WorldWideScience

Sample records for elegans opa1 homologue

  1. Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Moore Landon L

    2008-02-01

    Full Text Available Abstract Background The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi to identify genes synthetic lethal with the viable san-1(ok1580 deletion mutant. Results The san-1(ok1580 animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580 embryos is significantly reduced when HCP-1 (CENP-F homologue, MDF-1 (MAD-1 homologue, MDF-2 (MAD-2 homologue or BUB-3 (predicted BUB-3 homologue are reduced by RNAi. Interestingly, the viability of san-1(ok1580 embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580;hcp-1(RNAi embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging. Several of the san-1(ok1580;hcp-1(RNAi animals displayed abnormal kinetochore (detected by MPM-2 and microtubule structure. The survival of mdf-2(RNAi;hcp-1(RNAi embryos but not bub-3(RNAi;hcp-1(RNAi embryos was also compromised. Finally, we found that san-1(ok1580 and bub-3(RNAi, but not hcp-1(RNAi embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Conclusion Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580;hcp-1(RNAi animals had a severe viability defect whereas in the san-1(ok1580;hcp-2(RNAi and san-1(ok1580;hcp-2(ok1757 animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.

  2. acn-1, a C. elegans homologue of ACE, genetically interacts with the let-7 microRNA and other heterochronic genes.

    Science.gov (United States)

    Metheetrairut, Chanatip; Ahuja, Yuri; Slack, Frank J

    2017-10-02

    The heterochronic pathway in C. elegans controls the relative timing of cell fate decisions during post-embryonic development. It includes a network of microRNAs (miRNAs), such as let-7, and protein-coding genes, such as the stemness factors, LIN-28 and LIN-41. Here we identified the acn-1 gene, a homologue of mammalian angiotensin-converting enzyme (ACE), as a new suppressor of the stem cell developmental defects of let-7 mutants. Since acn-1 null mutants die during early larval development, we used RNAi to characterize the role of acn-1 in C. elegans seam cell development, and determined its interaction with heterochronic factors, including let-7 and its downstream interactors - lin-41, hbl-1, and apl-1. We demonstrate that although RNAi knockdown of acn-1 is insufficient to cause heterochronic defects on its own, loss of acn-1 suppresses the retarded phenotypes of let-7 mutants and enhances the precocious phenotypes of hbl-1, though not lin-41, mutants. Conversely, the pattern of acn-1 expression, which oscillates during larval development, is disrupted by lin-41 mutants but not by hbl-1 mutants. Finally, we show that acn-1(RNAi) enhances the let-7-suppressing phenotypes caused by loss of apl-1, a homologue of the Alzheimer's disease-causing amyloid precursor protein (APP), while significantly disrupting the expression of apl-1 during the L4 larval stage. In conclusion, acn-1 interacts with heterochronic genes and appears to function downstream of let-7 and its target genes, including lin-41 and apl-1.

  3. The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival.

    Science.gov (United States)

    van der Horst, Armando; Schavemaker, Jolanda M; Pellis-van Berkel, Wendy; Burgering, Boudewijn M T

    2007-04-01

    In yeast, increasing the copy number of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase Sir2 extends lifespan, which can be inhibited by nicotinamide (Nam), the end-product of Sir2-mediated NAD-breakdown. Furthermore, the yeast pyrazinamidase/nicotinamidase PNC-1 can extend yeast lifespan by converting Nam. In Caenorhabditis elegans (C. elegans), increased dosage of the gene encoding SIR-2.1 also increases lifespan. Here, we report that knockdown of the C. elegans homologue of yeast PNC-1 as well as growing worms on Nam-containing medium significantly decreases adult lifespan. Accordingly, increased gene dosage of pnc-1 increases adult survival under conditions of oxidative stress. These data show for the first time the involvement of PNC-1/Nam in the survival of a multicellular organism and may also contribute to our understanding of lifespan regulation in mammals.

  4. OPA1-associated disorders: phenotypes and pathophysiology

    DEFF Research Database (Denmark)

    Amati-Bonneau, Patrizia; Milea, Dan; Bonneau, Dominique

    2009-01-01

    in patients with hereditary optic neuropathies indicates that the clinical spectrum of ADOA is larger than previously thought. Specific OPA1 mutations are responsible for several distinct clinical presentations, such as ADOA with deafness (ADOAD), and severe multi-systemic syndromes, the so-called "ADOA plus......The OPA1 gene, encoding a dynamin-like mitochondrial GTPase, is involved in autosomal dominant optic atrophy (ADOA, OMIM #165500). ADOA, also known as Kjer's optic atrophy, affects retinal ganglion cells and the axons forming the optic nerve, leading to progressive visual loss. OPA1 gene sequencing...

  5. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  6. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    Energy Technology Data Exchange (ETDEWEB)

    Moepert, Kristin [Silence Therapeutics AG, 13125 Berlin (Germany); Hajek, Petr [Division of Biology, California Institute of Technology, Pasadena, CA 91125 (United States); Frank, Stephan [Department of Neuropathology, Institute of Pathology, University Hospital Basel, CH-4031 Basel (Switzerland); Chen, Christiane [Department of Pediatric Hematology and Oncology, University Children' s Hospital Muenster, 48149 Muenster (Germany); Kaufmann, Joerg [Silence Therapeutics AG, 13125 Berlin (Germany); Santel, Ansgar, E-mail: a.santel@silence-therapeutics.com [Silence Therapeutics AG, 13125 Berlin (Germany)

    2009-08-01

    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.

  7. Reversible optic neuropathy with OPA1 exon 5b mutation

    DEFF Research Database (Denmark)

    Cornille, K.; Milea, D.; Amati-Bonneau, P.

    2008-01-01

    A new c.740G>A (R247H) mutation in OPA1 alternate spliced exon 5b was found in a patient presenting with bilateral optic neuropathy followed by partial, spontaneous visual recovery. R247H fibroblasts from the patient and his unaffected father presented unusual highly tubular mitochondrial network......, significant increased susceptibility to apoptosis, oxidative phosphorylation uncoupling, and altered OPA1 protein profile, supporting the pathogenicity of this mutation. These results suggest that the clinical spectrum of the OPA1-associated optic neuropathies may be larger than previously described...

  8. The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Salcini, A E; Hilliard, M A; Croce, A

    2001-01-01

    implicated Eps15 in endocytosis, its function in the endocytic machinery remains unclear. Here we show that the Caenorhabditis elegans gene, zk1248.3 (ehs-1), is the orthologue of Eps15 in nematodes, and that its product, EHS-1, localizes to synaptic-rich regions. ehs-1-impaired worms showed temperature...

  9. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  10. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China.

    Science.gov (United States)

    Xiang, Yang-Lin; Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2015-11-01

    Leprosy is an ancient chronic infection caused by Mycobacterium leprae. Onset of leprosy was highly affected by host nutritional condition and energy production, (partially) due to genomic loss and parasitic life style of M. leprae. The optic atrophy 1 (OPA1) gene plays an essential role in mitochondria, which function in cellular energy supply and innate immunity. To investigate the potential involvement of OPA1 in leprosy. We analyzed 7 common genetic variants of OPA1 in 1110 Han Chinese subjects with and without leprosy, followed by mRNA expression profiling and protein-protein interaction (PPI) network analysis. We observed positive associations between OPA1 variants rs9838374 (Pgenotypic=0.003) and rs414237 (Pgenotypic=0.002) with lepromatous leprosy. expression quantitative trait loci (eQTL) analysis showed that the leprosy-related risk allele C of rs414237 is correlated with lower OPA1 mRNA expression level. Indeed, we identified a decrease of OPA1 mRNA expression in both with patients and cellular model of leprosy. In addition, the PPI analysis showed that OPA1 protein was actively involved in the interaction network of M. leprae induced differentially expressed genes. Our results indicated that OPA1 variants confer risk of leprosy and may affect OPA1 expression, mitochondrial function and antimicrobial pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.

    Science.gov (United States)

    Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King

    2007-11-01

    We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.

  12. Genetic Testing for Wolfram Syndrome Mutations in a Sample of 71 Patients with Hereditary Optic Neuropathy and Negative Genetic Test Results for OPA1/OPA3/LHON.

    Science.gov (United States)

    Galvez-Ruiz, Alberto; Galindo-Ferreiro, Alicia; Schatz, Patrik

    2018-04-01

    In this study, the authors present a sample of 71 patients with hereditary optic neuropathy and negative genetic test results for OPA1/OPA3/LHON. All of these patients later underwent genetic testing to rule out WFS. As a result, 53 patients (74.7%) were negative and 18 patients (25.3%) were positive for some type of mutation or variation in the WFS gene. The authors believe that this study is interesting because it shows that a sizeable percentage (25.3%) of patients with hereditary optic 25 neuropathy and negative genetic test results for OPA1/OPA3/LHON had WFS mutations or variants.

  13. FGT-1 is a mammalian GLUT2-like facilitative glucose transporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells.

    Directory of Open Access Journals (Sweden)

    Shun Kitaoka

    Full Text Available Caenorhabditis elegans (C. elegans is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS, that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT, we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (Km of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01, indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.

  14. Broad anti-HIV activity of the Oscillatoria agardhii agglutinin homologue lectin family.

    Science.gov (United States)

    Férir, Geoffrey; Huskens, Dana; Noppen, Sam; Koharudin, Leonardus M I; Gronenborn, Angela M; Schols, Dominique

    2014-10-01

    Oscillatoria agardhii agglutinin homologue (OAAH) proteins belong to a recently discovered lectin family. The founding member OAA and a designed hybrid OAAH (OPA) recognize similar but unique carbohydrate structures of Man-9, compared with other antiviral carbohydrate-binding agents (CBAs). These two newly described CBAs were evaluated for their inactivating properties on HIV replication and transmission and for their potential as microbicides. Various cellular assays were used to determine antiviral activity against wild-type and certain CBA-resistant HIV-1 strains: (i) free HIV virion infection in human T lymphoma cell lines and PBMCs; (ii) syncytium formation assay using persistently HIV-infected T cells and non-infected CD4+ T cells; (iii) DC-SIGN-mediated viral capture; and (iv) transmission to uninfected CD4+ T cells. OAA and OPA were also evaluated for their mitogenic properties and potential synergistic effects using other CBAs. OAA and OPA inhibit HIV replication, syncytium formation between HIV-1-infected and uninfected T cells, DC-SIGN-mediated HIV-1 capture and transmission to CD4+ target T cells, thereby rendering a variety of HIV-1 and HIV-2 clinical isolates non-infectious, independent of their coreceptor use. Both CBAs competitively inhibit the binding of the Manα(1-2)Man-specific 2G12 monoclonal antibody (mAb) as shown by flow cytometry and surface plasmon resonance analysis. The HIV-1 NL4.3(2G12res), NL4.3(MVNres) and IIIB(GRFTres) strains were equally inhibited as the wild-type HIV-1 strains by these CBAs. Combination studies indicate that OAA and OPA act synergistically with Hippeastrum hybrid agglutinin, 2G12 mAb and griffithsin (GRFT), with the exception of OPA/GRFT. OAA and OPA are unique CBAs with broad-spectrum anti-HIV activity; however, further optimization will be necessary for microbicidal application. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights

  15. A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family

    Science.gov (United States)

    Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-11-01

    Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.

  16. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations.

    Science.gov (United States)

    Liao, Chunyan; Ashley, Neil; Diot, Alan; Morten, Karl; Phadwal, Kanchan; Williams, Andrew; Fearnley, Ian; Rosser, Lyndon; Lowndes, Jo; Fratter, Carl; Ferguson, David J P; Vay, Laura; Quaghebeur, Gerardine; Moroni, Isabella; Bianchi, Stefania; Lamperti, Costanza; Downes, Susan M; Sitarz, Kamil S; Flannery, Padraig J; Carver, Janet; Dombi, Eszter; East, Daniel; Laura, Matilde; Reilly, Mary M; Mortiboys, Heather; Prevo, Remko; Campanella, Michelangelo; Daniels, Matthew J; Zeviani, Massimo; Yu-Wai-Man, Patrick; Simon, Anna Katharina; Votruba, Marcela; Poulton, Joanna

    2017-01-10

    To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. Fibroblasts from 3 biallelic OPA1(-/-) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)-depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA-treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion. Copyright © 2016 The Author(s). Published by Wolters Kluwer Health, Inc

  17. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...

  18. The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    DEFF Research Database (Denmark)

    Vandamme, Julien; Buchhorn, Gaëlle Lettier; Sidoli, Simone

    2012-01-01

    specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required......Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase...

  19. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment.

    Directory of Open Access Journals (Sweden)

    Will Yarosh

    2008-01-01

    Full Text Available Mutations in optic atrophy 1 (OPA1, a nuclear gene encoding a mitochondrial protein, is the most common cause for autosomal dominant optic atrophy (DOA. The condition is characterized by gradual loss of vision, color vision defects, and temporal optic pallor. To understand the molecular mechanism by which OPA1 mutations cause optic atrophy and to facilitate the development of an effective therapeutic agent for optic atrophies, we analyzed phenotypes in the developing and adult Drosophila eyes produced by mutant dOpa1 (CG8479, a Drosophila ortholog of human OPA1. Heterozygous mutation of dOpa1 by a P-element or transposon insertions causes no discernable eye phenotype, whereas the homozygous mutation results in embryonic lethality. Using powerful Drosophila genetic techniques, we created eye-specific somatic clones. The somatic homozygous mutation of dOpa1 in the eyes caused rough (mispatterning and glossy (decreased lens and pigment deposition eye phenotypes in adult flies; this phenotype was reversible by precise excision of the inserted P-element. Furthermore, we show the rough eye phenotype is caused by the loss of hexagonal lattice cells in developing eyes, suggesting an increase in lattice cell apoptosis. In adult flies, the dOpa1 mutation caused an increase in reactive oxygen species (ROS production as well as mitochondrial fragmentation associated with loss and damage of the cone and pigment cells. We show that superoxide dismutase 1 (SOD1, Vitamin E, and genetically overexpressed human SOD1 (hSOD1 is able to reverse the glossy eye phenotype of dOPA1 mutant large clones, further suggesting that ROS play an important role in cone and pigment cell death. Our results show dOpa1 mutations cause cell loss by two distinct pathogenic pathways. This study provides novel insights into the pathogenesis of optic atrophy and demonstrates the promise of antioxidants as therapeutic agents for this condition.

  20. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance.

    Science.gov (United States)

    Pereira, Renata Oliveira; Tadinada, Satya M; Zasadny, Frederick M; Oliveira, Karen Jesus; Pires, Karla Maria Pereira; Olvera, Angela; Jeffers, Jennifer; Souvenir, Rhonda; Mcglauflin, Rose; Seei, Alec; Funari, Trevor; Sesaki, Hiromi; Potthoff, Matthew J; Adams, Christopher M; Anderson, Ethan J; Abel, E Dale

    2017-07-14

    Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism. © 2017 The Authors.

  1. Deregulation of Mitochondria-Shaping Proteins Opa-1 and Drp-1 in Manganese-Induced Apoptosis

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M.; Beauquis, Juan; Muñoz, Manuel J.; Saravia, Flavia; Kotler, Mónica L.

    2014-01-01

    Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may

  2. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Agustina Alaimo

    Full Text Available Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis

  3. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Beauquis, Juan; Muñoz, Manuel J; Saravia, Flavia; Kotler, Mónica L

    2014-01-01

    Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may

  4. Increased steroidogenesis promotes early-onset and severe vision loss in females with OPA1 dominant optic atrophy

    DEFF Research Database (Denmark)

    Sarzi, Emmanuelle; Seveno, Marie; Angebault, Claire

    2016-01-01

    levels of steroid precursor pregnenolone in females, causing an early-onset vision loss, abolished by ovariectomy. In addition, steroid production in retina is also increased which, in conjunction with high circulating levels, impairs estrogen receptor expression and mitochondrial respiratory complex IV...... tested the hypothesis of deregulated steroid production in retina due to a disease-causing OPA1 mutation and its contribution to the visual phenotypic variations. Using the mouse model carrying the human recurrent OPA1 mutation, we disclosed that Opa1 haploinsufficiency leads to very high circulating...

  5. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence.

    Science.gov (United States)

    Tezze, Caterina; Romanello, Vanina; Desbats, Maria Andrea; Fadini, Gian Paolo; Albiero, Mattia; Favaro, Giulia; Ciciliot, Stefano; Soriano, Maria Eugenia; Morbidoni, Valeria; Cerqua, Cristina; Loefler, Stefan; Kern, Helmut; Franceschi, Claudio; Salvioli, Stefano; Conte, Maria; Blaauw, Bert; Zampieri, Sandra; Salviati, Leonardo; Scorrano, Luca; Sandri, Marco

    2017-06-06

    Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Targeted Metabolomics Reveals Early Dominant Optic Atrophy Signature in Optic Nerves of Opa1delTTAG/+ Mice.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Sarzi, Emmanuelle; Chaumette, Tanguy; Rousseau, Guillaume; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Ferré, Marc; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Gueguen, Naïg; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Amati-Bonneau, Patrizia; Procaccio, Vincent; Hamel, Christian; Lenaers, Guy; Reynier, Pascal; Prunier-Mirebeau, Delphine

    2017-02-01

    Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.

  7. Instagram-opas pk-yrityksille

    OpenAIRE

    Seppälä, Marjaana

    2016-01-01

    Tämän opinnäytetyön aihe on Instagram-opas pienille ja keskisuurille yrityksille. Tarkoituksena on luoda pk-yrityksille sopiva Instagram-opas, jonka sisältöä voidaan hyödyntää Instagram-palvelun käyttöönotossa ja markkinointia suunniteltaessa. Opas toteutetaan Business-to-Consumer (B2C)– kentällä toimivan yrityksen näkökulmasta. Oppaan tarkoituksena on laskea pk-yrityksen kynnystä lähteä mukaan Instagram-palveluun ja lisätä tietämystä palvelun käytöstä. Tässä opinnäytetyössä tarkastella...

  8. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    Directory of Open Access Journals (Sweden)

    Wim Wätjen

    2013-06-01

    Full Text Available Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue and SKN-1 (Nrf2 homologue, which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038. Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.

  9. GEI-8, a homologue of vertebrate nuclear receptor corepressor NCoR/SMRT, regulates gonad development and neuronal functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pavol Mikoláš

    Full Text Available NCoR and SMRT are two paralogous vertebrate proteins that function as corepressors with unliganded nuclear receptors. Although C. elegans has a large number of nuclear receptors, orthologues of the corepressors NCoR and SMRT have not unambiguously been identified in Drosophila or C. elegans. Here, we identify GEI-8 as the closest homologue of NCoR and SMRT in C. elegans and demonstrate that GEI-8 is expressed as at least two isoforms throughout development in multiple tissues, including neurons, muscle and intestinal cells. We demonstrate that a homozygous deletion within the gei-8 coding region, which is predicted to encode a truncated protein lacking the predicted NR domain, results in severe mutant phenotypes with developmental defects, slow movement and growth, arrested gonadogenesis and defects in cholinergic neurotransmission. Whole genome expression analysis by microarrays identified sets of de-regulated genes consistent with both the observed mutant phenotypes and a role of GEI-8 in regulating transcription. Interestingly, the upregulated transcripts included a predicted mitochondrial sulfide:quinine reductase encoded by Y9C9A.16. This locus also contains non-coding, 21-U RNAs of the piRNA class. Inhibition of the expression of the region coding for 21-U RNAs leads to irregular gonadogenesis in the homozygous gei-8 mutants, but not in an otherwise wild-type background, suggesting that GEI-8 may function in concert with the 21-U RNAs to regulate gonadogenesis. Our results confirm that GEI-8 is the orthologue of the vertebrate NCoR/SMRT corepressors and demonstrate important roles for this putative transcriptional corepressor in development and neuronal function.

  10. Novel Applications for Oxalate-Phosphate-Amine Metal-Organic-Frameworks (OPA-MOFs): Can an Iron-Based OPA-MOF Be Used as Slow-Release Fertilizer?

    Science.gov (United States)

    Anstoetz, Manuela; Rose, Terry J.; Clark, Malcolm W.; Yee, Lachlan H.; Raymond, Carolyn A.; Vancov, Tony

    2015-01-01

    A porous iron-based oxalate-phosphate-amine metal-organic framework material (OPA-MOF) was investigated as a microbially-induced slow-release nitrogen (N) and phosphorus (P) fertilizer. Seedling growth, grain yields, nutrient uptake of wheat plants, and soil dynamics in incubated soil, were investigated using OPA-MOF vs standard P (triple-superphosphate) and N (urea) fertilizers in an acidic Ferralsol at two application rates (equivalent 120 and 40 kg N ha-1). While urea hydrolysis in the OPA-MOF treatment was rapid, conversion of ammonium to nitrate was significantly inhibited compared to urea treatment. Reduced wheat growth in OPA-MOF treatments was not caused by N-deficiency, but by limited P-bioavailability. Two likely reasons were slow P-mobilisation from the OPA-MOF or rapid P-binding in the acid soil. P-uptake and yield in OPA-MOF treatments were significantly higher than in nil-P controls, but significantly lower than in conventionally-fertilised plants. OPA-MOF showed potential as enhanced efficiency N fertilizer. However, as P-bioavailability was insufficient to meet plant demands, further work should determine if P-availability may be enhanced in alkaline soils, or whether central ions other than Fe, forming the inorganic metal-P framework in the MOF, may act as a more effective P-source in acid soils. PMID:26633174

  11. Opas seksuaalisuuden kohtaamiseen kriisityöskentelyssä

    OpenAIRE

    Jousimo, Kaisla

    2017-01-01

    Jousimo, Kaisla. Opas seksuaalisuuden kohtaamiseen kriisityöskentelyssä. Diak Länsi, Pori, syksy 2017, 73 s., 3 liitettä. Diakonia-ammattikorkeakoulu, sosiaalialan koulutusohjelma, sosionomi (AMK). Opinnäytetyönä tuotettiin opas seksuaalisuuden kohtaamiseen kriisityöskentelyssä. Oppaan tilaajana on Tampereen Mielenterveysseura ry:n Kriisikeskus Osviitta. Opas käsittelee seksuaalisuuden, sukupuolen ja ihmissuhteiden moninaisuutta, haluttomuutta, BDSM- ja fetissimieltymyksiä, ...

  12. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates.

    Science.gov (United States)

    Irazoqui, Javier E; Urbach, Jonathan M; Ausubel, Frederick M

    2010-01-01

    The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?

  13. Evolution of host innate defence: insights from C. elegans and primitive invertebrates

    Science.gov (United States)

    Irazoqui, Javier E.; Urbach, Jonathan M.; Ausubel, Frederick M.

    2010-01-01

    Preface The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in the identification of host response pathways that are involved in the defence against infection. Strikingly, C. elegans seems to detect and respond to infection without the involvement of its Toll-like receptor homologue, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans, and what can they tell us about innate immunity in higher organisms? PMID:20029447

  14. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations

    DEFF Research Database (Denmark)

    Ferré, Marc; Bonneau, Dominique; Milea, Dan

    2009-01-01

    We report the results of molecular screening in 980 patients carried out as part of their work-up for suspected hereditary optic neuropathies. All the patients were investigated for Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten...... and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease....... novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work-up of optic neuropathies. Our results highlight the importance of investigating LHON-causing mtDNA mutations as well as OPA1...

  15. Association of Neisseria gonorrhoeae Opa(CEA with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response.

    Directory of Open Access Journals (Sweden)

    Qigui Yu

    Full Text Available Infection with Neisseria gonorrhoeae (N. gonorrhoeae can trigger an intense local inflammatory response at the site of infection, yet there is little specific immune response or development of immune memory. Gonococcal surface epitopes are known to undergo antigenic variation; however, this is unlikely to explain the weak immune response to infection since individuals can be re-infected by the same serotype. Previous studies have demonstrated that the colony opacity-associated (Opa proteins on the N. gonorrhoeae surface can bind human carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 on CD4⁺ T cells to suppress T cell activation and proliferation. Interesting in this regard, N. gonorrhoeae infection is associated with impaired HIV-1 (human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte (CTL responses and with transient increases in plasma viremia in HIV-1-infected patients, suggesting that N. gonorrhoeae may also subvert immune responses to co-pathogens. Since dendritic cells (DCs are professional antigen presenting cells (APCs that play a key role in the induction of an adaptive immune response, we investigated the effects of N. gonorrhoeae Opa proteins on human DC activation and function. While morphological changes reminiscent of DC maturation were evident upon N. gonorrhoeae infection, we observed a marked downregulation of DC maturation marker CD83 when the gonococci expressing CEACAM1-specific Opa(CEA, but not other Opa variants. Consistent with a gonococcal-induced defect in maturation, Opa(CEA binding to CEACAM1 reduced the DCs' capacity to stimulate an allogeneic T cell proliferative response. Moreover, Opa(CEA-expressing N. gonorrhoeae showed the potential to impair DC-dependent development of specific adaptive immunity, since infection with Opa(CEA-positive gonococci suppressed the ability of DCs to stimulate HIV-1-specific memory CTL responses. These results reveal a novel mechanism to explain

  16. OPA 90 and the shipowner

    International Nuclear Information System (INIS)

    Bovet, D.M.

    1993-01-01

    OPA 90 is significantly impacting the business of US and international tanker owners engaged in the US trades. This paper delineates the affected segments of the oil shipping industry, the salient regulatory elements stemming from OPA 90, the financial and operational impacts that result, and the strategic choices open to ship owners. Regulatory areas addressed include liability and compensation, financial responsibility, new ships, existing vessels, and vessel response plans. Strategic issues and action items are suggested for individual owners and industry groups

  17. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

    Science.gov (United States)

    We assessed the genetic diversity and population structure among 148 cultivated lettuce (Lactuca sativa L.) accessions using the high-throughput GoldenGate assay and 384 EST (Expressed Sequence Tag)-derived SNP (single nucleotide polymorphism) markers. A custom OPA (Oligo Pool All), LSGermOPA was fo...

  18. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    International Nuclear Information System (INIS)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan; Dai, Xianning; Zhou, Huihui; Dong, Xujie; Liu, Xiao-Ling; Guan, Min-Xin

    2012-01-01

    Highlights: ► We report the characterization of a four-generation large Chinese family with ADOA. ► We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. ► We do not find any mitochondrial DNA mutations associated with optic atrophy. ► Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  19. A novel OPA1 mutation in a Chinese family with autosomal dominant optic atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juanjuan; Yuan, Yimin; Lin, Bing; Feng, Hao; Li, Yan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Dai, Xianning; Zhou, Huihui [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Dong, Xujie [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Liu, Xiao-Ling, E-mail: lxl@mail.eye.ac.cn [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou 325027, Zhejiang (China); Guan, Min-Xin, E-mail: min-xin.guan@cchmc.org [Attardi Institute of Mitochondrial Biomedicine and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, Zhejiang (China); Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310012 (China); Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, OH 45229 (United States)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer We report the characterization of a four-generation large Chinese family with ADOA. Black-Right-Pointing-Pointer We find a new heterozygous mutation c.C1198G in OPA1 gene which may be a novel pathogenic mutation in this pedigree. Black-Right-Pointing-Pointer We do not find any mitochondrial DNA mutations associated with optic atrophy. Black-Right-Pointing-Pointer Other factors may also contribute to the phenotypic variability of ADOA in this pedigree. -- Abstract: A large four-generation Chinese family with autosomal dominant optic atrophy (ADOA) was investigated in the present study. Eight of the family members were affected in this pedigree. The affected family members exhibited early-onset and progressive visual impairment, resulting in mild to profound loss of visual acuity. The average age-at-onset was 15.9 years. A new heterozygous mutation c.C1198G was identified by sequence analysis of the 12th exon of the OPA1 gene. This mutation resulted in a proline to alanine substitution at codon 400, which was located in an evolutionarily conserved region. This missense mutation in the GTPase domain was supposed to result in a loss of function for the encoded protein and act through a dominant negative effect. No other mutations associated with optic atrophy were found in our present study. The c.C1198G heterozygous mutation in the OPA1 gene may be a novel key pathogenic mutation in this pedigree with ADOA. Furthermore, additional nuclear modifier genes, environmental factors, and psychological factors may also contribute to the phenotypic variability of ADOA in this pedigree.

  20. Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model.

    Science.gov (United States)

    Hering, Tanja; Kojer, Kerstin; Birth, Nathalie; Hallitsch, Jaqueline; Taanman, Jan-Willem; Orth, Michael

    2017-02-01

    There is evidence of an imbalance of mitochondrial fission and fusion in patients with Huntington's disease (HD) and HD animal models. Fission and fusion are important for mitochondrial homeostasis including mitochondrial DNA (mtDNA) maintenance and may be relevant for the selective striatal mtDNA depletion that we observed in the R6/2 fragment HD mouse model. We aimed to investigate the fission/fusion balance and the integrity of the mitochondrial membrane system in cortex and striatum of end-stage R6/2 mice and wild-type animals. Mitochondrial morphology was determined using electron microscopy, and transcript and protein levels of factors that play a key role in fission and fusion, including DRP1, mitofusin 1 and 2, mitofilin and OPA1, and cytochrome c and caspase 3 were assessed by RT-qPCR and immunoblotting. OPA1 oligomerisation was evaluated using blue native gels. In striatum and cortex of R6/2 mice, mitochondrial cristae morphology was abnormal. Mitofilin and the overall levels of the fission and fusion factors were unaffected; however, OPA1 oligomerisation was abnormal in striatum and cortex of R6/2 mice. Mitochondrial and cytoplasmic cytochrome c levels were similar in R6/2 and wild-type mice with no significant increase of activated caspase 3. Our results indicate that the integrity of the mitochondrial cristae is compromised in striatum and cortex of the R6/2 mice and that this is most likely caused by impaired OPA1 oligomerisation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Elucidating the Role of CaMKK in Cell Cycle and Cell Fate using a C. elegans model

    Science.gov (United States)

    2000-07-01

    domain) or the Aspergillus homologue, anCaMKB (48% overall)(Figure 2). To functionally compare the C. elegans proteins with their mammalian homologues...subunit on the yeast proteome . EMBO J 18, 4157-68 (1999). 14 19. H. Tokumitsu et aL, Substrate recognition by Ca2+/Calmodulin-dependent protein kinase...2 Nicholas School of the Environment Duke University, Durham, NC 27710 Ethan@Duke.Edu In a variety of models, from Xenopus oocytes to Aspergillus to

  2. Selective visualization of fluorescent sterols in Caenorhabditis elegans by bleach-rate-based image segmentation

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Landt Larsen, Ane; Færgeman, Nils J.

    2010-01-01

    The nematode Caenorhabditis elegans is a genetically tractable model organism to investigate sterol transport. In vivo imaging of the fluorescent sterol, dehydroergosterol (DHE), is challenged by C. elegans' high autofluorescence in the same spectral region as emission of DHE. We present a method....... Bleach-rate constants were determined for DHE in vivo and confirmed in model membranes. Using this method, we could detect enrichment of DHE in specific tissues like the nerve ring, the spermateca and oocytes. We confirm these results in C. elegans gut-granule-loss (glo) mutants with reduced...... homologues of Niemann-Pick C disease proteins. Our approach is generally useful for identifying fluorescent probes in the presence of high cellular autofluorescence....

  3. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yinxia; Zhao, Yunli; Huang, Xu; Lin, Xingfeng; Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  4. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  5. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-01-01

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  6. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    Science.gov (United States)

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  7. Pepsin homologues in bacteria

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2009-09-01

    Full Text Available Abstract Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication

  8. The nematode homologue of Mediator complex subunit 28, F28F8.5, is a critical regulator of C. elegans development.

    Science.gov (United States)

    Kostrouchová, Markéta; Kostrouch, David; Chughtai, Ahmed A; Kaššák, Filip; Novotný, Jan P; Kostrouchová, Veronika; Benda, Aleš; Krause, Michael W; Saudek, Vladimír; Kostrouchová, Marta; Kostrouch, Zdeněk

    2017-01-01

    The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues.

  9. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  10. Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans

    Science.gov (United States)

    Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong

    2013-01-01

    Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727

  11. Characterisation of the Immunomodulatory Effects of Meningococcal Opa Proteins on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Claire Jones

    Full Text Available Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.

  12. Crystallization and X-ray data analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Liam; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk [School of Biological Sciences, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JR,Scotland (United Kingdom)

    2006-09-01

    Crystals of the C-terminal 10 kDa lid subdomain from the C. elegans chaperone Hsp70 have been obtained that diffract X-rays to ∼3.5 Å and belong to space group I2{sub 1}2{sub 1}2{sub 1}. Analysis of X-ray data and initial heavy-atom phasing reveals 24 monomers in the asymmetric unit related by 432 non-crystallographic symmetry. Hsp70 is an important molecular chaperone involved in the regulation of protein folding. Crystals of the C-terminal 10 kDa helical lid domain (residues 542–640) from a Caenorhabditis elegans Hsp70 homologue have been produced that diffract X-rays to ∼3.4 Å. Crystals belong to space group I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = b = 197, c = 200 Å. The Matthews coefficient, self-rotation function and Patterson map indicate 24 monomers in the asymmetric unit, showing non-crystallographic 432 symmetry. Molecular-replacement studies using the corresponding domain from rat, the only eukaryotic homologue with a known structure, failed and a mercury derivative was obtained. Preliminary MAD phasing using SHELXD and SHARP for location and refinement of the heavy-atom substructure and SOLOMON for density modification produced interpretable maps with a clear protein–solvent boundary. Further density-modification, model-building and refinement are currently under way.

  13. Molecular Typing of Neisseria gonorrhoeae Isolates by Opa-Typing and Ribotyping in New Delhi, India

    Directory of Open Access Journals (Sweden)

    Pejvak Khaki

    2009-01-01

    Full Text Available Control and preventive measures for gonococcal infections are based on precise epidemiological characteristics of N. gonorrhoeae isolates. In the present study the potential utility of opa-typing and ribotyping for molecular epidemiological study of consecutive gonococcal strains was determined. Sixty gonococcal isolates were subjected to ribotyping with two restriction enzymes, AvaII and HincII, and opa-typing with TaqI and HpaII for epidemiological characterization of gonococcal population. Ribotyping with AvaII yielded 6 ribotype patterns while twelve RFLP patterns were observed with HincII. Opa-typing of the 60 isolates revealed a total 54 opa-types, which 48 were unique and 6 formed clusters. Fifty-two opa-types were observed with TaqI-digested PCR product while opa-typing with HpaII demonstrated 54 opa-types. The opa-types from isolates that were epidemiologically unrelated were distinct, whereas those from the sexual contacts were identical. The results showed that opa-typing is highly useful for characterizing gonococcal strains from sexual contacts and has more discriminatory than ribotyping that could differentiate between gonococci of the same ribotype. The technique even with a single restriction enzyme has a high level of discrimination (99.9% between epidemiologically unrelated isolates. In conclusion, the molecular methods such as opa-typing and ribotyping can be used for epidemiological characterization of gonococcal strains.

  14. Molecular Typing of Neisseria gonorrhoeae Isolates by Opa-Typing and Ribotyping in New Delhi, India

    Science.gov (United States)

    Khaki, Pejvak; Bhalla, Preena; Fayaz, Ahmad Mir; Moradi Bidhendi, Sohiela; Esmailzadeh, Majid; Sharma, Pawan

    2009-01-01

    Control and preventive measures for gonococcal infections are based on precise epidemiological characteristics of N. gonorrhoeae isolates. In the present study the potential utility of opa-typing and ribotyping for molecular epidemiological study of consecutive gonococcal strains was determined. Sixty gonococcal isolates were subjected to ribotyping with two restriction enzymes, AvaII and HincII, and opa-typing with TaqI and HpaII for epidemiological characterization of gonococcal population. Ribotyping with AvaII yielded 6 ribotype patterns while twelve RFLP patterns were observed with HincII. Opa-typing of the 60 isolates revealed a total 54 opa-types, which 48 were unique and 6 formed clusters. Fifty-two opa-types were observed with TaqI-digested PCR product while opa-typing with HpaII demonstrated 54 opa-types. The opa-types from isolates that were epidemiologically unrelated were distinct, whereas those from the sexual contacts were identical. The results showed that opa-typing is highly useful for characterizing gonococcal strains from sexual contacts and has more discriminatory than ribotyping that could differentiate between gonococci of the same ribotype. The technique even with a single restriction enzyme has a high level of discrimination (99.9%) between epidemiologically unrelated isolates. In conclusion, the molecular methods such as opa-typing and ribotyping can be used for epidemiological characterization of gonococcal strains. PMID:20016674

  15. The nematode homologue of Mediator complex subunit 28, F28F8.5, is a critical regulator of C. elegans development

    Directory of Open Access Journals (Sweden)

    Markéta Kostrouchová

    2017-06-01

    Full Text Available The evolutionarily conserved Mediator complex is a critical player in regulating transcription. Comprised of approximately two dozen proteins, the Mediator integrates diverse regulatory signals through direct protein-protein interactions that, in turn, modulate the influence of Mediator on RNA Polymerase II activity. One Mediator subunit, MED28, is known to interact with cytoplasmic structural proteins, providing a potential direct link between cytoplasmic dynamics and the control of gene transcription. Although identified in many animals and plants, MED28 is not present in yeast; no bona fide MED28 has been described previously in Caenorhabditis elegans. Here, we identify bioinformatically F28F8.5, an uncharacterized predicted protein, as the nematode homologue of MED28. As in other Metazoa, F28F8.5 has dual nuclear and cytoplasmic localization and plays critical roles in the regulation of development. F28F8.5 is a vital gene and its null mutants have severely malformed gonads and do not reproduce. F28F8.5 interacts on the protein level with the Mediator subunits MDT-6 and MDT-30. Our results indicate that F28F8.5 is an orthologue of MED28 and suggest that the potential to link cytoplasmic and nuclear events is conserved between MED28 vertebrate and nematode orthologues.

  16. Homeodomain-Interacting Protein Kinase (HPK-1) regulates stress responses and ageing in C. elegans.

    Science.gov (United States)

    Berber, Slavica; Wood, Mallory; Llamosas, Estelle; Thaivalappil, Priya; Lee, Karen; Liao, Bing Mana; Chew, Yee Lian; Rhodes, Aaron; Yucel, Duygu; Crossley, Merlin; Nicholas, Hannah R

    2016-01-21

    Proteins of the Homeodomain-Interacting Protein Kinase (HIPK) family regulate an array of processes in mammalian systems, such as the DNA damage response, cellular proliferation and apoptosis. The nematode Caenorhabditis elegans has a single HIPK homologue called HPK-1. Previous studies have implicated HPK-1 in longevity control and suggested that this protein may be regulated in a stress-dependent manner. Here we set out to expand these observations by investigating the role of HPK-1 in longevity and in the response to heat and oxidative stress. We find that levels of HPK-1 are regulated by heat stress, and that HPK-1 contributes to survival following heat or oxidative stress. Additionally, we show that HPK-1 is required for normal longevity, with loss of HPK-1 function leading to a faster decline of physiological processes that reflect premature ageing. Through microarray analysis, we have found that HPK-1-regulated genes include those encoding proteins that serve important functions in stress responses such as Phase I and Phase II detoxification enzymes. Consistent with a role in longevity assurance, HPK-1 also regulates the expression of age-regulated genes. Lastly, we show that HPK-1 functions in the same pathway as DAF-16 to regulate longevity and reveal a new role for HPK-1 in development.

  17. Differential Expression of Histone H3.3 Genes and Their Role in Modulating Temperature Stress Response in Caenorhabditis elegans.

    Science.gov (United States)

    Delaney, Kamila; Mailler, Jonathan; Wenda, Joanna M; Gabus, Caroline; Steiner, Florian A

    2018-04-10

    Replication-independent variant histones replace canonical histones in nucleosomes and act as important regulators of chromatin function. H3.3 is a major variant of histone H3 that is remarkably conserved across all taxa and is distinguished from canonical H3 by just four key amino acids. Most genomes contain two or more genes expressing H3.3, and complete loss of the protein usually causes sterility or embryonic lethality. Here we investigated the developmental expression pattern of the five Caenorhabditis elegans H3.3 homologues and identified two previously uncharacterized homologues to be restricted to the germ line. We demonstrate an essential role for the conserved histone chaperone HIRA in the nucleosomal loading of all H3.3 variants. This requirement can be bypassed by mutation of the H3.3-specific residues to those found in H3. Analysis of H3.3 knockout mutants revealed a surprising absence of developmental phenotypes. While removal of all H3.3 homologues did not result in lethality, it led to reduced fertility and viability in response to high temperature stress. Our results thus show that H3.3 is non-essential in C. elegans , but is critical for ensuring adequate response to stress. Copyright © 2018, Genetics.

  18. OPA Q's and A's: Overview of the Oil Pollution Act of 1990. Fact sheet

    International Nuclear Information System (INIS)

    1991-12-01

    The OPA Q's and A's are part of a series of fact sheets that provide up-to-date information on EPA's implementation of the OPA. The first fact sheet provides an overview of the various provisions of the OPA and the Agency's responsibilities under the new law

  19. Piharakentamisen opas peltotontin rakentajille

    OpenAIRE

    Nikkonen, Sanna

    2013-01-01

    Opinnäytetyön tarkoituksena oli laatia työn toimeksiantajalle, Janakkalan kunnalle, peltotonttien rakentajille suunnattu piharakentamisen opas. Oppaan tavoitteena on kannustaa omakotitalojen rakentajia suunnittelemaan pihansa ajoissa, ja ennen kaikkea istuttamaan pihalle runsaasti kasvillisuutta, jotta puuttomista ja autioista peltotonteista muodostuisi mahdollisimman nopeasti suojaisia ja valmiita asuinympäristöjä. Työn teoriaosuudessa käsitellään kasvillisuuden merkitystä pihapiirissä n...

  20. An exploration of Glb1 Homologue AntibodyLevels in Children at Increased Risk for Type 1 Diabetes mellitus

    Science.gov (United States)

    Simpson, M.; Mojibian, M.; Barriga, K.; Scott, F.W.; Fasano, A.; Rewers, M.; Norris, J.M.

    2010-01-01

    Aims To determine whether Glb1 homologue antibodies are associated with islet autoimmunity (IA) in children at increased risk for type 1 diabetes (T1D), and to investigate their relation with putative environmental correlates of T1D. Methods We selected a sample from the Diabetes Autoimmunity Study in the Young (DAISY), a prospective study of children at increased risk for T1D. Cases were those who were positive for insulin, glutamic acid decarboxylase (GAD), or insulinoma-associated antigen-2 (IA-2) autoantibodies on two consecutive visits and either diagnosed with diabetes mellitus or still autoantibody positive when selected. Controls were from the same increased risk group, of similar age as the cases but negative for autoantibodies. Sera from 91 IA cases and 82 controls were analyzed in a blinded manner for immunoglobulin G (IgG) antibodies to Glb1 homologue by ELISA. Results Adjusting for family history of T1D and HLA-DR4 positivity, Glb1 homologue antibodies were not associated with IA case status (OR: 1.01, 95% CI: 0.99 – 1.03). Adjusting for age, family history of T1D, and HLA-DR4 positivity, Glb1 homologue antibody levels were inversely associated with breast-feeding duration (beta = −0.08, p = 0.001) and directly associated with current intake of foods containing gluten (beta = 0.24, p = 0.007) in IA cases but not in controls. Zonulin, a biomarker of gut permeability, was directly associated with Glb1 homologue antibody levels in cases (beta = 0.73, p = 0.003) but not in controls. Conclusion Differences in correlates of Glb1 antibodies in IA cases and controls suggest an underlying difference in mucosal immune response. PMID:19622083

  1. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    Science.gov (United States)

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  2. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1.

