision studies of the top-quark and the gauge boson sector will be discussed. Combined with LHC results, a comprehensive picture can be developed of physics at the electroweak scale and beyond. Designs and technologies (R. Siemann - 29, 30, 31 May) The physics and technologies of high energy linear colliders will be reviewed. Fundamental concepts of linear colliders will be introduced. They will be discussed in: the context of the Sta...

  3. Computer-controlled detection system for high-precision isotope ratio measurements

    International Nuclear Information System (INIS)

    McCord, B.R.; Taylor, J.W.

    1986-01-01

    In this paper the authors describe a detection system for high-precision isotope ratio measurements. In this new system, the requirement for a ratioing digital voltmeter has been eliminated, and a standard digital voltmeter interfaced to a computer is employed. Instead of measuring the ratio of the two steadily increasing output voltages simultaneously, the digital voltmeter alternately samples the outputs at a precise rate over a certain period of time. The data are sent to the computer which calculates the rate of charge of each amplifier and divides the two rates to obtain the isotopic ratio. These results simulate a coincident measurement of the output of both integrators. The charge rate is calculated by using a linear regression method, and the standard error of the slope gives a measure of the stability of the system at the time the measurement was taken

  4. An Improved Recurrent Neural Network for Complex-Valued Systems of Linear Equation and Its Application to Robotic Motion Tracking.

    Science.gov (United States)

    Ding, Lei; Xiao, Lin; Liao, Bolin; Lu, Rongbo; Peng, Hua

    2017-01-01

    To obtain the online solution of complex-valued systems of linear equation in complex domain with higher precision and higher convergence rate, a new neural network based on Zhang neural network (ZNN) is investigated in this paper. First, this new neural network for complex-valued systems of linear equation in complex domain is proposed and theoretically proved to be convergent within finite time. Then, the illustrative results show that the new neural network model has the higher precision and the higher convergence rate, as compared with the gradient neural network (GNN) model and the ZNN model. Finally, the application for controlling the robot using the proposed method for the complex-valued systems of linear equation is realized, and the simulation results verify the effectiveness and superiorness of the new neural network for the complex-valued systems of linear equation.

  5. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  6. Schwarzian conditions for linear differential operators with selected differential Galois groups

    International Nuclear Information System (INIS)

    Abdelaziz, Y; Maillard, J-M

    2017-01-01

    We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions can be generalized to arbitrary order linear differential operators with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi–Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings. (paper)

  7. Schwarzian conditions for linear differential operators with selected differential Galois groups

    Science.gov (United States)

    Abdelaziz, Y.; Maillard, J.-M.

    2017-11-01

    We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions can be generalized to arbitrary order linear differential operators with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi-Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings.

  8. Smartphone application for mechanical quality assurance of medical linear accelerators

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; In Park, Jong; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-01

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone’s high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  9. Smartphone application for mechanical quality assurance of medical linear accelerators.

    Science.gov (United States)

    Kim, Hwiyoung; Lee, Hyunseok; Park, Jong In; Choi, Chang Heon; Park, So-Yeon; Kim, Hee Jung; Kim, Young Suk; Ye, Sung-Joon

    2017-06-07

    Mechanical quality assurance (QA) of medical linear accelerators consists of time-consuming and human-error-prone procedures. We developed a smartphone application system for mechanical QA. The system consists of two smartphones: one attached to a gantry for obtaining real-time information on the mechanical parameters of the medical linear accelerator, and another displaying real-time information via a Bluetooth connection with the former. Motion sensors embedded in the smartphone were used to measure gantry and collimator rotations. Images taken by the smartphone's high-resolution camera were processed to evaluate accuracies of jaw-positioning, crosshair centering and source-to-surface distance (SSD). The application was developed using Android software development kit and OpenCV library. The accuracy and precision of the system was validated against an optical rotation stage and digital calipers, prior to routine QA measurements of five medical linear accelerators. The system accuracy and precision in measuring angles and lengths were determined to be 0.05  ±  0.05° and 0.25  ±  0.14 mm, respectively. The mean absolute errors (MAEs) in QA measurements of gantry and collimator rotation were 0.05  ±  0.04° and 0.05  ±  0.04°, respectively. The MAE in QA measurements of light field was 0.39  ±  0.36 mm. The MAEs in QA measurements of crosshair centering and SSD were 0.40  ±  0.35 mm and 0.41  ±  0.32 mm, respectively. In conclusion, most routine mechanical QA procedures could be performed using the smartphone application system with improved precision and within a shorter time-frame, while eliminating potential human errors.

  10. The minimal linear σ model for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Feruglio, F.; Gavela, M.B.; Kanshin, K.; Machado, P.A.N.; Rigolin, S.; Saa, S.

    2016-01-01

    In the context of the minimal SO(5) linear σ-model, a complete renormalizable Lagrangian -including gauge bosons and fermions- is considered, with the symmetry softly broken to SO(4). The scalar sector describes both the electroweak Higgs doublet and the singlet σ. Varying the σ mass would allow to sweep from the regime of perturbative ultraviolet completion to the non-linear one assumed in models in which the Higgs particle is a low-energy remnant of some strong dynamics. We analyze the phenomenological implications and constraints from precision observables and LHC data. Furthermore, we derive the d≤6 effective Lagrangian in the limit of heavy exotic fermions.

  11. Use of linear and areal habitat models to establish and distribute beaver Castor fiber harvest quotas in Norway

    Directory of Open Access Journals (Sweden)

    Howard Parker

    2013-12-01

    Full Text Available In Norway the Eurasian beaver Castor fiber harvest is quota-regulated. Once the annual quota for each municipality has been determined it is distributed to landowner-organized beaver management units. Municipal wildlife managers can choose between two distributional models: the traditional “areal model” whereby each management unit receives its portion of the municipal quota based on the relative area of beaver habitat within the township that it contains, or the more recently developed “linear model” based on the relative length of beaver-utilized shoreline it contains. The linear model was developed in an attempt to increase the precision of the quota distribution process and is based on the fact that beaver occupy landscapes in a linear fashion along strips of shoreline rather than exploiting extensive areas. The assumption was that the linear model would provide a more precise and just method of distributing the municipal quota among landowners. Here we test the hypothesis that the length of beaverutilized shoreline is a better predictor of beaver colony density than the area of beaver habitat on 13 beaver management units of typical size (794 – 2200 hectares in Bø Township, Norway, during 2 years. As hypothesized, the number of beaver occupied sites on management units correlated significantly (p≤ 0.001 with the length of beaver-utilized shoreline, but not with the area of beaver habitat. Therefore municipalities should employ the linear model when a precise distribution of quotas is necessary. The density of Eurasian beaver colonies at the landscape scale (>100 km2 in south-central Scandinavia averages approximately 1 occupied site per 4 km2. This figure can be employed by municipal wildlife managers to estimate the colony density in their townships, and to calculate municipal quotas, when more precise census information is lacking.

  12. Precision medicine in myasthenia graves: begin from the data precision

    Science.gov (United States)

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  13. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack

    2012-11-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  14. Energy footprint of advanced dense numerical linear algebra using tile algorithms on multicore architectures

    KAUST Repository

    Dongarra, Jack; Ltaief, Hatem; Luszczek, Piotr R.; Weaver, Vincent M.

    2012-01-01

    We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.

  15. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    Science.gov (United States)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  16. Linear verrucous hemangioma-a rare case and dermoscopic clues to diagnosis.

    Science.gov (United States)

    Dhanta, Aditi; Chauhan, Payal; Meena, Dilip; Hazarika, Neirita

    2018-01-01

    Verrucous hemangioma (VH) is a rare, congenital and localized vascular malformation, which usually presents as warty, bluish, vascular papules, plaques, or nodules, mainly on the lower extremities. Linear presentation of the disease is rare. A deep biopsy is necessary to confirm the clinical diagnosis by histopathological examination, with dermoscopy acting as a useful tool for evaluating the precise vascular structure. Here, we report on a 13-year-old female child with linear VH presenting over her foot since infancy and dermoscopic findings of VH along with the clinical-pathologic features.

  17. Precision machining commercialization

    International Nuclear Information System (INIS)

    1978-01-01

    To accelerate precision machining development so as to realize more of the potential savings within the next few years of known Department of Defense (DOD) part procurement, the Air Force Materials Laboratory (AFML) is sponsoring the Precision Machining Commercialization Project (PMC). PMC is part of the Tri-Service Precision Machine Tool Program of the DOD Manufacturing Technology Five-Year Plan. The technical resources supporting PMC are provided under sponsorship of the Department of Energy (DOE). The goal of PMC is to minimize precision machining development time and cost risk for interested vendors. PMC will do this by making available the high precision machining technology as developed in two DOE contractor facilities, the Lawrence Livermore Laboratory of the University of California and the Union Carbide Corporation, Nuclear Division, Y-12 Plant, at Oak Ridge, Tennessee

  18. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    Science.gov (United States)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  19. A new timing system for the Stanford Linear Collider

    International Nuclear Information System (INIS)

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Pierce, W.; Ross, M.; Wilmunder, A.

    1985-01-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail

  20. High-precision improved-analytic-exponentiation results for multiple-photon effects in low-angle Bhabha scattering at the SLAC Linear Collider and the CERN e+e- collider LEP

    International Nuclear Information System (INIS)

    Jadach, S.; Richter-Was, E.; Ward, B.F.L.; Was, Z.

    1991-01-01

    Starting from an earlier benchmark analytical calculation of the luminosity process e + e-→e + e-+(γ) at the SLAC Linear Collider (SLC) and the CERN e + e- collider LEP, we use the methods of Yennie, Frautschi, and Suura to develop an analytical improved naive exponentiated formula for this process. The formula is compared to our multiple-photon Monte Carlo event generator BHLUMI (1.13) for the same process. We find agreement on the overall cross-section normalization between the exponentiated formula and BHLUMI below the 0.2% level. In this way, we obtain an important cross-check on the normalization of our higher-order results in BHLUMI and we arrive at formulas which represent the LEP/SLC luminosity process in the below 1% Z 0 physics tests of the SU(2) L xU(1) theory in complete analogy with the famous high-precision Z 0 line-shape formulas for the e + e-→μ + μ - process discussed by Berends et al., for example

  1. Precise measurement of the densities of liquid Bi, Sn, Pb and Sb

    International Nuclear Information System (INIS)

    Wang Lianwen; Wang Qiang; Xian Aiping; Lu Kunquan

    2003-01-01

    The densities of liquid Bi, Sn, Pb and Sb have been precisely measured from the melting point up to about 1100 K using an improved Archimedean method. The densities at the melting point for liquid Bi, Sn, Pb and Sb are 10.042 x 10 3 , 6.983 x 10 3 , 10.635 x 10 3 and 6.454 x 10 3 kg m -3 , respectively. Comparisons between our data and those from the literature have been made and they show the present results to be more reliable. Rather than a linear fit for the temperature dependence of the density, a slight deviation from linearity in the temperature dependence of the densities has been observed

  2. Why precision?

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2012-05-15

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  3. Why precision?

    International Nuclear Information System (INIS)

    Bluemlein, Johannes

    2012-05-01

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  4. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    Science.gov (United States)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a

  5. Impact of beam-beam effects on precision luminosity measurements at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Rimbault, C [LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay (France); Bambade, P [LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay (France); Moenig, K [DESY, Zeuthen (Germany); Schulte, D [CERN, Geneva (Switzerland)

    2007-09-15

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  6. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  7. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  8. Penelope simulation of electron beams 6 MeV from a linear accelerator for studies in different materials equivalent to human body

    International Nuclear Information System (INIS)

    Apaza V, D.; Cardena R, R.; Cayllahua Q, F.; Vega R, J.; Urquizo B, R.

    2015-10-01

    In systems of radiotherapy treatment for cancer, always looking to maximize the radiation dose on the target (tumor) and minimize to the organs at risk or healthy, so they resort to using electron beams that have properties and characteristics of higher dose deposition at fixed depths, directing and focusing the higher dose in the tumor, without harming healthy tissues to which seeks to radiate in the least possible. Simulating the interaction of electron beams with different equivalent tissues to the human body leads to a better dosimetric evaluation, improving the quality of treatment planning. The aim of this study is the comparison from the characterization of several equivalent tissues to the human body such as soft tissue, bone and lung. Based on the simulation of a calibration beam in water phantom with Penelope code and compared with the results of the calibration curves of beams in water vat by a linear accelerator Elekta Synergy of Hospital Nacional Carlos Alberto Seguin Escobedo EsSalud of Arequipa (Peru). From this to evaluate the behavior of electron beams in a homogeneous medium and then further evaluation in the human body homogeneities, for better evaluation and specific treatment planning. (Author)

  9. Physics at the e+e- Linear Collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Baer, H.; Battaglia, M.

    2015-04-01

    A comprehensive review of physics at an e + e - Linear Collider in the energy range of √(s)=92 GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.

  10. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    Science.gov (United States)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  11. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  12. Experience in the radiotherapy department of Hospital Hermanos Ameijeiras in the use of 3DCRT 2drt and

    International Nuclear Information System (INIS)

    Sola Rodriguez, Yeline; Rodriguez Zayas, Michael; Perez Guevara, Adrian

    2009-01-01

    The introduction of TPS Precise Plan and the installation of an Elekta linear accelerator Entailed Precise Radiotherapy Service HHA 2DRT the evolution of a 3DCRT, the latter being a term used to describe the design and delivery planning radiation treatments based on 3D images, with fields individually shaped to the target volume and improved procedures evaluation of plans. Because of this it is necessary to estimate uncertainty in the delivered dose, which is evaluated in the 2D process 3DCRT, with emphasis on obtaining anatomical information (contour-meter vs TAC) design fields (open field vs MLC), dosimetric calculations, evaluation treatment plan and verification of isocenter. In this work took only internal processes in the treatment, such as location of the target volume and organs at risk, correction for inhomogeneities, etc. We excluded the uncertainties common to both modalities, such as: camera calibration, repeatability errors, among others. It took 40 cases treated: 20 with technical and 20 technical 2DRT 3DCRT for estimate the uncertainty of the delivered dose given each factor separately, say those involved in the planning process and supply of the treatment. This study implements a methodology which maintains or always reported decreasing uncertainties will lead to an increase quality of care. (author)

  13. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR(TM) Penta-Guide phantom

    International Nuclear Information System (INIS)

    Sykes, J R; Lindsay, R; Dean, C J; Thwaites, D I; Brettle, D S; Magee, D R

    2008-01-01

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR(TM) Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF 50 ) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of 50 for five measurements was 0.278 ± 0.004 lp mm -1 with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF 50 enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems

  14. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    Science.gov (United States)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  15. A parallel solver for huge dense linear systems

    Science.gov (United States)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    : Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.

  16. MO-F-CAMPUS-J-04: One-Year Analysis of Elekta CBCT Image Quality Using NPS and MTF

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, S; Tachibana, M [Hiroshima International University, Hiroshma, Hiroshima (Japan); Watanabe, Y [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To compare quantitative image quality (IQ) evaluation methods using Noise Power Spectrum (NPS) and Modulation Transfer Function (MTF) with standard IQ analyses for minimizing the observer subjectivity of the standard methods and maximizing the information content. Methods: For our routine IQ tests of Elekta XVI Cone-Beam CT, image noise was quantified by the standard deviation of CT number (CT#) (Sigma) over a small area in an IQ test phantom (CatPhan), and the high spatial resolution (HSR) was evaluated by the number of line-pairs (LP#) visually recognizable on the image. We also measured the image uniformity, the low contrast resolution ratio, and the distances of two points for geometrical accuracy. For this study, we did additional evaluation of the XVI data for 12 monthly IQ tests by using NPS for noise, MTF for HSR, and the CT#-to-density relationship. NPS was obtained by applying Fourier analysis in a small area on the uniformity test section of CatPhan. The MTF analysis was performed by applying the Droege-Morin (D-M) method to the line pairs on the phantom. The CT#-to-density was obtained for inserts in the low-contrast test section of the phantom. Results: All the quantities showed a noticeable change over the one-year period. Especially the noise level changed significantly after a repair of the imager. NPS was more sensitive to the IQ change than Sigma. MTF could provide more quantitative and objective evaluation of the HSR. The CT# was very different from the expected CT#; but, the CT#-to-density curves were constant within 5% except two months. Conclusion: Since the D-M method is easy to implement, we recommend using MTF instead of the LP# even for routine periodic QA. The month-to-month variation of IQ was not negligible; hence a routine IQ test must be performed, particularly after any modification of hardware including detector calibration.

  17. MO-F-CAMPUS-J-04: One-Year Analysis of Elekta CBCT Image Quality Using NPS and MTF

    International Nuclear Information System (INIS)

    Nakahara, S; Tachibana, M; Watanabe, Y

    2015-01-01

    Purpose: To compare quantitative image quality (IQ) evaluation methods using Noise Power Spectrum (NPS) and Modulation Transfer Function (MTF) with standard IQ analyses for minimizing the observer subjectivity of the standard methods and maximizing the information content. Methods: For our routine IQ tests of Elekta XVI Cone-Beam CT, image noise was quantified by the standard deviation of CT number (CT#) (Sigma) over a small area in an IQ test phantom (CatPhan), and the high spatial resolution (HSR) was evaluated by the number of line-pairs (LP#) visually recognizable on the image. We also measured the image uniformity, the low contrast resolution ratio, and the distances of two points for geometrical accuracy. For this study, we did additional evaluation of the XVI data for 12 monthly IQ tests by using NPS for noise, MTF for HSR, and the CT#-to-density relationship. NPS was obtained by applying Fourier analysis in a small area on the uniformity test section of CatPhan. The MTF analysis was performed by applying the Droege-Morin (D-M) method to the line pairs on the phantom. The CT#-to-density was obtained for inserts in the low-contrast test section of the phantom. Results: All the quantities showed a noticeable change over the one-year period. Especially the noise level changed significantly after a repair of the imager. NPS was more sensitive to the IQ change than Sigma. MTF could provide more quantitative and objective evaluation of the HSR. The CT# was very different from the expected CT#; but, the CT#-to-density curves were constant within 5% except two months. Conclusion: Since the D-M method is easy to implement, we recommend using MTF instead of the LP# even for routine periodic QA. The month-to-month variation of IQ was not negligible; hence a routine IQ test must be performed, particularly after any modification of hardware including detector calibration

  18. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    International Nuclear Information System (INIS)

    Morrow, A; Rangaraj, D; Perez-Andujar, A; Krishnamurthy, N

    2016-01-01

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each were calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.

  19. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, A [Scott & White Hospital Temple, TX (United States); Rangaraj, D [Baylor Scott & White Health, Temple, TX (United States); Perez-Andujar, A [University of California San Francisco, San Francisco, CA (United States); Krishnamurthy, N [Baylor Scott & White Healthcare, Temple, TX (United States)

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each were calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.

  20. Practical precision measurement

    International Nuclear Information System (INIS)

    Kwak, Ho Chan; Lee, Hui Jun

    1999-01-01

    This book introduces basic knowledge of precision measurement, measurement of length, precision measurement of minor diameter, measurement of angles, measurement of surface roughness, three dimensional measurement, measurement of locations and shapes, measurement of screw, gear testing, cutting tools testing, rolling bearing testing, and measurement of digitalisation. It covers height gauge, how to test surface roughness, measurement of plan and straightness, external and internal thread testing, gear tooth measurement, milling cutter, tab, rotation precision measurement, and optical transducer.

  1. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  2. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated < one at Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250 degrees C is better than 1.8 percent, with the precision better than 4.5;percent. The accuracy of the unconfined data collected between ambient temperature and 50 degrees C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined

  3. Physical-dosimetric enabling a dual linear accelerator 3D planning systems for radiotherapy

    International Nuclear Information System (INIS)

    Alfonso, Rodolfo; Martinez, William; Arelis, Lores; Morales, Jorge

    2009-01-01

    The process of commissioning clinical linear accelerator requires a dual comprehensive study of the therapeutic beam parameters, both photons Electron. All information gained by measuring physical and dosimetric these beams must be analyzed, processed and refined for further modeling in computer-based treatment planning (RTPS). Of professionalism of this process will depend on the accuracy and precision of the calculations the prescribed doses. This paper aims to demonstrate availability clinical linear accelerator system-RTPS with late radiotherapy treatments shaped beam of photons and electrons. (author)

  4. N=4 superconformal mechanics as a non linear realization

    International Nuclear Information System (INIS)

    Anabalon, Andres; Gomis, Joaquim; Kamimura, Kiyoshi; Zanelli, Jorge

    2006-01-01

    An action for a superconformal particle is constructed using the non linear realization method for the group PSU(1,1/2), without introducing superfields. The connection between PSU(1,1/2) and black hole physics is discussed. The lagrangian contains six arbitrary constants and describes a non-BPS superconformal particle. The BPS case is obtained if a precise relation between the constants in the lagrangian is verified, which implies that the action becomes kappa-symmetric

  5. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  6. Non-Linear MDT Drift Gases like Ar/CO2

    CERN Document Server

    Aleksa, Martin

    1998-01-01

    Detailed measurements and simulations have been performed, investigating the properties of Ar/CO2 mixtures as a MDT drift gas. This note presents these measurements and compares them to other drift gases that have been simulated using GARFIELD, HEED and MAGBOLTZ.This note also describes systematic errors to be considered in the operation of precision drift chambers using such gases. In particular we analyze effects of background rate variations, gas-density changes, variations of the gas composition, autocalibration, magnetic field differences and non-concentricity of the wire. Their impact on the reconstructed muon momentum resolution was simulated with DICE/ATRECON.The different properties of linear and non-linear drift gases and their relative advantages and disadvantages are discussed in detail.

  7. Fitting the two-compartment model in DCE-MRI by linear inversion.

    Science.gov (United States)

    Flouri, Dimitra; Lesnic, Daniel; Sourbron, Steven P

    2016-09-01

    Model fitting of dynamic contrast-enhanced-magnetic resonance imaging-MRI data with nonlinear least squares (NLLS) methods is slow and may be biased by the choice of initial values. The aim of this study was to develop and evaluate a linear least squares (LLS) method to fit the two-compartment exchange and -filtration models. A second-order linear differential equation for the measured concentrations was derived where model parameters act as coefficients. Simulations of normal and pathological data were performed to determine calculation time, accuracy and precision under different noise levels and temporal resolutions. Performance of the LLS was evaluated by comparison against the NLLS. The LLS method is about 200 times faster, which reduces the calculation times for a 256 × 256 MR slice from 9 min to 3 s. For ideal data with low noise and high temporal resolution the LLS and NLLS were equally accurate and precise. The LLS was more accurate and precise than the NLLS at low temporal resolution, but less accurate at high noise levels. The data show that the LLS leads to a significant reduction in calculation times, and more reliable results at low noise levels. At higher noise levels the LLS becomes exceedingly inaccurate compared to the NLLS, but this may be improved using a suitable weighting strategy. Magn Reson Med 76:998-1006, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Comparison between linear quadratic and early time dose models

    International Nuclear Information System (INIS)

    Chougule, A.A.; Supe, S.J.

    1993-01-01

    During the 70s, much interest was focused on fractionation in radiotherapy with the aim of improving tumor control rate without producing unacceptable normal tissue damage. To compare the radiobiological effectiveness of various fractionation schedules, empirical formulae such as Nominal Standard Dose, Time Dose Factor, Cumulative Radiation Effect and Tumour Significant Dose, were introduced and were used despite many shortcomings. It has been claimed that a recent linear quadratic model is able to predict the radiobiological responses of tumours as well as normal tissues more accurately. We compared Time Dose Factor and Tumour Significant Dose models with the linear quadratic model for tumour regression in patients with carcinomas of the cervix. It was observed that the prediction of tumour regression estimated by the Tumour Significant Dose and Time Dose factor concepts varied by 1.6% from that of the linear quadratic model prediction. In view of the lack of knowledge of the precise values of the parameters of the linear quadratic model, it should be applied with caution. One can continue to use the Time Dose Factor concept which has been in use for more than a decade as its results are within ±2% as compared to that predicted by the linear quadratic model. (author). 11 refs., 3 figs., 4 tabs

  9. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  10. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  11. Virtual instrumention-based linearity test platform for DCCT of digital power supply at SSRF

    International Nuclear Information System (INIS)

    Tang Junlong; Li Deming; Shen Tianjian; Liu Hong

    2008-01-01

    Based on virtual instrumentation, a reliable and effective test platform, performing instrument control, data acquisition and data recording, has been established to evaluate linearity of high performance DCCT (DC current transducer) for digital power supply at Shanghai Synchrotron Radiation Facility (SSRF). The software in LabVIEW language was developed to perform computer communication via serial communication (RS232) and GPIB, providing a friendly user interface to the linearity test platform. This makes it easy to test the linearity and control power on or off and current output of high-precision and high-current DC constant current output power supply. The experimental data, stored in an EXCEL file, can be processed to obtain DCCT linearity, and provide basis to further analyze DCCT performance in the future. (authors)

  12. Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment

    Science.gov (United States)

    Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi

    2017-07-01

    The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.

  13. A precise Higgs mass measurement at the ILC and test beam data analyses with CALICE

    International Nuclear Information System (INIS)

    Ruan, Manqi

    2008-01-01

    Utilizing Monte Carlo tools and test-beam data, some basic detector performance properties are studied for the International Linear Collider (ILC). The contributions of this thesis are mainly twofold, first, a study of the Higgs mass and cross section measurements at the ILC (with full simulation to the e + e - → HZ→Hμμ channel and backgrounds); and second, an analysis of test-beam data of the Calorimeter for Linear Collider Experiment (CALICE). For a most general type of Higgs particle with 120 GeV the mass, setting the center-of-mass energy to 230 GeV and with an integrated luminosity of 500fb -1 , a precision of 38.4 MeV is obtained in a model independent analysis for the Higgs boson mass measurement, while the cross section could be measured to 5%; if we make some assumptions about the Higgs boson's decay, for example a Standard Model Higgs boson with a dominant invisible decay mode, the measurement result can be improved by 25% (achieving a mass measurement precision of 29 MeV and a cross section measurement precision of 4%). For the CALICE test-beam data analysis, our work is mainly focused upon two aspects: data quality checks and the track-free ECAL angular measurement. Data quality checks aim to detect strange signals or unexpected phenomena in the test-beam data so that one knows quickly how the overall data taking quality is. They also serve to classify all the data and give useful information for the later offline data analyses. The track-free ECAL angular resolution algorithm is designed to precisely measure the direction of a photon, a very important component in determining the direction of the neutral components in jets. We found that the angular resolution can be well fitted as a function of the square root of the beam energy (in a similar way as for the energy resolution) with a precision of approximately 80 mrad/√(E/GeV) in the angular resolution. (author)

  14. Implementation of multileaf collimator in a LINAC MCNP5 simulation coupled with the radiation treatment planing system PLUNC

    International Nuclear Information System (INIS)

    Abella, Vicente; Miro, Rafael; Juste, Belen; Verdu, Gumersindo

    2010-01-01

    Multileaf collimators are used on linear accelerators to provide conformal shaping of radiotherapy treatment beams, being an important tool for radiation therapy dose delivery. In this work, a multileaf collimator has been designed and implemented in the MCNP model of an Elekta Precise Linear Accelerator and introduced in PLUNC, a set of software tools for radiotherapy treatment planning (RTP) which was coupled in previous works with MCNP5 (Monte Carlo N-Particle transport code), with the purpose of comparing its effect on deterministic and Monte Carlo dose calculations. A 3D Shepp-Logan phantom was utilized as the patient model for validation purposes. Once the multileaf collimator model is implemented in the PLUNC LINAC model, a series of Matlab interfaces extract phantom and beam information created with PLUNC during the treatment plan and write it in MCNP5 input deck format. After the Monte Carlo simulation is performed, results are input back again in PLUNC in order to continue with the plan evaluation. The comparison is made via mapping of dose distribution inside the phantom with different field sizes, utilizing the MCNP5 tool EMESH, superimposed mesh tally, which allows registering the results over the problem geometry. This work follows a valid methodology for multileaf LINAC MC calculations during radiation treatment plans. (author)

  15. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    Science.gov (United States)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  16. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dae Jung; Lee, Dong-Hun [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Kim, Kihong [Division of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  17. Linear Model for Optimal Distributed Generation Size Predication

    Directory of Open Access Journals (Sweden)

    Ahmed Al Ameri

    2017-01-01

    Full Text Available This article presents a linear model predicting optimal size of Distributed Generation (DG that addresses the minimum power loss. This method is based fundamentally on strong coupling between active power and voltage angle as well as between reactive power and voltage magnitudes. This paper proposes simplified method to calculate the total power losses in electrical grid for different distributed generation sizes and locations. The method has been implemented and tested on several IEEE bus test systems. The results show that the proposed method is capable of predicting approximate optimal size of DG when compared with precision calculations. The method that linearizes a complex model showed a good result, which can actually reduce processing time required. The acceptable accuracy with less time and memory required can help the grid operator to assess power system integrated within large-scale distribution generation.

  18. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  19. Linearization Method and Linear Complexity

    Science.gov (United States)

    Tanaka, Hidema

    We focus on the relationship between the linearization method and linear complexity and show that the linearization method is another effective technique for calculating linear complexity. We analyze its effectiveness by comparing with the logic circuit method. We compare the relevant conditions and necessary computational cost with those of the Berlekamp-Massey algorithm and the Games-Chan algorithm. The significant property of a linearization method is that it needs no output sequence from a pseudo-random number generator (PRNG) because it calculates linear complexity using the algebraic expression of its algorithm. When a PRNG has n [bit] stages (registers or internal states), the necessary computational cost is smaller than O(2n). On the other hand, the Berlekamp-Massey algorithm needs O(N2) where N(≅2n) denotes period. Since existing methods calculate using the output sequence, an initial value of PRNG influences a resultant value of linear complexity. Therefore, a linear complexity is generally given as an estimate value. On the other hand, a linearization method calculates from an algorithm of PRNG, it can determine the lower bound of linear complexity.

  20. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    Science.gov (United States)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that

  1. Study and program implementation of transient curves' piecewise linearization

    International Nuclear Information System (INIS)

    Shi Yang; Zu Hongbiao

    2014-01-01

    Background: Transient curves are essential for the stress analysis of related equipment in nuclear power plant (NPP). The actually operating data or the design transient data of a NPP usually consist of a large number of data points with very short time intervals. To simplify the analysis, transient curves are generally piecewise linearized in advance. Up to now, the piecewise linearization of transient curves is accomplished manually, Purpose: The aim is to develop a method for the piecewise linearization of transient curves, and to implement it by programming. Methods: First of all, the fitting line of a number of data points was obtained by the least square method. The segment of the fitting line is set while the accumulation error of linearization exceeds the preset limit with the increasing number of points. Then the linearization of subsequent data points was begun from the last point of the preceding curve segment to get the next segment in the same way, and continue until the final data point involved. Finally, averaging of junction points is taken for the segment connection. Results: A computer program named PLTC (Piecewise Linearization for Transient Curves) was implemented and verified by the linearization of the standard sine curve and typical transient curves of a NPP. Conclusion: The method and the PLTC program can be well used to the piecewise linearization of transient curves, with improving efficiency and precision. (authors)

  2. Practical controller design for ultra-precision positioning of stages with a pneumatic artificial muscle actuator

    Science.gov (United States)

    Tang, T. F.; Chong, S. H.

    2017-06-01

    This paper presents a practical controller design method for ultra-precision positioning of pneumatic artificial muscle actuator stages. Pneumatic artificial muscle (PAM) actuators are safe to use and have numerous advantages which have brought these actuators to wide applications. However, PAM exhibits strong non-linear characteristics, and these limitations lead to low controllability and limit its application. In practice, the non-linear characteristics of PAM mechanism are difficult to be precisely modeled, and time consuming to model them accurately. The purpose of the present study is to clarify a practical controller design method that emphasizes a simple design procedure that does not acquire plants parameters modeling, and yet is able to demonstrate ultra-precision positioning performance for a PAM driven stage. The practical control approach adopts continuous motion nominal characteristic trajectory following (CM NCTF) control as the feedback controller. The constructed PAM driven stage is in low damping characteristic and causes severe residual vibration that deteriorates motion accuracy of the system. Therefore, the idea to increase the damping characteristic by having an acceleration feedback compensation to the plant has been proposed. The effectiveness of the proposed controller was verified experimentally and compared with a classical PI controller in point-to-point motion. The experiment results proved that the CM NCTF controller demonstrates better positioning performance in smaller motion error than the PI controller. Overall, the CM NCTF controller has successfully to reduce motion error to 3µm, which is 88.7% smaller than the PI controller.

  3. A new amplifier for improving piezoelectric actuator linearity based on current switching in precision positioning

    International Nuclear Information System (INIS)

    Ru, Changhai; Chen, Liguo; Shao, Bing; Rong, Weibin; Sun, Lining

    2008-01-01

    Piezoelectric actuators have traditionally been driven by voltage amplifiers. When driven at large voltages these actuators exhibit a significant amount of distortion, known as hysteresis, which may reduce the stability robustness of the system in feedback control applications. Piezoelectric transducers are known to exhibit less hysteresis when driven with current or charge rather than voltage. Despite this advantage, such methods have found little practical application due to the poor low frequency response of present current and charge driver designs. In this paper, a new piezoelectric amplifier based on current switching is presented which can reduce hysteresis. Special circuits and a hybrid control algorithm realize quick and precise positioning. Experimental results demonstrate that the amplifier can be used for dynamic and static applications and low frequency bandwidths can also be achieved

  4. [Relations between biomedical variables: mathematical analysis or linear algebra?].

    Science.gov (United States)

    Hucher, M; Berlie, J; Brunet, M

    1977-01-01

    The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.

  5. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  6. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection

    OpenAIRE

    Jun-Chao Yan; Yan Chen; Yu Pang; Jan Slavik; Yun-Fei Zhao; Xiao-Ming Wu; Yi Yang; Si-Fan Yang; Tian-Ling Ren

    2018-01-01

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a ne...

  7. Trial of accelerator cells machining with high precision and high efficiency at Okayama region

    International Nuclear Information System (INIS)

    Yoshikawa, Mitsuo; Yoden, Hiroyuki; Yokomizo, Seiichi; Sumida, Tsuneto; Kunishida, Jun; Oshita, Isao

    2005-01-01

    In the framework of the project 'Promotion of Science and Technology in Regional Areas' by the Ministry of Education, Culture, Sports, Science and Technology, we have prepared a special apparatus for machining accelerator cells with a high precision and a high efficiency for the future linear collider. A machining with as small an error as 2 micrometers has been realized. Necessary time to finish one accelerator cell is reduced from 128 minutes to 34 minutes due to the suppression of the heating of the object at the machining. If newly developed one chuck method was employed, the precision and efficiency would be further improved. By cutting at both sides of the spindle, the necessary time for machining would be reduced by half. (author)

  8. Linear Collider Physics Resource Book for Snowmass 2001, 3 Studies of Exotic and Standard Model Physics

    CERN Document Server

    Abe, T.; Asner, D.; Baer, H.; Bagger, J.; Balazs, C.; Baltay, C.; Barker, T.; Barklow, T.; Barron, J.; Baur, U.; Beach, R.; Bellwied, R.; Bigi, I.; Blochinger, C.; Boege, S.; Bolton, T.; Bower, G.; Brau, J.; Breidenbach, M.; Brodsky, S.J.; Burke, D.; Burrows, P.; Butler, J.N.; Chakraborty, D.; Cheng, H.C.; Chertok, M.; Choi, S.Y.; Cinabro, D.; Corcella, G.; Cordero, R.K.; Danielson, N.; Davoudiasl, H.; Dawson, S.; Denner, A.; Derwent, P.; Diaz, M.A.; Dima, M.; Dittmaier, S.; Dixit, M.; Dixon, L.; Dobrescu, B.; Doncheski, M.A.; Duckwitz, M.; Dunn, J.; Early, J.; Erler, J.; Feng, J.L.; Ferretti, C.; Fisk, H.E.; Fraas, H.; Freitas, A.; Frey, R.; Gerdes, D.; Gibbons, L.; Godbole, R.; Godfrey, S.; Goodman, E.; Gopalakrishna, S.; Graf, N.; Grannis, P.D.; Gronberg, J.; Gunion, J.; Haber, H.E.; Han, T.; Hawkings, R.; Hearty, C.; Heinemeyer, S.; Hertzbach, S.S.; Heusch, C.; Hewett, J.; Hikasa, K.; Hiller, G.; Hoang, A.; Hollebeek, R.; Iwasaki, M.; Jacobsen, R.; Jaros, J.; Juste, A.; Kadyk, J.; Kalinowski, J.; Kalyniak, P.; Kamon, T.; Karlen, D.; Keller, L.; Koltick, D.; Kribs, G.; Kronfeld, A.; Leike, A.; Logan, H.E.; Lykken, J.; Macesanu, C.; Magill, S.; Marciano, W.; Markiewicz, T.W.; Martin, S.; Maruyama, T.; Matchev, K.; Moenig, K.; Montgomery, H.E.; Moortgat-Pick, G.; Moreau, G.; Mrenna, S.; Murakami, B.; Murayama, H.; Nauenberg, U.; Neal, H.; Newman, B.; Nojiri, M.; Orr, L.H.; Paige, F.; Para, A.; Pathak, S.; Peskin, M.E.; Plehn, T.; Porter, F.; Potter, C.; Prescott, C.; Rainwater, D.; Raubenheimer, T.; Repond, J.; Riles, K.; Rizzo, T.; Ronan, M.; Rosenberg, L.; Rosner, J.; Roth, M.; Rowson, P.; Schumm, B.; Seppala, L.; Seryi, A.; Siegrist, J.; Sinev, N.; Skulina, K.; Sterner, K.L.; Stewart, I.; Su, S.; Tata, X.; Telnov, V.; Teubner, T.; Tkaczyk, S.; Turcot, A.S.; van Bibber, K.; van Kooten, R.; Vega, R.; Wackeroth, D.; Wagner, D.; Waite, A.; Walkowiak, W.; Weiglein, G.; Wells, J.D.; W. Wester, III; Williams, B.; Wilson, G.; Wilson, R.; Winn, D.; Woods, M.; Wudka, J.; Yakovlev, O.; Yamamoto, H.; Yang, H.J.

    2001-01-01

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.

  9. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator

    International Nuclear Information System (INIS)

    Sharpe, Michael B.; Moseley, Douglas J.; Purdie, Thomas G.

    2006-01-01

    The geometric accuracy and precision of an image-guided treatment system were assessed. Image guidance is performed using an x-ray volume imaging (XVI) system integrated with a linear accelerator and treatment planning system. Using an amorphous silicon detector and x-ray tube, volumetric computed tomography images are reconstructed from kilovoltage radiographs by filtered backprojection. Image fusion and assessment of geometric targeting are supported by the treatment planning system. To assess the limiting accuracy and precision of image-guided treatment delivery, a rigid spherical target embedded in an opaque phantom was subjected to 21 treatment sessions over a three-month period. For each session, a volumetric data set was acquired and loaded directly into an active treatment planning session. Image fusion was used to ascertain the couch correction required to position the target at the prescribed iso-center. Corrections were validated independently using megavoltage electronic portal imaging to record the target position with respect to symmetric treatment beam apertures. An initial calibration cycle followed by repeated image-guidance sessions demonstrated the XVI system could be used to relocate an unambiguous object to within less than 1 mm of the prescribed location. Treatment could then proceed within the mechanical accuracy and precision of the delivery system. The calibration procedure maintained excellent spatial resolution and delivery precision over the duration of this study, while the linear accelerator was in routine clinical use. Based on these results, the mechanical accuracy and precision of the system are ideal for supporting high-precision localization and treatment of soft-tissue targets

  10. Higgs physics at the CLIC electron-positron linear collider.

    Science.gov (United States)

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  11. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    International Nuclear Information System (INIS)

    Jeans, D; Brient, J-C; Reinhard, M

    2012-01-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  12. GARLIC: GAmma Reconstruction at a LInear Collider experiment

    Science.gov (United States)

    Jeans, D.; Brient, J.-C.; Reinhard, M.

    2012-06-01

    The precise measurement of hadronic jet energy is crucial to maximise the physics reach of a future Linear Collider. An important ingredient required to achieve this is the efficient identification of photons within hadronic showers. One configuration of the ILD detector concept employs a highly granular silicon-tungsten sampling calorimeter to identify and measure photons, and the GARLIC algorithm described in this paper has been developed to identify photons in such a calorimeter. We describe the algorithm and characterise its performance using events fully simulated in a model of the ILD detector.

  13. [Precision and personalized medicine].

    Science.gov (United States)

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  14. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    Directory of Open Access Journals (Sweden)

    Shunguang Wan

    2012-07-01

    Full Text Available Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures.

  15. The newest precision measurement

    International Nuclear Information System (INIS)

    Lee, Jing Gu; Lee, Jong Dae

    1974-05-01

    This book introduces basic of precision measurement, measurement of length, limit gauge, measurement of angles, measurement of surface roughness, measurement of shapes and locations, measurement of outline, measurement of external and internal thread, gear testing, accuracy inspection of machine tools, three dimension coordinate measuring machine, digitalisation of precision measurement, automation of precision measurement, measurement of cutting tools, measurement using laser, and point of choosing length measuring instrument.

  16. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  17. Double elementary Goldstone Higgs boson production in future linear colliders

    Science.gov (United States)

    Guo, Yu-Chen; Yue, Chong-Xing; Liu, Zhi-Cheng

    2018-03-01

    The Elementary Goldstone Higgs (EGH) model is a perturbative extension of the Standard Model (SM), which identifies the EGH boson as the observed Higgs boson. In this paper, we study pair production of the EGH boson in future linear electron positron colliders. The cross-sections in the TeV region can be changed to about ‑27%, 163% and ‑34% for the e+e‑→ Zhh, e+e‑→ νν¯hh and e+e‑→ tt¯hh processes with respect to the SM predictions, respectively. According to the expected measurement precisions, such correction effects might be observed in future linear colliders. In addition, we compare the cross-sections of double SM-like Higgs boson production with the predictions in other new physics models.

  18. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  19. Detectors and Physics at a Future Linear Collider

    CERN Document Server

    AUTHOR|(CDS)2090240

    An electron-positron linear collider is an option for future large particle accelerator projects. Such a collider would focus on precision tests of the Higgs boson properties. This thesis describes three studies related to the optimisation of highly granular calorimeters and one study on the sensitivity of Higgs couplings at CLIC. Photon reconstruction algorithms were developed for highly granular calorimeters of a future linear collider detector. A sophisticated pattern recognition algorithm was implemented, which uses the topological properties of electromagnetic showers to identify photon candidates and separate them from nearby particles. It performs clustering of the energy deposits in the detector, followed by topological characterisation of the clusters, with the results being considered by a multivariate likelihood analysis. This algorithm leads to a significant improvement in the reconstruction of both single photons and multiple photons in high energy jets compared to previous reconstruction softwar...