    Science.gov (United States)

    Li, Wen-Hsuan; Shi, Yeu-Ching; Chang, Chun-Han; Huang, Chi-Wei; Hsiu-Chuan Liao, Vivian

    2014-04-01

    Selenium is an essential micronutrient. In the present study, trace amount of selenite (0.01 μM) was evaluated for oxidative stress resistance and potential associated factors in Caenorhabditis elegans. Selenite-treated C. elegans showed an increased survival under oxidative stress and thermal stress compared to untreated controls. Further studies demonstrated that the significant stress resistance of selenite on C. elegans could be attributed to its in vivo free radical-scavenging ability. We also found that the oxidative and thermal stress resistance phenotypes by selenite were absent from the forkhead transcription factor daf-16 mutant worms. Moreover, selenite influenced the subcellular distribution of DAF-16 in C. elegans. Furthermore, selenite increased mRNA levels of stress-resistance-related proteins, including superoxide dismutase-3 and heat shock protein-16.2. Additionally, selenite (0.01 μM) upregulated expressions of transgenic C. elegans carrying sod-3::green fluorescent protein (GFP) and hsp-16.2::GFP, whereas this effect was abolished by feeding daf-16 RNA interference in C. elegans. Finally, unlike the wild-type N2 worms, the oxidative stress resistance phenotypes by selenite were both absent from the C. elegans selenoprotein trxr-1 mutant worms and trxr-1 mutants feeding with daf-16 RNA interference. These findings suggest that the antioxidant effects of selenite in C. elegans are mediated via DAF-16 and TRXR-1. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The regulation of APAF1 expression during development and tumourigenesis

    DEFF Research Database (Denmark)

    Hickman, E S; Helin, K

    2002-01-01

    Apoptosis Protease-Activating Factor 1, APAF1, was originally isolated four years ago and shown to be the mammalian homologue of the C. elegans pro-apoptotic ced4 gene. Since then, the expression of APAF1 has been demonstrated to be involved in several cell death pathways, including the induction...

  4. Structure of RDE-4 dsRBDs and mutational studies provide insights into dsRNA recognition in the Caenorhabditis elegans RNAi pathway.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Deshmukh, Mandar V

    2014-02-15

    The association of RDE-4 (RNAi defective 4), a protein containing two dsRBDs (dsRNA-binding domains), with long dsRNA and Dcr-1 (Dicer1 homologue) initiates the siRNA pathway in Caenorhabditis elegans. Unlike its homologues in higher eukaryotes, RDE-4 dsRBDs possess weak (micromolar) affinity for short dsRNA. With increasing length of dsRNA, RDE-4 exhibits enhanced affinity due to co-operativity. The linker and dsRBD2 are indispensable for RDE-4's simultaneous interaction with dsRNA and Dcr-1. In the present study, we have determined the solution structures of RDE-4 constructs that contain both dsRBDs and the linker region. In addition to the canonical dsRBD fold, both dsRBDs of RDE-4 show modified structural features such as truncation in the β1-β2 loop that rationalize RDE-4's relatively weak dsRNA affinity. Structure and binding studies demonstrate that dsRBD2 plays a decisive role in the RDE-4-dsRNA interaction; however, in contrast with previous findings, we found ephemeral interaction of RDE-4 dsRBD1 with dsRNA. More importantly, mutations in two tandem lysine residues (Lys217 and Lys218) in dsRBD2 impair RDE-4's dsRNA-binding ability and could obliterate RNAi initiation in C. elegans. Additionally, we postulate a structural basis for the minimal requirement of linker and dsRBD2 for RDE-4's association with dsRNA and Dcr-1.

  5. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas

    Science.gov (United States)

    Li, Chaoqiong; Fu, Qiantang; Niu, Longjian; Luo, Li; Chen, Jianghua; Xu, Zeng-Fu

    2017-01-01

    Recent research revealed that TERMINAL FLOWER 1 (TFL1) homologues are involved in the critical developmental process of floral initiation in several plant species. In this study, the functions of three putative TFL1 homologues (JcTFL1a, JcTFL1b and JcTFL1c) in the biofuel plant Jatropha curcas were analysed using the transgenic approach. JcTFL1b and JcTFL1c, but not JcTFL1a, could complement the TFL1 function and rescue early flowering and determinate inflorescence phenotype in tfl1-14 Arabidopsis mutant, thus suggesting that JcTFL1b and JcTFL1c may be homologues of TFL1. Transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c showed late flowering, whereas only JcTFL1b and JcTFL1c overexpression delayed flowering in transgenic Arabidopsis. JcTFL1b-RNAi transgenic Jatropha consistently exhibited moderately early flowering phenotype. JcFT and JcAP1 were significantly downregulated in transgenic Jatropha overexpressing JcTFL1a, JcTFL1b or JcTFL1c, which suggested that the late flowering phenotype of these transgenic Jatropha may result from the repressed expression of JcFT and JcAP1. Our results indicate that these three JcTFL1 genes play redundant roles in repressing flowering in Jatropha. PMID:28225036

  6. Itsehoito-opas turvapaikanhakijoille sairaanhoitajaopiskelijoiden projektiin

    OpenAIRE

    Jyrkinen, Lauri; Kamaja, Veera

    2016-01-01

    Tehdessämme alkuvuodesta 2016 projektiyhteistyötä paikallisen vastaanottokeskuksen kanssa esiin nousi huoli turvapaikanhakijoiden itsehoitotietämyksen vähäisyydestä. Vastaanottokeskuksen työntekijät toivat esiin tarpeen itsehoito-oppaasta. Tämän opinnäytetyön tarkoituksena oli tuottaa Savonlinnaan saapuneille turvapaikanhakijoille itsehoito-opas, jota Savonniemen kampuksen sairaanhoitajaopiskelijat voivat käyttää ohjausmateriaalina syventä-vässä projektissaan. Ohjaustuokion yhteydessä its...

  7. La OPA de Caixabank frente al Banco Portugués de Investimento: neutralización de medidas anti-opa y supervisión bancaria europea

    OpenAIRE

    Bargiela Flórez, Alberto

    2017-01-01

    La regulación de OPAs en el marco europeo siempre se ha considerado un pilar fundamental para el desarrollo del mercado interior. Los sucesivos proyectos de Directiva creyeron que solo eliminando las tradicionales barreras que obstaculizaban muchas de estas operaciones, podría llegar a avanzarse en la consecución de este objetivo. Sin embargo, la redacción final de la Directiva 25/2004/CE fracasó a la hora de abordar el mecanismo de la neutralización de las medidas anti-opa, de...

  8. Cloning and characterization of maize ZmSPK1, a homologue to ...

    African Journals Online (AJOL)

    hope&shola

    2006-03-15

    Mar 15, 2006 ... homologue to nonfermenting1-related protein kinase2 ... RT-PCR analysis showed that the ZmSPK1 expression was induced by mannitol, salt and ... MAPKKK in which each component is activated by .... It has been one of the main ... Protein kinase ATP-binding region signature is shown in gray box.

  9. Työntekijän opas lapsen rakkaudelliseen kohtaamiseen Helsingin Diakonissalaitoksen intensiivihoidossa

    OpenAIRE

    Cacho, Janika

    2014-01-01

    TIIVISTELMÄ Cacho, Janika. Työntekijän opas lapsen rakkaudelliseen kohtaamiseen Helsingin Diakonissalaitoksen intensiivihoidossa. Kevät 2014, 73s., 2 liitteitä. Diakonia-ammattikorkeakoulu, Sosiaalialan koulutusohjelma, Kristillisen lapsi- ja nuorisotyön suuntautumisvaihtoehto, sosionomi (AMK) + kirkon nuorisotyöntekijän virkakelpoisuus. Opinnäytetyöni tavoitteena oli tuottaa opas, joka tarjoaisi Helsingin Diakonissalaitoksen intensiivihoidon työntekijöille tietoa lapsen rak...

  10. OPA3, mutated in 3-methylglutaconic aciduria type III, encodes two transcripts targeted primarily to mitochondria

    DEFF Research Database (Denmark)

    Huizing, Marjan; Dorward, Heidi; Ly, Lien

    2010-01-01

    3-Methylglutaconic aciduria type III (3-MGCA type III), caused by recessive mutations in the 2-exon gene OPA3, is characterized by early-onset bilateral optic atrophy, later-onset extrapyramidal dysfunction, and increased urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid. Her...... in the mitochondrion rather than the peroxisome and implicate loss of OPA3A rather than gain of OPA3B in disease etiology....

  11. FIRST NEW SOLAR MODELS WITH OPAS OPACITY TABLES

    Energy Technology Data Exchange (ETDEWEB)

    Le Pennec, M.; Turck-Chièze, S.; Salmon, S. [CEA/IRFU/Service d’Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France); Blancard, C.; Cossé, P.; Faussurier, G.; Mondet, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-11-10

    Stellar seismology appears more and more as a powerful tool for a better determination of the fundamental properties of solar-type stars. However, the particular case of the Sun is still challenging. For about a decade now, the helioseismic sound-speed determination has continued to disagree with the standard solar model (SSM) prediction, questioning the reliability of this model. One of the sources of uncertainty could be in the treatment of the transport of radiation from the solar core to the surface. In this Letter, we use the new OPAS opacity tables, recently available for solar modeling, to address this issue. We discuss first the peculiarities of these tables, then we quantify their impact on the solar sound-speed and density profiles using the reduced OPAS tables taken on the grids of the OPAL ones. We use the two evolution codes, Modules for Experiments in Stellar Astrophysics and Code Liégeois d’Evolution Stellaire, that led to similar conclusions in the solar radiative zone. In comparison to commonly used OPAL opacity tables, the new solar models are computed for the most recent photospheric composition with OPAS tables and present improvements to the location of the base of the convective zone and to the description of the solar radiative zone in comparison to the helioseismic observations, even if the differences in the Rosseland mean opacity do not exceed 6%. We finally carry out a comparison to a solar model computed with the OP opacity tables.

  12. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  13. SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants.

    Directory of Open Access Journals (Sweden)

    Claudia Welz

    2011-04-01

    Full Text Available The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379. Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379 and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831. Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5' flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379 and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms

  14. Opas projektien pariin digitaalisessa maailmassa

    OpenAIRE

    Aalto, Joni

    2017-01-01

    Insinöörityön aiheena oli projektityö digitaalisessa maailmassa. Sen tavoitteena oli luoda opas projektien parissa työskentelyyn ohjelmistotuotannossa ja selkeyttää ajatusta projektinhallinnasta. Insinöörityössä perehdyttiin ohjelmistojen kehittämisen projektinhallintaan yleisesti ottaen sekä pohdittiin muutamia projektinhallintamalleja. Käsittelyssä olivat Scrum-malli, Kanban-menetelmä, vesiputousmalli, RUP-malli ja Extreme Programming -metodi. Työssä etsittiin yhtäläisyyksiä näistä mall...

  15. Venäjä-opas IKEA Kuopion työntekijöille

    OpenAIRE

    Vartiainen, Noora

    2013-01-01

    Tämän opinnäytetyön aiheena oli luoda IKEA Kuopion työntekijöille venäjä-opas venäläisten asi-akkaiden palvelua varten. Työn tarkoituksena oli auttaa Kuopion IKEA – tavaratalon työntekijöitä kommunikoimaan venäläisten asiakkaiden kanssa ja palvelemaan heitä paremmin. Työn tavoitteena oli tehdä opas, joka sisältää käytännöllisiä ja oleellisia lauseita venäjäksi IKEA Kuopion työntekijöiden työn kannalta sekä on helppokäyttöinen. Opas sisältää tietoa venäläisistä, jotta työntekijät ymmärtävät en...

  16. Assessment of anomalous seepage conditions in the Opa dam ...

    African Journals Online (AJOL)

    , dipole-dipole electrical horizontal profiling, spontaneous potential (SP) profiling and magnetic profiling, was carried out along the embankment of the Opa dam located within the campus of the Obafemi Awolowo University, Ile-Ife, Nigeria.

  17. C. elegans VANG-1 modulates life span via insulin/IGF-1-like signaling.

    Directory of Open Access Journals (Sweden)

    Sebastian J Honnen

    Full Text Available The planar cell polarity (PCP pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.

  18. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.

    Science.gov (United States)

    Sun, Linfeng; Zeng, Xin; Yan, Chuangye; Sun, Xiuyun; Gong, Xinqi; Rao, Yu; Yan, Nieng

    2012-10-18

    Glucose transporters are essential for metabolism of glucose in cells of diverse organisms from microbes to humans, exemplified by the disease-related human proteins GLUT1, 2, 3 and 4. Despite rigorous efforts, the structural information for GLUT1-4 or their homologues remains largely unknown. Here we report three related crystal structures of XylE, an Escherichia coli homologue of GLUT1-4, in complex with d-xylose, d-glucose and 6-bromo-6-deoxy-D-glucose, at resolutions of 2.8, 2.9 and 2.6 Å, respectively. The structure consists of a typical major facilitator superfamily fold of 12 transmembrane segments and a unique intracellular four-helix domain. XylE was captured in an outward-facing, partly occluded conformation. Most of the important amino acids responsible for recognition of D-xylose or d-glucose are invariant in GLUT1-4, suggesting functional and mechanistic conservations. Structure-based modelling of GLUT1-4 allows mapping and interpretation of disease-related mutations. The structural and biochemical information reported here constitutes an important framework for mechanistic understanding of glucose transporters and sugar porters in general.

  19. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response.

    Science.gov (United States)

    Powell, Jennifer R; Kim, Dennis H; Ausubel, Frederick M

    2009-02-24

    Innate immunity is an ancient defense system used by both vertebrates and invertebrates. Previously characterized innate immune responses in plants and animals are triggered by detection of pathogens using specific receptors, which typically use a leucine-rich repeat (LRR) domain to bind molecular patterns associated with infection. The nematode Caenorhabditis elegans uses defense pathways conserved with vertebrates; however, the mechanism by which C. elegans detects pathogens is unknown. We screened all LRR-containing transmembrane receptors in C. elegans and identified the G protein-coupled receptor FSHR-1 as an important component of the C. elegans immune response to Gram-negative and Gram-positive bacterial pathogens. FSHR-1 acts in the C. elegans intestine, the primary site of exposure to ingested pathogens. FSHR-1 signals in parallel to the known p38 MAPK pathway but converges to regulate the transcriptional induction of an overlapping but nonidentical set of antimicrobial effectors. FSHR-1 may act generally to boost the nematode immune response, or it may function as a pathogen receptor.

  20. Evaluation of Neisseria Gonorrhoeae Opacity (Opa) Protein Loops as Targets for Passive Vaccination and Investigation of the Role of Opa Proteins During Infection of a Female Host

    Science.gov (United States)

    2009-08-24

    colistin, nystatin, trimethoprim , and streptomycin sulfate) was as described (91). Generation of antibodies Affinity-purified rabbit polyclonal... determined empirically: AbHV2 linear (0.87-1.2 µg/mL), AbSV linear (2.2 µg/mL), Ab4L linear (2.4 µg/ml), and AbHV2 cyclic (1:100) and AbSV cyclic (1...killing of the target strains in the absence of added antibody as determined by Garvin 44 et al. (59). For testing Opa loop-specific antibodies

  1. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    Science.gov (United States)

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  2. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast

    OpenAIRE

    Helliwell, S. B.; Wagner, P.; Kunz, J.; Deuter-Reinhard, M.; Henriquez, R.; Hall, M. N.

    1994-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of T...

  3. Gengnianchun Extends the Lifespan of Caenorhabditis elegans via the Insulin/IGF-1 Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Fanhui Meng

    2018-01-01

    Full Text Available Gengnianchun (GNC, a traditional Chinese medicine (TCM, is believed to have beneficial effects on ageing-related diseases, such as antioxidant properties and effects against Aβ-induced toxicity. We previously found that GNC extended the lifespan of Caenorhabditis elegans. However, the mechanism underlying this effect was unclear. In this study, we further explored the mechanisms of GNC using a C. elegans model. GNC significantly increased the lifespan of C. elegans and enhanced oxidative and thermal stress resistance. Moreover, chemotaxis increased after GNC treatment. RNA-seq analysis showed that GNC regulated genes associated with longevity. We also conducted lifespan assays with a series of worm mutants. The results showed that GNC significantly extended the lifespan of several mutant strains, including eat-2 (ad465, rsks-1 (ok1255, and glp-1 (e2144, suggesting that the prolongevity effect of GNC is independent of the function of these genes. However, GNC failed to extend the lifespan of daf-2 (e1370, age-1 (hx546, and daf-16 (mu86 mutant strains. Our findings suggest that GNC extends the lifespan of C. elegans via the insulin/IGF-1 signalling pathway and may be a potential antiageing agent.

  4. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  5. Caffeic acid phenethylester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway.

    Science.gov (United States)

    Havermann, Susannah; Chovolou, Yvonni; Humpf, Hans-Ulrich; Wätjen, Wim

    2014-01-01

    CAPE is an active constituent of propolis which is widely used in traditional medicine. This hydroxycinnamic acid derivate is a known activator of the redox-active Nrf2 signalling pathway in mammalian cells. We used C. elegans to investigate the effects of this compound on accumulation of reactive oxygen species and the modulation of the pivotal redox-active pathways SKN-1 and DAF-16 (homologues of Nrf2 and FoxO, respectively) in this model organism; these results were compared to the effects in Hct116 human colon carcinoma cells. CAPE exerts a strong antioxidative effect in C. elegans: The increase of reactive oxygen species induced by thermal stress was diminished by about 50%. CAPE caused a nuclear translocation of DAF-16, but not SKN-1. CAPE increased stress resistance of the nematode against thermal stress and finally a prolongation of the median and maximum lifespan by 9 and 17%, respectively. This increase in stress resistance and lifespan was dependent on DAF-16 as shown in experiments using a DAF-16 loss of function mutant strain. Life prolongation was retained under SKN-1 RNAi conditions showing that the effect is SKN-1 independent. The results of CAPE obtained in C. elegans differed from the results obtained in Hct116 colon carcinoma cells: CAPE also caused strong antioxidative effects in the mammalian cells, but no activation of the FoxO4 signalling pathway was detectable. Instead, an activation of the Nrf2 signalling pathway was shown by luciferase assay and western blots. CAPE activates the insulin-like DAF-16, but not the SKN-1 signalling pathway in C. elegans and therefore enhances the stress resistance and lifespan of this organism. Since modulation of the DAF-16 pathway was found to be a pivotal effect of CAPE in C. elegans, this has to be taken into account for the investigation of the molecular mechanisms of the traditional use of propolis.

  6. Optic atrophy, cataracts, lipodystrophy/lipoatrophy, and peripheral neuropathy caused by a de novo OPA3 mutation

    OpenAIRE

    Bourne, Stephanie C.; Townsend, Katelin N.; Shyr, Casper; Matthews, Allison; Lear, Scott A.; Attariwala, Raj; Lehman, Anna; Wasserman, Wyeth W.; van Karnebeek, Clara; Sinclair, Graham; Vallance, Hilary; Gibson, William T.

    2017-01-01

    We describe a woman who presented with cataracts, optic atrophy, lipodystrophy/lipoatrophy, and peripheral neuropathy. Exome sequencing identified a c.235C > G p.(Leu79Val) variant in the optic atrophy 3 (OPA3) gene that was confirmed to be de novo. This report expands the severity of the phenotypic spectrum of autosomal dominant OPA3 mutations.

  7. Catalytic-independent roles of UTX-1 in C. elegans development

    DEFF Research Database (Denmark)

    Vandamme, Julien; Salcini, Anna Elisabetta

    2013-01-01

    We recently analyzed the functional roles of UTX-1 during development. utx-1 is an essential gene required for the correct embryonic and post-embryonic development of C. elegans, and it displays an H3K27me3 demethylase activity. Rescue experiments demonstrated that the enzymatic activity of UTX-1...

  8. Structural and functional evaluation of C. elegans filamins FLN-1 and FLN-2.

    Directory of Open Access Journals (Sweden)

    Christina R DeMaso

    Full Text Available Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD followed by multiple immunoglobulin-like repeats (IgFLN. They function to organize and maintain the actin cytoskeleton, to provide scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved, with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may be a very useful model system for further study of filamin function.

  9. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Roz Laing

    Full Text Available The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid

  10. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    Science.gov (United States)

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  11. Yläkouluikäiset nuoret ja alkoholi : Opas yläkouluikäisille

    OpenAIRE

    Karjala, Johanna; Vesala, Linda

    2014-01-01

    Tämä opinnäytetyö on tehty yhteistyössä Parolan yhteiskoulun kouluterveydenhoitajan kanssa. Kyseessä on toiminnallinen opinnäytetyö, jonka tuotteena on tehty opas. Opas käsittelee nuorten alkoholin käyttöä. Suomalaisten nuorten keskuudessa eniten käytetty päihde on alkoholi. Alkoholiin tutustumisen ikä on yleensä noin 12−16 vuotta. Nuorilla on useimmiten tapana juoda toisten nuorten seurassa sosiaalisista syistä. Kun ystäväpiirissä juodaan, on nuorella itselläänkin kova paine seurata perä...

  12. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...

  13. A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1 homologue

    NARCIS (Netherlands)

    Spassieva, S; Hille, J

    Lesion mimic phenotypes serve as a tool to study the regulation of cell death in plants. In order to obtain a tomato lesion mimic phenotype, we used the conservation of the lethal leaf spot 1 (Lls1) genes between plant species. The tomato Lls1 homologue was cloned, sequenced and analyzed. It showed

  14. A multitasking Argonaute: exploring the many facets of C. elegans CSR-1.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-01

    While initial studies of small RNA-mediated gene regulatory pathways focused on the cytoplasmic functions of such pathways, identifying roles for Argonaute/small RNA pathways in modulating chromatin and organizing the genome has become a topic of intense research in recent years. Nuclear regulatory mechanisms for Argonaute/small RNA pathways appear to be widespread, in organisms ranging from plants to fission yeast, Caenorhabditis elegans to humans. As the effectors of small RNA-mediated gene regulatory pathways, Argonaute proteins guide the chromatin-directed activities of these pathways. Of particular interest is the C. elegans Argonaute, chromosome segregation and RNAi deficient (CSR-1), which has been implicated in such diverse functions as organizing the holocentromeres of worm chromosomes, modulating germline chromatin, protecting the genome from foreign nucleic acid, regulating histone levels, executing RNAi, and inhibiting translation in conjunction with Pumilio proteins. CSR-1 interacts with small RNAs known as 22G-RNAs, which have complementarity to 25 % of the protein coding genes. This peculiar Argonaute is the only essential C. elegans Argonaute out of 24 family members in total. Here, we summarize the current understanding of CSR-1 functions in the worm, with emphasis on the chromatin-directed activities of this ever-intriguing Argonaute.

  15. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans

    International Nuclear Information System (INIS)

    Cerniglia, C.E.; Lambert, K.J.; Miller, D.W.; Freeman, J.P.

    1984-01-01

    Cunninghamella elegans metabolized 1- and 2-methylnaphthalene primarily at the methyl group to form 1- and 2-hydroxymethylnaphthalene, respectively. Other compounds isolated and identified were 1- and 2-naphthoic acids, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, and phenolic derivatives of 1- and 2-methylnaphthalene. The metabolites were isolated by thin-layer and reverse-phase high-presure liquid chromatography and characterized by the application of UV-visible absorption, 1 H nuclear magnetic resonance, and mass spectral techniques. Experiments with [8- 14 C]2-methylnaphthalene indicated that over a 72-h period, 9.8% of 2-methylnaphthalene was oxidized to metabolic products. The ratio of organic-soluble to water-soluble metabolites at 2 h was 92:8, and at 72 h it was 41:59. Enzymatic treatment of the 48-h aqueous phase with either β-glucuronidase or arylsufatase released 60% of the metabolites of 2-methylnaphthalene that were extractable with ethyl acetate. In both cases, the major conjugates released were 5-hydroxy-2-naphthoic acid and 6-hydroxy-2-naphthoic acid. The ratio of the water-soluble glucuronide conjugates to sulfate conjugates was 1:1. Incubation of C. elegans with 2-methylnaphthalene under an 18 O 2 atmosphere and subsequent mass spectral analysis of 2-hydroxymethylnaphthalene indicated that hydroxylation of the methyl group is catalyzed by a monooxygenase. 23 references

  16. Sijoittaminen pörssiosakkeisiin : Opas aloittelevalle osakesijoittajalle

    OpenAIRE

    Lampinen, Samu

    2011-01-01

    Opinnäytetyön tarkoituksena oli kirjoittaa tiivis ja helposti ymmärrettävä opas aloittelijalle pörssiosakkeisiin sijoittamisesta. Oppaassa oli tarkoitus kertoa, mitä osakkeisiin sijoittaminen vaatii, mihin alussa kannattaa kiinnittää huomiota ja tarjota apuvälineitä sijoittamiseen. Kyseisiä sijoittamisen apuvälineitä olivat esimerkiksi tekninen pörssianalyysi ja tunnusluvut. Näiden lisäksi tarkoituksena oli perustella, miksi sijoittaminen on tärkeää ja pohtia mistä suomalaisten vähäinen kiinn...

  17. Me&i-myyjän taloushallinto -opas

    OpenAIRE

    Riipi, Jaana-Mari

    2015-01-01

    Opinnäytetyön toimeksiantajana toimi ruotsalaisen yrityksen Me&i:n Suomen osasto. Me&i myy lasten ja naisten vaatteita kotikutsuilla. Me&i:lla on Suomessa noin 280 toiminimellistä kotikutsumyyjää, jotka toimivat itsenäisinä ammatinharjoittajina ympäri maata. Me&i-myyjien keskuudessa on noussut esiin toive saada Me&i:lta apua ja ohjeistusta kirjanpidollisissa ja verotuksellisissa asioissa. Tämän vuoksi päätettiin tehdä opas, joka kattaa Me&i-myyjän taloushallinnon tärkeimmät osa-alueet. Op...

  18. Ihmisenä ihmiselle : opas Monika-Naiset liiton vapaaehtoisille

    OpenAIRE

    Holmström, Elina

    2014-01-01

    Opinnäytetyön tavoitteena oli edistää maahanmuuttajataustaisten naisten kanssa työskentelevien vapaaehtoisten työhyvinvointia. Vapaaehtoistyö on kasvava voimavara ammatillisesti tuotettujen palveluiden rinnalla. Erityisesti väkivaltaa kokeneiden naisten parissa se voi kuitenkin olla henkisesti vaativaa. Jotta vapaaehtoistyön teettäminen olisi eettisesti kestävää, on huolehdittava myös vapaaehtoisten työhyvinvoinnista. Opinnäytetyön tavoitteeseen pyrittiin tekemällä opas vapaaehtoisille, j...

  19. Passiivisen tupakoinnin haitat astmaa sairastavalle lapselle : opas vanhemmille

    OpenAIRE

    Sahlberg, Noora; Koljonen, Riina

    2015-01-01

    Opinnäytetyö oli kehittämistyö, jonka aiheena oli passiivisen tupakoinnin haitat astmaa sairastavalle lapselle. Tarkoituksena oli laatia opas astmaa sairastavan lapsen vanhemmille passiivisen tupakoinnin haitoista. Tavoitteena oli antaa oppaan kautta tietoa passiivisen tupakoinnin haitoista sekä vaikuttaa vanhempien omaan käyttäytymiseen tupakoinnin suhteen, jotta he vähentäisivät tai jopa lopettaisivat tupakoinnin. Kehittämistyön tilaaja oli Kuopion Yliopistollisen sairaalan lasten ja nuorte...

  20. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence

    Directory of Open Access Journals (Sweden)

    Shawn Lewenza

    2014-08-01

    Full Text Available Caenorhabditis elegans is commonly used as an infection model for pathogenesis studies in Pseudomonas aeruginosa. The standard virulence assays rely on the slow and fast killing or paralysis of nematodes but here we developed a behaviour assay to monitor the preferred bacterial food sources of C. elegans. We monitored the food preferences of nematodes fed the wild type PAO1 and mutants in the type III secretion (T3S system, which is a conserved mechanism to inject secreted effectors into the host cell cytosol. A ΔexsEΔpscD mutant defective for type III secretion served as a preferred food source, while an ΔexsE mutant that overexpresses the T3S effectors was avoided. Both food sources were ingested and observed in the gastrointestinal tract. Using the slow killing assay, we showed that the ΔexsEΔpscD had reduced virulence and thus confirmed that preferred food sources are less virulent than the wild type. Next we developed a high throughput feeding behaviour assay with 48 possible food colonies in order to screen a transposon mutant library and identify potential virulence genes. C. elegans identified and consumed preferred food colonies from a grid of 48 choices. The mutants identified as preferred food sources included known virulence genes, as well as novel genes not identified in previous C. elegans infection studies. Slow killing assays were performed and confirmed that several preferred food sources also showed reduced virulence. We propose that C. elegans feeding behaviour can be used as a sensitive indicator of virulence for P. aeruginosa PAO1.

  1. TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans.

    Science.gov (United States)

    McCallum, Katie C; Liu, Bin; Fierro-González, Juan Carlos; Swoboda, Peter; Arur, Swathi; Miranda-Vizuete, Antonio; Garsin, Danielle A

    2016-05-01

    The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism. Copyright © 2016 by the Genetics Society of America.

  2. A Caenorhabditis elegans RNA polymerase II gene, ama-1 IV, and nearby essential genes.

    Science.gov (United States)

    Rogalski, T M; Riddle, D L

    1988-01-01

    The amanitin-binding subunit of RNA polymerase II in Caenorhabditis elegans is encoded by the ama-1 gene, located approximately 0.05 map unit to the right of dpy-13 IV. Using the amanitin-resistant ama-1(m118) strain as a parent, we have isolated amanitin-sensitive mutants that carry recessive-lethal ama-1 alleles. Of the six ethyl methanesulfonate-induced mutants examined, two are arrested late in embryogenesis. One of these is a large deficiency, mDf9, but the second may be a novel point mutation. The four other mutants are hypomorphs, and presumably produce altered RNA polymerase II enzymes with some residual function. Two of these mutants develop into sterile adults at 20 degrees but are arrested as larvae at 25 degrees, and two others are fertile at 20 degrees and sterile at 25 degrees. Temperature-shift experiments performed with the adult sterile mutant, ama-1(m118m238ts), have revealed a temperature-sensitive period that begins late in gonadogenesis and is centered around the initiation of egg-laying. Postembryonic development at 25 degrees is slowed by 30%. By contrast, the amanitin-resistant allele of ama-1 has very little effect on developmental rate or fertility. We have identified 15 essential genes in an interval of 4.5 map units surrounding ama-1, as well as four gamma-ray-induced deficiencies and two duplications that include the ama-1 gene. The larger duplication, mDp1, may include the entire left arm of chromosome IV, and it recombines with the normal homologue at a low frequency. The smallest deficiency, mDf10, complements all but three identified genes: let-278, dpy-13 and ama-1, which define an interval of only 0.1 map unit. The terminal phenotype of mDf10 homozygotes is developmental arrest during the first larval stage, suggesting that there is sufficient maternal RNA polymerase II to complete embryonic development.

  3. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delawary, Mina; Nakazawa, Takanobu; Tezuka, Tohru; Sawa, Mariko; Iino, Yuichi; Takenawa, Tadaomi; Yamamoto, Tadashi

    2007-01-01

    The GTPase-activating proteins for Rho family GTPases (RhoGAP) transduce diverse intracellular signals by negatively regulating Rho family GTPase-mediated pathways. In this study, we have cloned and characterized a novel RhoGAP for Rac1 and Cdc42, termed RRC-1, from Caenorhabditis elegans. RRC-1 was highly homologous to mammalian p250GAP and promoted GTP hydrolysis of Rac1 and Cdc42 in cells. The rrc-1 mRNA was expressed in all life stages. Using an RRC-1::GFP fusion protein, we found that RRC-1 was localized to the coelomocytes, excretory cell, GLR cells, and uterine-seam cell in adult worms. These data contribute toward understanding the roles of Rho family GTPases in C. elegans

  4. Aloittelevan start-up yrittäjän opas rahoitukseen

    OpenAIRE

    Lamminsalo, Matti

    2015-01-01

    Opinnäytetyö käsittelee start-up rahoitusta ja siihen liittyviä toimintamalleja. Opinnäytetyön tuloksena on syntynyt opaskirja: Aloittelevan start-up yrittäjän opas rahoitukseen. Research about start-up ecosystem with investment aspect. As a result guidebook for start-up investment and how to raise a fund was writen.

  5. Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues

    DEFF Research Database (Denmark)

    Chrzanowski, L; Stasiewicz, M; Owsianiak, Mikolaj

    2009-01-01

    hypothesize that in the presence of diesel fuel low-water-soluble ionic liquids may become more toxic to hydrocarbon-degrading microorganisms. In this study the influence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues (side-chain length from C-3 to C-18) on biodegradation of diesel fuel...... by a bacterial consortium was investigated. Whereas test performed for the consortium cultivated on disodium succinate showed that toxicity of the investigated ionic liquids decreased with increase in side-chain length, only higher homologues (C-8-C-18) caused a decrease in diesel fuel biodegradation......, respectively. We conclude that in the presence of hydrocarbons acting as a solvent, the increased bioavailability of hydrophobic homologues is responsible for the decrease in biodegradation efficiency of diesel fuel....

  6. Oil spill prevention and response: How to comply with OPA and OSPRA

    International Nuclear Information System (INIS)

    Ray, L.

    1995-01-01

    When there is a man-made catastrophic event that adversely affects environment or the health and safety of the public, the government steps in to make and enforce laws to help prevent the reoccurrence of such events. This is the case with the Oil Pollution Act (OPA) which was signed into law by President Bush in August of 1990. According to the EPA, the federal government received 42,000 notifications of oil discharges during the years of 1988 through 1990. In 1989, 38 spills exceeded 100,000 gallons including the infamous Exxon Valdez spill in Alaska's Prince William Sound. The Federal government has not been alone in its interest with oil spill prevention and response. Many states have also enacted laws with the intent of protecting the environment from damage due to oil spills. The state of Texas enacted the Oil Spill Prevention and Response Act (OSPRA) of 1991 which compliments and expands on OPA. The most significant requirement of both of these laws is that of the Facility Response Plan (FRP). Both Federal and State agencies encourage the development of one plan for spill response and prevention. The use of one plan makes sense because this eliminates the opportunity for discrepancies land simplifies response during an actual spill. The purpose of this paper is to aid the petroleum industry in determining whether it is required to have a FRP, and if it is, how to develop a plan that will comply with both OPA and OSPRA

  7. Developmental wiring of specific neurons is regulated by RET-1/Nogo-A in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Nørgaard, Steffen; Høye, Anette M.

    2017-01-01

    Nogo-A is a membrane-bound protein that functions to inhibit neuronal migration, adhesion, and neurite outgrowth during development. In the mature nervous system, Nogo-A stabilizes neuronal wiring to inhibit neuronal plasticity and regeneration after injury. Here, we show that RET-1, the sole Nog...... present a previously unidentified function for RET-1 in the nervous system of C. elegans.......-A homolog in Caenorhabditis elegans, is required to control developmental wiring of a specific subset of neurons. In ret-1 deletion mutant animals, specific ventral nerve cord axons are misguided where they fail to respect the ventral midline boundary. We found that ret-1 is expressed in multiple neurons...

  8. Lapsestani on tullut murkku! Opas 5. - 6.-luokkalaisten vanhemmille

    OpenAIRE

    Rahikainen, Essi; Piipponen, Mirka

    2014-01-01

    Opinnäytetyömme tarkoituksena oli tuottaa seksuaalikasvatusopas 5. - 6.-luokkalaisten vanhemmille. Opinnäytetyön toimeksiannon saimme Ristiinan yhtenäiskoulun kouluterveydenhoitajalta. Opas on hyödyllinen apuväline ja tietopaketti vanhemmille, jotka tarvitsevat tukea murrosikäisen kanssa keskusteluun. Oppaan tarkoituksena on antaa vanhemmille luotettavaa perustietoa lapsen murrosiän fyysisestä, psyykkisestä ja sosiaalisesta kehityksestä. Oppaassa on myös vinkkejä murrosikäisten vanhemmille pu...

  9. Body mass index: different nutritional status according to WHO, OPAS and Lipschitz classifications in gastrointestinal cancer patients.

    Science.gov (United States)

    Barao, Katia; Forones, Nora Manoukian

    2012-01-01

    The body mass index (BMI) is the most common marker used on diagnoses of the nutritional status. The great advantage of this index is the easy way to measure, the low cost, the good correlation with the fat mass and the association to morbidity and mortality. To compare the BMI differences according to the WHO, OPAS and Lipschitz classification. A prospective study on 352 patients with esophageal, gastric or colorectal cancer was done. The BMI was calculated and analyzed by the classification of WHO, Lipschitz and OPAS. The mean age was 62.1 ± 12.4 years and 59% of them had more than 59 years. The BMI had not difference between the genders in patients cancer had more than 65 years. A different cut off must be used for this patients, because undernourished patients may be wrongly considered well nourished.

  10. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  11. Physical and functional interactions of Caenorhabditis elegans WRN-1 helicase with RPA-1.

    Science.gov (United States)

    Hyun, Moonjung; Park, Sojin; Kim, Eunsun; Kim, Do-Hyung; Lee, Se-Jin; Koo, Hyeon-Sook; Seo, Yeon-Soo; Ahn, Byungchan

    2012-02-21

    The Caenorhabditis elegans Werner syndrome protein, WRN-1, a member of the RecQ helicase family, has a 3'-5' DNA helicase activity. Worms with defective wrn-1 exhibit premature aging phenotypes and an increased level of genome instability. In response to DNA damage, WRN-1 participates in the initial stages of checkpoint activation in concert with C. elegans replication protein A (RPA-1). WRN-1 helicase is stimulated by RPA-1 on long DNA duplex substrates. However, the mechanism by which RPA-1 stimulates DNA unwinding and the function of the WRN-1-RPA-1 interaction are not clearly understood. We have found that WRN-1 physically interacts with two RPA-1 subunits, CeRPA73 and CeRPA32; however, full-length WRN-1 helicase activity is stimulated by only the CeRPA73 subunit, while the WRN-1(162-1056) fragment that harbors the helicase activity requires both the CeRPA73 and CeRPA32 subunits for the stimulation. We also found that the CeRPA73(1-464) fragment can stimulate WRN-1 helicase activity and that residues 335-464 of CeRPA73 are important for physical interaction with WRN-1. Because CeRPA73 and the CeRPA73(1-464) fragment are able to bind single-stranded DNA (ssDNA), the stimulation of WRN-1 helicase by RPA-1 is most likely due to the ssDNA binding activity of CeRPA73 and the direct interaction of WRN-1 and CeRPA73.

  12. Caenorhabditis elegans intersectin: a synaptic protein regulating neurotransmission

    DEFF Research Database (Denmark)

    Rose, Simon; Malabarba, Maria Grazia; Krag, Claudia

    2007-01-01

    the characterization of intersectin function in Caenorhabditis elegans. Nematode intersectin (ITSN-1) is expressed in the nervous system, and it is enriched in presynaptic regions. The C. elegans intersectin gene (itsn-1) is nonessential for viability. In addition, itsn-1-null worms do not display any evident...

  13. Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for epithelial integrity

    Czech Academy of Sciences Publication Activity Database

    Pellis-van Berkel, W.; Verheijen, M. H. G.; Cuppen, E.; Asahina, Masako; de Rooij, J.; Jansen, G.; Plasterk, R. H. A.; Bos, J. L.; Zwartkruis, F. J. T.

    2005-01-01

    Roč. 16, č. 1 (2005), s. 106-116 ISSN 1059-1524 R&D Projects: GA AV ČR KJB5022303 Institutional research plan: CEZ:AV0Z60220518 Keywords : Rap signaling pathway * epidermis * Caenorhabditis elegans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.520, year: 2005

  14. CSR-1 RNAi pathway positively regulates histone expression in C. elegans.

    Science.gov (United States)

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-10-03

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.

  15. Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2010-12-01

    We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis

  16. Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis.

    Directory of Open Access Journals (Sweden)

    Nigel J O'Neil

    Full Text Available The generation and resolution of joint molecule recombination intermediates is required to ensure bipolar chromosome segregation during meiosis. During wild type meiosis in Caenorhabditis elegans, SPO-11-generated double stranded breaks are resolved to generate a single crossover per bivalent and the remaining recombination intermediates are resolved as noncrossovers. We discovered that early recombination intermediates are limited by the C. elegans BLM ortholog, HIM-6, and in the absence of HIM-6 by the structure specific endonuclease MUS-81. In the absence of both MUS-81 and HIM-6, recombination intermediates persist, leading to chromosome breakage at diakinesis and inviable embryos. MUS-81 has an additional role in resolving late recombination intermediates in C. elegans. mus-81 mutants exhibited reduced crossover recombination frequencies suggesting that MUS-81 is required to generate a subset of meiotic crossovers. Similarly, the Mus81-related endonuclease XPF-1 is also required for a subset of meiotic crossovers. Although C. elegans gen-1 mutants have no detectable meiotic defect either alone or in combination with him-6, mus-81 or xpf-1 mutations, mus-81;xpf-1 double mutants are synthetic lethal. While mus-81;xpf-1 double mutants are proficient for the processing of early recombination intermediates, they exhibit defects in the post-pachytene chromosome reorganization and the asymmetric disassembly of the synaptonemal complex, presumably triggered by crossovers or crossover precursors. Consistent with a defect in resolving late recombination intermediates, mus-81; xpf-1 diakinetic bivalents are aberrant with fine DNA bridges visible between two distinct DAPI staining bodies. We were able to suppress the aberrant bivalent phenotype by microinjection of activated human GEN1 protein, which can cleave Holliday junctions, suggesting that the DNA bridges in mus-81; xpf-1 diakinetic oocytes are unresolved Holliday junctions. We propose that the

  17. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-01-01

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  18. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  19. Stopping coal-fired electricity imports on smog days : a review of the OPA's proposed 250 MW demand response program

    International Nuclear Information System (INIS)

    Gibbons, J.

    2006-01-01

    This paper proposed an alternative to importing coal-fired electricity from the Ohio Valley on smog alert days in Ontario. It was suggested that the Ontario Power Authority (OPA) should pay large electricity consumers to shift some of their consumption from peak to off-peak hours. It was observed that demand response programs which pay consumers to shift demands to off-peak hours can provide multiple benefits to Ontario, including reduced air pollution on smog-alert days, a reduction in the spot price of electricity and reduced price volatility. In addition, demand response programs reduce the risk of blackouts and brownouts, as well as the need for new electricity generation and transmission infrastructure. It was noted that the Independent Electricity System Operator (IESO) and the OPA are planning to introduce demand response programs for the summer of 2006. However, the IESO's emergency load reduction program will be operated only during emergency situations to avoid the need for voltage reductions, while the OPA proposes to introduce a non-emergency demand response program which will be activated during most smog-alert days. Various amendments to the proposed program were suggested in this paper, including the establishment of price parity with coal-fired electricity imports; the provision of notification by 3 PM of the need for demand reductions the following day; no capping on the quantity of demand reductions that the OPA will purchase at a lower cost than electricity imports; and that the OPA's proposed Capacity Building Demand Response Program should proceed as quickly as possible without a pre-determined MW cap. 4 refs., 6 figs

  20. Characterization of hydroxyurea resistance in C. elegans

    DEFF Research Database (Denmark)

    Brejning, Jeanette

    The soil nematode Caenorhabditis elegans has become a prominent model organism for studying aging and many age-related diseases. We use C. elegans to study the relationship between cancer and aging. To prevent cancer, cells are equipped with surveillance systems that detect damage and stop cells...... from dividing. These surveillance systems are collectively called cellular checkpoints. We have found that inactivation of certain checkpoint proteins, including p53, also cause resistance to the chemotherapeutic drug hydroxyurea (HU) that stalls replication. We have found that in C. elegans, HU...... inhibits ribonucleotide reductase (RNR). RNR is involved in synthesis of deoxyribonucleotide (dNTP) precursors for DNA replication and repair. Previously we have shown that inactivation of some checkpoint proteins can increase stress resistance and lifespan of C. elegans1. Interestingly, several genes...

  1. Characterization of four RecQ homologues from rice (Oryza sativa L. cv. Nipponbare)

    International Nuclear Information System (INIS)

    Saotome, Ai; Kimura, Seisuke; Mori, Yoko; Uchiyama, Yukinobu; Morohashi, Kengo; Sakaguchi, Kengo

    2006-01-01

    The RecQ family of DNA helicases is conserved throughout the biological kingdoms. In this report, we have characterized four RecQ homologues clearly expressed in rice. OsRecQ1, OsRecQ886, and OsRecQsim expressions were strongly detected in meristematic tissues. Transcription of the OsRecQ homologues was differentially induced by several types of DNA-damaging agents. The expression of four OsRecQ homologues was induced by MMS and bleomycin. OsRecQ1 and OsRecQ886 were induced by H 2 O 2 , and MitomycinC strongly induced the expression of OsRecQ1. Transient expression of OsRecQ/GFP fusion proteins demonstrated that OsRecQ2 and OsRecQ886 are found in nuclei, whereas OsRecQ1 and OsRecQsim are found in plastids. Neither OsRecQ1 nor OsRecQsim are induced by light. These results indicate that four of the RecQ homologues have different and specific functions in DNA repair pathways, and that OsRecQ1 and OsRecQsim may not involve in plastid differentiation but different aspects of a plastid-specific DNA repair system

  2. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice...... muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances...

  3. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    Science.gov (United States)

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  5. Characterization of the astacin family of metalloproteases in C. elegans

    Directory of Open Access Journals (Sweden)

    Zapf Richard

    2010-01-01

    Full Text Available Abstract Background Astacins are a large family of zinc metalloproteases found in bacteria and animals. They have diverse roles ranging from digestion of food to processing of extracellular matrix components. The C. elegans genome contains an unusually large number of astacins, of which the majority have not been functionally characterized yet. Results We analyzed the expression pattern of previously uncharacterized members of the astacin family to try and obtain clues to potential functions. Prominent sites of expression for many members of this family are the hypodermis, the alimentary system and several specialized cells including sensory sheath and sockets cells, which are located at openings in the body wall. We isolated mutants affecting representative members of the various subfamilies. Mutants in nas-5, nas-21 and nas-39 (the BMP-1/Tolloid homologue are viable and have no apparent phenotypic defects. Mutants in nas-6 and nas-6; nas-7 double mutants are slow growing and have defects in the grinder of the pharynx, a cuticular structure important for food processing. Conclusions Expression data and phenotypic characterization of selected family members suggest a diversity of functions for members of the astacin family in nematodes. In part this might be due to extracellular structures unique to nematodes.

  6. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A. (UNL)

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  7. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans.

    OpenAIRE

    Rezsohazy, R; van Luenen, H G; Durbin, R M; Plasterk, R H

    1997-01-01

    We have found a novel transposon in the genome of Caenorhabditis elegans. Tc7 is a 921 bp element, made up of two 345 bp inverted repeats separated by a unique, internal sequence. Tc7 does not contain an open reading frame. The outer 38 bp of the inverted repeat show 36 matches with the outer 38 bp of Tc1. This region of Tc1 contains the Tc1-transposase binding site. Furthermore, Tc7 is flanked by TA dinucleotides, just like Tc1, which presumably correspond to the target duplication generated...

  8. CRM-tietojärjestelmän käyttöopas osana yrityksen asiakkuudenhallintaa : case: Fysioline Oy

    OpenAIRE

    Ilonen, Mikko

    2012-01-01

    Tämän opinnäytetyön aiheena on CRM-tietojärjestelmän käyttöopas osana yrityksen asiakkuudenhallintaa. Opinnäytetyön teoriaosuus käsittelee asiakkuudenhallintaa, CRM-tietojärjestelmiä ja CRM:n käyttöönottoa. Työn empiriaosuus muodostuu CRM-tietojärjestelmän käyttöoppaasta. CRM-tietojärjestelmän käyttöopas tehdään kohdeyritys Fysioline Oy:lle. Opinnäytetyön teoriaosuudessa selvitetään vastausta tutkimusongelmaan, miksi yrityksen tulee kiinnittää huomiota asiakkuudenhallintaan ja mitä hyötyä...

  9. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16.

    Science.gov (United States)

    Havermann, Susannah; Humpf, Hans-Ulrich; Wätjen, Wim

    2016-09-01

    The flavonoid baicalein has been demonstrated to be an activator of the transcription factor Nrf2 in mammalian cell lines. We show that it further modulates the Nrf2 homolog SKN-1 in Caenorhabditis elegans and by this pathway mediates beneficial effects in the nematode: baicalein enhances the resistance of C. elegans against lethal thermal and sodium arsenite stress and dose-dependently prolongs the life span of the nematode. Using RNA interference against SKN-1 we were able to show that the induction of longevity and the enhanced stress-resistance were dependent on this transcription factor. DAF-16 (homolog to mammalian FOXO) is another pivotal aging-related transcription factor in the nematode. We demonstrate that DAF-16 does not participate in the beneficial effects of baicalein: since baicalein causes no increase in the nuclear translocation of DAF-16 (DAF-16::GFP expressing strain, incubation time: 1h) and it still induces longevity even in a DAF-16 loss-of-function strain, we conclude, that baicalein increases stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Kohti parempaa tehohoitopotilaan suun terveyttä : suunhoito-opas teho-osaston hoidonantajille

    OpenAIRE

    Aarnio, Annemari; Knutar, Anni; Koivisto, Jenni; Marila, Iida; Neulaniemi, Sari; Palonen, Mirja; Pesonen, Tiina; Rajasuo, Anu; Rytkönen, Jenni; Saarela, Aino; Suokas, Sallamaari; Varrio, Annamari

    2011-01-01

    Opinnäytetyö on osa vuonna 2007 alkanutta "Työikäisen sydänpotilaan ja hänen perheensä sekä hoidonantajan ohjaaminen" -hanketta ja sen yhteistyökumppaneina ovat Metropolia Ammattikorkeakoulun suuhygienistiopiskelijat, Helsingin yliopistollinen keskussairaala (HYKS), Operatiivinen tulosyksikkö sekä teho-osasto 20. Opinnäytetyön tarkoituksena on koota suunhoito-opas teho-osastoille ja toteuttaa koulutustilaisuus hoidonantajille. Tavoitteena on vahvistaa ja tukea teho-osastojen hoidonantaji...

  11. Homologue Pairing in Flies and Mammals: Gene Regulation When Two Are Involved

    Directory of Open Access Journals (Sweden)

    Manasi S. Apte

    2012-01-01

    Full Text Available Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will contrast the role of pairing in transmitting information between homologues in flies and mammals. In mammals, somatic homologue pairing is tightly regulated, occurring at specific loci and in a developmentally regulated fashion. Inappropriate pairing, or loss of normal pairing, is associated with gene misregulation in some disease states. While homologue pairing in flies is capable of influencing gene expression, the significance of this for normal expression remains unknown. The sex chromosomes pose a particularly interesting situation, as females are able to pair X chromosomes, but males cannot. The contribution of homologue pairing to the biology of the X chromosome will also be discussed.

  12. LAPSILLE SUUNNATTU VIDEO-OPAS AKTIIVISUUDEN JA TARKKAAVUUDEN HÄIRIÖSTÄ

    OpenAIRE

    Lämsä, Suvi; Moilanen, Laura; Määttä, Susanna

    2017-01-01

    TIIVISTELMÄ Lämsä, Suvi; Moilanen, Laura ja Määttä, Susanna. Lapsille suunnattu video-opas aktiivi-suuden ja tarkkaavuuden häiriöstä. Syksy 2017, 41 sivua ja 4 liitettä. Diakonia-ammattikorkeakoulu, Hoitotyön koulutusohjelma, sairaanhoitaja (AMK) sekä sairaanhoi-taja-diakonissa (AMK). Opinnäytetyön tarkoituksena oli tuottaa ohjausmateriaalia videon muodossa aktiivisuu-den ja tarkkaavuuden häiriön (ADHD) omaavien lasten ja heidän perheidensä tueksi. Opinnäytetyön tavoitteena oli kehit...

  13. Toxicities of emamectin benzoate homologues and photodegradates to Lepidoptera.

    Science.gov (United States)

    Argentine, Joseph A; Jansson, Richard K; Starner, Van R; Halliday, W Ross

    2002-12-01

    The toxicity of a number of emamectin benzoate homologues and photodegradates to five species of Lepidoptera was investigated using diet and foliar bioassays. The emamectin benzoate homologues B1a and B1b were equally toxic in the diet and foliar assays to Spodoptera exigua (Hübner), Heliothis virescens (F.), Tricoplusia ni (Hübner), and Spodoptera frugiperda (J. E. Smith), within each of these species. Plutella xylostella (L.) was the most sensitive species to emamectin benzoate. The AB1a photodegradate of emamectin benzoate was as toxic as the parent compound in the diet assay. However, in the foliage assay AB1a was 4.4-fold less toxic to S. exigua than the parent compound. The MFB1a photodegradate of emamectin benzoate was as toxic as the parent compound to P. xylostella, and 3.1 to 6.2 times as toxic as the parent compound to the other species in the diet assay. The order of toxicity of the photodegradates were AB1a > MFB1a > FAB1a > 8,9-Z-MAB1a > PAB1a.

  14. Chemical constituents and biological activities of Dianthus elegans var. elegans.

    Science.gov (United States)

    Mutlu, Kiymet; Sarikahya, Nazli Boke; Nalbantsoy, Ayse; Kirmizigul, Suheyla

    2018-06-01

    Chemical investigation of the aerial parts of Dianthus elegans var. elegans afforded two previously undescribed saponins, named dianosides M-N (1-2), together with four oleanane-type triterpenoid glycosides (3-6). Their structures were elucidated as 3-O-α-L-arabinofuranosyl-16α-hydroxyolean-12-ene-23α, 28β-dioic acid (1) and 3-O-α-L-arabinofuranosyl-(1 → 3)-β-D-glucopyranosyl 16α-hydroxyolean-12-ene-23α-oic acid, 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glycosyl ester (2) by chemical and extensive spectroscopic methods including IR, 1D, 2D NMR and HRESIMS. Both of the saponins were evaluated for their cytotoxicities against HEK-293, A-549 and HeLa human cancer cells using the MTT method. All compounds showed no substantial cytotoxic activity against tested cell lines. However, dianosides M-N and the n-butanol fraction exhibited considerable haemolysis in human erythrocyte cells. The immunomodulatory properties of dianosides M-N were also evaluated in activated whole blood cells by PMA plus ionomycin. Dianosides M-N increased IL-1β concentration significantly whereas the n-butanol fraction slightly augmented IL-1β secretion. All compounds did not change IL-2 and IFN-γ levels considerably.

  15. C. elegans microRNAs.

    Science.gov (United States)

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  16. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    Science.gov (United States)

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  17. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  18. Screening for bioactivity of Mutinus elegans extracts

    Science.gov (United States)

    Gajendiran, A.; Cyriac, RE; Abraham, J.

    2017-11-01

    Mutinus elegans is a species of fungi that is commonly called as Elegant Stinkhorn. The aim of this study was to screen the crude extracts of the fungus for phytochemical analysis, antimicrobial activity, antioxidant assay and anticancer activity. Extraction of the fungal sample in Soxhlet apparatus was done with n-hexane and methanol as the solvent. Stock solutions of the crude methanol extract were prepared and used for microbiological assay. Thin layer chromatography was performed in order to determine the number of active components in n-hexane, and methanol solvent system for the fungus Mutinus elegans. Further, antioxidant assay was performed using DPPH radical scavenging assay. The fungal sample was then tested for cytotoxicity assay against MG63 osteosarcoma cell lines. The antimicrobial assay of Mutinus elegans extract exhibited activity against five pathogens. The zone of inhibition was measured with respect to standard antibiotics. Gas chromatography and Mass spectrometry (GC/MS analysis), revealed the presence of dibromo-tetradecan-1-ol-acetate, 2-myristynoyl-glycinamide, fumaric acid, and cyclohexylmethyldecyl ester compounds were presented in methanol and n-hexane extract of Mutinus elegans. The present study concludes the presence of bioactive compound in the extract which exhibited antimicrobial and antioxidant activity in Mutinus elegans.

  19. 75 FR 57373 - Amendment to Class D Airspace; Miami Opa Locka Airport, FL, and Hollywood, FL

    Science.gov (United States)

    2010-09-21

    ...This action amends Class D airspace at Opa Locka Airport, Miami, FL; and Hollywood, FL, by correcting the geographic coordinates of the airport to aid in the navigation of our National Airspace System.

  20. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans.

    Science.gov (United States)

    Kennedy, Lisa M; Grishok, Alla

    2014-05-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.

  1. Activity coefficients from molecular simulations using the OPAS method

    Science.gov (United States)

    Kohns, Maximilian; Horsch, Martin; Hasse, Hans

    2017-10-01

    A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.

  2. FLI-1 Flightless-1 and LET-60 Ras control germ line morphogenesis in C. elegans

    Directory of Open Access Journals (Sweden)

    Dentler William L

    2008-05-01

    Full Text Available Abstract Background In the C. elegans germ line, syncytial germ line nuclei are arranged at the cortex of the germ line as they exit mitosis and enter meiosis, forming a nucleus-free core of germ line cytoplasm called the rachis. Molecular mechanisms of rachis formation and germ line organization are not well understood. Results Mutations in the fli-1 gene disrupt rachis organization without affecting meiotic differentiation, a phenotype in C. elegans referred to here as the germ line morphogenesis (Glm phenotype. In fli-1 mutants, chains of meiotic germ nuclei spanned the rachis and were partially enveloped by invaginations of germ line plasma membrane, similar to nuclei at the cortex. Extensions of the somatic sheath cells that surround the germ line protruded deep inside the rachis and were associated with displaced nuclei in fli-1 mutants. fli-1 encodes a molecule with leucine-rich repeats and gelsolin repeats similar to Drosophila flightless 1 and human Fliih, which have been shown to act as cytoplasmic actin regulators as well as nuclear transcriptional regulators. Mutations in let-60 Ras, previously implicated in germ line development, were found to cause the Glm phenotype. Constitutively-active LET-60 partially rescued the fli-1 Glm phenotype, suggesting that LET-60 Ras and FLI-1 might act together to control germ line morphogenesis. Conclusion FLI-1 controls germ line morphogenesis and rachis organization, a process about which little is known at the molecular level. The LET-60 Ras GTPase might act with FLI-1 to control germ line morphogenesis.

  3. Isoxanthohumol, a constituent of hop (Humulus lupulus L.), increases stress resistance in Caenorhabditis elegans dependent on the transcription factor DAF-16.

    Science.gov (United States)

    Büchter, Christian; Havermann, Susannah; Koch, Karoline; Wätjen, Wim

    2016-02-01

    The flavanone isoxanthohumol (IX) has gained attention as antioxidative and chemopreventive agent, but the molecular mechanism of action remains unclear. We investigated effects of this secondary plant compound in vivo using the model organism Caenorhabditis elegans. Adult C. elegans nematodes were incubated with IX, and then, the stress resistance was analysed in the SYTOX assay; lifespan was monitored by touch-provoked movement method, the amount of reactive oxygen species (ROS) was measured in the DCF assay, and the nuclear localisation of the transcription factor DAF-16 was analysed by using a transgenic strain. By the use of a DAF-16 loss-of-function strain, we analysed whether the effects are dependent on DAF-16. IX increases the resistance of the nematode against thermal stress. Additionally, a reduction in ROS in vivo was caused by IX. Since the flavanone only has a marginal radical-scavenging capacity (TEAC assay), we suggest that IX mediates its antioxidative effects indirectly via activation of DAF-16 (homologue to mammalian FOXO proteins). The nuclear translocation of this transcription factor is increased by IX. In the DAF-16-mutated strain, the IX-mediated increase in stress resistance was completely abolished; furthermore, an increased formation of ROS and a reduced lifespan was mediated by IX. IX or a bacterial metabolite of IX causes antioxidative effects as well as an increased stress resistance in C. elegans via activation of DAF-16. The homologous pathway may have implications in the molecular mechanism of IX in mammals.

  4. Over-expression, purification and characterization of an Asc-1 homologue from Gloeobacter violaceus

    DEFF Research Database (Denmark)

    Wang, Xiaole; Hald, Helle; Ernst, Heidi Asschenfeldt

    2010-01-01

    The human alanine-serine-cysteine transporter 1 (Asc-1) belongs to the slc7a family of solute carrier transporters. Asc-1 mediates the uptake of D-serine in an exchanger-type fashion, coupling the process to the release of alanine and cysteine. Among the bacterial Asc-1 homologues, one transporter...... of auto-induction was crucial for obtaining high yields and purity of the transporter. The transporter was purified with yields in the range of 0.2-0.4 mg per L culture and eluted in a single peak from a size-exclusion column. The circular dichroism spectrum revealed a folded and apparently all...

  5. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Directory of Open Access Journals (Sweden)

    Wendy B Iser

    2011-03-01

    Full Text Available Insulin/IGF-I-like signaling (IIS has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  6. Co-regulation of the DAF-16 target gene, cyp-35B1/dod-13, by HSF-1 in C. elegans dauer larvae and daf-2 insulin pathway mutants.

    Science.gov (United States)

    Iser, Wendy B; Wilson, Mark A; Wood, William H; Becker, Kevin; Wolkow, Catherine A

    2011-03-09

    Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans.

  7. CACN-1/Cactin plays a role in Wnt signaling in C. elegans.

    Directory of Open Access Journals (Sweden)

    Melissa LaBonty

    Full Text Available Wnt signaling is tightly regulated during animal development and controls cell proliferation and differentiation. In C. elegans, activation of Wnt signaling alters the activity of the TCF/LEF transcription factor, POP-1, through activation of the Wnt/β-catenin or Wnt/β-catenin asymmetry pathways. In this study, we have identified CACN-1 as a potential regulator of POP-1 in C. elegans larval development. CACN-1/Cactin is a well-conserved protein of unknown molecular function previously implicated in the regulation of several developmental signaling pathways. Here we have used activation of POPTOP, a POP-1-responsive reporter construct, as a proxy for Wnt signaling. POPTOP requires POP-1 and SYS-1/β-catenin for activation in L4 uterine cells. RNAi depletion experiments show that CACN-1 is needed to prevent excessive activation of POPTOP and for proper levels and/or localization of POP-1. Surprisingly, high POPTOP expression correlates with increased levels of POP-1 in uterine nuclei, suggesting POPTOP may not mirror endogenous gene expression in all respects. Genetic interaction studies suggest that CACN-1 may act partially through LIT-1/NLK to alter POP-1 localization and POPTOP activation. Additionally, CACN-1 is required for proper proliferation of larval seam cells. Depletion of CACN-1 results in a loss of POP-1 asymmetry and reduction of terminal seam cell number, suggesting an adoption of the anterior, differentiated fate by the posterior daughter cells. These findings suggest CACN-1/Cactin modulates Wnt signaling during larval development.

  8. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans.

    Science.gov (United States)

    Mack, Hildegard I D; Zhang, Peichuan; Fonslow, Bryan R; Yates, John R

    2017-05-25

    In Caenorhabditis elegans , reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.

  9. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses.

    Directory of Open Access Journals (Sweden)

    Jakob Begun

    2007-04-01

    Full Text Available Staphylococcus epidermidis and Staphylococcus aureus are leading causes of hospital-acquired infections that have become increasingly difficult to treat due to the prevalence of antibiotic resistance in these organisms. The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere to living and artificial surfaces and to resist host immune factors and antibiotics. Here, we show that the icaADBC locus, which synthesizes the biofilm-associated polysaccharide intercellular adhesin (PIA in staphylococci, is required for the formation of a lethal S. epidermidis infection in the intestine of the model nematode Caenorhabditis elegans. Susceptibility to S. epidermidis infection is influenced by mutation of the C. elegans PMK-1 p38 mitogen-activated protein (MAP kinase or DAF-2 insulin-signaling pathways. Loss of PIA production abrogates nematocidal activity and leads to reduced bacterial accumulation in the C. elegans intestine, while overexpression of the icaADBC locus in S. aureus augments virulence towards nematodes. PIA-producing S. epidermidis has a significant survival advantage over ica-deficient S. epidermidis within the intestinal tract of wild-type C. elegans, but not in immunocompromised nematodes harboring a loss-of-function mutation in the p38 MAP kinase pathway gene sek-1. Moreover, sek-1 and pmk-1 mutants are equally sensitive to wild-type and icaADBC-deficient S. epidermidis. These results suggest that biofilm exopolysaccharide enhances virulence by playing an immunoprotective role during colonization of the C. elegans intestine. These studies demonstrate that C. elegans can serve as a simple animal model for studying host-pathogen interactions involving staphylococcal biofilm exopolysaccharide and suggest that the protective activity of biofilm matrix represents an ancient conserved function for resisting predation.

  10. Characterization of lipoproteins from the turtle, Trachemys scripta elegans, in fasted and fed states.

    Science.gov (United States)

    Cain, William; Song, Li; Stephens, Gregory; Usher, David

    2003-04-01

    The lipid and apolipoprotein composition of VLDL, IDL, LDL, HDL(2) and HDL(3) were examined in the turtle, Trachemys scripta elegans, in fasted and fed states. The lipid composition of turtle lipoproteins was very similar to their human counterparts. The major apolipoprotein found in LDL, IDL and VLDL, which has a molecular weight of approximately 550 kD, is a homologue of apoB100. The major apolipoprotein found in both HDL(2) and HDL(3), has a molecular weight of 28-kD and is homologous to human apoA-I. HDL(3) also contains a 6.5 kD protein that is homologous to apoA-II, while HDL(2) has two low molecular weight proteins of 6 kD and 7 kD which are also found on the triglyceride rich lipoproteins (TRL). The 7 kD protein is homologous to apoC-III, while the 6 kD protein has a similar size and distribution as apoC-II or apoC-I. In addition, HDL(2) also possesses a protein of 15.8 kD that has no obvious mammalian homologue. In both size and apolipoprotein composition, turtle HDL(2) resembles human HDL(2b) while turtle HDL(3) resembles human HDL(3). In the fasted state, turtles contained very little TRL. When fed a high fat diet, the amount of IDL and LDL sized particles increased significantly.

  11. nfi-1 affects behavior and life-span in C. elegans but is not essential for DNA replication or survival

    Directory of Open Access Journals (Sweden)

    Hirono Keiko

    2005-10-01

    Full Text Available Abstract Background The Nuclear Factor I (one (NFI family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. Results C. elegans NFI protein (CeNFI binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. Conclusion NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C

  12. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle.

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2009-08-01

    Full Text Available The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-beta signaling pathway.

  13. Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes

    International Nuclear Information System (INIS)

    Rivera, Steven P.; Choi, Hyun Ho; Chapman, Brett; Whitekus, Michael J.; Terao, Mineko; Garattini, Enrico; Hankinson, Oliver

    2005-01-01

    Aldehyde oxidases are a family of highly related molybdo-flavoenzymes acting upon a variety of compounds of industrial and medical importance. We have identified aldehyde oxidase 1 (AOX1) as a 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) inducible gene in the mouse hepatoma cell line Hepa-1. AOX1 mRNA levels were not increased by dioxin in mutant derivatives of the Hepa-1 cell line lacking either functional aryl hydrocarbon receptor (AHR) or aryl hydrocarbon receptor nuclear translocator (ARNT) proteins, thus demonstrating that transcriptional induction of AOX1 in response to dioxin occurs through the AHR pathway. Dioxin induction of AOX1 mRNA was also observed in mouse liver. In addition, levels of AOX1 protein as well as those of aldehyde oxidase homologue 1 (AOH1), a recently identified homolog of AOX1, were elevated in mouse liver in response to dioxin. Employing an aldehyde oxidase specific substrate, AOX1/AOH1 activity was shown to be induced by dioxin in mouse liver. This activity was inhibited by a known inhibitor of aldehyde oxidases, and eliminated by including tungstate in the mouse diet, which is known to lead to inactivation of molybdoflavoenzymes, thus confirming that the enzymatic activity was attributable to AOX1/AOH1. Our observations thus identify two additional xenobiotic metabolizing enzymes induced by dioxin

  14. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    Science.gov (United States)

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Rose Essential Oil Delayed Alzheimer's Disease-Like Symptoms by SKN-1 Pathway in C. elegans.

    Science.gov (United States)

    Zhu, Shuqian; Li, Hongyu; Dong, Juan; Yang, Wenqi; Liu, Ting; Wang, Yu; Wang, Xin; Wang, Meizhu; Zhi, Dejuan

    2017-10-11

    There are no effective medications for delaying the progress of Alzheimer's disease (AD), the most common neurodegenerative disease in the world. In this study, our results with C. elegans showed that rose essential oil (REO) significantly inhibited AD-like symptoms of worm paralysis and hypersensivity to exogenous 5-HT in a dose-dependent manner. Its main components of β-citronellol and geraniol acted less effectively than the oil itself. REO significantly suppressed Aβ deposits and reduced the Aβ oligomers to alleviate the toxicity induced by Aβ overexpression. Additionally, the inhibitory effects of REO on worm paralysis phenotype were abrogated only after skn-1 RNAi but not daf-16 and hsf-1 RNAi. REO markedly activated the expression of gst-4 gene, which further supported SKN-1 signaling pathway was involved in the therapeutic effect of REO on AD C. elegans. Our results provided direct evidence on REO for treating AD on an organism level and relative theoretical foundation for reshaping medicinal products of REO in the future.

  16. How the intestinal peptide transporter PEPT-1 contributes to an obesity phenotype in Caenorhabditits elegans.

    Directory of Open Access Journals (Sweden)

    Britta Spanier

    Full Text Available BACKGROUND: Amino acid absorption in the form of di- and tripeptides is mediated by the intestinal proton-coupled peptide transporter PEPT-1 (formally OPT-2 in Caenorhabditits elegans. Transporter-deficient animals (pept-1(lg601 show impaired growth, slowed postembryonal development and major changes in amino acid status. PRINCIPAL FINDINGS: Here we demonstrate that abolished intestinal peptide transport also leads to major metabolic alterations that culminate in a two fold increase in total body fat content. Feeding of C. elegans with [U-(13C]-labelled E. coli revealed a decreased de novo synthesis of long-chain fatty acids in pept-1(lg601 and reduced levels of polyunsaturated fatty acids. mRNA profiling revealed increased transcript levels of enzymes/transporters needed for peroxisomal beta-oxidation and decreased levels for those required for fatty acid synthesis, elongation and desaturation. As a prime and most fundamental process that may account for the increased fat content in pept-1(lg601 we identified a highly accelerated absorption of free fatty acids from the bacterial food in the intestine. CONCLUSIONS: The influx of free fatty acids into intestinal epithelial cells is strongly dependent on alterations in intracellular pH which is regulated by the interplay of PEPT-1 and the sodium-proton exchanger NHX-2. We here provide evidence for a central mechanism by which the PEPT-1/NHX-2 system strongly influences the in vivo fat content of C. elegans. Loss of PEPT-1 decreases intestinal proton influx leading to a higher uptake of free fatty acids with fat accumulation whereas loss of NHX-2 causes intracellular acidification by the PEPT-1 mediated proton/dipeptide symport with an almost abolished uptake of fatty acids and a lean phenotype.

  17. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    John T Murphy

    2011-03-01

    Full Text Available Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1 gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.

  18. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1.

    Science.gov (United States)

    Zhao, Xuan; Lu, Lulu; Qi, Yonghao; Li, Miao; Zhou, Lijun

    2017-10-01

    The naturally occurring anthraquinone emodin has been serving primarily as an anti-bacterial and anti-inflammatory agent. However, little is known about its potential on anti-aging. This investigation examined the effect of emodin on lifespan and focused on its physiological molecular mechanisms in vivo. Using Caenorhabditis elegans (C. elegans) as an animal model, we found emodin could extend lifespan of worms and improve their antioxidant capacity. Our mechanistic studies revealed that emodin might function via insulin/IGF-1 signaling (IIS) pathway involving, specifically the core transcription factor DAF-16. Quantitative RT-PCR results illustrated that emodin up-regulated transcription of DAF-16 target genes which express antioxidants to promote antioxidant capacity and lifespan of worms. In addition, attenuated effect in sir-2.1 mutants suggests that emodin likely functioned in a SIR-2.1-dependent manner. Our study uncovers a novel role of emodin in prolonging lifespan and supports the understanding of emodin being a beneficial dietary supplement.

  19. Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times.

    Science.gov (United States)

    Kasai, F; O'Brien, P C M; Martin, S; Ferguson-Smith, M A

    2012-01-01

    We report extensive chromosome homology revealed by chromosome painting between chicken (Gallus gallus domesticus, GGA, 2n = 78) macrochromosomes (representing 70% of the chicken genome) and the chromosomes of a turtle, the red-eared slider (Trachemys scripta elegans, TSC, 2n = 50), and the Nile crocodile (Crocodylus niloticus, CNI, 2n = 32). Our data show that GGA1-8 arms seem to be conserved in the arms of TSC chromosomes, GGA1-2 arms are separated and homologous to CNI1p, 3q, 4q and 5q. In addition to GGAZ homologues in our previous study, large-scale GGA autosome syntenies have been conserved in turtle and crocodile despite hundreds of millions of years divergence time. Based on phylogenetic hypotheses that crocodiles diverged after the divergence of birds and turtles, our results in CNI suggest that GGA1-2 and TSC1-2 represent the ancestral state and that chromosome fissions followed by fusions have been the mechanisms responsible for the reduction of chromosome number in crocodiles. Copyright © 2012 S. Karger AG, Basel.

  20. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  1. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Science.gov (United States)

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J; Saghatelian, Alan; Ausubel, Frederick M

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  2. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Brent Cezairliyan

    2013-01-01

    Full Text Available Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  3. Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates.

    Science.gov (United States)

    Saito, Takamune T; Youds, Jillian L; Boulton, Simon J; Colaiácovo, Monica P

    2009-11-01

    Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR-mediated repair at stalled replication forks. A reduction in crossover recombination frequencies-accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction-support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline.

  4. Visible light reduces C. elegans longevity.

    Science.gov (United States)

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  5. The monomeric orphan nuclear receptor Schistosoma mansoni Ftz-F1 dimerizes specifically and functionally with the schistosome RXR homologue, SmRXR1

    International Nuclear Information System (INIS)

    Bertin, Benjamin; Caby, Stephanie; Oger, Frederik; Sasorith, Souphatta; Wurtz, Jean-Marie; Pierce, Raymond J.

    2005-01-01

    In an attempt to understand development and differentiation processes of the parasitic blood fluke Schistosoma mansoni, several members of the nuclear receptor superfamily were cloned, including SmFtz-F1 (S. mansoni Fushi Tarazu-factor 1). The Ftz-F1 nuclear receptor subfamily only contains orphan receptors that bind to their response element as monomers. Whereas SmFtz-F1 displays these basic functional properties, we have identified an original and specific interaction between SmFtz-F1 and the schistosome RXR homologue, SmRXR1. The mammalian two-hybrid assay showed that the D, E, and F domains of SmFtz-F1 were capable of interacting specifically with the E domain of SmRXR1 but not with that of mouse RXRα. Using three-dimensional LBD homology modelling and structure-guided mutagenesis, we were able to demonstrate the essential role of exposed residues located in the dimerization interfaces of both receptors in the maintenance of the interaction. Cotransfection experiments with constructions encoding full-length nuclear receptors show that SmRXR1 potentiates the transcriptional activity of SmFtz-F1 from various promoters. Nevertheless, the lack of identification of a dimeric response element for this SmFtz-F1/SmRXR1 heterodimer seems to indicate a 'tethering' mechanism. Thus, our results suggest for the first time that a member of the Ftz-F1 family could heterodimerize functionally with a homologue of the universal heterodimerization partner of nuclear receptors. This unique property confirms that SmFtz-F1 may be involved in the development and differentiation of schistosome-specific structures

  6. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    Science.gov (United States)

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  7. Temperature-sensitive defects of the GSP1gene, yeast Ran homologue, activate the Tel1-dependent pathway

    International Nuclear Information System (INIS)

    Hayashi, Naoyuki; Murakami, Seishi; Tsurusaki, Susumu; Nagaura, Zen-ichiro; Oki, Masaya; Nishitani, Hideo; Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Nishimoto, Takeharu

    2007-01-01

    RanGTPase is involved in many cellular processes. It functions in nuclear-cytosolic transport and centrosome formation. Ran also localizes to chromatin as RCC1 does, its guanine nucleotide exchange factor, but Ran's function on chromatin is not known. We found that gsp1, a temperature-sensitive mutant of GSP1, a Saccharomyces cerevisiae Ran homologue, suppressed the hydroxyurea (HU) and ultra violet (UV) sensitivities of the mec1 mutant. In UV-irradiated mec1 gsp1 cells, Rad53 was phosphorylated despite the lack of Mec1. This suppression depended on the TEL1 gene, given that the triple mutant, mec1 gsp1 tel1, was unable to grow. The gsp1 mutations also suppressed the HU sensitivity of the rad9 mutant in a Tel1-dependent manner, but not the HU sensitivity of the rad53 mutant. These results indicated that Rad53 was activated by the Tel1 pathway in mec1 gsp1 cells, suggesting that Gsp1 helps regulate the role switching the ATM family kinases Mec1 and Tel1

  8. Single-Crystal X-Ray Diffraction Studies of Homologues in the Series nBa(Nb,Zr)O 3+3 mNbO with n=2, 3, 4, 5 and m=1

    Science.gov (United States)

    Nilsson, G.; Svensson, G.

    2001-01-01

    Single crystals of four homologues in the series nBa(Nb,Zr)O3+3mNbO, with n:m=2:1, 3:1, 4:1, and 5:1, were found in the reduced Ba-Nb-Zr-O system. Single-crystal X-ray diffraction data were collected for all the crystals. For all homologues the space group was found to be P4/mmm. The structures can be described as intergrowths of Ba(Nb,Zr)O3 perovskite and NbO slabs. The refined cell parameters and compositions of the 2:1, 3:1, and 4:1 homologues are a=4.1768(5) Å and c=12.269(2) Å for Ba2Nb4.5(1)Zr0.5(1)O9, a=4.1769(5) Å and c=16.493(3) Å for Ba3+δNb4.8(2)-δ Zr1.2(2)O12-δ (δ=0.098(4)), and a=4.1747(6) Å and c= 20.619(4) Å for Ba4+δNb5.1(4)-δZr1.9(4)O15-δ (δ=0.270(9)). The refined cell parameters of the 5:1 homologue are a=4.1727(3) Å and c=24.804(3) Å. Zr replaces Nb only in the NbO6 octahedra found in the perovskite slabs.

  9. Caenorhabditis elegans: nature and nurture gift to nematode parasitologists.

    Science.gov (United States)

    Salinas, Gustavo; Risi, Gastón

    2017-12-06

    The free-living nematode Caenorhabditis elegans is the simplest animal model organism to work with. Substantial knowledge and tools have accumulated over 50 years of C. elegans research. The use of C. elegans relating to parasitic nematodes from a basic biology standpoint or an applied perspective has increased in recent years. The wealth of information gained on the model organism, the use of the powerful approaches and technologies that have advanced C. elegans research to parasitic nematodes and the enormous success of the omics fields have contributed to bridge the divide between C. elegans and parasite nematode researchers. We review key fields, such as genomics, drug discovery and genetics, where C. elegans and nematode parasite research have convened. We advocate the use of C. elegans as a model to study helminth metabolism, a neglected area ready to advance. How emerging technologies being used in C. elegans can pave the way for parasitic nematode research is discussed.

  10. Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Leonie M Kamminga

    Full Text Available RNA interference (RNAi-related pathways affect gene activity by sequence-specific recruitment of Ago proteins to mRNA target molecules. The sequence specificity of this process stems from small RNA (sRNA co-factors bound by the Ago protein. Stability of sRNA molecules in some pathways is in part regulated by Hen1-mediated methylation of their 3' ends. Here we describe the effects of the Caenorhabditis elegans HEN1 RNA-methyl-transferase homolog, HENN-1, on the different RNAi pathways in this nematode. We reveal differential effects of HENN-1 on the two pathways that are known to employ methylated sRNA molecules: the 26G and 21U pathways. Surprisingly, in the germline, stability of 21U RNAs, the C. elegans piRNAs, is only mildly affected by loss of methylation; and introduction of artificial 21U target RNA does not further destabilize non-methylated 21U RNAs. In contrast, most 26G RNAs display reduced stability and respond to loss of HENN-1 by displaying increased 3'-uridylation frequencies. Within the 26G RNA class, we find that specifically ERGO-1-bound 26G RNAs are modified by HENN-1, while ALG-3/ALG-4-bound 26G RNAs are not. Global gene expression analysis of henn-1 mutants reveals mild effects, including down-regulation of many germline-expressed genes. Our data suggest that, apart from direct effects of reduced 26G RNA levels of henn-1 on gene expression, most effects on global gene expression are indirect. These studies further refine our understanding of endogenous RNAi in C. elegans and the roles for Hen1 like enzymes in these pathways.

  11. Appetitive Olfactory Learning and Long-Term Associative Memory in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Ichiro N. Maruyama

    2017-05-01

    Full Text Available Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US. It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS, and potassium chloride (KCl as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM and long-term memory (LTM, respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected

  12. A misleading false-negative result using Neisseria gonorrhoeae opa MGB multiplex PCR assay in patient's rectal sample due to partial mutations of the opa gene.

    Science.gov (United States)

    Vahidnia, Ali; van Empel, Pieter Jan; Costa, Sandra; Oud, Rob T N; van der Straaten, Tahar; Bliekendaal, Harry; Spaargaren, Joke

    2015-07-01

    A 53-year-old homosexual man presented at his general practitioner (GP) practice with a suspicion of sexually transmitted infection. Initial NAAT screening was performed for Chlamydia trachomatis and Neisseria gonorrhoeae. The patient was positive for Neisseria gonorrhoeae both for his urine and rectal sample. The subsequent confirmation test for Neisseria gonorrhoeae by a second laboratory was only confirmed for the urine sample and the rectal sample was negative. We report a case of a potential false-negative diagnosis of Neisseria gonorrhoeae due to mutations of DNA sequence in the probe region of opa-MGB assay of the rectal sample. The patient did not suffer any discomfort as diagnosis of Neisseria gonorrhoeae in his urine sample had already led to treatment by prescribing the patient with Ceftriaxone 500 mg IV dissolved in 1 ml lidocaine 2% and 4 mL saline. The patient also received a prescription for Azithromycin (2x500 mg).

  13. Homologue Pairing in Flies and Mammals: Gene Regulation When Two Are Involved

    OpenAIRE

    Apte, Manasi S.; Meller, Victoria H.

    2011-01-01

    Chromosome pairing is usually discussed in the context of meiosis. Association of homologues in germ cells enables chromosome segregation and is necessary for fertility. A few organisms, such as flies, also pair their entire genomes in somatic cells. Most others, including mammals, display little homologue pairing outside of the germline. Experimental evidence from both flies and mammals suggests that communication between homologues contributes to normal genome regulation. This paper will co...

  14. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway.

    Science.gov (United States)

    Fang, Evandro F; Waltz, Tyler B; Kassahun, Henok; Lu, Qiping; Kerr, Jesse S; Morevati, Marya; Fivenson, Elayne M; Wollman, Bradley N; Marosi, Krisztina; Wilson, Mark A; Iser, Wendy B; Eckley, D Mark; Zhang, Yongqing; Lehrmann, Elin; Goldberg, Ilya G; Scheibye-Knudsen, Morten; Mattson, Mark P; Nilsen, Hilde; Bohr, Vilhelm A; Becker, Kevin G

    2017-04-11

    Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.

  15. Fluphenazine reduces proteotoxicity in C. elegans and mammalian models of alpha-1-antitrypsin deficiency.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available The classical form of α1-antitrypsin deficiency (ATD is associated with hepatic fibrosis and hepatocellular carcinoma. It is caused by the proteotoxic effect of a mutant secretory protein that aberrantly accumulates in the endoplasmic reticulum of liver cells. Recently we developed a model of this deficiency in C. elegans and adapted it for high-content drug screening using an automated, image-based array scanning. Screening of the Library of Pharmacologically Active Compounds identified fluphenazine (Flu among several other compounds as a drug which reduced intracellular accumulation of mutant α1-antitrypsin Z (ATZ. Because it is representative of the phenothiazine drug class that appears to have autophagy enhancer properties in addition to mood stabilizing activity, and can be relatively easily re-purposed, we further investigated its effects on mutant ATZ. The results indicate that Flu reverses the phenotypic effects of ATZ accumulation in the C. elegans model of ATD at doses which increase the number of autophagosomes in vivo. Furthermore, in nanomolar concentrations, Flu enhances the rate of intracellular degradation of ATZ and reduces the cellular ATZ load in mammalian cell line models. In the PiZ mouse model Flu reduces the accumulation of ATZ in the liver and mediates a decrease in hepatic fibrosis. These results show that Flu can reduce the proteotoxicity of ATZ accumulation in vivo and, because it has been used safely in humans, this drug can be moved rapidly into trials for liver disease due to ATD. The results also provide further validation for drug discovery using C. elegans models that can be adapted to high-content drug screening platforms and used together with mammalian cell line and animal models.

  16. Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons.

    Science.gov (United States)

    Miranda-Vizuete, Antonio; Fierro González, Juan Carlos; Gahmon, Gabriele; Burghoorn, Jan; Navas, Plácido; Swoboda, Peter

    2006-01-23

    Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX-1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior-most intestinal cells. TRX-1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx-1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild-type. The identification and characterization of TRX-1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.

  17. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  18. A mutational analysis of Caenorhabditis elegans in space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Lai, Kenneth [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Cheung, Iris [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Youds, Jillian [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Maja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Sanja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Rose, Ann [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: arose@gene.nce.ubc.ca

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  19. A mutational analysis of Caenorhabditis elegans in space

    International Nuclear Information System (INIS)

    Zhao Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-01-01

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight

  20. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans.