  20. Polarized positrons and electrons at the linear collider

    International Nuclear Information System (INIS)

    Moortgat-Pick, G.; Abe, T.; Alexander, G.; Ananthanarayan, B.; Babich, A.A.; Bharadwaj, V.; Barber, D.; Bartl, A.; Brachmann, A.; Chen, S.; Clarke, J.; Clendenin, J.E.; Dainton, J.; Desch, K.; Diehl, M.; Dobos, B.; Dorland, T.; Dreiner, H.K.; Eberl, H.; Ellis, J.

    2008-01-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization

  1. Flattening filter free beams from TrueBeam and Versa HD units: Evaluation of the parameters for quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Fogliata, Antonella, E-mail: antonella.fogliata@humanitas.it; Reggiori, Giacomo; Stravato, Antonella; Scorsetti, Marta; Cozzi, Luca [Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Milan-Rozzano I-20098 (Italy); Fleckenstein, Jens; Schneider, Frank; Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim D-68167 (Germany); Pachoud, Marc; Ghandour, Sarah [Radiation Oncology Department, Hôpital Riviera Chablais, Vevey CH-1800 (Switzerland); Krauss, Harald [Radio-Oncology Department, Kaiser Franz Josef Spital, Vienna A-1100 (Austria)

    2016-01-15

    Purpose: Flattening filter free (FFF) beams generated by medical linear accelerators are today clinically used for stereotactical and non-stereotactical radiotherapy treatments. Such beams differ from the standard flattened beams (FF) in the high dose rate and the profile shape peaked on the beam central axis. Definition of new parameters as unflatness and slope for FFF beams has been proposed based on a renormalization factor for FFF profiles. The present study aims to assess the dosimetric differences between FFF beams generated by linear accelerators from different vendors, and to provide renormalization and parameter data of the two kinds of units. Methods: Dosimetric data from two Varian TrueBeam and two Elekta Versa HD linear accelerators, all with 6 and 10 MV nominal accelerating potentials, FF and FFF modes have been collected. Renormalization factors and related fit parameters according to Fogliata et al. [“Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy,” Med. Phys. 39, 6455–6464 (2012)] have been evaluated for FFF beams of both units and energies. Unflatness and slope parameters from profile curves were evaluated. Dosimetric differences in terms of beam penetration and near-the-surface dose were also assessed. Results: FFF profile parameters have been updated; renormalization factors and unflatness from the Varian units are consistent with the published data. Elekta FFF beam qualities, different from the Varian generated beams, tend to express similar behaviour as the FF beam of the corresponding nominal energy. TPR{sub 20,10} for 6 and 10 MV FF and FFF TrueBeam beams are 0.665, 0.629 (6 MV) and 0.738, 0.703 (10 MV). The same figures for Versa HD units are 0.684, 0.678 (6 MV) and 0.734, 0.721 (10 MV). Conclusions: Renormalization factor and unflatness parameters evaluated from Varian and Elekta FFF beams are provided, in particular renormalization factors table and fit parameters.

  2. A modified precise integration method based on Magnus expansion for transient response analysis of time varying dynamical structure

    International Nuclear Information System (INIS)

    Yue, Cong; Ren, Xingmin; Yang, Yongfeng; Deng, Wangqun

    2016-01-01

    This paper provides a precise and efficacious methodology for manifesting forced vibration response with respect to the time-variant linear rotational structure subjected to unbalanced excitation. A modified algorithm based on time step precise integration method and Magnus expansion is developed for instantaneous dynamic problems. The iterative solution is achieved by the ideology of transition and dimensional increment matrix. Numerical examples on a typical accelerating rotation system considering gyroscopic moment and mass unbalance force comparatively demonstrate the validity, effectiveness and accuracy with Newmark-β method. It is shown that the proposed algorithm has high accuracy without loss efficiency.

  3. SU-E-T-110: Development of An Independent, Monte Carlo, Dose Calculation, Quality Assurance Tool for Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Faught, A [UT MD Anderson Cancer Center, Houston, TX (United States); University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX (United States); Davidson, S [University of Texas Medical Branch of Galveston, Galveston, TX (United States); Kry, S; Ibbott, G; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States); Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Etzel, C [Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA (United States)

    2014-06-01

    Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Purpose: To commission a multiple-source Monte Carlo model of Elekta linear accelerator beams of nominal energies 6MV and 10MV. Methods: A three source, Monte Carlo model of Elekta 6 and 10MV therapeutic x-ray beams was developed. Energy spectra of two photon sources corresponding to primary photons created in the target and scattered photons originating in the linear accelerator head were determined by an optimization process that fit the relative fluence of 0.25 MeV energy bins to the product of Fatigue-Life and Fermi functions to match calculated percent depth dose (PDD) data with that measured in a water tank for a 10x10cm2 field. Off-axis effects were modeled by a 3rd degree polynomial used to describe the off-axis half-value layer as a function of off-axis angle and fitting the off-axis fluence to a piecewise linear function to match calculated dose profiles with measured dose profiles for a 40×40cm2 field. The model was validated by comparing calculated PDDs and dose profiles for field sizes ranging from 3×3cm2 to 30×30cm2 to those obtained from measurements. A benchmarking study compared calculated data to measurements for IMRT plans delivered to anthropomorphic phantoms. Results: Along the central axis of the beam 99.6% and 99.7% of all data passed the 2%/2mm gamma criterion for 6 and 10MV models, respectively. Dose profiles at depths of dmax, through 25cm agreed with measured data for 99.4% and 99.6% of data tested for 6 and 10MV models, respectively. A comparison of calculated dose to film measurement in a head and neck phantom showed an average of 85.3% and 90.5% of pixels passing a 3%/2mm gamma criterion for 6 and 10MV models respectively. Conclusion: A Monte Carlo multiple-source model for Elekta 6 and 10MV therapeutic x-ray beams has been developed as a

  4. A Discrete-Time Recurrent Neural Network for Solving Rank-Deficient Matrix Equations With an Application to Output Regulation of Linear Systems.

    Science.gov (United States)

    Liu, Tao; Huang, Jie

    2017-04-17

    This paper presents a discrete-time recurrent neural network approach to solving systems of linear equations with two features. First, the system of linear equations may not have a unique solution. Second, the system matrix is not known precisely, but a sequence of matrices that converges to the unknown system matrix exponentially is known. The problem is motivated from solving the output regulation problem for linear systems. Thus, an application of our main result leads to an online solution to the output regulation problem for linear systems.

  5. Precision Medicine in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-02-01

    Full Text Available Since President Obama announced the Precision Medicine Initiative in the United States, more and more attention has been paid to precision medicine. However, clinicians have already used it to treat conditions such as cancer. Many cardiovascular diseases have a familial presentation, and genetic variants are associated with the prevention, diagnosis, and treatment of cardiovascular diseases, which are the basis for providing precise care to patients with cardiovascular diseases. Large-scale cohorts and multiomics are critical components of precision medicine. Here we summarize the application of precision medicine to cardiovascular diseases based on cohort and omic studies, and hope to elicit discussion about future health care.

  6. Precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Frey, R.E. [Univ. of Oregon, Eugene, OR (United States)

    1994-12-01

    A precise measurement of the left-right cross section asymmetry (A{sub LR}) for Z boson production by e{sup +}e{sup {minus}} collisions has been attained at the SLAC Linear Collider with the SLD detector. The author describes this measurement for the 1993 data run, emphasizing the significant improvements in polarized beam operation which took place for this run, where the luminosity-weighted electron beam polarization averaged 62.6 {+-} 1.2%. Preliminary 1993 results for A{sub LR} are presented. When combined with the (less precise) 1992 result, the preliminary result for the effective weak mixing angle is sin{sup 2}{theta}{sub W}{sup eff} = 0.2290 {+-} 0.0010.

  7. Precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions

    International Nuclear Information System (INIS)

    Frey, R.E.

    1994-03-01

    A precise measurement of the left-right cross section asymmetry (A LR ) for Z boson production by e + e - collisions has been attained at the Slac Linear Collider with the SLD detector. We describe this measurement for the 1993 data run, emphasizing the significant improvements in polarized beam operation which took place for this run, where the luminosity-weighted electron beam polarization averaged 62.6 ± 1.2 %. Preliminary 1993 results for A LR are presented. When combined with the (less precise) 1992 result, the preliminary result for the effective weak mixing angle is sin 2 θ W eff = 0.2290 ± 0.0010

  8. Interplay of gravitation and linear superposition of different mass eigenstates

    International Nuclear Information System (INIS)

    Ahluwalia, D.V.

    1998-01-01

    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein close-quote s theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernova, and certain atomic systems is briefly discussed. copyright 1998 The American Physical Society

  9. arXiv Physics at the e+ e- Linear Collider

    CERN Document Server

    Moortgat-Pick, G.; Battaglia, M.; Belanger, G.; Fujii, K.; Kalinowski, J.; Heinemeyer, S.; Kiyo, Y.; Olive, K.; Simon, F.; Uwer, P.; Wackeroth, D.; Zerwas, P.M.; Arbey, A.; Asano, M.; Bechtle, P.; Bharucha, A.; Brau, J.; Brummer, F.; Choi, S.Y.; Denner, A.; Desch, K.; Dittmaier, S.; Ellwanger, U.; Englert, C.; Freitas, A.; Ginzburg, I.; Godfrey, S.; Greiner, N.; Grojean, C.; Grunewald, M.; Heisig, J.; Hocker, A.; Kanemura, S.; Kawagoe, K.; Kogler, R.; Krawczyk, M.; Kronfeld, A.S.; Kroseberg, J.; Liebler, S.; List, J.; Mahmoudi, F.; Mambrini, Y.; Matsumoto, S.; Mnich, J.; Monig, K.; Muhlleitner, M.M.; Poschl, R.; Porod, W.; Porto, S.; Rolbiecki, K.; Schmitt, M.; Serpico, P.; Stanitzki, M.; Stal, O.; Stefaniak, T.; Stockinger, D.; Weiglein, G.; Wilson, G.W.; Zeune, L.; Moortgat, F.; Xella, S.; Bagger, J.; Ellis, J.; Komamiya, S.; Kronfeld, A.S.; Peskin, M.; Schlatter, D.; Wagner, A.; Yamamoto, H.

    2015-08-14

    A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.

  10. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)

    2015-02-02

    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  11. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  12. Impact of polarized e- and e+ beams at a future Linear Collider and a Z-factory Part II - Physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Moortgat-Pick, G

    2011-01-01

    Polarization of both beams at a future Linear Collider would be ideal for facing both expected and unforeseen challenges in searches for new physics: fixing the chirality of the couplings and enabling the higher precision for the polarization measurement itself as well as for polarization-dependent observables, it provides a powerful tool for studying new physics at the future Linear Collider, such as discovering new particles, analyzing signals model-independently and resolving precisely the underlying model. Techniques and engineering designs for a polarized-positron source are well advanced. Potential constraints concerning luminosity, commissioning and operating issues appear to be under control. This article mainly treats with the impact of polarized beams on physics beyond the Standard Model, whereas the fundamentals in polarization as well as the gain in electroweak precision physics are summarized in the corresponding part I.

  13. Reliability of linear distance measurement for dental implant length with standardized periapical radiographs

    International Nuclear Information System (INIS)

    Wakoh, Mamoru; Harada, Takuya; Otonari, Takamichi

    2006-01-01

    The purpose of this study was to investigate the accuracy of distance measurements of implant length based on periapical radiographs compared with that of other modalities. We carried out an experimental trial to compare precision in distance measurement. Dental implant fixtures were buried in the canine and first molar regions. These were then subjected to periapical (PE) radiography, panoramic (PA) radiography conventional (CV) and medical computed (CT) tomography. The length of the implant fixture on each film was measured by nine observers and degree of precision was statistically analyzed. The precision of both PE radiographs and CT tomograms was closest at the highest level. Standardized PE radiography, in particular, was superior to CT tomography in the first molar region. This suggests that standardized PE radiographs should be utilized as a reliable modality for longitudinal and linear distance measurement, depending on implant length at local implantation site. (author)

  14. Circuit and Measurement Technique for Radiation Induced Drift in Precision Capacitance Matching

    Science.gov (United States)

    Prasad, Sudheer; Shankar, Krishnamurthy Ganapathy

    2013-04-01

    In the design of radiation tolerant precision ADCs targeted for space market, a matched capacitor array is crucial. The drift of capacitance ratios due to radiation should be small enough not to cause linearity errors. Conventional methods for measuring capacitor matching may not achieve the desired level of accuracy due to radiation induced gain errors in the measurement circuits. In this work, we present a circuit and method for measuring capacitance ratio drift to a very high accuracy (<; 1 ppm) unaffected by radiation levels up to 150 krad.

  15. The CLIC programme: Towards a staged $e^{+}e^{−}$ linear collider exploring the terascale CLIC conceptual design report

    CERN Document Server

    Lebrun, P.; Lucaci-Timoce, A.; Schulte, D.; Simon, F.; Stapnes, S.; Toge, N.; Weerts, H.; Wells, J.

    2012-01-01

    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale $e^+e^-$ linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy $e^+e^-$ collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear $e^+e^-$ collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in th...

  16. Precision Obtained Using an Artificial Neural Network for Predicting the Material Removal Rate in Ultrasonic Machining

    Directory of Open Access Journals (Sweden)

    Gaoyan Zhong

    2017-12-01

    Full Text Available The present study proposes a back propagation artificial neural network (BPANN to provide improved precision for predicting the material removal rate (MRR in ultrasonic machining. The BPANN benefits from the advantage of artificial neural networks (ANNs in dealing with complex input-output relationships without explicit mathematical functions. In our previous study, a conventional linear regression model and improved nonlinear regression model were established for modelling the MRR in ultrasonic machining to reflect the influence of machining parameters on process response. In the present work, we quantitatively compare the prediction precision obtained by the previously proposed regression models and the presently proposed BPANN model. The results of detailed analyses indicate that the BPANN model provided the highest prediction precision of the three models considered. The present work makes a positive contribution to expanding the applications of ANNs and can be considered as a guide for modelling complex problems of general machining.

  17. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    Science.gov (United States)

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-07

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  18. Modeling of a New Structure of Precision Air Conditioning System Using Secondary Condenser for Rh Regulation

    Directory of Open Access Journals (Sweden)

    Aries Subiantoro

    2012-05-01

    Full Text Available A dynamic mathematical model for a new structure of precision air conditioning (PAC has been developed. The proposed PAC uses an additional secondary condenser for relative humidity regulation compared to a basic refrigeration system. The work mechanism for this system and a vapour-compression cycle process of the system are illustrated using psychrometric chart and pressure-enthalpy diagram. A non-linear system model is derived based on the conservation of mass and energy balance principles and then linearized at steady state operating point for developing a 8th-order state space model suited for multivariable controller design. The quality of linearized model is analyzed in terms of transient response, controllability, observability, and interaction between input-output variables. The developed model is verified through simulation showing its ability for imitating the nonlinear behavior and the interaction of input-output variables.

  19. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  20. Precision Airdrop (Largage de precision)

    Science.gov (United States)

    2005-12-01

    NAVIGATION TO A PRECISION AIRDROP OVERVIEW RTO-AG-300-V24 2 - 9 the point from various compass headings. As the tests are conducted, the resultant...rate. This approach avoids including a magnetic compass for the heading reference, which has difficulties due to local changes in the magnetic field...Scientifica della Difesa ROYAUME-UNI Via XX Settembre 123 Dstl Knowledge Services ESPAGNE 00187 Roma Information Centre, Building 247 SDG TECEN / DGAM

  1. Precision medicine for nurses: 101.

    Science.gov (United States)

    Lemoine, Colleen

    2014-05-01

    To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  3. A non-linear algorithm for current signal filtering and peak detection in SiPM

    International Nuclear Information System (INIS)

    Putignano, M; Intermite, A; Welsch, C P

    2012-01-01

    Read-out of Silicon Photomultipliers is commonly achieved by means of charge integration, a method particularly susceptible to after-pulsing noise and not efficient for low level light signals. Current signal monitoring, characterized by easier electronic implementation and intrinsically faster than charge integration, is also more suitable for low level light signals and can potentially result in much decreased after-pulsing noise effects. However, its use is to date limited by the need of developing a suitable read-out algorithm for signal analysis and filtering able to achieve current peak detection and measurement with the needed precision and accuracy. In this paper we present an original algorithm, based on a piecewise linear-fitting approach, to filter the noise of the current signal and hence efficiently identifying and measuring current peaks. The proposed algorithm is then compared with the optimal linear filtering algorithm for time-encoded peak detection, based on a moving average routine, and assessed in terms of accuracy, precision, and peak detection efficiency, demonstrating improvements of 1÷2 orders of magnitude in all these quality factors.

  4. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  5. Memristance controlling approach based on modification of linear M—q curve

    International Nuclear Information System (INIS)

    Liu Hai-Jun; Li Zhi-Wei; Yu Hong-Qi; Sun Zhao-Lin; Nie Hong-Shan

    2014-01-01

    The memristor has broad application prospects in many fields, while in many cases, those fields require accurate impedance control. The nonlinear model is of great importance for realizing memristance control accurately, but the implementing complexity caused by iteration has limited the actual application of this model. Considering the approximate linear characteristics at the middle region of the memristance-charge (M—q) curve of the nonlinear model, this paper proposes a memristance controlling approach, which is achieved by linearizing the middle region of the M—q curve of the nonlinear memristor, and establishes the linear relationship between memristances M and input excitations so that it can realize impedance control precisely by only adjusting input signals briefly. First, it analyzes the feasibility for linearizing the middle part of the M—q curve of the memristor with a nonlinear model from the qualitative perspective. Then, the linearization equations of the middle region of the M—q curve is constructed by using the shift method, and under a sinusoidal excitation case, the analytical relation between the memristance M and the charge time t is derived through the Taylor series expansions. At last, the performance of the proposed approach is demonstrated, including the linearizing capability for the middle part of the M—q curve of the nonlinear model memristor, the controlling ability for memristance M, and the influence of input excitation on linearization errors. (interdisciplinary physics and related areas of science and technology)

  6. Physics at the e{sup +}e{sup -} linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G., E-mail: gudrid.moortgat-pick@desy.de [II. Institute of Theoretical Physics, University of Hamburg, 22761, Hamburg (Germany); Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, 22603, Hamburg (Germany); Baer, H. [Department of Physics and Astronomy, University of Oklahoma, 73019, Norman, OK (United States); Battaglia, M. [Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA (United States); Belanger, G. [Laboratoire de Physique Theorique (LAPTh), Université Savoie Mont Blanc, CNRS, B.P.110, 74941, Annecy-le-Vieux (France); Fujii, K. [High Energy Accelerator Research Organisation (KEK), Tsukuba (Japan); and others

    2015-08-14

    A comprehensive review of physics at an e{sup +}e{sup -} linear collider in the energy range of √s=92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  7. Physics at the e{sup +}e{sup -} Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; DESY Hamburg (Germany); Baer, H. [Oklahoma Univ., Norman, OK (United States). Dept. of Physics and Astronomy; Battaglia, M. [California Santa Cruz Univ., CA (United States). Santa Cruz Institute for Particle Physics; and others

    2015-04-15

    A comprehensive review of physics at an e{sup +}e{sup -} Linear Collider in the energy range of √(s)=92 GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.