    Science.gov (United States)

    Joo, Hyoe-Jin; Park, Saeram; Kim, Kwang-Youl; Kim, Mun-Young; Kim, Heekyeong; Park, Donha; Paik, Young-Ki

    2016-03-15

    The nematode worm Caenorhabditis elegans survives by adapting to environmental stresses such as temperature extremes by increasing the concentrations of ascaroside pheromones, termed ascarosides or daumones, which signal early C. elegans larvae to enter a non-aging dauer state for long-term survival. It is well known that production of ascarosides is stimulated by heat stress, resulting in enhanced dauer formation by which worms can adapt to environmental insults. However, the molecular mechanism by which ascaroside pheromone biosynthesis is stimulated by heat stress remains largely unknown. In the present study, we show that the heat-shock transcription factor HSF-1 can mediate enhanced ascaroside pheromone biosynthesis in response to heat stress by activating the peroxisomal fatty acid β-oxidation genes in C. elegans. To explore the potential molecular mechanisms, we examined the four major genes involved in the ascaroside biosynthesis pathway and then quantified the changes in both the expression of these genes and ascaroside production under heat-stress conditions. The transcriptional activation of ascaroside pheromone biosynthesis genes by HSF-1 was quite notable, which is not only supported by chromatin immunoprecipitation assays, but also accompanied by the enhanced production of chemically detectable major ascarosides (e.g. daumones 1 and 3). Consequently, the dauer formation rate was significantly increased by the ascaroside pheromone extracts from N2 wild-type but not from hsf-1(sy441) mutant animals grown under heat-stress conditions. Hence heat-stress-enhanced ascaroside production appears to be mediated at least in part by HSF-1, which seems to be important in adaptation strategies for coping with heat stress in this nematode. © 2016 Authors; published by Portland Press Limited.

  1. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  2. Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates.

    Directory of Open Access Journals (Sweden)

    Takamune T Saito

    2009-11-01

    Full Text Available Homologous recombination (HR is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci during premeiotic entry suggest that HIM-18 is required for HR-mediated repair at stalled replication forks. A reduction in crossover recombination frequencies-accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction-support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline.

  3. The Nucleolus of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Li-Wei Lee

    2012-01-01

    Full Text Available Nucleolar size and appearance correlate with ribosome biogenesis and cellular activity. The mechanisms underlying changes in nucleolar appearance and regulation of nucleolar size that occur during differentiation and cell cycle progression are not well understood. Caenorhabditis elegans provides a good model for studying these processes because of its small size and transparent body, well-characterized cell types and lineages, and because its cells display various sizes of nucleoli. This paper details the advantages of using C. elegans to investigate features of the nucleolus during the organism's development by following dynamic changes in fibrillarin (FIB-1 in the cells of early embryos and aged worms. This paper also illustrates the involvement of the ncl-1 gene and other possible candidate genes in nucleolar-size control. Lastly, we summarize the ribosomal proteins involved in life span and innate immunity, and those homologous genes that correspond to human disorders of ribosomopathy.

  4. Gene conversion and DNA sequence polymorphism in the sex-determination gene fog-2 and its paralog ftr-1 in Caenorhabditis elegans.

    Science.gov (United States)

    Rane, Hallie S; Smith, Jessica M; Bergthorsson, Ulfar; Katju, Vaishali

    2010-07-01

    Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male-female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations.

  5. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  6. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  7. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  8. Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate α-galactosidase and α-N-acetylgalactosaminidase

    Directory of Open Access Journals (Sweden)

    Kostrouchová Marta

    2005-01-01

    Full Text Available Abstract Background Human α-galactosidase A (α-GAL and α-N-acetylgalactosaminidase (α-NAGA are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD – Fabry (α-GAL deficiency and Schindler (α-NAGA deficiency diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins α-GAL and α-NAGA. Results BlastP searches for orthologs of human α-GAL and α-NAGA revealed a single C. elegans gene (R07B7.11 with homology to both human genes (α-galactosidase and α-N-acetylgalactosaminidase – gana-1. We cloned and sequenced the complete gana-1 cDNA and elucidated the gene organization. Phylogenetic analyses and homology modeling of GANA-1 based on the 3D structure of chicken α-NAGA, rice α-GAL and human α-GAL suggest a close evolutionary relationship of GANA-1 to both human α-GAL and α-NAGA. Both α-GAL and α-NAGA enzymatic activities were detected in C. elegans mixed culture homogenates. However, α-GAL activity on an artificial substrate was completely inhibited by the α-NAGA inhibitor, N-acetyl-D-galactosamine. A GANA-1::GFP fusion protein expressed from a transgene, containing the complete gana-1 coding region and 3 kb of its hypothetical promoter, was not detectable under the standard laboratory conditions. The GFP signal was observed solely in a vesicular compartment of coelomocytes of the animals treated with Concanamycin A (CON A or NH4Cl, agents that increase the pH of the cellular acidic compartment. Immunofluorescence detection of the fusion protein using polyclonal anti-GFP antibody showed a broader and coarsely granular cytoplasmic expression pattern in body wall muscle cells, intestinal cells, and a vesicular compartment of

  9. Effects of Larval Density on Gene Regulation in Caenorhabditis elegans During Routine L1 Synchronization.

    Science.gov (United States)

    Chan, Io Long; Rando, Oliver J; Conine, Colin C

    2018-05-04

    Bleaching gravid C. elegans followed by a short period of starvation of the L1 larvae is a routine method performed by worm researchers for generating synchronous populations for experiments. During the process of investigating dietary effects on gene regulation in L1 stage worms by single-worm RNA-Seq, we found that the density of resuspended L1 larvae affects expression of many mRNAs. Specifically, a number of genes related to metabolism and signaling are highly expressed in worms arrested at low density, but are repressed at higher arrest densities. We generated a GFP reporter strain based on one of the most density-dependent genes in our dataset - lips-15 - and confirmed that this reporter was expressed specifically in worms arrested at relatively low density. Finally, we show that conditioned media from high density L1 cultures was able to downregulate lips-15 even in L1 animals arrested at low density, and experiments using daf-22 mutant animals demonstrated that this effect is not mediated by the ascaroside family of signaling pheromones. Together, our data implicate a soluble signaling molecule in density sensing by L1 stage C. elegans , and provide guidance for design of experiments focused on early developmental gene regulation. Copyright © 2018 Chan et al.

  10. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway.

    Science.gov (United States)

    McEwan, Deborah L; Feinbaum, Rhonda L; Stroustrup, Nicholas; Haas, Wilhelm; Conery, Annie L; Anselmo, Anthony; Sadreyev, Ruslan; Ausubel, Frederick M

    2016-12-07

    Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.

  11. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    Science.gov (United States)

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  12. C. elegans AMPKs promote survival and arrest germline development during nutrient stress

    Directory of Open Access Journals (Sweden)

    Masamitsu Fukuyama

    2012-08-01

    Mechanisms controlling development, growth, and metabolism are coordinated in response to changes in environmental conditions, enhancing the likelihood of survival to reproductive maturity. Much remains to be learned about the molecular basis underlying environmental influences on these processes. C. elegans larvae enter a developmentally dormant state called L1 diapause when hatched into nutrient-poor conditions. The nematode pten homologue daf-18 is essential for maintenance of survival and germline stem cell quiescence during this period (Fukuyama et al., 2006; Sigmond et al., 2008, but the details of the signaling network(s in which it functions remain to be elucidated. Here, we report that animals lacking both aak-1 and aak-2, which encode the two catalytic α subunits of AMP-activated protein kinase (AMPK, show reduced viability and failure to maintain mitotic quiescence in germline stem cells during L1 diapause. Furthermore, failure to arrest germline proliferation has a long term consequence; aak double mutants that have experienced L1 diapause develop into sterile adults when returned to food, whereas their continuously fed siblings are fertile. Both aak and daf-18 appear to maintain germline quiescence by inhibiting activity of the common downstream target, TORC1 (TOR Complex 1. In contrast, rescue of the lethality phenotype indicates that aak-2 acts not only in the intestine, as does daf-18, but also in neurons, likely promoting survival by preventing energy deprivation during L1 diapause. These results not only provide evidence that AMPK contributes to survival during L1 diapause in a manner distinct from that by which it controls dauer diapause, but they also suggest that AMPK suppresses TORC1 activity to maintain stem cell quiescence.

  13. The Caenorhabditis elegans NF2/Merlin Molecule NFM-1 Nonautonomously Regulates Neuroblast Migration and Interacts Genetically with the Guidance Cue SLT-1/Slit.

    Science.gov (United States)

    Josephson, Matthew P; Aliani, Rana; Norris, Megan L; Ochs, Matthew E; Gujar, Mahekta; Lundquist, Erik A

    2017-02-01

    During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. Copyright © 2017 by the Genetics Society of America.

  14. MicroRNA-15a finetunes the level of Delta-like 1 homologue (DLK1) in proliferating 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Schneider, Mikael

    2010-01-01

    Delta like 1 homologue (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal...... increases with cell density, and peaks at the same stage where membrane DLK1(M) and soluble DLK1(S) are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1(M) protein while it increases the amount of DLK1(S) supporting a direct...... while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1(S). Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling...

  15. Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis.

    Science.gov (United States)

    Wiederschain, Dmitri; Chen, Lin; Johnson, Brett; Bettano, Kimberly; Jackson, Dowdy; Taraszka, John; Wang, Y Karen; Jones, Michael D; Morrissey, Michael; Deeds, James; Mosher, Rebecca; Fordjour, Paul; Lengauer, Christoph; Benson, John D

    2007-07-01

    Bmi-1 and Mel-18 are structural homologues that belong to the Polycomb group of transcriptional regulators and are believed to stably maintain repression of gene expression by altering the state of chromatin at specific promoters. While a number of clinical and experimental observations have implicated Bmi-1 in human tumorigenesis, the role of Mel-18 in cancer cell growth has not been investigated. We report here that short hairpin RNA-mediated knockdown of either Bmi-1 or Mel-18 in human medulloblastoma DAOY cells results in the inhibition of proliferation, loss of clonogenic survival, anchorage-independent growth, and suppression of tumor formation in nude mice. Furthermore, overexpression of both Bmi-1 and Mel-18 significantly increases the clonogenic survival of Rat1 fibroblasts. In contrast, stable downregulation of Bmi-1 or Mel-18 alone does not affect the growth of normal human WI38 fibroblasts. Proteomics-based characterization of Bmi-1 and Mel-18 protein complexes isolated from cancer cells revealed substantial similarities in their respective compositions. Finally, gene expression analysis identified a number of cancer-relevant pathways that may be controlled by Bmi-1 and Mel-18 and also showed that these Polycomb proteins regulate a set of common gene targets. Taken together, these results suggest that Bmi-1 and Mel-18 may have overlapping functions in cancer cell growth.

  16. Deficient and Null Variants of SERPINA1 Are Proteotoxic in a Caenorhabditis elegans Model of α1-Antitrypsin Deficiency.

    Directory of Open Access Journals (Sweden)

    Erin E Cummings

    Full Text Available α1-antitrypsin deficiency (ATD predisposes patients to both loss-of-function (emphysema and gain-of-function (liver cirrhosis phenotypes depending on the type of mutation. Although the Z mutation (ATZ is the most prevalent cause of ATD, >120 mutant alleles have been identified. In general, these mutations are classified as deficient (<20% normal plasma levels or null (<1% normal levels alleles. The deficient alleles, like ATZ, misfold in the ER where they accumulate as toxic monomers, oligomers and aggregates. Thus, deficient alleles may predispose to both gain- and loss-of-function phenotypes. Null variants, if translated, typically yield truncated proteins that are efficiently degraded after being transiently retained in the ER. Clinically, null alleles are only associated with the loss-of-function phenotype. We recently developed a C. elegans model of ATD in order to further elucidate the mechanisms of proteotoxicity (gain-of-function phenotype induced by the aggregation-prone deficient allele, ATZ. The goal of this study was to use this C. elegans model to determine whether different types of deficient and null alleles, which differentially affect polymerization and secretion rates, correlated to any extent with proteotoxicity. Animals expressing the deficient alleles, Mmalton, Siiyama and S (ATS, showed overall toxicity comparable to that observed in patients. Interestingly, Siiyama expressing animals had smaller intracellular inclusions than ATZ yet appeared to have a greater negative effect on animal fitness. Surprisingly, the null mutants, although efficiently degraded, showed a relatively mild gain-of-function proteotoxic phenotype. However, since null variant proteins are degraded differently and do not appear to accumulate, their mechanism of proteotoxicity is likely to be different to that of polymerizing, deficient mutants. Taken together, these studies showed that C. elegans is an inexpensive tool to assess the proteotoxicity of

  17. The ETS-5 transcription factor regulates activity states in Caenorhabditis elegans by controlling satiety

    DEFF Research Database (Denmark)

    Juozaityte, Vaida; Pladevall-Morera, David; Podolska, Agnieszka

    2017-01-01

    Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety......-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show......-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms....

  18. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans.

    Science.gov (United States)

    Martino, Lisa; Morchoisne-Bolhy, Stéphanie; Cheerambathur, Dhanya K; Van Hove, Lucie; Dumont, Julien; Joly, Nicolas; Desai, Arshad; Doye, Valérie; Pintard, Lionel

    2017-10-23

    In animal cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Whereas mitotic kinases have been implicated in NEBD, how they coordinate their activity to trigger this event is unclear. Here, we show that both in human cells and Caenorhabditis elegans, the Polo-like kinase 1 (PLK-1) is recruited to the nuclear pore complexes, just prior to NEBD, through its Polo-box domain (PBD). We provide evidence that PLK-1 localization to the nuclear envelope (NE) is required for efficient NEBD. We identify the central channel nucleoporins NPP-1/Nup58, NPP-4/Nup54, and NPP-11/Nup62 as the critical factors anchoring PLK-1 to the NE in C. elegans. In particular, NPP-1, NPP-4, and NPP-11 primed at multiple Polo-docking sites by Cdk1 and PLK-1 itself physically interact with the PLK-1 PBD. We conclude that nucleoporins play an unanticipated regulatory role in NEBD, by recruiting PLK-1 to the NE thereby facilitating phosphorylation of critical downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Si elegans project at the interface of experimental and computational Caenorhabditis elegans neurobiology and behavior

    Science.gov (United States)

    Petrushin, Alexey; Ferrara, Lorenzo; Blau, Axel

    2016-12-01

    Objective. In light of recent progress in mapping neural function to behavior, we briefly and selectively review past and present endeavors to reveal and reconstruct nervous system function in Caenorhabditis elegans through simulation. Approach. Rather than presenting an all-encompassing review on the mathematical modeling of C. elegans, this contribution collects snapshots of pathfinding key works and emerging technologies that recent single- and multi-center simulation initiatives are building on. We thereby point out a few general limitations and problems that these undertakings are faced with and discuss how these may be addressed and overcome. Main results. Lessons learned from past and current computational approaches to deciphering and reconstructing information flow in the C. elegans nervous system corroborate the need of refining neural response models and linking them to intra- and extra-environmental interactions to better reflect and understand the actual biological, biochemical and biophysical events that lead to behavior. Together with single-center research efforts, the Si elegans and OpenWorm projects aim at providing the required, in some cases complementary tools for different hardware architectures to support advancement into this direction. Significance. Despite its seeming simplicity, the nervous system of the hermaphroditic nematode C. elegans with just 302 neurons gives rise to a rich behavioral repertoire. Besides controlling vital functions (feeding, defecation, reproduction), it encodes different stimuli-induced as well as autonomous locomotion modalities (crawling, swimming and jumping). For this dichotomy between system simplicity and behavioral complexity, C. elegans has challenged neurobiologists and computational scientists alike. Understanding the underlying mechanisms that lead to a context-modulated functionality of individual neurons would not only advance our knowledge on nervous system function and its failure in pathological

  20. Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z.

    Directory of Open Access Journals (Sweden)

    Sager J Gosai

    2010-11-01

    Full Text Available The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms.

  1. Using Caenorhabditis elegans as a Model for Obesity Pharmacology Development.

    Science.gov (United States)

    Zheng, Jolene; Vasselli, Joseph R; King, Jason F; King, Michael L; We, Wenqian; Fitzpatrick, Zachary; Johnson, William D; Finley, John W; Martin, Roy J; Keenan, Michael J; Enright, Frederic M; Greenway, Frank L

    The Caenorhabditis elegans model is a rapid and inexpensive method to address pharmacologic questions. We describe the use of C. elegans to explore 2 pharmacologic questions concerning candidate antiobesity drugs and illustrate its potential usefulness in pharmacologic research: (1) to determine a ratio of betahistine-olanzapine that blocks the olanzapine-induced intestinal fat deposition (IFD) as detected by Nile red staining and (2) to identify the mechanism of action of a pharmaceutical candidate AB-101 that reduces IFD. Olanzapine (53 μg/mL) increased the IFD (12.1 ± 0.1%, P < 0.02), which was blocked by betahistine (763 μg/mL, 39.3 ± 0.01%, P < 0.05) in wild-type C. elegans (N2). AB-101 (1.0%) reduced the IFD in N2 (P < 0.05), increased the pharyngeal pumping rate (P < 0.05), and reversed the elevated IFD induced by protease inhibitors atazanavir and ritonavir (P < 0.05). AB-101 did not affect IFD in a ACS null mutant strain acs-4(ok2872) III/hT2[bli-4(e937) let-?(q782) qIs48](I;III) suggesting an involvement of the lipid oxidation pathway and an upregulation of CPT-1. Our studies suggest that C. elegans may be used as a resource in pharmacologic research. This article is intended to stimulate a greater appreciation of its value in the development of new pharmaceutical interventions.

  2. Combinatorial regulation of meiotic holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases.

    Science.gov (United States)

    Agostinho, Ana; Meier, Bettina; Sonneville, Remi; Jagut, Marlène; Woglar, Alexander; Blow, Julian; Jantsch, Verena; Gartner, Anton

    2013-01-01

    Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of "univalents" linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation

  3. Tat-mediated protein delivery in living Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Delom, Frederic; Fessart, Delphine; Caruso, Marie-Elaine; Chevet, Eric

    2007-01-01

    The Tat protein from HIV-1 fused with heterologous proteins traverses biological membranes in a transcellular process called: protein transduction. This has already been successfully exploited in various biological models, but never in the nematode worm Caenorhabditis elegans. TAT-eGFP or GST-eGFP proteins were fed to C. elegans worms, which resulted in the specific localization of Tat-eGFP to epithelial intestinal cells. This system represents an efficient tool for transcellular transduction in C. elegans intestinal cells. Indeed, this approach avoids the use of tedious purification steps to purify the TAT fusion proteins and allows for rapid analyses of the transduced proteins. In addition, it may represent an efficient tool to functionally analyze the mechanisms of protein transduction as well as to complement RNAi/KO in the epithelial intestinal system. To sum up, the advantage of this technology is to combine the potential of bacterial expression system and the Tat-mediated transduction technique in living worm

  4. C. elegans as a model in developmental neurotoxicology.

    Science.gov (United States)

    Ruszkiewicz, Joanna A; Pinkas, Adi; Miah, Mahfuzur R; Weitz, Rebecca L; Lawes, Michael J A; Akinyemi, Ayodele J; Ijomone, Omamuyovwi M; Aschner, Michael

    2018-03-14

    Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  6. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Kokel, David; Li, Yehua; Qin, Jun; Xue, Ding

    2006-06-01

    Naphthalene (1) and para-dichlorobenzene (PDCB, 2), which are widely used as moth repellents and air fresheners, cause cancer in rodents and are potential human carcinogens. However, their mechanisms of action remain unclear. Here we describe a novel method for delivering and screening hydrophobic chemicals in C. elegans and apply this technique to investigate the ways in which naphthalene and PDCB may promote tumorigenesis in mammals. We show that naphthalene and PDCB inhibit apoptosis in C. elegans, a result that suggests a cellular mechanism by which these chemicals may promote the survival and proliferation of latent tumor cells. In addition, we find that a naphthalene metabolite directly inactivates caspases by oxidizing the active site cysteine residue; this suggests a molecular mechanism by which these chemicals suppress apoptosis. Naphthalene and PDCB are the first small-molecule apoptosis inhibitors identified in C. elegans. The power of C. elegans molecular genetics, in combination with the possibility of carrying out large-scale chemical screens in this organism, makes C. elegans an attractive and economic animal model for both toxicological studies and drug screens.

  7. SKR-1, a homolog of Skp1 and a member of the SCFSEL-10 complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans

    Science.gov (United States)

    Killian, Darrell J.; Harvey, Elizabeth; Johnson, Peter; Otori, Muneyoshi; Mitani, Shohei; Xue, Ding

    2008-01-01

    Sex-determination in C. elegans requires regulation of gene transcription and protein activity and stability. sel-10 encodes a WD40-repeat-containing F-box protein that likely mediates the ubiquitin-mediated degradation of important sex-determination factors. Loss of sel-10 results in a mild masculinization of hermaphrodites, whereas dominant alleles of sel-10, such as sel-10(n1074), cause a more severe masculinization, including a reversal of the life versus death decision in sex-specific neurons. To investigate about how sel-10 regulates sex-determination, we conducted a sel-10(n1074) suppressor screen and isolated a weak loss-of-function allele of skr-1, one of 21 Skp1-related genes in C. elegans. Skp1, Cullin, and F-box proteins, such as SEL-10, are components of the SCF E3 ubiquitin ligase complex. We present genetic evidence that the sel-10(n1074) masculinization phenotype is dependent upon skr-1 and cul-1 activity. Furthermore, we show that the SKR-1(M140I) weak loss-of-function mutation interferes with SKR-1/SEL-10 binding. Unexpectedly, we found that the G567E substitution in SEL-10 caused by the n1074 allele impairs the binding of SEL-10 to SKR-1 and the dimerization of SEL-10, which may be important for SEL-10 function. Our results suggest that SKR-1, CUL-1 and SEL-10 constitute an SCF E3 ligase complex that plays an important role in modulating sex-determination and LIN-12/Notch signaling in C. elegans. PMID:18718460

  8. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    Directory of Open Access Journals (Sweden)

    Piper R Hunt

    Full Text Available Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  9. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-02

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.

  10. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-01-01

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  11. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun, E-mail: lijunzhou@tju.edu.cn

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  12. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans

    OpenAIRE

    Zhang, J; Calarco, JA; Shen, Y; Zhang, Y

    2014-01-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates ...

  13. A Hexose Transporter Homologue Controls Glucose Repression in the Methylotrophic Yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Stasyk, Oleh V.; Stasyk, Olena G.; Komduur, Janet; Veenhuis, Marten; Cregg, James M.; Sibirny, Andrei A.

    2004-01-01

    Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1

  14. Cell cycle accumulation of the proliferating cell nuclear antigen PCN-1 transitions from continuous in the adult germline to intermittent in the early embryo of C. elegans.

    Science.gov (United States)

    Kocsisova, Zuzana; Kornfeld, Kerry; Schedl, Tim

    2018-05-30

    The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor

  15. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    Science.gov (United States)

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  16. An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1

    Directory of Open Access Journals (Sweden)

    Wang Haiyang

    2002-12-01

    Full Text Available Abstract Background Constitutive photomorphogenic 1 (COP1 has been defined as a central regulator of photomorphogenic development in plants, which targets key transcription factors for proteasome-dependent degradation. Although COP1 mammalian homologue has been previously reported, its function and distribution in animal kingdom are not known. Results Here we report the characterization of full-length human and mouse COP1 cDNAs and the genomic structures of the COP1 genes from several different species. Mammalian COP1 protein binds to ubiquitinated proteins in vivo and is itself ubiquitinated. Furthermore, mammalian COP1 is predominately nuclear localized and exists primarily as a complex of over 700 kDa. Through mutagenesis studies, we have defined a leucine-rich nuclear export signal (NES within the coiled-coil domain of mammalian COP1 and a nuclear localization signal (NLS, which is composed of two clusters of positive-charged amino acids, bridged by the RING finger. Disruption of the RING finger structure abolishes the nuclear import, while deletion of the entire RING finger restores the nuclear import. Conclusions Our data suggest that mammalian COP1, similar to its plant homologue, may play a role in ubiquitination. Mammalian COP1 contains a classic leucine-rich NES and a novel bipartite NLS bridged by a RING finger domain. We propose a working model in which the COP1 RING finger functions as a structural scaffold to bring two clusters of positive-charged residues within spatial proximity to mimic a bipartite NLS. Therefore, in addition to its well-characterized role in ubiquitination, the RING finger domain may also play a structural role in nuclear import.

  17. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  18. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Waltz, Tyler B; Kassahun, Henok

    2017-01-01

    in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves...... many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating...... occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging....

  19. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells.

    Science.gov (United States)

    Qi, Shengcai; Yan, Yanhong; Wen, Yue; Li, Jialiang; Wang, Jing; Chen, Fubo; Tang, Xiaoshan; Shang, Guangwei; Xu, Yuanzhi; Wang, Raorao

    2017-06-01

    This study aimed to investigate the functions of delta-like homologue 1 (DLK1) in the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Immunohistochemical analysis was used to determine the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), DLK1, NOTCH1 and p-ERK1/2 in the mouse first maxillary molar. Recombinant lentivirus was constructed to overexpress DLK1 stably in hDPSCs. The cell viability and proliferation of hDPSCs were examined by CCK8 and EdU incorporation assay respectively. The odontoblastic differentiation of hDPSCs was determined by detection of ALPase activity assay, ALP and alizarin red staining and the expression of mineralization-related genes including ALP, DSPP and dental matrix protein. The mRNA and protein levels of DLK1 and p-ERK1/2 protein expression were detected. ERK inhibitor was used to test the differentiation effect of DLK1 on hDPSCs. Delta-like homologue 1 was highly expressed on the odontoblasts and dental pulp cells on the first maxillary molar; the expression of p-ERK1/2 is similar with the DLK1 in the same process. The expression level of DLK1 increased significantly after the odontoblastic induction of hDPSCs. DLK1 overexpression increased the proliferation ability of hDPSCs and inhibited odontoblastic differentiation of hDPSCs. The protein level of p-ERK1/2 significantly increased in hDPSCs/dlk1-oe group. ERK signalling pathway inhibitor reversed the odontoblastic differentiation effects of DLK1 on hDPSCs. The proliferation of hDPSCs was promoted after DLK1 overexpression. DLK1 inhibited the odontoblastic differentiation of hDPSCs, which maybe through ERK signalling pathway. © 2017 John Wiley & Sons Ltd.

  20. The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis

    DEFF Research Database (Denmark)

    Svensson, Emma; Olsen, Louise Cathrine Braun; Mörck, Catarina

    2011-01-01

    in the nematode C. elegans, named paqr-1, paqr-2 and paqr-3. These are differently expressed in the intestine (the main fat-storing tissue), hypodermis, muscles, neurons and secretory tissues, from which they could exert systemic effects. Analysis of mutants revealed that paqr-1 and -2 are novel metabolic...... regulators in C. elegans and that they act redundantly but independently from paqr-3. paqr-2 is the most important of the three paqr genes: mutants grow poorly, fail to adapt to growth at low temperature, and have a very high fat content with an abnormal enrichment in long (C20) poly-unsaturated fatty acids...... when combined with the paqr-1 mutation. paqr-2 mutants are also synthetic lethal with mutations in nhr-49, sbp-1 and fat-6, which are C. elegans homologs of nuclear hormone receptors, SREBP and FAT-6 (a Δ9 desaturase), respectively. Like paqr-2, paqr-1 is also synthetic lethal with sbp-1. Mutations...

  1. Immobilization of Caenorhabditis elegans to Analyze Intracellular Transport in Neurons.

    Science.gov (United States)

    Niwa, Shinsuke

    2017-10-18

    Axonal transport and intraflagellar transport (IFT) are essential for axon and cilia morphogenesis and function. Kinesin superfamily proteins and dynein are molecular motors that regulate anterograde and retrograde transport, respectively. These motors use microtubule networks as rails. Caenorhabditis elegans (C. elegans) is a powerful model organism to study axonal transport and IFT in vivo. Here, I describe a protocol to observe axonal transport and IFT in living C. elegans. Transported cargo can be visualized by tagging cargo proteins using fluorescent proteins such as green fluorescent protein (GFP). C. elegans is transparent and GFP-tagged cargo proteins can be expressed in specific cells under cell-specific promoters. Living worms can be fixed by microbeads on 10% agarose gel without killing or anesthetizing the worms. Under these conditions, cargo movement can be directly observed in the axons and cilia of living C. elegans without dissection. This method can be applied to the observation of any cargo molecule in any cells by modifying the target proteins and/or the cells they are expressed in. Most basic proteins such as molecular motors and adaptor proteins that are involved in axonal transport and IFT are conserved in C. elegans. Compared to other model organisms, mutants can be obtained and maintained more easily in C. elegans. Combining this method with various C. elegans mutants can clarify the molecular mechanisms of axonal transport and IFT.

  2. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1.

    Directory of Open Access Journals (Sweden)

    Victoria L Patterson

    Full Text Available HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson's disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30-40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.

  3. Demonstration of a 100-mJ OPO/OPA for future lidar applications and laser-induced damage threshold testing of optical components for MERLIN

    Science.gov (United States)

    Elsen, Florian; Livrozet, Marie; Strotkamp, Michael; Wüppen, Jochen; Jungbluth, Bernd; Kasemann, Raphael; Löhring, Jens; Meissner, Ansgar; Meyer, Rudolf; Hoffmann, Hans-Dieter; Poprawe, Reinhart

    2018-02-01

    In the field of atmospheric research, lidar is a powerful technology that can measure gas or aerosol concentrations, wind speed, or temperature profiles remotely. To conduct such measurements globally, spaceborne systems are advantageous. Pulse energies in the 100-mJ range are required to achieve highly accurate, longitudinal resolved measurements. Measuring concentrations of specific gases, such as CH4 or CO2, requires output wavelengths in the IR-B, which can be addressed by optical-parametric frequency conversion. An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6-μm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite methane remote-sensing lidar mission (MERLIN). To address the 100-mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With potassium titanyl phosphate as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25%. In addition to demonstrating optical performance for future lidar systems, this laser will be part of a laser-induced damage thresholds test facility, which will be used to qualify optical components especially for the MERLIN.

  4. Acute carbon dioxide avoidance in Caenorhabditis elegans.

    Science.gov (United States)

    Hallem, Elissa A; Sternberg, Paul W

    2008-06-10

    Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

  5. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction.

    Science.gov (United States)

    Zhao, Yang; Zhao, Liang; Zheng, Xiaonan; Fu, Tianjiao; Guo, Huiyuan; Ren, Fazheng

    2013-04-01

    In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.

  6. The expression of the rice (Oryza sativa L.) homologue of Snm1 is induced by DNA damages

    International Nuclear Information System (INIS)

    Kimura, Seisuke; Saotome, Ai; Uchiyama, Yukinobu; Mori, Yoko; Tahira, Yasue; Sakaguchi, Kengo

    2005-01-01

    We isolated and characterized the rice homologue of the DNA repair gene Snm1 (OsSnm1). The length of the cDNA was 1862 bp; the open reading frame encoded a predicted product of 485 amino acid residues with a molecular mass of 53.2 kDa. The OsSnm1 protein contained the conserved β-lactamase domain in its internal region. OsSnm1 was expressed in all rice organs. The expression was induced by MMS, H 2 O 2 , and mitomycin C, but not by UV. Transient expression of an OsSnm1/GFP fusion protein in onion epidermal cells revealed the localization of OsSnm1 to the nucleus. These results suggest that OsSnm1 is involved not only in the repair of DNA interstrand crosslinks, but also in various other DNA repair pathways

  7. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  8. SPAR1/RTEL1 maintains genomic stability by suppressing homologous recombination

    Science.gov (United States)

    Barber, Louise J.; Youds, Jillian L.; Ward, Jordan D.; McIlwraith, Michael J.; O’Neil, Nigel J.; Petalcorin, Mark I.R.; Martin, Julie S.; Collis, Spencer J.; Cantor, Sharon B.; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C.; Rose, Ann M.; Boulton, Simon J.

    2013-01-01

    SUMMARY Inappropriate homologous recombination (HR) can cause gross chromosomal rearrangements that in mammalian cells may lead to tumorigenesis. In yeast, the Srs2 protein is an anti-recombinase that eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has proven to be elusive. In this work, we identify C. elegans SPAR-1 as a functional analogue of Srs2 and describe its vertebrate counterpart, SPAR1/RTEL1, which is required for genome stability and tumour avoidance. We find that spar-1 mutant worms and SPAR1 knockdown human cells share characteristic phenotypes with yeast srs2 mutants, including inviability upon deletion of the sgs1/BLM homologue, hyper-recombination, and DNA damage sensitivity. In vitro, purified human SPAR1 antagonises HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control following deregulation of SPAR1/RTEL1 may be a critical event that drives genome instability and cancer. PMID:18957201

  9. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  10. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  11. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    Science.gov (United States)

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  12. Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans

    Directory of Open Access Journals (Sweden)

    Pupko Tal

    2008-10-01

    Full Text Available Abstract Transposable elements may acquire unrelated gene fragments into their sequences in a process called transduplication. Transduplication of protein-coding genes is common in plants, but is unknown of in animals. Here, we report that the Turmoil-1 transposable element in C. elegans has incorporated two protein-coding sequences into its inverted terminal repeat (ITR sequences. The ITRs of Turmoil-1 contain a conserved RNA recognition motif (RRM that originated from the rsp-2 gene and a fragment from the protein-coding region of the cpg-3 gene. We further report that an open reading frame specific to C. elegans may have been created as a result of a Turmoil-1 insertion. Mutations at the 5' splice site of this open reading frame may have reactivated the transduplicated RRM motif. Reviewers This article was reviewed by Dan Graur and William Martin. For the full reviews, please go to the Reviewers' Reports section.

  13. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    Science.gov (United States)

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  14. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  15. Caffeine Promotes Conversion of Palmitic Acid to Palmitoleic Acid by Inducing Expression of fat-5 in Caenorhabditis elegans and scd1 in Mice.

    Science.gov (United States)

    Du, Xiaocui; Huang, Qin; Guan, Yun; Lv, Ming; He, Xiaofang; Fang, Chongye; Wang, Xuanjun; Sheng, Jun

    2018-01-01

    The synthesis and metabolism of fatty acids in an organism is related to many biological processes and is involved in several diseases. The effects of caffeine on fatty acid synthesis and fat storage in Caenorhabditis elegans and mice were studied. After 6 h of food deprivation, adult C. elegans were treated with 0.1 mg/mL caffeine for 24 h. Quantitative reverse-transcription polymerase chain reaction showed that, among all the genes involved in fat accumulation, the mRNA expression of fat-5 in caffeine-treated C. elegans was significantly higher than that of controls, whereas fat-6 and fat-7 displayed no significant difference. Gas chromatography-mass spectrometry was used to verify the fatty acid composition of C. elegans . Results showed that the ratio of palmitoleic acid (16:1) to that of palmitic acid (16:0) was higher in the caffeine-treated group. Several mutant strains, including those involved in the insulin-like growth factor-1, dopamine, and serotonin pathways, and nuclear hormone receptors ( nhrs ), were used to assess their necessity to the effects of caffeine. We found that mdt-15 was essential for the effects of caffeine, which was independent of nhr-49 and nhr -80. Caffeine may increase fat-5 expression by acting on mdt-15 . In high fat diet (HFD), but not in normal diet (ND) mice, caffeine induced expression of scd1 in both subcutaneous and epididymal white adipose tissue, which was consistent with the palmitoleic/palmitic ratio results by gas chromatograph analysis. In mature adipocytes, caffeine treatment induced both mRNA and protein expression of scd1 and pgc-1 α. Overall, our results provided a possible mechanism on how caffeine modulates metabolism homeostasis in vivo .

  16. Genetic and physical mapping of homologues of the virus resistance gene Rx1 and the cyst nematode resistance gene Gpa2 in potato.

    Science.gov (United States)

    Bakker, E; Butterbach, P; Rouppe van der Voort, J; van der Vossen, E; van Vliet, J; Bakker, J; Goverse, A

    2003-05-01

    Nine resistance gene homologues (RGHs) were identified in two diploid potato clones (SH and RH), with a specific primer pair based on conserved motifs in the LRR domain of the potato cyst nematode resistance gene Gpa2 and the potato virus X resistance gene Rx1. A modified AFLP method was used to facilitate the genetic mapping of the RGHs in the four haplotypes under investigation. All nine RGHs appeared to be located in the Gpa2/ Rx1 cluster on chromosome XII. Construction of a physical map using bacterial artificial chromosome (BAC) clones for both the Solanum tuberosum ssp. tuberosum and the S. tuberosum ssp. andigena haplotype of SH showed that the RGHs are located within a stretch of less than 200 kb. Sequence analysis of the RGHs revealed that they are highly similar (93 to 95%) to Gpa2 and Rx1. The sequence identities among all RGHs range from 85 to 100%. Two pairs of RGHs are identical, or nearly so (100 and 99.9%), with each member located in a different genotype. Southern-blot analysis on genomic DNA revealed no evidence for additional homologues outside the Gpa2/ Rx1 cluster on chromosome XII.

  17. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  18. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  19. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  20. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  1. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    Directory of Open Access Journals (Sweden)

    Félix Marie-Anne

    2012-06-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000 contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures.

  2. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2010-01-01

    Full Text Available Abstract Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively. Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin

  3. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  4. The role of the leukemia-associated ETO homologue repressors in hematopoiesis

    OpenAIRE

    Olsson, André

    2006-01-01

    The fusion protein AML1-ETO is observed in acute myeloid patients with the chromosomal translocation t(8;21). Cells with this chimeric protein have impaired granulocytic and erythroid differentiation with accumulation of myeloblasts. The transcriptional co-repressor ETO (Eight Twenty One) was identified from the cloning of AML1-ETO. Subsequently, MTGR1 (Myeloid Translocation Gene-Related protein 1) and MTG16 (Myeloid Translocation Gene on chromosome 16) were found to be homologues to ETO, all...

  5. The Mycobacterium tuberculosis homologue of the Mycobacterium ...

    African Journals Online (AJOL)

    With the completion of genome sequencing of Mycobacterium tuberculosis and upsurge in the incidence of M. tuberculosis infection worldwide partly as a result of HIV pandemic, there is need for rationale approach to vaccine and chemotherapy discoveries for M. tuberculosis. The homologue of mig gene of. Mycobacterium ...

  6. Molecular characterization of Neisseria gonorrhoeae isolates in Almaty, Kazakhstan, by VNTR analysis, Opa-typing and NG-MAST.

    Science.gov (United States)

    Kushnir, Anastasiya V; Muminov, Talgat A; Bayev, Assylzhan I; Khrapov, Evgeny A; Filipenko, Maxim L

    2012-04-01

    In the present study, new variable number tandem repeats (VNTR) loci in the Neisseria gonorrhoeae genome were identified in silico. VNTR analysis scheme using PCR and agarose or polyacrylamide gel electrophoresis was developed based on nine VNTR loci with various degrees of polymorphism. The method was used to genotype a collection of 48 isolates, obtained from patients with gonorrhea in Almaty, Kazakhstan during the period from December 2008 to November 2009. This collection of isolates was also characterized by the opa-typing and multiantigen sequence typing (NG-MAST). The discriminatory power of the VNTR analysis translated by Hunter-Gaston Discrimination Index (HGDI) was similar to that of opa typing (HGDI=0.98 versus 0.97) and slightly higher than that of NG-MAST (HDGI=0.95). The adjusted Rand (AR) coefficients and Wallace coefficients showed that the overall concordance between the typing methods was not high. VNTR analysis described here is simple, inexpensive, easy to interpret, and it would be reliable for the comparison of data obtained in different laboratories. The proposed VNTR loci might be used for epidemiological studies of gonococcal infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Catalpol Modulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2 Activation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hyun Won Seo

    2015-01-01

    Full Text Available Catalpol is an effective component of rehmannia root and known to possess various pharmacological properties. The present study was aimed at investigating the potential effects of catalpol on the lifespan and stress tolerance using C. elegans model system. Herein, catalpol showed potent lifespan extension of wild-type nematode under normal culture condition. In addition, survival rate of catalpol-fed nematodes was significantly elevated compared to untreated control under heat and oxidative stress but not under hyperosmolality conditions. We also found that elevated antioxidant enzyme activities and expressions of stress resistance proteins were attributed to catalpol-mediated increased stress tolerance of nematode. We further investigated whether catalpol’s longevity effect is related to aging-related factors including reproduction, food intake, and growth. Interestingly, catalpol exposure could attenuate pharyngeal pumping rate, indicating that catalpol may induce dietary restriction of nematode. Moreover, locomotory ability of aged nematode was significantly improved by catalpol treatment, while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated changes of nematode. Our mechanistic studies revealed that mek-1, daf-2, age-1, daf-16, and skn-1 are involved in catalpol-mediated longevity. These results indicate that catalpol extends lifespan and increases stress tolerance of C. elegans via DAF-16/FOXO and SKN-1/Nrf activation dependent on insulin/IGF signaling and JNK signaling.

  8. Vauvat kiittävät, kun luovutat äidinmaitoa : Opas äidinmaidon luovuttajalle

    OpenAIRE

    Sirén, Elina; Kivioja, Eriika

    2013-01-01

    Opinnäytetyön tarkoituksena oli tehdä opas äidinmaidon luovutuksesta Pirkanmaan sairaanhoitopiirin äidinmaidon luovuttajille. Äidinmaito on parasta ravintoa keskosille ja vastasyntyneille vauvoille, sillä se tukee kasvua ja kehitystä. Äidinmaidon luovutus on tärkeää, jotta sairaalassa olevat vauvat saisivat tätä monipuolista ravintoa, silloin kun vauvan oman äidin maito ei riitä. Opinnäytetyön tehtävinä oli selvittää, mitä tarkoitetaan äidinmaidon luovutuksella, sekä mitä etuja äidinmaidosta ...

  9. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Kirienko, Natalia V; Cezairliyan, Brent O; Ausubel, Frederick M; Powell, Jennifer R

    2014-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the interaction between bacterial pathogens such as Pseudomonas aeruginosa and the metazoan innate immune system. Powerful genetic and molecular tools in both C. elegans and P. aeruginosa facilitate the identification and analysis of bacterial virulence factors as well as host defense factors. Here we describe three different assays that use the C. elegans-P. aeruginosa strain PA14 host-pathogen system. Fast Killing is a toxin-mediated death that depends on a diffusible toxin produced by PA14 but not on live bacteria. Slow Killing is due to an active infection in which bacteria colonize the C. elegans intestinal lumen. Liquid Killing is designed for high-throughput screening of chemical libraries for anti-infective compounds. Each assay has unique features and, interestingly, the PA14 virulence factors involved in killing are different in each assay.

  10. Doublesex: a conserved downstream gene controlled by diverse ...

    Indian Academy of Sciences (India)

    The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of ...

  11. Detection of a Yersinia pestis gene homologue in rodent samples

    Directory of Open Access Journals (Sweden)

    Timothy A. Giles

    2016-08-01

    Full Text Available A homologue to a widely used genetic marker, pla, for Yersinia pestis has been identified in tissue samples of two species of rat (Rattus rattus and Rattus norvegicus and of mice (Mus musculus and Apodemus sylvaticus using a microarray based platform to screen for zoonotic pathogens of interest. Samples were from urban locations in the UK (Liverpool and Canada (Vancouver. The results indicate the presence of an unknown bacterium that shares a homologue for the pla gene of Yersinia pestis, so caution should be taken when using this gene as a diagnostic marker.

  12. STEM Analysis of Caenorhabditis elegans muscle thick filaments: evidence for microdifferentiated substructures

    Science.gov (United States)

    Muller, S. A.; Haner, M.; Ortiz, I.; Aebi, U.; Epstein, H. F.

    2001-01-01

    In the thick filaments of body muscle in Caenorhabditis elegans, myosin A and myosin B isoforms and a subpopulation of paramyosin, a homologue of myosin heavy chain rods, are organized about a tubular core. As determined by scanning transmission electron microscopy, the thick filaments show a continuous decrease in mass-per-length (MPL) from their central zones to their polar regions. This is consistent with previously reported morphological studies and suggests that both their content and structural organization are microdifferentiated as a function of position. The cores are composed of a second distinct subpopulation of paramyosin in association with the alpha, beta, and gamma-filagenins. MPL measurements suggest that cores are formed from seven subfilaments containing four strands of paramyosin molecules, rather than the two originally proposed. The periodic locations of the filagenins within different regions and the presence of a central zone where myosin A is located, implies that the cores are also microdifferentiated with respect to molecular content and structure. This differentiation may result from a novel "induced strain" assembly mechanism based upon the interaction of the filagenins, paramyosin and myosin A. The cores may then serve as "differentiated templates" for the assembly of myosin B and paramyosin in the tapering, microdifferentiated polar regions of the thick filaments.

  13. Schistosoma mansoni c-AMP-dependent Protein Kinase (PKA): A Potential New Drug Target

    Science.gov (United States)

    2009-12-07

    subunits from other eukaryotic organisms (Aplysia californica, S. japonicum, Caenorhabditis 143 elegans Mus musculus, Onchocerca volvulus , and Homo...Caenorhabditis elegans PKA-R (J05220); OvR, Onchocerca volvulus PKA-R (AY159364). 156 157 Figure 19: RNAi of Sm04765 in...PKA cancer chemotherapeutics [12]. Interestingly, the PKA-R subunit homologue in Onchocerca volvulus , causative agent of river blindness, is being

  14. A Fasting-Responsive Signaling Pathway that Extends Life Span in C. elegans

    Directory of Open Access Journals (Sweden)

    Masaharu Uno

    2013-01-01

    Full Text Available Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown. Through a comprehensive transcriptome analysis in C. elegans, we find that along with the FOXO transcription factor DAF-16, AP-1 (JUN-1/FOS-1 plays a central role in fasting-induced transcriptional changes. KGB-1, one of the C. elegans JNKs, acts as an activator of AP-1 and is activated in response to fasting. KGB-1 and AP-1 are involved in intermittent fasting-induced longevity. Fasting-induced upregulation of the components of the SCF E3 ubiquitin ligase complex via AP-1 and DAF-16 enhances protein ubiquitination and reduces protein carbonylation. Our results thus identify a fasting-responsive KGB-1/AP-1 signaling pathway, which, together with DAF-16, causes transcriptional changes that mediate longevity, partly through regulating proteostasis.

  15. The rde-1 gene, RNA interference, and transposon silencing in C. elegans.

    Science.gov (United States)

    Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C

    1999-10-15

    Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.

  16. MPK-1 ERK Controls Membrane Organization in C. elegans Oogenesis via a Sex-Determination Module

    OpenAIRE

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-01-01

    Tissues that generate specialized cell-types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the C. elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis/organization during oogenesis. We discovered repeated utilization of a self-c...

  17. Dissecting the C. elegans response during infection using quantitative proteomics

    DEFF Research Database (Denmark)

    Simonsen, Karina Trankjær; Møller-Jensen, Jakob; Kristensen, Anders Riis

    2008-01-01

    The adherent invasive E. coli isolated from patients with Crohn’s disease in humans is pathogenic for C. elegans. We show here that when C. elegans feeds on the pathogenic E. coli, the life span is shortened significantly compared to the normal laboratory food, the OP50 E. coli. In this study...... the infection process is followed using GFP-expressing bacteria and persistence assays. A quantitative proteomic approach was used to follow the C. elegans host response during the infection process. C. elegans were metabolic labeled with the stable isotope 15N and samples from three different time points......, many of which also have been found in studies using other pathogens. So far, large-scale investigations of the C. elegans immune response have been performed using micro-arrays. This study is the first to make use of quantitative proteomics to directly follow the protein dynamics during the infection...

  18. The effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans during Shenzhou-8 mission

    Science.gov (United States)

    Xu, Dan; Sun, Yeqing; Gao, Ying; Xing, Yanfang

    microRNAs (miRNAs) is reported to be sensitive to radiation exposure and altered gravity, involved in a variety of biological processes through negative regulation of gene expression. Dystrophin-like dys-1 gene is expressed and required in muscle tissue, which plays a vital role in mechanical transduction when gravity varies. In the present study, we investigated the effect of dys-1 mutation on miRNA expression profile in Caenorhabditis elegans (C. elegans) under space radiation associated with microgravity (R+M) and radiation alone (R) environment during Shenzhou-8 mission. We performed miRNA microarray analysis in dys-1 mutant and wide-type (WT) of dauer larvae and found that 27 miRNAs changed in abundance after spaceflight. Compared with WT, there was different miRNA expression pattern in different treatments in dys-1 mutant. Cel-miR-796 and miR-124 were reversely expressed under R+M and R environment in WT and dys-1 mutant, respectively, indicating they might be affected by microgravity. Mutation of dys-1 remarkably reduced the number of altered miRNAs under space environment, resulting in the decrease of genes in biological categories of “body morphogenesis”, “behavior”, “cell adhesion” and so on. Particularly, we found that those genes controlling regulation of locomotion in WT were lost in dys-1 mutant, while genes in positive regulation of developmental process only existed in dys-1 mutant. miR-796 was predicted to target genes ace-1 and dyc-1 that are functionally linked to dys-1. Integration analysis of miRNA and mRNA expression profile revealed that miR-56 and miR-124 were involved in behavior and locomotion by regulating different target genes under space environment, among which nep-11, deb-1, C07H4.1 and F11H8.2 might be associated with neuromuscular system. Our findings suggest that dys-1 could cause alteration of miRNAs and target genes, involved in regulating the response of C. elegans to space microgravity in neuromuscular system. This

  19. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  20. View of environmental radiation effects from the study of radiation biology in C. elegans

    International Nuclear Information System (INIS)

    Sakashita, Tetsuya

    2011-01-01

    Caenorhabditis (C.) elegans is a non-parasitic soil nematode and is well-known as a unique model organism, because of its complete cell-lineage, nervous network and genome sequences. Also, C. elegans can be easily manipulated in the laboratory. These advantages make C. elegans as a good in vivo model system in the field of radiation biology. Radiation effects in C. elegans have been studied for three decades. Here, I briefly review the current knowledge of the biological effects of ionizing irradiation in C. elegans with a scope of environmental radiation effects. Firstly, basic information of C. elegans as a model organism is described. Secondly, historical view is reported on the study of radiation biology in C. elegans. Thirdly, our research on learning behavior is presented. Finally, an opinion of the use of C. elegans for environmental radiation protection is referred. I believe that C. elegans may be a good promising in vivo model system in the field of environmental radiation biology. (author)

  1. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Neale Harrison

    Full Text Available N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368, but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.

  2. skn-1 is required for interneuron sensory integration and foraging behavior in Caenorhabditis elegans.

    Science.gov (United States)

    Wilson, Mark A; Iser, Wendy B; Son, Tae Gen; Logie, Anne; Cabral-Costa, Joao V; Mattson, Mark P; Camandola, Simonetta

    2017-01-01

    Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.

  3. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans.

    Science.gov (United States)

    Vita-More, Natasha; Barranco, Daniel

    2015-10-01

    Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

  4. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  5. Formation of longitudinal axon pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Hutter, Harald

    2017-11-18

    The small number of neurons and the simple architecture of the Caenorhabditis elegans (C. elegans) nervous system enables researchers to study axonal pathfinding at the level of individually identified axons. Axons in C. elegans extend predominantly along one of the two major body axes, the anterior-posterior axis and the dorso-ventral axis. This review will focus on axon navigation along the anterior-posterior axis, leading to the establishment of the longitudinal axon tracts, with a focus on the largest longitudinal axon tract, the ventral nerve cord (VNC). In the VNC, axons grow out in a stereotypic order, with early outgrowing axons (pioneers) playing an important role in guiding later outgrowing (follower) axons. Genetic screens have identified a number of genes specifically affecting the formation of longitudinal axon tracts. These genes include secreted proteins, putative receptors and adhesion molecules, as well as intracellular proteins regulating the cell's response to guidance cues. In contrast to dorso-ventral navigation, no major general guidance cues required for the establishment of longitudinal pathways have been identified so far. The limited penetrance of defects found in many mutants affecting longitudinal navigation suggests that guidance cues act redundantly in this process. The majority of the axon guidance genes identified in C. elegans are evolutionary conserved, i.e. have homologs in other animals, including vertebrates. For a number of these genes, a role in axon guidance has not been described outside C. elegans. Taken together, studies in C. elegans contribute to a fundamental understanding of the molecular basis of axonal navigation that can be extended to other animals, including vertebrates and probably humans as well. Copyright © 2017. Published by Elsevier Ltd.

  6. Towards structural studies of the old yellow enzyme homologue SYE4 from Shewanella oneidensis and its complexes at atomic resolution

    International Nuclear Information System (INIS)

    Elegheert, Jonathan; Hemel, Debbie van den; Dix, Ina; Stout, Jan; Van Beeumen, Jozef; Brigé, Ann; Savvides, Savvas N.

    2009-01-01

    Of the four old yellow enzyme homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. Shewanella oneidensis is an environmentally versatile Gram-negative γ-proteobacterium that is endowed with an unusually large proteome of redox proteins. Of the four old yellow enzyme (OYE) homologues found in S. oneidensis, SYE4 is the homologue most implicated in resistance to oxidative stress. SYE4 was recombinantly expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 and were moderately pseudo-merohedrally twinned, emulating a P422 metric symmetry. The native crystals of SYE4 were of exceptional diffraction quality and provided complete data to 1.10 Å resolution using synchrotron radiation, while crystals of the reduced enzyme and of the enzyme in complex with a wide range of ligands typically led to high-quality complete data sets to 1.30–1.60 Å resolution, thus providing a rare opportunity to dissect the structure–function relationships of a good-sized enzyme (40 kDa) at true atomic resolution. Here, the attainment of a number of experimental milestones in the crystallographic studies of SYE4 and its complexes are reported, including isolation of the elusive hydride–Meisenheimer complex

  7. Identification of a candidate CD5 homologue in the amphibian Xenopus laevis.

    Science.gov (United States)

    Jürgens, J B; Gartland, L A; Du Pasquier, L; Horton, J D; Göbel, T W; Cooper, M D

    1995-11-01

    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cells.

  8. Lactobacillus casei triggers a TLR mediated RACK-1 dependent p38 MAPK pathway in Caenorhabditis elegans to resist Klebsiella pneumoniae infection.

    Science.gov (United States)

    Kamaladevi, Arumugam; Balamurugan, Krishnaswamy

    2016-07-13

    In the present study, the effect of Lactic Acid Bacteria (LAB) was investigated at the molecular level using the model organism Caenorhabditis elegans against Klebsiella pneumoniae. Out of the 13 LAB screened, Lactobacillus casei displayed excellent protective efficacy by prolonging the survival of K. pneumoniae-infected nematodes. Pretreatment with L. casei significantly decreased bacterial colonization and rescued K. pneumoniae-infected C. elegans from various physiological impairments. The concomitant upregulation of key immune genes that regulate the TLR, RACK-1 as well as the p38 MAPK pathway rather than the IIS and ERK pathway suggested that the plausible immunomodulatory mechanism of L. casei could be by triggering the TLR, RACK-1 and p38 MAPK pathway. Furthermore, the hyper-susceptibility of L. casei treated loss-of-function mutants of the tol-1, RACK-1 and p38 MAPK pathway (sek-1 and pmk-1) to K. pneumoniae infection and gene expression analysis suggested that L. casei triggered a TLR mediated RACK-1 dependent p38 MAPK pathway to increase host resistance and protect nematodes against K. pneumoniae infection.

  9. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  10. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  11. Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Myriam Passannante

    Full Text Available Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.

  12. Life span effects of Hypericum perforatum extracts on Caenorhabditis elegans under heat stress.

    Science.gov (United States)

    Kılıçgün, Hasan; Göksen, Gülden

    2012-10-01

    The beneficial effects of antioxidants in plants are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary antioxidants are beneficial in whole animals' life span or not. To address this question, under heat stress (35°C), Hypericum perforatum was extracted with petroleum ether and the nematodes Caenorhabditis elegans exposed to three different extract concentrations (1mg/mL, 0.1mg/mL, 0.01mg/mL) of H. perforatum. We report that Hypericum perforatum extracts did not increase life span and slow aging related increase in C. elegans. Moreover, one fraction (1mg/mL) increased declines of C. elegans life span and thermotolerance. Given this mounting evidence for life span role of H. perforatum in the presence of heat stress in vivo, the question whether H. perforatum acts as a prooxidant or an antioxidant in vivo under heat stress arises.

  13. Caenorhabditis elegans Egg-Laying Detection and Behavior Study Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Palm Megan

    2005-01-01

    Full Text Available Egg laying is an important phase of the life cycle of the nematode Caenorhabditis elegans (C. elegans. Previous studies examined egg-laying events manually. This paper presents a method for automatic detection of egg-laying onset using deformable template matching and other morphological image analysis techniques. Some behavioral changes surrounding egg-laying events are also studied. The results demonstrate that the computer vision tools and the algorithm developed here can be effectively used to study C. elegans egg-laying behaviors. The algorithm developed is an essential part of a machine-vision system for C. elegans tracking and behavioral analysis.

  14. Inhibition of Reactive Oxygen Species (ROS) and Nitric Oxide (NO) by Gelidium elegans Using Alternative Drying and Extraction Conditions in 3T3-L1 and RAW 264.7 Cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.

  15. skn-1 is required for interneuron sensory integration and foraging behavior in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark A Wilson

    Full Text Available Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.

  16. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA.

    Science.gov (United States)

    Govindaraju, Gayathri; Jabeena, C A; Sethumadhavan, Devadathan Valiyamangalath; Rajaram, Nivethika; Rajavelu, Arumugam

    2017-10-01

    In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans.

    Science.gov (United States)

    Yang, Ying-Fei; Lin, Yi-Jun; Liao, Chung-Min

    2017-01-01

    Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK)/toxicodynamic (TD) properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe 0 ) nanoparticles (NPs) are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe 0 NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe 0 NPs in C. elegans . Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe 0 NPs were ~50 and ~5×10 -3 , respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19-5.2), 3.84 (0.38-42), and 6.78 (2.58-21) μg·g -1 , respectively, implicating that fertility is the most sensitive endpoint in C. elegans . Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe 0 NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine.

  18. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  19. Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    The hormetic effect, which extends the lifespan by various stressors, has been confirmed in Caenorhabditis elegans (C. elegans). We have previously reported that oxidative stress resistance in a long-lived mutant age-1 is associated with the hormesis. In the age-1 allele, which activates an insulin/insulin-like growth factor-1 (Ins/IGF-1) signaling pathway, the superoxide dismutase (SOD) and catalase activities increased during normal aging. We now demonstrate changes in the mitochondrial superoxide radical (O 2 - ) levels of the hormetic conditioned age-related strains. The O 2 - levels in age-1 strain significantly decreased after intermittent hyperoxia exposure. On the other hand, this phenomenon was not observed in a daf-16 null mutant. This hormesis-dependent reduction of the O 2 - levels was observed even if the mitochondrial Mn-SOD was experimentally reduced. Therefore, it is indicated that the hormesis is mediated by events that suppress the mitochondrial O 2 - production. Moreover, some SOD gene expressions in the hormetic conditioned age-1 mutant were induced over steady state messenger ribonucleic acid (mRNA) levels. These data suggest that oxidative stress-inducible hormesis is associated with a reduction of the mitochondrial O 2 - production by activation of the antioxidant system via the Ins/IGF-1 signaling pathway. (author)

  20. Identification and Functional Characterization of the Caenorhabditis elegans Riboflavin Transporters rft-1 and rft-2

    Science.gov (United States)

    Biswas, Arundhati; Elmatari, Daniel; Rothman, Jason; LaMunyon, Craig W.; Said, Hamid M.

    2013-01-01

    Two potential orthologs of the human riboflavin transporter 3 (hRFVT3) were identified in the C. elegans genome, Y47D7A.16 and Y47D7A.14, which share 33.7 and 30.5% identity, respectively, with hRFVT3. The genes are tandemly arranged, and we assign them the names rft-1 (for Y47D7A.16) and rft-2 (for Y47D7A.14). Functional characterization of the coding sequences in a heterologous expression system demonstrated that both were specific riboflavin transporters, although the rft-1 encoded protein had greater transport activity. A more detailed examination of rft-1 showed its transport of riboflavin to have an acidic pH dependence, saturability (apparent Km = 1.4±0.5 µM), inhibition by riboflavin analogues, and Na+ independence. The expression of rft-1 mRNA was relatively higher in young larvae than in adults, and mRNA expression dropped in response to RF supplementation. Knocking down the two transporters individually via RNA interference resulted in a severe loss of fertility that was compounded in a double knockdown. Transcriptional fusions constructed with two fluorophores (rft-1::GFP, and rft-2::mCherry) indicated that rft-1 is expressed in the intestine and a small subset of neuronal support cells along the entire length of the animal. Expression of rft-2 is localized mainly to the intestine and pharynx. We also observed a drop in the expression of the two reporters in animals that were maintained in high riboflavin levels. These results report for the first time the identification of two riboflavin transporters in C. elegans and demonstrate their expression and importance to metabolic function in worms. Absence of transporter function renders worms sterile, making them useful in understanding human disease associated with mutations in hRFVT3. PMID:23483992

  1. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.

    Science.gov (United States)

    Zhang, Yanqiong; Chen, Dongliang; Smith, Michael A; Zhang, Baohong; Pan, Xiaoping

    2012-01-01

    Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs), the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans) has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools such as the real-time quantitative PCR (RT-qPCR). The most important factor that may affect the accuracy of RT-qPCR is to choose appropriate genes for normalization. In this study, we selected 13 reference gene candidates (act-1, cdc-42, pmp-3, eif-3.C, actin, act-2, csq-1, Y45F10D.4, tba-1, mdh-1, ama-1, F35G12.2, and rbd-1) to test their expression stability under different doses of nano-copper oxide (CuO 0, 1, 10, and 50 µg/mL) using RT-qPCR. Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, were employed to evaluate these 13 candidates expressions. As a result, tba-1, Y45F10D.4 and pmp-3 were the most reliable, which may be used as reference genes in future study of nanoparticle-induced genetic response using C.elegans.

  2. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  3. Gelidium elegans, an edible red seaweed, and hesperidin inhibit lipid accumulation and production of reactive oxygen species and reactive nitrogen species in 3T3-L1 and RAW264.7 cells.

    Science.gov (United States)

    Jeon, Hui-Jeon; Seo, Min-Jung; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2014-11-01

    Gelidium elegans is an edible red alga native to the intertidal area of northeastern Asia. We investigated the effect of G. elegans extract and its main flavonoids, rutin and hesperidin, on lipid accumulation and the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 3T3-L1 and RAW264.7 cells. Our data show that G. elegans extract decreased lipid accumulation and ROS/RNS production in a dose-dependent manner. The extract also inhibited the mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, while enhancing the protein expression of the antioxidant enzymes superoxide dismutases 1 and 2, glutathione peroxidase, and glutathione reductase compared with controls. In addition, lipopolysaccharide-induced nitric oxide production was significantly reduced in G. elegans extract-treated RAW264.7 cells. In analysis of the effects of G. elegans flavonoids on lipid accumulation and ROS/RNS production, only hesperidin showed an inhibitory effect on lipid accumulation and ROS production; rutin did not affect adipogenesis and ROS status. The antiadipogenic effect of hesperidin was evidenced by the downregulation of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and fatty acid binding protein 4 gene expression. Collectively, our data suggest that G. elegans is a potential food source containing antiobesity and antioxidant constituents. Copyright © 2014 John Wiley & Sons, Ltd.

  4. IMPACT OF FOOD AND FOLATE SUPPLEMENTATION DURING Salmonella TYPHI INFECTION IN Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Bhagavathi Sundaram Sivamaruthi

    2012-06-01

    Full Text Available Caenorhabditis elegans is an instructive and suitable model for studying pathogenesis of almost all human pathogens. Salmonella Typhi is gram-negative facultative intracellular anaerobe that causes several pathetic infections. Necessary enriched nutrient ingestion during pathological conditions may reduce the harshness of the infection. We investigated the impact of folate and food supplementation during S. Typhi infection on the model system, C. elegans. Our data indicated that folate supplementation (10 µg increases the lifespan of S. Typhi infected C. elegans up to 20%. In combination with laboratory food source E. coli OP50, folate increases the infected the worm’s lifespan to 40%. The wild type C. elegans infected by S. Typhi died with the LT50 of 60 ± 12 h. The LT50 of S. Typhi infected folt-1 mutant strain VC959 was 96 ± 6 h. However, the folate supplemented mutant worms exhibited an extended life with LT50 of 120 ± 6 h. The short time exposure and pharyngeal pumping studies confirmed that folt-1 mutant worm exhibited increased survival rate during pathogenic course at significant level when compared to wild-type. Our data revealed that folt-1 plays a significant role in host defense system against S. Typhi infection and the folate supplementation in combination with food increases the host survival during S. Typhi infection.

  5. Forgetting in C. elegans Is Accelerated by Neuronal Communication via the TIR-1/JNK-1 Pathway

    Directory of Open Access Journals (Sweden)

    Akitoshi Inoue

    2013-03-01

    Full Text Available The control of memory retention is important for proper responses to constantly changing environments, but the regulatory mechanisms underlying forgetting have not been fully elucidated. Our genetic analyses in C. elegans revealed that mutants of the TIR-1/JNK-1 pathway exhibited prolonged retention of olfactory adaptation and salt chemotaxis learning. In olfactory adaptation, conditioning induces attenuation of odor-evoked Ca2+ responses in olfactory neurons, and this attenuation is prolonged in the TIR-1/JNK-1-pathway mutant animals. We also found that a pair of neurons in which the pathway functions is required for the acceleration of forgetting, but not for sensation or adaptation, in wild-type animals. In addition, the neurosecretion from these cells is important for the acceleration of forgetting. Therefore, we propose that these neurons accelerate forgetting through the TIR-1/JNK-1 pathway by sending signals that directly or indirectly stimulate forgetting.

  6. Role of DAF-21protein in Caenorhabditis elegans immunity against Proteus mirabilis infection.

    Science.gov (United States)

    JebaMercy, Gnanasekaran; Durai, Sellegounder; Prithika, Udayakumar; Marudhupandiyan, Shanmugam; Dasauni, Pushpanjali; Kundu, Suman; Balamurugan, Krishnaswamy

    2016-08-11

    Caenorhabditis elegans is emerging as one of the handy model for proteome related studies due to its simplest system biology. The present study, deals with changes in protein expression in C. elegans infected with Proteus mirabilis. Proteins were separated using two-dimensional differential gel electrophoresis (2D-DIGE) and identified using MALDI-TOF. Twelve distinctly regulated proteins identified in the infected worms, included heat shock proteins involved stress pathway (HSP-1 and HSP-6), proteins involved in immune response pathway (DAF-21), enzymes involved in normal cellular process (Eukaryotic translation Elongation Factor, actin family member, S-adenosyl homocysteine hydrolase ortholog, glutamate dehydrogenase and Vacuolar H ATPase family member) and few least characterized proteins (H28O16.1 and H08J11.2). The regulation of selected players at the transcriptional level during Proteus mirabilis infection was analyzed using qPCR. Physiological experiments revealed the ability of P. mirabilis to kill daf-21 mutant C. elegans significantly compared with the wild type. This is the first report studying proteome changes in C. elegans and exploring the involvement of MAP Kinase pathway during P. mirabilis infection. This is the first report studying proteome changes in C. elegans during P. mirabilis infection. The present study explores the role and contribution of MAP Kinase pathway and its regulator protein DAF-21 involvement in the immunity against opportunistic pathogen P. mirabilis infection. Manipulation of this DAF-21 protein in host, may pave the way for new drug development or disease control strategy during opportunistic pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Courtship herding in the fiddler crab Uca elegans.

    Science.gov (United States)

    How, Martin J; Hemmi, Jan M

    2008-12-01

    Male and female animals are not always complicit during reproduction, giving rise to coercion. One example of a system that is assumed to involve sexual coercion is the mate herding behaviour of fiddler crabs: males push females towards the home burrow with the goal of forcing copulation at the burrow entrance. We recorded and analysed in detail the courtship behaviour of a North Australian species of fiddler crab Uca elegans. Courtship was composed of four main phases: broadcast waving, outward run, herding and at burrow display. During interactions males produced claw-waving displays which were directed posteriorly towards the female and which varied in timing and structure depending on the courtship phase. We suggest that courtship herding in U. elegans is driven primarily by mate choice for the following reasons, (1) females can evade herding, (2) no other reproductive strategies were observed, (3) males broadcast their presence and accompany courtship with conspicuous claw waves, and (4) the behaviour ends with the female leading the male into the home burrow. As an alternative function for herding in U. elegans we suggest that the behaviour represents a form of courtship guiding, in which males direct complicit females to the correct home burrow.

  8. Crystal structure of myotoxin-II: a myotoxic phospholipase A2 - homologue from Bothrops moojeni venom

    International Nuclear Information System (INIS)

    Azevedo, W.F.; Ward, R.J.; Lombardi, F.R.; Arni, R.K.; Soares, A.M.; Giglio, J.R.; Fontes, M.R.M.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ; E C 3.1.1.4, phosphatides s n-2 acyl hydrolases) hydrolysis the s n-2 ester bond of phospholipids showing enhanced activity at lamellar or membrane surfaces. Intracellular PLA 2 s are involved at phospholipid metabolism and signal transduction, whereas extracellular PLA 2 s are found in mammalian pancreatic juices, the venoms of snakes, lizards and insects. Based on their high primary sequence similarity, extracellular PLA 2 s are separated into Classes I, II and III. Class II PLA 2 s are found in snake venoms of Crotalidae an Viperidae species, and include the sub-family of Lys PLA 2 s homologue. he coordination of the Ca 2+ ion in the PLA 2 calcium-binding loop includes and aspartate at position 49. In the catalytically active PLA 2 s, this calcium ion plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The conservative substitution Asp49-Lys results in a decreased calcium affinity with a concomitant loss of catalytic activity, and naturally occurring PLA 2 s-homologues showing the same substitution are catalytically inactive. However, the Lys PLA 2 s possess cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid layers by a ca 2+ -independent mechanism for which there is no evidence of lipid hydrolysis. Lys 49 PLA 2 homologues have been isolated from several Bothrops spp. venoms including B. moojeni. Therefore, in order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ independent membrane damaging activities we have determined the crystal structure of MjTX-II, a Lys 49 homologue from the venom of B. moojeni. The model presented has been determined at 2.0 A resolution and refined to a crystallographic residual of 19.7% (R f ree=28.1%). (author)

  9. RNAi targeting Caenorhabditis elegans α-arrestins has small or no effects on lifespan [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sangsoon Park

    2017-10-01

    Full Text Available Background: α-arrestins are a family of proteins that are implicated in multiple biological processes, including metabolism and receptor desensitization. Methods: Here, we sought to examine the roles of α-arrestins in the longevity of Caenorhabditis elegans through an RNA interference screen. Results: We found that knocking down each of 24 out of total 29 C. elegans α-arrestins had small or no effects on lifespan. Thus, individual C. elegans α-arrestins may have minor effects on longevity. Conclusions: This study will provide useful information for future research on the functional role of α-arrestins in aging and longevity.

  10. Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance.

    Science.gov (United States)

    Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A

    2017-11-01

    Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.

  11. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1.

    Directory of Open Access Journals (Sweden)

    Kevin T Jones

    2009-03-01

    Full Text Available The target of rapamycin (TOR kinase coordinately regulates fundamental metabolic and cellular processes to support growth, proliferation, survival, and differentiation, and consequently it has been proposed as a therapeutic target for the treatment of cancer, metabolic disease, and aging. The TOR kinase is found in two biochemically and functionally distinct complexes, termed TORC1 and TORC2. Aided by the compound rapamycin, which specifically inhibits TORC1, the role of TORC1 in regulating translation and cellular growth has been extensively studied. The physiological roles of TORC2 have remained largely elusive due to the lack of pharmacological inhibitors and its genetic lethality in mammals. Among potential targets of TORC2, the pro-survival kinase AKT has garnered much attention. Within the context of intact animals, however, the physiological consequences of phosphorylation of AKT by TORC2 remain poorly understood. Here we describe viable loss-of-function mutants in the Caenorhabditis elegans homolog of the TORC2-specific component, Rictor (CeRictor. These mutants display a mild developmental delay and decreased body size, but have increased lipid storage. These functions of CeRictor are not mediated through the regulation of AKT kinases or their major downstream target, the insulin-regulated FOXO transcription factor DAF-16. We found that loss of sgk-1, a homolog of the serum- and glucocorticoid-induced kinase, mimics the developmental, growth, and metabolic phenotypes of CeRictor mutants, while a novel, gain-of-function mutation in sgk-1 suppresses these phenotypes, indicating that SGK-1 is a mediator of CeRictor activity. These findings identify new physiological roles for TORC2, mediated by SGK, in regulation of C. elegans lipid accumulation and growth, and they challenge the notion that AKT is the primary effector of TORC2 function.

  12. Untwisting the Caenorhabditis elegans embryo

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-01-01

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.10070.001 PMID:26633880

  13. Untwisting the Caenorhabditis elegans embryo.

    Science.gov (United States)

    Christensen, Ryan Patrick; Bokinsky, Alexandra; Santella, Anthony; Wu, Yicong; Marquina-Solis, Javier; Guo, Min; Kovacevic, Ismar; Kumar, Abhishek; Winter, Peter W; Tashakkori, Nicole; McCreedy, Evan; Liu, Huafeng; McAuliffe, Matthew; Mohler, William; Colón-Ramos, Daniel A; Bao, Zhirong; Shroff, Hari

    2015-12-03

    The nematode Caenorhabditis elegans possesses a simple embryonic nervous system with few enough neurons that the growth of each cell could be followed to provide a systems-level view of development. However, studies of single cell development have largely been conducted in fixed or pre-twitching live embryos, because of technical difficulties associated with embryo movement in late embryogenesis. We present open-source untwisting and annotation software (http://mipav.cit.nih.gov/plugin_jws/mipav_worm_plugin.php) that allows the investigation of neurodevelopmental events in late embryogenesis and apply it to track the 3D positions of seam cell nuclei, neurons, and neurites in multiple elongating embryos. We also provide a tutorial describing how to use the software (Supplementary file 1) and a detailed description of the untwisting algorithm (Appendix). The detailed positional information we obtained enabled us to develop a composite model showing movement of these cells and neurites in an 'average' worm embryo. The untwisting and cell tracking capabilities of our method provide a foundation on which to catalog C. elegans neurodevelopment, allowing interrogation of developmental events in previously inaccessible periods of embryogenesis.

  14. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  15. Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans.

    Directory of Open Access Journals (Sweden)

    Wai-Jiao Cai

    Full Text Available Compounds that delay aging might also postpone age-related diseases and extend healthspan in humans. Icariin is a flavonol extracted from several plant species of the Epimedium family. The icariin and its metabolic derivatives have been shown to exert wide protective effects in age-related diseases. However, whether icariin and its derivatives have the potency of delaying aging remains unclear. Here, we report that icariin and its derivative icariside II extend C. elegans lifespan. Using HPLC, we found high level of icariside II in the animals treated with icariin, suggesting icariside II is the bioactive form in vivo of icariin. Icariside II also increased the thermo and oxidative stress tolerance, slowed locomotion decline in late adulthood and delayed the onset of paralysis mediated by polyQ and Aβ(1-42 proteotoxicity. The lifespan extension effect of icariside II is dependent on the insulin/IGF-1 signaling (IIS since the daf-16(mu86 and daf-2(e1370 failed to show any lifespan extension upon icariside II treatment. Consistently, icariside II treatment upregulates the expression of DAF-16 targets in the wild-type. Moreover, our data suggests that the heat shock transcription factor HSF-1 has a role in icariside II-dependent lifespan extension further implicating the IIS pathway. In conclusion, we demonstrate a novel natural compound, icariside II as the bioactive form of icariin, extends the healthspan via IIS pathway in C. elegans.

  16. C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization.

    Science.gov (United States)

    Kim, Joanne S M; Hung, Wesley; Narbonne, Patrick; Roy, Richard; Zhen, Mei

    2010-01-01

    Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.

  17. Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Yang YF

    2017-06-01

    Full Text Available Ying-Fei Yang, Yi-Jun Lin, Chung-Min Liao Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan Abstract: Elucidating the relationships between the toxicity-based-toxicokinetic (TBTK/toxicodynamic (TD properties of engineered nanomaterials and their nanotoxicity is crucial for human health-risk analysis. Zerovalent iron (Fe0 nanoparticles (NPs are one of the most prominent NPs applied in remediating contaminated soils and groundwater. However, there are concerns that Fe0NP application contributes to long-term environmental and human health impacts. The nematode Caenorhabditis elegans is a surrogate in vivo model that has been successfully applied to assess the potential nanotoxicity of these nanomaterials. Here we present a TBTK/TD approach to appraise bioaccumulation and nanotoxicity of Fe0NPs in C. elegans. Built on a present C. elegans bioassay with estimated TBTK/TD parameters, we found that average bioconcentration factors in C. elegans exposed to waterborne and food-borne Fe0NPs were ~50 and ~5×10–3, respectively, whereas 10% inhibition concentrations for fertility, locomotion, and development, were 1.26 (95% CI 0.19–5.2, 3.84 (0.38–42, and 6.78 (2.58–21 µg·g–1, respectively, implicating that fertility is the most sensitive endpoint in C. elegans. Our results also showed that biomagnification effects were not observed in waterborne or food-borne Fe0NP-exposed worms. We suggest that the TBTK/TD assessment for predicting NP-induced toxicity at different concentrations and conditions in C. elegans could enable rapid selection of nanomaterials that are more likely to be nontoxic in larger animals. We conclude that the use of the TBTK/TD scheme manipulating C. elegans could be used for rapid evaluation of in vivo toxicity of NPs or for drug screening in the field of nanomedicine. Keywords: zerovalent iron nanoparticles, Caenorhabditis elegans

  18. Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Michels, Helen; Nollen, Ellen A. A.

    2014-01-01

    Caenorhabditis elegans comprises unique features that make it an attractive model organism in diverse fields of biology. Genetic screens are powerful to identify genes and C. elegans can be customized to forward or reverse genetic screens and to establish gene function. These genetic screens can be

  19. On-Demand Isolation and Manipulation of C. elegans by In Vitro Maskless Photopatterning.

    Directory of Open Access Journals (Sweden)

    C Ryan Oliver

    Full Text Available Caenorhabditis elegans (C. elegans is a model organism for understanding aging and studying animal behavior. Microfluidic assay techniques have brought widespread advances in C. elegans research; however, traditional microfluidic assays such as those based on soft lithography require time-consuming design and fabrication cycles and offer limited flexibility in changing the geometric environment during experimentation. We present a technique for maskless photopatterning of a biocompatible hydrogel on an NGM (Agar substrate, enabling dynamic manipulation of the C. elegans culture environment in vitro. Maskless photopatterning is performed using a projector-based microscope system largely built from off-the-shelf components. We demonstrate the capabilities of this technique by building micropillar arrays during C. elegans observation, by fabricating free-floating mechanisms that can be actuated by C. elegans motion, by using freehand drawing to isolate individual C. elegans in real time, and by patterning arrays of mazes for isolation and fitness testing of C. elegans populations. In vitro photopatterning enables rapid and flexible design of experiment geometry as well as real-time interaction between the researcher and the assay such as by sequential isolation of individual organisms. Future adoption of image analysis and machine learning techniques could be used to acquire large datasets and automatically adapt the assay geometry.

  20. Biotransformation of furanocoumarins by Cunninghamella elegans

    Directory of Open Access Journals (Sweden)

    Ghada Ismail El-shahat Ali Attia

    2015-06-01

    Full Text Available Biotransformation of Furanocoumarins; psoralen (1, bergapten (2, xanthotoxin (3 and imperatorin (4 was explored by Cunninghamella elegans NRRL 1392, revealing the metabolism of psoralen (1 and bergapten (2 into bergaptol (5, while xanthotoxin (3 and imperatorin (4 were converted into xanthotoxol (6. On the other hand unexpected conversion of xanthotoxin (3 into 3,4 dihydroxanthotoxin (7 occurred. The structure of the isolated pure metabolites was established using physical and spectroscopic techniques including, melting points, IR, 1H NMR, 13C NMR and mass spectroscopy.

  1. Inhibition of HMG-CoA reductase induces the UPR pathway in C. elegans

    DEFF Research Database (Denmark)

    Elmelund-Præstekær, Louise Cathrine Braun; Hansen, Nadia Jin Storm; Pilon, Marc

    -requiring enzyme-1 (IRE-1), and activating transcription factor-6 (ATF-6). Using a transgenic GFP reporter strain of the model organism C. elegans, we have recently identified that inhibition of the enzyme HMG-CoA reductase (HMG-CoAR) with Fluvastatin and knock down of HMG-CoAR using RNA interference (RNAi) both...... including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) which are necessary for posttranslational prenylation of several small G proteins. C. elegans are cholesterol auxotrophs, which enable us to investigate the isoprenoid branch and its role in UPR induction. We found...

  2. Shigella flexneri infection in Caenorhabditis elegans: cytopathological examination and identification of host responses.

    Directory of Open Access Journals (Sweden)

    Divya T George

    Full Text Available The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.

  3. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  4. The Proprotein Convertase KPC-1/Furin Controls Branching and Self-avoidance of Sensory Dendrites in Caenorhabditis elegans

    Science.gov (United States)

    Bülow, Hannes E.

    2014-01-01

    Animals sample their environment through sensory neurons with often elaborately branched endings named dendritic arbors. In a genetic screen for genes involved in the development of the highly arborized somatosensory PVD neuron in C. elegans, we have identified mutations in kpc-1, which encodes the homolog of the proprotein convertase furin. We show that kpc-1/furin is necessary to promote the formation of higher order dendritic branches in PVD and to ensure self-avoidance of sister branches, but is likely not required during maintenance of dendritic arbors. A reporter for kpc-1/furin is expressed in neurons (including PVD) and kpc-1/furin can function cell-autonomously in PVD neurons to control patterning of dendritic arbors. Moreover, we show that kpc-1/furin also regulates the development of other neurons in all major neuronal classes in C. elegans, including aspects of branching and extension of neurites as well as cell positioning. Our data suggest that these developmental functions require proteolytic activity of KPC-1/furin. Recently, the skin-derived MNR-1/menorin and the neural cell adhesion molecule SAX-7/L1CAM have been shown to act as a tripartite complex with the leucine rich transmembrane receptor DMA-1 on PVD mechanosensory to orchestrate the patterning of dendritic branches. Genetic analyses show that kpc-1/furin functions in a pathway with MNR-1/menorin, SAX-7/L1CAM and DMA-1 to control dendritic branch formation and extension of PVD neurons. We propose that KPC-1/furin acts in concert with the ‘menorin’ pathway to control branching and growth of somatosensory dendrites in PVD. PMID:25232734

  5. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2010-09-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is both sensitive and tolerant to hypoxic stress, particularly when the evolutionarily conserved hypoxia response pathway HIF-1/EGL-9/VHL is involved. Hypoxia-induced changes in the expression of a number of genes have been analyzed using whole genome microarrays in C. elegans, but the changes at the protein level in response to hypoxic stress still remain unclear. Results Here, we utilized a quantitative proteomic approach to evaluate changes in the expression patterns of proteins during the early response to hypoxia in C. elegans. Two-dimensional difference gel electrophoresis (2D-DIGE was used to compare the proteomic maps of wild type C. elegans strain N2 under a 4-h hypoxia treatment (0.2% oxygen and under normoxia (control. A subsequent analysis by MALDI-TOF-TOF-MS revealed nineteen protein spots that were differentially expressed. Nine of the protein spots were significantly upregulated, and ten were downregulated upon hypoxic stress. Three of the upregulated proteins were involved in cytoskeletal function (LEV-11, MLC-1, ACT-4, while another three upregulated (ATP-2, ATP-5, VHA-8 were ATP synthases functionally related to energy metabolism. Four ribosomal proteins (RPL-7, RPL-8, RPL-21, RPS-8 were downregulated, indicating a decrease in the level of protein translation upon hypoxic stress. The overexpression of tropomyosin (LEV-11 was further validated by Western blot. In addition, the mutant strain of lev-11(x12 also showed a hypoxia-sensitive phenotype in subsequent analyses, confirming the proteomic findings. Conclusions Taken together, our data suggest that altered protein expression, structural protein remodeling, and the reduction of translation might play important roles in the early response to oxygen deprivation in C. elegans, and this information will help broaden our knowledge on the mechanism of hypoxia response.

  6. The SPF27 homologue Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Nikola Kellner

    2014-01-01

    Full Text Available The conserved NineTeen protein complex (NTC is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking.

  7. The mevalonate pathway in C. Elegans

    Directory of Open Access Journals (Sweden)

    Rauthan Manish

    2011-12-01

    Full Text Available Abstract The mevalonate pathway in human is responsible for the synthesis of cholesterol and other important biomolecules such as coenzyme Q, dolichols and isoprenoids. These molecules are required in the cell for functions ranging from signaling to membrane integrity, protein prenylation and glycosylation, and energy homeostasis. The pathway consists of a main trunk followed by sub-branches that synthesize the different biomolecules. The majority of our knowledge about the mevalonate pathway is currently focused on the cholesterol synthesis branch, which is the target of the cholesterol-lowering statins; less is known about the function and regulation of the non-cholesterol-related branches. To study them, we need a biological system where it is possible to specifically modulate these metabolic branches individually or in groups. The nematode Caenorhabditis elegans (C. elegans is a promising model to study these non-cholesterol branches since its mevalonate pathway seems very well conserved with that in human except that it has no cholesterol synthesis branch. The simple genetic makeup and tractability of C. elegans makes it relatively easy to identify and manipulate key genetic components of the mevalonate pathway, and to evaluate the consequences of tampering with their activity. This general experimental approach should lead to new insights into the physiological roles of the non-cholesterol part of the mevalonate pathway. This review will focus on the current knowledge related to the mevalonate pathway in C. elegans and its possible applications as a model organism to study the non-cholesterol functions of this pathway.

  8. Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.