  8. Physics at the e{sup +}e{sup -} linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, G.; Liebler, S. [University of Hamburg, II. Institute of Theoretical Physics, Hamburg (Germany); Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, Hamburg (Germany); Baer, H. [University of Oklahoma, Department of Physics and Astronomy, Norman, OK (United States); Battaglia, M.; Stefaniak, T. [University of California Santa Cruz, Santa Cruz Institute for Particle Physics, Santa Cruz, CA (United States); Belanger, G.; Serpico, P. [Universite Savoie Mont Blanc, CNRS, Laboratoire de Physique Theorique (LAPTh), B.P.110, Annecy-le-Vieux (France); Fujii, K. [High Energy Accelerator Research Organisation (KEK), Tsukuba (Japan); Kalinowski, J.; Krawczyk, M. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Kiyo, Y. [Juntendo University, Department of Physics, Inzai, Chiba (Japan); Olive, K. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Simon, F. [Max-Planck-Institut fuer Physik, Munich (Germany); Uwer, P. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Wackeroth, D. [SUNY at Buffalo, Department of Physics, Buffalo, NY (United States); Zerwas, P.M.; List, J.; Mnich, J.; Moenig, K.; Stanitzki, M.; Weiglein, G.; Mnich, J. [Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, Hamburg (Germany); Arbey, A.; Mahmoudi, F. [Universite de Lyon, Villeurbonne Cedex (France); Centre de Recherche Astrophysique de Lyon, CNRS, UMR 5574, Saint-Genis Laval Cedex (France); Ecole Normale Superieure de Lyon, Lyon (France); Asano, M. [Universitaet Bonn, Physikalisches Institut and Bethe Center for Theoretical Physics, Bonn (Germany); Bagger, J.; Bagger, J. [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD (United States); TRIUMF, Vancouver, BC (Canada); Bechtle, P.; Desch, K.; Kroseberg, J. [University of Bonn, Physikalisches Institut, Bonn (Germany); Bharucha, A. [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); CNRS, Aix Marseille U., U. de Toulon, CPT, Marseille (France); Brau, J.; Brau, J. [University of Oregon, Department of Physics, Eugene, OR (United States); Bruemmer, F. [LUPM, UMR 5299, Universite de Montpellier II et CNRS, Montpellier (France); Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonju (Korea, Republic of); Denner, A.; Porod, W. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Dittmaier, S. [Albert-Ludwigs-Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Ellwanger, U.; Mambrini, Y. [Universite de Paris-Sud, Laboratoire de Physique, UMR 8627, CNRS, Orsay (France); Englert, C. [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Freitas, A. [University of Pittsburgh, PITT PACC, Department of Physics and Astronomy, Pittsburgh, PA (United States); Ginzburg, I. [Sobolev Institute of Mathematics and Novosibirsk State University, Novosibirsk (Russian Federation); Godfrey, S. [Carleton University, Ottawa-Carleton Institute for Physics, Department of Physics, Ottawa (Canada); Greiner, N. [Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, Hamburg (Germany); Max-Planck-Institut fuer Physik, Munich (Germany); Grojean, C. [ICREA at IFAE, Universitat Autonoma de Barcelona, Bellaterra (Spain); Gruenewald, M. [University College Dublin, Dublin (Ireland); Heisig, J. [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Hoecker, A.; Moortgat, F.; Schlatter, D. [CERN, Geneva (Switzerland); Kanemura, S. [University of Toyama, Department of Physics, Toyama (Japan); Kawagoe, K.; Kawagoe, K. [Kyushu University, Department of Physics, Fukuoka (Japan); Kogler, R. [University of Hamburg, Hamburg (Germany); Kronfeld, A.S.; Kronfeld, A.S. [Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States); Technische Universitaet Muenchen, Institute for Advanced Study, Garching (Germany); Matsumoto, S. [The University of Tokyo, Kavli IPMU (WPI), Kashiwa, Chiba (Japan); Muehlleitner, M.M. [Karlsruhe Institute of Technology, Institute for Theoretical Physics, Karlsruhe (Germany); Poeschl, R. [Laboratoire de L' accelerateur Lineaire (LAL), CNRS/IN2P3, Orsay (FR); Porto, S. [University of Hamburg, II. Institute of Theoretical Physics, Hamburg (DE); Rolbiecki, K. [University of Warsaw, Faculty of Physics, Warsaw (PL); Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (ES); Schmitt, M. [Northwestern University, Department of Physics and Astronomy, Evanston, IL (US); Staal, O. [Stockholm University, The Oskar Klein Centre, Department of Physics, Stockholm (SE); Stoeckinger, D. [Institut fuer Kern- und Teilchenphysik, TU Dresden, Dresden (DE); Wilson, G.W. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (US); Zeune, L. [ITFA, University of Amsterdam, Amsterdam (NL); Xella, S. [University of Copenhagen, Niels Bohr Institute, Kobenhavn (DK); Ellis, J. [CERN, Geneva (CH); King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, Strand, London (GB); Komamiya, S. [The University of Tokyo, Department of Physics, Graduate School of Science, and International Center for Elementary Particle Physics, Tokyo (JP); Peskin, M. [SLAC, Stanford University, CA (US); Wagner, A. [Deutsches Elektronen Synchrotron (DESY), Hamburg und Zeuthen, Hamburg (DE); University of Hamburg, Hamburg (DE); Yamamoto, H. [Tohoku University, Department of Physics, Sendai, Miyagi (JP)

    2015-08-15

    A comprehensive review of physics at an e{sup +}e{sup -} linear collider in the energy range of √(s) = 92 GeV-3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well. (orig.)

  9. Advanced bioanalytics for precision medicine.

    Science.gov (United States)

    Roda, Aldo; Michelini, Elisa; Caliceti, Cristiana; Guardigli, Massimo; Mirasoli, Mara; Simoni, Patrizia

    2018-01-01

    Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.

  10. Physics at international linear collider (ILC)

    International Nuclear Information System (INIS)

    Yamamoto, Hitoshi

    2007-01-01

    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmetric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC. (author)

  11. Accuracy of the Precision® point-of-care ketone test examined by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in the same fingerstick sample.

    Science.gov (United States)

    Janssen, Marcel J W; Hendrickx, Ben H E; Habets-van der Poel, Carin D; van den Bergh, Joop P W; Haagen, Anton A M; Bakker, Jaap A

    2010-12-01

    The Precision(®) (Abbott Diabetes Care) point-of-care biosensor test strips are widely used by patients with diabetes and clinical laboratories for measurement of plasma β-hydroxybutyrate (β-HB) concentrations in capillary blood samples obtained by fingerstick. In the literature, this procedure has been validated only against the enzymatic determination of β-HB in venous plasma, i.e., the method to which the Precision(®) has been calibrated. In this study, the Precision(®) Xceed was compared to a methodologically different and superior procedure: determination of β-HB by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in capillary blood spots. Blood spots were obtained from the same fingerstick sample from out of which Precision(®) measurements were performed. Linearity was tested by adding varying amounts of standard to an EDTA venous whole blood matrix. The Precision(®) was in good agreement with LC-MS/MS within the measuring range of 0.0-6.0 mmol/L (Passing and Bablok regression: slope=1.20 and no significant intercept, R=0.97, n=59). Surprisingly, the Precision(®) showed non-linearity and full saturation at concentrations above 6.0 mmol/L, which were confirmed by a standard addition experiment. Results obtained at the saturation level varied between 3.0 and 6.5 mmol/L. The Precision(®) β-HB test strips demonstrate good comparison with LC-MS/MS. Inter-individual variation around the saturation level, however, is large. Therefore, we advise reporting readings above 3.0 as >3.0 mmol/L. The test is valid for use in the clinically relevant range of 0.0-3.0 mmol/L.

  12. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  13. SU-F-T-240: EPID-Based Quality Assurance for Dosimetric Credentialing

    Energy Technology Data Exchange (ETDEWEB)

    Miri, N [University of Newcastle, Newcastle, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); Vial, P [Liverpool Hospital, Sydney, NSW (Australia); Greer, P [Calvary Mater Newcastle, Newcastle, NSW (Australia); University of Newcastle, Newcastle, NSW (Australia)

    2016-06-15

    Purpose: We propose a novel dosimetric audit method for clinical trials using EPID measurements at each center and a standardized EPID to dose conversion algorithm. The aim of this work is to investigate the applicability of the EPID method to different linear accelerator, EPID and treatment planning system (TPS) combinations. Methods: Combination of delivery and planning systems were three Varian linacs including one Pinnacle and two Eclipse TPS and, two ELEKTA linacs including one Pinnacle and one Monaco TPS. All Varian linacs had the same EPID structure and similarly for the ELEKTA linacs. Initially, dose response of the EPIDs was investigated by acquiring integrated pixel value (IPV) of the central area of 10 cm2 images versus MUs, 5-400 MU. Then, the EPID to dose conversion was investigated for different system combinations. Square field size images, 2, 3, 4, 6, 10, 15, 20, 25 cm2 acquired by all systems were converted to dose at isocenter of a virtual flat phantom then the dose was compared to the corresponding TPS dose. Results: All EPIDs showed a relatively linear behavior versus MU except at low MUs which showed irregularities probably due to initial inaccuracies of irradiation. Furthermore, for all the EPID models, the model predicted TPS dose with a mean dose difference percentage of 1.3. However the model showed a few inaccuracies for ELEKTA EPID images at field sizes larger than 20 cm2. Conclusion: The EPIDs demonstrated similar behavior versus MU and the model was relatively accurate for all the systems. Therefore, the model could be employed as a global dosimetric method to audit clinical trials. Funding has been provided from Department of Radiation Oncology, TROG Cancer Research and the University of Newcastle. Narges Miri is a recipient of a University of Newcastle postgraduate scholarship.

  14. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman [HEP Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Bingham, Derek; Bergner, Steven [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC (Canada); Lawrence, Earl [CCS-6, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Higdon, David [Social and Decision Analytics Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Arlington, VA 22203 (United States); Pope, Adrian; Finkel, Hal [ALCF Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.

  15. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    International Nuclear Information System (INIS)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman; Bingham, Derek; Bergner, Steven; Lawrence, Earl; Higdon, David; Pope, Adrian; Finkel, Hal

    2016-01-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy

  16. Application of Smart Infrastructure Systems approach to precision medicine

    Directory of Open Access Journals (Sweden)

    Diddahally R. Govindaraju

    2015-12-01

    Full Text Available All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity – the big data – is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI. This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.

  17. A linear magnetic bearing with integrated long stroke propulsion - design and realization of an IU-module

    NARCIS (Netherlands)

    Laro, D.A.H.; Ven, van de S.C.L.; Spronck, J.W.; Lebedev, A.; Lomonova, E.A.; Dag, B.

    2004-01-01

    The active magnetic bearings (AMB) and linear electrical actuators (LEA) are the important elements for high precision systems such as semiconductor equipment and machine tools. This paper concerns the initial design of a single I U-shaped electromagnetic module as a part of six degrees of freedom

  18. The β-decay Paul trap: A radiofrequency-quadrupole ion trap for precision β-decay studies

    International Nuclear Information System (INIS)

    Scielzo, N.D.; Li, G.; Sternberg, M.G.; Savard, G.; Bertone, P.F.; Buchinger, F.; Caldwell, S.; Clark, J.A.; Crawford, J.; Deibel, C.M.; Fallis, J.; Greene, J.P.

    2012-01-01

    The β-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision β-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following β decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of β-decay angular correlations in the decay of 8 Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup α particles. Many other β-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  19. The {beta}-decay Paul trap: A radiofrequency-quadrupole ion trap for precision {beta}-decay studies

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, N.D., E-mail: scielzo1@llnl.gov [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Li, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Sternberg, M.G.; Savard, G. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Bertone, P.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Buchinger, F. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Caldwell, S. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Clark, J.A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Crawford, J. [Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 (Canada); Deibel, C.M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824 (United States); Fallis, J. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Greene, J.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); and others

    2012-07-21

    The {beta}-decay Paul trap is a linear radiofrequency-quadrupole ion trap that has been developed for precision {beta}-decay studies. The design of the trap electrodes allows a variety of radiation detectors to surround the cloud of trapped ions. The momentum of the low-energy recoiling daughter nuclei following {beta} decay is negligibly perturbed by scattering and is available for study. This advantageous property of traps allows the kinematics of particles that are difficult or even impossible to directly detect to be precisely reconstructed using conservation of energy and momentum. An ion-trap system offers several advantages over atom traps, such as higher trapping efficiencies and element-independent capabilities. The first precision experiment using this system is a measurement of {beta}-decay angular correlations in the decay of {sup 8}Li performed by inferring the momentum of the neutrino from the kinematic shifts imparted to the breakup {alpha} particles. Many other {beta}-decay studies that would benefit from a determination of the nuclear recoil can be performed with this system.

  20. Physics with e sup + e sup - Linear Colliders

    CERN Document Server

    Barklow, T

    2003-01-01

    We describe the physics potential of e sup + e sup - linear colliders in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapola...

  1. Treating experimental data of inverse kinetic method by unitary linear regression analysis

    International Nuclear Information System (INIS)

    Zhao Yusen; Chen Xiaoliang

    2009-01-01

    The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)

  2. A comparison of semi-automated volumetric vs linear measurement of small vestibular schwannomas.

    Science.gov (United States)

    MacKeith, Samuel; Das, Tilak; Graves, Martin; Patterson, Andrew; Donnelly, Neil; Mannion, Richard; Axon, Patrick; Tysome, James

    2018-04-01

    Accurate and precise measurement of vestibular schwannoma (VS) size is key to clinical management decisions. Linear measurements are used in routine clinical practice but are prone to measurement error. This study aims to compare a semi-automated volume segmentation tool against standard linear method for measuring small VS. This study also examines whether oblique tumour orientation can contribute to linear measurement error. Experimental comparison of observer agreement using two measurement techniques. Tertiary skull base unit. Twenty-four patients with unilateral sporadic small (linear dimension following reformatting to correct for oblique orientation of VS. Intra-observer ICC was higher for semi-automated volumetric when compared with linear measurements, 0.998 (95% CI 0.994-0.999) vs 0.936 (95% CI 0.856-0.972), p linear measurements, 0.989 (95% CI 0.975-0.995) vs 0.946 (95% CI 0.880-0.976), p = 0.0045. The intra-observer %SDD was similar for volumetric and linear measurements, 9.9% vs 11.8%. However, the inter-observer %SDD was greater for volumetric than linear measurements, 20.1% vs 10.6%. Following oblique reformatting to correct tumour angulation, the mean increase in size was 1.14 mm (p = 0.04). Semi-automated volumetric measurements are more repeatable than linear measurements when measuring small VS and should be considered for use in clinical practice. Oblique orientation of VS may contribute to linear measurement error.

  3. BOKASUN: a fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams

    OpenAIRE

    Caffo, Michele; Czyz, Henryk; Gunia, Michal; Remiddi, Ettore

    2008-01-01

    We present the program BOKASUN for fast and precise evaluation of the Master Integrals of the two-loop self-mass sunrise diagram for arbitrary values of the internal masses and the external four-momentum. We use a combination of two methods: a Bernoulli accelerated series expansion and a Runge-Kutta numerical solution of a system of linear differential equations.

  4. SPLINE LINEAR REGRESSION USED FOR EVALUATING FINANCIAL ASSETS 1

    Directory of Open Access Journals (Sweden)

    Liviu GEAMBAŞU

    2010-12-01

    Full Text Available One of the most important preoccupations of financial markets participants was and still is the problem of determining more precise the trend of financial assets prices. For solving this problem there were written many scientific papers and were developed many mathematical and statistical models in order to better determine the financial assets price trend. If until recently the simple linear models were largely used due to their facile utilization, the financial crises that affected the world economy starting with 2008 highlight the necessity of adapting the mathematical models to variation of economy. A simple to use model but adapted to economic life realities is the spline linear regression. This type of regression keeps the continuity of regression function, but split the studied data in intervals with homogenous characteristics. The characteristics of each interval are highlighted and also the evolution of market over all the intervals, resulting reduced standard errors. The first objective of the article is the theoretical presentation of the spline linear regression, also referring to scientific national and international papers related to this subject. The second objective is applying the theoretical model to data from the Bucharest Stock Exchange

  5. Procesos de activación neutrónica en el acelerador lineal médico Elekta Precise

    OpenAIRE

    Juste Vidal, Belen Jeanine; Miró Herrero, Rafael; Verdú Martín, Gumersindo Jesús; DIEZ DOMINGO, SERGIO; CAMPAYO ESTEBAN, JUAN MANUEL

    2014-01-01

    En radioterapia, los haces de fotones de alta energía producen dosis más bajas en la piel y una menor dosis dispersada en los tejidos sanos circundantes. Sin embargo, cuando se opera por encima de 10 MV los Linacs presentan algunos inconvenientes como son la generación de fotoneutrones y la activación de algunos componentes del acelerador. El lanzamiento y la captura de neutrones producen núcleos radioactivos que pueden irradiar incluso cuando el acelerador no está funcionando Estas reaccione...

  6. Characterization of the Transmission of the Elekta Stereotactic Body Frame (ESBF) and Accounting for it During Treatment Planning

    International Nuclear Information System (INIS)

    Becker, Stewart J.; Jozsef, Gabor; DeWyngaert, J. Keith

    2009-01-01

    The purpose of this study was to measure the transmission of the Elekta Stereotactic Body Frame (ESBF) and treatment table, to calculate the transmission of the frame in the Eclipse Treatment Planning System (TPS) using analytical anisotropic algorithm (AAA), and to demonstrate a simple method of accounting for this transmission in treatment planning. A solid water body phantom was imaged inside the ESBF and planned with multiple 3D-CRT fields using AAA using both 6-MV and 16-MV energies. In the first set of plans, the frame and table were included in the 'Body' contour and, therefore, used in the dose calculations. In the second set of plans, the frame and the table were not included in the 'Body' contour and, therefore, were not incorporated in the calculations. The latter simulated a setup in which there was no frame or table. Eclipse TPS will only incorporate data from the CT set in calculations, if it is included in the 'Body' contour. The plans were treated under two conditions: one with the phantom in the ESBF and one without the frame on a specially designed table. This table allows all the beams to enter the phantom without passing through any attenuating material (i.e., table or frame). Transmission of the frame and table was determined by the ratio of the measurements with the frame and table to the measurements without them. To validate the accuracy of the calculation model, plans with homogeneous phantom and a heterogeneous plan were compared with the measurements. The transmission of the frame varies from 89-94% depending on the angle of the beams and whether they also intercept the table. The AAA algorithm calculated the transmission of the frame and table to within 2% of the measurements for all gantry angles. Validation results showed that AAA can calculate the dose to the target to within 2% of the measured value. The attenuation caused by the ESBF must be accounted for in the planning process. For Eclipse, the frame should be contoured and

  7. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  8. Evaluation of Physical Properties of Wax Mixtures Obtained From Recycling of Patterns Used in Precision Casting

    Directory of Open Access Journals (Sweden)

    Biernacki R.

    2015-04-01

    Full Text Available The study investigated the properties of selected certified mixtures used to make wax patterns for the production of precision castings for the aerospace industry. In addition, an assessment of the recycled mixtures consisting of certified wax materials recovered during autoclaving was carried out. Hardness was tested via a proposed method based on penetration, creep related deformation, bending strength and linear contraction. The hardness was studied on laboratory specimens and patterns made with the use of injection molding equipment. For these patterns, linear contraction was estimated at variable pressure and for different temperature injection parameters. Deformations connected with creep and resistance were evaluated on cylindrical specimens. Differences in creep resistance in relation to the hardness were observed depending on the type of pattern mixtures. Recycled mixture has a greater resistance and smaller linear contraction than certified mixtures used for making sprue, raisers and other parts of filler system.

  9. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection.

    Science.gov (United States)

    Yan, Jun-Chao; Chen, Yan; Pang, Yu; Slavik, Jan; Zhao, Yun-Fei; Wu, Xiao-Ming; Yang, Yi; Yang, Si-Fan; Ren, Tian-Ling

    2018-03-08

    Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS) processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L), a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L). The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.

  10. A Miniaturized Colorimeter with a Novel Design and High Precision for Photometric Detection

    Directory of Open Access Journals (Sweden)

    Jun-Chao Yan

    2018-03-01

    Full Text Available Water quality detection plays an increasingly important role in environmental protection. In this work, a novel colorimeter based on the Beer-Lambert law was designed for chemical element detection in water with high precision and miniaturized structure. As an example, the colorimeter can detect phosphorus, which was accomplished in this article to evaluate the performance. Simultaneously, a modified algorithm was applied to extend the linear measurable range. The colorimeter encompassed a near infrared laser source, a microflow cell based on microfluidic technology and a light-sensitive detector, then Micro-Electro-Mechanical System (MEMS processing technology was used to form a stable integrated structure. Experiments were performed based on the ammonium molybdate spectrophotometric method, including the preparation of phosphorus standard solution, reducing agent, chromogenic agent and color reaction. The device can obtain a wide linear response range (0.05 mg/L up to 7.60 mg/L, a wide reliable measuring range up to 10.16 mg/L after using a novel algorithm, and a low limit of detection (0.02 mg/L. The size of flow cell in this design is 18 mm × 2.0 mm × 800 μm, obtaining a low reagent consumption of 0.004 mg ascorbic acid and 0.011 mg ammonium molybdate per determination. Achieving these advantages of miniaturized volume, high precision and low cost, the design can also be used in automated in situ detection.

  11. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    Science.gov (United States)

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Laser precision microfabrication

    CERN Document Server

    Sugioka, Koji; Pique, Alberto

    2010-01-01

    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  13. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    Science.gov (United States)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by

  14. Design of precision position adjustable scoop

    International Nuclear Information System (INIS)

    Li Zhili; Zhang Kai; Dong Jinping

    2014-01-01

    In isotopes separation technologies, the centrifuge method has been the most popular technology now. Separation performance of centrifugal machines is greatly influenced by the flow field in the centrifugal machines. And the position of scoops in the centrifuges has a significant influence on the flow field. To obtain a better flow field characteristic and find the best position of scoops in the centrifuges, a position adjustable scoop system was studied. A micro stage and a linear encoder were used in the system to improve the position accuracy of the scoop. Eddy current sensors had been used in a position calibration measurement. The measurement result showed the sensitivity and stability of the position system could meet the performance expectation. But as the driving mean, the steel wire and pulley limit the control precision. On the basis of this scheme, an ultrasonic motor was used as driving mean. Experimental results showed the control accuracy was improved. This scheme laid a foundation to obtain internal flow field parameters of centrifuge and get the optimal feeding tube position. (authors)

  15. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    Science.gov (United States)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  16. Analysis and experiments of a novel and compact 3-DOF precision positioning platform

    International Nuclear Information System (INIS)

    Huang, Hu; Zhao, Hongwei; Fan, Zunqiang; Zhang, Hui; Ma, Zhichao; Yang, Zhaojun

    2013-01-01

    A novel 3-DOF precision positioning platform with dimensions of 48 mm X 50 mm X 35 mm was designed by integrating piezo actuators and flexure hinges. The platform has a compact structure but it can do high precision positioning in three axes. The dynamic model of the platform in a single direction was established. Stiffness of the flexure hinges and modal characteristics of the flexure hinge mechanism were analyzed by the finite element method. Output displacements of the platform along three axes were forecasted via stiffness analysis. Output performance of the platform in x and y axes with open-loop control as well as the z-axis with closed-loop control was tested and discussed. The preliminary application of the platform in the field of nanoindentation indicates that the designed platform works well during nanoindentation tests, and the closed-loop control ensures the linear displacement output. With suitable control, the platform has the potential to realize different positioning functions under various working conditions.

  17. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    Science.gov (United States)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  18. Verification of absorbed dose calculation with XIO Radiotherapy Treatment Planning System

    International Nuclear Information System (INIS)

    Bokulic, T.; Budanec, M.; Frobe, A.; Gregov, M.; Kusic, Z.; Mlinaric, M.; Mrcela, I.