    Science.gov (United States)

    Gomez-Amaro, Rafael L; Valentine, Elizabeth R; Carretero, Maria; LeBoeuf, Sarah E; Rangaraju, Sunitha; Broaddus, Caroline D; Solis, Gregory M; Williamson, James R; Petrascheck, Michael

    2015-06-01

    Caenorhabditis elegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism. Copyright © 2015 by the Genetics Society of America.

  9. Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands

    Directory of Open Access Journals (Sweden)

    Jansen Gert

    2006-07-01

    Full Text Available Abstract Background G-protein-coupled receptors (GPCRs play a crucial role in many biological processes and represent a major class of drug targets. However, purification of GPCRs for biochemical study is difficult and current methods of studying receptor-ligand interactions involve in vitro systems. Caenorhabditis elegans is a soil-dwelling, bacteria-feeding nematode that uses GPCRs expressed in chemosensory neurons to detect bacteria and environmental compounds, making this an ideal system for studying in vivo GPCR-ligand interactions. We sought to test this by functionally expressing two medically important mammalian GPCRs, somatostatin receptor 2 (Sstr2 and chemokine receptor 5 (CCR5 in the gustatory neurons of C. elegans. Results Expression of Sstr2 and CCR5 in gustatory neurons allow C. elegans to specifically detect and respond to somatostatin and MIP-1α respectively in a robust avoidance assay. We demonstrate that mammalian heterologous GPCRs can signal via different endogenous Gα subunits in C. elegans, depending on which cells it is expressed in. Furthermore, pre-exposure of GPCR transgenic animals to its ligand leads to receptor desensitisation and behavioural adaptation to subsequent ligand exposure, providing further evidence of integration of the mammalian GPCRs into the C. elegans sensory signalling machinery. In structure-function studies using a panel of somatostatin-14 analogues, we identified key residues involved in the interaction of somatostatin-14 with Sstr2. Conclusion Our results illustrate a remarkable evolutionary plasticity in interactions between mammalian GPCRs and C. elegans signalling machinery, spanning 800 million years of evolution. This in vivo system, which imparts novel avoidance behaviour on C. elegans, thus provides a simple means of studying and screening interaction of GPCRs with extracellular agonists, antagonists and intracellular binding partners.

  10. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Schild-Prüfert, Kristina; Colaiácovo, Mónica P

    2008-06-06

    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.

  11. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.

    Science.gov (United States)

    Toth, Marton Lorant; Melentijevic, Ilija; Shah, Leena; Bhatia, Aatish; Lu, Kevin; Talwar, Amish; Naji, Haaris; Ibanez-Ventoso, Carolina; Ghose, Piya; Jevince, Angela; Xue, Jian; Herndon, Laura A; Bhanot, Gyan; Rongo, Chris; Hall, David H; Driscoll, Monica

    2012-06-27

    Caenorhabditis elegans is a powerful model for analysis of the conserved mechanisms that modulate healthy aging. In the aging nematode nervous system, neuronal death and/or detectable loss of processes are not readily apparent, but because dendrite restructuring and loss of synaptic integrity are hypothesized to contribute to human brain decline and dysfunction, we combined fluorescence microscopy and electron microscopy (EM) to screen at high resolution for nervous system changes. We report two major components of morphological change in the aging C. elegans nervous system: (1) accumulation of novel outgrowths from specific neurons, and (2) physical decline in synaptic integrity. Novel outgrowth phenotypes, including branching from the main dendrite or new growth from somata, appear at a high frequency in some aging neurons, but not all. Mitochondria are often associated with age-associated branch sites. Lowered insulin signaling confers some maintenance of ALM and PLM neuron structural integrity into old age, and both DAF-16/FOXO and heat shock factor transcription factor HSF-1 exert neuroprotective functions. hsf-1 can act cell autonomously in this capacity. EM evaluation in synapse-rich regions reveals a striking decline in synaptic vesicle numbers and a diminution of presynaptic density size. Interestingly, old animals that maintain locomotory prowess exhibit less synaptic decline than same-age decrepit animals, suggesting that synaptic integrity correlates with locomotory healthspan. Our data reveal similarities between the aging C. elegans nervous system and mammalian brain, suggesting conserved neuronal responses to age. Dissection of neuronal aging mechanisms in C. elegans may thus influence the development of brain healthspan-extending therapies.

  12. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans.

    Science.gov (United States)

    Su, Shan; Wink, Michael

    2015-09-01

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites, which have a wide range of bioactivities. Yet, their antiaging potential has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The antioxidant and antiaging properties of the isolated lignans were studied using Caenorhabditis elegans as a relevant animal model. All lignans at concentrations of 10 and 100 μM significantly extended the mean life span of C. elegans. The strongest effect was observed with matairesinol, which at a concentration of 100 μM extended the life span of worms by 25%. Additionally, we observed that five lignans are strong free radical-scavengers in vitro and in vivo and all lignans can improve survival of C. elegans under oxidative stress. Furthermore, the lignans can induce the nuclear translocation of the transcription factor DAF-16 and up-regulate its expression, suggesting that a possible underlying mechanism of the observed longevity-promoting activity of lignans depends on DAF-16 mediated signaling pathway. All lignans up-regulated the expression of jnk-1, indicating that lignans may promote the C. elegans longevity and stress resistance through a JNK-1-DAF-16 cascade. Our study reports new antiaging activities of lignans, which might be candidates for developing antiaging agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Protection of germline gene expression by the C. elegans Argonaute CSR-1.

    Science.gov (United States)

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2013-12-23

    In Caenorhabditis elegans, the Piwi-interacting small RNA (piRNA)-mediated germline surveillance system encodes more than 30,000 unique 21-nucleotide piRNAs, which silence a variety of foreign nucleic acids. What mechanisms allow endogenous germline-expressed transcripts to evade silencing by the piRNA pathway? One likely candidate in a protective mechanism is the Argonaute CSR-1, which interacts with 22G-small RNAs that are antisense to nearly all germline-expressed genes. Here, we use an in vivo RNA tethering assay to demonstrate that the recruitment of CSR-1 to a transcript licenses expression of the transcript, protecting it from piRNA-mediated silencing. Licensing occurs mainly at the level of transcription, as we observe changes in pre-mRNA levels consistent with transcriptional activation when CSR-1 is tethered. Furthermore, the recruitment of CSR-1 to a previously silenced locus transcriptionally activates its expression. Together, these results demonstrate a rare positive role for an endogenous Argonaute pathway in heritably licensing and protecting germline transcripts.

  14. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.

    Science.gov (United States)

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-02-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. Copyright © 2015 by the Genetics Society of America.

  15. The appropriateness of TACOM for a task complexity measure for emergency operating procedures of nuclear power plants - A comparison with OPAS scores

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea

    2007-01-01

    It is well known that complicated procedures frequently cause human performance related problems that can result in a serious consequence. Unfortunately a systematic framework to evaluate the complexity of procedures is very rare. For this reason Park et al. suggested a measure called TACOM (Task Complexity) which is able to quantify the complexity of tasks stipulated in procedures. In addition, it was observed that there is a significant correlation between averaged task performance time data and estimated TACOM scores. In this study, for an additional verification activity, TACOM scores are compared with operators' performance data that are measured by Operator Performance Assessment System (OPAS). As a result, it is believed that TACOM scores seem to be meaningfully correlated with OPAS scores. Thus, it is reasonable to expect that the result of this study can be regarded as a supplementary evidence for supporting the fact that TACOM measure is applicable for quantifying the complexity of tasks to be done by operators

  16. X-ray inactivation of Caenorhabditis elegans embryos or larvae

    Energy Technology Data Exchange (ETDEWEB)

    Ishi, N; Suzuki, K [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    1990-11-01

    The lethal effects of X-irradiation were examined in staged populations of Caenorhabditis elegans embryos or larvae. Radiation resistance decreased slightly throughout the first, proliferative phase of embryogenesis. This might be due to the increase in target size, since most cells in C. elegans are autonomously determined. Animals irradiated in the second half of embryogenesis were about 40-fold more resistant to the lethal effects of X-rays. This is probably due to the absence of cell divisions during this time. The radiation resistance increased still more with advancing larval stages. A radiation hypersensitive mutant, rad-1, irradiated in the first half of embryogenesis, is about 30-fold more sensitive than wild-type, but in the second half it is the same as wild-type. (author).

  17. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity.

    Directory of Open Access Journals (Sweden)

    Yanqiong Zhang

    Full Text Available Despite rapid development and application of a wide range of manufactured metal oxide nanoparticles (NPs, the understanding of potential risks of using NPs is less completed, especially at the molecular level. The nematode Caenorhabditis elegans (C.elegans has been emerging as an environmental model to study the molecular mechanism of environmental contaminations, using standard genetic tools such as the real-time quantitative PCR (RT-qPCR. The most important factor that may affect the accuracy of RT-qPCR is to choose appropriate genes for normalization. In this study, we selected 13 reference gene candidates (act-1, cdc-42, pmp-3, eif-3.C, actin, act-2, csq-1, Y45F10D.4, tba-1, mdh-1, ama-1, F35G12.2, and rbd-1 to test their expression stability under different doses of nano-copper oxide (CuO 0, 1, 10, and 50 µg/mL using RT-qPCR. Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method, were employed to evaluate these 13 candidates expressions. As a result, tba-1, Y45F10D.4 and pmp-3 were the most reliable, which may be used as reference genes in future study of nanoparticle-induced genetic response using C.elegans.

  18. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Takashi S Miki

    2016-09-01

    Full Text Available XRN2 is a conserved 5'→3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs. In Caenorhabditis elegans (C. elegans, the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2',5'-bisphosphate nucleotidase 1 (BPNT1 through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP. Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.

  19. OVO homologue-like 1 (Ovol1) transcription factor: a novel target of neurogenin-3 in rodent pancreas.

    Science.gov (United States)

    Vetere, A; Li, W-C; Paroni, F; Juhl, K; Guo, L; Nishimura, W; Dai, X; Bonner-Weir, S; Sharma, A

    2010-01-01

    The basic helix-loop-helix transcription factor neurogenin-3 (NGN3) commits the fates of pancreatic progenitors to endocrine cell types, but knowledge of the mechanisms regulating the choice between proliferation and differentiation of these progenitors is limited. Using a chromatin immunoprecipitation cloning approach, we searched for direct targets of NGN3 and identified a zinc-finger transcription factor, OVO homologue-like 1 (OVOL1). Transactivation experiments were carried out to elucidate the functional role of NGN3 in Ovol1 gene expression. Embryonic and adult rodents pancreases were immunostained for OVOL1, Ki67 and NGN3. We showed that NGN3 negatively regulates transcription of Ovol1 in an E-box-dependent fashion. The presence of either NGN3 or NEUROD1, but not MYOD, reduced endogenous Ovol1 mRNA. OVOL1 was detected in pancreatic tissue around embryonic day 15.5, after which OVOL1 levels dramatically increased. In embryonic pancreas, OVOL1 protein levels were low in NGN3(+) or Ki67(+) cells, but high in quiescent differentiated cells. OVOL1 presence was maintained in adult pancreas, where it was detected in islets, pancreatic ducts and some acinar cells. Additionally OVOL1 presence was lacking in proliferating ductules in regenerating pancreas and induced in cells as they began to acquire their differentiated phenotype. The timing of OVOL1 appearance in pancreas and its increased levels in differentiated cells suggest that OVOL1 promotes the transition of cells from a proliferating, less-differentiated state to a quiescent more-differentiated state. We conclude that OVOL1, a downstream target of NGN3, may play an important role in regulating the balance between proliferation and differentiation of pancreatic cells.

  20. Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi.

    Science.gov (United States)

    Lacaze, Isabelle; Lalucque, Hervé; Siegmund, Ulrike; Silar, Philippe; Brun, Sylvain

    2015-03-01

    NADPH oxidases (Nox) are membrane complexes that produce O2(-). Researches in mammals, plants and fungi highlight the involvement of Nox-generated ROS in cell proliferation, differentiation and defense. In mammals, the core enzyme gp91(phox)/Nox2 is associated with p22(phox) forming the flavocytochrome b558 ready for activation by a cytosolic complex. Intriguingly, no homologue of the p22(phox) gene has been found in fungal genomes, questioning how the flavoenzyme forms. Using whole genome sequencing combined with phylogenetic analysis and structural studies, we identify the fungal p22(phox) homologue as being mutated in the Podospora anserina mutant IDC(509). Functional studies show that the fungal p22(phox), PaNoxD, acts along PaNox1, but not PaNox2, a second fungal gp91(phox) homologue. Finally, cytological analysis of functional tagged versions of PaNox1, PaNoxD and PaNoxR shows clear co-localization of PaNoxD and PaNox1 and unravel a dynamic assembly of the complex in the endoplasmic reticulum and in the vacuolar system. © 2014 John Wiley & Sons Ltd.

  1. Combination therapy with thioridazine and dicloxacillin combats meticillin-resistant Staphylococcus aureus infection in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Poulsen, Marianne Ø; Schøler, Lone; Nielsen, Anette

    2014-01-01

    the thresholds of toxicity, determined by larval development, and induction of stress-response markers. No measurable effects were seen at concentrations of less than 64 mg TZ l(-1). Seven different MRSA strains were tested for pathogenicity against C. elegans, and the most virulent strain (ATCC 33591......) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l(-1) and 8 mg TZ l(-1) for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug...... alone resulted in a two- to threefold reduction in MRSA load. In conclusion, C. elegans can be used as a simple model to test synergy between DCX and TZ against MRSA. The previously demonstrated in vitro synergy can be reproduced in vivo....

  2. Combination therapy with thioridazine and dicloxacillin combats methicillin-resistant Staphylococcus aureus infection in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Poulsen, Marianne Østergaard; Schøler, Lone; Nielsen, Anette

    2014-01-01

    the thresholds of toxicity, determined by larval development, and induction of stress-response markers. No measurable effects were seen at concentrations of less than 64 mg TZ l(-1). Seven different MRSA strains were tested for pathogenicity against C. elegans, and the most virulent strain (ATCC 33591......) was selected for further analyses. In a final experiment, full-grown C. elegans were exposed to the test strain for 3 days and subsequently treated with 8 mg DCX l(-1) and 8 mg TZ l(-1) for 2 days. This resulted in a 14-fold reduction in the intestinal MRSA load as compared with untreated controls. Each drug...... alone resulted in a two- to threefold reduction in MRSA load. In conclusion, C. elegans can be used as a simple model to test synergy between DCX and TZ against MRSA. The previously demonstrated in vitro synergy can be reproduced in vivo....

  3. Control of neuropeptide expression by parallel activity-dependent pathways in caenorhabditis elegans

    DEFF Research Database (Denmark)

    Rojo Romanos, Teresa; Petersen, Jakob Gramstrup; Pocock, Roger

    2017-01-01

    Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. Elegans, CO 2 sensing...... is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO 2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. Elegans to avoid high CO 2. Here we show that c...... that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability...

  4. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.

    Science.gov (United States)

    Bretscher, Andrew Jonathan; Busch, Karl Emanuel; de Bono, Mario

    2008-06-10

    Homeostasis of internal carbon dioxide (CO2) and oxygen (O2) levels is fundamental to all animals. Here we examine the CO2 response of the nematode Caenorhabditis elegans. This species inhabits rotting material, which typically has a broad CO2 concentration range. We show that well fed C. elegans avoid CO2 levels above 0.5%. Animals can respond to both absolute CO2 concentrations and changes in CO2 levels within seconds. Responses to CO2 do not reflect avoidance of acid pH but appear to define a new sensory response. Sensation of CO2 is promoted by the cGMP-gated ion channel subunits TAX-2 and TAX-4, but other pathways are also important. Robust CO2 avoidance in well fed animals requires inhibition of the DAF-16 forkhead transcription factor by the insulin-like receptor DAF-2. Starvation, which activates DAF-16, strongly suppresses CO2 avoidance. Exposure to hypoxia (avoidance via activation of the hypoxia-inducible transcription factor HIF-1. The npr-1 215V allele of the naturally polymorphic neuropeptide receptor npr-1, besides inhibiting avoidance of high ambient O2 in feeding C. elegans, also promotes avoidance of high CO2. C. elegans integrates competing O2 and CO2 sensory inputs so that one response dominates. Food and allelic variation at NPR-1 regulate which response prevails. Our results suggest that multiple sensory inputs are coordinated by C. elegans to generate different coherent foraging strategies.

  5. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    Science.gov (United States)

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  6. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion.

    Science.gov (United States)

    Lin, Yuan-Na; Bhuwania, Ridhirama; Gromova, Kira; Failla, Antonio Virgilio; Lange, Tobias; Riecken, Kristoffer; Linder, Stefan; Kneussel, Matthias; Izbicki, Jakob R; Windhorst, Sabine

    2015-07-30

    Drosophila homologue of Diaphanous 1 (DIAPH1) regulates actin polymerization and microtubule (MT) stabilization upon stimulation with lysophosphatidic acid (LPA). Recently, we showed strongly reduced lung metastasis of DIAPH1-depleted colon cancer cells but we found accumulations of DIAPH1-depleted cells in bone marrow. Here, we analyzed possible organ- or tissue-specific metastasis of DIAPH1-depleted HCT-116 cells. Our data confirmed that depletion of DIAPH1 strongly inhibited lung metastasis and revealed that, in contrast to control cells, DIAPH1-depleted cells did not form metastases in further organs. Detailed mechanistic analysis on cells that were not stimulated with LPA to activate the cytoskeleton-modulating activity of DIAPH1, revealed that even under basal conditions DIAPH1 was essential for cellular adhesion to collagen. In non-stimulated cells DIAPH1 did not control actin dynamics but, interestingly, was essential for stabilization of microtubules (MTs). Additionally, DIAPH1 controlled directed vesicle trafficking and with this, local clustering of the adhesion protein integrin-β1 at the plasma membrane. Therefore, we conclude that under non-stimulating conditions DIAPH1 controls cellular adhesion by stabilizing MTs required for local clustering of integrin-β1 at the plasma membrane. Thus, blockade of DIAPH1-tubulin interaction may be a promising approach to inhibit one of the earliest steps in the metastatic cascade of colon cancer.

  7. The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans.

    Directory of Open Access Journals (Sweden)

    Meng Xie

    2015-06-01

    Full Text Available AMP-activated kinase (AMPK is a key regulator of many cellular mechanisms required for adjustment to various stresses induced by the changing environment. In C. elegans dauer larvae AMPK-null mutants expire prematurely due to hyperactive Adipose Triglyceride Lipase (ATGL-1 followed by rapid depletion of triglyceride stores. We found that the compromise of one of the three C. elegans orthologues of human cgi-58 significantly improves the survival of AMPK-deficient dauers. We also provide evidence that C. elegans CGI-58 acts as a co-activator of ATGL-1, while it also functions cooperatively to maintain regular lipid droplet structure. Surprisingly, we show that it also acts independently of ATGL-1 to restrict lipid droplet coalescence by altering the surface abundance and composition of long chain (C20 polyunsaturated fatty acids (PUFAs. Our data reveal a novel structural role of CGI-58 in maintaining lipid droplet homeostasis through its effects on droplet composition, morphology and lipid hydrolysis; a conserved function that may account for some of the ATGL-1-independent features unique to Chanarin-Dorfman Syndrome.

  8. Stable nuclear transformation of Eudorina elegans

    Directory of Open Access Journals (Sweden)

    Lerche Kai

    2013-02-01

    Full Text Available Abstract Background A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii and a multicellular alga with differentiated cell types (Volvox carteri. Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16–32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. Results Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3′-phosphotransferase VIII (aphVIII gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold at elevated temperatures. Long-term stability and both constitutive and

  9. Regulation of Heat Stress by HSF1 and GR

    Science.gov (United States)

    2016-09-01

    2014). Disruption of OPA1 assembly can cause an increase of mitochondrial permeability (Frezza et al., 2006; Yamaguchi et al., 2008) and dissipation... Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Kushnareva Y, Kuwana T, Ellisman MH & Newmeyer DD. (2008). Opa1-mediated cristae opening is

  10. Role for β-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions

    Science.gov (United States)

    Irazoqui, Javier E.; Ng, Aylwin; Xavier, Ramnik J.; Ausubel, Frederick M.

    2008-01-01

    We used the model nematode Caenorhabditis elegans infected with the human pathogen Staphylococcus aureus to identify components of epithelial immunity. Transcriptional profiling and reverse genetic analysis revealed that mutation of the C. elegans β-catenin homolog bar-1 or the downstream homeobox gene egl-5 results in a defective response and hypersensitivity to S. aureus infection. Epistasis analysis showed that bar-1 and egl-5 function in parallel to previously described C. elegans immune-response pathways. Overexpression of human homologs of egl-5 modulated NF-κB-dependent TLR2 signaling in epithelial cells. These data suggest that β-catenin and homeobox genes play an important and conserved role in innate immune defense. PMID:18981407

  11. Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions.

    Science.gov (United States)

    Irazoqui, Javier E; Ng, Aylwin; Xavier, Ramnik J; Ausubel, Frederick M

    2008-11-11

    We used the model nematode Caenorhabditis elegans infected with the human pathogen Staphylococcus aureus to identify components of epithelial immunity. Transcriptional profiling and reverse genetic analysis revealed that mutation of the C. elegans beta-catenin homolog bar-1 or the downstream homeobox gene egl-5 results in a defective response and hypersensitivity to S. aureus infection. Epistasis analysis showed that bar-1 and egl-5 function in parallel to previously described C. elegans immune-response pathways. Overexpression of human homologs of egl-5 modulated NF-kappaB-dependent TLR2 signaling in epithelial cells. These data suggest that beta-catenin and homeobox genes play an important and conserved role in innate immune defense.

  12. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    Science.gov (United States)

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  13. Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Dumas, Kathleen J; Ashrafi, Kaveh; Hu, Patrick J

    2013-10-01

    The AGC family serine-threonine kinases Akt and Sgk are similar in primary amino acid sequence and in vitro substrate specificity, and both kinases are thought to directly phosphorylate and inhibit FoxO transcription factors. In the nematode Caenorhabditis elegans, it is well established that AKT-1 controls dauer arrest and lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. SGK-1 is thought to act similarly to AKT-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1 null and gain-of-function mutants, we now provide multiple lines of evidence indicating that AKT-1 and SGK-1 influence C. elegans lifespan, stress resistance, and DAF-16/FoxO activity in fundamentally different ways. Whereas AKT-1 shortens lifespan, SGK-1 promotes longevity in a DAF-16-/FoxO-dependent manner. In contrast to AKT-1, which reduces resistance to multiple stresses, SGK-1 promotes resistance to oxidative stress and ultraviolet radiation but inhibits thermotolerance. Analysis of several DAF-16/FoxO target genes that are repressed by AKT-1 reveals that SGK-1 represses a subset of these genes while having little influence on the expression of others. Accordingly, unlike AKT-1, which promotes the cytoplasmic sequestration of DAF-16/FoxO, SGK-1 does not influence DAF-16/FoxO subcellular localization. Thus, in spite of their similar in vitro substrate specificities, Akt and Sgk influence longevity, stress resistance, and FoxO activity through distinct mechanisms in vivo. Our findings highlight the need for a re-evaluation of current paradigms of FoxO regulation by Sgk. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Models of Caenorhabditis elegans infection by bacterial and fungal pathogens.

    Science.gov (United States)

    Powell, Jennifer R; Ausubel, Frederick M

    2008-01-01

    The nematode Caenorhabditis elegans is a simple model host for studying the relationship between the animal innate immune system and a variety of bacterial and fungal pathogens. Extensive genetic and molecular tools are available in C. elegans, facilitating an in-depth analysis of host defense factors and pathogen virulence factors. Many of these factors are conserved in insects and mammals, indicating the relevance of the nematode model to the vertebrate innate immune response. Here, we describe pathogen assays for a selection of the most commonly studied bacterial and fungal pathogens using the C. elegans model system.

  15. Caenorhabditis elegans: a simple nematode infection model for Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Xiaowen Huang

    Full Text Available Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001. Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can't produce red pigment (P<0.001. Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.

  16. Use of the induced gene-expression in the soil nematode Caenorhabditis elegans as a biomonitor; Nutzung der induzierbaren Genexpression des Nematoden Caenorhabditis elegans als Biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, R.; Reichert, K.; Achazi, R. [Freie Univ. Berlin (Germany). Inst. fuer Biologie - Oekotoxikologie und Biochemie

    2002-07-01

    The soil nematode Caenorhabditis elegans is one of the simplest animals having the status of a laboratory model. Its already completely sequenced genome contains the remarkable number of 80 cytochrome P450 genes (CYP) and many further genes coding for enzymes involved in biotransformation. In order to study xenobiotically induced gene expression in C. elegans, liquid cultures were exposed to different, well-known xenobiotic inducers. The mRNA expression was detected by two different types of DNA arrays and semi-quantitative RT-PCR. {beta}-naphthoflavone, PCB52 and lansoprazol were the most active and, in particular, induced almost all CYP35 isoforms strongly. In conclusion, the xenobiotic dependent gene expression of C. elegans is a useful tool to reveal defense mechanisms against potential damaging substances as well as for developing a biomonitoring system. (orig.) [German] Der Bodennematode Caenorhabditis elegans gilt als das einfachste mehrzellige Tier mit dem Status eines Labormodels. Basierend auf seinem entschluesselten Genom konnte die bemerkenswerte Zahl von 80 Cytochrom P450 Genen (CYP) und eine Vielzahl weiterer Gene, welche fuer Enzyme der Biotransformation kodieren, identifiziert werden. Die differentielle Genexpression von C. elegans nach Schadstoffzugabe wurde in Fluessigkulturen mit 18 Xenobiotika aus unterschiedlichen Schadstoffgruppen untersucht. Anschliessend wurde die mRNA Expression mit DNA Arrays und semi-quantitativer RT-PCR bestimmt. {beta}-Naphthoflavone, PCB52 and Lansoprazol erwiesen sich dabei als die wirksamsten Induktoren und konnten unter anderen alle CYP 35 Isoformen stark induzieren. Mit diesen Untersuchungen konnte gezeigt werden, dass die schadstoffinduzierte Genexpression in C. elegans ein adaequates System ist, um sowohl Detoxifikationsmechanismen zu untersuchen als auch ein Biomonitorscreening aufzubauen. (orig.)

  17. SNT-1 functions as the Ca2+ sensor for tonic and evoked neurotransmitter release in C. elegans.

    Science.gov (United States)

    Li, Lei; Liu, Haowen; Wang, Wei; Chandra, Mintu; Collins, Brett M; Hu, Zhitao

    2018-05-14

    Synaptotagmin-1 (Syt1) binds Ca 2+ through its tandem C2 domains (C2A and C2B) and triggers Ca 2+ -dependent neurotransmitter release. Here we show that snt-1 , the homolog of mammalian Syt1, functions as the Ca 2+ sensor for both tonic and evoked neurotransmitter release at the C. elegans neuromuscular junction. Mutations that disrupt Ca 2+ binding in double C2 domains of SNT-1 significantly impaired tonic release, whereas disrupting Ca 2+ binding in a single C2 domain had no effect, indicating that the Ca 2+ binding of the two C2 domains is functionally redundant for tonic release. Stimulus-evoked release was significantly reduced in snt-1 mutants, with prolonged release latency as well as faster rise and decay kinetics. Unlike tonic release, evoked release was triggered by Ca 2+ binding solely to the C2B domain. Moreover, we showed that SNT-1 plays an essential role in the priming process in different subpopulations of synaptic vesicles with tight or loose coupling to Ca 2+ entry. SIGNIFICANCE STATEMENT We showed that SNT-1 in C. elegans regulates evoked neurotransmitter release through Ca 2+ binding to its C2B domain, a similar way to Syt1 in the mouse CNS and the fly NMJ. However, the largely decreased tonic release in snt-1 mutants argues SNT-1 has a clamping function. Indeed, Ca 2+ -binding mutations in the C2 domains in SNT-1 significantly reduced the frequency of the miniature excitatory postsynaptic current (mEPSC), indicating that SNT-1 also acts as a Ca 2+ sensor for tonic release. Therefore, revealing the differential mechanisms between invertebrates and vertebrates will provide significant insights into our understanding how synaptic vesicle fusion is regulated. Copyright © 2018 the authors.

  18. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    Science.gov (United States)

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Zhendong Yang

    2015-12-01

    Full Text Available Aflatoxins B1 (AFB1, deoxynivalenol (DON, fumonisin B1 (FB1, T-2 toxin (T-2, and zearalenone (ZEA are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model.

  20. A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods.

    Directory of Open Access Journals (Sweden)

    Kelvin Yen

    Full Text Available The nematode Caenorhabditis elegans has been employed as a model organism to study human obesity due to the conservation of the pathways that regulate energy metabolism. To assay for fat storage in C. elegans, a number of fat-soluble dyes have been employed including BODIPY, Nile Red, Oil Red O, and Sudan Black. However, dye-labeled assays produce results that often do not correlate with fat stores in C. elegans. An alternative label-free approach to analyze fat storage in C. elegans has recently been described with coherent anti-Stokes Raman scattering (CARS microscopy. Here, we compare the performance of CARS microscopy with standard dye-labeled techniques and biochemical quantification to analyze fat storage in wild type C. elegans and with genetic mutations in the insulin/IGF-1 signaling pathway including the genes daf-2 (insulin/IGF-1 receptor, rict-1 (rictor and sgk-1 (serum glucocorticoid kinase. CARS imaging provides a direct measure of fat storage with unprecedented details including total fat stores as well as the size, number, and lipid-chain unsaturation of individual lipid droplets. In addition, CARS/TPEF imaging reveals a neutral lipid species that resides in both the hypodermis and the intestinal cells and an autofluorescent organelle that resides exclusively in the intestinal cells. Importantly, coherent addition of the CARS fields from the C-H abundant neutral lipid permits selective CARS imaging of the fat store, and further coupling of spontaneous Raman analysis provides unprecedented details including lipid-chain unsaturation of individual lipid droplets. We observe that although daf-2, rict-1, and sgk-1 mutants affect insulin/IGF-1 signaling, they exhibit vastly different phenotypes in terms of neutral lipid and autofluorescent species. We find that CARS imaging gives quantification similar to standard biochemical triglyceride quantification. Further, we independently confirm that feeding worms with vital dyes does not lead

  1. Shape memory alloy-based small crawling robots inspired by C. elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yuk, Hyunwoo; Kim, Daeyeon; Shin, Jennifer H [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Honggu; Jo, Sungho, E-mail: shjo@kaist.ac.kr, E-mail: j_shin@kaist.ac.kr [Department of Computer Science, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2011-12-15

    Inspired by its simple musculature, actuation and motion mechanisms, we have developed a small crawling robot that closely mimics the model organism of our choice: Caenorhabditis elegans. A thermal shape memory alloy (SMA) was selected as an actuator due to the similarities of its properties to C. elegans muscles. Based on the anatomy of C. elegans, a 12-unit robot was designed to generate a sinusoidal undulating motion. Each body unit consisting of a pair of SMA actuators is serially connected by rigid links with an embedded motion control circuit. A simple binary operation-based motion control mechanism was implemented using a microcontroller. The assembled robot can execute C. elegans-like motion with a 0.17 Hz undulation frequency. Its motion is comparable to that of a real worm.

  2. Characterization of the interaction between the human pathogen Listeria monocytogenes and the model host C. elegans

    DEFF Research Database (Denmark)

    Simonsen, Karina T.; Nielsen, Jesper S.; Hansen, Annie A.

    In nature, C. elegans lives in the soil and feeds on bacteria. This constant contact with soil-borne microbes suggests that nematodes must have evolved protective responses against pathogens which makes the worm an attractive host-pathogen model for exploring their innate immune response....... In addition, C. elegans is a promising model for the identification of novel virulence factors in various pathogens. A large number of human, animal, plant and insect pathogens have been shown to kill the worm, when C. elegans was allowed to feed on pathogens in stead of its normal laboratory diet [1......]. However, the mechanisms that lead to the shortened life span of the worm have been shown to be very different depending on the nature of the pathogen. Examples include Yersinia pestis, which forms a biofilm layer on the cuticle of C. elegans thus inhibiting feeding [2], enteropathogenic Escherichia coli...

  3. Molecular control of memory in nematode Caenorhabditis elegans

    OpenAIRE

    Ye, Hua-Yue; Ye, Bo-Ping; Wang, Da-Yong

    2008-01-01

    Model invertebrate organism Caenorhabditis elegans has become an ideal model to unravel the complex processes of memory. C. elegans has three simple forms of memory: memory for thermosensation, memory for chemosensation, and memory for mechanosensation. In the form of memory for mechanosensation, short-term memory, intermediate-term memory, and long-term memory have been extensively studied. The short-term memory and intermediate-term memory may occur in the presynaptic sensory neurons, where...

  4. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  5. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  6. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    Science.gov (United States)

    Jung, Jaehoon; Nakajima, Masahiro; Tajima, Hirotaka; Huang, Qiang; Fukuda, Toshio

    2013-08-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system.

  7. A microfluidic device for the continuous culture and analysis of Caenorhabditis elegans in a toxic aqueous environment

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Tajima, Hirotaka; Fukuda, Toshio; Nakajima, Masahiro; Huang, Qiang

    2013-01-01

    The nematode Caenorhabditis elegans (C. elegans) receives attention as a bioindicator, and the C. elegans condition has been recently analyzed using microfluidic devices equipped with an imaging system. To establish a method without an imaging system, we have proposed a novel microfluidic device with which to analyze the condition of C. elegans from the capacitance change using a pair of micro-electrodes. The device was designed to culture C. elegans, to expose C. elegans to an external stimulus, such as a chemical or toxicant, and to measure the capacitance change which indicates the condition of C. elegans. In this study, to demonstrate the capability of our device in a toxic aqueous environment, the device was applied to examine the effect of cadmium on C. elegans. Thirty L4 larval stage C. elegans were divided into three groups. One group was a control group and the other groups were exposed to cadmium solutions with concentrations of 5% and 10% LC 50 for 24 h. The capacitance change and the body volume of C. elegans as a reference were measured four times and we confirmed the correlation between them. It shows that our device can analyze the condition of C. elegans without an imaging system. (paper)

  8. The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system

    Science.gov (United States)

    Muhammed, Maged; Fuchs, Beth Burgwyn; WU, Michael P.; Breger, Julia; Coleman, Jeffrey J.; Mylonakis, Eleftherios

    2013-01-01

    Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen. PMID:22225407

  9. Characterization of the cDNA encoding a BPI/LBP homologue in venom gland of the hundred-pace snake Deinagkistrodon acutus

    Directory of Open Access Journals (Sweden)

    Jianrao HU, Mingfu CAO, Jiong Chen

    2009-10-01

    Full Text Available Bactericidal/permeability-increasing protein (BPI and LPS-binding protein (LBP play an important role in host defence. Current evidence shows that BPI/LBP may be widely existed in different cells and tissue types of animals. A full-length cDNA clone encoding a BPI/LBP homologue (dBPI, 1757bp in size, was characterized in venom gland of the hundred-pace snake Deinagkistrodon acutus. Its deduced amino acid sequence of 417 residues had 13.8%–21.5% identity to BPI like 1(BPIL1 and BPI like 3(BPIL3 of other animals. Conserved cysteine residues which are involved in disulfide bond formation between the final strand of the N-terminal beta sheet and the long alpha helix of BPI are identified as Cys146-Cys183 of dBPI. Phylogenetic tree analysis showed that the BPI/LBP homologues formed five large clusters and dBPI was in a large cluster including BPIL1 and BPIL3. dBPI mRNA shows a tissue specific expression in venom gland. This is the first study to identify the cDNA encoding BPI/LBP homologues from reptiles [Current Zoology 55 (5: –2009].

  10. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Moon, Sunjin; Lee, Yong Woo; Kim, Woo Taek; Lee, Weontae

    2014-01-01

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding

  11. Solution structure of CEH-37 homeodomain of the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sunjin [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Yong Woo; Kim, Woo Taek [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Structural Biochemistry and Molecular Biophysics Lab, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-01-10

    Highlights: •We have determined solution structures of CEH-37 homedomain. •CEH-37 HD has a compact α-helical structure with HTH DNA binding motif. •Solution structure of CEH-37 HD shares its molecular topology with that of the homeodomain proteins. •Residues in the N-terminal region and HTH motif are important in binding to Caenorhabditis elegans telomeric DNA. •CEH-37 could play an important role in telomere function via DNA binding. -- Abstract: The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.

  12. Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model

    Science.gov (United States)

    Gao, Chenfei; King, Michael L.; Fitzpatrick, Zachary L.; Wei, Wenqian; King, Jason F.; Wang, Mingming; Greenway, Frank L.; Finley, John W.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Zheng, Jolene

    2016-01-01

    Prowashonupana barley (PWB) is high in β-glucan with moderate content of resistant starch. PWB reduced intestinal fat deposition (IFD) in wild type Caenorhabditis elegans (C. elegans, N2), and in sir-2.1 or daf-16 null mutants, and sustained a surrogate marker of lifespan, pharyngeal pumping rate (PPR), in N2, sir-2.1, daf-16, or daf-16/daf-2 mutants. Hyperglycaemia (2% glucose) reversed or reduced the PWB effect on IFD in N2 or daf-16/daf-2 mutants with a sustained PPR. mRNA expression of cpt-1, cpt-2, ckr-1, and gcy-8 were dose-dependently reduced in N2 or daf-16 mutants, elevated in daf-16/daf-2 mutants with reduction in cpt-1, and unchanged in sir-2.1 mutants. mRNA expressions were increased by hyperglycaemia in N2 or daf-16/daf-2 mutants, while reduced in sir-2.1 or daf-16 mutants. The effects of PWB in the C. elegans model appeared to be primarily mediated via sir-2.1, daf-16, and daf-16/daf-2. These data suggest that PWB and β-glucans may benefit hyperglycaemia-impaired lipid metabolism. PMID:27721901

  13. Characterization of cogon grass (Imperata cylindrica) pollen extract and preliminary analysis of grass group 1, 4 and 5 homologues using monoclonal antibodies to Phleum pratense.

    Science.gov (United States)

    Kumar, L; Sridhara, S; Singh, B P; Gangal, S V

    1998-11-01

    Previous studies have established the role of Imperata cylindrica (Ic) pollen in type I allergic disorders. However, no systematic information is available on the allergen composition of Ic pollen extract. To characterize the IgE-binding proteins of Ic pollen extract and to detect the presence of grass group 1, 4 and 5 allergen homologues, if any. Pollen extract of Ic was analyzed by in vivo and in vitro procedures such as intradermal tests (ID), enzyme-linked immunosorbent assay (ELISA), ELISA-inhibition, thin-layer isoelectric focusing (TLIEF), sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Dot blot assay was carried out to check the presence of well-known group 1, 4, and 5 allergen homologues in Ic pollen extract. Out of 303 respiratory allergies patients skin-tested, 27 showed sensitivity to Ic pollen extract. Specific IgE levels were elevated in all 15 serum samples tested. The extract prepared for this study was found to be highly potent since it required only 400 ng of homologous proteins for 50% inhibition of binding in ELISA inhibition assays. TLIEF of Ic pollen extract showed 44 silver-stained bands (pI 3.5-7.0) while SDS-PAGE resolved it into 24 Coomassie-Brilliant-Blue-stained bands (MW 100-10 kD). Immunoblotting with individual patient sera recognized 7 major IgE-binding bands (MW 85, 62, 57, 43, 40, 28 and 16 kD) in Ic pollen extract. A panel of monoclonal antibodies, specific to group 1, 4 and 5 allergens from Phleum pratense pollen extract identified group 5 and group 4 homologues in Ic pollen extract. Ic pollen extract was characterized for the protein profile by TLIEF and SDS-PAGE. IgE reactivity was determined by ELISA and immunoblot. Monoclonal antibodies to group 5 and group 4 allergens reacted weakly showing that this pollen contains group 5 and group 4 homologous allergens.

  14. Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development.

    Directory of Open Access Journals (Sweden)

    Windy A Boyd

    2009-09-01

    Full Text Available The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF and extinction (EXT of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT and log(TOF growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF and log(EXT, growth rates, and time to reach change points showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent

  15. Isolation and characterization of an AGAMOUS homologue from cocoa

    NARCIS (Netherlands)

    Chaidamsari, T.; Sugiarit, H.; Santoso, D.; Angenent, G.C.; Maagd, de R.A.

    2006-01-01

    We report the cloning of a cDNA from TcAG, an AG (Arabidopsis thaliana MADS-box C-type transcription factor gene AGAMOUS) homologue from cocoa (Theobroma cacao L.). TcAG was in the cocoa flower expressed primarily in stamens and ovaries, comparable to AG in Arabidopsis. Additionally, we found that

  16. Microsporidia in aquatic microcrustacea: the copepod microsporidium Marssoniella elegans Lemmermann, 1900 revisited

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Oborník, Miroslav; Vossbrinck, C. R.

    2005-01-01

    Roč. 52, 1/2 (2005), s. 163-172 ISSN 0015-5683 Institutional research plan: CEZ:AV0Z60220518 Keywords : Microsporidia * Marssoniella elegans * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.138, year: 2005

  17. Behavioral response and cell morphology changes of caenorhabditis elegans under high power millimeter wave irradiation

    International Nuclear Information System (INIS)

    Ren Changhong; Gao Yan; Wu Yonghong; Xu Zhiwei; Zhang Chenggang; Yuan Guangjiang; Xu Shouxi; Su Yinong; Liu Pukun

    2010-01-01

    C. elegans were exposed to high power millimeter waves (MMWs) with different mean power densities, to investigate their behavioral response and cell morphology changes under MMW irradiation. The time-course photomicrography system was used to record the behavioral changes of C. elegans. The behavioral response and cell morphology changes were further observed by stereoscopic microscopes. The results show that freely moving C. elegans will escape from the MMW irradiation region quickly. After the exposure to MMWs with output mean power of 10 W and 12 W, the bending speed of C. elegans increases significantly at first, while the movement gradually slows down until the bodies get rigid. However, exposed to 5 W MMW, C. elegans show a distinctive tolerant reaction because of the thermal effect. In addition, cell morphological observations show that the nuclear structure of the eggs are abnormal after abnormal after MMW irradiation. High power MMW significantly affects the behaviors and cell morphology of C. elegans, which suggests the C. elegans could be used as a typical model species to study the biological effects of MMW irradiation. (authors)

  18. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-03-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.

  19. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans

    Science.gov (United States)

    Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin

    2016-01-01

    Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504

  20. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  2. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1 MAI-2 preserves the mitochondrial membrane potential (Δψm and is important to induce germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    L P Fernández-Cárdenas

    Full Text Available When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1 inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm. The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of

  3. The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity

    International Nuclear Information System (INIS)

    Cole, Russell D.; Anderson, Gary L.; Williams, Phillip L.