    2013-01-01

    Modern radiotherapy relies on computerized treatment planning systems (TPS) for absorbed dose calculation. Most TPS require a detailed model of a given machine and therapy beams. International Atomic Energy Agency (IAEA) recommends acceptance testing for the TPS (IAEA-TECDOC-1540). In this study we present customization of those tests for measurements with the purpose of verification of beam models intended for clinical use in our department. Elekta Synergy S linear accelerator installation and data acquisition for Elekta CMS XiO 4.62 TPS was finished in 2011. After the completion of beam modelling in TPS, tests were conducted in accordance with the IAEA protocol for TPS dose calculation verification. The deviations between the measured and calculated dose were recorded for 854 points and 11 groups of tests in a homogenous phantom. Most of the deviations were within tolerance. Similar to previously published results, results for irregular L shaped field and asymmetric wedged fields were out of tolerance for certain groups of points.(author)

  19. Analysis of diodes used as precision power detectors above the square law region

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1990-01-01

    The deviation from square law found in diode power detectors at moderate power levels has been modeled for a general system consisting of a number of diode detectors connected to a common arbitrary linear passive network, containing an approximately sinusoidal source. This situation covers the case...... if an extra-set of measurements is made in situ. For precision measurements the maximum power level can be increased by about 10 dB. The dynamic range can thus be increased sufficiently to enable fast measurements to be made with an accuracy of 10-3 dB...

  20. Lowering Whole-Body Radiation Doses in Pediatric Intensity-Modulated Radiotherapy Through the Use of Unflattened Photon Beams

    International Nuclear Information System (INIS)

    Cashmore, Jason; Ramtohul, Mark; Ford, Dan

    2011-01-01

    Purpose: Intensity modulated radiotherapy (IMRT) has been linked with an increased risk of secondary cancer induction due to the extra leakage radiation associated with delivery of these techniques. Removal of the flattening filter offers a simple way of reducing head leakage, and it may be possible to generate equivalent IMRT plans and to deliver these on a standard linear accelerator operating in unflattened mode. Methods and Materials: An Elekta Precise linear accelerator has been commissioned to operate in both conventional and unflattened modes (energy matched at 6 MV) and a direct comparison made between the treatment planning and delivery of pediatric intracranial treatments using both approaches. These plans have been evaluated and delivered to an anthropomorphic phantom. Results: Plans generated in unflattened mode are clinically identical to those for conventional IMRT but can be delivered with greatly reduced leakage radiation. Measurements in an anthropomorphic phantom at clinically relevant positions including the thyroid, lung, ovaries, and testes show an average reduction in peripheral doses of 23.7%, 29.9%, 64.9%, and 70.0%, respectively, for identical plan delivery compared to conventional IMRT. Conclusions: IMRT delivery in unflattened mode removes an unwanted and unnecessary source of scatter from the treatment head and lowers leakage doses by up to 70%, thereby reducing the risk of radiation-induced second cancers. Removal of the flattening filter is recommended for IMRT treatments.

  1. Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra

    International Nuclear Information System (INIS)

    Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro

    2017-01-01

    The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.

  2. The acoustic Doppler effect applied to the study of linear motions

    International Nuclear Information System (INIS)

    Gómez-Tejedor, José A; Castro-Palacio, Juan C; Monsoriu, Juan A

    2014-01-01

    In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement. (paper)

  3. Updating Linear Schedules with Lowest Cost: a Linear Programming Model

    Science.gov (United States)

    Biruk, Sławomir; Jaśkowski, Piotr; Czarnigowska, Agata

    2017-10-01

    Many civil engineering projects involve sets of tasks repeated in a predefined sequence in a number of work areas along a particular route. A useful graphical representation of schedules of such projects is time-distance diagrams that clearly show what process is conducted at a particular point of time and in particular location. With repetitive tasks, the quality of project performance is conditioned by the ability of the planner to optimize workflow by synchronizing the works and resources, which usually means that resources are planned to be continuously utilized. However, construction processes are prone to risks, and a fully synchronized schedule may expire if a disturbance (bad weather, machine failure etc.) affects even one task. In such cases, works need to be rescheduled, and another optimal schedule should be built for the changed circumstances. This typically means that, to meet the fixed completion date, durations of operations have to be reduced. A number of measures are possible to achieve such reduction: working overtime, employing more resources or relocating resources from less to more critical tasks, but they all come at a considerable cost and affect the whole project. The paper investigates the problem of selecting the measures that reduce durations of tasks of a linear project so that the cost of these measures is kept to the minimum and proposes an algorithm that could be applied to find optimal solutions as the need to reschedule arises. Considering that civil engineering projects, such as road building, usually involve less process types than construction projects, the complexity of scheduling problems is lower, and precise optimization algorithms can be applied. Therefore, the authors put forward a linear programming model of the problem and illustrate its principle of operation with an example.

  4. Physics Case and Challenges for the Vertex Tracker at Future High Energy $e^{+}e^{-}$ Linear Colliders

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    The physics programme of high energy e+e- linear colliders relies on the accurate identification of fermions in order to study in details the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  5. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    International Nuclear Information System (INIS)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK

    2014-01-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT

  6. SU-E-T-226: Junction Free Craniospinal Irradiation in Linear Accelerator Using Volumetric Modulated Arc Therapy : A Novel Technique Using Dose Tapering

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B; Roy, S; Paul, S; Munshi, A; Roy, Shilpi; Jassal, K; Ganesh, T; Mohanti, BK [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Spatially separated fields are required for craniospinal irradiation due to field size limitation in linear accelerator. Field junction shits are conventionally done to avoid hot or cold spots. Our study was aimed to demonstrate the feasibility of junction free irradiation plan of craniospinal irradiation (CSI) for Meduloblastoma cases treated in linear accelerator using Volumetric modulated arc therapy (VMAT) technique. Methods: VMAT was planned using multiple isocenters in Monaco V 3.3.0 and delivered in Elekta Synergy linear accelerator. A full arc brain and 40° posterior arc spine fields were planned using two isocentre for short (<1.3 meter height ) and 3 isocentres for taller patients. Unrestricted jaw movement was used in superior-inferior direction. Prescribed dose to PTV was achieved by partial contribution from adjacent beams. A very low dose gradient was generated to taper the isodoses over a long length (>10 cm) at the conventional field junction. Results: In this primary study five patients were planned and three patients were delivered using this novel technique. As the dose contribution from the adjacent beams were varied (gradient) to create a complete dose distribution, therefore there is no specific junction exists in the plan. The junction were extended from 10–14 cm depending on treatment plan. Dose gradient were 9.6±2.3% per cm for brain and 7.9±1.7 % per cm for spine field respectively. Dose delivery error due to positional inaccuracy was calculated for brain and spine field for ±1mm, ±2mm, ±3mm and ±5 mm were 1%–0.8%, 2%–1.6%, 2.8%–2.4% and 4.3%–4% respectively. Conclusion: Dose tapering in junction free CSI do not require a junction shift. Therefore daily imaging for all the field is also not essential. Due to inverse planning dose to organ at risk like thyroid kidney, heart and testis can be reduced significantly. VMAT gives a quicker delivery than Step and shoot or dynamic IMRT.

  7. Precision Medicine and Men's Health.

    Science.gov (United States)

    Mata, Douglas A; Katchi, Farhan M; Ramasamy, Ranjith

    2017-07-01

    Precision medicine can greatly benefit men's health by helping to prevent, diagnose, and treat prostate cancer, benign prostatic hyperplasia, infertility, hypogonadism, and erectile dysfunction. For example, precision medicine can facilitate the selection of men at high risk for prostate cancer for targeted prostate-specific antigen screening and chemoprevention administration, as well as assist in identifying men who are resistant to medical therapy for prostatic hyperplasia, who may instead require surgery. Precision medicine-trained clinicians can also let couples know whether their specific cause of infertility should be bypassed by sperm extraction and in vitro fertilization to prevent abnormalities in their offspring. Though precision medicine's role in the management of hypogonadism has yet to be defined, it could be used to identify biomarkers associated with individual patients' responses to treatment so that appropriate therapy can be prescribed. Last, precision medicine can improve erectile dysfunction treatment by identifying genetic polymorphisms that regulate response to medical therapies and by aiding in the selection of patients for further cardiovascular disease screening.

  8. Precision muonium spectroscopy

    International Nuclear Information System (INIS)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s–2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium–antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter. (author)

  9. Physics and technology of the next linear collider

    International Nuclear Information System (INIS)

    1996-06-01

    The authors present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center-of-mass energy 0.5--1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. The physics goals discussed here are: Standard Model processes and simulation; top quark physics; Higgs boson searches and properties; supersymmetry; anomalous gauge boson couplings; strong WW scattering; new gauge bosons and exotic particles; e - e - , e - γ, and γγ interactions; and precision tests of QCD

  10. A Non-linear "Inflation-Relative Prices Variability" Relationship: Evidence from Latin America

    OpenAIRE

    Mª Ángeles Caraballo Pou; Carlos Dabús; Diego Caramuta

    2006-01-01

    This paper presents evidence on a non-linear "inflation-relative prices variability" relationship in three Latin American countries with very high inflation experiences: Argentina, Brazil and Peru. More precisely, and in contrast to results found in previous literature for similar countries, we find a non-concave relation at higher inflation regimes, i.e. when inflation rate surpasses certain threshold. This non-concavity is mainly explained by the unexpected component of inflation, which sug...

  11. Precision engineering: an evolutionary perspective.

    Science.gov (United States)

    Evans, Chris J

    2012-08-28

    Precision engineering is a relatively new name for a technology with roots going back over a thousand years; those roots span astronomy, metrology, fundamental standards, manufacturing and money-making (literally). Throughout that history, precision engineers have created links across disparate disciplines to generate innovative responses to society's needs and wants. This review combines historical and technological perspectives to illuminate precision engineering's current character and directions. It first provides us a working definition of precision engineering and then reviews the subject's roots. Examples will be given showing the contributions of the technology to society, while simultaneously showing the creative tension between the technological convergence that spurs new directions and the vertical disintegration that optimizes manufacturing economics.

  12. Head simulation of linear accelerators and spectra considerations using EGS4 Monte Carlo code in a PC

    Energy Technology Data Exchange (ETDEWEB)

    Malatara, G; Kappas, K [Medical Physics Department, Faculty of Medicine, University of Patras, 265 00 Patras (Greece); Sphiris, N [Ethnodata S.A., Athens (Greece)

    1994-12-31

    In this work, a Monte Carlo EGS4 code was used to simulate radiation transport through linear accelerators to produce and score energy spectra and angular distributions of 6, 12, 15 and 25 MeV bremsstrahlung photons exiting from different accelerator treatment heads. The energy spectra was used as input for a convolution method program to calculate the tissue-maximum ratio in water. 100.000 histories are recorded in the scoring plane for each simulation. The validity of the Monte Carlo simulation and the precision to the calculated spectra have been verified experimentally and were in good agreement. We believe that the accurate simulation of the different components of the linear accelerator head is very important for the precision of the results. The results of the Monte Carlo and the Convolution Method can be compared with experimental data for verification and they are powerful and practical tools to generate accurate spectra and dosimetric data. (authors). 10 refs,5 figs, 2 tabs.

  13. Head simulation of linear accelerators and spectra considerations using EGS4 Monte Carlo code in a PC

    International Nuclear Information System (INIS)

    Malatara, G.; Kappas, K.; Sphiris, N.

    1994-01-01

    In this work, a Monte Carlo EGS4 code was used to simulate radiation transport through linear accelerators to produce and score energy spectra and angular distributions of 6, 12, 15 and 25 MeV bremsstrahlung photons exiting from different accelerator treatment heads. The energy spectra was used as input for a convolution method program to calculate the tissue-maximum ratio in water. 100.000 histories are recorded in the scoring plane for each simulation. The validity of the Monte Carlo simulation and the precision to the calculated spectra have been verified experimentally and were in good agreement. We believe that the accurate simulation of the different components of the linear accelerator head is very important for the precision of the results. The results of the Monte Carlo and the Convolution Method can be compared with experimental data for verification and they are powerful and practical tools to generate accurate spectra and dosimetric data. (authors)

  14. More Precise Estimation of Lower-Level Interaction Effects in Multilevel Models.

    Science.gov (United States)

    Loeys, Tom; Josephy, Haeike; Dewitte, Marieke

    2018-01-01

    In hierarchical data, the effect of a lower-level predictor on a lower-level outcome may often be confounded by an (un)measured upper-level factor. When such confounding is left unaddressed, the effect of the lower-level predictor is estimated with bias. Separating this effect into a within- and between-component removes such bias in a linear random intercept model under a specific set of assumptions for the confounder. When the effect of the lower-level predictor is additionally moderated by another lower-level predictor, an interaction between both lower-level predictors is included into the model. To address unmeasured upper-level confounding, this interaction term ought to be decomposed into a within- and between-component as well. This can be achieved by first multiplying both predictors and centering that product term next, or vice versa. We show that while both approaches, on average, yield the same estimates of the interaction effect in linear models, the former decomposition is much more precise and robust against misspecification of the effects of cross-level and upper-level terms, compared to the latter.

  15. Supervised linear dimensionality reduction with robust margins for object recognition

    Science.gov (United States)

    Dornaika, F.; Assoum, A.

    2013-01-01

    Linear Dimensionality Reduction (LDR) techniques have been increasingly important in computer vision and pattern recognition since they permit a relatively simple mapping of data onto a lower dimensional subspace, leading to simple and computationally efficient classification strategies. Recently, many linear discriminant methods have been developed in order to reduce the dimensionality of visual data and to enhance the discrimination between different groups or classes. Many existing linear embedding techniques relied on the use of local margins in order to get a good discrimination performance. However, dealing with outliers and within-class diversity has not been addressed by margin-based embedding method. In this paper, we explored the use of different margin-based linear embedding methods. More precisely, we propose to use the concepts of Median miss and Median hit for building robust margin-based criteria. Based on such margins, we seek the projection directions (linear embedding) such that the sum of local margins is maximized. Our proposed approach has been applied to the problem of appearance-based face recognition. Experiments performed on four public face databases show that the proposed approach can give better generalization performance than the classic Average Neighborhood Margin Maximization (ANMM). Moreover, thanks to the use of robust margins, the proposed method down-grades gracefully when label outliers contaminate the training data set. In particular, we show that the concept of Median hit was crucial in order to get robust performance in the presence of outliers.

  16. PC-BLAS, PC Linear Algebra Subroutines

    International Nuclear Information System (INIS)

    Hanson, R.J.

    1989-01-01

    1 - Description of program or function: PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of 38 routines that perform low-level operations on vectors of numbers in single- and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, and find the norm of a vector. 2 - Restrictions on the complexity of the problem: The number of components in any vector and the spacing or stride between their entries must not exceed 32,767 (2 15 -1). PC-BLAS will not work with an 80286 CPU operating in 'protected' mode

  17. Toward precision medicine in Alzheimer's disease.

    Science.gov (United States)

    Reitz, Christiane

    2016-03-01

    In Western societies, Alzheimer's disease (AD) is the most common form of dementia and the sixth leading cause of death. In recent years, the concept of precision medicine, an approach for disease prevention and treatment that is personalized to an individual's specific pattern of genetic variability, environment and lifestyle factors, has emerged. While for some diseases, in particular select cancers and a few monogenetic disorders such as cystic fibrosis, significant advances in precision medicine have been made over the past years, for most other diseases precision medicine is only in its beginning. To advance the application of precision medicine to a wider spectrum of disorders, governments around the world are starting to launch Precision Medicine Initiatives, major efforts to generate the extensive scientific knowledge needed to integrate the model of precision medicine into every day clinical practice. In this article we summarize the state of precision medicine in AD, review major obstacles in its development, and discuss its benefits in this highly prevalent, clinically and pathologically complex disease.

  18. FROM PERSONALIZED TO PRECISION MEDICINE

    Directory of Open Access Journals (Sweden)

    K. V. Raskina

    2017-01-01

    Full Text Available The need to maintain a high quality of life against a backdrop of its inevitably increasing duration is one of the main problems of modern health care. The concept of "right drug to the right patient at the right time", which at first was bearing the name "personalized", is currently unanimously approved by international scientific community as "precision medicine". Precision medicine takes all the individual characteristics into account: genes diversity, environment, lifestyles, and even bacterial microflora and also involves the use of the latest technological developments, which serves to ensure that each patient gets assistance fitting his state best. In the United States, Canada and France national precision medicine programs have already been submitted and implemented. The aim of this review is to describe the dynamic integration of precision medicine methods into routine medical practice and life of modern society. The new paradigm prospects description are complemented by figures, proving the already achieved success in the application of precise methods for example, the targeted therapy of cancer. All in all, the presence of real-life examples, proving the regularity of transition to a new paradigm, and a wide range  of technical and diagnostic capabilities available and constantly evolving make the all-round transition to precision medicine almost inevitable.

  19. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy. Effect of prolonged delivery time and applicability of the linear-quadratic model

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Otsuka, Shinya; Iwata, Hiromitsu; Sugie, Chikao; Ogino, Hiroyuki; Tomita, Natsuo

    2012-01-01

    Since the dose delivery pattern in high-precision radiotherapy is different from that in conventional radiation, radiobiological assessment of the physical dose used in stereotactic irradiation and intensity-modulated radiotherapy has become necessary. In these treatments, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. This phenomenon is almost universarily observed in vitro. In in vivo tumors, however, this decrease in effect can be counterbalanced by rapid reoxygenation, which has been demonstrated in a laboratory study. Studies on reoxygenation in human tumors are warranted to better evaluate the influence of prolonged radiation delivery. Another issue related to radiosurgery and hypofractionated stereotactic radiotherapy is the mathematical model for dose evaluation and conversion. Many clinicians use the linear-quadratic (LQ) model and biologically effective dose (BED) to estimate the effects of various radiation schedules, but it has been suggested that the LQ model is not applicable to high doses per fraction. Recent experimental studies verified the inadequacy of the LQ model in converting hypofractionated doses into single doses. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when it is used for tumor responses in vivo, since it does not take reoxygenation into account. For normal tissue responses, improved models have been proposed, but, for in vivo tumor responses, the currently available models are not satisfactory, and better ones should be proposed in future studies. (author)

  20. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Brite, C.; Nian, T.

    1994-01-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  1. Implementation of IMRT in a real case of breast cancer radiotherapy in the 'Hospital Hermanos Ameijeiras' Service

    International Nuclear Information System (INIS)

    Rodriguez Zayas, Michael; Correa Pablos, Tamara; Perez Guevara, Adrian; Gonzalez Perez, Yelina; Sola Rodriguez, Yeline; Reyes Gonzalez, Tommy; Caballero, Roberto; Del Castillo Carrillo, Concepcion; Mena Huerta, Yailen

    2009-01-01

    Patients with left breast cancer suggest a clinical challenge because it radiates significantly heart, lung and contralateral breast with tangential beam techniques. We performed a study to: (1) design a plan using intensity modulated radiation therapy (IMRT), (2) compare IMRT plan with a plan of 3DCRT beam shear, (3) quantify the benefits of a treatment modality over another. A case diagnosed with breast cancer and treated with IMRT planned. The planning is done with the TPS Precise Plan version 2.16, with the inverse method based on openings, the treatment is carried out by way of step and shoot in the Elekta Precise Linac model with nominal energy of photons 6mV (TPR20, 10 = 0.681). (Author)

  2. Commissioning and quality assurances of the CMS XIO radiotherapy treatment planning system for external beam photons

    International Nuclear Information System (INIS)

    Muralidhar, K.R.; Anurupa; Soubhagya; Sudhakar; Shiva; Krishnam Raju, A.; Narayana Murthy, P.

    2008-01-01

    The commissioning of XIO treatment planning system (TPS) was carried out by Computerized Medical Devices, USA for Siemens and Elekta linear accelerators. The Commissioning and quality assurance of the CMS XIO radiotherapy treatment planning system involves many steps, beginning from beam data acquisition and entry into the computerized TPS, through patient data acquisition, to treatment plan generation and the final transfer of data to the treatment machine and quality assurance of TPS

  3. Higgs physics at the CLIC electron-positron linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Benhammou, Y.; Borysov, O.; Kananov, S.; Levy, A.; Levy, I.; Rosenblat, O. [Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Abusleme, A.; Diaz Gutierrez, M.A.; Vogel Gonzalez, M. [Pontificia Universidad Catolica de Chile, Santiago (Chile); Afanaciev, K.; Makarenko, V.; Shumeiko, N. [Belarusian State University, National Scientific and Educational Centre of Particle and High Energy Physics, Minsk (Belarus); Alipour Tehrani, N.; Dannheim, D.; Elsener, K.; Grefe, C.; Hauschild, M.; Hynds, D.; Klempt, W.; Kulis, S.; Linssen, L.; Maier, A.A.; Muenker, R.M.; Muennich, A.; Nikiforou, N.; Nuernberg, A.; Perez Codina, E.; Petric, M.; Pitters, F.; Poss, S.G.; Redford, S.; Roloff, P.; Sailer, A.; Schlatter, D.; Schulte, D.; Sicking, E.; Simoniello, R.; Stapnes, S.; Stroem, R.; Strube, J.; Weber, M.A. [CERN, Geneva (Switzerland); Balazs, C.; Charles, T.K. [Monash University, Melbourne (Australia); Benoit, M.; Vicente Barreto Pinto, M. [Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire (DPNC), Geneva (Switzerland); Bilki, B.; Demarteau, M.; Repond, J.; Weerts, H.; Xia, L. [Argonne National Laboratory, Argonne, IL (United States); Blaising, J.J. [Laboratoire d' Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux (France); Boland, M.J.; Felzmann, U.; Rassool, R. [University of Melbourne, Melbourne (Australia); Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M. [CSIC-University of Valencia, IFIC, Valencia (Spain); Bozovic-Jelisavcic, I.; Kacarevic, G.; Lukic, S.; Milutinovic-Dumbelovic, G.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Buckland, M.; Vossebeld, J. [University of Liverpool, Liverpool (United Kingdom); Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kopec, M.; Moron, J.; Swientek, K.P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Crakow (Poland); Burrows, P.N. [Oxford University, Oxford (United Kingdom); Daniluk, W.; Krupa, B.; Kucharczyk, M.; Lesiak, T.; Moszczynski, A.; Pawlik, B.; Sopicki, P.; Wojton, T.; Zawiejski, L. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Crakow (Poland); Eigen, G.; Kraaij, E. van der [University of Bergen, Department of Physics and Technology, Bergen (Norway); Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S. [Institute of Space Science, Bucharest (Romania); Gabriel, M.; Simon, F.; Szalay, M.; Tesar, M.; Kolk, N. van der; Weuste, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Gaede, F. [CERN, Geneva (Switzerland); DESY, Hamburg (Germany); Goldstein, J. [University of Bristol, Bristol (United Kingdom); Green, S.; Marshall, J.S.; Mei, K.; Thomson, M.A.; Xu, B. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Hawkes, C.; Nikolopoulos, K.; Watson, M.; Watson, N.; Winter, A. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Kalinowski, J.; Krawczyk, M.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Lastovicka, T. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Martin, V.J. [University of Edinburgh, Edinburgh (United Kingdom); Moya, D.; Ruiz-Jimeno, A.; Vila, I. [CSIC-University of Cantabria, IFCA, Santander (Spain); Peric, I. [Institut fuer Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Protopopescu, D.; Robson, A. [University of Glasgow, Glasgow (United Kingdom); Trenado, J. [University of Barcelona, Barcelona (ES); Uggerhoej, U.I. [Aarhus University, Aarhus (DK); Wells, J.D. [University of Michigan, Physics Department, Ann Arbor, MI (US)

    2017-07-15

    The Compact Linear Collider (CLIC) is an option for a future e{sup +}e{sup -} collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √(s) = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e{sup +}e{sup -} → ZH) and WW-fusion (e{sup +}e{sup -} → Hν{sub e} anti ν{sub e}), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ{sub H}, and model-independent determinations of the Higgs couplings. Operation at √(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e{sup +}e{sup -} → t anti tH and e{sup +}e{sup -} → HHν{sub e} anti ν{sub e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit. (orig.)