    2004-01-01

    Fifteen organic phosphate pesticides were tested by computer tracking for their acute behavioral toxicity with the nematode Caenorhabditis elegans. Thirteen of these 15 chemicals are used as insecticides and are anticholesterase agents. The other two chemicals are used as herbicides. EC50 values for each chemical were compared to the corresponding LD50 acute lethality value in rats and mice. Order of toxicity was found to be significantly correlated in comparisons of C. elegans to both rats and mice. Mechanistic investigations were conducted by assaying 8 of the 15 chemicals for anticholinesterase activity in C. elegans. Significant cholinesterase inhibition was confirmed for five chemicals that had displayed high behavioral toxicity, while three chemicals of low behavioral toxicity showed no significant decrease in cholinesterase activity. Toxicity for two chemicals that do not inhibit cholinesterase in mammals was linked to pH effects. Detailed comparison of individual chemicals and metabolic issues are discussed. These results have positive implications for the use of C. elegans as a mammalian neurological model and support the use of C. elegans in early rounds of chemical toxicity screening

  4. TcA, the putative transposase of the C. elegans Tc1 transposon, has an N-terminal DNA binding domain.

    OpenAIRE

    Schukkink, R F; Plasterk, R H

    1990-01-01

    Tc1 is a transposon present in several copies in the genome of all natural isolates of the nematode C.elegans; it is actively transposing in many strains. In those strains Tc1 insertion is the main cause of spontaneous mutations. The transposon contains one large ORF that we call TcA; we assume that the TcA protein is the transposase of Tc1. We expressed TcA in E.coli, purified the protein and showed that it has a strong affinity for DNA (both single stranded and double stranded). A fusion pr...

  5. In vivo visualization and quantification of mitochondrial morphology in C. elegans

    NARCIS (Netherlands)

    Smith, R.L.; De Vos, W.H.; de Boer, R.; Manders, E.M.M.; van der Spek, H.; Weissig, V.; Edeas, M.

    2015-01-01

    Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity.

  6. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Knowlton, Wendy M; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo , we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1 . Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7 , and isp-1 , and the putative oxidoreductase rad-8 . In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1 . Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the

  7. The actin homologue MreB organizes the bacterial cell membrane

    NARCIS (Netherlands)

    Strahl, H.; Burmann, F.; Hamoen, L.W.

    2014-01-01

    The eukaryotic cortical actin cytoskeleton creates specific lipid domains, including lipid rafts, which determine the distribution of many membrane proteins. Here we show that the bacterial actin homologue MreB displays a comparable activity. MreB forms membrane-associated filaments that coordinate

  8. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  9. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  10. Koncept polyfokálních sídel na příkladu vývoje obce Opařany na Táborsku

    Czech Academy of Sciences Publication Activity Database

    Dohnal, Martin

    2012-01-01

    Roč. 38, č. 2 (2012), s. 271-298 ISSN 0323-0988 R&D Projects: GA ČR(CZ) GAP410/11/1287 Keywords : urbanism * medieval settlement * Early Modern settlement * polyfocal settlement * 1400-1900 * Opařany (district of Tábor) Subject RIV: AC - Archeology, Anthropology, Ethnology

  11. A living model for obesity and aging research: Caenorhabditis elegans.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Park, Yeonhwa

    2018-03-24

    Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome, and more than 65% of the genes associated with human disease. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes methods to evaluate the effect of treatments on obesity and aging of this organism.

  12. The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans.

    Science.gov (United States)

    Tseng, Rong-Jeng; Armstrong, Kristin R; Wang, Xiaodong; Chamberlin, Helen M

    2007-11-01

    In many organisms, repetitive DNA serves as a trigger for gene silencing. However, some gene expression is observed from repetitive genomic regions such as heterochromatin, suggesting mechanisms exist to modulate the silencing effects. From a genetic screen in C. elegans, we have identified mutations in two genes important for expression of repetitive sequences: lex-1 and tam-1. Here we show that lex-1 encodes a protein containing an ATPase domain and a bromodomain. LEX-1 is similar to the yeast Yta7 protein, which maintains boundaries between silenced and active chromatin. tam-1 has previously been shown to encode a RING finger/B-box protein that modulates gene expression from repetitive DNA. We find that lex-1, like tam-1, acts as a class B synthetic multivulva (synMuv) gene. However, since lex-1 and tam-1 mutants have normal P granule localization, it suggests they act through a mechanism distinct from other class B synMuvs. We observe intragenic (interallelic) complementation with lex-1 and a genetic interaction between lex-1 and tam-1, data consistent with the idea that the gene products function in the same biological process, perhaps as part of a protein complex. We propose that LEX-1 and TAM-1 function together to influence chromatin structure and to promote expression from repetitive sequences.

  13. The C. elegans TPR Containing Protein, TRD-1, Regulates Cell Fate Choice in the Developing Germ Line and Epidermis.

    Directory of Open Access Journals (Sweden)

    Samantha Hughes

    Full Text Available Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam or differentiated (hypodermal or neuronal fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27. We show that trd-1(RNAi and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.

  14. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.

  15. Effects of insecticidal crystal proteins (Cry proteins) produced by genetically modified maize (Bt maize) on the nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Höss, Sebastian; Menzel, Ralph; Gessler, Frank; Nguyen, Hang T.; Jehle, Johannes A.; Traunspurger, Walter

    2013-01-01

    The genetically modified maize MON89034 × MON88017 expresses different crystal (Cry) proteins with pesticidal activity against the European corn borer (Cry1.105; Cry2Ab2) and the Western corn root worm (Cry3Bb1). Non-target organisms, such as soil nematodes, might be exposed to the Cry proteins that enter the soil in course of crop growing. Therefore, the risk of those proteins for nematodes was assessed by testing their toxic effects on Caenorhabditis elegans. All three insecticidal Cry proteins showed dose-dependent inhibitory effects on C. elegans reproduction (EC50: 0.12–0.38 μmol L −1 ), however, at concentrations that were far above the expected soil concentrations. Moreover, a reduced toxicity was observed when Cry proteins were added jointly. A C. elegans mutant strain deficient for receptors for the nematicidal Cry5B was also resistant against Cry1.105 and Cry2Ab2, suggesting that these Cry proteins bound to the same or similar receptors as nematicidal Cry proteins and thereby affect the reproduction of C. elegans. -- Highlights: •Insecticidal Cry proteins dose-dependently inhibited the reproduction of C. elegans. •Mixture toxicity was lower than expected from concentration-additive single effects. •Genes for MAPK-defense-pathway were up-regulated in presence of Cry protein mixture. •Knock-out strains deficient for Cry5B-receptors showed lower susceptibility to insecticidal Cry proteins. •Toxicity of insecticidal Cry-proteins on C. elegans occurred at concentrations far above expected field concentrations. -- Insecticidal Cry proteins expressed by genetically modified maize act on nematodes via a similar mode of action as nematicidal Cry proteins, however, at concentrations far above expected soil levels

  16. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development.

    Science.gov (United States)

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Nadler-Hassar, Talia; Trainin, Taly; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2011-11-01

    Anthocyanins are the major pigments responsible for the pomegranate (Punica granatum L.) fruit skin color. The high variability in fruit external color in pomegranate cultivars reflects variations in anthocyanin composition. To identify genes involved in the regulation of anthocyanin biosynthesis pathway in the pomegranate fruit skin we have isolated, expressed and characterized the pomegranate homologue of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1), encoding a WD40-repeat protein. The TTG1 protein is a regulator of anthocyanins and proanthocyanidins (PAs) biosynthesis in Arabidopsis, and acts by the formation of a transcriptional regulatory complex with two other regulatory proteins: bHLH and MYB. Our results reveal that the pomegranate gene, designated PgWD40, recovered the anthocyanin, PAs, trichome and seed coat mucilage phenotype in Arabidopsis ttg1 mutant. PgWD40 expression and anthocyanin composition in the skin were analyzed during pomegranate fruit development, in two accessions that differ in skin color intensity and timing of appearance. The results indicate high positive correlation between the total cyanidin derivatives quantity (red pigments) and the expression level of PgWD40. Furthermore, strong correlation was found between the steady state levels of PgWD40 transcripts and the transcripts of pomegranate homologues of the structural genes PgDFR and PgLDOX. PgWD40, PgDFR and PgLDOX expression also correlated with the expression of pomegranate homologues of the regulatory genes PgAn1 (bHLH) and PgAn2 (MYB). On the basis of our results we propose that PgWD40 is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development and that expression of PgWD40, PgAn1 and PgAn2 in the pomegranate fruit skin is required to regulate the expression of downstream structural genes involved in the anthocyanin biosynthesis.

  17. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Directory of Open Access Journals (Sweden)

    Yook Karen

    2011-01-01

    Full Text Available Abstract Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO. The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and

  18. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death.

    Science.gov (United States)

    Kirienko, Natalia V; Kirienko, Daniel R; Larkins-Ford, Jonah; Wählby, Carolina; Ruvkun, Gary; Ausubel, Frederick M

    2013-04-17

    The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method.

    Science.gov (United States)

    Muschiol, Daniel; Schroeder, Fabian; Traunspurger, Walter

    2009-05-16

    The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20 degrees C with 5 x 10(9) Escherichia coli ml-1 as food source. High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (r m d(-1)), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d(-1). Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however

  20. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

    Directory of Open Access Journals (Sweden)

    Schroeder Fabian

    2009-05-01

    Full Text Available Abstract Background The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK and MY6 (Münster, Germany were compared at 20°C with 5 × 109 Escherichia coli ml-1 as food source. Results High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69, the intrinsic rate of natural increase (rmd-1, calculated according to the Lotka equation, was 1.375, the net reproductive rate (R0 291, the mean generation time (T 90 h, and the minimum generation time (Tmin 73.0 h. The corresponding values for strain MY6 (n = 72 were rm = 1.460, R0 = 289, T = 84 h, and Tmin = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d-1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days

  1. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  2. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.

    Science.gov (United States)

    Romero, Maria J R H; Nakashima, Syozi; Nikaido, Toru; Ichinose, Shizuko; Sadr, Alireza; Tagami, Junji

    2015-08-01

    Salivary phosphoproteins are essential in tooth mineral regulation but are often overlooked in vitro. This study aimed to evaluate the effect of casein, as a salivary phosphoprotein homologue, on the deposition and growth of hydroxyapatite (HA) on tooth surfaces. Hydroxyapatite growth was quantified using seeded crystal systems. Artificial saliva (AS) containing HA powder and 0, 10, 20, 50, or 100 μg ml(-1) of casein, or 100 μg ml(-1) of dephosphorylated casein (Dcasein), was incubated for 0-8 h at 37°C, pH 7.2. Calcium concentrations were measured using atomic absorption spectroscopy (AAS). Surface precipitation of HA on bovine enamel and dentine blocks, incubated in similar conditions for 7 d, was examined using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) with selected area electron diffraction (SAED). Casein adsorption was assessed using modified Lowry assays and zeta-potential measurements. The AAS results revealed a concentration-dependent inhibition of calcium consumption. Hydroxyapatite precipitation occurred when no casein was present, whereas precipitation of HA was apparently completely inhibited in casein-containing groups. Adsorption data demonstrated increasingly negative zeta-potential with increased casein concentration and an affinity constant similar to proline-rich proteins with Langmuir modelling. Casein inhibited the deposition and growth of HA primarily through the binding of esterized phosphate to HA active sites, indicating its potential as a mineral-regulating salivary phosphoprotein homologue in vitro. © 2015 Eur J Oral Sci.

  3. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    Full Text Available Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  4. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  5. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  6. Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109 Remoção de metais pesados por quitina e quitosana isoladas de Cunninghamella elegans (IFM 46109

    Directory of Open Access Journals (Sweden)

    Luciana de Oliveira Franco

    2004-09-01

    Full Text Available Chitin and chitosan were extracted from mycelial biomass of Cunninghamella elegans and the performance for copper, lead and iron biosorption in aqueous solution was evaluated. The growth curve of C. elegans was accomplished by determination of biomass, pH, glucose and nitrogen consumption. Chitin and chitosan were extracted by alkali-acid treatment and the yields were 23.8 and 7.8%, respectively. For the adsorption analysis, the process of heavy uptake metal sorption was evaluated using polysaccharides solutions (1% w/v. The rate of metallic biosorption was dependent upon the concentration and pH of metal solutions, and the best results were observed with pH 4.0. Chitosan showed the highest affinity for copper and chitin for iron adsorption. The results suggest that C. elegans (IFM 46109 is an attractive source of production of chitin and chitosan, with a great potential of heavy metals bioremediation in polluted environments.Quitina e quitosana foram extraídas a partir da massa micelial de Cunninghamella elegans (IFM 46109 e avaliou-se a aplicação destes polissacarídeos na remoção dos metais pesados cobre, chumbo e ferro preparados em solução aquosa. O crescimento de C. elegans foi acompanhado através da determinação de biomassa, pH, consumo de glicose e de nitrogênio. A extração de quitina e quitosana realizou-se através de tratamento álcali-ácido e a produção dos polissacarídeos foi de 23,8 e 7,8 %, respectivamente. A avaliação do processo de remoção dos metais pesados foi realizada utilizando-se os polissacarídeos em solução a 1% (p/v. Os níveis de biossorção de metais foram dependentes da concentração e do pH das soluções. Os melhores resultados foram obtidos em pH 4,0. A quitosana mostrou maior índice de biossorção para o íon cobre e a quitina para o ferro. Os resultados sugerem que C.elegans pode ser considerada uma fonte atrativa para a produção alternativa de quitina e quitosana, e que demonstra

  7. Characterisation of heat-induced protein aggregation in whey protein isolate and the influence of aggregation on the availability of amino groups as measured by the ortho-phthaldialdehyde (OPA) and trinitrobenzenesulfonic acid (TNBS) methods.

    Science.gov (United States)

    Mulcahy, Eve M; Fargier-Lagrange, Maéva; Mulvihill, Daniel M; O'Mahony, James A

    2017-08-15

    Whey protein isolate (WPI) solutions, with different levels of aggregated protein, were prepared by heating (5% protein, pH 7, 90°C for 30min) WPI solutions with either 20mM added NaCl (WPI+NaCl), 5mM N-ethylmaleimide (WPI+NEM) or 20mM added NaCl and 5mM NEM (WPI+NaCl+NEM). Gel electrophoresis demonstrated that the heated WPI and WPI+NaCl solutions had higher levels of aggregated protein, due to more covalent interactions between proteins, than the heated WPI+NEM and WPI+NaCl+NEM solutions. There were marked differences in the levels of amino groups between all heated WPI solutions when measured by the OPA and TNBS methods, with lower levels being measured by the TNBS method than by the OPA method. These results demonstrate that the measurement of available amino groups by the OPA method is less impacted than by the TNBS method after heat-induced structural changes, arising from disulfide or sulfhydryl-disulfide bond-mediated aggregation of whey protein molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Turing mechanism for homeostatic control of synaptic density during C. elegans growth

    Science.gov (United States)

    Brooks, Heather A.; Bressloff, Paul C.

    2017-07-01

    We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans is an important animal model for understanding cellular mechanisms underlying learning and memory. Our mathematical model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors, which switch between forward and backward moving states (bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the insertion of new concentration peaks as the length increases. Taking the passive component to be the protein kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites can be maintained.

  9. Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Alstrup Jensen, Keld; Johansen, Anders

    2012-01-01

    Toxicity of nano-formulated silver to eukaryotes was assessed by exposing nematodes (Caenorhabditis elegans) to two types of silver nanoparticles (AgNPs): with average primary particle diameters of 1 nm (AgNP1) and 28 nm (AgNP28, PVP coated), respectively. Tests were performed with and without pr...

  10. Characterization and cloning of TMV resistance gene N homologues ...

    African Journals Online (AJOL)

    Tobacco cultivars Nicotiana tabacum cv. Samsun NN plants carrying the N gene contain a multitude of N-related genes. We cloned a few N homologues and isolated two full-length cDNAs of NL-C26 and NL-B69 genes from N. tabacum cv. Samsun NN. Nucleotide sequence analysis showed that the coding regions of ...

  11. Bacterial Respiration and Growth Rates Affect the Feeding Preferences, Brood Size and Lifespan of Caenorhabditis elegans

    Science.gov (United States)

    Yu, Li; Yan, Xiaomei; Ye, Chenglong; Zhao, Haiyan; Chen, Xiaoyun; Hu, Feng; Li, Huixin

    2015-01-01

    Bacteria serve as live food and nutrients for bacterial-feeding nematodes (BFNs) in soils, and influence nematodes behavior and physiology through their metabolism. Five bacterial taxa (Bacillus amyloliquefaciens JX1, Variovorax sp. JX14, Bacillus megaterium JX15, Pseudomonas fluorescens Y1 and Escherichia coli OP50) and the typical BFN Caenorhabditis elegans were selected to study the effects of bacterial respiration and growth rates on the feeding preferences, brood size and lifespan of nematodes. P. fluorescens Y1 and E. coli OP50 were found to be more active, with high respiration and rapid growth, whereas B. amyloliquefaciens JX1 and B. megaterium JX15 were inactive. The nematode C. elegans preferred active P. fluorescens Y1 and E. coli OP50 obviously. Furthermore, worms that fed on these two active bacteria produced more offspring but had shorter lifespan, while inactive and less preferred bacteria had increased nematodes lifespan and decreased the brood size. Based on these results, we propose that the bacterial activity may influence the behavior and life traits of C. elegans in the following ways: (1) active bacteria reproduce rapidly and emit high levels of CO2 attracting C. elegans; (2) these active bacteria use more resources in the nematodes’ gut to sustain their survival and reproduction, thereby reducing the worm's lifespan; (3) inactive bacteria may provide less food for worms than active bacteria, thus increasing nematodes lifespan but decreasing their fertility. Nematodes generally require a balance between their preferred foods and beneficial foods, only preferred food may not be beneficial for nematodes. PMID:26222828

  12. A Run-Length Encoding Approach for Path Analysis of C. elegans Search Behavior

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-01-01

    Full Text Available The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means cluster analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach, we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster analysis with the path string-encoded data showed that tph-1 movement behavior on food is similar to that of wild-type animals off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data.

  13. The worm has turned--microbial virulence modeled in Caenorhabditis elegans.

    Science.gov (United States)

    Sifri, Costi D; Begun, Jakob; Ausubel, Frederick M

    2005-03-01

    The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.

  14. A method for measuring fatty acid oxidation in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few...... recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured......, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans....

  15. Complete mitochondrial genomes of the yellow-bellied slider turtle Trachemys scripta scripta and anoxia tolerant red-eared slider Trachemys scripta elegans.

    Science.gov (United States)

    Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong

    2016-05-01

    The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.

  16. Loss of Ceramide Synthases Elicits a PHA-4/FoxA-, SKN-1-, and Autophagy-Dependent Lifespan Extension in C. elegans

    DEFF Research Database (Denmark)

    Jensen, Mai-Britt Mosbech; Færgeman, Nils J.; Ejsing, Christer S.

    2011-01-01

    , these lipid species are recognized as bioactive signalling molecules involved in regulation of cell growth, differentiation, senescence, and apoptosis, and thus a delicate equilibrium between the levels of these interconvertible lipid species underlies the balance between cell survival and death. The C....... elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. Here we show that functional loss of HYL-1 and LAGR-1 depletes 43:1;3 sphingolipids and extends lifespan in a PHA-4-, SKN-1-, and ATG-12-dependent manner. The transcription factors PHA-4 and SKN-1 as well as ATG-12, which...

  17. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans

    KAUST Repository

    Zhang, Yu

    2014-08-22

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  18. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans

    KAUST Repository

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli; Xu, Ying; He, Lisheng; Ravasi, Timothy; Qian, Peiyuan

    2014-01-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  19. Proteomic profiling during the pre-competent to competent transition of the biofouling polychaete Hydroides elegans.

    Science.gov (United States)

    Zhang, Yu; Sun, Jin; Zhang, Huoming; Chandramouli, Kondethimmanahalli H; Xu, Ying; He, Li-Sheng; Ravasi, Timothy; Qian, Pei-Yuan

    2014-09-01

    The polychaete, Hydroides elegans, is a tube-building worm that is widely distributed in tropical and subtropical seas. It is a dominant fouling species and thus a major target organism in antifouling research. Here, the first high-throughput proteomic profiling of pre-competent and competent larvae of H. elegans is reported with the identification of 1,519 and 1,322 proteins, respectively. These proteins were associated with a variety of biological processes. However, a large proportion was involved in energy metabolism, redox homeostasis, and microtubule-based processes. A comparative analysis revealed 21 proteins that were differentially regulated in larvae approaching competency.

  20. Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in C. elegans

    DEFF Research Database (Denmark)

    Elle, Ida Coordt; Simonsen, Karina Trankjær; Olsen, Louise Cathrine Braun

    2011-01-01

    -deficient yeast cells, and that they exhibit distinct temporal- and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however we find that functional loss of ACBP-1 leads to reduced triglyceride...... storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans....... of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs; four basal forms and three ACBP-domain proteins. We find that each of these paralogues is capable of complementing growth of ACBP...

  1. A maternal-effect genetic incompatibility in Caenorhabditis elegans

    OpenAIRE

    Burga, Alejandro; Ben-David, Eyal; Kruglyak, Leonid

    2017-01-01

    Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing a genetic incompatibility between strains of the nematode Caenorhabditis elegans . The element is made up of sup-35 , a maternal-effect toxin that kills developing embryos, and pha-1 , its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development based on its mutant phenotype, but this phenotype in fact arises fro...

  2. Tracking C. elegans and its neuromuscular activity using NemaFlex

    Science.gov (United States)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  3. [Tapio Mäkeläinen. Tapion matkassa Pärnuun ; Terhi Pääskylä-Malmström. Extreme Eesti -virollinen opas erilaiseen etelään] / Harri Rinne

    Index Scriptorium Estoniae

    Rinne, Harri, 1948-

    2012-01-01

    Arvustused: Mäkeläinen, Tapio. Tapion matkassa Pärnuun. Tallinn : Solnessi Arhitektuurikirjastus, 2012 ; Pääskylä-Malmström, Terhi. Extreme Eesti : virollinen opas erilaiseen etelään. Helsinki : Svalbooks, 2012

  4. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Science.gov (United States)

    Law, Wenjing; Wuescher, Leah M; Ortega, Amanda; Hapiak, Vera M; Komuniecki, Patricia R; Komuniecki, Richard

    2015-04-01

    Monoamines, such as 5-HT and tyramine (TA), paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for the identification

  5. Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening.

    Directory of Open Access Journals (Sweden)

    Wenjing Law

    2015-04-01

    Full Text Available Monoamines, such as 5-HT and tyramine (TA, paralyze both free-living and parasitic nematodes when applied exogenously and serotonergic agonists have been used to clear Haemonchus contortus infections in vivo. Since nematode cell lines are not available and animal screening options are limited, we have developed a screening platform to identify monoamine receptor agonists. Key receptors were expressed heterologously in chimeric, genetically-engineered Caenorhabditis elegans, at sites likely to yield robust phenotypes upon agonist stimulation. This approach potentially preserves the unique pharmacologies of the receptors, while including nematode-specific accessory proteins and the nematode cuticle. Importantly, the sensitivity of monoamine-dependent paralysis could be increased dramatically by hypotonic incubation or the use of bus mutants with increased cuticular permeabilities. We have demonstrated that the monoamine-dependent inhibition of key interneurons, cholinergic motor neurons or body wall muscle inhibited locomotion and caused paralysis. Specifically, 5-HT paralyzed C. elegans 5-HT receptor null animals expressing either nematode, insect or human orthologues of a key Gαo-coupled 5-HT1-like receptor in the cholinergic motor neurons. Importantly, 8-OH-DPAT and PAPP, 5-HT receptor agonists, differentially paralyzed the transgenic animals, with 8-OH-DPAT paralyzing mutant animals expressing the human receptor at concentrations well below those affecting its C. elegans or insect orthologues. Similarly, 5-HT and TA paralyzed C. elegans 5-HT or TA receptor null animals, respectively, expressing either C. elegans or H. contortus 5-HT or TA-gated Cl- channels in either C. elegans cholinergic motor neurons or body wall muscles. Together, these data suggest that this heterologous, ectopic expression screening approach will be useful for the identification of agonists for key monoamine receptors from parasites and could have broad application for

  6. Proteomic analysis uncovers a metabolic phenotype in C. elegans after

    Czech Academy of Sciences Publication Activity Database

    Pohludka, M.; Šimečková, K.; Vohanka, J.; Yilma, P.; Novák, Petr; Krause, M. W.; Kostrouchová, M.; Kostrouch, Z.

    2008-01-01

    Roč. 374, č. 1 (2008), s. 49-54 ISSN 0006-291X R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50200510 Keywords : nuclear hormone receptors * caenorhabditis elegans * nhr-40 Subject RIV: EE - Microbiology, Virology Impact factor: 2.648, year: 2008

  7. Gustatory Behaviour in Caenorhabditis elegans

    NARCIS (Netherlands)

    R.K. Hukema (Renate)

    2006-01-01

    textabstractThe nematode C. elegans is an ideal model-organism to study the genetics of behaviour (Brenner, 1974). It is capable of sensing salts and we discriminate three different responses: it is attracted to low salt concentrations (Ward, 1973; Dusenbery et al., 1974), it avoids high salt

  8. Lipid droplets as ubiquitous fat storage organelles in C. elegans

    Directory of Open Access Journals (Sweden)

    Guo Fengli

    2010-12-01

    Full Text Available Abstract Background Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG and cholesterol ester (CE. We and others have recently reported that lysosome-related organelles (LROs are not fat storage structures in the nematode C. elegans. We also reported the formation of enlarged lipid droplets in a class of peroxisomal fatty acid β-oxidation mutants. In the present study, we seek to provide further evidence on the organelle nature and biophysical properties of fat storage structures in wild-type and mutant C. elegans. Results In this study, we provide biochemical, histological and ultrastructural evidence of lipid droplets in wild-type and mutant C. elegans that lack lysosome related organelles (LROs. The formation of lipid droplets and the targeting of BODIPY fatty acid analogs to lipid droplets in live animals are not dependent on lysosomal trafficking or peroxisome dysfunction. However, the targeting of Nile Red to lipid droplets in live animals occurs only in mutants with defective peroxisomes. Nile Red labelled-lipid droplets are characterized by a fluorescence emission spectrum distinct from that of Nile Red labelled-LROs. Moreover, we show that the recently developed post-fix Nile Red staining method labels lipid droplets exclusively. Conclusions Our results demonstrate lipid droplets as ubiquitous fat storage organelles and provide a unified explanation for previous studies on fat labelling methods in C. elegans. These results have important applications to the studies of fat storage and lipid droplet regulation in the powerful genetic system, C. elegans.

  9. Dietary regulation of hypodermal polyploidization in C. elegans.

    Science.gov (United States)

    Tain, Luke S; Lozano, Encarnación; Sáez, Alberto G; Leroi, Armand M

    2008-03-12

    Dietary restriction (DR) results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  10. Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model

    Directory of Open Access Journals (Sweden)

    Virk Bhupinder

    2012-07-01

    Full Text Available Abstract Background Gut microbes influence animal health and thus, are potential targets for interventions that slow aging. Live E. coli provides the nematode worm Caenorhabditis elegans with vital micronutrients, such as folates that cannot be synthesized by animals. However, the microbe also limits C. elegans lifespan. Understanding these interactions may shed light on how intestinal microbes influence mammalian aging. Results Serendipitously, we isolated an E. coli mutant that slows C. elegans aging. We identified the disrupted gene to be aroD, which is required to synthesize aromatic compounds in the microbe. Adding back aromatic compounds to the media revealed that the increased C. elegans lifespan was caused by decreased availability of para-aminobenzoic acid, a precursor to folate. Consistent with this result, inhibition of folate synthesis by sulfamethoxazole, a sulfonamide, led to a dose-dependent increase in C. elegans lifespan. As expected, these treatments caused a decrease in bacterial and worm folate levels, as measured by mass spectrometry of intact folates. The folate cycle is essential for cellular biosynthesis. However, bacterial proliferation and C. elegans growth and reproduction were unaffected under the conditions that increased lifespan. Conclusions In this animal:microbe system, folates are in excess of that required for biosynthesis. This study suggests that microbial folate synthesis is a pharmacologically accessible target to slow animal aging without detrimental effects.

  11. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-01-01

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen

  12. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Maimaiti, Sainawaer [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Department of Psychotherapy, The Fourth People' s Hospital of Urumqi, Urumqi 830000 (China); Kuroyanagi, Hidehito [Laboratory of Gene Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Kawano, Shodai; Inami, Kazutoshi; Timalsina, Shikshya; Ikeda, Mitsunobu; Nakagawa, Kentaro [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Hata, Yutaka, E-mail: yuhammch@tmd.ac.jp [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2013-04-15

    The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1. YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging. - Highlights: ► We named Caenorhabditis elegans F13E6.4 gene yap-1 as a putative YAP homolog. ► The localization of YAP-1 is regulated by WTS-1 and FTT-2. ► YAP-1 is involved in healthy aging and thermosensitivity.

  13. Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2.

    Science.gov (United States)

    Lu, Lulu; Zhao, Xuan; Zhang, Jianyong; Li, Miao; Qi, Yonghao; Zhou, Lijun

    2017-07-01

    The naturally occurring calycosin is a known antioxidant that prevents redox imbalance in organisms. However, calycosin's effect on lifespan and its physiological molecular mechanisms are not yet well understood. In this study, we demonstrated that calycosin could prolong the lifespan of Caenorhabditis elegans, and that such extension was associated with its antioxidant capability as well as its ability to enhance stress resistance and reduce ROS (reactive oxygen species) accumulation. To explore mechanisms of this longevity effect, we assessed the impact of calycosin on lifespans of insulin-signaling impaired worms: daf-2, age-1, and daf-16 mutants. We found that calycosin did not alter the lifespan of all three mutants, thereby suggesting that calycosin requires insulin signaling to promote lifespan extension. On the other hand, we observed that calycosin could enhance the nuclear translocation of the core transcription factor DAF-16/FoXO instead of the conserved stress-responsive transcription factor SKN-1/Nrf-2. This observation is consistent with the understanding that the nuclear localized DAF-16 up-regulates its downstream targets sod-3, ctl-1, and hsp-16.2. Lastly, it is also noteworthy that the longevity effect of calycosin is likely not associated with the calorie restriction mechanism. Collectively, our results strongly suggest that calycosin could function as an antioxidant to extend the lifespan of C. elegans by enhancing nucleus translocation of DAF-16 through the insulin-signaling pathway. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Monascin from Monascus-Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in Caenorhabditis elegans.

    Science.gov (United States)

    Shi, Yeu-Ching; Pan, Tzu-Ming; Liao, Vivian Hsiu-Chuan

    2016-09-28

    Amyloid-β (Aβ)-induced oxidative stress and toxicity are leading risk factors for Alzheimer's disease (AD). Monascin (MS) is a novel compound proposed for antioxidative stress applications and is derived from an edible fungus secondary metabolite. This study assessed the effects of MS on oxidative stress, paralysis, Aβ accumulation, and lifespan in the nematode Caenorhabditis elegans and investigated its underlying mechanisms of action. The results showed that MS increased the survival of C. elegans under juglone-induced oxidative stress and attenuated endogenous levels of reactive oxygen species. Furthermore, MS induced a decline in Aβ-induced paralysis phenotype and Aβ deposits in the transgenic strains CL4176 and CL2006 of C. elegans, which expresses human muscle-specific Aβ1-42 in the cytoplasm of body wall muscle cells. In addition, mRNA levels of strain CL4176 of several antioxidant genes (sod-1, sod-2, sod-3, hsp16.2) and daf-16 were up-regulated by MS treatment when compared to the nontreated controls. Further evidence showed that MS treatment in C. elegans strains lacking DAF-16/FOXO did not affect paralysis or lifespan phenotypes. The findings indicate that MS reduces oxidative stress and Aβ toxicity via DAF-16 in C. elegans, suggesting that MS can be used for the prevention of AD-associated oxidative stress complications.

  15. Caenorhabditis elegans as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction.

    Science.gov (United States)

    Maurer, Laura L; Ryde, Ian T; Yang, Xinyu; Meyer, Joel N

    2015-11-02

    The nematode Caenorhabditis elegans is extensively utilized in toxicity studies. C. elegans offers a high degree of homology with higher organisms, and its ease of use and relatively inexpensive maintenance have made it an attractive complement to mammalian and ecotoxicological models. C. elegans provides multiple benefits, including the opportunity to perform relatively high-throughput assays on whole organisms, a wide range of genetic tools permitting investigation of mechanisms and genetic sensitivity, and transparent bodies that facilitate toxicokinetic studies. This unit describes protocols for three nanotoxicity assays in C. elegans: lethality, growth, and reproduction. This unit focuses on how to use these well-established assays with nanoparticles, which are being produced in ever-increasing volume and exhibit physicochemical properties that require alteration of standard toxicity assays. These assays permit a broad phenotypic assessment of nanotoxicity in C. elegans, and, when used in combination with genetic tools and other assays, also permit mechanistic insight. Copyright © 2015 John Wiley & Sons, Inc.

  16. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    Science.gov (United States)

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Kruse, Rikke; Harvald, Eva Bang

    2013-01-01

    Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2...... that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR......, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss...

  18. DAF-16: FOXO in the Context of C. elegans.

    Science.gov (United States)

    Tissenbaum, Heidi A

    2018-01-01

    In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism. © 2018 Elsevier Inc. All rights reserved.

  19. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sarah A. Winter

    2016-10-01

    Full Text Available The present study employed mass spectrometry (ICP-MS to measure the internal cadmium concentrations (Cdint in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC transporters (e.g., HMT-1 and MRP-1 and phytochelatin synthase (PCS, we compared wild-type (WT and different mutant strains of C. elegans. As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1Δ, pcs-1Δ, and hmt-1Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1Δ and WT than in hmt-1Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1Δ. Cd release (detoxification was found to be maximal in mrp-1Δ, minimal in hmt-1Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals, which keeps internal Cd (or metal

  20. Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Winter, Sarah A; Dölling, Ramona; Knopf, Burkhard; Mendelski, Martha N; Schäfers, Christoph; Paul, Rüdiger J

    2016-10-01

    The present study employed mass spectrometry (ICP-MS) to measure the internal cadmium concentrations (Cd int ) in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC) transporters (e.g., HMT-1 and MRP-1) and phytochelatin synthase (PCS), we compared wild-type (WT) and different mutant strains of C. elegans . As a pre-test on selected mutant strains, several time-resolved experiments were performed to determine the survival rate and avoidance behavior of C. elegans under Cd stress, which confirmed the already known Cd sensitivity of the deletion mutants mrp-1 Δ, pcs-1 Δ, and hmt-1 Δ. In addition, these experiments revealed flight reactions under Cd stress to be almost completely absent in mrp-1 Δ mutants. The ICP-MS studies showed Cd uptake to be significantly higher in mrp-1 Δ and WT than in hmt-1 Δ. As Cd is ingested with food, food refusal due to very early Cd stress and its perception was likely the reason for the reduced Cd uptake of hmt-1 Δ. Cd release (detoxification) was found to be maximal in mrp-1 Δ, minimal in hmt-1 Δ, and intermediate in WT. High mortality under Cd stress, food refusal, and minimal Cd release in the case of hmt-1 Δ suggest a vital importance of the HMT-1/PCS-1 detoxification system for the survival of C. elegans under Cd stress. High mortality under Cd stress, absence of an avoidance behavior, missing food refusal, and maximal Cd release in the case of mrp-1 Δ indicate that MRP-1 is less important for Cd detoxification under severe stress, but is probably important for Cd perception. Accordingly, our results suggest that the survival of WT under Cd stress (or possibly other forms of metal stress) primarily depends on the function of the HMT-1/PCS-1 detoxification system and the presence of a sensing mechanism to control the uptake of Cd (or other metals), which keeps internal Cd (or

  1. Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance

    International Nuclear Information System (INIS)

    Lee, Eun-Young; Shim, Yhong-Hee; Chitwood, David J.; Hwang, Soon Baek; Lee, Junho; Paik, Young-Ki

    2005-01-01

    Because Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterol as an essential nutrient. Supplemented cholesterol undergoes extensive enzymatic modification in C. elegans to form other sterols of unknown function. 7-Dehydrocholesterol reductase (DHCR) catalyzes the reduction of the Δ 7 double bond of sterols and is suspected to be defective in C. elegans, in which the major endogenous sterol is 7-dehydrocholesterol (7DHC). We microinjected a human DHCR expression vector into C. elegans, which was then incorporated into chromosome by γ-radiation. This transgenic C. elegans was named cholegans, i.e., cholesterol-producing C. elegans, because it was able to convert 7DHC into cholesterol. We investigated the effects of changes in sterol composition on longevity and stress resistance by examining brood size, mean life span, UV resistance, and thermotolerance. Cholegans contained 80% more cholesterol than the wild-type control. The brood size of cholegans was reduced by 40% compared to the wild-type control, although the growth rate was not significantly changed. The mean life span of cholegans was increased up to 131% in sterol-deficient medium as compared to wild-type. The biochemical basis for life span extension of cholegans appears to partly result from its acquired resistance against both UV irradiation and thermal stress

  2. lin-12 Notch functions in the adult nervous system of C. elegans

    Directory of Open Access Journals (Sweden)

    Tucey Tim M

    2005-07-01

    Full Text Available Abstract Background Notch signaling pathways are conserved across species and traditionally have been implicated in cell fate determination during embryonic development. Notch signaling components are also expressed postdevelopmentally in the brains of adult mice and Drosophila. Recent studies suggest that Notch signaling may play a role in the physiological, rather than developmental, regulation of neurons. Here, we investigate a new non-developmental role for Caenorhabditis elegans lin-12 Notch signaling in neurons regulating the spontaneous reversal rate during locomotion. Results The spontaneous reversal rate of C. elegans during normal locomotion is constant. Both lin-12 gain and loss of function mutant animals had significantly increased reversal rates compared to wild type controls. These defects were caused by lin-12 activity, because the loss of function defect could be rescued by a wild type lin-12 transgene. Furthermore, overexpression of lin-12 recapitulated the gain-of-function defect. Increasing or decreasing lin-12 activity in the postdevelopmental adult animal was sufficient to rapidly and reversibly increase reversals, thereby excluding a developmental role for lin-12. Although lin-12 is expressed in the vulval and somatic gonad lineages, we find that these tissues play no role in regulating reversal rates. In contrast, altering lin-12 activity specifically in the nervous system was sufficient to increase reversals. These behavioral changes require components of the canonical lin-12 signaling cascade, including the ligand lag-2 and the transcriptional effector lag-1. Finally, the C. elegans AMPA/kainate glutamate receptor homolog glr-1 shows strong genetic interactions with lin-12, suggesting that glr-1 and/or other glutamate gated channels may be targets of lin-12 regulation. Conclusion Our results demonstrate a neuronal role for lin-12 Notch in C. elegans and suggest that lin-12 acutely regulates neuronal physiology to

  3. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food.

    Science.gov (United States)

    Anderson, Alexandra; McMullan, Rachel

    2018-07-19

    One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Authors.

  5. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  6. A Novel Mechanism of pH Buffering in C. elegans Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl− Channel CLH-1

    Science.gov (United States)

    Grant, Jeff; Matthewman, Cristina

    2015-01-01

    An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3− buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3− uptake. While the classical mechanism of HCO3− uptake involves Na+/HCO3− cotransporters, here we demonstrate that the C. elegans ClC Cl− channel CLH-1 is highly permeable to HCO3− and mediates HCO3− uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl− channel. Our data suggest that, in addition to maintaining synaptic Cl− concentration, these channels may also be involved in maintenance of synaptic pH via HCO3− flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. SIGNIFICANCE STATEMENT Maintenance of pH is essential for the physiological function of the nervous system. HCO3− is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3− flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons. PMID:26674864

  7. A Novel Mechanism of pH Buffering in C. elegans Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl- Channel CLH-1.

    Science.gov (United States)

    Grant, Jeff; Matthewman, Cristina; Bianchi, Laura

    2015-12-16

    An important function of glia is the maintenance of the ionic composition and pH of the synaptic microenvironment. In terms of pH regulation, HCO3 (-) buffering has been shown to be important in both glia and neurons. Here, we used in vivo fluorescent pH imaging and RNA sequencing of the amphid sheath glia of Caenorhabditis elegans to reveal a novel mechanism of cellular HCO3 (-) uptake. While the classical mechanism of HCO3 (-) uptake involves Na(+)/HCO3 (-) cotransporters, here we demonstrate that the C. elegans ClC Cl(-) channel CLH-1 is highly permeable to HCO3 (-) and mediates HCO3 (-) uptake into amphid sheath glia. CLH-1 has homology and electrophysiological properties similar to the mammalian ClC-2 Cl(-) channel. Our data suggest that, in addition to maintaining synaptic Cl(-) concentration, these channels may also be involved in maintenance of synaptic pH via HCO3 (-) flux. These findings provide an exciting new facet of study regarding how pH is regulated in the brain. Maintenance of pH is essential for the physiological function of the nervous system. HCO3 (-) is crucial for pH regulation and is transported into the cell via ion transporters, including ion channels, the molecular identity of which remains unclear. In this manuscript, we describe our discovery that the C. elegans amphid sheath glia regulate intracellular pH via HCO3 (-) flux through the voltage-gated ClC channel CLH-1. This represents a novel function for ClC channels, which has implications for their possible role in mammalian glial pH regulation. This discovery may also provide a novel therapeutic target for pathologic conditions, such as ischemic stroke where acidosis leads to widespread death of glia and subsequently neurons. Copyright © 2015 the authors 0270-6474/15/3516377-21$15.00/0.

  8. A whole-mount in situ hybridization method for microRNA detection in Caenorhabditis elegans.

    Science.gov (United States)

    Andachi, Yoshiki; Kohara, Yuji

    2016-07-01

    Whole-mount in situ hybridization (WISH) is an outstanding method to decipher the spatiotemporal expression patterns of microRNAs (miRNAs) and provides important clues for elucidating their functions. The first WISH method for miRNA detection was developed in zebrafish. Although this method was quickly adapted for other vertebrates and fruit flies, WISH analysis has not been successfully used to detect miRNAs in Caenorhabditis elegans Here, we show a novel WISH method for miRNA detection in C. elegans Using this method, mir-1 miRNA was detected in the body-wall muscle where the expression and roles of mir-1 miRNA have been previously elucidated. Application of the method to let-7 family miRNAs, let-7, mir-48, mir-84, and mir-241, revealed their distinct but partially overlapping expression patterns, indicating that miRNAs sharing a short common sequence were distinguishably detected. In pash-1 mutants that were depleted of mature miRNAs, signals of mir-48 miRNA were greatly reduced, suggesting that mature miRNAs were detected by the method. These results demonstrate the validity of WISH to detect mature miRNAs in C. elegans. © 2016 Andachi and Kohara; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Virulence variations in Shigella and enteroinvasive Escherichia coli using the Caenorhabditis elegans model.