  4. High precision relocation of earthquakes at Iliamna Volcano, Alaska

    Science.gov (United States)

    Statz-Boyer, P.; Thurber, C.; Pesicek, J.; Prejean, S.

    2009-01-01

    In August 1996, a period of elevated seismicity commenced beneath Iliamna Volcano, Alaska. This activity lasted until early 1997, consisted of over 3000 earthquakes, and was accompanied by elevated emissions of volcanic gases. No eruption occurred and seismicity returned to background levels where it has remained since. We use waveform alignment with bispectrum-verified cross-correlation and double-difference methods to relocate over 2000 earthquakes from 1996 to 2005 with high precision (~ 100??m). The results of this analysis greatly clarify the distribution of seismic activity, revealing distinct features previously hidden by location scatter. A set of linear earthquake clusters diverges upward and southward from the main group of earthquakes. The events in these linear clusters show a clear southward migration with time. We suggest that these earthquakes represent either a response to degassing of the magma body, circulation of fluids due to exsolution from magma or heating of ground water, or possibly the intrusion of new dikes beneath Iliamna's southern flank. In addition, we speculate that the deeper, somewhat diffuse cluster of seismicity near and south of Iliamna's summit indicates the presence of an underlying magma body between about 2 and 4??km depth below sea level, based on similar features found previously at several other Alaskan volcanoes. ?? 2009 Elsevier B.V.

  5. Exact treatment of mode locking for a piecewise linear map

    International Nuclear Information System (INIS)

    Ding, E.J.; Hemmer, P.C.

    1987-01-01

    A piecewise linear map with one discontinuity is studied by analytic means in the two-dimensional parameter space. When the slope of the map is less than unity, periodic orbits are present, and they give the precise symbolic dynamic classification of these. The localization of the periodic domains in parameter space is given by closed expressions. The winding number forms a devil's terrace, a two-dimensional function whose cross sections are complete devil's staircases. In such a cross section the complementary set to the periodic intervals is a Cantor set with dimension D = 0

  6. Deep x-ray lithography for micromechanics and precision engineering

    International Nuclear Information System (INIS)

    Guckel, H.

    1996-01-01

    Micromechanics, an emerging technology for sensor and actuator fabrication, has already been exploited in the sensor area. Progress in actuators, devices that modify their environment and are fundamentally three dimensional, has been much more modest and is suffering from the availability of a fabrication tool with the necessary attributes. If the tool is based on photoresist technology, requirements include very large structure heights: in the millimeter range, for mask-defined prismatic photoresist shapes with flanks that differ from 90 degrees by less than 15 arc-seconds. Photoresist procedures that lead to these results are very different from their counterparts in the microelectronic industry. Thus, application is based on precast sheets of polymethyl methacrylate, PMMA, and solvent bonding followed by precision fly-cutting. Exposure is based on well-collimated x-ray sources, synchrotrons, with flux densities that can deposit 1,600 Joules per cubic centimeter in a finite time at the correct photoresist depth. Since PMMA has an absorption length that varies with photon energy, it is 100 micrometer at 3000 eV and increases to 1 cm at 20,000 eV, beamline and exposure designs center on transmission filters that control the low energy portion of the synchrotron spectrum. Since exposure latitude is large, overexposure by a factor of 15 is allowed, beamline and exposure design are relatively simple. Experiments via the Wisconsin machine, Aladdin, and the Brookhaven 2.6-GeV ring are being used to study the effectiveness issue of manufacturing with synchrotron radiation. Actuator test vehicles are linear and rotational magnetic micromotors with force outputs in the milli-Newton range. High energy exposures have produced large parts with submicron precision that are finding applications in ink jet printing and precision injection molding procedures. Both device types are unique to x-ray assisted processing. copyright 1996 American Institute of Physics

  7. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sansourekidou, P; Allen, C [Health Quest, Poughkeepsie, NY (United States)

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared to water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.

  8. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles

    Science.gov (United States)

    Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen

    2016-01-01

    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408

  9. On the Linear Relation between the Mean and the Standard Deviation of a Response Time Distribution

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Brown, Scott

    2007-01-01

    Although it is generally accepted that the spread of a response time (RT) distribution increases with the mean, the precise nature of this relation remains relatively unexplored. The authors show that in several descriptive RT distributions, the standard deviation increases linearly with the mean. Results from a wide range of tasks from different…

  10. Measuring Anxiety in Visually-Impaired People: A Comparison between the Linear and the Nonlinear IRT Approaches

    Science.gov (United States)

    Ferrando, Pere J.; Pallero, Rafael; Anguiano-Carrasco, Cristina

    2013-01-01

    The present study has two main interests. First, some pending issues about the psychometric properties of the CTAC (an anxiety questionnaire for blind and visually-impaired people) are assessed using item response theory (IRT). Second, the linear model is compared to the graded response model (GRM) in terms of measurement precision, sensitivity…

  11. Precision-feeding dairy heifers a high rumen-undegradable protein diet with different proportions of dietary fiber and forage-to-concentrate ratios.

    Science.gov (United States)

    Koch, L E; Gomez, N A; Bowyer, A; Lascano, G J

    2017-12-01

    The addition of dietary fiber can alter nutrient and N utilization in precision-fed dairy heifers and may further benefit from higher inclusion levels of RUP. The objective of this experiment was to determine the effects of feeding a high-RUP diet when dietary fiber content was manipulated within differing forage-to-concentrate ratios (F:C) on nutrient utilization of precision-fed dairy heifers. Six rumen-cannulated Holstein heifers (555.4 ± 31.4 kg BW; 17.4 ± 0.1 mo) were randomly assigned to 2 levels of forage, high forage (HF; 60% forage) or low forage (LF; 45% forage), and to a fiber proportion sequence (low fiber: 100% oat hay and silage [OA], 0% wheat straw [WS]; medium fiber: 83.4% OA, 16.6% WS; and high fiber: 66.7% OA, 33.3% WS) administered according to a split-plot 3 × 3 Latin square design (21-d periods). Similar levels of N intake (1.70 g N/kg BW) and RUP (55% of CP) were provided. Data were analyzed as a split-plot, 3 × 3 Latin square design using a mixed model with fixed effects of period and treatment. A repeated measures model was used with data that had multiple measurements over time. No differences were observed for DM, OM, NDF, or ADF apparent digestibility coefficients (dC) between HF- and LF-fed heifers. Heifers receiving LF diets had greater starch dC compared to HF heifers. Increasing the fiber level through WS addition resulted in a linear reduction of OM dC. There was a linear interaction for DM dC with a concurrent linear interaction in NDF dC. Nitrogen intake, dC, and retention did not differ; however, urine and total N excretion increased linearly with added fiber. Predicted microbial CP flow (MP) linearly decreased with WS inclusion mainly in LF heifers, as indicated by a significant interaction between F:C and WS. Rumen pH linearly increased with WS addition, although no F:C effect was detected. Ruminal ammonia concentration had an opposite linear effect with respect to MP as WS increased. Diets with the higher proportion of

  12. Linear accelerator calibration monitor with a memory

    International Nuclear Information System (INIS)

    Dixon, R.L.; Ekstrand, K.E.

    1979-01-01

    A calibration monitor has been designed for measuring the constancy of linear accelerator or cobalt unit output between full calibrations. This monitor is battery-operated, light-weight, and slides into the shadow tray attachment on a linear accelerator or cobalt unit for easy setup. It provides a digital readout of the dose delivered, and a consistency check can be made in less than two minutes. The precision of the monitor, determined by cobalt-60 irradiations over a 2 1/2 month period, is +- 0.6% (standard deviation). The monitor also retains the dose reading in a CMOS digital counter indefinitely, hence it can be used in the same fashion as mailed thermoluminescent dosimeters (TLD) for calibration checks at remote facilities without the complicated readout procedures associated with TLD. The monitor can be mailed to a remote facility, positioned without ambiguity, and irradiated; and the reading can be verified on return to the originating center simply by pressing a switch. The monitor can easily be set up to carry out a ''blind'' check in which the reading obtained is not known to the remote facility

  13. Development of sensor guided precision sprayers

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.; Zande, van de J.C.

    2013-01-01

    Sensor guided precision sprayers were developed to automate the spray process with a focus on emission reduction and identical or increased efficacy, with the precision agriculture concept in mind. Within the project “Innovations2” sensor guided precision sprayers were introduced to leek,

  14. Improving the precision of linear optics measurements based on turn-by-turn beam position monitor data after a pulsed excitation in lepton storage rings

    Directory of Open Access Journals (Sweden)

    L. Malina

    2017-08-01

    Full Text Available Beam optics control is of critical importance for machine performance and protection. Nowadays, turn-by-turn (TbT beam position monitor (BPM data are increasingly exploited as they allow for fast and simultaneous measurement of various optics quantities. Nevertheless, so far the best documented uncertainty of measured β-functions is of about 10‰ rms. In this paper we compare the β-functions of the ESRF storage ring measured from two different TbT techniques—the N-BPM and the Amplitude methods—with the ones inferred from a measurement of the orbit response matrix (ORM. We show how to improve the precision of TbT techniques by refining the Fourier transform of TbT data with properly chosen excitation amplitude. The precision of the N-BPM method is further improved by refining the phase advance measurement. This represents a step forward compared to standard TbT measurements. First experimental results showing the precision of β-functions pushed down to 4‰ both in TbT and ORM techniques are reported and commented.

  15. A Comparison of implant impression precision: Different materials and techniques

    Science.gov (United States)

    Tabesh, Mahtab; Alikhasi, Marzieh

    2018-01-01

    Background Precision of implant impressions is a prerequisite for long-term success of implant supported prostheses. Impression materials and impression techniques are two important factors that impression precision relies on. Material and Methods A model of edentulous maxilla containing four implants inserted by All-on-4 guide was constructed. Seventy two impressions using polyether (PE), polyvinyl siloxane (PVS), and vinyl siloxanether (VSE) materials with direct and indirect techniques were made (n=12). Coordinates of implants in casts were measured using coordinate measuring machine (CMM). Data were analyzed with ANOVA; t-test and Tukey test were used for post hoc. Results With two-way ANOVA, mean values of linear displacements of implants were significantly different among materials and techniques. One-way ANOVA and Tukey showed significant difference between PE and VSE (P=0.019), PE and PVS (P=0.002) in direct technique, and between PVS and PE (Pimpression of implants, PE is recommended for direct technique while PE and VSE are recommended for indirect technique. Recommended technique for VSE is either direct or indirect; and for PE and PVS is direct. Key words:Polyvinyl siloxane, polyether, vinyl siloxanether, direct technique, indirect technique, All-on-4, coordinate measuring machine. PMID:29670733

  16. Improving biomedical information retrieval by linear combinations of different query expansion techniques.

    Science.gov (United States)

    Abdulla, Ahmed AbdoAziz Ahmed; Lin, Hongfei; Xu, Bo; Banbhrani, Santosh Kumar

    2016-07-25

    Biomedical literature retrieval is becoming increasingly complex, and there is a fundamental need for advanced information retrieval systems. Information Retrieval (IR) programs scour unstructured materials such as text documents in large reserves of data that are usually stored on computers. IR is related to the representation, storage, and organization of information items, as well as to access. In IR one of the main problems is to determine which documents are relevant and which are not to the user's needs. Under the current regime, users cannot precisely construct queries in an accurate way to retrieve particular pieces of data from large reserves of data. Basic information retrieval systems are producing low-quality search results. In our proposed system for this paper we present a new technique to refine Information Retrieval searches to better represent the user's information need in order to enhance the performance of information retrieval by using different query expansion techniques and apply a linear combinations between them, where the combinations was linearly between two expansion results at one time. Query expansions expand the search query, for example, by finding synonyms and reweighting original terms. They provide significantly more focused, particularized search results than do basic search queries. The retrieval performance is measured by some variants of MAP (Mean Average Precision) and according to our experimental results, the combination of best results of query expansion is enhanced the retrieved documents and outperforms our baseline by 21.06 %, even it outperforms a previous study by 7.12 %. We propose several query expansion techniques and their combinations (linearly) to make user queries more cognizable to search engines and to produce higher-quality search results.

  17. Highlights of the SLD Physics Program at the SLAC Linear Collider

    International Nuclear Information System (INIS)

    Willocq, Stephane

    2001-01-01

    Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e + e - collider experiments operating at the Z 0 resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions

  18. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  19. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    International Nuclear Information System (INIS)

    2016-01-01

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  20. What is precision medicine?

    Science.gov (United States)

    König, Inke R; Fuchs, Oliver; Hansen, Gesine; von Mutius, Erika; Kopp, Matthias V

    2017-10-01

    The term "precision medicine" has become very popular over recent years, fuelled by scientific as well as political perspectives. Despite its popularity, its exact meaning, and how it is different from other popular terms such as "stratified medicine", "targeted therapy" or "deep phenotyping" remains unclear. Commonly applied definitions focus on the stratification of patients, sometimes referred to as a novel taxonomy, and this is derived using large-scale data including clinical, lifestyle, genetic and further biomarker information, thus going beyond the classical "signs-and-symptoms" approach.While these aspects are relevant, this description leaves open a number of questions. For example, when does precision medicine begin? In which way does the stratification of patients translate into better healthcare? And can precision medicine be viewed as the end-point of a novel stratification of patients, as implied, or is it rather a greater whole?To clarify this, the aim of this paper is to provide a more comprehensive definition that focuses on precision medicine as a process. It will be shown that this proposed framework incorporates the derivation of novel taxonomies and their role in healthcare as part of the cycle, but also covers related terms. Copyright ©ERS 2017.

  1. Measurement of the Higgs boson mass with a linear e+e- collider

    International Nuclear Information System (INIS)

    Garcia-Abia, P.; Lohmann, W.; Raspereza, A.

    2005-05-01

    The potential of a linear e + e - collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb -1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10 -4 . (orig.)

  2. Improvement on the accuracy of beam bugs in linear induction accelerator

    International Nuclear Information System (INIS)

    Xie Yutong; Dai Zhiyong; Han Qing

    2002-01-01

    In linear induction accelerator the resistive wall monitors known as 'beam bugs' have been used as essential diagnostics of beam current and location. The author presents a new method that can improve the accuracy of these beam bugs used for beam position measurements. With a fine beam simulation set, this method locates the beam position with an accuracy of 0.02 mm and thus can scale the beam bugs very well. Experiment results prove that the precision of beam position measurements can reach submillimeter degree

  3. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  4. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  5. The Simulation and Correction to the Brain Deformation Based on the Linear Elastic Model in IGS

    Institute of Scientific and Technical Information of China (English)

    MU Xiao-lan; SONG Zhi-jian

    2004-01-01

    @@ The brain deformation is a vital factor affecting the precision of the IGS and it becomes a hotspot to simulate and correct the brain deformation recently.The research organizations, which firstly resolved the brain deformation with the physical models, have the Image Processing and Analysis department of Yale University, Biomedical Modeling Lab of Vanderbilt University and so on. The former uses the linear elastic model; the latter uses the consolidation model.The linear elastic model only needs to drive the model using the surface displacement of exposed brain cortex,which is more convenient to be measured in the clinic.

  6. Ajuste de modelos estocásticos lineares e não-lineares para a descrição do perfil longitudinal de árvores Fitting linear and nonlinear stochastic models to describe longitudinal tree profile

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pires

    2007-10-01

    Full Text Available Os modelos polinomiais são mais difundidos no meio florestal brasileiro na descrição do perfil de árvores devido à sua facilidade de ajuste e precisão. O mesmo não ocorre com os modelos não-lineares, os quais possuem maior dificuldade de ajuste. Dentre os modelos não-lineares clássicos, na descrição do perfil, podem-se citar o de Gompertz, o Logístico e o de Weibull. Portanto, este estudo visou comparar os modelos lineares e não lineares para a descrição do perfil de árvores. As medidas de comparação foram o coeficiente de determinação (R², o erro-padrão residual (s yx, o coeficiente de determinação corrigido (R²ajustado, o gráfico dos resíduos e a facilidade de ajuste. Os resultados ressaltaram que, dentre os modelos não-lineares, o que obteve melhor desempenho, de forma geral, foi o modelo Logístico, apesar de o modelo de Gompertz ser melhor em termos de erro-padrão residual. Nos modelos lineares, o polinômio proposto por Pires & Calegario foi superior aos demais. Ao comparar os modelos não-lineares com os lineares, o modelo Logístico foi melhor em razão, principalmente, do fato de o comportamento dos dados ser não-linear, à baixa correlação entre os parâmetros e à fácil interpretação deles, facilitando a convergência e o ajuste.Polynomial models are most commonly used in Brazilian forestry for taper modeling due to its straightforwardly fitting and precision. The use of nonlinear regression classic models, like Gompertz, Logistic and Weibull, is not very common in Brazil. Therefore, this study aimed to verify the best nonlinear and linear models, and among these the best model to describe the longitudinal tree profile. The comparison measures were: R², syx, R²adjusted, residual graphics and fitting convergence. The results pointed out that among the non-linear models the best behavior, in general, was given by the Logistic model, although the Gompertz model was superior compared with the Weibull

  7. Precision Medicine in Cancer Treatment

    Science.gov (United States)

    Precision medicine helps doctors select cancer treatments that are most likely to help patients based on a genetic understanding of their disease. Learn about the promise of precision medicine and the role it plays in cancer treatment.

  8. Precision electron polarimetry

    International Nuclear Information System (INIS)

    Chudakov, E.

    2013-01-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry

  9. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  10. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  11. Precision Medicine in Gastrointestinal Pathology.

    Science.gov (United States)

    Wang, David H; Park, Jason Y

    2016-05-01

    -Precision medicine is the promise of individualized therapy and management of patients based on their personal biology. There are now multiple global initiatives to perform whole-genome sequencing on millions of individuals. In the United States, an early program was the Million Veteran Program, and a more recent proposal in 2015 by the president of the United States is the Precision Medicine Initiative. To implement precision medicine in routine oncology care, genetic variants present in tumors need to be matched with effective clinical therapeutics. When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. -To present the current state of precision medicine using gastrointestinal oncology as a model. We will present currently available targeted therapeutics, promising new findings in clinical genomic oncology, remaining quality issues in genomic testing, and emerging oncology clinical trial designs. -Review of the literature including clinical genomic studies on gastrointestinal malignancies, clinical oncology trials on therapeutics targeted to molecular alterations, and emerging clinical oncology study designs. -Translating our ability to sequence thousands of genes into meaningful improvements in patient survival will be the challenge for the next decade.

  12. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  13. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  14. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    Science.gov (United States)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  15. Physics and technology of the next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The authors present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center-of-mass energy 0.5--1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. The physics goals discussed here are: Standard Model processes and simulation; top quark physics; Higgs boson searches and properties; supersymmetry; anomalous gauge boson couplings; strong WW scattering; new gauge bosons and exotic particles; e{sup {minus}}e{sup {minus}}, e{sup {minus}}{gamma}, and {gamma}{gamma} interactions; and precision tests of QCD.

  16. Some contributions to non-linear physic: Mathematical problems

    International Nuclear Information System (INIS)

    1981-01-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs

  17. MCNP6 unstructured mesh application to estimate the photoneutron distribution and induced activity inside a linac bunker

    Science.gov (United States)

    Juste, B.; Morató, S.; Miró, R.; Verdú, G.; Díez, S.