    Science.gov (United States)

    Fung, Crystal Ching; Octavia, Sophie; Mooney, Anne-Marie; Lan, Ruiting

    2015-01-01

    Shigella species and enteroinvasive Escherichia coli (EIEC) belong to the same species genetically, with remarkable phenotypic and genomic similarities. Shigella is the main cause of bacillary dysentery with around 160 million annual cases, while EIEC generally induces a milder disease compared to Shigella. This study aimed to determine virulence variations between Shigella and EIEC using the nematode Caenorhabditis elegans as a model host. Caenorhabditis elegans killing- and bacterial colonization assays were performed to examine the potential difference in virulence between Shigella and EIEC strains. Statistically significant difference in the survival rates of nematodes was demonstrated, with Shigella causing death at 88.24 ± 1.20% and EIEC at 94.37 ± 0.70%. The intestinal load of bacteria in the nematodes was found to be 7.65 × 10(4) ± 8.83 × 10(3) and 2.92 × 10(4) ± 6.26 × 10(3) CFU ml(-1) per nematode for Shigella and EIEC, respectively. Shigella dysenteriae serotype 1 which carries the Shiga toxin showed the lowest nematode survival rate at 82.6 ± 3.97% and highest bacterial colonization of 1.75 × 10(5) ± 8.17 × 10(4) CFU ml(-1), whereas a virulence plasmid-negative Shigella strain demonstrated 100 ± 0% nematode survival and lowest bacterial accumulation of 1.02 × 10(4) ± 7.23 × 10(2) CFU ml(-1). This study demonstrates C. elegans as an effective model for examining and comparing Shigella and EIEC virulence variation. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Quantitative proteomics by amino acid labeling identifies novel NHR-49 regulated proteins in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Færgeman, Nils J.

    2012-01-01

    in the nematode Caenorhabditis elegans. We have recently shown that C. elegans can be completely labeled with heavy-labeled lysine by feeding worms on prelabeled lysine auxotroph Escherichia coli for just one generation. We applied this methodology to examine the organismal response to functional loss or RNAi...... gene knockdown by RNAi provides a powerful tool with broad implications for C. elegans biology....

  11. A DOG’s View of Fanconi Anemia: Insights from C. elegans

    Directory of Open Access Journals (Sweden)

    Martin Jones

    2012-01-01

    Full Text Available C. elegans provides an excellent model system for the study of the Fanconi Anemia (FA, one of the hallmarks of which is sensitivity to interstrand crosslinking agents. Central to our understanding of FA has been the investigation of DOG-1, the functional ortholog of the deadbox helicase FANCJ. Here we review the current understanding of the unique role of DOG-1 in maintaining stability of G-rich DNA in C. elegans and explore the question of why DOG-1 animals are crosslink sensitive. We propose a dynamic model in which noncovalently linked G-rich structures form and un-form in the presence of DOG-1. When DOG-1 is absent but crosslinking agents are present the G-rich structures are readily covalently crosslinked, resulting in increased crosslinks formation and thus giving increased crosslink sensitivity. In this interpretation DOG-1 is neither upstream nor downstream in the FA pathway, but works alongside it to limit the availability of crosslink substrates. This model reconciles the crosslink sensitivity observed in the absence of DOG-1 function with its unique role in maintaining G-Rich DNA and will help to formulate experiments to test this hypothesis.

  12. Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome

    International Nuclear Information System (INIS)

    Sihn, Choong-Ryoul; Cho, Si Young; Lee, Jeong Ho; Lee, Tae Ryong; Kim, Sang Hoon

    2007-01-01

    Yeast Prp19 has been shown to involve in pre-mRNA splicing and DNA repair as well as being an ubiquitin ligase. Mammalian homologue of yeast Prp19 also plays on similar functional activities in cells. In the present study, we isolated mouse SUG1 (mSUG1) as binding partner of mouse Prp19 (mPrp19) by the yeast two-hybrid system. We confirmed the interaction of mPrp9 with mSUG1 by GST pull-down assay and co-immunoprecipitation assay. The N-terminus of mPrp19 including U-box domain was associated with the C-terminus of mSUG1. Although, mSUG1 is a regulatory subunit of 26S proteasome, mPrp19 was not degraded in the proteasome-dependent pathway. Interestingly, GFP-mPrp19 fusion protein was co-localized with mSUG1 protein in cytoplasm as the formation of the speckle-like structures in the presence of a proteasome inhibitor MG132. In addition, the activity of proteasome was increased in cells transfected with mPrp19. Taken together, these results suggest that mPrp19 involves the regulation of protein turnover and may transport its substrates to 26S proteasome through mSUG1 protein

  13. Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans.

    Science.gov (United States)

    Yan, Baolong; Sun, Weiwei; Shi, Xiaomeng; Huang, Liyang; Chen, Lingzi; Wang, Suhua; Yan, Lanzhu; Liang, Shaohui; Huang, Huicong

    2017-06-15

    The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity. Copyright © 2017. Published by Elsevier B.V.

  14. Behavioral and metabolic effects of the atypical antipsychotic ziprasidone on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Priscila Gubert

    Full Text Available Atypical antipsychotics are associated with metabolic syndrome, primarily associated with weight gain. The effects of Ziprasidone, an atypical antipsychotic, on metabolic syndrome has yet to be evaluated. Here in, we evaluated lipid accumulation and behavioral changes in a new experimental model, the nematode Caenorhabditis elegans (C. elegans. Behavioral parameters in the worms were evaluated 24 h after Ziprasidone treatment. Subsequently, lipid accumulation was examined using Nile red, LipidTox green and BODIPY labeling. Ziprasidone at 40 µM for 24 h effectively decreased the fluorescence labeling of all markers in intestinal cells of C. elegans compared to control (0.16% dimethyl sulfoxide. Ziprasidone did not alter behaviors related to energetic balance, such as pharynx pumping, defecation cycles and movement. There was, however, a reduction in egg-production, egg-laying and body-length in nematodes exposed to Ziprasidone without any changes in the progression of larval stages. The serotoninergic pathway did not appear to modulate Ziprasidone's effects on Nile red fluorescence. Additionally, Ziprasidone did not alter lipid accumulation in daf-16 or crh-1 deletion mutants (orthologous of the transcription factors DAF-16 and CREB, respectively. These results suggest that Ziprasidone alters reproductive behavior, morphology and lipid reserves in the intestinal cells of C. elegans. Our results highlight that the DAF-16 and CREB transcription factors are essential for Ziprasidone-induced fat store reduction.

  15. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  16. The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells.

    Science.gov (United States)

    Lozupone, Francesco; Perdicchio, Maurizio; Brambilla, Daria; Borghi, Martina; Meschini, Stefania; Barca, Stefano; Marino, Maria Lucia; Logozzi, Mariantonia; Federici, Cristina; Iessi, Elisabetta; de Milito, Angelo; Fais, Stefano

    2009-12-01

    Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co-localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti-tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.

  17. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans.

    Science.gov (United States)

    Steiner, Florian A; Okihara, Kristy L; Hoogstrate, Suzanne W; Sijen, Titia; Ketting, René F

    2009-02-01

    RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA targets using a conserved RNase H motif. In Caenorhabditis elegans, the Argonaute protein RDE-1 has a central role in RNAi. In animals lacking RDE-1, the introduction of double-stranded RNA does not trigger any detectable level of RNAi. Here we show that RNase H activity of RDE-1 is required only for efficient removal of the passenger strand of the siRNA duplex and not for triggering the silencing response at the target-mRNA level. These results uncouple the role of the RDE-1 RNase H activity in small RNA maturation from its role in target-mRNA silencing in vivo.

  18. Dietary regulation of hypodermal polyploidization in C. elegans

    Directory of Open Access Journals (Sweden)

    Lozano Encarnación

    2008-03-01

    Full Text Available Abstract Background Dietary restriction (DR results in increased longevity, reduced fecundity and reduced growth in many organisms. Though many studies have examined the effects of DR on longevity and fecundity, few have investigated the effects on growth. Results Here we use Caenorhabditis elegans to determine the mechanisms that regulate growth under DR. We show that rather than a reduction in cell number, decreased growth in wild type C. elegans under DR is correlated with lower levels of hypodermal polyploidization. We also show that mutants lacking wild type sensory ciliated neurons are small, exhibit hypo-polyploidization and more importantly, when grown under DR, reduce their levels of endoreduplication to a lesser extent than wild type, suggesting that these neurons are required for the regulation of hypodermal polyploidization in response to DR. Similarly, we also show that the cGMP-dependent protein kinase EGL-4 and the SMA/MAB signalling pathway regulate polyploidization under DR. Conclusion We show C. elegans is capable of actively responding to food levels to regulate adult ploidy. We suggest this response is dependent on the SMA/MAB signalling pathway.

  19. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation.

    Science.gov (United States)

    Warnhoff, Kurt; Murphy, John T; Kumar, Sandeep; Schneider, Daniel L; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J David; Kornfeld, Kerry

    2014-10-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.

  20. Backbone and sidechain methyl Ile (δ1), Leu and Val chemical shift assignments of RDE-4 (1-243), an RNA interference initiation protein in C. elegans.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Kumar, Sonu; Marelli, Udaya Kiran; Deshmukh, Mandar V

    2012-10-01

    The RNAi pathway of several organisms requires presence of double stranded RNA binding proteins for functioning of Dicer in gene regulation. In C. elegans, a double stranded RNA binding protein, RDE-4 (385 aa, 44 kDa) recognizes long exogenous dsRNA and initiates the RNAi pathway. We have achieved complete backbone and stereospecific methyl sidechain Ile (δ1), Leu and Val chemical shifts of first 243 amino acids of RDE-4, namely RDE-4ΔC.

  1. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    Science.gov (United States)

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Splicing of a C. elegans myosin pre-mRNA in a human nuclear extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogg, S C; Anderson, P; Wickens, M P [Univ. of Wisconsin, Madison (USA)

    1990-01-11

    Splicing of mammalian introns requires that the intron possess at least 80 nucleotides. This length requirement presumably reflects the constraints of accommodating multiple snRNPs simultaneously in the same intro. In the free-living nematode, C. elegans, introns typically are 45 to 55 nucleotides in length. In this report, the authors determine whether C. elegans introns can obviate the mammalian length requirement by virtue of their structure or sequence. They demonstrate that a 53 nucleotide intron from the unc-54 gene of C. elegans does not undergo splicing in a mammalian (HeLa) nuclear extract. However, insertion of 31 nucleotides of foreign, prokaryotic sequence into the same intron results in efficient splicing. The observed splicing proceeds by the same two-step mechanism observed with mammalian introns, and exploits the same 3{prime} and 5{prime} sites as are used in C. elegans. The branch point used lies in the inserted sequences. They conclude that C. elegans splicing components are either fewer in number or smaller than their mammalian counterparts.

  3. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    2008-08-01

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  4. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-m...

  5. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Yi

    2015-10-01

    Full Text Available Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3'UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function.

  6. The CSR-1 endogenous RNAi pathway ensures accurate transcriptional reprogramming during the oocyte-to-embryo transition in Caenorhabditis elegans.

    Science.gov (United States)

    Fassnacht, Christina; Tocchini, Cristina; Kumari, Pooja; Gaidatzis, Dimos; Stadler, Michael B; Ciosk, Rafal

    2018-03-01

    Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition.

  7. microRNA regulation of the embryonic hypoxic response in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Pocock, Roger

    2015-01-01

    Layered strategies to combat hypoxia provide flexibility in dynamic oxygen environments. Here we show that multiple miRNAs are required for hypoxic survival responses during C. elegans embryogenesis. Certain miRNAs promote while others antagonize the hypoxic survival response. We found...... of the full mRNA target repertoire of these miRNAs will reveal the miRNA-regulated network of hypoxic survival mechanisms in C. elegans....

  8. Caenorhabditis elegans Histone Deacetylase hda-1 Is Required for Morphogenesis of the Vulva and LIN-12/Notch-Mediated Specification of Uterine Cell Fates

    OpenAIRE

    Ranawade, Ayush Vasant; Cumbo, Philip; Gupta, Bhagwati P.

    2013-01-01

    Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1 , a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections (i.e., no uterine-sea...

  9. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

    Directory of Open Access Journals (Sweden)

    Ikechukwu Okoli

    2009-09-01

    Full Text Available Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans-C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.

  10. Alcohol disinhibition of behaviors in C. elegans.

    Directory of Open Access Journals (Sweden)

    Stephen M Topper

    Full Text Available Alcohol has a wide variety of effects on physiology and behavior. One of the most well-recognized behavioral effects is disinhibition, where behaviors that are normally suppressed are displayed following intoxication. A large body of evidence has shown that alcohol-induced disinhibition in humans affects attention, verbal, sexual, and locomotor behaviors. Similar behavioral disinhibition is also seen in many animal models of ethanol response, from invertebrates to mammals and primates. Here we describe several examples of disinhibition in the nematode C. elegans. The nematode displays distinct behavioral states associated with locomotion (crawling on land and swimming in water that are mediated by dopamine. On land, animals crawl and feed freely, but these behaviors are inhibited in water. We found that additional behaviors, including a variety of escape responses are also inhibited in water. Whereas alcohol non-specifically impaired locomotion, feeding, and escape responses in worms on land, alcohol specifically disinhibited these behaviors in worms immersed in water. Loss of dopamine signaling relieved disinhibition of feeding behavior, while loss of the D1-like dopamine receptor DOP-4 impaired the ethanol-induced disinhibition of crawling. The powerful genetics and simple nervous system of C. elegans may help uncover conserved molecular mechanisms that underlie alcohol-induced disinhibition of behaviors in higher animals.

  11. Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Hercília M. L. Rolim

    2013-03-01

    Full Text Available The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109 growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%–81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals.

  12. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection.

    Directory of Open Access Journals (Sweden)

    Inja Radman

    Full Text Available We report a simple, cost-effective, scalable and efficient method for creating transgenic Caenorhabditis elegans that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type C. elegans at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for C. elegans transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in C. elegans.

  13. Research progress in neuro-immune interactions in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Jin-ling CAI

    2012-09-01

    Full Text Available The innate immune response may be activated quickly once the organism is invaded by exotic pathogens. An excessive immune response may result in inflammation and tissue damage, whereas an insufficient immune response may result in infection. Nervous system may regulate the intensity of innate immune responses by releasing neurotransmitters, neuropeptides and hormones. Compared with the complicated neuro-immune system in mammals, it is much simpler in Caenorhabditis elegans. Besides, C. elegans is accessible to genetic, molecular biology and behavioral analyses, so it has been used in studies on neuro-immune interactions. It has been revealed recently in the studies with C. elegans that the neuronal pathways regulating innate immune responses primarily include a transforming growth factor-β (TGF-β pathway, an insulin/insulin-like growth factor receptor (IGF pathway and dopaminergic neurotransmission. Since these pathways are evolutionally conservative, so it might be able to provide some new ideas for the research on neuro-immune interactions at molecular levels. The recent progress in this field has been reviewed in present paper.

  14. Purification, crystallization and preliminary X-ray analysis of SGR6054, a Streptomyces homologue of the mycobacterial integration host factor mIHF

    International Nuclear Information System (INIS)

    Nomoto, Ryohei; Tezuka, Takeaki; Miyazono, Ken-ichi; Tanokura, Masaru; Horinouchi, Sueharu; Ohnishi, Yasuo

    2012-01-01

    A Streptomyces homologue of the mycobacterial integration host factor mIHF was heterologously produced, purified and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The best crystal diffracted X-rays to 2.22 Å resolution and belonged to space group C2. The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2). Despite their important biological functions, a structure of mIHF or its homologues has not been elucidated to date. Here, the S. griseus mIHF homologue (SGR6054) was expressed and purified from Escherichia coli and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The plate-shaped crystal belonged to space group C2, with unit-cell parameters a = 88.53, b = 69.35, c = 77.71 Å, β = 96.63°, and diffracted X-rays to 2.22 Å resolution

  15. Purification, crystallization and preliminary X-ray analysis of SGR6054, a Streptomyces homologue of the mycobacterial integration host factor mIHF

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Ryohei; Tezuka, Takeaki; Miyazono, Ken-ichi; Tanokura, Masaru; Horinouchi, Sueharu; Ohnishi, Yasuo [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2012-08-31

    A Streptomyces homologue of the mycobacterial integration host factor mIHF was heterologously produced, purified and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The best crystal diffracted X-rays to 2.22 Å resolution and belonged to space group C2. The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2). Despite their important biological functions, a structure of mIHF or its homologues has not been elucidated to date. Here, the S. griseus mIHF homologue (SGR6054) was expressed and purified from Escherichia coli and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The plate-shaped crystal belonged to space group C2, with unit-cell parameters a = 88.53, b = 69.35, c = 77.71 Å, β = 96.63°, and diffracted X-rays to 2.22 Å resolution.

  16. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    Science.gov (United States)

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  17. Use of C. Elegans as a model organism for sensing the effects of ELF-EMFs

    Energy Technology Data Exchange (ETDEWEB)

    Lacchini, A H; Everington, M L; Augousti, A T; Walker, A J [School of Life Sciences, Kingston University London (United Kingdom)

    2007-07-15

    For the past two decades, there have been concerns and controversy about the effects on human health of the increased exposure to extremely-low-frequency (ELF) electromagnetic fields (EMFs) resulting from electrification, in both residential and industrial settings. Several epidemiological studies have implicated ELF-EMFs averaging 0.4 {mu}mUTesla (T) or more in increased risk of cancer, especially childhood leukaemia [1,2]; there have also been many reports demonstrating effects of power-frequency EMFs on cells [outlined in 1,3]. Unfortunately, however, the precise mechanisms by which ELF-EMFs exert biological effects have proven difficult to define and results of various studies have often been hard to reproduce [1]. We believe that C. elegans offers an exciting opportunity to elucidate the effects of power-frequency EMFs on cell signalling pathways within the whole organism and are therefore investigating the effects of ELF-EMF exposure on MAPK signalling in intact worms and fertilized embryos. Through taking a targeted approach to studying the effects of ELF-EMF's on MAPK signalling in C. elegans we aim to gather data that is physiologically relevant. Presently, this research is at a preliminary stage of preparation, and more detailed results on the exposure of Caenorhabditis elegans to ELF-EMF radiation will be presented at the conference itself.

  18. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory.

    Science.gov (United States)

    Gyurkó, M Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-10-15

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans.

  19. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans.

    Science.gov (United States)

    Kamaladevi, Arumugam; Ganguli, Abhijit; Balamurugan, Krishnaswamy

    2016-01-01

    Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development.

    Science.gov (United States)

    Cottee, Pauline A; Cole, Tim; Schultz, Jessica; Hoang, Hieu D; Vibbert, Jack; Han, Sung Min; Miller, Michael A

    2017-06-15

    VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. © 2017. Published by The Company of Biologists Ltd.

  1. C. elegans as a virulence model for E. coli strain 042

    OpenAIRE

    Kjærbo, Rasmus E. R.; Godballe, Troels; Hansen, Klaus G.; Petersen, Pernille D.; Tikander, Emil

    2010-01-01

    During the last decade the nematode Caenorhabditis elegans has been used to model the pathogenesis of several bacterial species. The emerging pathogen enteroaggregative Escherichia coli (EAEC) is a considerable cause of both acute and persistent diarrhea worldwide. Travellers to developing countries, immunocompromised people and young children are high-risk groups prone to infection. Virulence models using C. elegans might provide valuable information about the host-pathogen interactions whic...

  2. The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shilpi Khare

    Full Text Available The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in development, egg laying, dauer survival, and autophagy have been observed in pcm-1 mutant nematodes when deprived of food and when exposed to oxidative stress. Interestingly, overexpression of this repair enzyme in both Drosophila and C. elegans extends adult lifespan under thermal stress. In this work, we show the involvement of the insulin/insulin-like growth factor-1 signaling (IIS pathway in PCM-1-dependent lifespan extension in C. elegans. We demonstrate that reducing the levels of the DAF-16 downstream transcriptional effector of the IIS pathway by RNA interference reduces the lifespan extension resulting from PCM-1 overexpression. Using quantitative real-time PCR analysis, we show the up-regulation of DAF-16-dependent stress response genes in the PCM-1 overexpressor animals compared to wild-type and pcm-1 mutant nematodes under mild thermal stress conditions. Additionally, similar to other long-lived C. elegans mutants in the IIS pathway, including daf-2 and age-1 mutants, PCM-1 overexpressor adult animals display increased resistance to severe thermal stress, whereas pcm-1 mutant animals survive less long under these conditions. Although we observe a higher accumulation of damaged proteins in pcm-1 mutant nematodes, the basal level of isoaspartyl residues detected in wild-type animals was not reduced by PCM-1 overexpression. Our results support a signaling role for the protein L-isoaspartyl methyltransferase in lifespan extension that involves the IIS pathway, but that may be independent of its function in overall protein repair.

  3. A distributed chemosensory circuit for oxygen preference in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andy J Chang

    2006-09-01

    Full Text Available The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf and naturally isolated npr-1(215F animals avoid high oxygen and aggregate in the presence of food; npr-1(215V animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-beta homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen.

  4. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen

    2012-01-01

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  5. Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1.

    Directory of Open Access Journals (Sweden)

    Melvin Baidya

    Full Text Available The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.

  6. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    Science.gov (United States)

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.

    2017-01-01

    ABSTRACT Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F. tularensis, and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z′ factor consistently of >0.5, which was then utilized to screen a library of FDA-approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, five FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro. Moreover, the nonsteroidal anti-inflammatory drug (NSAID) diflunisal, at 4× MIC, blocked the replication of an F. tularensis live vaccine strain (LVS) in primary human macrophages and nonphagocytic cells. Diflunisal was nontoxic to human erythrocytes and HepG2 human liver cells at concentrations of ≥32 μg/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans-F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia. PMID:28652232

  7. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2.

    Directory of Open Access Journals (Sweden)

    Mark G Sterken

    Full Text Available Orsay virus (OrV is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi. However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.

  8. Implementation of chaotic secure communication systems based on OPA circuits

    International Nuclear Information System (INIS)

    Huang, C.-K.; Tsay, S.-C.; Wu, Y.-R.

    2005-01-01

    In this paper, we proposed a novel three-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. The design idea is to use RLC elements and a nonlinear resistor. The one of salient features of the chaotic circuit is that the circuit with two flexible breakpoints of nonlinear element, and the advantage of the flexible breakpoint is that it increased complexity of the dynamical performance. Here, if we take a large and suitable breakpoint value, then the chaotic state can masking a large input signal in the circuit. Furthermore, we proposed a secure communication hyperchaotic system based on the proposed chaotic circuits, where the chaotic communication system is constituted by a chaotic transmitter and a chaotic receiver. To achieve the synchronization between the transmitter and the receiver, we are using a suitable Lyapunov function and Lyapunov theorem to design the feedback control gain. Thus, the transmitting message masked by chaotic state in the transmitter can be guaranteed to perfectly recover in the receiver. To achieve the systems performance, some basic components containing OPA, resistor and capacitor elements are used to implement the proposed communication scheme. From the viewpoints of circuit implementation, this proposed chaotic circuit is superior to the Chua chaotic circuits. Finally, the test results containing simulation and the circuit measurement are shown to demonstrate that the proposed method is correct and feasible

  9. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics

    DEFF Research Database (Denmark)

    Sidoli, Simone; Vandamme, Julien; Elisabetta Salcini, Anna

    2016-01-01

    We applied a middle-down proteomics strategy for large scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized post-translational modifications (PTMs) on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval......-occurring PTMs. We measured temporally distinct combinatorial PTM profiles during C. elegans development. We show that the doubly modified form H3K23me3K27me3, which is rare or non-existent in mammals, is the most abundant PTM in all stages of C. elegans lifecycle. The abundance of H3K23me3 increased during...... that is transmitted during dauer formation. Collectively, our data describe the dynamics of histone H3 combinatorial code during C. elegans lifecycle and demonstrate the feasibility of using middle-down proteomics to study in vivo development of multicellular organisms. This article is protected by copyright. All...

  10. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl − accumulation and salt tolerance in Arabidopsis thaliana

    KAUST Repository

    Qiu, Jiaen; Henderson, Sam W; Tester, Mark A.; Roy, Stuart J; Gilliham, Mathew

    2016-01-01

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport.

  11. SLAH1, a homologue of the slow type anion channel SLAC1, modulates shoot Cl − accumulation and salt tolerance in Arabidopsis thaliana

    KAUST Repository

    Qiu, Jiaen

    2016-06-23

    Salinity tolerance is correlated with shoot chloride (Cl–) exclusion in multiple crops, but the molecular mechanisms of long-distance Cl– transport are poorly defined. Here, we characterize the in planta role of AtSLAH1 (a homologue of the slow type anion channel-associated 1 (SLAC1)). This protein, localized to the plasma membrane of root stelar cells, has its expression reduced by salt or ABA, which are key predictions for a protein involved with loading Cl– into the root xylem. Artificial microRNA knockdown mutants of AtSLAH1 had significantly reduced shoot Cl− accumulation when grown under low Cl–, whereas shoot Cl– increased and the shoot nitrate/chloride ratio decreased following AtSLAH1 constitutive or stelar-specific overexpression when grown in high Cl–. In both sets of overexpression lines a significant reduction in shoot biomass over the null segregants was observed under high Cl– supply, but not low Cl– supply. Further in planta data showed AtSLAH3 overexpression increased the shoot nitrate/chloride ratio, consistent with AtSLAH3 favouring nitrate transport. Heterologous expression of AtSLAH1 in Xenopus laevis oocytes led to no detectible transport, suggesting the need for post-translational modifications for AtSLAH1 to be active. Our in planta data are consistent with AtSLAH1 having a role in controlling root-to-shoot Cl– transport.

  12. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  13. Optimizing Host-Pathogen In-Flight Assays for C.Elegans and Methicillin-Resistant Staphylococcus Aureus

    Science.gov (United States)

    Hammond, Timothy G.; Birdsall, Holly H.; Hammond, Jeffrey S.; Allen, Patricia L.

    2013-02-01

    This study addresses controls for an assay of bacterial virulence that has been optimized for space flight studies. Caenorhabditis elegans (C. elegans) worms ingest microorganisms, but are also killed by virulent bacteria. Virulence is assessed by the number of bacteria surviving in co-culture with C. elegans , as measured by optical density at 620 nm. Co -cultures of Methicillin-resistant Staphylococcus aureus (MRSA) with C. elegans have a higher OD620 than MRSA grown alone, which could reflect debris from dead worms and/or enhanced growth of the MRSA in response to worm-derived factors. The use of media conditioned by pre-incubation with worms demonstrated the presence of temperature-stable factors that change MRSA growth in a strain-dependent manner. Some sources of deionized water contain an undefined antibacterial activity present in conditioned, but not fresh untreated media.

  14. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C.elegans embryos?

    International Nuclear Information System (INIS)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann

    1991-01-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs

  15. Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Phil; Reddy, Jennifer; Svendsen, Betty-Ann [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1991-09-01

    Over 10-fold larger fluences were required to inhibit both DNA synthesis and cell division in wild-type C.elegans embryos as compared with other model systems or C.elegans rad mutants. In addition, unlike in other organisms, the molecular weight of daughter DNA strands was reduced only after large, superlethal fluences. The molecular weight of nascent DNA fragments exceeded the interdimer distance by up to 19-fold, indicating that C.elegans embryos can replicate through non-instructional lesions. This putative trans-lesion synthetic capability may explain the refractory nature of UV-radiation on embryonic DNA synthesis and nuclear division in C.elegans. (author). 42 refs.; 7 figs.

  16. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan.

    Science.gov (United States)

    Bansal, Ankita; Kwon, Eun-Soo; Conte, Darryl; Liu, Haibo; Gilchrist, Michael J; MacNeil, Lesley T; Tissenbaum, Heidi A

    2014-01-01

    Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

  17. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Directory of Open Access Journals (Sweden)

    Shanqing Zheng

    Full Text Available DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS, and this is notably true when Caenorhabditis elegans (C. elegans is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  18. ins-7 Gene expression is partially regulated by the DAF-16/IIS signaling pathway in Caenorhabditis elegans under celecoxib intervention.

    Science.gov (United States)

    Zheng, Shanqing; Liao, Sentai; Zou, Yuxiao; Qu, Zhi; Liu, Fan

    2014-01-01

    DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the lifespan of C. elegans through activation of DAF-16. Our results confirmed the function of celecoxib on aging; however, we found that the expression of ins-7, a DAF-16 target gene, was abnormally regulated by celecoxib. ins-7 plays an important role in regulating aging, and its expression is suppressed in C. elegans when DAF-16 is activated. However, we found that celecoxib upregulated the expression of ins-7 in contrast to its role in DAF-16 activation. Our subsequent analysis indicated that the expression level of ins-7 in C. elegans was negatively regulated by DAF-16 activity. Additionally, its expression was also positively regulated by DAF-16-independent mechanisms, at least following external pharmacological intervention. Our study suggests that ins-7 is not a specific target gene of DAF-16, and should not be chosen as a reporter for IIS activity. This conclusion is important in the study of INSs on aging in C. elegans, especially under the circumstance of drug intervention.

  19. Both the caspase CSP-1 and a caspase-independent pathway promote programmed cell death in parallel to the canonical pathway for apoptosis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel P Denning

    Full Text Available Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3, of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell

  20. Closing in on the C. elegans ORFeome by cloning TWINSCAN predictions

    DEFF Research Database (Denmark)

    Wei, Chaochun; Lamesch, Philippe; Arumugam, Manimozhiyan

    2005-01-01

    The genome of Caenorhabditis elegans was the first animal genome to be sequenced. Although considerable effort has been devoted to annotating it, the standard WormBase annotation contains thousands of predicted genes for which there is no cDNA or EST evidence. We hypothesized that a more complete...... experimental annotation could be obtained by creating a more accurate gene-prediction program and then amplifying and sequencing predicted genes. Our approach was to adapt the TWINSCAN gene prediction system to C. elegans and C. briggsae and to improve its splice site and intron-length models. The resulting...... be significantly increased by replacing its partially curated predicted genes with TWINSCAN predictions. The technology described in this study will continue to drive the C. elegans ORFeome toward completion and contribute to the annotation of the three Caenorhabditis species currently being sequenced. The results...

  1. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome.

    Science.gov (United States)

    Harlow, Philippa H; Perry, Simon J; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A; Flemming, Anthony J

    2016-03-18

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals.

  2. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  3. EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans.

    Science.gov (United States)

    Shen, Yu; Zhang, Jiangwen; Calarco, John A; Zhang, Yun

    2014-10-01

    Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. Copyright © 2014 the authors 0270-6474/14/3413364-07$15.00/0.

  4. Liuwei Dihuang (LWDH, a traditional Chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jatinder S Sangha

    Full Text Available Liuwei Dihuang (LWDH, a classic Chinese medicinal formula, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. Here, we report on the effect and possible mechanisms of LWDH mediated protection of β-amyloid (Aβ induced paralysis in Caenorhabditis elegans using ethanol extract (LWDH-EE and water extract (LWDH-WE. Chemical profiling and quantitative analysis revealed the presence of different levels of bioactive components in these extracts. LWDH-WE was rich in polar components such as monosaccharide dimers and trimers, whereas LWDH-EE was enriched in terms of phenolic compounds such as gallic acid and paeonol. In vitro studies revealed higher DPPH radical scavenging activity for LWDH-EE as compared to that found for LWDH-WE. Neither LWDH-EE nor LWDH-WE were effective in inhibiting aggregation of Aβ in vitro. By contrast, LWDH-EE effectively delayed Aβ induced paralysis in the transgenic C. elegans (CL4176 model which expresses human Aβ1-42. Western blot revealed no treatment induced reduction in Aβ accumulation in CL4176 although a significant reduction was observed at an early stage with respect to β-amyloid deposition in C. elegans strain CL2006 which constitutively expresses human Aβ1-42. In addition, LWDH-EE reduced in vivo reactive oxygen species (ROS in C. elegans (CL4176 that correlated with increased survival of LWDH-EE treated N2 worms under juglone-induced oxidative stress. Analysis with GFP reporter strain TJ375 revealed increased expression of hsp16.2::GFP after thermal stress whereas a minute induction was observed for sod3::GFP. Quantitative gene expression analysis revealed that LWDH-EE repressed the expression of amy1 in CL4176 while up-regulating hsp16.2 induced by elevating temperature. Taken together, these results suggest that LWDH extracts, particularly LWDH-EE, alleviated β-amyloid induced toxicity, in part

  5. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Science.gov (United States)

    Irazoqui, Javier E; Troemel, Emily R; Feinbaum, Rhonda L; Luhachack, Lyly G; Cezairliyan, Brent O; Ausubel, Frederick M

    2010-07-01

    The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR) protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs). Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C. elegans, with

  6. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus.

    Directory of Open Access Journals (Sweden)

    Javier E Irazoqui

    2010-07-01

    Full Text Available The genetically tractable model host Caenorhabditis elegans provides a valuable tool to dissect host-microbe interactions in vivo. Pseudomonas aeruginosa and Staphylococcus aureus utilize virulence factors involved in human disease to infect and kill C. elegans. Despite much progress, virtually nothing is known regarding the cytopathology of infection and the proximate causes of nematode death. Using light and electron microscopy, we found that P. aeruginosa infection entails intestinal distention, accumulation of an unidentified extracellular matrix and P. aeruginosa-synthesized outer membrane vesicles in the gut lumen and on the apical surface of intestinal cells, the appearance of abnormal autophagosomes inside intestinal cells, and P. aeruginosa intracellular invasion of C. elegans. Importantly, heat-killed P. aeruginosa fails to elicit a significant host response, suggesting that the C. elegans response to P. aeruginosa is activated either by heat-labile signals or pathogen-induced damage. In contrast, S. aureus infection causes enterocyte effacement, intestinal epithelium destruction, and complete degradation of internal organs. S. aureus activates a strong transcriptional response in C. elegans intestinal epithelial cells, which aids host survival during infection and shares elements with human innate responses. The C. elegans genes induced in response to S. aureus are mostly distinct from those induced by P. aeruginosa. In contrast to P. aeruginosa, heat-killed S. aureus activates a similar response as live S. aureus, which appears to be independent of the single C. elegans Toll-Like Receptor (TLR protein. These data suggest that the host response to S. aureus is possibly mediated by pathogen-associated molecular patterns (PAMPs. Because our data suggest that neither the P. aeruginosa nor the S. aureus-triggered response requires canonical TLR signaling, they imply the existence of unidentified mechanisms for pathogen detection in C

  7. RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans.

    Science.gov (United States)

    Grill, Brock; Chen, Lizhen; Tulgren, Erik D; Baker, Scott T; Bienvenut, Willy; Anderson, Matthew; Quadroni, Manfredo; Jin, Yishi; Garner, Craig C

    2012-02-22

    Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

  8. From Cell Death to Metabolism: Holin-Antiholin Homologues with New Functions

    DEFF Research Database (Denmark)

    van den Esker, Marielle H.; Kovács, Ákos T.; Kuipers, Oscar P.

    2017-01-01

    , but their functions can be different, depending on the species. Using a series of biochemical and genetic approaches, in a recent article in mBio, Charbonnier et al. (mBio 8:e00976-17, 2017, https://doi.org/10.1128/mBio.00976-17) demonstrate that the antiholin homologue in Bacillus subtilis transports pyruvate...

  9. Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Pan-Young Jeong

    Full Text Available When Caenorhabditis elegans senses dauer pheromone (daumone, signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1 and normal growth media plus liquid culture (Path 2. Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h and is complete at S6 (72 h. Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.

  10. Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos.

    Science.gov (United States)

    Cohen, Merav; Tzur, Yonatan B; Neufeld, Esther; Feinstein, Naomi; Delannoy, Michael R; Wilson, Katherine L; Gruenbaum, Yosef

    2002-01-01

    Nuclear membranes and nuclear pore complexes (NPCs) are conserved in both animals and plants. However, the lamina composition and the dimensions of NPCs vary between plants, yeast, and vertebrates. In this study, we established a protocol that preserves the structure of Caenorhabditis elegans embryonic cells for high-resolution studies with thin-section transmission electron microscopy (TEM). We show that the NPCs are bigger in C. elegans embryos than in yeast, with dimensions similar to those in higher eukaryotes. We also localized the C. elegans nuclear envelope proteins Ce-lamin and Ce-emerin by pre-embedding gold labeling immunoelectron microscopy. Both proteins are present at or near the inner nuclear membrane. A fraction of Ce-lamin, but not Ce-emerin, is present in the nuclear interior. Removing the nuclear membranes leaves both Ce-lamin and Ce-emerin associated with the chromatin. Eliminating the single lamin protein caused cell death as visualized by characteristic changes in nuclear architecture including condensation of chromatin, clustering of NPCs, membrane blebbing, and the presence of vesicles inside the nucleus. Taken together, these results show evolutionarily conserved protein localization, interactions, and functions of the C. elegans nuclear envelope.

  11. The CD11a partner in Sus scrofa lymphocyte function-associated antigen-1 (LFA-1: mRNA cloning, structure analysis and comparison with mammalian homologues

    Directory of Open Access Journals (Sweden)

    Thomas Anne VT

    2005-10-01

    Full Text Available Abstract Background Lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18, alphaLbeta2, the most abundant and widely expressed beta2-integrin, is required for many cellular adhesive interactions during the immune response. Many studies have shown that LFA-1 is centrally involved in the pathogenesis of several diseases caused by Repeats-in-toxin (RTX -producing bacteria. Results The porcine-LFA-1 CD11a (alpha subunit coding sequence was cloned, sequenced and compared with the available mammalian homologues in this study. Despite some focal differences, it shares all the main characteristics of these latter. Interestingly, as in sheep and humans, an allelic variant with a triplet insertion resulting in an additional Gln-744 was consistently identified, which suggests an allelic polymorphism that might be biologically relevant. Conclusion Together with the pig CD18-encoding cDNA, which has been available for a long time, the sequence data provided here will allow the successful expression of porcine CD11a, thus giving the first opportunity to express the Sus scrofa beta2-integrin LFA-1 in vitro as a tool to examine the specificities of inflammation in the porcine species.

  12. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  13. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions.

    Science.gov (United States)

    Freyth, Katharina; Janowitz, Tim; Nunes, Frank; Voss, Melanie; Heinick, Alexander; Bertaux, Joanne; Scheu, Stefan; Paul, Rüdiger J

    2010-10-01

    Laboratory breeding conditions of the model organism C. elegans do not correspond with the conditions in its natural soil habitat. To assess the consequences of the differences in environmental conditions, the effects of air composition, medium and bacterial food on reproductive fitness and/or dietary-choice behavior of C. elegans were investigated. The reproductive fitness of C. elegans was maximal under oxygen deficiency and not influenced by a high fractional share of carbon dioxide. In media approximating natural soil structure, reproductive fitness was much lower than in standard laboratory media. In seminatural media, the reproductive fitness of C. elegans was low with the standard laboratory food bacterium E. coli (γ-Proteobacteria), but significantly higher with C. arvensicola (Bacteroidetes) and B. tropica (β-Proteobacteria) as food. Dietary-choice experiments in semi-natural media revealed a low preference of C. elegans for E. coli but significantly higher preferences for C. arvensicola and B. tropica (among other bacteria). Dietary-choice experiments under quasi-natural conditions, which were feasible by fluorescence in situ hybridization (FISH) of bacteria, showed a high preference of C. elegans for Cytophaga-Flexibacter-Bacteroides, Firmicutes, and β-Proteobacteria, but a low preference for γ-Proteobacteria. The results show that data on C. elegans under standard laboratory conditions have to be carefully interpreted with respect to their biological significance.

  14. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    Science.gov (United States)

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  15. Evaluation of the antioxidant property and effects in Caenorhabditis elegans of Xiangxi flavor vinegar, a Hunan local traditional vinegar*

    Science.gov (United States)

    HUANG, Run-ting; HUANG, Qing; WU, Gen-liang; CHEN, Chun-guang; LI, Zong-jun

    2017-01-01

    Xiangxi flavor vinegar (XV) is one of Hunan Province’s traditional fermented vinegars. It is produced from herb, rice, and spring water with spontaneous liquid-state fermentation techniques. In this study, we investigated the antioxidant property of XV by analyzing its antioxidant compounds, its free radical scavenging property in vitro and in vivo, and its effects on antioxidant enzyme activity and apoptosis in Caenorhabditis elegans. The results showed that XV is rich in antioxidants. In particular, ligustrazine reached 6.431 μg/ml. The in vitro 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•), hydroxyl radical (•OH), and superoxide anion radical (O2 •−) scavenging rates of XV were 95.85%, 97.22%, and 63.33%, respectively. The reactive oxygen species (ROS) content in XV-treated C. elegans decreased significantly (P<0.01) compared to the control group. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were remarkably increased (P<0.01) in C. elegans after XV treatment. In addition, XV could upregulate CED-9 protein expression and downregulate CED-3 protein expression in C. elegans. These results prove that XV is rich in antioxidants and scavenges radicals in vitro efficiently. XV inhibits apoptosis in C. elegans probably by scavenging ROS and increasing the activities of its antioxidant enzymes. PMID:28378570

  16. Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of Impatiens balsamina L. on Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hong-Fang Jiang

    2017-01-01

    Full Text Available Impatiens balsamina L. (Balsaminaceae, an annual herb found throughout China, has been extensively used in traditional Chinese medicine (TCM. However, our knowledge regarding the adverse effects of I. balsamina in vivo is very limited. In this present study, the nematode Caenorhabditis elegans model was employed to fully assess the adverse effects of hydroalcoholic (EtOH 55% extracts of I. balsamina stems (HAEIBS in vivo. After exposure to 10 mg/mL HAEIBS, the major organism-level endpoints of C. elegans of percent survival, frequency of head thrash and body bends, and reproduction had decreased by 24%, 30%, and 25%, respectively. The lifespan of C. elegans was also greatly reduced after HAEIBS exposure compared to the controls. The active compounds in HAEIBS were separated using high speed countercurrent chromatograph (HSCCC and characterized by high performance liquid chromatography (HPLC and nuclear magnetic resonance (NMR. Two compounds, lawsone and 2-methoxy-1,4-naphthoquinone (MNQ, and their adverse effects were then more thoroughly detailed in this study. It was found that lawsone is the major toxin in HAEIBS with a higher toxicity than MNQ in terms of negative impact on C. elegans mortality, locomotion, reproduction, and lifespan. Our data also suggests that the C. elegans model may be useful for assessing the possible toxicity of other Chinese medicines, plant extracts, and/or compounds.

  17. Nanoscale mechanical stimulation method for quantifying C. elegans mechanosensory behavior and memory

    OpenAIRE

    Kiso, Kaori; Sugi, Takuma; Okumura, Etsuko; Igarashi, Ryuji

    2016-01-01

    Here, we establish a novel economic system to quantify C. elegans mechanosensory behavior and memory by a controllable nanoscale mechanical stimulation. Using piezoelectric sheet speaker, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses and memory under the control of each vibration property. This system will facilitate understanding of physiological aspects of C. elegans mechanosensory behavior and memory.

  18. Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans.

    Science.gov (United States)

    Baudrimont, Antoine; Penkner, Alexandra; Woglar, Alexander; Machacek, Thomas; Wegrostek, Christina; Gloggnitzer, Jiradet; Fridkin, Alexandra; Klein, Franz; Gruenbaum, Yosef; Pasierbek, Pawel; Jantsch, Verena

    2010-11-24

    The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2-dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates.

  19. Organization and alternative splicing of the Caenorhabditis elegans cAMP-dependent protein kinase catalytic-subunit gene (kin-1).

    Science.gov (United States)

    Tabish, M; Clegg, R A; Rees, H H; Fisher, M J

    1999-04-01

    The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.

  20. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.

    Science.gov (United States)

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-06-25

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca(2+)/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI:http://dx.doi.org/10.7554/eLife.00518.001.