    2017-08-01

    Unwanted neutrons in radiation therapy treatments are typically generated by photonuclear reactions. High-energy beams emitted by medical Linear Accelerators (LinAcs) interact with high atomic number materials situated in the accelerator head and release neutrons. Since neutrons have a high relative biological effectiveness, even low neutron doses may imply significant exposure of patients. It is also important to study radioactivity induced by these photoneutrons when interacting with the different materials and components of the treatment head facility and the shielding room walls, since persons not present during irradiation (e.g. medical staff) may be exposed to them even when the accelerator is not operating. These problems are studied in this work in order to contribute to challenge the radiation protection in these treatment locations. The work has been performed by simulation using the latest state of the art of Monte-Carlo computer code MCNP6. To that, a detailed model of particles transport inside the bunker and treatment head has been carried out using a meshed geometry model. The LinAc studied is an Elekta Precise accelerator with a treatment photon energy of 15 MeV used at the Hospital Clinic Universitari de Valencia, Spain.

  18. Positioning accuracy for lung stereotactic body radiotherapy patients determined by on-treatment cone-beam CT imaging

    Science.gov (United States)

    Richmond, N D; Pilling, K E; Peedell, C; Shakespeare, D; Walker, C P

    2012-01-01

    Stereotactic body radiotherapy for early stage non-small cell lung cancer is an emerging treatment option in the UK. Since relatively few high-dose ablative fractions are delivered to a small target volume, the consequences of a geometric miss are potentially severe. This paper presents the results of treatment delivery set-up data collected using Elekta Synergy (Elekta, Crawley, UK) cone-beam CT imaging for 17 patients immobilised using the Bodyfix system (Medical Intelligence, Schwabmuenchen, Germany). Images were acquired on the linear accelerator at initial patient treatment set-up, following any position correction adjustments, and post-treatment. These were matched to the localisation CT scan using the Elekta XVI software. In total, 71 fractions were analysed for patient set-up errors. The mean vector error at initial set-up was calculated as 5.3±2.7 mm, which was significantly reduced to 1.4±0.7 mm following image guided correction. Post-treatment the corresponding value was 2.1±1.2 mm. The use of the Bodyfix abdominal compression plate on 5 patients to reduce the range of tumour excursion during respiration produced mean longitudinal set-up corrections of −4.4±4.5 mm compared with −0.7±2.6 mm without compression for the remaining 12 patients. The use of abdominal compression led to a greater variation in set-up errors and a shift in the mean value. PMID:22665927

  19. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    Science.gov (United States)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  20. [Progress in precision medicine: a scientific perspective].

    Science.gov (United States)

    Wang, B; Li, L M

    2017-01-10

    Precision medicine is a new strategy for disease prevention and treatment by taking into account differences in genetics, environment and lifestyles among individuals and making precise diseases classification and diagnosis, which can provide patients with personalized, targeted prevention and treatment. Large-scale population cohort studies are fundamental for precision medicine research, and could produce best evidence for precision medicine practices. Current criticisms on precision medicine mainly focus on the very small proportion of benefited patients, the neglect of social determinants for health, and the possible waste of limited medical resources. In spite of this, precision medicine is still a most hopeful research area, and would become a health care practice model in the future.

  1. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  2. A study of thermal deformation in the carriage of a permanent magnet direct drive linear motor stage

    International Nuclear Information System (INIS)

    Chow, J.H.; Zhong, Z.W.; Lin, W.; Khoo, L.P.

    2012-01-01

    Carriage deformation due to temperature gradients within the materials of the carriage affects the accuracy of precision machines. This is largely due to the indeterminist temperature distribution in the carriage's material caused by the non-linearity of heat transfer. The joule heat from the motor coil forms the main heat source. When coupled with the heat loss through convection and radiation, the temperature variation in the motor's carriage also increases. In this study, the Finite Element Analysis was used together with a set of boundary conditions, which was obtained empirically, to analyze the distortion of the motor's carriage. The simulated results were compared with those obtained through experiments. The study shows that it is important to know, rather than to assume, the thermal boundary conditions of the motor's carriage of a precision machine in order to accurately estimate the thermal deformation of the carriage in precision machining. - Highlights: ► Deformation occurs in carriages which are mounted with linear motor. ► The convective coefficient, which is assumed to be 10 W mm −2 , is shown to be invalid. ► The perfect contact conductance is shown to be invalid too. ► To have an accurate thermal model, boundary conditions have to be realistic. ► Boundary conditions are the heat source, convective and conductance values.

  3. Modeling and control of precision actuators

    CERN Document Server

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  4. H-Shaped Multiple Linear Motor Drive Platform Control System Design Based on an Inverse System Method

    Directory of Open Access Journals (Sweden)

    Caiyan Qin

    2017-12-01

    Full Text Available Due to its simple mechanical structure and high motion stability, the H-shaped platform has been increasingly widely used in precision measuring, numerical control machining and semiconductor packaging equipment, etc. The H-shaped platform is normally driven by multiple (three permanent magnet synchronous linear motors. The main challenges for H-shaped platform-control include synchronous control between the two linear motors in the Y direction as well as total positioning error of the platform mover, a combination of position deviation in X and Y directions. To deal with the above challenges, this paper proposes a control strategy based on the inverse system method through state feedback and dynamic decoupling of the thrust force. First, mechanical dynamics equations have been deduced through the analysis of system coupling based on the platform structure. Second, the mathematical model of the linear motors and the relevant coordinate transformation between dq-axis currents and ABC-phase currents are analyzed. Third, after the main concept of inverse system method being explained, the inverse system model of the platform control system has been designed after defining relevant system variables. Inverse system model compensates the original nonlinear coupled system into pseudo-linear decoupled linear system, for which typical linear control methods, like PID, can be adopted to control the system. The simulation model of the control system is built in MATLAB/Simulink and the simulation result shows that the designed control system has both small synchronous deviation and small total trajectory tracking error. Furthermore, the control program has been run on NI controller for both fixed-loop-time and free-loop-time modes, and the test result shows that the average loop computation time needed is rather small, which makes it suitable for real industrial applications. Overall, it proves that the proposed new control strategy can be used in

  5. Fitting and forecasting coupled dark energy in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  6. Fitting and forecasting coupled dark energy in the non-linear regime

    International Nuclear Information System (INIS)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications

  7. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  8. SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J; Farrokhkish, M; Norrlinger, B; Wang, Y [Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Heaton, R; Jaffray, D; Islam, M [Princess Margaret Cancer Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, Ontario (Canada)

    2015-06-15

    Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using a conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm{sup 2} field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm{sup 2} aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have financial

  9. SU-E-T-354: Efficient and Enhanced QA Testing of Linear Accelerators Using a Real-Time Beam Monitor

    International Nuclear Information System (INIS)

    Jung, J; Farrokhkish, M; Norrlinger, B; Wang, Y; Heaton, R; Jaffray, D; Islam, M

    2015-01-01

    Purpose: To investigate the feasibility of performing routine QA tests of linear accelerators (Linac) using the Integral Quality Monitoring (IQM) system. The system, consisting of a 1-D sensitivity gradient large area ion-chamber mounted at the collimator, allows automatic collection and analysis of beam data. Methods: The IQM was investigated to perform several QA constancy tests, similar to those recommended by AAPM TG142, of a Linac including: beam output, MLC calibration, beam symmetry, relative dose factor (RDF), dose linearity, output as a function of gantry angle and dose rate. All measurements by the IQM system accompanied a reference measurement using a conventional dosimetry system and were performed on an Elekta Infinity Linac with Agility MLC. The MLC calibration check is done using a Picket-Fence type 2×10cm 2 field positioned at different off-axis locations along the chamber gradient. Beam symmetry constancy values are established by signals from an 4×4cm 2 aperture located at various off-axis positions; the sensitivity of the test was determined by the changes in the signals in response to a tilt in the beam. The data for various square field sizes were used to develop a functional relationship with RDF. Results: The IQM tracked the beam output well within 1% of the reference ion-chamber readings. The Picket-Fence type field test detected a 1mm shift error of one MLC bank. The system was able to detect 2.5% or greater beam asymmetry. The IQM results for all other QA tests were found to agree with the reference values to within 0.5%. Conclusion: It was demonstrated that the IQM system can effectively monitor the Linac performance parameters for the purpose of routine QA constancy tests. With minimum user interactions a comprehensive set of tests can be performed efficiently, allowing frequent monitoring of the Linac. The presenting author’s salary is funded by the manufacturer of the QA device. All the other authors have financial interests with

  10. CP-violating top quark couplings at future linear $e^+e^-$ colliders

    CERN Document Server

    Bernreuther, Werner; Garcia Garcia, Ignacio; Perello Rosello, Martin; Poeschl, Roman; Richard, Francois; Ros, Eduardo; Vos, Marcel

    2017-01-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, that may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton level simulations to explore the potential of high-energy operation. We find that precise measurements in $e^+e^- \\rightarrow t \\bar{t}$ production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear $e^+e^-$ collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  11. Highlights of the SLD Physics Program at the SLAC Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Willocq, Stephane

    2001-09-07

    Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e{sup +}e{sup -} collider experiments operating at the Z{sup 0} resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions.

  12. CP-violating top quark couplings at future linear e^+e^- colliders

    Science.gov (United States)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  13. The lightest Higgs boson of mSUGRA, mGMSB and mAMSB at present and future colliders: observability and precision analyses

    International Nuclear Information System (INIS)

    Dedes, A.; Heinemeyer, S.; Su, S.; Weiglein, G.

    2003-01-01

    We investigate the physics of the lightest CP-even MSSM Higgs boson at the Tevatron, the LHC, a linear e + e - collider, a γγ collider and a μ + μ - collider. The analysis is performed in the three most prominent soft SUSY-breaking scenarios, mSUGRA, mGMSB and mAMSB. For all colliders the observability and parameter regions with suppressed production cross sections (compared to a SM Higgs boson with the same mass) are investigated. For the lepton and photon colliders the potential is analyzed of precision measurements of the branching ratios of the light CP-even Higgs boson for obtaining indirect bounds on the mass of the CP-odd Higgs boson and the high-energy parameters of the soft SUSY-breaking scenarios. In regions of the parameter space where the LHC can detect the heavy Higgs bosons, precision measurements of the properties of the light Higgs boson at the linear collider can provide valuable information for distinguishing between the mSUGRA, mGMSB and mAMSB scenarios

  14. Precision wildlife medicine: applications of the human-centred precision medicine revolution to species conservation.

    Science.gov (United States)

    Whilde, Jenny; Martindale, Mark Q; Duffy, David J

    2017-05-01

    The current species extinction crisis is being exacerbated by an increased rate of emergence of epizootic disease. Human-induced factors including habitat degradation, loss of biodiversity and wildlife population reductions resulting in reduced genetic variation are accelerating disease emergence. Novel, efficient and effective approaches are required to combat these epizootic events. Here, we present the case for the application of human precision medicine approaches to wildlife medicine in order to enhance species conservation efforts. We consider how the precision medicine revolution, coupled with the advances made in genomics, may provide a powerful and feasible approach to identifying and treating wildlife diseases in a targeted, effective and streamlined manner. A number of case studies of threatened species are presented which demonstrate the applicability of precision medicine to wildlife conservation, including sea turtles, amphibians and Tasmanian devils. These examples show how species conservation could be improved by using precision medicine techniques to determine novel treatments and management strategies for the specific medical conditions hampering efforts to restore population levels. Additionally, a precision medicine approach to wildlife health has in turn the potential to provide deeper insights into human health and the possibility of stemming and alleviating the impacts of zoonotic diseases. The integration of the currently emerging Precision Medicine Initiative with the concepts of EcoHealth (aiming for sustainable health of people, animals and ecosystems through transdisciplinary action research) and One Health (recognizing the intimate connection of humans, animal and ecosystem health and addressing a wide range of risks at the animal-human-ecosystem interface through a coordinated, collaborative, interdisciplinary approach) has great potential to deliver a deeper and broader interdisciplinary-based understanding of both wildlife and human

  15. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  16. Nanomaterials for Cancer Precision Medicine.

    Science.gov (United States)

    Wang, Yilong; Sun, Shuyang; Zhang, Zhiyuan; Shi, Donglu

    2018-04-01

    Medical science has recently advanced to the point where diagnosis and therapeutics can be carried out with high precision, even at the molecular level. A new field of "precision medicine" has consequently emerged with specific clinical implications and challenges that can be well-addressed by newly developed nanomaterials. Here, a nanoscience approach to precision medicine is provided, with a focus on cancer therapy, based on a new concept of "molecularly-defined cancers." "Next-generation sequencing" is introduced to identify the oncogene that is responsible for a class of cancers. This new approach is fundamentally different from all conventional cancer therapies that rely on diagnosis of the anatomic origins where the tumors are found. To treat cancers at molecular level, a recently developed "microRNA replacement therapy" is applied, utilizing nanocarriers, in order to regulate the driver oncogene, which is the core of cancer precision therapeutics. Furthermore, the outcome of the nanomediated oncogenic regulation has to be accurately assessed by the genetically characterized, patient-derived xenograft models. Cancer therapy in this fashion is a quintessential example of precision medicine, presenting many challenges to the materials communities with new issues in structural design, surface functionalization, gene/drug storage and delivery, cell targeting, and medical imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An aberrant precision account of autism.

    Directory of Open Access Journals (Sweden)

    Rebecca P Lawson

    2014-05-01

    Full Text Available Autism is a neurodevelopmental disorder characterised by problems with social-communication, restricted interests and repetitive behaviour. A recent and controversial article presented a compelling normative explanation for the perceptual symptoms of autism in terms of a failure of Bayesian inference (Pellicano and Burr, 2012. In response, we suggested that when Bayesian interference is grounded in its neural instantiation – namely, predictive coding – many features of autistic perception can be attributed to aberrant precision (or beliefs about precision within the context of hierarchical message passing in the brain (Friston et al., 2013. Here, we unpack the aberrant precision account of autism. Specifically, we consider how empirical findings – that speak directly or indirectly to neurobiological mechanisms – are consistent with the aberrant encoding of precision in autism; in particular, an imbalance of the precision ascribed to sensory evidence relative to prior beliefs.

  18. NCI and the Precision Medicine Initiative®

    Science.gov (United States)

    NCI's activities related to precision medicine focuses on new and expanded precision medicine clinical trials; mechanisms to overcome drug resistance to cancer treatments; and developing a shared digital repository of precision medicine trials data.

  19. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  20. [Precision Nursing: Individual-Based Knowledge Translation].

    Science.gov (United States)

    Chiang, Li-Chi; Yeh, Mei-Ling; Su, Sui-Lung

    2016-12-01

    U.S. President Obama announced a new era of precision medicine in the Precision Medicine Initiative (PMI). This initiative aims to accelerate the progress of personalized medicine in light of individual requirements for prevention and treatment in order to improve the state of individual and public health. The recent and dramatic development of large-scale biologic databases (such as the human genome sequence), powerful methods for characterizing patients (such as genomics, microbiome, diverse biomarkers, and even pharmacogenomics), and computational tools for analyzing big data are maximizing the potential benefits of precision medicine. Nursing science should follow and keep pace with this trend in order to develop empirical knowledge and expertise in the area of personalized nursing care. Nursing scientists must encourage, examine, and put into practice innovative research on precision nursing in order to provide evidence-based guidance to clinical practice. The applications in personalized precision nursing care include: explanations of personalized information such as the results of genetic testing; patient advocacy and support; anticipation of results and treatment; ongoing chronic monitoring; and support for shared decision-making throughout the disease trajectory. Further, attention must focus on the family and the ethical implications of taking a personalized approach to care. Nurses will need to embrace the paradigm shift to precision nursing and work collaboratively across disciplines to provide the optimal personalized care to patients. If realized, the full potential of precision nursing will provide the best chance for good health for all.

  1. Observation of a current-limited double layer in a linear turbulent-heating device

    International Nuclear Information System (INIS)

    Inuzuka, H.; Torii, Y.; Nagatsu, M.; Tsukishima, T.

    1985-01-01

    Time- and space-resolved measurements of strong double layers (DLs) have been carried out for the first time on a linear turbulent-heating device, together with those of fluctuation spectra and precise current measurements. A stable stong DL is formed even when the electric current through the DL is less than the so-called Bohm value. Discussion of the formation and decay processes is given, indicating a transition from an ion-acoustic DL to a monotonic DL

  2. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  3. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    International Nuclear Information System (INIS)

    Li Yan-Chao; Wang Chun-Hui; Qu Yang; Gao Long; Cong Hai-Fang; Yang Yan-Ling; Gao Jie; Wang Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    Science.gov (United States)

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-03-26

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Acceleration of Linear Finite-Difference Poisson-Boltzmann Methods on Graphics Processing Units.

    Science.gov (United States)

    Qi, Ruxi; Botello-Smith, Wesley M; Luo, Ray

    2017-07-11

    Electrostatic interactions play crucial roles in biophysical processes such as protein folding and molecular recognition. Poisson-Boltzmann equation (PBE)-based models have emerged as widely used in modeling these important processes. Though great efforts have been put into developing efficient PBE numerical models, challenges still remain due to the high dimensionality of typical biomolecular systems. In this study, we implemented and analyzed commonly used linear PBE solvers for the ever-improving graphics processing units (GPU) for biomolecular simulations, including both standard and preconditioned conjugate gradient (CG) solvers with several alternative preconditioners. Our implementation utilizes the standard Nvidia CUDA libraries cuSPARSE, cuBLAS, and CUSP. Extensive tests show that good numerical accuracy can be achieved given that the single precision is often used for numerical applications on GPU platforms. The optimal GPU performance was observed with the Jacobi-preconditioned CG solver, with a significant speedup over standard CG solver on CPU in our diversified test cases. Our analysis further shows that different matrix storage formats also considerably affect the efficiency of different linear PBE solvers on GPU, with the diagonal format best suited for our standard finite-difference linear systems. Further efficiency may be possible with matrix-free operations and integrated grid stencil setup specifically tailored for the banded matrices in PBE-specific linear systems.

  6. A New High-Precision Correction Method of Temperature Distribution in Model Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-06-01

    Full Text Available The main features of the temperature correction methods, suggested and used in modeling of plane-parallel stellar atmospheres, are discussed. The main features of the new method are described. Derivation of the formulae for a version of the Unsöld-Lucy method, used by us in the SMART (Stellar Model Atmospheres and Radiative Transport software for modeling stellar atmospheres, is presented. The method is based on a correction of the model temperature distribution based on minimizing differences of flux from its accepted constant value and on the requirement of the lack of its gradient, meaning that local source and sink terms of radiation must be equal. The final relative flux constancy obtainable by the method with the SMART code turned out to have the precision of the order of 0.5 %. Some of the rapidly converging iteration steps can be useful before starting the high-precision model correction. The corrections of both the flux value and of its gradient, like in Unsöld-Lucy method, are unavoidably needed to obtain high-precision flux constancy. A new temperature correction method to obtain high-precision flux constancy for plane-parallel LTE model stellar atmospheres is proposed and studied. The non-linear optimization is carried out by the least squares, in which the Levenberg-Marquardt correction method and thereafter additional correction by the Broyden iteration loop were applied. Small finite differences of temperature (δT/T = 10−3 are used in the computations. A single Jacobian step appears to be mostly sufficient to get flux constancy of the order 10−2 %. The dual numbers and their generalization – the dual complex numbers (the duplex numbers – enable automatically to get the derivatives in the nilpotent part of the dual numbers. A version of the SMART software is in the stage of refactorization to dual and duplex numbers, what enables to get rid of the finite differences, as an additional source of lowering precision of the

  7. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.

    Science.gov (United States)

    Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning

    2016-12-01

    This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. New methods for precision Moeller polarimetry*

    International Nuclear Information System (INIS)

    Gaskell, D.; Meekins, D.G.; Yan, C.

    2007-01-01

    Precision electron beam polarimetry is becoming increasingly important as parity violation experiments attempt to probe the frontiers of the standard model. In the few GeV regime, Moeller polarimetry is well suited to high-precision measurements, however is generally limited to use at relatively low beam currents (<10 μA). We present a novel technique that will enable precision Moeller polarimetry at very large currents, up to 100 μA. (orig.)

  9. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, M.S.

    2005-04-11

    A precision measurement of the parity nonconserving left-right asymmetry, A{sub LR}, in Moeller scattering (e{sup -}e{sup -} {yields} e{sup -}e{sup -}) is currently in progress at the Stanford Linear Accelerator Center (SLAC). This experiment, labeled SLAC-E158, scatters longitudinally polarized electrons off atomic electrons in an unpolarized hydrogen target at a Q{sup 2} of 0.03 (GeV/c){sup 2}. The asymmetry, which is the fractional difference in the scattering cross-sections, measures the effective pseudo-scalar weak neutral current coupling, g{sub ee}, governing Moeller scattering. This quantity is in turn proportional to (1/4 - sin{sup 2} {theta}{sub w}), where {theta}{sub w} is the electroweak mixing angle. The goal is to measure the asymmetry to a precision of 1 x 10{sup -8} which corresponds to {delta}(sin{sup 2} {theta}{sub w}) {approx} 0.0007. Since A{sub LR} is a function of the cross-sections, and the cross-sections depend on the beam parameters, the desired precision of A{sub LR} places stringent requirements on the beam parameters. This paper investigates the requirements on the beam parameters and discusses the means by which they are monitored and accounted for.

  10. Time-resolved optical spectrometer based on a monolithic array of high-precision TDCs and SPADs

    Science.gov (United States)

    Tamborini, Davide; Markovic, Bojan; Di Sieno, Laura; Contini, Davide; Bassi, Andrea; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2013-12-01

    We present a compact time-resolved spectrometer suitable for optical spectroscopy from 400 nm to 1 μm wavelengths. The detector consists of a monolithic array of 16 high-precision Time-to-Digital Converters (TDC) and Single-Photon Avalanche Diodes (SPAD). The instrument has 10 ps resolution and reaches 70 ps (FWHM) timing precision over a 160 ns full-scale range with a Differential Non-Linearity (DNL) better than 1.5 % LSB. The core of the spectrometer is the application-specific integrated chip composed of 16 pixels with 250 μm pitch, containing a 20 μm diameter SPAD and an independent TDC each, fabricated in a 0.35 μm CMOS technology. In front of this array a monochromator is used to focus different wavelengths into different pixels. The spectrometer has been used for fluorescence lifetime spectroscopy: 5 nm spectral resolution over an 80 nm bandwidth is achieved. Lifetime spectroscopy of Nile blue is demonstrated.

  11. Numerical precision control and GRACE

    International Nuclear Information System (INIS)

    Fujimoto, J.; Hamaguchi, N.; Ishikawa, T.; Kaneko, T.; Morita, H.; Perret-Gallix, D.; Tokura, A.; Shimizu, Y.

    2006-01-01

    The control of the numerical precision of large-scale computations like those generated by the GRACE system for automatic Feynman diagram calculations has become an intrinsic part of those packages. Recently, Hitachi Ltd. has developed in FORTRAN a new library HMLIB for quadruple and octuple precision arithmetic where the number of lost-bits is made available. This library has been tested with success on the 1-loop radiative correction to e + e - ->e + e - τ + τ - . It is shown that the approach followed by HMLIB provides an efficient way to track down the source of numerical significance losses and to deliver high-precision results yet minimizing computing time

  12. Physics case and challenges for the Vertex Tracker at future high energy e sup + e sup - linear colliders

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    The physics programme of high energy e sup + e sup - linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  13. Physics case and challenges for the Vertex Tracker at future high energy e{sup +}e{sup -} linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, M. E-mail: marco.battaglia@cern.ch

    2001-11-01

    The physics programme of high energy e{sup +}e{sup -} linear colliders relies on the accurate identification of fermions in order to study in detail the profile of the Higgs boson, search for new particles and probe the multi-TeV mass region by means of precise electro-weak measurements and direct searches.

  14. Implementation of respiratory-gated VMAT on a Versa HD linear accelerator.

    Science.gov (United States)

    Snyder, Jeffrey E; Flynn, Ryan T; Hyer, Daniel E

    2017-09-01

    The accurate delivery of respiratory-gated volumetric modulated arc therapy (VMAT) treatment plans presents a challenge since the gantry rotation and collimator leaves must be repeatedly stopped and set into motion during each breathing cycle. In this study, we present the commissioning process for an Anzai gating system (AZ-733VI) on an Elekta Versa HD linear accelerator and make recommendations for successful clinical implementation. The commissioning tests include central axis dose consistency, profile consistency, gating beam-on/off delay, and comparison of gated versus nongated gamma pass rates for patient-specific quality assurance using four clinically commissioned photon energies: 6 MV, 6 FFF, 10 MV, and 10 FFF. The central axis dose constancy between gated and nongated deliveries was within 0.6% for all energies and the analysis of open field profiles for gated and nongated deliveries showed an agreement of 97.8% or greater when evaluated with a percent difference criteria of 1%. The measurement of the beam-on/off delay was done by evaluating images of a moving ball-bearing phantom triggered by the gating system and average beam-on delays of 0.22-0.29 s were observed. No measurable beam-off delay was present. Measurements of gated VMAT dose distributions resulted in decrements as high as 9% in the gamma passing rate as compared to nongated deliveries when evaluated against the planned dose distribution at 3%/3 mm. By decreasing the dose rate, which decreases the gantry speed during gated delivery, the gamma passing rates of gated and nongated treatments can be made equivalent. We present an empirically derived formula to limit the maximum dose rate during VMAT deliveries and show that by implementing a reduced dose rate, a gamma passing rate of greater than 95% (3%/3 mm) was obtained for all plan measurements. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  15. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes.

    Science.gov (United States)

    Ci, Penghong; Chen, Zhijiang; Liu, Guoxi; Dong, Shuxiang

    2014-01-01

    We report a piezoelectric linear motor made of a single Pb(Zr,Ti)O3 square-plate, which operates in two orthogonal and isomorphic face-diagonal-bending modes to produce precision linear motion. A 15 × 15 × 2 mm prototype was fabricated, and the motor generated a driving force of up to 1.8 N and a speed of 170 mm/s under an applied voltage of 100 Vpp at the resonance frequency of 136.5 kHz. The motor shows such advantages as large driving force under relatively low driving voltage, simple structure, and stable motion because of its isomorphic face-diagonal-bending mode.

  16. Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

    Science.gov (United States)

    Elfers, Carsten; Horstmann, Mirko; Sohr, Karsten; Herzog, Otthein

    Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.

  17. Precision oncology: origins, optimism, and potential.

    Science.gov (United States)

    Prasad, Vinay; Fojo, Tito; Brada, Michael

    2016-02-01

    Imatinib, the first and arguably the best targeted therapy, became the springboard for developing drugs aimed at molecular targets deemed crucial to tumours. As this development unfolded, a revolution in the speed and cost of genetic sequencing occurred. The result--an armamentarium of drugs and an array of molecular targets--set the stage for precision oncology, a hypothesis that cancer treatment could be markedly improved if therapies were guided by a tumour's genomic alterations. Drawing lessons from the biological basis of cancer and recent empirical investigations, we take a more measured view of precision oncology's promise. Ultimately, the promise is not our concern, but the threshold at which we declare success. We review reports of precision oncology alongside those of precision diagnostics and novel radiotherapy approaches. Although confirmatory evidence is scarce, these interventions have been widely endorsed. We conclude that the current path will probably not be successful or, at a minimum, will have to undergo substantive adjustments before it can be successful. For the sake of patients with cancer, we hope one form of precision oncology will deliver on its promise. However, until confirmatory studies are completed, precision oncology remains unproven, and as such, a hypothesis in need of rigorous testing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The economic case for precision medicine.

    Science.gov (United States)

    Gavan, Sean P; Thompson, Alexander J; Payne, Katherine

    2018-01-01

    Introduction : The advancement of precision medicine into routine clinical practice has been highlighted as an agenda for national and international health care policy. A principle barrier to this advancement is in meeting requirements of the payer or reimbursement agency for health care. This special report aims to explain the economic case for precision medicine, by accounting for the explicit objectives defined by decision-makers responsible for the allocation of limited health care resources. Areas covered : The framework of cost-effectiveness analysis, a method of economic evaluation, is used to describe how precision medicine can, in theory, exploit identifiable patient-level heterogeneity to improve population health outcomes and the relative cost-effectiveness of health care. Four case studies are used to illustrate potential challenges when demonstrating the economic case for a precision medicine in practice. Expert commentary : The economic case for a precision medicine should be considered at an early stage during its research and development phase. Clinical and economic evidence can be generated iteratively and should be in alignment with the objectives and requirements of decision-makers. Programmes of further research, to demonstrate the economic case of a precision medicine, can be prioritized by the extent that they reduce the uncertainty expressed by decision-makers.

  19. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  20. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John; Lee, Jon; Margulies, Susan

    2010-01-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  1. Efficient high-precision matrix algebra on parallel architectures for nonlinear combinatorial optimization

    KAUST Repository

    Gunnels, John

    2010-06-01

    We provide a first demonstration of the idea that matrix-based algorithms for nonlinear combinatorial optimization problems can be efficiently implemented. Such algorithms were mainly conceived by theoretical computer scientists for proving efficiency. We are able to demonstrate the practicality of our approach by developing an implementation on a massively parallel architecture, and exploiting scalable and efficient parallel implementations of algorithms for ultra high-precision linear algebra. Additionally, we have delineated and implemented the necessary algorithmic and coding changes required in order to address problems several orders of magnitude larger, dealing with the limits of scalability from memory footprint, computational efficiency, reliability, and interconnect perspectives. © Springer and Mathematical Programming Society 2010.

  2. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    Science.gov (United States)

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  4. Influence of a transverse magnetic field on the dose deposited by a 6 MV linear accelerator

    Directory of Open Access Journals (Sweden)

    Richter Sebastian

    2017-09-01

    Full Text Available An integrated system of a linear accelerator and a magnetic resonance imaging (MRI device may provide real-time imaging during radiotherapy treatments. This work investigated changes affecting the dose deposition caused by a magnetic field (B-field transverse to the beam direction by means of Monte Carlo simulations. Two different phantoms were used: A water phantom (Ph1 and a water-air phantom (Ph2 with a 4-2-4 cm water-air-water cross section. Dose depositions were scored for B-field values of 0 T, 0.35 T, 0.5 T, 1.5 T, 3 T and 5 T. Beams were based on a precalculated photon spectrum taken from an earlier simulated Elekta 6 MV FFF accelerator. All lateral profiles in Ph1 showed a Lorentz force driven shift w.r.t. the B-field strength, presenting a steeper penumbra in the shift's direction. Depositions were shifted up to 0.3 cm for 5 T, showing a constant central axis plateau-dose or an increase by 2.3 % for small fields. Depth-dose curves in Ph1 showed a shift of the dose maximum towards the beam entrance direction for increasing B-field of up to 1.1 cm; the maximum dose was increased by 6.9 %. In Ph2, an asymmetric dose increase by up to 36.9 % was observed for 1.5 T at the water-air boundary, resulting from the electron return effect (ERE. In our scenario, B-field dependent dose shifts and local build-ups were observed, which consequently affect the resulting dose distribution and need to be considered in magnetic resonance guided radiotherapy treatment planning.

  5. Review of diagnostics for next generation linear accelerators

    CERN Document Server

    Ross, M

    2001-01-01

    New electron linac designs incorporate substantial advances in critical beam parameters such as beam loading and bunch length and will require new levels of performance in stability and phase space control. In the coming decade, e- (and e+) linacs will be built for a high power linear collider (TESLA, CLIC, JLC/NLC), for fourth generation X-ray sources (TESLA FEL, LCLS, Spring 8 FEL) and for basic accelerator research and development (Orion). Each project assumes significant instrumentation performance advances across a wide front. This review will focus on basic diagnostics for beam position and phase space monitoring. Research and development efforts aimed at high precision multi-bunch beam position monitors, transverse and longitudinal profile monitors and timing systems will be described.

  6. Precision charge amplification and digitization system for a scintillating and lead glass array

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Rameika, R.; Arenton, M.; Chen, T.Y.; Conetti, S.; Cox, B.; Etemadi, B.; Fortney, L.; Guffey, K.; Haire, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs.

  7. Precision charge amplification and digitization system for a scintillating and lead glass array

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Rameika, R.; Arenton, M.

    1989-01-01

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs

  8. Precision Experiments at LEP

    CERN Document Server

    de Boer, Wim

    2015-01-01

    The Large Electron Positron Collider (LEP) established the Standard Model (SM) of particle physics with unprecedented precision, including all its radiative corrections. These led to predictions for the masses of the top quark and Higgs boson, which were beautifully confirmed later on. After these precision measurements the Nobel Prize in Physics was awarded in 1999 jointly to 't Hooft and Veltman "for elucidating the quantum structure of electroweak interactions in physics". Another hallmark of the LEP results were the precise measurements of the gauge coupling constants, which excluded unification of the forces within the SM, but allowed unification within the supersymmetric extension of the SM. This increased the interest in Supersymmetry (SUSY) and Grand Unified Theories, especially since the SM has no candidate for the elusive dark matter, while Supersymmetry provides an excellent candidate for dark matter. In addition, Supersymmetry removes the quadratic divergencies of the SM and {\\it predicts} the Hig...

  9. Precision Health Economics and Outcomes Research to Support Precision Medicine: Big Data Meets Patient Heterogeneity on the Road to Value

    Directory of Open Access Journals (Sweden)

    Yixi Chen

    2016-11-01

    Full Text Available The “big data” era represents an exciting opportunity to utilize powerful new sources of information to reduce clinical and health economic uncertainty on an individual patient level. In turn, health economic outcomes research (HEOR practices will need to evolve to accommodate individual patient–level HEOR analyses. We propose the concept of “precision HEOR”, which utilizes a combination of costs and outcomes derived from big data to inform healthcare decision-making that is tailored to highly specific patient clusters or individuals. To explore this concept, we discuss the current and future roles of HEOR in health sector decision-making, big data and predictive analytics, and several key HEOR contexts in which big data and predictive analytics might transform traditional HEOR into precision HEOR. The guidance document addresses issues related to the transition from traditional to precision HEOR practices, the evaluation of patient similarity analysis and its appropriateness for precision HEOR analysis, and future challenges to precision HEOR adoption. Precision HEOR should make precision medicine more realizable by aiding and adapting healthcare resource allocation. The combined hopes for precision medicine and precision HEOR are that individual patients receive the best possible medical care while overall healthcare costs remain manageable or become more cost-efficient.

  10. Precision Medicine, Cardiovascular Disease and Hunting Elephants.

    Science.gov (United States)

    Joyner, Michael J

    2016-01-01

    Precision medicine postulates improved prediction, prevention, diagnosis and treatment of disease based on patient specific factors especially DNA sequence (i.e., gene) variants. Ideas related to precision medicine stem from the much anticipated "genetic revolution in medicine" arising seamlessly from the human genome project (HGP). In this essay I deconstruct the concept of precision medicine and raise questions about the validity of the paradigm in general and its application to cardiovascular disease. Thus far precision medicine has underperformed based on the vision promulgated by enthusiasts. While niche successes for precision medicine are likely, the promises of broad based transformation should be viewed with skepticism. Open discussion and debate related to precision medicine are urgently needed to avoid misapplication of resources, hype, iatrogenic interventions, and distraction from established approaches with ongoing utility. Failure to engage in such debate will lead to negative unintended consequences from a revolution that might never come. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Measurement of the top-Higgs Yukawa coupling at a Linear e+e- Collider

    OpenAIRE

    Gay, Arnaud

    2006-01-01

    Understanding the mechanism of electroweak symmetry breaking and the origin of boson and fermion masses is among the most pressing questions raised in contemporary particle physics. If these issues involve one (several) Higgs boson(s), a precise measurement of all its (their) properties will be of prime importance. Among those, the Higgs coupling to matter fermions (the Yukawa coupling). At a Linear Collider, the process e+e- -> ttH will allow in principle a direct measurement of the top-Higg...

  12. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  13. Principles of precision medicine in stroke.

    Science.gov (United States)

    Hinman, Jason D; Rost, Natalia S; Leung, Thomas W; Montaner, Joan; Muir, Keith W; Brown, Scott; Arenillas, Juan F; Feldmann, Edward; Liebeskind, David S

    2017-01-01

    The era of precision medicine has arrived and conveys tremendous potential, particularly for stroke neurology. The diagnosis of stroke, its underlying aetiology, theranostic strategies, recurrence risk and path to recovery are populated by a series of highly individualised questions. Moreover, the phenotypic complexity of a clinical diagnosis of stroke makes a simple genetic risk assessment only partially informative on an individual basis. The guiding principles of precision medicine in stroke underscore the need to identify, value, organise and analyse the multitude of variables obtained from each individual to generate a precise approach to optimise cerebrovascular health. Existing data may be leveraged with novel technologies, informatics and practical clinical paradigms to apply these principles in stroke and realise the promise of precision medicine. Importantly, precision medicine in stroke will only be realised once efforts to collect, value and synthesise the wealth of data collected in clinical trials and routine care starts. Stroke theranostics, the ultimate vision of synchronising tailored therapeutic strategies based on specific diagnostic data, demand cerebrovascular expertise on big data approaches to clinically relevant paradigms. This review considers such challenges and delineates the principles on a roadmap for rational application of precision medicine to stroke and cerebrovascular health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Precision medicine needs pioneering clinical bioinformaticians.

    Science.gov (United States)

    Gómez-López, Gonzalo; Dopazo, Joaquín; Cigudosa, Juan C; Valencia, Alfonso; Al-Shahrour, Fátima

    2017-10-25

    Success in precision medicine depends on accessing high-quality genetic and molecular data from large, well-annotated patient cohorts that couple biological samples to comprehensive clinical data, which in conjunction can lead to effective therapies. From such a scenario emerges the need for a new professional profile, an expert bioinformatician with training in clinical areas who can make sense of multi-omics data to improve therapeutic interventions in patients, and the design of optimized basket trials. In this review, we first describe the main policies and international initiatives that focus on precision medicine. Secondly, we review the currently ongoing clinical trials in precision medicine, introducing the concept of 'precision bioinformatics', and we describe current pioneering bioinformatics efforts aimed at implementing tools and computational infrastructures for precision medicine in health institutions around the world. Thirdly, we discuss the challenges related to the clinical training of bioinformaticians, and the urgent need for computational specialists capable of assimilating medical terminologies and protocols to address real clinical questions. We also propose some skills required to carry out common tasks in clinical bioinformatics and some tips for emergent groups. Finally, we explore the future perspectives and the challenges faced by precision medicine bioinformatics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Precision validation of MIPAS-Envisat products

    Directory of Open Access Journals (Sweden)

    C. Piccolo

    2007-01-01

    Full Text Available This paper discusses the variation and validation of the precision, or estimated random error, associated with the ESA Level 2 products from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. This quantity represents the propagation of the radiometric noise from the spectra through the retrieval process into the Level 2 profile values. The noise itself varies with time, steadily rising between ice decontamination events, but the Level 2 precision has a greater variation due to the atmospheric temperature which controls the total radiance received. Hence, for all species, the precision varies latitudinally/seasonally with temperature, with a small superimposed temporal structure determined by the degree of ice contamination on the detectors. The precision validation involves comparing two MIPAS retrievals at the intersections of ascending/descending orbits. For 5 days per month of full resolution MIPAS operation, the standard deviation of the matching profile pairs is computed and compared with the precision given in the MIPAS Level 2 data, except for NO2 since it has a large diurnal variation between ascending/descending intersections. Even taking into account the propagation of the pressure-temperature retrieval errors into the VMR retrieval, the standard deviation of the matching pairs is usually a factor 1–2 larger than the precision. This is thought to be due to effects such as horizontal inhomogeneity of the atmosphere and instability of the retrieval.

  16. Dosimetric differences between electrons beams with rio applicators of GMV and conventional Elekta applicators

    International Nuclear Information System (INIS)

    Sendon del Rio, J. R.; Ayala Lazaro, R.; Jimenez Rojas, M. R.; Gomez Cores, S.; Gonzalez Ruiz, C.; Garcia Hernandez, M. J.; Lopez Bote, M. A.

    2013-01-01

    Intraoperative radiotherapy (River) is a form of cancer treatment that consists of a session of radiation ionizing on macroscopic tumor or tumor bed surgically exposed. In our institution, is administered with beams of electrons in a Linear Accelerator for use general and adapted through specific (applicators RIVER). In this work we studied the dosimetry differences between modified by applicators electron beams conventional and they changed by applicators River. (Author)

  17. Analysis of daily quality assurance tests for tomotherapy and two Varian linear accelerators - three months review

    International Nuclear Information System (INIS)

    Kushwaha, Pratishtha; Jaiswal, Deeksha; Dheera, A.; Upreti, Udita; Chaudhari, Suresh; Kinhikar, Rajesh; Deshpande, Deepak; Shrivastava, Shyam

    2016-01-01

    Daily quality assurance (QA) for high precision radiotherapy equipments is very important to maintain the mechanical and dosimetric accuracy for patient treatments. Gross deviations in these parameters may have an adverse impact on the delivery of the treatments to patients. We report the results of daily QA tests performed over a period of three months for two Varian linear accelerators and a Tomotherapy machine

  18. Analyzing the scalar top coannihilation region at the International Linear Collider

    International Nuclear Information System (INIS)

    Carena, M.; Freitas, A.; Milstene, C.; Finch, A.; Sopczak, A.; Nowak, H.

    2005-01-01

    The minimal supersymmetric standard model opens the possibility of electroweak baryogenesis provided that the light scalar top quark (stop) is lighter than the top quark. In addition, the lightest neutralino is an ideal candidate to explain the existence of dark matter. For a light stop with mass close to the lightest neutralino, the stop-neutralino coannihilation mechanism becomes efficient, thus rendering the predicted dark matter density compatible with observations. Such a stop may however remain elusive at hadron colliders. Here it is shown that a future linear collider provides a unique opportunity to detect and study the light stop. The production of stops with small stop-neutralino mass differences is studied in a detailed experimental analysis with a realistic detector simulation including a CCD vertex detector for flavor tagging. Furthermore, the linear collider, by precision measurements of superpartner masses and mixing angles, also allows to determine the dark matter relic density with an accuracy comparable to recent astrophysical observations

  19. Cogging Force Issues of Permanent Magnet Linear Generator for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Izzeldin Idris Abdalla

    2017-09-01

    Full Text Available Alternatives to hydraulic drives that used on vehicles are necessary in order to reduce the Carbon dioxide (CO2 emission and oil consumption. Hence better performance and efficiency of the vehicles can be achieved by using free piston engine, in which the piston reciprocate linearly with a permanent magnet linear generator (PMLG without the need of a crankshaft. The PMLG has high performance, but suffering from the cogging force. The cogging force induces undesired vibration and acoustic noise and makes a ripple in the thrust force. Moreover, the cogging force deteriorates the control characteristics, particularly in terms of the position control and speed precisely. This paper proposes Somaloy to replace the laminated silicon steel sheets in order to reduce the cogging force in a PMLG. Through a finite-element analysis, it has been shown that, the stator core made of Somaloy minimizes the cogging force of the PMLG, moreover, giving larger flux-linkage and back-electromotive force (B-EMF, respectively.

  20. Reliable low precision simulations in land surface models

    Science.gov (United States)

    Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.

    2017-12-01

    Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.